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1 First order wave equation

The equation

aux + ut = 0 , u = u(x, t) , a ε IR (1.1)

describes the motion of a wave in one direction while the shape of the wave remains the
same. We’ll see that the constant a indicates the speed of the traveling wave. Equation
(1.1) is also commonly known as the transport equation.
We solve this type of PDE by looking for curves in the xt-plane where (1.1) can be reduced
to an ordinary differential equation.
Suppose that C is a parametrized curve (x(s), t(s)) in the xt-plane. For the curve C the
following applies :

u(x, t) = u(x(s), t(s)) .

Differentiation with respect to s on C yields :

du

ds
=

∂u

∂x

dx

ds
+

∂u

∂t

dt

ds
. (1.2)

Comparing (1.2) with (1.1) we see that when

dx

ds
= a and

dt

ds
= 1 (1.3)

the following should hold as well

du

ds
= 0 on C . (1.4)

A curve on which (1.4) is valid is called a characteristic curve or simply a characteristic of
equation (1.1), in this example define by (1.3). From (1.4) it follows that the solution u
for (1.1) should be constant on a characteristic.
Using (1.3) we find as solutions :
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x(s) = as + x0 , t(s) = s + t0 ,

from which after eliminating s we could derive

x = at + constant .

The characteristic curves C are in this case straight lines in the xt-plane.
The solution u(x, t) only changes if we move to a different characteristic and so it only
depends on the value for x− at. We write this with an arbitrary differentiable function F
:

u(x, t) = F (x− at) . (1.5)

This is often referred to as the general solution for (1.1), because every solution should be
of this form. So, for a unique solution it is necessary to have more information.
A common condition is to prescribe that for a certain value of t (often t = 0), u(x, t) must
be equal to a continuously differentiable function : an initial condition. When we add such
an initial condition to (1.1) we call it a Cauchy problem :{

aux + ut = 0 , x ∈ IR , t > 0 ,
u(x, 0) = f(x) , x ∈ IR .

(1.6)

t

x

(x0, t0)

(x0 − at0, 0)

The value of u in (x0, t0) is determined by the characteristic on which this point is located.
Because the value on the characteristic is a constant, it should be everywhere the same as
the value for t = 0. The characteristic through (x0, t0) intersects the x-axis in x0 − at0, so

u(x0, t0) = u(x0 − at0, 0) = f(x0 − at0) . (1.7)
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Example

Consider the following initial value problem :

 ux + ut = 0 , x ∈ IR , t > 0 ,

u(x, 0) =
1

1 + x2
, x ∈ IR ,

Here a = 1 and f(x) =
1

1 + x2
. The solution is given by

u(x, t) =
1

1 + (x− t)2
.

The solution conserves the shape of the initial curve and simply moves along
the characteristics , the lines x− t = constant.

x

t

x = t

x = t + 1

u

u(x, 0) u(x, 1)
u(x, 2)

The condition for which u from (1.7) is a solution of (1.6) is that f should be continuously
differentiable. Only then ux and ut are continuous. This type of solution is often referred
to as a classical or strong solution.
In cases where f is only piecewise continuously differentiable, as for example

f(x) =


1 + x , −1 < x < 0 ,
1− x , 0 ≤ x < 1 ,

0 , all other values for x,

or even where f is only piecewise continuous, it is still possible to describe the solution u in
terms of (1.7). We won’t explain here in what sense u is still a solution but only mention
that in these cases u is referred to as a weak or generalized solution.

Example

The initial value problem :
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−2ux + ut = 0 , x ∈ IR , t > 0 ,

u(x, 0) =

{
0 , |x| > 1 ,

1− |x| , |x| ≤ 1 ,

has the generalized solution :

u(x, t) =


0 , x > 1− t ,

1− |x + 2t| , −1− t < x < 1− t ,
0 , x < −1− t .

Exercises

1. Compute the solution u(x, t) of the initial value problem{
2ux + ut = 0 , x ∈ IR , t > 0 ,
u(x, 0) = f(x) , x ∈ IR ,

for the functions f from below. Also indicate if we have a strong or weak solution
here.

(a) f(x) = e−x2
, x ∈ IR .

(b) f(x) = e|x| , x ∈ IR .

(c) f(x) =

{
0 , |x| > 1 ,
1 , |x| ≤ 1 .

2. Consider the initial value problem :{
3ux + ut = 5 , x ∈ IR , t > 0 ,
u(x, 0) = ex , x ∈ IR .

Use the transformation u(x, t) = v(x, t) + 5t and compute the solution v(x, t). Also
compute u(x, t).

