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1 Introduction

In this manual some theoretical background used by the SEPRAN package is given.
The same subdivision as in the manual Standard Problems is used.



1.2 Introduction February 2003 TH



TH Unknown February 2003 2.1

2 Unknown

This chapter is under preparation
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3 Second order elliptic and parabolic equations

This chapter is under preparation
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4 Elements for lubrication theory

This chapter is under preparation
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5 Mechanical elements

In this chapter some mechanical elements are described.
The following sections are available:

5.1 is devoted to standard linear elastic problems.

5.2 treats incompressible or nearly incompressible elasticity.

5.3 is devoted to non-linear elasticity problems.

5.5 deals with (thick) plates.
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5.1 Linear elastic problems

This chapter is under preparation
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5.2 Linear incompressible or nearly incompressible elastic problems

This chapter is under preparation
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5.3 Nonlinear solid computation

Non-linear solid mechanics problems can be solved either by a Total Lagrange approach or an
updated Lagrange approach. In SEPRAN elements for both types of equations are available.
Section (5.4) treats elements using the Total Lagrange approach.
Elements using the updated Lagrange approach are treated in Section (5.4.1).
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5.4 Nonlinear solid computation using a Total Lagrange approach

This chapter is under preparation
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5.4.1 Nonlinear solid computation using an Updated Lagrange approach

Linearized weak form of the governing equations

As point of departure we take the equations of conservation of mass and momentum:{
∇ · σ = ~0 in Ω(t) (5.4.1.1a)

det(F )− 1 = 0 in Ω(t) (5.4.1.1b)

The Cauchy stress can be written as:
σ = −pI + τ (5.4.1.2)

We define weighting functions ~w ∈ ~W and q ∈ Q for the balance equations of mass and momentum,
respectively. Here ~W = {~w ∈ [H1

0 (Ω)]3} with H1
0 (Ω) the Hilbert space satisfying the homogeneous

version of the Dirichlet boundary conditions, and Q = {q ∈ L2(Ω);
∫

Ω
qdΩ = 0}. Then the weak

form of (eq. 5.4.1.1b) is given by:
∫
Ωt

(grad ~w)T : σ =
∫
Γt

~w · (σ · ~n)∫
Ωt

q(J − 1) = 0
(5.4.1.3)

where we used the abbreviation J = detF . To evaluate the integrals, they must be transformed
from the current, unknown, configuration, to a known configuration. Following an updated Lagrange
approach, we choose the last known configuration Ωn as a reference and define:

F = F∆ · F n
F n = (grad 0~xn)T (5.4.1.4)

F∆ = (grad n~x)T

where grad n denotes the spatial gradient operator with respect to configuration Ωn
1:

grad n = F T∆ · grad (5.4.1.5)

Transformation yields: 

∫
Ωn

(grad n ~w)T : F−1
∆ · σJ∆ =∫

Γn

n~w · (σ · (F−T∆ · ~nn))J∆∫
Ωn

q(J − 1)J∆ = 0

(5.4.1.6)

Linearization

The nonlinear set of equations (5.4.1.6) is solved using Newton iterations. The (unknown) converged

solution (~x, p) on Ω is written as the sum of an estimate, (~̂x, p̂), and an error (δ~x, δp)

~x = ~̂x+ δ~x (5.4.1.7)

p = p̂+ δp (5.4.1.8)

All other quantities in (5.4.1.6) can be written similarly, giving:

F∆ = F̂∆ + δF∆ ; τ = τ̂ + δτ ; J = Ĵ + δJ (5.4.1.9)

1Use grad ~x = I = F−T
∆ · F T

∆ = F−T
∆ grad n~x.
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Substituting these expressions in (5.4.1.6) and neglecting the second order terms yields:

∫
Ωn

(grad n ~w)T : δF−1
∆ · (−p̂I + τ̂ )Ĵ∆+∫

Ωn

(grad n ~w)T : F̂
−1

∆ · (−δpI + δτ )Ĵ∆+∫
Ωn

(grad n ~w)T : F̂
−1

∆ · (−p̂I + τ̂ )δJ∆−∫
Γn

n~w ·
(
δσ · F̂

−T
∆ · ~nnĴ∆ + σ̂ · δF−T∆ · ~nnĴ∆ + σ̂ · F̂

−T
∆ · ~nnδJ∆

)
=

−
∫

Ωn

(grad n ~w)T : F̂
−1

∆ · (−p̂I + τ̂ )Ĵ∆+∫
Γn

n~w · (σ̂ · (F̂
−T
∆ · ~nn))Ĵ∆∫

Ωn

q
(

(Ĵ − 1)δJ∆ + δJĴ∆

)
= −

∫
Ωn

q(Ĵ − 1)Ĵ∆

(5.4.1.10)

Note that the right hand side of the first equation expresses the imbalance of momentum in the
estimated configuration, as a consequence of the errors δτ , δp, δF−1

∆ , δJ∆ in the left hand side.
This imbalance is used to iteratively reduce these errors. Commonly, in this iteration process the
left hand side is approximated by neglecting the surface integral and the integral related to the
error δJ∆. This might reduce convergence speed but will not influence the final solution, since no
approximation is performed in the right hand side. Similarly, the right hand side of the second
equation expresses the imbalance of mass, due to the errors δJ and δJ∆. Here, commonly the term
with the error δJ∆ is excluded in the iteration procedure.

If the error δ~x is sufficiently small, the errors δF−1
∆ , δJ and δτ can be written as (van de Vosse,

2003)2

δF−1
∆ = −F̂

−1

∆ · (grad δ~x)T

δJ = Ĵ(grad · δ~x)

δJ∆ = J∆(grad · δ~x) (5.4.1.11)

δτ = 4M̂ : (grad δ~x)T

where the tensor 4M̂ is related to the stiffness of the material in the estimated configuration, and
depends on the choice of the constitutive relation.

