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Abstract

We evaluate two coordinate transformation techniques in combination with

a coordinate stretching for pricing basket options in a sparse grid setting. The

sparse grid technique is a basic technique for solving a high-dimensional par-

tial differential equation. By creating a small hypercube sub-grid in the ‘com-

posite’ sparse grid we can also determine hedge parameters accurately. We

evaluate these techniques for multi-asset examples with up to five underlying

assets in the basket.

1 Introduction

The topic of this article is the accurate evaluation of basket option prices and the
corresponding hedge parameters with partial differential equations (PDEs). Basket
options are exotic options, whose payoff is based on more than one underlying asset.
As the number of the underlying assets increases, the number of the dimensions also
increases in the multi-dimensional pricing partial differential equation and the size of
the discrete problem grows exponentially. It is therefore necessary to use numerical
techniques that are based on a relatively small number of grid points but which also
maintain a satisfactory accuracy.

The sparse grid method is employed here. It is based on a combination of solu-
tions of smaller-sized problems in order to approximate the full grid solution. This
method is the key technique for the numerical solution of high dimensional par-
tial differential equations. We would like to point out that the pay-off function of
a basket call option is non-differentiable on any hyper-plane that is typically not
parallel to a corresponding low-dimensional grid hyper-plane. Therefore, a straight-
forward application of the sparse grid method may not work satisfactorily, as the
mixed derivatives are not bounded for this type of function which is a necessary re-
quirement for the convergence of sparse grid solutions. The numerical experiments
show the influence of analytic grid stretching with coordinate transformations and
non-equidistant grids (i.e., with different number of fine grid points in each coordi-
nate direction) on the accuracy of basket option prices and hedge parameters. We
show -especially through numerical experiments- that the combination of coordi-
nate transformation and the use of non-equidistant grids may result in satisfactory
accuracy for basket call prices with the sparse grid method. Parts of this work are
inspired by the PhD. thesis work of C. Reisinger [12].
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In Section 2, the basket option is discussed, the governing multi-dimensional
Black-Scholes equation is presented with its pay-off, i.e., its final condition, plus
boundary conditions. The coordinate transformation and grid stretching are pre-
sented in Section 3. Numerical implementation by the use of Kronecker products
is described in Section 4, the sparse grid technique in Section 5 and a method to
extract hedge parameters from the sparse grid solution is in Section 6. Finally the
numerical experiments and conclusions are in Sections 7 and 8, respectively.

2 Basket call options

A European plain vanilla call option is a contract which gives the holder the right
to buy an underlying asset S for a fixed price K at maturity time T , see, for
example [2, 9]. A basket call option contract, on the other hand, gives the holder
the right to buy an underlying basket of assets for a fixed exercise price K. This
type of option belongs to the so-called exotic options. The pay-off of a European
basket call is typically based on the weighted sum of the assets S1, . . . Sd in the
basket, and it reads

u(S, T ) = max{

d
∑

k=1

wkSk −K, 0}, (1)

where wk are the percentages or the weights of the assets in the basket and S =
(S1, S2, . . . , Sd) is a vector of d asset prices. To price a basket call option with d
underlying assets, the multi-dimensional Black-Scholes partial differential equation
is used, as derived in [11, 19]

∂u

∂t
+

1

2

d
∑

k=1

d
∑

ℓ=1

ρkℓσkσℓSkSℓ

∂2u

∂Sk∂Sℓ

+

d
∑

k=1

(r − δk)Sk

∂u

∂Sk

− ru = 0. (2)

In this equation, σk is the volatility of asset k, ρkℓ is the correlation between the
assets k and ℓ, r is the risk-free interest rate, δk is the continuous dividend yield,
t is the time (0 6 t 6 T ) and u is the option price. In this work the underlying
asset price dynamics is assumed to be the multi-dimensional geometric Brownian
motion.

Equation (2) is an anti-diffusion-type equation. However, it comes with equation
(1), which is a final condition and therefore the problem is well-posed. The PDE
(2) is a second order partial differential equation in d dimensions and 2d boundary
conditions are mandatory. As the asset price domain is truncated Sk ∈ [0, Smax

k ],
we first of all need a boundary condition at Sk = 0. When using the reduced form
of equation (2), where every coefficient belonging to a derivative with respect to Sk

vanishes at Sk = 0, a (d − 1)-dimensional partial differential equation remains at
the boundary. This is called the natural boundary condition in [12]. In particular,
the boundary condition at S1 = 0 or S2 = 0 for a two-asset option is represented
by the well-known 1D Black-Scholes equation for a vanilla option.

Also for Sk = Smax
k a boundary condition must be prescribed. If Smax

k is large
enough, i.e. wkS

max
k >> K, a linearity condition can be applied, which means

that the option price can be assumed to show a linear growth in that coordinate
direction. In this case we set the second derivative with respect to Sk equal to zero
at that boundary, as in [16,17]. All other derivatives remain present (including the
mixed derivatives). An appropriate size of the truncated domain is important for
this boundary condition not to have a negative effect on the option prices at the
spot price and/or at the exercise price K.