3. Also consider the initial value problem :{
4ux + ut = u , x ∈ IR , t > 0
u(x, 0) = cos x , x ∈ IR .

Use the transformation u(x, t) = et v(x, t) and compute the solution v(x, t). Compute
again u(x, t).
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2 Well-posed problems

We have seen in §1.1 that the partial differential equation aux +ut = 0 has infinitely many
solution. By applying an extra restriction - in this case an initial condition we were able
to find a unique solution.
We call a problem well-posed if the following conditions apply :

1. there is a solution for the problem (existence),

2. there is exactly one single solution for the problem (uniqueness),

3. the solution depends continuously from the initial or boundary conditions (stability).

If we make a model of a real-life problem from physics using a partial differential equation
we always try to formulate a well-posed problem by using as many additional conditions
as required. With too little conditions the problem can be non-unique, and with too many
conditions it may be that there is no valid solution at all anymore.
The stability condition for instance implies that a small error in the initial conditions may
not induce large perturbations in the solution. We’ll discuss this condition more extensively
in the next chapters.

As an example we’ll show now what well-posedness implies for the transport equation.
Let’s study the equation on the interval 0 < x < ∞ for a > 0 :{

aux + ut = 0 , 0 < x < ∞ , t > 0
u(x, 0) = f(x) , 0 < x < ∞ ,

(2.8)

t

x

S2

S1

x = at

Then the solution u(x, t) = f(x − at) is only defined for S1 = {(x, t) | x > at}. For
S2 = {(x, t) | 0 < x < at} the solution is unknown as there is no initial condition on
characteristics with x− at < 0.
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By also specifying the boundary condition at x = 0 we can arrive at a well-posed initial-
boundary value problem :

aux + ut = 0 , 0 < x < ∞ , t > 0 ,
u(x, 0) = f(x) , 0 < x < ∞ ,
u(0, t) = g(t) , t > 0 .

(2.9)

In S1 the solution is determined by the initial condition, in S2 by the boundary condition :

u(x, t) =

 f(x− at), x > at ,

g(t− x

a
), 0 < x < at .

(2.10)

For a < 0, the problem from (2.9) is ill-posed. For certain values x0 > 0 the points (x0, 0)

and (0,
x0

|a|
) may be on the same characteristic.

t

x
(x0, 0)

(0,
x0

|a|
)

The initial value results in u(x0, 0) = f(x0), and the boundary value results in u(0,
x0

|a|
) =

g(
x0

|a|
). But because u must be always constant on an characteristic the following should

apply :

f(x0) = g(
x0

|a|
) for all x0 > 0 .

For arbitrary functions f en g in the problem (2.9) this won’t be generally true.

Exercises

1. Compute the solution of the following initial-boundary value problem. Make a rough
sketch of the solution at times t = 0, 1 and 2.
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ux + ut = 0 , 0 < x < ∞ , t > 0 ,

u(x, 0) = e−x2
, 0 < x < ∞ ,

u(0, t) = 1 , t > 0 .

2. Compute the solution of the following initial-boundary value problem. Make a rough
sketch of the solution at times t = 0, 1 and 2.

3ux + ut = 0 , 0 < x < ∞ , t > 0 ,
u(x, 0) = 0 , 0 < x < ∞ ,

u(0, t) =

{
t , 0 < t < 1 ,
1 , t ≥ 1 .

3. What restrictions should be imposed to f and g for the problem (2.9) to ensure the
solution (2.10) is continuously differentiable ?

3 Linear first order equations

If we can write a first order partial differential equation as

a(u, x, t)ux + b(u, x, t)ut = c(u, x, t) (3.11)

we call it quasi-linear.
A special subclass are the linear equations that can be written as :

a(x, t)ux + b(x, t)ut = c(x, t)u + d(x, t) . (3.12)

And if d ≡ 0 we call the equation homogeneous.

We will now for the general linear initial value problem below :{
a(x, t)ux + b(x, t)ut = c(x, t)u + d(x, t) , x ∈ IR , t > 0 ,
u(x, 0) = f(x) , x ∈ IR

(3.13)

construct a solution using the method of the characteristics in the same way as for the
problem in (1.6).

We have already seen that the solutions for equation (1.1) can be given using characteristics,
the lines for which x− at = constant . A natural parametrization of the characteristics is
then

x = as + λ , t = s .