Neglecting the left hand side terms, discussed above, and using (5.4.1.5) and (5.4.1.11), equation
(5.4.1.10) can be rewritten with respect to the estimated configuration Ω̂ as:

∫̂
Ω

( ˆgrad ~w)T : (4M̂ : ( ˆgrad δ~x)T )−∫̂
Ω

( ˆgrad ~w)T : ( ˆgrad δ~x)T · (−p̂I + τ̂ )+∫̂
Ω

( ˆgrad ~w)T : (−p̂I + τ̂ )(grad · δ~x)+∫̂
Ω

( ˆgrad ~w)T : (−δpI) =

−
∫̂
Ω

( ˆgrad ~w)T : (−p̂I + τ̂ ) +
∫

Γn

h~w · (σ̂ · ~̂n)∫̂
Ω

qĴ(grad · δ~x) = −
∫̂
Ω

q(Ĵ − 1)

(5.4.1.12)

2 Use F−1
∆ = (F̂∆ + δF∆)−1 = [F̂∆ · (I+ F̂

−1
∆ · δF∆)]−1 = (I+ F̂

−1
∆ · δF∆)−1 · F̂−1

∆ ≈ (I− F̂
−1
∆ · δF∆) · F̂−1

∆ =

F̂
−1
∆ − F̂

−1
∆ · δF∆ · F̂−1

∆ = F̂
−1
∆ − F̂

−1
∆ · (F̂−T

∆ · δF T
∆)T = F̂

−1
∆ − F̂

−1
∆ · (F̂−T

∆ · grad nδ~x)T = F̂
−1
∆ − F̂

−1
∆ · (grad δ~x)T ;

J = det(F ) = det(F̂ + δF ) = det((I · (δF · F̂−1
) · F̂ ) = det(I · δF · F̂−1

) det(F̂ ) ≈ Ĵ(1 + tr (δF · F̂−1
)) =

Ĵ + Ĵtr ((F̂
−T · δF T )T ) = Ĵ + Ĵtr ((F̂

−T · grad 0δ~x)T ) = Ĵ + Ĵtr ((grad δ~x)T ) = Ĵ + Ĵ(grad · δ~x).
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Elaboration of the linearized weighted residual formulation

We will now transform the coordinate free equation (5.4.1.12) into a matrix formulation with respect
to a Cartesian basis in 3D space. For clarity, we omit the indication that all quantities are taken
with respect to the estimated configuration Ω̂.

First we store the components of the tensor grad ~w in a column H
˜
w:

H
˜
w =

[
∂∂w1

∂∂x1

∂∂w2

∂∂x2

∂∂w3

∂∂x3

∂∂w2

∂∂x1

∂∂w3

∂∂x2

∂∂w1

∂∂x3

∂∂w1

∂∂x2

∂∂w2

∂∂x3

∂∂w3

∂∂x1

]T
= [Hw11 Hw22 Hw33 Hw12 Hw23 Hw31 Hw21 Hw32 Hw13]T (5.4.1.13)

Similarly, the components of grad δ~x are stored as:

H
˜
δx =

[
∂∂δx1

∂∂x1

∂∂δx2

∂∂x2

∂∂δx3

∂∂x3

∂∂δx2

∂∂x1

∂∂δx3

∂∂x2

∂∂δx1

∂∂x3

∂∂δx1

∂∂x2

∂∂δx2

∂∂x3

∂∂δx3

∂∂x1

]T
= [Hδx11 Hδx22 Hδx33 Hδx12 Hδx23 Hδx31 Hδx21 Hδx32 Hδx13]T (5.4.1.14)

Next, because equation (5.4.1.12) contains terms (grad ~w)T : A, we evaluate the double dot product:

(grad ~w)T : A = Hw : A

= Hw11A11 +Hw22A22 +Hw33A33 +

Hw12A21 +Hw23A32 +Hw31A13 +

Hw21A12 +Hw32A23 +Hw13A31

= H
˜
T
wA

˜̃
(5.4.1.15)

which defines how the components of A are stored in A
˜̃

:

A
˜̃

= [A11 A22 A33 A21 A32 A13 A12 A23 A31]T (5.4.1.16)

Note that the storage of components of A in A
˜̃

differs from the storage of components of Hw in
H
˜
w. Now we consider the first term in (5.4.1.12), which is transformed as:∫

Ωt

(grad ~w)T : (4M : (grad δ~x)T ) dΩt =

∫
Ωt

H
˜
T
wD¯ T

H
˜
δx dΩt (5.4.1.17)

Comparison with equation (5.4.1.15) shows that the term 4M : (grad δ~x)T , which in fact represents
the error in τ must regarded as an example of a tensor A. Thus the components of δτ must be
stored in a column δτ

˜̃
according to sequence in equation (5.4.1.16). In combination with equation

(5.4.1.14) this defines how the components of 4M are stored in D
¯ T

. In section 5.4.1 some examples
of D

¯ T
will be elaborated.

The second term in (5.4.1.12) is transformed as:

−
∫
Ωt

(grad ~w)T : (grad δ~x)T · σ dΩt =

∫
Ωt

H
˜
T
wD¯ F

H
˜
δx dΩt (5.4.1.18)
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The term (grad δ~x)T · σ is transformed into D
¯ F

H
˜
δx as follows:

−(grad δ~x)T · σ =

−

Hδx11 Hδx12 Hδx13

Hδx21 Hδx22 Hδx23

Hδx31 Hδx32 Hδx33

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



= −



σ11 0 0 σ12 0 0 0 0 σ31

0 σ22 0 0 σ23 0 σ12 0 0
0 0 σ33 0 0 σ31 0 σ23 0
0 σ12 0 0 σ31 0 σ11 0 0
0 0 σ23 0 0 σ12 0 σ22 0
σ31 0 0 σ23 0 0 0 0 σ33

σ12 0 0 σ22 0 0 0 0 σ23

0 σ23 0 0 σ33 0 σ32 0 0
0 0 σ31 0 0 σ11 0 σ12 0





Hδx11

Hδx22

Hδx33

Hδx12

Hδx23

Hδx31

Hδx21

Hδx32 Hδx13


= D

¯ F
H
˜
δx (5.4.1.19)

which defines the matrix D
¯ F

.

The third term in (5.4.1.12) is transformed as:∫
Ω̂

(grad ~w)T : σ(grad · δ~x) =

∫
Ωt

H
˜
T
wD¯ J

H
˜
δx dΩt (5.4.1.20)

Here the term σ(grad · δ~x) is elaborated as:

σ(grad · δ~x) = tr (Hδx)σ

= (Hδx,11 +Hδx,22 +Hδx,33)

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



=



σ11 σ11 σ11 0 0 0 0 0 0
σ22 σ22 σ22 0 0 0 0 0 0
σ33 σ33 σ33 0 0 0 0 0 0
σ21 σ21 σ21 0 0 0 0 0 0
σ32 σ32 σ32 0 0 0 0 0 0
σ13 σ13 σ13 0 0 0 0 0 0
σ12 σ12 σ12 0 0 0 0 0 0
σ23 σ23 σ23 0 0 0 0 0 0
σ31 σ31 σ31 0 0 0 0 0 0





Hδx11

Hδx22

Hδx33

Hδx12

Hδx23

Hδx31

Hδx21

Hδx32

Hδx13


= D

¯ J
H
˜
δx (5.4.1.21)

which defines the matrix D
¯ J

.

