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The linear stability of a planar and a barred coast is studied with a complex process-
based model. By applying either the Engelund and Hansen or the Bailard sediment
transport formulation, and a wave angle of approximately 5° in the breaker zone, the
sensitivity of the linear stability characteristics to the sediment transport formulation is
explored. Applying Engelund and Hansen to planar beaches, no fastest growing mode is
found since the growth rate continuously increases with increasing wavelength. The
corresponding bed perturbations are very oblique, down-current oriented bars. With
Bailard, on the contrary, the growth rate increases with decreasing wavelength,
suggesting that the preferred wavelength is somewhere between 0 and 300 m. The
corresponding bed forms are up-current bars. Furthermore, the results show that
inclusion of sediment transport in the direction of the wave orbital motion in both
formulations is crucial for the growth of bed perturbations. When only (bed load)
transport in the direction of the mean current is applied, stable up-current oriented bars
are found. On barred beaches, both the Engelund and Hansen, and the Bailard
formulation result in growing bed perturbations, consisting of rip channels around the
crest of the breaker bar. Furthermore, in both cases fastest growing modes are found. The
Bailard formulation results in a smaller longshore spacing of the rip channel system than
the Engelund and Hansen formulation.

1. Introduction

Rhythmic coastal features are often observed in both the shoreline and the
subtidal (barred) topography. They have been the subjects of many studies.
Rhythmic shoreline features range from beach cusps of O(1 m) to coastline sand
waves of O(1000 m), see, among others, Verhagen (1989) and Stive et al.
(2002). Subtidal rhythmic features have length scales ranging from a few tens of
meters to a few thousands of meters and consist mainly of rip channels and
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crescentic patterns, see e.g. Bowen and Inman (1971), Wright and Short (1984),
Konicki and Holman (2000) and Van Enckevort and Ruessink (2003).

One of the theories explaining surf zone rhythmicity is self-organization in
the coupled hydro- and morphodynamic system, as introduced by Sonu (1968).
The initial phase of self-organization can be studied with linear stability analysis
(LSA). LSA's of both planar, e.g. Hino (1974), Christensen (1994), Falqués et al.
(1996, 2000), Ribas et al. (2003) and Klein and Schuttelaars (2004), and barred
beaches, e.g. Deigaard et al. (1999), Damgaard et al. (2002), Calvete et al.
(2002), Klein et al. (2002) and Caballeria et al. (2003), have been performed
before. The spreading in the results of  these studies is large, both in the
preferred spacing and in the shape of the bed perturbations. An important
conclusion that can be drawn from these studies, however, is that the results are
highly dependent on the applied sediment transport formulation.

In the present study, the effects of two sediment transport formulations on
the stability properties of surf zone morphology are studied, viz. the Engelund
and Hansen (1967) and the Bailard (1981) transport formula. Linear stability
characteristics of a planar and a barred beach are studied by means of linear
stability analysis using a process-based model. Using such model has two main
advantages. First, the simplifications that are usually made in LSA's do not have
to be made with this method. Second, any type of coast can easily be assessed.
Furthermore, the linear analysis can easily be extended into the non-linear
regime.

Both the water motion and the wave forces are calculated using a process-
based, non-linear model. Due to the use of such model, the formal linearization
that is usually made in LSA's can not be followed. Therefore another method of
solving the linear stability problem has to be used, as discussed in Deigaard et al.
(1999) and Klein et al. (2002).

This paper is organized as follows. First the model formulations and the
method with which the linear stability characteristics are determined are
discussed. Next, the results of the LSA of a planar beach are presented followed
by the results of the LSA of a barred beach. Finally, the conclusions of this study
are drawn.

2. Model description and Method

2.1. Model Formulations

The geometry that will be considered is that of an alongshore-uniform coast. The
coastline is fixed, whereas the bed is erodible. Propagation, refraction and
breaking of obliquely incident, short waves are computed with the HISWA wave
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model (Holthuijsen et al., 1989), which is based on an evolution equation of the
wave action density spectrum
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in which x (y) is the cross-shore (longshore) coordinate, N = E/σ, where E
[m2/Hz] is the variance density and σ the wave frequency, cg,x, cg,y [m/s] and cg,θ