The parametrization is chosen in such a way that s indicates the position on the charac-
teristic, while s = 0 corresponds with the intersection (λ, 0) of the characteristic with the
x-axis. It is the starting point of the characteristic at the initial value , where t = s = 0.
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t

u

s

f

x

spatial characteristic

ground characteristic
x = λ

s = 0

This immediately yields us a parametrization of the initial curve, as for s = 0 the following
should be valid : 

x(0) = λ ,
t(0) = 0 ,
u(0) = f(λ) .

, λ ∈ IR , (3.14)

If we write a generic parametrization of the characteristic Cλ

x = x(s) , t = t(s) op Cλ ,

then Cλ is in accordance with (3.13) if we make sure that x,t and u are solutions of the
following characteristic system

dx

ds
= a(x, t) , x(0) = x0(λ) , (3.15)

dt

ds
= b(x, t) , t(0) = t0(λ) , (3.16)

du

ds
= c(x, t)u + d(x, t) , u(0) = u0(λ) . (3.17)

Because the functions a en b do not depend on u we can solve the equations (3.15) and
(3.16) independent from (3.17). Solutions of these 2 equations define characteristics in the
xt-plane and are often referred to as ground characteristics.
Solutions for all 3 equations (3.15)-(3.17) define so-called spatial characteristics.
For every value of λ this system has a solution that represents a single spatial characteristic.
All these characteristics together describe the solution surface u(x, t) in the xtu-space,
albeit only through the parameters s en λ:

x = x(s, λ) , t = t(s, λ) , u = u(x(s, λ), t(s, λ)) . (3.18)
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Example

The initial value problem :

{
xux + ut = −u , x ∈ IR , t > 0
u(x, 0) = sin(x) , x ∈ IR ,

has the following characteristic system :

dx

ds
= x , x(0) = λ ,

dt

ds
= 1 , t(0) = 0 ,

du

ds
= −u , u(0) = sin λ .

And the parametrization of the solution is :

x = λes , t = s , u = e−s sin λ .

It should be obvious that although u(x, t) and u(s, λ) describe the same solutions they are
not the same in terms of their parameters : u(x, t) 6= u(s, λ) !
In general :

u(x, t) = u(x(s, λ), t(s, λ)) = U(s, λ)

According to the implicit function theorem the inverse functions

s = s(x, t) , λ = λ(x, t)

only exist in the surrounding of s = 0 if the Jacobian is not equal to zero :

J(x, t) =

∣∣∣∣∣ ∂(x, t)

∂(s, λ)

∣∣∣∣∣ =

∣∣∣∣∣ xs xλ

ts tλ

∣∣∣∣∣ = xstλ − xλts 6= 0 (3.19)

This condition prescribes that the initial curve may never have the same direction as the
direction of any of the characteristics. In other words : if the initial value is defined on
a arbitrary differentiable curve in the xt-plane , equation (3.19) implies that this initial
curve hasn’t got the characteristic direction in any point.

Example

For the parametrization from the previous example the Jacobian looks as follows
:
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J(x, t) =

∣∣∣∣∣ λes es

1 0

∣∣∣∣∣ = es 6= 0 for all s .

Inverting x = λes , t = s yields :

s = t , λ = xe−t

,

which results in the solution u being given by

u = u(x, t) = sin(xe−t) e−t.

Exercises

1. Determine to what class (linear, quasi-linear, . . . ) the following equations belong
and also tell whether the equation is homogeneous or inhomogeneous :

(a) ux + tut = 0

(b) ux + uut = x

(c) ux + tut = u2

(d) ux + sin x ut = x

(e) ux + u2
t = 0

2. Is it possible to solve the following problem using characteristics ? Give an explana-
tion as well.

{
ux + uy = 0 , x, y ∈ IR
u(x, y) = 2 , for y = x

3. Determine using the method of the characteristics the solution of the following initial
value problems. Also indicate on what (sub) area the solution is valid.

(a)

{
ux + xut = u2 , x > 0 , t > 0
u(x, 0) = 1 , x > 0 .

(b)

{
tux + ut = x , x ∈ IR , t > 0
u(x, 0) = x2 , x ∈ IR .

(c)

{
xux − tut = 0 , x ∈ IR , t > 0
u = x2 , op x = t .
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4 Quasi-linear equations

The method from the previous section can be extended to quasi-linear partial differential
equations. We can also consider completely arbitrary initial curves.
Let’s study the following generalized initial value problem :{

a(x, t, u)ux + b(x, t, u)ut = c(x, t, u) , (x, t) ε D ⊂ IR2 ,
x = x0(λ) , t = t0(λ) , u = u0(λ) , λ ε Λ ⊂ IR .

