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1 Introduction
In this manual we describe the mathematical techniques that are used in the ISNaS incom-
pressible program. We do not give any derivation; for the mathematical theory we refer to

the literature used.
This manual is meant for ISNaS developers only.



2 Some basic notations from tensor analysis

In the ISNaS incompressible code we are dealing with curvilinear boundary fitted grids.
These grids are mapped (by an unknown transformation) onto a rectangular computational
grid. Figure 2.1 gives a typical example of the mapping from physical (i.e. curvilinear) to
computational grid. All computations are performed in the computational grid and hence the
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Figure 2.1: Boundary fitted co-ordinates and computational grid

differential equations are transformed from physical grid to computational grid. The resulting
solution is transformed backwards.

In the sequel we shall use the following notations:

z = (2',22,2%) is the Cartesian co-ordinate system,

& = (&,£2,8%) is the general co-ordinate system,
i.e. the co-ordinate system corresponding to the computational grid.

The mapping T from Cartesian to computational domain is given by
T:2% = a%(', 2 € 2.1

We assume that the Jacobian J:

J=] (2.2)

0z®
o¢s |
is unequal to zero.

We define the covariant base vector a(,) as the tangent vector to the surface x(£%), hence

oz

The subscript « is placed between parentheses to emphasize that a(,) is not a component
but one of the three base vectors a, ay, a;.
Contravariant base vectors a(®) are defined as normal vectors to the £€* = constant surfaces:

al®) = grad £ (2.4)



It can be shown that
al®) =

1 .
—agyANa(,y for a, B, cyclic (2.5)
N
where A denotes the outer product.

The correspondence between vector and tensor notation for a rank one tensor is expressed by
u=U%a(,) = Usal® (2.6)

For a tensor of rank two the correspondence between the two notations is given by, for example
in the case of a mixed tensor:

U = Uga,ya? (2.7)

The covariant and contravariant components of a vector w can be obtained from
Ua = Aa) " U, U*=al . u (2.8)
For a rank two tensor we have for example

Ug=al® U agp (2.9)

The metric tensor The covariant and contravariant metric tensors g, and ¢*? are defined
as follows:
9ap = Q(a) " Q(3) g% =a* .a® (2.10)

The name metric tensor is related to the fact that the length ds of a small line-segment
satisfies

ds? = dz®dz™ = gnpde™deP (2.11)
The determinant of g,g is called g, and is given by

Vi =aquy-(ap) Aag) (2.12)
The two-dimensional version of (2.12) is given by
V9 = afnyaty — atyagy (2.13)

By writing out the right-hand side one sees that
Vi=1J (2.14)

The covariant derivative A covariant derivative is a tensor which reduces to a partial
derivative of a vector field in Cartesian coordinates. For a scalar, the covariant derivative is
the same as the partial derivative, and is denoted by

op
o= 2.15
Hv 8£a ( )
The covariant derivative of a contravariant tensor of rank one is given by
o ou” a
,628—55+{7ﬂ}m (2.16)



where {;éﬂ} is the so-called Christoffel symbol of the second kind given by

(0ap) _ 00 9%

o
= = = = 2.17
bt =" 3¢ = 9 a0 ~ Loy) (2-17)
It can be shown that o 9 9
9o~ 963 9~
= — 2.1
The covariant derivative of a covariant tensor of rank one is given by the expression:
U, U, 2.19
0= -1 (2.19)
It can be shown that L 0 U
U =— v9 (2.20)
’ \/g aga
The covariant derivative of a contravariant tensor of rank two is defined as follows:
oTB 3
af _ 83 ad
15 = S H TP ()T (221
It can be shown that 5
1 5fT°“
728 = T8 2.22
3 \/* 855 + { ~ 0 } ( )
and
9% =0 (2.23)

The covariant derivative of a scalar density (i.e. a relative scalar of weight 1) is defined as

dp
o= 2.24
po= g = rl o) 2:24)
It can be shown that op)
P9
Pa= \/g 86[ (2.25)
Hence
V9,=0 (2.26)
Another important identity is
8\/§a(°‘)
NVIT 2.27
= (2.27)

and is called the geometric identity. This can be derived as follows. Suppose v is constant.
Then with the aid of (2.20) we have

, 1 9ygal™-v 1 9,/gal®)
0=d = = 2.28
Y= e e 229

Since this holds for all constant v, (2.27) follows.