Summarizing, equation (5.4.1.12) can now be written as:

∫
Ωt

H
˜
T
w [D

¯ T
+D

¯ F
+D

¯ J
]H

˜
δx dΩt −

∫
Ωt

δpgrad · ~w dΩt =

−
∫
Ωt

H
˜
T
wσ

˜
dΩt +

∫
Γn

t~w · (σ · ~n)∫
Ωt

qJ(grad · δ~x) dΩt = −
∫
Ωt

q(J − 1) dΩt

(5.4.1.22)

where once more it is noted that the integrals are taken over the estimated configuration.

Finite element approximation

To obtain a discrete set of finite element equations, the domain Ω is subdivided into non overlapping
sub domains Ωe, called elements. The position field is described by three components (x1, x2, x3).
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Within each element the components of position field xej and the pressure field pe are approximated
as interpolations between values at a limited number of nodal points:

xej(~x, t) =

nx∑
i=1

φi(~x)xij(t) = φ
˜

Tx
˜
j
e ∀~x ∈ Ωe (5.4.1.23)

pe(~x, t) =

np∑
i=1

ψi(~x)pi(t) = ψ
˜

T p
˜

e ∀~x ∈ Ωe (5.4.1.24)

where nx and np are the number of nodes for the position and pressure field, respectively, φ
˜

=

[φ1, . . . , φnx ]T and ψ
˜

= [ψ1, . . . , ψnp ]T columns of shape functions for the position and pressure

field, respectively, and ~x
˜
e = [~x1, . . . , ~xnx ]T and p

˜

e = [p1, . . . , pnp ]T columns of nodal positions and
pressures, respectively.

The weighting functions ~w, with components (w1, w2, w3), and q are defined on the element level
as well, and discretized according to Galerkins method as:

wej (~x, t) =

nx∑
i=1

φi(~x)wij(t) = φ
˜

Twj
˜

e ∀~x ∈ Ωe (5.4.1.25)

qe(~x, t) =

np∑
i=1

ψi(~x)qi(t) = ψ
˜

T q
˜

e ∀~x ∈ Ωe (5.4.1.26)

We now reconsider the column H
˜
w, defined in equation (5.4.1.13), which is written as:

H
˜
w =

[
∂∂w1

∂∂x1

∂∂w2

∂∂x2

∂∂w3

∂∂x3

∂∂w2

∂∂x1

∂∂w3

∂∂x2

∂∂w1

∂∂x3

∂∂w1

∂∂x2

∂∂w2

∂∂x3

∂∂w3

∂∂x1

]T
=

[
∂∂φ

˜

Tw
˜

e
1

∂∂x1

∂∂φ
˜

Tw
˜

e
2

∂∂x2

∂∂φ
˜

Tw
˜

e
3

∂∂x3

∂∂φ
˜

Tw
˜

e
2

∂∂x1

∂∂φ
˜

Tw
˜

e
3

∂∂x2

∂∂φ
˜

Tw
˜

e
1

∂∂x3

∂∂φ
˜

Tw
˜

e
1

∂∂x2

∂∂φ
˜

Tw
˜

e
2

∂∂x3

∂∂φ
˜

Tw
˜

e
3

∂∂x1

]T

=



∂∂φ1

∂∂x1
0 0 ∂∂φ2

∂∂x2
0 0 . . . ∂∂φnx

∂∂x1
0 0

0 ∂∂φ1

∂∂x2
0 0 ∂∂φ2

∂∂x2
0 . . . 0 ∂∂φnx

∂∂x2
0

0 0 ∂∂φ1

∂∂x3
0 0 ∂∂φ2

∂∂x3
. . . 0 0 ∂∂φnx

∂∂x3

0 ∂∂φ1

∂∂x1
0 0 ∂∂φ2

∂∂x1
0 . . . 0 ∂∂φnx

∂∂x1
0

0 0 ∂∂φ1

∂∂x2
0 0 ∂∂φ2

∂∂x2
. . . 0 0 ∂∂φnx

∂∂x2
∂∂φ1

∂∂x3
0 0 ∂∂φ2

∂∂x3
0 0 . . . ∂∂φnx

∂∂x3
0 0

∂∂φ1

∂∂x2
0 0 ∂∂φ2

∂∂x2
0 0 . . . ∂∂φnx

∂∂x2
0 0

0 ∂∂φ1

∂∂x3
0 0 ∂∂φ2

∂∂x3
0 . . . 0 ∂∂φnx

∂∂x3
0

0 0 ∂∂φ1

∂∂x1
0 0 ∂∂φ2

∂∂x1
. . . 0 0 ∂∂φnx

∂∂x1





w1
1

w1
2

w1
3

w2
1

w2
2

w2
3
...

wnx
1

wnx
2

wnx
3


= B

¯ φ
w
˜
e (5.4.1.27)

which defines the matrix B
¯ φ

and the column w
˜
e. Similarly, we can write:

H
˜
δx = B

¯ φ
δx
˜
e (5.4.1.28)

where
δx
˜
e =

[
δx1

1 δx1
2 δx1

3 δx2
1 δx2

2 δx2
3 . . . δxnx

1 δxnx
2 δxnx

3

]T
(5.4.1.29)

The dot product grad · ~w is written as:

grad · ~w =
∂∂w1

∂∂x1
+
∂∂w2

∂∂x2
+
∂∂w3

∂∂x3

=
∂∂φ

˜

ew
˜
e
1

∂∂x1
+
∂∂φ

˜

ew
˜
e
2

∂∂x2
+
∂∂φ

˜

ew
˜
e
3

∂∂x3

=
[
∂∂φ1

∂∂x1

∂∂φ1

∂∂x2

∂∂φ1

∂∂x3

∂∂φ2

∂∂x1

∂∂φ2

∂∂x2

∂∂φ2

∂∂x3
. . . ∂∂φnx

∂∂x1

∂∂φnx

∂∂x2

∂∂φnx

∂∂x3

]
w
˜
e

= b
˜
T
φw

˜
e (5.4.1.30)
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which defines the column b
˜
φ. With this definition, we can also write:

grad · δ~x = b
˜
T
φ δx

˜
e (5.4.1.31)

Finally, we elaborate the integrand of the surface integral as:

~w · (σ · ~n) = ~w · ~t
= w1t1 + w2t2 + w3t3 (5.4.1.32)

= (Φ
˜
w
˜
e)TΦ

˜
te
˜

(5.4.1.33)

where the components of the surface traction vector ~t are stored in the column t
˜
e according to

equation (5.4.1.27), and Φ
˜

contains the basis functions φi.