[rad/s] the propagation speeds of wave action in the x, y and θ space.
Furthermore, θ is the wave angle and Dw [m2/s] the wave action dissipation,
computed with the Battjes and Janssen (1978) formulations. Irregular waves with
a significant wave height of 1.1 m and a peak period of 6 s are imposed as wave
boundary conditions on the seaward, shore-parallel boundary of the model. The
angle of wave incidence has been chosen such that the angle in the zone of
breaking is approximately 5°. The water motion is described by the depth- and
wave-averaged shallow water equations, consisting of the momentum equations
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and the mass conservation equation

0c cu D v D
t x y
η ∂ ∂∂ + + =

∂ ∂ ∂
(4)

In these equations, uc (vc) is the depth-averaged cross-shore (longshore)
current velocity, t the time, g the gravitational acceleration, η  the water level, τx

and τy the bed shear stress components, ρw the water density, D the total water
depth and ν the turbulent eddy viscosity. Furthermore, Fx and Fy are the wave
force components per surface area, computed with the formulation of Dingemans
et al. (1987), using the wave action dissipation. As flow boundary conditions, the
longshore current velocities on the shore-perpendicular boundaries are
prescribed. These velocities follow from the wave-driven longshore current. On
the seaward, shore-parallel boundary a zero water level is prescribed. Note that
the water motion is only forced by obliquely incident, breaking waves. Both the
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effects of waves and currents are taken into account in the computation of the
bed shear stresses, using a drag coefficient of 0.0035. The turbulent eddy
viscosity is set to a uniform value of 1 m2s-1.

The bed evolves due to convergence and divergence of sediment fluxes. As
mentioned before, two different sediment transport formulations are used, viz.
the Engelund and Hansen (1967) and the Bailard (1981) formulation.

The Engelund and Hansen formulation for the total load, hereinafter
designated as EH67, reads:
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in which C is the Chézy coefficient, s the relative density ρs/ρw with ρs the
density of the sediment and D50 the median grain size.

The Bailard formulation for the suspended and bed load transport without
bed slope effects, hereinafter designated as B81, reads:
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in which fcw is a friction factor accounting for waves and currents, εb (εs) the
efficiency factor for bed (suspended) load, φi the angle of repose and ws the
sediment fall velocity. In order to account for the wave orbital velocity, u  is
defined as 0 sincu u tφ+  with cu  the mean velocity, 0u the rms wave orbital
velocity vector and φ the peak frequency of the waves. In order to obtain the
wave-averaged sediment transport rates, the procedure of Van der Molen (2002)
has been followed.

2.2. Morphodynamic Equilibrium

Choosing an alongshore-uniform bottom profile, Eqs. 1 to 4 allow for a solution
that is alongshore-uniform and time independent. From the mass conservation
equation it follows that the cross-shore velocities are zero. Then Eqs. 2 and 3
reduce to
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In cross-shore direction the wave forcing is balanced by the pressure term,
resulting in an alongshore-uniform wave set-up. In longshore direction, the bed
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shear stress, wave forcing and mixing term balance each other, driving an
alongshore-uniform current.

Because of the contribution of sediment transport in the direction of the
wave orbital motion, the alongshore-uniform bottom applied in the complex
model is no equilibrium bottom in the strictest sense. However, it has been
verified that the bed changes due to the divergences and convergences of the
sediment transport associated with the alongshore-uniform beach are negligible
compared to those resulting from the rhythmic coastal features studied in this
paper. This result confirms the validity of the implicit assumption often made in
linear stability analyses that the 2DV morphological development of coastal
systems is typically slower than the 2DH or 3D morphology, which is studied in
this paper. This assumption is also validated by observations, see Ruessink et al.
(2000) and Plant et al. (2001).

2.3. Linear Stability Analysis

The system of equations allows for a morphological equilibrium solution Φ =
Φeq, with Φ = Φ(u,v,D). It is not clear whether or not this morphological
equilibrium is stable. Therefore a LSA is performed. This means that the solution
Φ = Φeq + Φ' is substituted in the equations with a perturbation Φ' much smaller
than Φeq. Next, the system of equations is linearized with respect to the
perturbations. This results in an eigenvalue problem. Focussing on the bed
perturbations, it can be shown that the solution has the form

' ( ) exp[ ]ih A x iky i tω= − (9)

in which h' is the bed perturbation, Ai(x) the complex cross-shore amplitude
function (eigenfunction), k the alongshore wave number, ω the complex angular
frequency (eigenvalue) and i the imaginary unit. The imaginary part (ωi) of the
complex eigenvalue represents the growth rate of the perturbation and the real
part (ωr) the alongshore migration of the perturbation.