The volume element The infinitesimal volume element df2 in d dimensions is given by
dQ = \/gde' d¢?...d¢? (2.29)

The divergence theorem in vector and tensor notation Let V C Q, and let S be the
boundary of V. The divergence theorem says, in vector notation,

/div udV = ]gu -dT (2.30)
Q r

Here dT stands for the vector ndI', with n the outward unit normal on I', and dI" the (physical)
surface element. In tensor notation the divergence theorem is given by

/U;dQ - ]fUadra (2.31)
Q T

For a derivation and further references see Van Kan et al. (1991).



3 Discretization of the geometrical quantities

Since we assume that the transformation T is not explicitly known, but only implicitly by
the mapping of the co-ordinates of the vertices, it is necessary to discretize the geometrical
quantities mentioned in Section 2. In the ISNaS incompressible code there are several ways
of computing these quantities. The choice of which of these methods is used is defined by the
input parameter geotype. In this section we shall treat the various possibilities as function of
geotype. We distinguish between 2D and 3D.

3.1 2D-case

Geotype = 1

2D The following quantities are computed and stored in all points of the grid, i.e. the vertices,
the centroids and the midside points:

o
a’(oz)v Yo, \/!77 {ﬂ7}
The quantities are computed in the following way:
Consider the p-cell with local numbering as shown in Figure 3.1. First a(;) is computed in

0, 1)

|

I
|

('1’ 0) } B (17 O)

_+_
(0,0

|
I

(01 'l)

Figure 3.1: local numbering in P-cell
(0,%1) and @y in (&1,0) by:

any(0,£1) = @(1,£1)—2(-1,%1) (3.1)
a)(£1,0) = @(£1,1) - 2(£1,-1)

Next a(;) and a(y) are computed in all points where they are not available by linear or bilinear
interpolation, using the fewest number of interpolation points.

Hence:
1
aw)(0,0) = 3{aw(0:1) +aqw)(0,-1)} (3-3)

a@(0,0) = S{ag(1,0)+ap(-1,0)) (3.4)

9



ay(-1,0) = a0, +a 0 -1 +ai(-2,1) tai(-2,-1)) (35
am(0,-1) = Hap(L0)+ap(-1,0)+a(-1,-2)fax(1,-2)}  (36)
apy(-1,-1) = slag(-1,0)+ag)(-1,-2) (3.7)
a@(-1,-1) = ga@(0,-1) +a@(-2,-1)) (33)
etc.
From aj1) and a(s) we compute the gop in centroid by
gap = Aa) " O(g) (3.9)

and g,g in all other points is computed by linear or bilinear interpolation from these centroid
points.
For example:

Gos(-1,0) = 3{0aa(=2,0) +9aa(0,0)} (310
Jar(-1,-1) = 10as(0,0)+ Jas(-2,0) + a0, ~2) + gap(-2,-2)} (311

etc.
Next /g is computed in all points using the values of gag just computing by

V9 = y/ldet (gap)| (3.12)

To compute {ﬁo;} formula (2.18) is applied in all points of the elements.

So:

1 1 45,095 [ 9951 Ogn
1 110911 | 19,0921 10gn
- 3 9 (5t ~ 592
Jg21 1gn

29 el
_ lga20g9u1 g1z 3
=3y 00 g log  zog) 0-19)

10



{ 1 } } 15(8951 9952 _ 8912)
12 2 €2 Gl 856
_ l 11(0911 + 9912 B (9912) } 12((9921 4 0922 B 8912)
2 0¢? o€t o€t 2 0¢? o€t 0&?
_ lgndgn _ 1gi12 092
= 5, 08 34 08 (3.14)
1 1 41,0912, 9921 0922 1 45,0922 = 0g22  0ga2
_ 922 0912 10g2 1 g12 0922
Ty (852 D) oc1 ) - 2 g €2 (3.15)
2 _ 19,0911 9912 Ogiz, | 1 55,0021 | 0922 Ogre
tpd = 59 (e + e ~ 3¢ T390 (5 T 9a ~ ¢
_ 19210911 . 1911 0922
T 2500 Tag 0g (3.16)
2 _ 1y 9911 , 9911 Ogu 1 9 99 | 9921 Ogu
L) = 59 G T ~aer) T30 (gt T et ~ 3t
_ _lgn dg11 | gn 092 _ 19911
= a0 g e T2ee) (317)
2, _ 19,0912 0912 Ogan | 1 95,0922  Ogar  0Ogar
tod = 39 (G t9a ~ 2 29 (ga +9g ~ 9
. _9n (8912 1 8922) }911 0922 (3.18)