Substitution of the above expressions in equation (5.4.1.22) yields:

∑nel

1

(∫
Ωe

t

(B
¯ φ
w
˜
e)T [D

¯ T
+D

¯ F
+D

¯ J
]B

¯ φ
δx
˜
e dΩet −

∫
Ωe

t

ψ
˜

T δp
˜

eb
˜
T
φw

˜
e dΩet

)
=

∑nel

1

(
−
∫

Ωe
t

(B
¯ φ
w
˜
e)Tσ

˜
dΩet +

∫
Γn

te(Φ
˜
w
˜
e)TΦ

˜
te
˜

)
∑nel

1

(∫
Ωe

t

ψ
˜

T q
˜

eb
˜
φδx

˜
e dΩet

)
=
∑nel

1

(
−
∫

Ωe
t

ψ
˜

T q
˜

e ∂J−1
∂J dΩet

) (5.4.1.34)

where it must be noted that, to eventually get a symmetric stiffness matrix, in the second equation
all terms were divided by J . Now, since the columns w

˜
e, q

˜

e, δx
˜
e and δp

˜

e are constants, they can
be taken outside the integrals, and we can write:{ ∑nel

1

(
(w
˜
e)TK

¯
eδx

˜
e − (w

˜
e)T (P

¯
e)T δp

˜

e
)

=
∑nel

1

(
(w
˜
e)T r

˜
e
x

)∑nel

1

(
(q
˜

e)TP
¯
eδx

˜
e
)

=
∑nel

1

(
−(q

˜

e)T r
˜
e
p

) (5.4.1.35)

where we introduced:

K
¯
e =

∫
Ωe

t

(B
¯ φ

)T [D
¯ T

+D
¯ F

+D
¯ J

]B
¯ φ

dΩet (5.4.1.36)

P
¯
e =

∫
Ωe

t

b
˜
T
φψ

˜
dΩet (5.4.1.37)

r
˜
e
x =

∫
Ωe

t

(B
¯ φ

)Tσ
˜
dΩet +

∫
Γn

te(Φ
˜

)TΦ
˜
te
˜

(5.4.1.38)

r
˜
e
p =

∫
Ωe

t

ψ
˜

∂J − 1

∂J
dΩet (5.4.1.39)

Finally, is we assemble all element columns and matrices into columns and matrices at the global
level, we obtain {

w
˜
T (K

¯
δx
˜
− P

¯
T δp

˜
) = w

˜
T r

˜
x

q
˜

TP
¯
δx
˜

= q
˜

T r
˜
p

(5.4.1.40)

Since this equation must hold for all admissible weighting functions, it equivalent to the following
set of linear equations: [

K
¯

P
¯
T

P
¯

0
¯

] [
δx
˜δp
˜

]
=

[
r
˜
x

r
˜
p

]
(5.4.1.41)

which is the final finite element formulation of the governing equations.
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Implementation of material behavior

In this section the derivation of the material stiffness matrix D
¯ T

is addressed for several material
laws.

Incompressible Neo Hookean material

For an incompressible Neo Hookean material the following expression yields:

τ = G(B − I) (5.4.1.42)

For the variation of τ it holds:

δτ = GδB

= Gδ(F · F T )

= G(δF · F T + F · δ(F T ))

= G((grad 0δ~x)T · F T + F · (grad 0δ~x))

= G((F T · grad δ~x)T · F T + F · (F T · grad δ~x))

= G((grad δ~x)T · F · F T + F · F T · (grad δ~x))

= G(Hδx ·B +B ·HT
δx) (5.4.1.43)

The components of this tensor are stored in a column δτ
˜̃

according to the sequence of equation
(5.4.1.16):

δτ
˜̃

= [δτ11 δτ22 δτ33 δτ21 δτ32 δτ13 δτ12 δτ23 δτ31] (5.4.1.44)

where a specific component δτij is computed as:

δτij = G(Hδx,ikBki +BikHδx,jk) (5.4.1.45)

Then, for the matrix D
¯ T

it holds:

δτ
˜̃

= G



2B11 0 0 2B12 0 0 0 0 2B31

0 2B22 0 0 2B23 0 2B12 0 0
0 0 2B33 0 0 2B31 0 2B23 0
B12 B12 0 B22 B31 0 B11 0 B23

0 B23 B23 0 B33 B12 B31 B22 0
B31 0 B31 B23 0 B11 0 B12 B33

B12 B12 0 B22 B31 0 B11 0 B23

0 B23 B23 0 B33 B12 B31 B22 0
B31 0 B31 B23 0 B11 0 B12 B33





Hδx11

Hδx22

Hδx33

Hδx12

Hδx23

Hδx31

Hδx21

Hδx32

Hδx13


= D

¯ T
H
˜
δx (5.4.1.46)

where symmetry of B was used. In Sepran, the matrix D
¯ T

is computed in routine elm200.f >

elm8100.f > elm8200.f > el8302.f > el2730.f.

Incompressible isotropic hyper-elastic material

A more general example. In a compressible isotropic hyper-elastic material, the stress can be derived
from a strain energy function Wc:

Wc = Wc(I1, I2, I3) (5.4.1.47)

with invariants Ii defined as:

I1 = tr (C) (5.4.1.48)

I2 = ∂
1

2
[tr 2(C)− tr (C2)] (5.4.1.49)

I3 = det(C) = J2 (5.4.1.50)
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where J = det (F ) and the Cauchy-Green tensor C is defined as:

C = F T · F (5.4.1.51)

The Cauchy stress σ is related to Wc according to:

σ =
∂2

∂J
F · ∂dWc

∂dC
· F T (5.4.1.52)

If the material is incompressible, I3 = 1, and the strain energy function W is a function of I1 and
I2 only:

W = W (I1, I2) (5.4.1.53)

Then the Cauchy stress is split according to equation (5.4.1.2) and the extra stress τ is obtained
from equation (5.4.1.52), yielding:

τ = 2

[
∂∂W

∂∂I1
B − ∂∂W

∂∂I2
B−1

]
= g1(I1, I2)B − g2(I1, I2)B−1 (5.4.1.54)

which defines the functions g1 and g2. For the variation δτ it holds (van Ooijen, 2003):

δτ =

(
g11tr (δB) + ∂

1

2
g12(tr (B)tr (δB)− tr (B · δB))

)
B + g1δB +(

g21tr (δB) + ∂
1

2
g22[(tr (B)tr (δB)− tr (B · δB))

)
B−1 + g2δB

−1 (5.4.1.55)

with

gij = 2
∂∂2W

∂∂Ii∂Ij
(5.4.1.56)

and

δB = Hδx ·B +B ·HT
δx (5.4.1.57)

δB−1 = −HT
δx ·B

−1 −B−1 ·Hδx (5.4.1.58)

With these expressions we derive:

tr (δB) = (B +BT ) : Hδx (5.4.1.59)

tr (B · δB) = (B2 + (B2)T ) : Hδx (5.4.1.60)

Substitution in equation (5.4.1.55) yields:

δτ = g1(Hδx ·B +B ·HT
δx)− g2(HT

δx ·B
−1 +B−1 ·Hδx)

+V 1(B,B−1)U1 : Hδx + V 2(B,B−1)U2 : Hδx (5.4.1.61)

with:

V 1 = (g11 + ∂
1

2
g12tr (B))B + (g21 + ∂

1

2
g22tr (B))B−1 (5.4.1.62)

U1 = B +BT (5.4.1.63)

V 2 = ∂
1

2
g12B + ∂

1

2
g22B

−1 (5.4.1.64)

U2 = B2 + (B2)T (5.4.1.65)

The general form of equation (5.4.1.61) is:

δτ = Q ·Hδx +R ·HT
δx +Hδx · S +HT

δx · T + V (U : Hδx) (5.4.1.66)
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which is transformed into:

δτ
˜̃

= (Q
¯

+R
¯

+ S
¯

+ T
¯

+ V
˜̃
U
˜̃
T )H

˜
δx

= D
¯ T

H
˜
δx (5.4.1.67)

where the components of δτ are stored in δτ
˜

according to equation (5.4.1.44), and H
˜
δx was defined

in equation (5.4.1.14). The matrices Q
¯

through U
¯

can be derived as:

Q ·Hδx =



Q11 0 0 0 0 Q13 Q12 0 0
0 Q22 0 Q21 0 0 0 Q23 0
0 0 Q33 0 Q32 0 0 0 Q31

Q21 0 0 0 0 Q23 Q22 0 0
0 Q32 0 Q31 0 0 0 Q33 0
0 0 Q13 0 Q12 0 0 0 Q11

0 Q12 0 Q11 0 0 0 Q13 0
0 0 Q23 0 Q22 0 0 0 Q21

Q31 0 0 0 0 Q33 Q32 0 0





Hδx11

Hδx22

Hδx33

Hδx12

Hδx23

Hδx31

Hδx21

Hδx32

Hδx13


= Q

¯
H
˜
δx (5.4.1.68)

R ·HT
δx =



R11 0 0 R12 0 0 0 0 R13

0 R22 0 0 R23 0 R21 0 0
0 0 R33 0 0 R31 0 R32 0
R21 0 0 R22 0 0 0 0 R33

0 R32 0 0 R33 0 R31 0 0
0 0 R13 0 0 R11 0 R12 0
0 R12 0 0 R13 0 R11 0 0
0 0 R23 0 0 R21 0 R22 0
R31 0 0 R32 0 0 0 0 R33





Hδx11

Hδx22

Hδx33

Hδx12

Hδx23

Hδx31

Hδx21

Hδx32

Hδx13


= R

¯
H
˜
δx (5.4.1.69)

Hδx · S =



S11 0 0 S21 0 0 0 0 S31

0 S22 0 0 S32 0 S12 0 0
0 0 S33 0 0 S31 0 S23 0
0 S21 0 0 S13 0 S11 0 0
0 0 S32 0 0 S12 0 S22 0
S13 0 0 S23 0 0 0 0 S33

S12 0 0 S22 0 0 0 0 S32

0 S23 0 0 S33 0 S13 0 0
0 0 S31 0 0 S11 0 S21 0





Hδx11

Hδx22

Hδx33

Hδx12

Hδx23

Hδx31

Hδx21

Hδx32

Hδx13


= S

¯
H
˜
δx (5.4.1.70)

HT
δx · T =



T11 0 0 0 0 T31 T21 0 0
0 T22 0 T12 0 0 0 T32 0
0 0 T33 0 T23 0 0 0 T13

0 T21 0 T11 0 0 0 T31 0
0 0 T32 0 T22 0 0 0 T12

T13 0 0 0 0 T33 T23 0 0
T12 0 0 0 0 T32 T22 0 0
0 T23 0 T13 0 0 0 T33 0
0 0 T31 0 T21 0 0 0 T11





Hδx11

Hδx22

Hδx33

Hδx12

Hδx23

Hδx31

Hδx21

Hδx32

Hδx13


= T

¯
H
˜
δx (5.4.1.71)
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V (U : Hδx) =



V11

V22

V33

V21

V32

V13

V12

V23

V31





U11

U22

U33

U21

U32

U13

U12

U23

U31



T 

Hδx11

Hδx22

Hδx33

Hδx12

Hδx23

Hδx31

Hδx21

Hδx32

Hδx13


= V

˜̃
U
˜̃
TH

˜
δx (5.4.1.72)

Remark: This section is written by Tijmen Gunther and is compiled from work by Jurgen de Hart,
Raoul van Loon, Chris van Ooijen, Marco Stijnen, Tijmen Gunther, Peter Bovendeerd and Frans
van de Vosse of Eindhoven University.
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5.5 (Thick) plate elements

This chapter is under preparation
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5.6 Time integration of solids

Various options are available to integrate the time-dependent elasticity equations.
In this chapter the following methods are treated:

5.6.1 The Newmark scheme

5.6.2 The Generalized α scheme

5.6.3 The generalized - α scheme for updated Lagrange formulation with Newton linearization
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5.6.1 The Newmark scheme

A well-known time integration method for solids is the Newmark time integration series. This
scheme can be conveniently written as an one step method, where the solution at the present time
is computed from the solution of the previous time step by writing the momentum equation in a
three-variable system. An one step method is preferable from computational viewpoint since the
solution of only one previous time level has to be stored. Instead of using the displacement d and
time derivatives of d, the time derivatives are introduced as separate variables:

a = d̈ (5.6.1.1a)

v = ḋ (5.6.1.1b)

d = d (5.6.1.1c)

where a is the acceleration and v the velocity of the solid. The momentum equation in matrix-vector
form can be written with these separate variables at t = n+ 1 as:

Man+1 +Kdn+1 = 0. (5.6.1.2)

The Newmark time integration series employs two averaging formulations to update the displace-
ment d and velocity v from the acceleration a. With two weighting parameters β and γ these
expressions are defined as:

dn+1 = dn + ∆tvn +
∆t2

2
((1− 2β)an + 2βan+1), (5.6.1.3)

vn+1 = vn + ∆t((1− γ)an + γan+1). (5.6.1.4)

For β = 0.5 and γ = 0.25 the Newmark series corresponds to the trapezoid rule, and is O(∆t2)
accurate.