(4.20)

The initial curve B for this quasi-linear equation is a spatial curve (x0, t0, u0), parametrized
by λ .
The solution u = u(x, t) is a certain surface in the xtu-space. The initial curve B must
- as before - be located completely on this surface. The method we’ll derive hereafter to
determine this surface has a close resemblance to the methods from the sections before.

First we consider the vectorfield (a(x, t, u), b(x, t, u), c(x, t, u)). In every point (x, t, u) of the
xtu-space this vectorfield defines a direction. Now we search for curves that in every point
(x, t, u) take the direction of this vectorfield. Along this curve Cλ we take the parameter s
such that we find for Cλ the following parametrization :

(x(s), t(s), u(s)) .

We also demanded that this curve has in every point the direction of the vectorfield. Then
the following must hold :

dx

ds
= a(x(s), t(s), u(s))

dt

ds
= b(x(s), t(s), u(s))

du

ds
= c(x(s), t(s), u(s))

(4.21)

All the curves that fit this system of ordinary differential equations are called characteristics
of equation (4.20).
Now we look at the collection of curves that intersect the initial curve B(λ). In order to
do so we’ll add the following initial conditions to the system of (4.21) :

x(0) = x0(λ)
t(0) = t0(λ)
u(0) = u0(λ)

(4.22)

The solution of the system (4.21) with the initial conditions (4.22) can be formally written
as :

x = x(s, λ) , t = t(s, λ) , u = u(s, λ) . (4.23)
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Example

The initial value problem :

{
yux − xuy = u , x > 0 , y > 0 ,
u = 1 , on xy = 1 ,

has a characteristic system :

dx

ds
= y , x(s = 0) = λ ,

dy

ds
= −x , y(s = 0) =

1

λ
,

du

ds
= u , u(s = 0) = 1 .

The solution for the equation for u is easy to compute : u = es . The equa-
tions for x(s) en y(s) however form a system of coupled ordinary differential
equations, with the somewhat more complicated solutions :

x(s, λ) =
sin(s) + λ2 cos(s)

λ
, y(s, λ) =

−λ2 sin(s) + cos(s)

λ
.

An explicit relation u = u(x, y) can be found if we can determine the inverse transformation
s = s(x, y), λ = λ(x, y) .

u(x, y) = U(s(x, y), λ(x, y)) (4.24)

Example

The Jacobian for the functions x(s, λ) en y(s, λ) from the previous example is :

J =

∣∣∣∣∣∣∣∣∣∣
cos(s)− λ2 sin(s)

λ

λ2 cos(s)− sin(s)

λ2

− sin(s)− λ2 cos(s)

λ

−λ2 sin(s)− cos(s)

λ2

∣∣∣∣∣∣∣∣∣∣
=

λ4 − 1

λ3
.

As x > 0 and because of this also λ > 0, we can only expect problems for
λ = 1.

NOTE: in this example it is not possible to rewrite s and λ as functions of x
en y and so we’ll be left here with only a parametrized solution.

In this section we (sort of) derived a method for the quasi-linear Cauchy problem from
(4.20). The method consists of solving the characteristic system from (4.21) with initial
conditions (4.22) and then expressing s and λ as functions of x and t (if possible).
We didn’t bother that much here about what the practical use of this method would be,
but that doesn’t mean that there are no practical applications at all !
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Exercises

1. Solve the following quasi-linear initial value problem using the characteristic method
and indicate where the solution is valid.

{
x2ux + t2ut = u2 , x ∈ IR , t > 0 ,
u(x, 4x) = 1 , x ∈ IR .

2. Solve the following quasi-linear initial value problems using the characteristic method.

(a)

{
ux + ut = u , x ∈ IR , t > 1 ,

u(x, 1) = e−x2
, x ∈ IR .

(b)

{
xux + tut = 1 , x ∈ IR , t > 1
u(x, 1) = sin x , x ∈ IR .

3. Consider the following coordinate-transformation :{
ξ = 3x + y
η = ex

(a) Determine ξx, ξy, ηx en ηy. Why is the transformation invertible ?

(b) Determine xξ, xη, yξ en yη by implicit differentiation of the formulas from above.

(c) Express x en y in terms of ξ en η (in other words : give the inverse transforma-
tion). Check the answer for (b) using this inverse transformation.
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