3



3 Coordinate transformation

Coordinate transformations -typically- are employed to transform a given PDE
into another one whose solution is easier to achieve. In basket option pricing an
important reason for using a coordinate transformation is to simplify the pay-off
function (1). This function is non-differentiable along a hyper-plane

∑d

k=1 wkSk =
K in the d-dimensional domain. This plane crosses the Cartesian Si-grid, which may
hamper satisfactory sparse grid accuracy of the so-called sparse grid combination
technique, described in Section 5. A coordinate transformation from Sk to xi can
be written in the form

xi = fi (S1, S2, . . . , Sd) , (3)

Sk = f−1
k (x1, x2, . . . , xd) . (4)

Without loss of generality we write xi = xi(S) and Sk = Sk(x) where S and x are
d-dimensional vectors. If the transformations (3) and (4) are applied to the partial
differential equation (2), it changes into

∂u

∂t
+

d
∑

i=1

d
∑

j=1

αij

∂2u

∂xi∂xj

+

d
∑

i=1

βi

∂u

∂xi

− ru = 0, (5)

where

αij =

d
∑

k=1

d
∑

ℓ=1

akℓ

∂xi

∂Sk

∂xj

∂Sℓ

, (6)

βi =

d
∑

k=1

d
∑

ℓ=1

akℓ

∂2xi

∂Sk∂Sℓ

+

d
∑

k=1

bk
∂xi

∂Sk

, (7)

with akℓ = 1
2ρkℓσkσℓSk(x)Sℓ(x) and bk = (r − δk)Sk(x).

The new coordinate x1 is now chosen equal to the basket value

x1 =

d
∑

k=1

wkSk. (8)

With this coordinate the new pay-off condition reads

u(x, T ) = max{x1 −K, 0}. (9)

This transformed pay-off is only dependent on x1 and thus non-differentiable in
only one coordinate direction. It now makes sense, for example, to use a truncation
of this coordinate as in the 1D case presented by Kangro [10]

xmax
1 = K exp(

√

2σ2T log 100). (10)

We can, however, also safely use xmax
1 = 3K. With this important first coordinate

after transformation, it may be possible to reduce the number of points in the other
coordinates, as stated in [12, 16].

For the definition of the remaining coordinates, two basic choices are available:
via a linear transformation or via a non-linear, normalized, transformation.
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3.1 Linear coordinate transformation

A linear coordinate transformation can be written in the form

x = GS, (11)

with G the transformation matrix. The first row of matrix G is defined by the
weights of the basket option. The other coefficients are chosen as follows (see for
example [16], Chapter 5)

gij =

{

−wj j = i− 1, i 6= 1,

wj j 6= i− 1, i 6= 1 ∨ i = 1.
(12)

Applying (12) to (6) and (7) gives

αij =

d
∑

k=1

d
∑

ℓ=1

akℓgikgjℓ, βi =

d
∑

k=1

bkgik. (13)

Note that ∂2xi/∂Sk∂Sℓ = 0 with this transformation, because xi is linear in Sk.
The coordinate transformation must be non-singular. It is easy to see that (12) is
non-singular, as it can be transformed to















w1 w2 . . . wd−1 wd

−w1 w2 . . . wd−1 wd

w1 −w2 . . . wd−1 wd

...
...

. . .
...

...
w1 w2 . . . −wd−1 wd















→















w1 0 . . . 0 0
0 0 . . . 0 2wd

0 −2w2 . . . 0 0
...

...
. . .

...
...

0 0 . . . −2wd−1 0















,

which is non-singular.

The boundary conditions transform accordingly. Coordinate x1 is defined on
[0, xmax]. At x1 = 0 all asset prices are zero and therefore the option price itself is
also set to zero. This is a Dirichlet condition. The linearity condition for x1 towards
infinity remains valid; xmax

1 corresponds with
∑

wkS
max
k . For the other coordinates

xi, i 6= 1 we set linearity conditions on the both boundaries, as these transformed
coordinates do not have their left-hand boundaries at xk = 0. Therefore, it is
not true in general that the coefficients of the particular derivatives vanish, which
implies that the use of the linearity conditions both at xi = xmin as on xi = xmax

with i > 1 makes good sense.

3.2 Non-linear transformation

It is also reasonable to employ a non-linear transformation, with normalized co-
ordinates xj , j > 1. By normalization one can guarantee that the transformed
coordinate directions remain in a (d− 1)-dimensional unit hyper-cube. This trans-
formation was developed for equally distributed basket put options (∀i, j wi = wj)
in [12, 13]. With basket weights wk included, it reads

xi =



















∑d

k=1 wkSk i = 1,

wi−1Si−1
∑d

k=i−1 wkSk

i > 1.
(14)
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Correspondingly, we find the inverse transformation

Sk =











































1

w1
x1x2 k = 1,

1

wk

x1xk+1

∏k

j=1(1 − xj) 1 < k < d,

1

wd

x1

∏d
j=1(1 − xj) k = d.

(15)

Again the sum of the weighted assets in the basket is used for the first coordinate.
Before the new coefficients (6) and (7) are derived, we define the following function

f̂ik :=































xk+1

∏k
j=i+1(1 − xj) i < k < d,

∏k
j=i+1(1 − xj) i < k = d,

xk+1 i = k < d,

1 i = k = d,

0 i > k.

(16)

Using (16), the coefficients (6) are transformed to

α11 = x2
1

d
∑

k=1

d
∑

ℓ=1

ρ̂kℓf̂1kf̂1ℓ,

α1j = x1xj(1 − xj)
d
∑

k=1

d
∑

ℓ=1

(ρ̂k,j−1 − ρ̂kℓ) f̂1kf̂jℓ, ∀1 < j ≤ d,

αij = xi(1 − xi)xj(1 − xj)

d
∑

k=1

d
∑

ℓ=1

(ρ̂kℓ − ρ̂i−1,ℓ − ρ̂k,j−1 + ρ̂i−1,j−1) f̂ikf̂jℓ, ∀1 < i, j ≤ d,

with ρ̂kℓ = ρ̂ℓk = 1
2ρkℓσkσℓ, and αij = αji. The coefficients (7) now become

β1 =

d
∑

k=1

(r − δk)f̂1k,

βi = xi(1 − xi)

(

r − δ1 −
d
∑

k=1

(

(r − δk) f̂ik

)

)

+

+ xi(1 − xi)

(

d
∑

ℓ=1

(−2ρ̂i−1,i−1xi + (2xi − 1)(ρ̂k,i−1 + ρ̂ℓ,j−1) + 2(1 − xi)ρ̂kℓ) f̂ikf̂iℓ

)

.