In this study, the water motion corresponding to a perturbed topography (the
bed perturbation is constructed by an amplitude function and a wavelength that
can be freely chosen) is calculated with a fully non-linear, process-based model.
Therefore, a formal linearization can not be performed. In order to mimic the
linear system, the amplitude of the perturbation is chosen sufficiently small,
hence non-linear terms are negligible in the equations. In practice this is realized
by choosing the amplitude of the perturbation not larger than 1 % of the water
depth.An iteration process is used to find the solution (i.e. bed perturbation and
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corresponding eigenvalue) with the largest positive real part of the eigenvalue,
i.e. the solution that initially grows fastest.

In order to start the iteration process, we need to make a first estimate of the
cross-shore amplitude function of the perturbation. It was verified that the final
solution is independent of the initially chosen cross-shore amplitude distribution.
During every iteration the bed perturbation is derived from a Fourier analysis,
retrieving the cross-shore amplitude function Ai, which only contains the changes
of the perturbation related to the wave number k. This amplitude distribution is
rescaled such that the amplitude is again smaller than 1 % of the local water
depth. Based on the cross-shore amplitude function Ai-1(x) at the start of the
iteration and the newly computed one Ai(x), the Rayleigh quotient R (Griffel,
1985) is obtained:
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in which * denotes the complex conjugate. This Rayleigh quotient is an estimate
for the eigenvalue corresponding to the largest growth rate. Since the iteration
process starts with an estimate for the eigenfunction, it is likely that after one
iteration both Ai(x) and ω are polluted with other modes than the one with the
largest growth rate. After every iteration, Ai(x) and ω are better estimates of the
solution corresponding to the largest growth rate. Constructing a new
perturbation for every iteration, based on the results of the previous iteration, the
eigenvalues found will converge towards the eigenvalue with the largest growth
rate. The accuracy criterion for convergence has been set to 0.5 %. If both the
real and the imaginary part of the eigenvalue change less than 0.5 % with respect
to those previously computed, the iteration process is assumed to have
converged. In that case, Ai(x) is the eigenfunction, describing the spatial structure
of the fastest growing mode and the Rayleigh quotient R is the eigenvalue.

Note that only one alongshore wavelength is considered and that the
eigenfunction with the largest growth rate associated to that wavelength is found.
Applying this method to a range of wavelengths yields the growth rate as a
function of the alongshore wavelength. If for a certain wavelength the growth
rate is maximal, the bed perturbation corresponding to this wavelength λp is
designated as the fastest growing mode (FGM).

3. Numerical Results: Planar Beach

In this section the results of LSA's of a planar sloping beach with a slope of
0.0075 are discussed. A much more elaborated study on the linear stability of
planar beaches can be found in Klein and Schuttelaars (2004).
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The growth rates as a function of the alongshore wavelength, obtained with
EH67 and B81, are depicted in Figure 1. Although the growth rates are positive,
and hence the coastal system is unstable, no FGM has been found in the
considered wavelength range. In case of EH67, the growth rate increases with
increasing wavelength, whereas in case of B81 the growth rate decreases with
increasing wavelength. These results suggest that in case of EH67 in the limit of
λ→∞ the growth rate goes to a limit value, which is finite and positive.

500 1000 1500 2000 2500
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Wavelength λ [m]

G
ro

w
th

 r
at

e 
ω

i [d
−

1 ]

EH67
EH67 only in current direction

0 500 1000 1500 2000 2500
−0.5

0

0.5

1

1.5

2

Wavelength λ [m]

G
ro

w
th

 r
at

e 
ω

i [d
−

1 ]

Bed and suspended load
Bed load
Bed load in current direction

Figure 1. Growth rate vs. wavelength obtained with EH67 (left) and with B81 (right) in case of a
planar sloping beach.

In case of B81, no FGM has been found in the considered wavelength range.
It is likely that a FGM exists, but the spacing is smaller than the minimum
wavelength of 300 m that can be assessed with the present model set-up. Adding
bed slope effects should cause a shift of the preferred spacing towards larger
wavelengths since the bed slope effects are stronger for small wavelengths than
for large wavelengths. Including bed slope effects is left for further study.