o Cae ~aae) Ty ae

In these expressions we have used that ¢®? is the inverse of Gaps SO

m 12 1 _
Iy | == gaz o2 (3.19)
g g g | —912 g11
The derivatives 0-/0£® are approximated by central differences using two neighbouring points.

Geotype = 2

The same quantities as for geotype = 1 are computed and stored in the same points. How-
ever, there are some minor differences, which result in a more accurate discretization of the
differential equations.

The base vector a(,) are computed in exactly the same way as for geotype = 1, i.e. formulae
(3.1) and (3.2) are applied.

The Jacobian /g of the transformation in all points is computed from the base vectors in
those points, using the expression:
12 2

V(e = logyatay = aiiyaizlen (3.20)

11



for all points.

In the same way gog is computed by (3.12) in all points.

With respect to the Christoffel symbols {ﬁo;} not only the interpolation is canceled but also

formula (2.18) is replaced by formula (2.17). The base vectors a(®) are computed by inversion
of @aq), i.e.

1
al) = _(G%Z)v _azz))v a®) = _(_a’%l)7 a%1)) (3.21)
The derivatives are again computed by central differences based on 2 neighbouring points.

The formulae derived for the geometrical quantities can all be computed for the internal
region. However, at the boundary some extra kind of extrapolation is necessary. In the
present version of the flow solver the extrapolation has been taken care of by the introduction
of virtual cells and hence virtual co-ordinates. See Figure 3.2.

N2
N1

01 N1 N2

Figure 3.2: virtual cells surrounding the boundary of the region (computational space)

The co-ordinates of the virtual boundary are computed by linear extrapolation, for example
ZBLO = 2:13,-’1 - ZEZ"Q (322)

The co-ordinates in the 4 vertex points are computed by taking the mean value of the linear
extrapolation of the co-coordinates along the two virtual boundaries corresponding to this
vertex.

For example
1

200 = 5[(2210 = 220) + (2201 — 20,2)] (3.23)
The base vectors a(,) are computed in the centroids of all virtual cells and in the midside
points of these cells. The metric tensor g, is computed in all non-virtual points as well as all
virtual points that are not situated at the outer boundary of the virtual alls. The Christoffel
symbols are only computed at the non-virtual points.

12



3.2 3D-case

The implementation here is only done for geotype = 2.

The covariant base vector a(,) is computed in the centre of the edges of a P-cell parallel to
the £*-axis, see Figure 3.3.

(0-11)

| P S ——

0,1,1)

X : placewhere a(q) iscomputed
O ; place where a(9) is computed

® : place where a(3) is computed

Figure 3.3: P-cell with local numbering and the places where a(;), a(3) and a(3) are computed.

The a1y, a(z) and a3 are computed in the following way:

where 7, j,€ {-1,1}.

a(l)(07 27.7)
a’(Z)(iv 07.7)
a(s) (i7j7 0)

= m(laiaj)_m(_lviaj) (324)
= @(i,1,j)—=(i,-1,7) (3.25)
= 2(i,j,1)—=(i,j,—1) (3.26)

Just as the 2D-case we compute a(;),a(;) and a3 in all grid points where they are not

available by a linear interpolation, using the fewest number of interpolation points.

So:
apy(-1,-1,-1) =

a(l)(—l, 0, —l) =

a(l)(—l, —1, 0) =

a(l)(_].,0,0) —

etc.