It follows that if δi = 0 (i = 1,. . . ,d), β1 = r and the first term for each βi, i > 1

vanishes, because
∑d

k=1 f̂ik = 1.

The boundary conditions for x1 are the same as in the case of the linear trans-
formation. Furthermore, it can be shown that αij = 0 and βj = 0 for xj = 0 and
xj = 1 with i > 1 and j > 1. This means that on these boundaries, the coefficients
of the derivatives with respect to xj vanish and the natural boundary conditions
can again be applied.

We will compare the accuracy of basket option prices and hedge parameters
after employing one of these grid transformations. In addition we will evaluate the
use of grid stretching, as described below.
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Figure 1: Solution of a vanilla call on a stretched grid (K = 15)

3.3 Coordinate stretching

After applying one of the two transformation techniques, a non-differentiable pay-
off condition remains only along the x1-direction. Analytic grid stretching in a
coordinate direction represents a technique, which may cluster grid points in the
region of interest. In this way, stretching can improve the accuracy of the solution
in the case of a payoff that is not differentiable [5,16]. The technique employed here
relies on a 1D grid stretching along coordinate x1 in the form of a bijective function
ψ. With this function, coordinates on the computational grid, called y here, are
equally spaced. They are related to non-equally distributed points on the xk-grid.
The center of grid stretching is placed in the region where

∑d
k=1 wkSk = K. The

number of points decreases towards the domain boundaries.

Grid x can be written as a function of the new coordinate y via ψ. We need the
derivative of the grid function, ψ′, and the second derivative, ψ′′. with stretching
only in x1, equation (5) changes to

∂u

∂t
+

d
∑

i=2

d
∑

j=2

α̂ij

∂2u

∂xi∂xj

+ α̂1(ψ
′(y))−2

(

∂2u

∂y2
−
ψ′′(y)

ψ′(y)

∂u

∂y

)

+

+2

d
∑

i=2

α̂i1ψ
′(y)−1 ∂2u

∂xi∂y
+

d
∑

i=2

β̂i

∂u

∂xi

+ β̂1ψ
′(y)−1 ∂u

∂y
− ru = 0.

(17)

Note that α̂i and β̂i are now functions of the vector (ψ(y), x2, x3, . . . , xd)
t. The

stretching function used in this paper, from [16] reads

ψ(y) = K

(

1 +
1

15
sinh (c2y + c1(1 − y))

)

, (18)

c1 = sinh−1
(

15
(

xmin −K
)

/K
)

, (19)

c2 = sinh−1 (15 (xmax −K) /K) , (20)

with 15/K a reference parameter. For a one-dimensional call option pricing prob-
lem, the influence of this stretching function on a grid is depicted in Figure 1. For
a two-dimensional call the influence of the grid stretching on a transformed grid is
depicted in Figure 2.
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Figure 2: Effect of transformation of a solution of a two-asset option

4 Set-Up of a Matrix

A general form for equations (2), (5) or (17) is

∂u

∂t
+

d
∑

i=1

d
∑

j=1

αij

∂2u

∂xi∂xj

+

d
∑

i=1

βi

∂u

∂xi

− ru = 0, (21)

where we focus on the x-grid, for simplicity. For discretization of (21) Kronecker
products, based on the one-dimensional discrete operators are used to set up the
multi-dimensional discrete equation.

4.1 Difference stencils, Kronecker Products

Equation (21) contains three types of derivatives: first, second and the mixed deriva-
tives. The latter will be constructed by the use of a Kronecker product of the
difference stencils of two first derivatives. For the other two derivatives, the stan-
dard second order central differences are used. We define a grid with Ni points per
coordinate and with hi = N−1

i as the mesh-size.

To reduce the overall number of grid points, high order discretization sten-
cils (O(h4) for example) would be a choice, but as the final condition is non-
differentiable, it is well-known [6,14] that these high order central differences with-
out substantial enhancements do not result in the desired accuracy, but in at most
second order accuracy. Therefore, we focus here on second order accuracy for the
tensor-product grid discretization (sparse grid accuracy is typically somewhat lower,
see Section 5).

For the boundary conditions only the first derivative needs to be discretized,
because the second derivative is either zero (linearity condition) or the coefficient in
front is zero (natural condition) and thus this derivative vanishes. At the boundary,
where we can use a linearity condition as the boundary condition [16,17], we choose
a backward difference scheme for the first derivative

du

dxi

|1 =
−3u0 + 4u1 − u2

2hi

+ O(h2
i ), (22)

du

dxi

|N =
3uN − 4uN−1 + uN−2

2hi

+ O(h2
i ). (23)

The Kronecker product [15], defined as in Definition 1, is the basis for the set-up
of a matrix arising from a d-dimensional PDE problem. The Kronecker products
will be employed based on 1D discretization stencils.

8



Definition 1

C = A⊗ B :=











a11B a12B . . . a1n1
B

a21B a22B . . . a2n1
B

...
...

...
am11B am12B . . . am1n1

B











.

In Definition 2 we define a sequence of Kronecker products similarly to a summation
or a product.

Definition 2 The repeated Kronecker product is defined by:

d
⊗

m=1

Am := A1 ⊗A2 ⊗ . . .⊗Ad.

Kronecker products are associative and non-commutative operations. The order is
determined by the subscripts and the associative hierarchy does not matter.