Note that besides the qualitative differences in the growth rates, also the
magnitude of the growth rates are different. B81 results in growth rates that are
much larger than the ones obtained with EH67.

Furthermore, the influence of the different transport modes in the EH67 and
B81 formulations has been investigated. The right panel of Figure 1
demonstrates that omitting the suspended sediment transport from the B81
formulation does not change the qualitative dependence of the growth rate on the
wavelength, although the growth rates are significantly smaller.

The results of both EH67 and B81 change dramatically when omitting the
(bed load) transport in the direction of the wave orbital motion. In that case the
growth rate becomes negative and increases with increasing wavelength,
suggesting that for λ→∞ the growth rate goes to zero.

Despite the large differences in the growth rates obtained with the two
transport formulas, the migration celerities are of the same order of magnitude
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for both sediment transport formulations, viz. a few tens of meters per day (the
migration celerity is not displayed in a figure).
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Figure 2. Characteristic bed and flow perturbations obtained with EH67 (left) and with B81 (right)
in case of a planar sloping beach. The dash-dotted line indicates the breaker line, defined as the
cross-shore location where maximum wave energy dissipation occurs. Coastline is at x=0.

Two characteristic bed and flow perturbations obtained with EH67 and B81
are depicted in Figure 2. The direction of the mean longshore current is
indicated, as well as the breaker line, defined as the cross-shore location where
maximum wave energy dissipation occurs. The bed perturbations obtained with
EH67 are very oblique down-current oriented bars with onshore flow over the
shoals (solid contours) and offshore flow over the troughs (broken contours).
The orientation is with respect to the (virtual) point of shore attachment. Other
experiments of this series showed that the obliqueness increases with increasing
wavelength, and thus with increasing growth rate. The perturbed flow pattern
changes from a circulation pattern for small wavelengths into a pattern with no
cross-shore velocities for large wavelengths. These results suggest that the
orientation of the bed forms becomes shore-parallel for λ→∞. Omitting the
sediment transport in the direction of the wave orbital velocity from EH67 yields
up-current oriented bars for an angle of 5°. The dependence of the bar
orientation on the angle of wave incidence when omitting the sediment transport
in the direction of the wave orbital velocity has not been investigated.

In case of B81, on the contrary, up-current oriented bars are found. This is
true for the three transport modes that have been considered, viz. the complete
B81 formulations, only bed load transport and bed load transport only in the
direction of the wave orbital motion. It has to be remarked that this applies only
to wave angles at the 'breaker line' smaller than approximately 7°. For larger
wave angles, the results of the LSA obtained with B81 become very similar to
the results of the LSA obtained with EH67, viz. very oblique down-current



9

oriented bars with the growth rate increasing with increasing wavelength. See
Klein and Schuttelaars (2004) for more details.

4. Numerical Results: Barred Beach
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Figure 3. The alongshore-uniform single-barred coastal profile.

This section discusses the results of LSA's of a barred coast performed with
EH67 and B81. The coastal profile that has been used is displayed in Figure 3.
Note that the water depth at x = 0 is not equal to zero. The same wave forcing
(Hs = 1.1 m and a wave angle of 5° at the bar crest) as applied to planar beaches
has been applied in the LSA of single-barred beaches.
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Figure 4. Growth rate vs. wavelength obtained with EH67 (left) and with B81 (right) in case of a
single-barred beach.

The growth rate as a function of the alongshore wavelength obtained with the
two different sediment transport formulations are depicted in Figure 4. It is clear
that for both series of experiments a FGM exists, although with different
preferred wavelengths. In case of EH67 the preferred wavelength is 1200 m,
whereas in case of B81 the preferred wavelength is 900 m. Furthermore, the
growth rates obtained with B81 are an order of magnitude higher than the ones
obtained with EH67. However, these differences in the magnitude of the growth
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rates are not as large as the differences between the growth rates obtained for
planar beaches. The migration celerities of the FGM's are 168.6 and 135.3 md-1

for EH67 and B81, respectively, which compare well with observations.
The bed and flow perturbations corresponding to the two FGM's are

depicted in Figure 5. The direction of the mean longshore current is indicated, as
well as the crest of the breaker bar. The bed perturbations obtained with the two
sediment transport formulations do not essential differ from each other. They can
be characterized as rip channel systems with alternating shoals (solid contours)
and troughs (dashed contours) around the crest of the breaker bar. The perturbed
flow patterns do not essentially differ from each other and consist of circulation
cells with onshore flow over a shoal in the breaker zone and offshore flow over a
channel in the breaker zone.
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Figure 5. Bed and flow perturbations of the FGM's obtained with EH67 (left) and with B81 (right)
in case of a single-barred beach. The dash-dotted line indicates the crest of the breaker bar.