1
5{(1(1)(—2,—1,—1)—}-(1(1)(0,—1,—1)} (327)

1
Z{a(l)(_27 _17 _l) + (1(1)(0, _17 _1) + a’(l)(_27 17 _l) +

a’(l)(oa la _1)}

(3.28)

1
e (=2 -5 -1 +aq0 -1, -1 +aq (-2, -1 1)+

a)(0,-1,1)}

(3.29)

1
sle(=2,-1,-1)+a)(0, -1, ~1) + aq)(=2,1, ~1) + a)(0,1, ~1) +
(1(1)(—2, -1, + CL(])(O, -1, + (1(])(—2, 1,1)+ (1(1)(0, 1,1)} (3.30)

The geometrical quantity /g is computed for all gridpoints from the covariant base vectors;

using the expression:

V(i k)

2

]

2
(
3
(

1)0(2)0(3) +
1(2)2(3) (:34): (3.31)



The metric tensors g.g and g*? are computed for all gridpoints by:

(908)(i.3.k) = (a(a) - @(3))(i.38) (3.32)
and
(9°°) iy = ((_1)a+ﬁjet (Gaﬁ))(i,j,k) (3.33)
where
Gaa=:l%$;r iii ig ﬁi : (3.34)
931 932 4§33

Christoffel symbols are computed by formula (2.17) for the centers of the faces of a p-cell,

2 e 122}, ,{323} for the right and left

1 1 1
{11 o 12}, ...,{33} for the front and back face {11

face and {131 b ??3} for the upper and lower face, see Figure 3.4 !
3¢
o ety by ook
- 117 Viph gy
L el b Gl A Rl o ®
) T 000) 2 p p 2
— SRSTRIRSTIAER Y
l |
. 3 3 3

Figure 3.4: Places in the p-cell where the Christoffel symbols are computed.

"In 3D we don’t need the Christoffel symbols in all grid points, because we use another formula for the
deviatoric stress tensor ((4.16) instead of (4.2) with (2.16)).

14



The contravariant base vectors in formula (2.17) are computed by (2.5).
Just as in the 2D-case we introduce virtual cells to compute the geometrical quantities at the
boundaries. See Figure 3.5.

k
nk+2i________________________/i
/’I /’I
’ ! ’ 1
R4 ) L |
’ ! 7 |
, I ’ |
/, ! d |
Vs | / |
// | e |
7’ ! 7 |
4 T 4 ]
AN PR [ — .
: ! l | nj+2
I N E R R e e e
| /s I s, H
l d ] ’ J
| Y | //
| d | ’
| 7 | /’
| 4 z
l , { L7
I ’ I ,
A s
1, 1,7
e e e e e e e e e e e e e e e 2 v
/nl +2 ) o
i (1,0, Nk +2)8= === q= == =q-=--go-mma--o-o---- @ (i +2, nk +2)
I I l | |
: I I I ! I I
| I I I | I I
Fo-== |
| ]
X I
" I
| l
F--=- _——
" I
| l
| l
X I
Fo-== ———
| l
X I
| l
X l
F--=- _——
" I
| l
X I
" I
Fo-== ———
| |
X |
l
l
l
(01 &---- Sl
l l | | | X X
I l I I I X X
I l l l l | |
l l I
(00 @---@----to--loo—lo-- L----® (inj +20)

Figure 3.5: The virtual cells surrounding the boundary with a cross-section of the cube.
The co-ordinates of the virtual boundary are computed by a linear extrapolation, for example

face 1 =0
movjvk = 2%]’]"]{7 - m?,j,k ! (335)

edget=0and 7=0

1
L0k = 5[(2m1,0,k —230k) + (22016 — o2.k)] , (3.36)

15



vertex t =0, j=0and £k =0

1
2000 = 3[(22100 = 2200) + (22010 = Zo20) + (22001 — 2oo2)] - (3.37)

16



4 Space discretization of the continuity and momentum equa-
tions

In this section we describe the space discretization of the continuity and momentum equations
in the inner region. Special remarks are made concerning colocated grids. Discretizations due
to the boundary conditions are treated in Section 8.