The grid ordering is important when using the Kronecker product. We use
the standard lexicographical ordering of the grid points. Consider a 2D grid with
5 points for coordinate 1 and 4 points for coordinate 2. The grid point vectors

read [x
(0)
1 , x

(1)
1 , x

(2)
1 , x

(3)
1 , x

(4)
1 ] and [x

(0)
2 , x

(1)
2 , x

(2)
2 , x

(3)
2 ], respectively. If we use the

Kronecker product (with e the all-one vector), we obtain

(ex2
⊗ x1,x2 ⊗ ex1

) =























1
1
1
1









⊗















x
(0)
1

x
(1)
1

x
(2)
1

x
(3)
1

x
(4)
1















,











x
(0)
2

x
(1)
2

x
(2)
2

x
(3)
2











⊗













1
1
1
1
1



























=





























(x
(0)
1 , x

(0)
2 )

...

(x
(4)
1 , x

(0)
2 )

(x
(0)
1 , x

(1)
2 )

...

(x
(4)
1 , x

(1)
2 )

...





























.

We see that with the Kronecker products the lexicographical grid ordering is ob-
tained and it is therefore possible to set up a dimension-independent grid generating
routine.

4.1.1 Example

Now we concentrate on the discretization matrix. Consider the two-dimensional
Laplacian (∆). In stencil notation, it reads

∂2

∂x2
1

|h1
+

∂2

∂x2
2

|h2

∧
=





1/h2
2

1/h2
1 −2/h2

1 − 2/h2
2 1/h2

1

1/h2
2



+ O(h2
1 + h2

2). (24)

If we consider each derivative separately, then with the lexicographical grid ordering,
the corresponding stencils read

∂2

∂x2
1

|h1

∧
=
[

1/h2
1 −2/h2

1 1/h2
1

]

+ O(h2
1),

∂2

∂x2
2

|h2

∧
=





1/h2
2

−2/h2
2

1/h2
2



+ O(h2
2). (25)
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The stencil notation for the identity matrix is
[

0 1 0
]

for I1 and





0
1
0



 for I2. We

now find the following stencil with the Kronecker products

I2 ⊗
∂2

∂x2
1

|h1
=





0
1
0



⊗
[

1/h2
1 −2/h2

1 1/h2
1

]

=





0 0 0
1/h2

1 −2/h2
1 1/h2

1

0 0 0



 , (26)

∂2

∂x2
2

|h2
⊗ I1 =





1/h2
1

−2/h2
1

1/h2
1



⊗
[

0 1 0
]

=





0 1/h2
2 0

0 −2/h2
2 0

0 1/h2
2 0



 . (27)

Adding (26) and (27) results in (24). The Kronecker product technique also works in
higher dimensions, for other derivative stencils, with different boundary conditions
etc. In particular, this method is useful for the mixed derivative. The mixed
derivative can be written as

∂2

∂x1∂x2
=

∂

∂x2

(

∂

∂x1

)

. (28)

In stencil notation, an example of the discretization of the mixed derivative reads

∂2

∂x1∂x2
|h1,h2

∧
=

1

4h1h2





1 0 −1
0 0 0
−1 0 1



+ O(h2
1 + h2

2). (29)

We can write, according to (28)

∂

∂x2
⊗

∂

∂x1
=





−1/2h2

0
1/2h2



⊗
[

−1/2h1 0 1/2h1

]

=
1

4h1h2





1 0 −1
0 0 0
−1 0 1



 , (30)

and again the Kronecker product leads to an elegant construction.

4.2 General dimensions

With the examples in Section 4.2.1 in mind and with Definitions 1 and 2 we can
construct the multi-dimensional grid representation and difference molecules. If
there are Nk points per coordinate, then the multi-dimensional grid function Xi for
coordinate i reads

Xi =

d−1
⊗

m=i

exd+i−m
⊗ xi ⊗

i−1
⊗

m=1

exi−m
, (31)

where exi
is the all one vector of length Ni + 1. The grid points are presented in

multi-dimensional representation, X = [X1, X2, . . . , Xd] of size
∏d

i=1(Ni + 1) × d,
as defined in (31). In equation (21), the coefficients αij and βi are functions of all
grid points. We can now simply evaluate the coefficients αij as a function of X,
and obtain the multi-dimensional representation of the coefficients.

If we want to express a stencil of a derivative with respect to coordinate i in a
d-dimensional way, we use

[

∂

∂xi

]d

=

d−1
⊗

m=i

Id+i−m ⊗

[

∂

∂xi

]1

⊗

i−1
⊗

m=1

Ii−m, (32)

where Im is the identity matrix of size (Nm +1)× (Nm +1) and

[

∂

∂xi

]d

is the finite

difference stencil of the first derivative term in equation (21) in a d−dimensional

representation.

[

∂

∂xi

]1

represents the discretized first derivative for coordinate xi.

10



As of the grid ordering, the expression for the mixed derivative (∂2u/∂xi∂xj)
stencil with respect to i for j > i reads

[

∂2

∂xi∂xj

]d

=
d−1
⊗

m=j

Id+j−m ⊗

[

∂

∂xj

]1

⊗

j−1
⊗

m=i+1

Ii+j−m ⊗

[

∂

∂xi

]1

⊗
i−1
⊗

m=1

Im. (33)

By the use of the point-wise row-product ⋄, the matrix Ah in semi-discretized
equation (35) reads

Ah =

d
∑

i=1

d
∑

j=1

αij(X) ⋄

[

∂2

∂xi∂xj

]d

+

d
∑

i=1

βi(X) ⋄

[

∂

∂xi

]d

− r

d
⊗

m=1

Id+1−m. (34)

After discretizing the derivatives with respect to all xi we obtain a system






duh

dt
+ Ahuh + bh(t) = 0,

uh(x, T ) = u0
h.