The solution procedure of the Newmark method is as follows: first the displacement on the new
time level dn+1 is expressed as:

dn+1 = β∆t2an+1 + hn (5.6.1.5)

by re-evaluating 5.6.1.3. The term hn contains all terms on time n:

hn = dn + ∆tvn + ∆t2(
1

2
− β)an (5.6.1.6)

If the weighting parameter β is nonzero, the acceleration can be expressed as:

an+1 =
1

β∆t2
(dn+1 − hn) (5.6.1.7)

When this expression of an+1 is substituted in 5.6.1.2 the system to be solved to calculate the
displacement on the new time-level is:

(
1

β∆t2
M +K)dn+1 =

Mhn

β∆t2
(5.6.1.8)

When the displacement on the new time level is known, the new velocity and acceleration is com-
puted directly by (5.6.1.4) and (5.6.1.7). Then h can be determined and the system (5.6.1.8) can
be solved again. For initial conditions the initial displacement u0 and velocity v0 have to be given.
The initial acceleration is then determined from Ma0 = −Ku0 .
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5.6.2 The Generalized α scheme

For many dynamic structural applications it is required that the time-integration method possesses
algorithmic damping properties. Spatial finite element meshes usually have poor representation
of high frequency modes because of their limited resolution, so damping of these modes is ad-
vantageous. Furthermore, for fluid-structure interaction problems a controllable response to high
frequency perturbations can be very beneficial for increasing the stability of the solution method.
For certain choices of β and γ the Newmark time integration method has high frequency dissipa-
tion, but is only O(∆t) accurate and shows too much dissipation of low frequency modes. For this
reason a new time integration method has been developed, based on the Newmark series. This
method is the generalized-α method and combines both O(∆t2) accuracy with controllable dissipa-
tive properties for high frequencies modes. For a given amount of high frequency dissipation, the
low frequency dissipation is minimized. Because of these features, the generalized - α method is
used in our approach for the solid-spatial discretization.

The momentum equation for the generalized-α method is derived from the Newmark method for-
mulation, and two extra variables αm and αf for weighting are added:

Man+1−αm +Kdn+1−αf = 0. (5.6.2.1)

In this equation the acceleration an+1−αm and displacement dn+1−αf are defined as:

dn+1−αf = (1− αf )dn+1 + αfd
n (5.6.2.2a)

an+1−αm = (1− αm)an+1 + αma
n. (5.6.2.2b)

When this is substituted in the momentum equation (5.6.2.1), the system to be solved looks like:

M(1− αm)an+1 +K(1− αf )dn+1 = −αmMan − αfKun. (5.6.2.3)

The evaluation of 5.6.2.3 is done in the same manner as for the Newmark scheme. First the
displacement on the new time level is expressed as (5.6.1.5) and (5.6.1.6). Then the acceleration is
formulated as (5.6.1.7). When this is substituted in (5.6.2.3) the system to be solved is equal to:

(
(1− αm)

β∆t2
M + (1− αf )K)dn+1 = −αmMan − αfKdn +

(1− αm)Mhn

β∆t2
(5.6.2.4)

The generalized -α scheme is second order accurate in time with respect to the displacement d if:

γ =
1

2
− αm + αf . (5.6.2.5)

The velocity v is then first order accurate. The amount of dissipation of the time integration
algorithm is related to the maximum eigenvalues of the so-called amplification matrix A in Xn+1 =
AXn where X is the solution Xn = [dn,∆tvn,∆t2an]T . These maximum eigenvalues define the
spectral radius ρ of the time-integration method. A smaller spectral radius corresponds to a greater
numerical dissipation. Ideally the spectral radius is close to one for low frequencies and decreases
with increasing frequency. The high frequency dissipation results in a requirement for β:

β =
1

4
(1− αm + αf )2. (5.6.2.6)

The parameters αf and αm can be expressed in the spectral radius for the high frequency limit ρ∞:

αm =
2ρ∞ − 1

ρ∞ + 1
, (5.6.2.7)

αf =
ρ∞

ρ∞ + 1
. (5.6.2.8)

Together with 5.6.2.5 and 5.6.2.6 this defines the generalized α method for a specified ρ∞.
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5.6.3 The generalized - α scheme for updated Lagrange formulation with
Newton linearization

One of the possible frames of reference to define non-linear solids in space is the updated Lagrange
formulation. This formulation is also used in Sepran. In this formulation the variable that define the
displacement is expressed as an increment with respect to the configuration of the previous time-
step. This has consequences for the way the time integration method has to be applied, because
they are traditionally formulated in terms of total displacements (see previous paragraph).

Apart from time integration, also linearization has to be applied in case of non-linear hyper-elastic
materials. For linearization the incremental Newton method is applied in an iterative manner till
convergence is reached. In this method the solid momentum equation is solved for an increment
δd and then this increment is added to the total displacement and the stress matrix is build again
based on the new displacement. This is repeated until the stresses balance the right-hand side, and
the increment δd is smaller then a prescribed accuracy. The system to be solved in the Newton
linearization method is equal to:

K ′
k
δdk+1 = F̄ k (5.6.3.1)

dk+1 = dk + δdk+1 (5.6.3.2)

In these equations k is the iteration number and K ′ the incremental constitutive behavior for small
displacements δd. The right-hand side F̄ not only contains the body forces (in our case these are
not present), but also the build up stresses in the material at the material state of iteration k.
Equation (5.6.3.1) can be expressed at time n as:

K ′(dk+1 − dk) = F̄n,k (5.6.3.3)

The right-hand side F̄n,k is equal to:

F̄n,k = Fn −K(dn, d̄) (5.6.3.4)

where Fn is the body force term.

The fact that the Newton linearization is applied in combination with the updated Lagrange for-
mulation results in two different incremental displacements that are used: the displacement δd of
the Newton linearization, and the incremental displacement with respect to the previous time-step.
The variable ū is sum of incremental displacements till iteration k , d̄ =

∑k−1
0 δdk. At iteration

k, the sum of incremental displacements δd form the incremental displacement from time-step n to
n + 1 of the updated Lagrange formulation, that has to be added to the total displacement of the
last time-step dn to form the total displacement dn+1, so:

dn+1 = dn + (d̄+ δd) (5.6.3.5)

For the formulation of the generalized - α method applied to the updated Lagrange formulation,
(5.6.2.1) and (5.6.2.2) remain the same, but now the momentum equation is expressed in incremental
displacements of the Newton iteration δd rather then total displacements:

M(1− αm)an+1 +K ′(1− αf )δd = (1− αf )F̄n+1,k − αmMan + αf F̄
n,k. (5.6.3.6)

The formulation for an+1 (equation 5.6.1.7), with 5.6.3.5 is now equal to:

an+1 =
1

β∆t2
(dn + d̄+ δd− hn) (5.6.3.7)

When this is substituted in (5.6.3.6), the resulting momentum equation looks like:

(M
(1− αm)

β∆t2
+K ′(1− αf ))δd = (1− αf )F̄n+1,k − αmMan + αf F̄

n,k −M (1− αm)

β∆t2
(dn + d̄− hn).