The equations describing the mean velocity field in incompressible turbulent flow follow
from the momentum equations by the Reynolds decomposition of the instantaneous velocity
field into a mean and a fluctuating part. The momentum equations in general co-ordinates
read (see [36], formula 5.2)

8 (e} (e} [ (e} o (e}
5:(PU%) + (U U®) 5 — R + (9°°p) s — 7% = pf (4.1)

with 72 the deviatoric stress tensor given by
P = p(g*U? + gPU?). (4.2)

Here, U® is the contravariant mean velocity, p the density, p the mean pressure, f¢ some

external force per unit volume, p dynamic viscosity and R*® = —pﬁ“ﬁﬁ the turbulent
stress tensor (U® denotes contravariant velocity fluctuation), which has to be specified. This
specification is accomplished by a two-equation eddy-viscosity turbulence model. This will

—

be presented in Section 7. When calculating laminar flows, the turbulent stresses are set to
zero.

In the present version all coefficients may depend on space, time and previous computed
solutions. However, with respect to the density a correct implementation is only guaranteed
for p is constant. Furthermore, the discretization presented below has been carried out as if
the flow is assumed laminar.

The continuity equation reads (see [36], formula 5.1):

Ua=0 (4.3)
As unknowns the fluxes V' = ,/gU® are used.
Equations (4.1), (4.2) and (4.3) are discretized by a finite volume method.

We distinguish between the 2D and the 3D case.

4.1 2D-case

The discretization of the continuity equation is straightforward. We use a staggered grid
arrangement as plotted in Figure 4.1.
The continuity equation is integrated over a so-called pressure-cell. This yields:

VD)

where the local numbering of Figure 3.1 is used.

+V2EY,) =0, (4.4)

With respect to the discretization of the momentum equations we distinguish between the

17



ul points

u2 points

scalar points

scalar control volume

U 2 control volume

U 1 control volume

W L] RS-

— 0 —1— & —= 0=

Figure 4.1: Arrangement of the unknowns for a staggered grid

time-derivative, the convection term, the pressure gradient, the deviatoric stress tensor and
the right-hand-side term.

The discretization of the time-derivative is given by formula (5.35) of Van Kan et al. (1991)):

0 vo
Q(PV [(0,0)) (4.5)

where (0, 0) is the center of a V*-cell.
The discretization of the right-hand-side term is given by formula (5.34) of that report:

Pfa\/!ﬂ(o,o) (4.6)

In order to solve the so-called no flow problem, the discretization of the right-hand side has
slightly been improved by taking

pva(al” fi + af f2) 0.
See [27].

The discretization of the convective terms requires a linearization. At this moment only one
type of linearization is available, the Newton linearization given by

vevl x veve pveyh — yeys (4.7)
where V@ is taken at the new time level and V® at the preceding one.

Apart from the linearization, the discretization of the convective terms is given by formulae
(5.8) and (5.9) of Van Kan et al. (1991):
Vicell:

%(‘,71)2|51_7(1)7)0)+}‘71‘/2|( 1) +7{ }V’Yvﬁl(O’O) (4.8)

V2 cell:

P 1r27-1((1,0) P 212(0, )
—V*V + —(V +—
i [(Z10) \/;7( )0 f’yﬂ}

Unknowns not present at points where they are required, are computed by linear interpolation

VIV 0.0 (4.9)

18



using the least number of neighbouring points possible.

The discretization of the deviatoric stress tensor is carried out according to formulae (5.23)

0 (5.25) in Van Kan et al. (1991):

Vicell:

V(e UL+ PURITy ~ Van(e U+ UL ) - ST Vilog) (410)
V2-cell:

—Vau(g" U3+ UL (LD ~vVa2u(e U +972 U)o ﬂ}ﬂmoo (4.11)

with U% given by formula (2.22) and 7P by formula (4.2).

The derivatives % are computed by central differences, hence
ou~ o o
aerlen = Ullern = Ulemra (4.12)
oue o
3£2| = Ullem) = U%en-) (4.13)

where for (£, 7) the local numbering is used.
The same type of interpolation is used as for the convective terms. U® is replaced by V*/,/g
in the points where U® is evaluated, although a better method might be to replace VU5 by

V3, since \/ﬁﬁ = 0.
Finally, the discretization of the pressure gradient is carried by formula (3.14) in [26]:
(P(1,0) — p(-],o))(galx/!?)(o,o) + (Po,1) — P(o,—l))(gazx/!j)(o,o) (4.14)

4,2 3D-case

First we show in Figure 4.2 the staggered grid arrangements of the unknowns together with
the control volumes.