(35)

where uh is the discrete solution and Ah the matrix. Vector bh is the vector
representing the values at the boundary (if the boundary is a Dirichlet condition).
For a basket put option, bh(t) is dependent on time t. We use the second order
Crank-Nicolson method to integrate (35) in time. We need to solve a linear system
Mu = v for every time step. Matrix M is a sparse matrix with a tridiagonal-plus-
2(d− 1)-off-diagonals structure. Furthermore, the matrix is neither symmetric nor
positive definite.

5 Sparse Grids

Solving equation (21) on a tensor-product grid of size
∏d

i=1Ni is an extensive work.
Working on this tensor-product, so-called full, grid consumes too much memory,
when d increases. This is called the curse of dimensionality [1]. For example, the
numerical solution of a five asset option with 32 points per coordinate gives rise to
more than 32 million points.

The sparse grid approach, developed by Zenger and co-workers [3, 18] is a tech-
nique that splits the full grid problem of Nd points up into layers of sub-grids.
Each sub-grid represents a coarsening in one or more coordinates up to a minimal
required number of points. In the so-called sparse grid combination technique, the
partial solutions that are computed on these grids, are combined a-posteriori by
interpolation to a certain point or region. The sparse grid solution corresponding
to a full grid solution on an equidistant grid of size Nd, meaning that the mesh-
size in each direction is h = N−1, is a combination of d layers, where combination
coefficients are determined by Newton’s binomial expression.

Consider a d-dimensional problem with mesh-sizes hi = N−1
i withNi the number

of grid points for coordinate i, 1 6 i 6 d.

Definition 3 A multi-index Id belonging to a d−dimensional grid is a collection of
numbers ni, i = 1, . . . , d, which represent a d-dimensional grid with Ni grid points
in coordinate i, with Ni = ci2

ni . (ci some positive constant).

With the aid of the constants ci, it is possible to construct a non-equidistant grid.
According to Definition 3 the multi-index Id of an equidistant full grid with Nl

points per coordinate reads Id = {l, l, . . . , l}, with l is called the layer number
(ci = 1, for example). If c1 6= cj = cA, j > 1, then a non-equidistant grid of size
(c12

l × cA2l × cA2l × . . .) can be constructed with Id = {l, l, . . . , l} and we have to
give the vector elements ci explicitly.

11
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Figure 3: Construction of a 2D sparse grid; (a)–(d): grids on layer 5, (e)–(g): grids
on layer 4; (h) combined sparse grid solution

Definition 4 The sum of a multi-index |Id| is defined by

|Id| :=

d
∑

i=1

ni. (36)

The full grid solution will be denoted by uf
l , indicating Nl points per coordinate

direction; the sparse grid solution after the combination will be denoted by uc
l and

the exact solution by uE . Now, we can define [7]

Definition 5 The combined sparse grid solution uc
l corresponding to a full grid

solution uf
l reads

uc
l =

l+d−1
∑

m=l

(−1)m+1

(

d− 1
m− l

)

∑

|Id|=m

uf
Id
, (37)

with uf
Id

being the solution of the problem on a grid with multi-index Id such that
|Id| equals m. This means that the sparse grid solution uc

l mimics the full grid

solution uf
l .

If the sub-grids are simply combined without any interpolation, which means
that all the evaluated points in every sub-grid are added with the binomial coeffi-
cients, we obtain sparse grid solutions as schematically depicted in Figure 3(h) for
the 2D case.

The number of points of a d−dimensional problem in a full grid with ni = l
reads

Nfull =

(

d
∏

i=1

ci

)

(

2l
)d
. (38)
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From equation (37) it follows that the number of problems to be solved in the
sparse grid technique reads

Zl,d =

l+d−1
∑

m=l

(

m− 1
d− 1

)

=
l

d

(

l + d− 1
d− 1

)

−
l − d

d

(

l − 1
d− 1

)

. (39)

Furthermore, the number of points employed for a grid with |Id| = m reads

N|Id|=m =

(

d
∏

i=1

ci

)

2m. (40)

Combining (39) and (40) results in the total number of points employed within the
sparse grid technique

Nl,total =

l+d−1
∑

m=l

N|Id|=m

(

m− 1
d− 1

)

=

(

d
∏

i=1

ci

)

l+d−1
∑

m=l

(

m− 1
d− 1

)

2m. (41)

It is known that the error of the discrete solution from a second order finite
difference scheme of the Laplacian can be split [8] as

uf
l − uE = C1(x1, h1)h

2
1 + C1(x2, h2)h

2
2 +D(x1, h1, x2, h2)h

2
1h

2
2. (42)

With the combination technique as in Definition 5 and the splitting in (42), the
absolute error, which is dimension-dependent, reads [4],

ǫl = |uc
l − uE| = O(h2

l

(

log2 h
−1
l

)d−1
), (43)

for the Laplacian.

6 Hedge parameters

The Greeks are the derivatives of the option price. In this paper, we concentrate on
∆k, the first derivative w.r.t. asset price k, Γk,k, the second derivative of the price
and the correlation parameter Γk,ℓ, (k 6= ℓ), based on the mixed derivative of the
price. We use numerical differentiation of the solution originating from the sparse
grid combination technique to obtain these Greeks. When using transformation and
stretching the equations for ∆k and Γk,ℓ read

∆k =
∂u

∂Sk

=

d
∑

i=1

∂u

∂xi

∂xi

∂Sk

, (44)

Γk,ℓ =
∂2u

∂Sk∂sℓ

=

d
∑

i=1

∂u

∂xi

∂2xi

∂Sk∂Sℓ

+

d
∑

i=1

d
∑

j=1

∂2u

∂xi∂xj

∂xi

∂Sk

∂xj

∂Sℓ

. (45)

In higher dimensions, we typically do not have the complete solution on the whole
domain available, as we work with only a set of sparse grid solutions. The solution
of the PDE on a region in the d−domain can, however, be obtained relatively easily
by interpolation of the sparse grid solutions.