(5.6.3.8)
This system can be solved for δd after which the total displacement can be constructed by (5.6.3.5).
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6 Solidification problems

At this moment only the enthalpy method in Section 6.1 is described.
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6.1 The enthalpy method

6.1.1 Problem description

The two-phase Stefan problem on a three-dimensional domain Ω with fixed outer boundary δΩ and
moving boundary Γ(t) is given by:

ρc
∂T (x, t)

∂t
= ∇ · (κ∇T (x, t)) +Q(x, t) ∀x ∈ Ω1,2, t > 0 (6.1.1a)

+ρLan =

[
κ
∂T

∂n

]
for x = Γ(t), t > 0 (6.1.1b)

T (x, 0) = T̄1(x) ∀x ∈ Ω1,2, t > 0 (6.1.1c)

where we have set t0 = 0, together with one or more of the following boundary conditions on the
complementary parts δΩi, i = 1, 2, 3 of the fixed outer boundary δΩ =

⋃3
i=1 δΩi:

1. A Dirichlet condition on δΩ1:
T = T̄2(x). (6.1.2)

2. A Neumann condition on δΩ2:

κ(T )
∂T

∂n
(x) = q̄(x), (6.1.3)

where n is the outward unit normal to the boundary surface, and q̄(x) a given normal heat
flux.

3. A radiation-type boundary condition on δΩ3:

κ(T )
∂T

∂n
(x) = ᾱ(T ), (6.1.4)

where ᾱ(T ) is a non-linear function of temperature.

In the enthalpy formulation the heat conduction equation and the Stefan condition are replaced by
what is known as the enthalpy equation (in differential form):

Ht + div q = Q, (6.1.5)

where H is the enthalpy function. In this study we will mostly restrict ourselves to isothermal
phase-change (that is, a melting point T = Tm, instead of a melting trajectory). Besides, we will
consider only problems in which the physical parameters ρ, cs, cl, κs, κl are constants. Subject to
these assumptions, the enthalpy function is given by:

H =

ρcs(T − Tm), T ≤ Tm

ρcl(T − Tm) + ρL, T > Tm

(6.1.6)

6.1.2 Employing the Kirchoff transform

According to Alexiades and Solomon (1993), p. 216, the Kirchoff temperature is ”the best choice
for the enthalpy scheme since it is consistent with the mushy nodes being treated as isothermal.”
Besides, ”faster convergence is observed in the iterative scheme, making it more efficient”, Alexi-
ades and Solomon (1993), p. 224. Alexiades et al. present the enthalpy formulation, which could
be referred to as ”Voller’s enthalpy formulation”, in Alexiades and Solomon (1993), Chapter 4.3.E.
Because of the inherent advantages of applying the Kirchoff transform, we next present the enthalpy
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formulation and consecutively the Elliott-Ockendon SOR scheme, in case the Kirchoff transforma-
tion is applied.

The normalized Kirchoff transformed temperature for constant κs, κl is given by

u =


κs(T − Tm) T < Tm

0 T = Tm

κl(T − Tm) T > Tm

. (6.1.1)

The corresponding enthalpy is

H =

{
ρcsu
κs

u ≤ 0
ρclu
κl

+ ρL u > 0
. (6.1.2)

The 1D finite volumes discretization of equation (6.1.5), using central differences in space and Euler
backward in time, yields:

Hn+1
i −Hn

i

∆tn
−
un+1
i−1 − 2un+1

i + un+1
i+1

∆x2
= Qn+1

i , (6.1.3)

which after rearranging terms results in:

Hn+1
i + 2

∆t

∆x2
un+1
i = ∆tQn+1

i +Hn
i +

∆t

∆x2
(u

(p+1)
j−1 + u

(p)
j+1). (6.1.4)

By giving names to the known terms, as in Alexiades and Solomon (1993):

Cj = 2
∆t

∆x2
, (6.1.5)

bnj = ∆tQn+1
i +Hn

i , (6.1.6)

z
(p)
j = bnj +

∆t

∆x2
(u

(p+1)
j−1 + u

(p)
j+1), (6.1.7)

(6.1.8)

where the superscript (p) denotes the iteration number, and n the previous time level, we have the
following system of equations (Gauss-Seidel):

H
(p+1)
j + Cju

(p+1)
j = z

(p)
j . (6.1.9)

Consequently, the iteration process transforms into:

1. Compute Cj and z
(p)
j .

2. Compute ũ
(p+1)
j from

ũ
(p+1)
j =


z
(p)
j

ρcs/κs+Cj
z

(p)
j ≤ 0,

0 0 < z
(p)
j < ρL,

z
(p)
j −ρL

ρcl/κl+Cj
z

(p)
j ≥ ρL

. (6.1.10)

3. Set û
(p+1)
j = u

(p)
j + ω[ũ

(p+1)
j − u(p)

j ] (Over-relaxation).

4. Set

u
(p+1)
j =

{
û

(p+1)
j if û

(p+1)
j · u(p)

j > 0,

ũ
(p+1)
j if ũ

(p+1)
j · u(p)

j ≤ 0
, (6.1.11)

that is, only over-relax the nodes that have not just changed phase.
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5. If a convergence criterion, say ‖u(p+1)
j −u(p)

j ‖ < tolerance, is satisfied, then set un+1
j = u

(p+1)
j ,

hence

Tn+1
j =


Tm + un+1

j /κs un+1
j < 0,

Tm un+1
j = 0,

Tm + un+1
j /κl un+1

j > 0,

, (6.1.12)

and Hn+1
j = z

(p)
j − Cj · u

n+1
j .

6.1.3 Sepran implementation

The Sepran implementation of ”Voller’s method” in combination with Elliott-Ockendon SOR re-
quires some adjustments to be made with concern to the solution algorithm. Next we present a
short overview of the finite element equivalent to the previously described finite volume formulation.