5. Discussion

The mechanism explaining the growth of bed perturbations has been introduced
in Falqués et al. (1996) and has been elaborated further by Ribas et al. (2003)
and Klein and Schuttelaars (2004). The mechanism is based on the cross-shore
gradient of the ratio of the wave stirring function and the equilibrium depth. This
ratio is designated as the potential stirring function. All sediment transport
formulations can be written in a form ( )q x uα= in which α(x) is the wave
stirring function. Note that in case of EH67 this wave stirring function is
proportional to 4u and in case of B81 proportional to 2u .

The present study shows that on planar beaches this wave stirring function is
crucial for the shape of the bed perturbation, the sign and the magnitude of the
growth rate, see also Ribas et al. (2003) and Klein and Schuttelaars (2004).
Although the wave stirring in case of B81 is indeed larger than in case of EH67,
it can not be completely held responsible for the large difference (two orders of
magnitude) in the magnitude of the growth rates obtained with EH67 and B81.
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This is confirmed by LSA's with B81 and wave angles larger than 7°, in which
the same down-current oriented bars with similar growth rates as EH67 are
found. From this must be concluded that not only the wave stirring function but
also the orientation of the bars determine the growth rate. Due to the obliqueness
of the down-current oriented bars, the gradients in the sediment transport rates,
and hence the growth rates, are small, much smaller than the gradients in the
sediment transport rates associated with the less oblique, up-current oriented bars
obtained with B81 and with relatively small angle of wave incidence.

The present study also shows that for barred coasts, the shape of the wave
stirring is not crucial for an unstable coast to occur, since the cross-shore
gradient of the potential stirring function is dominated by the topography. The
spatial structures and the migration rates of bed perturbations on barred beaches
obtained with the two sediment transport formulations are much more similar
than they are on planar beaches. The difference between the growth rates has
decreased to one order of magnitude. Since the spatial structures obtained with
EH67 and B81 are similar and the equilibrium profile is identical, this difference
must be caused by the wave stirring function.

Figure 3 shows that the applied barred profile is schematized to a large
extent. In order to assess the effects of this schematization, an experiment with a
smooth cross-shore profile has been performed, giving similar results. This,
however, only applies to sufficiently mild slopes (less than 1:50) of the seaward
side of the breaker bar.

6. Conclusions

In this paper the linear stability characteristics of a planar and a barred beach are
studied using a process-based model. The focus is on the influence of the
sediment transport formulation. Therefore both the Engelund and Hansen (1967)
and the Bailard (1981) formulation for sediment transport have been used. From
the results of the LSA it is apparent that the effects of the sediment transport
formulation on the linear stability characteristics of planar beaches are very
large. First of all, the orientation of the bed perturbations is different. In case of
EH67 down-current bars are found, which become more oblique with increasing
wavelength. With B81, on the contrary, up-current oriented bars are found, as
long as the angle of wave incidence at the breaker line is smaller than 7°. With
EH67 no FGM exists since the growth rate increases with increasing wavelength
without reaching a maximum. In case of B81 FGM's are likely to exist but the
preferred spacing is smaller than the minimum spacing of 300 m that can be
assessed with the present model set-up.
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From the results of LSA's of planar beaches it is apparent that for both EH67 and
B81 the contribution of the sediment transport in the direction of the wave
orbital motion is essential for positive growth rates, and hence for growing
morphological features.

The influence of the sediment transport formulation on the results of LSA's
of single-barred beaches is more limited. For both EH67 and B81 fastest
growing modes are found with spatial structures that are rather similar, viz. a rip
channel system with alternating channels and shoals around the crest of the
breaker bar. The different sediment transport formulations do, however, result in
different spacings and growth rates. The EH67 generally results in bed
perturbations with larger spacings and with smaller growth rates.
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