Consider a point x = x0, where we wish to evaluate the option price u, ∆k

and Γk,ℓ. Then from each sub-grid we interpolate the solution to a part of the
finest full grid of size Nd

R. This means a successive interpolation to Nd
R points. The

combination of all sub-grids is then straightforward, because we need to combine
the interpolated solutions to the part of the finest grid. After this combination

13
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Figure 4: Representation of the interpolated ΩR from the sparse grid

of solutions, we apply numerical differentiation for obtaining the Greeks on the
relevant part of the finest grid. Schematically this is depicted in Figure 3.

As we use a higher order Lagrange interpolation for this purpose, we need 4× d
points adjacent to point x0. The point x0 is placed in the middle of the region of
interest. On each side of x0, we thus need two adjacent points for the first and
second derivatives and four adjacent points for the mixed derivative.

7 Numerical Experiments

The discrete multi-dimensional Black-Scholes equation is solved for European bas-
ket options defined on three, four and five assets. The aim here is to evaluate
numerically the spatial accuracy achieved by the numerical techniques presented
above. In the test experiments, the time-step is fixed at δt = 10−3. As in our test
experiments we do not use more than 256 points per coordinate direction, the error
of the time integration, O(δt2), is negligible compared to the spatial discretization
error, O(h2). So, in these model experiments we focus on the sparse grid spatial
accuracy and neglect the effect of a discretization in time.

Three-dimensional full grid computations for a three asset option are used as a
reference to evaluate the influence of the coordinate transformation, the grid stretch-
ing, the use of fewer points in certain grid directions and the use of sparse grids. For
the sparse grid computation, the layer number l is used to compare the sparse and
full grid solutions and hedge parameters. Four- and five-asset options are computed
with the techniques preferred from the three-asset reference computations.

For the three-asset basket option, we use the following parameters:

• K = 100, r = 0.04, T = 1,

• δ1 = δ2 = δ2 = 0,

• σ1 = 0.3, σ2 = 0.35, σ3 = 0.4, ρ12 = ρ13 = ρ23 = 0.5,

• w1 = w2 = w3 = 1/3,

• u(spot)=13.2449.

The spot price is chosen to be S1 = S2 = S3 = K (so
∑3

k=1 wkSk = K). In Table
1, option prices obtained on a 3D equidistant full grid are presented for the original
formulation of the basket option pricing PDE (1),(2) as well as for the two types of
transformations (linear and nonlinear). The total number of unknowns employed
can be computed with (38) and is shown in the last column of the table. In the
experiments with equidistant grids we have set ci = 4, 1 ≤ i ≤ 3. We see in Table
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Eq (2) Eq (5) and (12) Eq (5) and (14)
l Price Error Price Error Price Error #unknowns
1 12.8618 3.83 · 10−1 13.9367 6.92 · 10−1 13.9042 6.59 · 10−1 512
2 13.1501 9.48 · 10−2 13.1957 4.92 · 10−2 13.1731 7.18 · 10−2 4096
3 13.2214 2.35 · 10−2 13.2355 9.35 · 10−3 13.2319 1.30 · 10−2 32768
4 13.2390 5.85 · 10−3 13.2416 3.28 · 10−3 13.2408 4.08 · 10−3 262144
5 13.2434 1.46 · 10−3 13.2441 7.68 · 10−4 13.2439 9.59 · 10−4 2097152

Table 1: Three-asset option with the three formulations on an equidistant full grid
of (2l+2 × 2l+2 × 2l+2), c1 = c2 = c3 = 4

Eq (2) Eq (5) and (12) Eq (5) and (14)
l Price Error Price Error Price Error #unknowns
1 13.0982 1.47 · 10−1 13.2406 4.27 · 10−3 13.2321 1.28 · 10−2 2048
2 13.2071 3.78 · 10−2 13.2427 2.24 · 10−3 13.2409 4.02 · 10−3 16384
3 13.2355 9.38 · 10−3 13.2444 5.10 · 10−4 13.2440 9.46 · 10−4 131072
4 13.2426 2.34 · 10−3 13.2448 1.35 · 10−4 13.2447 2.43 · 10−4 1048576

Table 2: Three-asset option on a non-equidistant full grid of size (2l+4 × 2l+2 ×
2l+2), c1 = 16, c2 = c3 = 4

1 that the use of only a grid transformation does not lead to improved accuracy
on a full grid, as expected. Furthermore, the accuracy improves by a factor 4 with
decreasing mesh sizes, which is also expected.

In Table 2, we can observe an interesting improvement in accuracy with the two
coordinate transformations when non-equidistant grids are used with c1 = 16 and
ci = 4, i = 2, 3. Four times fewer points have been used in these tests. Whereas the
accuracy without transformation is worse compared to the results in Table 1, the
effect of coordinate transformation is positive in this respect. The size of the grid
at layer number 3 is 128 × 32 × 32. This solution is comparable to the solution on
the 128 × 128 × 128 grid from Table 1.

Results obtained with the sparse grid technique, corresponding to those in Ta-
bles 1 and 2, are presented in Table 3, for the equidistant case, and in Table 4, for
the non-equidistant finest grids.