Starting point is the enthalpy equation:

∂H

∂t
−∇(κ∇T ) = Q, (6.1.1)

subject to the boundary conditions on the disjunct boundaries ∂Ω1, ∂Ω2, ∂Ω1 ∪ ∂Ω2 = ∂Ω:

T = T1, for x ∈ ∂Ω1, (6.1.2)

∂T

∂x
= 0, for x ∈ ∂Ω2. (6.1.3)

Using the standard basis functions φ and the standard Galerkin approximations

T (t) =

N+Nb∑
j=1

Tj(t)φj , H(t) =

N+Nb∑
j=1

Hj(t)φj , (6.1.4)

where N denotes the number of nodal points /∈ ∂Ω1, the system of Galerkin equations is given by:

N+Nb∑
j=1

{
∂Hj

∂t

∫
Ω

φjφidΩ + Tj

∫
Ω

κ∇φj∇φidΩ

}
=

∫
Ω

QiφidΩ, (6.1.5)

for i = 1, 2, . . . , N . Or in matrix-vector notation:

M
∂H

∂t
+ ST = b. (6.1.6)

In case Euler backward is applied for the time integration, the final system is given by:

M
Hn+1 −Hn

∆t
+ STn+1 = bn+1. (6.1.7)

If we let M̃ be the lumped version of the mass matrix M and D the diagonal of the stiffness matrix
S, then for a Kirchoff transformed temperature u the third step of the iteration process as described

in Section 6.1.2 is replaced by: Compute ũ
(p+1)
j from

ũ
(p+1)
j =


z
(p)
j

Djj∆t+M̃jjρcs/κs
z

(p)
j ≤ 0,

0 0 < z
(p)
j < ρL,

z
(p)
j −M̃jjρL

Djj∆t+M̃jjρcl/κl
z

(p)
j ≥ ρL

. (6.1.8)

The enthalpy is updated according to:

Hn+1
j = (z

(p)
j −Djj∆t · un+1

j )/M̃jj (6.1.9)
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7 Flow problems

This chapter contains a description of the theory of the flow problems. At this moment only a part
of Chapter 7 concerning incompressible flow has been written.
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7.1 The isothermal laminar flow of incompressible or slightly compress-
ible liquids

At this moment only a part of Section 7.1 concerning surface tension has been written.
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7.1.1 Computation of the surface tension

The surface tension is an extra force acting on a surface. This tension is proportional to the
curvature. The larger the local curvature the larger the surface tension. There are several ways to
express the surface tension as part of the normal stress on the boundary. One way to express it is:

(σijnj)surface tension =
γ

R
ni (R2only) (7.1.1.1)

or more general
(σijnj)surface tension = 2γHni (7.1.1.2)

with γ the surface tension coefficient, σij the components of the stress tensor and ni the components
of the outward normal.
H is the mean curvature defined by

H =
1

2
(

1

R1
+

1

R2
) (7.1.1.3)

with R1 and R2 the radii corresponding to the principal curvatures. These curvatures can be taken
in any set of orthogonal directions. Mark that in R2 we have R2 =∞, so 2H = 1

R .
In some cases the curvature can be expressed explicitly in a formula like

• R2 y = h(x) then 1
R = hxx

(1+h2
x)

3
2

• R2 axi-symmetric r = r(z) then 1
R1

= rzz

(1+r2z)
3
2

; 1
R2

= − rz

r(1+r2z)
1
2

• R3 z = h(x, y) then H =
(1+h2

u)huu−2huhvhuv+(1+h2
u)hvv

(1+h2
u+h2

v)
3
2

,

with u and v coordinates along the free surface.

However, all these expressions are difficult to evaluate so it is easier to utilize the following expres-
sion:

2H = div
∇s
||∇s||

= −div(n) (7.1.1.4)

with n the outward normal and the free surface is given by s(x) = 0.
Combination of (7.1.1.2) and (7.1.1.4) gives

(σijnj)surface tension = −γ(nk,k)ni (7.1.1.5)

In some literature this term is written as

− (γ∇s · n)n (7.1.1.6)

where ∇s · n denotes the curvature and ∇s the surface gradient operator defined by

∇sp =
∂p

∂s1
t1 +

∂p

∂s2
t2 (7.1.1.7)

with t1 and t2 tangential vectors along the surfaces and s1 and s2 the coordinates along the
corresponding coordinate directions.
These last expressions are important for the implementation in the finite element method. Consider
for example momentum equations in case of the Stokes equation:

− σij,j = ρfi (7.1.1.8)

After constructing the weak formulation and the Galerkin method we get∫
Ω

σij(φl),jdΩ =

∫
Ω

ρfiφldΩ +

∫
Γ

σijnjφldΓ (7.1.1.9)
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So the surface tension part can be written as∫
Γ

2γHniφldΓ = −γ
∫
Γ

(nk,k)niφldΓ (7.1.1.10)

Expression (7.1.1.10) makes it natural to use integration by parts (Green’s theorem on the surface)
to get

− γ
∫
Γ

(nk,k)niφldΓ = −
∫
Γ

(γφl),idΓ +

∫
∂Γ

γφltids (7.1.1.11)

with ∂Γ the boundary of Γ.
In R2 the term on the boundary ∂Γ is written as

γ[tiφl]
l2
l1

= (γtiφl)|l2 − (γtiφl)|l1 (7.1.1.12)

with l1 and l2 the begin and end point of the boundary ∂Γ. Mark that the last two terms can be
prescribed by either prescribing the displacement of a point in which case the term vanishes, or by
giving the contact angle. If the boundary is closed these terms obviously are not present.
In the axi-symmetric case we have to include both κ1 = 1

R1
and κ2 = 1

R2
. The surface tension

contribution in that case can be written as

2π

∫
Γ

γ(κ1 + κ2)niφlrdΓ = 2π(

∫
Γ

γκ1niφlrdΓ +

∫
Γ

γκ2niφlrdΓ) (7.1.1.13)

with Γ integration in the (r, z) plane. The first term in (7.1.1.13) can be written as (see 7.1.1.10):

2π

∫
Γ

γκ1niφlrdΓ = 2π

∫
Γ

γ
dti
ds
φlrdΓ (7.1.1.14)

Integration by parts gives:

2π

∫
Γ

γ
dti
ds
φlrdΓ = −2π

∫
Γ

γ
dφlr

ds
tidΓ + 2πγ[rtiφl]

l2
l1

= −2π

∫
Γ

γ(r
dφl
ds

+ φl
dr

ds
)tidΓ + 2πγ[rtiφl]

l2
l1

(7.1.1.15)
The second term in (7.1.1.13) can be written as

− 2π

∫
Γ

γκ2niφlrdΓ = −2π

∫
Γ

γ
rz

r(1 + r2
z)

1
2

φlrdΓ = −2π(

∫
Γ

γt2niφldΓ), (7.1.1.16)

since

t =
1

(1 + rz)
1
2

(
1
rz

)
(7.1.1.17)
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8 Second order elliptic and parabolic equations using spectral elements

This chapter is under preparation
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Cauchy stress, 5.4.1
conservation of mass, 5.4.1
conservation of momentum, 5.4.1
enthalpy method, 6.1
Incompressible Neo Hookean material, 5.4.1
Incompressible isotropic hyper-elastic material, 5.4.1
Kirchoff temperature, 6.1
melting point, 6.1
melting trajectory, 6.1
Nonlinear solids, 5.4.1
phase-change, 6.1
Stefan problem, 6.1
surface tension, 7.1.1
Updated Lagrange approach, 5.4.1
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