We observe the negative effect of the pay-off being not aligned to a grid line
on the sparse grid accuracy in the second and third columns of Table 3, where the
results with the original non-transformed grid are presented. The need to align the

Eq (2) Eq (5) and (12) Eq (5) and (14)
l Price Error Price Error Price Error
1 12.8618 3.83 · 10−1 13.9367 6.92 · 10−1 13.9042 6.59 · 10−1

2 13.4397 1.95 · 10−1 13.1977 4.72 · 10−2 13.1732 7.17 · 10−2

3 13.1502 9.47 · 10−2 13.2368 8.05 · 10−3 13.2320 1.29 · 10−2

4 13.3256 8.07 · 10−2 13.2422 2.73 · 10−3 13.2409 4.04 · 10−3

5 13.2297 1.52 · 10−2 13.2443 6.34 · 10−4 13.2440 9.47 · 10−4

6 13.2329 1.20 · 10−2 13.2447 1.72 · 10−4 13.2447 2.42 · 10−4

Table 3: Three-asset option with the three formulations on a regular sparse grid,
representing a (2l+2 × 2l+2 × 2l+2)-grid c1 = c2 = c3 = 4
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Without stretching
Eq (5) and (12) Eq (5) and (14)

l Price Error Price Error
1 13.2406 4.27 · 10−3 13.2321 1.28 · 10−2

2 13.2426 2.30 · 10−3 13.2409 4.01 · 10−3

3 13.2444 5.03 · 10−4 13.2440 9.40 · 10−4

4 13.2448 1.39 · 10−4 13.2447 2.41 · 10−4

With stretching
Eq (5) and (12) Eq (5) and (14)

l Price Error Price Error
1 13.2648 1.99 · 10−2 13.2592 1.43 · 10−2

2 13.2485 3.60 · 10−3 13.2474 2.52 · 10−3

3 13.2456 7.18 · 10−4 13.2453 4.47 · 10−4

4 13.2449 3.68 · 10−5 13.2448 9.61 · 10−5

Table 4: Three-asset option with the two coordinate transformation methods on a
non-equidistant sparse grid, representing a (2l+4 × 2l+2 × 2l+2)-grid, c1 = 16, c2 =
c3 = 4

Non-linear transformation
l ∆1 (44) Error Γ1,1 (45) Error Γ1,2 (45) Error
3 0.1960 1.5889 · 10−3 1.4627 · 10−3

4 0.1968 8.28 · 10−4 1.5882 · 10−3 8.28 · 10−4 1.4603 · 10−3 2.41 · 10−6

5 0.1970 1.71 · 10−4 1.5880 · 10−3 6.57 · 10−4 1.4597 · 10−3 5.85 · 10−7

6 0.1970 4.50 · 10−5 1.5879 · 10−3 1.26 · 10−4 1.4596 · 10−3 1.27 · 10−7

l Non-linear transformation and stretching
1 0.1981 1.5817 · 10−3 1.4542 · 10−3

2 0.1973 7.81 · 10−4 1.5862 · 10−3 7.88 · 10−4 1.4580 · 10−3 3.781 · 10−6

3 0.1971 1.97 · 10−4 1.5872 · 10−3 5.92 · 10−4 1.4588 · 10−3 8.06 · 10−7

4 0.1970 4.92 · 10−5 1.5874 · 10−3 1.47 · 10−4 1.4590 · 10−3 2.04 · 10−7

Table 5: Greeks of the three-asset option on a non-equidistant sparse grid
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pay-off with a grid line can clearly be observed as the methods based on transformed
coordinates show a very satisfactory accuracy.

Although this is a positive result for the use of sparse grids for basket options (a
result that can easily be generalized to pricing options with early exercise features,
for example), it also gives rise to some serious thoughts on the applicability of the
sparse grid method. Satisfactory sparse grid accuracy can be achieved for options
whose payoff coincides with a grid line after a coordinate transformation. This
may, however, not be easily possible for complex payoff structures, as they are
usually encountered in the financial industry. For those there is little hope for
satisfactory sparse grid accuracy without any enhancements (making the method
more complicated).

We further notice that there is no significant difference between the linear and
nonlinear coordinate transformations. In Table 4, grid stretching (18) is also in-
cluded. A slightly better result is observed by using the stretching. It shows,
however, that the reduction of grid points in the other (not the first) directions, by
the choice for non-equidistant grids, is much more significant than the additional
stretching of the first coordinate. The accuracy is dictated by the fewer grid points
in the directions 2 and 3. Moreover, a fixed analytic grid stretching does often
not place the clustered points at the desired position for accuracy in the Greeks.
The Greeks need not have their gradients near the exercise price. For the hedge
parameters, presented in Table 5, the difference in accuracy between a linear or a
non-linear transformation is negligible. The grid stretching slightly decreases the
Greek’s accuracies. We conclude that the use of grid stretching does not really pay
off in these model examples.

An interesting notion is about the number of grids that we need to evaluate with
sparse grids. Because of the choice of the ci (c1 = 16, c2 = c3 = 4), the layer number
l can be chosen differently in the Tables 3 and 4 and therefore the number of grids
employed is different. The number of grids for the equidistant case using equation
(39) is 46, whereas for the non-equidistant case it is only 19. This is because in the
latter case, the sparse grid evaluation is based on a 32 × 8 × 8-grid rather than on
an 8 × 8 × 8-grid. The finest grids in both cases have 214 points and therefore the
non-equidistant has a lower complexity than the equidistant case.

For the four- and five-asset option examples discussed next, we evaluate the
coordinate transformation with and without grid stretching. The non-equidistant
grids are also employed. The following parameters are chosen (for the four- and,
later, for the five-asset basket call):

• K = 100, r = 0.04, T = 1,

• σ1 = 0.3, σ2 = 0.35, σ3 = 0.4 σ4 = 0.45, σ5 = 0.25,

• ρij = 0.5 ∀1 ≤ i, j < 5, i 6= j

• δ1 = δ2 = δ3 = δ4 = δ5 = 0

• w1 = w2 = w3 = w4 = w5 = 1/d

For the five-asset basket call we focus only on the non-linear transformation. In
the Tables 6 and 7, the results of these two option contracts are presented. We
observe that the non-equidistant grid also leads to very satisfactory accuracy here.
The determination of the hedge parameters also works fine in higher dimensions.
Grid stretching again does not seem to be necessary for obtaining small truncation
errors. Note that the reason for a slight decrease in the grid convergence of the 4D
and 5D sparse grid solutions is due to the term (log(h−1

l ))d−1 in equation (42).
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4D linear, no stretching
l Price Error ∆1 (44) Error Γ1,1 (45) Error
1 13.6720 0.1450 8.6973 · 10−4

2 13.6618 1.0266 · 10−2 0.1455 5.3596 · 10−4 8.7153 · 10−4 1.8062 · 10−6

3 13.6597 2.0656 · 10−3 0.1457 1.3006 · 10−4 8.7310 · 10−4 1.5607 · 10−6

4 13.6590 6.6128 · 10−4 0.1457 4.3688 · 10−5 8.7349 · 10−4 3.9636 · 10−7

4D linear and stretching
l Price Error ∆1 (44) Error Γ1,1 (45) Error
1 13.6855 0.1464 8.6942 · 10−4

2 13.6642 2.1301 · 10−2 0.1459 4.9735 · 10−4 8.7176 · 10−4 2.3415 · 10−6

3 13.6597 4.4289 · 10−3 0.1458 1.3399 · 10−4 8.7288 · 10−4 1.1237 · 10−6

4 13.6586 1.1454 · 10−3 0.1457 3.3631 · 10−5 8.7313 · 10−4 2.4849 · 10−7

4D non-linear
l Price Error ∆1 (44) Error Γ1,1 (45) Error
1 13.6471 0.1450 8.7344 · 10−4

2 13.6551 8.0568 · 10−3 0.1456 5.6144 · 10−4 8.7362 · 10−4 1.8754 · 10−7

3 13.6580 2.8561 · 10−3 0.1457 1.1662 · 10−4 8.7363 · 10−4 7.2636 · 10−9

4 13.6586 6.4266 · 10−4 0.1457 3.0644 · 10−5 8.7365 · 10−4 1.6688 · 10−8

4D non-linear and stretching
l Price Error ∆1 (44) Error Γ1,1 (45) Error
1 13.6705 0.1465 8.7008 · 10−4

2 13.6605 9.9860 · 10−3 0.1459 5.7513 · 10−4 8.7256 · 10−4 2.4738 · 10−6

3 13.6588 1.6815 · 10−3 0.1458 1.4322 · 10−4 8.7310 · 10−4 5.4651 · 10−7

4 13.6584 4.4404 · 10−4 0.1457 3.5827 · 10−5 8.7324 · 10−4 1.3813 · 10−7

Table 6: Four-asset option price, ∆1 and Γ1,1. The sparse grid solution mimics a
(2l+4 × 2l+2 × 2l+2 × 2l+2)-grid, c1 = 16, c2 = c3 = c4 = 4

Non-linear transformation, no grid stretching
l Price Error ∆1 (44) Error Γ1,1 (45) Error
1 12.6697 0.1176 6.0568 · 10−4

2 12.6788 9.1126 · 10−3 0.1181 5.3724 · 10−4 6.0556 · 10−4 1.1569 · 10−7

3 12.6821 3.2759 · 10−3 0.1182 1.0939 · 10−4 6.0549 · 10−4 7.3138 · 10−8

4 12.6829 7.4950 · 10−4 0.1182 2.8927 · 10−5 6.0548 · 10−4 8.3213 · 10−9

Non-linear transformation and stretching
l Price Error ∆1 (44) Error Γ1,1 (45) Error
1 12.6997 0.1189 6.0329 · 10−4

2 12.6863 1.3420 · 10−2 0.1184 4.9556 · 10−4 6.0494 · 10−4 1.6557 · 10−6

3 12.6838 2.4362 · 10−3 0.1183 1.2326 · 10−4 6.0527 · 10−4 3.3178 · 10−7

4 12.6832 6.3432 · 10−4 0.1182 3.0835 · 10−5 6.0536 · 10−4 8.3943 · 10−8

Table 7: Five-asset option price, ∆1 and Γ1,1. The sparse grid solution mimics a
full grid of (2l+4 × 2l+2 × 2l+2 × 2l+2 × 2l+2) points, c1 = 16, c2 = c3 = c4 = c5 = 4
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8 Conclusion

For pricing basket options with the multi-dimensional Black-Scholes equation a
linear or a non-linear coordinate transformation can be employed, in order to align
the payoff-function to a grid line. An additional stretching function concentrates
points in the region around the exercise price. With the coordinate transformations
it is possible to reduce the number of grid points in the xi, i > 1 coordinates, which
is highly advantageous. The effect of grid stretching is not really significant on
these non-equidistant grids. With the coordinate transformation the sparse grid
combination technique can be efficiently employed to achieve very satisfactory grid
accuracy in space. A significant reduction in the number of sparse grids that need
to be processed can be achieved by a clever definition of the base grid. For the
model problems evaluated, the difference in the accuracy between the linear or the
nonlinear coordinate transformations is not significant. This includes the evaluation
of the hedge parameters. Both the linear and the nonlinear transformation perform
very well. The nonlinear transformation gives rise to a basket option problem with
easier boundary conditions. A critical observation is about the generality of the
sparse grid method in multi-asset option pricing. For highly complicated payoff
functions that typically cannot be transformed to a low-dimensional hyper-plane
the efficient use of sparse grids may be seen with some hesitation.
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