19
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Figure 4.2: Arrangement of the unknowns for a staggered grid
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If we integrate the continuity equation over a p-cell get

V1|Eloo))_I_V2|Eo,1,0))+‘/3|EOO1_)])_O (4.15)

this is a simple extension of formula (4.4).
Just as the 2D-case we splitup the momentum equation. The formulae (4.5) - (4.14) are all

most the same in 3D. The main difference between 2D and 3D follows from the fact that not
a discretization of formula (4.2) is used but from:

B o af
Ta/g :H(ga’yaU +g,yﬁaU _ 8g
o0&y g o0&y
This formula (4.16) follows directly from equation (4.2), (2.16), (2.21) and go‘ﬁ = 0.
The discretization of the time derivative is given by:
0
ot

where (0,0,0) is the centre of a V*-cell.
The discretization of the right-hand-side term is given by

(P V90,00 - (4.18)

The discretization of the convective terms is given by a straight forward extension of formulae

(8.7) and (8.8a)-(8.8b) of Van Kan et al. (1991):

U . (4.16)

—((kV)(0,00)) » (4.17)

Ve — cell :

P oy 1(1,0,0 P < ayr21(0,1,0) P < ayr3(0,0,1
\/gv Vllg 10)0)+ \/—V v? | 0,-1,0) +ﬁv V3|E0,0,—)1)+

Vvvﬁ|(0,0,0) for o€ {1,2,3}. (4.19)

f vﬁ}

For all non-linear terms in (4.19) we used the Newton linearization given by
Vvl x veve 4 vevh — yeys (4.20)

where V' is taken at the new time level and V' at the old level.
Unknowns not present at points where they are required, are computed by linear interpolation
using the fewest number of interpolation points.

The discretization of the deviatoric stress tensor is carried out according to:
Ve — cell :
a1)(1,0,0) «2/(0,1,0) «3(0,0,1)
—V9T | -1,0 0 -V |(0,—1,0) — VT |(0,0,—1)
—({7/3}”5\/57”(0,0,0), (4.21)

with 77 given by formula (4.16).

The derivatives 2 W in (4.16) are computed by central differences, thus:
ou~ N N
2 6 = UllGima, = UtlGiam-a, (4.22)
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where ) )
o= (316 -2/15-3l, 51|15~ 3], 515~ 115 -2]). (423

U is replaced by V*/,/g. We make here also the remark that it might be better to replace
VU by V3. So use

N ave ove  9g~P
VI = (g™ = 857 + ¢7° RS =) (4.24)

instead of formula (4.16) in (4.21).
Finally the discretization of the pressure term is carried out by a generalization of formula

(3.14) in [26]:

Ve — cell :
(gm\/?”(o,o,o)(f’(l,o,o) = P(<100) + (VI° \/_)| 0,0,0)(P(0,1,0) =~ P(0,-1,0)) +
(ga3\/§)|(0,0,0)(p(0,0,1) - P(o,o,—l)) . (4-25)

4.3 2D Cartesian colocated case

Contrary to the staggered case, where the fluxes are directly available at the cell faces, a
special treatment has to be made on colocated grids to get the pressure equation. We first
show what happens when the straightforward discretization is used and then we present the
physical reconstruction of fluxes by Rhie and Chow [21].

First of all, the discretization of the momentum equation on a Cartesian grid is shortly
reminded. We start from the continuous equation:

8(p'uo‘) (?(puauﬁ) (’)p 0 ou Oub B .
o T oaP 9en 5.8t 558 T apa) = P17 (4.26)

As the pressure-correction method is used to solve the velocity-pressure coupling (cf. Section
10.2), the discretization of the convective and diffusive terms is not considered here. If the
temporal backward Euler scheme is used to discretize the time derivative, (4.26) reduces to:

u® — u*a 8(pn+1 _ pn)

P = (4.27)
Assuming that p’ = p™t! — p”, this is rewritten as:
At 0pf
u® = u** — P (4.28)
p O

The grid contains rectangular cells with volume Az X Ay where Az = Az' and Ay = Ax?.
Integrating the simplified equation (4.28) over the control volume Q(0,0) centered in (0,0)
gives:

At 1 oy’
e — ure =2 dxtdz2. 4.29
%i0,0) = Y(0,0) — » AzAy / , Oz ( )
The continuity equation is integrated over the same contlol volume:
I u? o — 2
(170) (_170) (071) (07_1)
=0. 4.
Ax + Ay 0 (4.30)
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The velocity components at the faces (u%1 0y’ for instance) are not directly available. The
natural way to get them is to use interpolation from values known at the cell centers and to
write, for the (1,0)-face:
1 1
U +u
1 _ (070) (270)
U= g (4.31)

When (4.29) is applied to the (2,0) cell, (4.31) reads:

(40)
_]_
2,0 Pointsinvolved in the
© —+ discretization leading
(—4_1[9) (-260) (%g) (2(,)0) (41]9) to spurious modes
0,2 Pointsinvolved in the
O O Rhie and Chow
(0,-2) discretization
&

Figure 4.3: Pressure equation discretization

u*l + “*1 Af 1
ul, o= 00 T (20 (/ p 5oyda’da? +/ p 5opdatdz?). (4.32)
(1,0) 2 2p AzAy (2,0)

Similarly, for the (—1,0)-face,

_ et Mon At 1 / oy

1 D 1 p 1
' = daztdz? d d 4.
(=1,0) 2 2p AzAy ) Ozt ! + ./ vida’). (4:33)

When the same process is followed for u?, through the (0,1) and (0, —1) faces, the new
expression of the continuity equation reads:

1 (At (/ apdrle/ OV gt dx?)

AzAy 2pAzx ) Oz! , Oz
o5 gf wtis— [ 5‘5 o' %)) =
(i o) ;;?il,O) N o) ;:E‘g,_l). .30
Let us now consider -~ Ay fQ %ﬂiacldac2 It is equal to:
AmlAy /9(2 g—ﬂdwldw? = W, (4.35)
or in other words, because p’(370) = m;uplm and p’(l’o) = pi_u_llm :pl‘)’o .
ﬁ/{z g—ﬁ:dxldaﬂ = W' (4.36)



Generalizing (4.36) to the other integrals involved in (4.34) gives:

A_t(p,(‘lvo) B 2pl(070) + p,(_470) _I_ p,(074) B 2p,(070) + p,(07_4)) —
ip (Au)? (Ay)? -
u*l _ u*l u*2 _ u*2
(270) (_270) (072) (07_2) 4
2Azx + 2Ay ' (4:37)

We can see clearly, that pl(2,0)7 p,(—z,o)v p’(072) and p,(o,—z)v which are the closest directly avail-
able neighbours of p’(o o) are not present in (4.37) (see Figure 4.3). It means that spurious
modes might appear in the pressure field. To avoid them and thus to build a more compact

discretization of the Laplacian operator, Rhie and Chow have suggested not to use formula
(4.32), but to generalize (4.29) to the cell faces. For the (1,0)-face, u! now reads:

At 1 oy’ f
1 _ooxl _ 1 2
u(l,O) = u(l,O) _p 7$ y /S;( —d.fC d.fC . (438)

1,0) dz!
“2‘11,0) is given by:
wil oyl
x1 (070) (270)
, _ "00) T "20) 4.
(1,0 2 9
and mfﬂ(l,o) %{-dwldw2 by:
1 W 1.2 Plo) ~ Poo)
——da'de? = ————— '
AoAp /9(1’0) 5T z dx s (4.40)
which leads to: 1 1 , /
1 _ U){Ovo) + u>(k270) At p(2’0) _ p(070) 4 41
oS T T, T A o

The pressure equation is built by replacing the new expression of the velocity components at
the faces by (4.41) in (4.30):

g p,(270) B 2pl(070) + p,(_270) p,(072) B 2p,(070) + p,(07_2)

_|_ o
; (Br)? Q) )
“?21,0) B '“flz,O) “’(3,2) B '“fg,—Z)
5AT + 3Ay . (4.42)

It is obvious that the contribution of the immediate neighbours of the discretization nodes is
effective in this equation (see Figure 4.3). It can be noticed that the pressure operator is the
same for staggered and colocated approaches when the pressure correction method is applied.
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5 Space discretization of the transport equation

In this section we describe the space discretization of the transport equation in the inner
region. Discretizations due to the boundary conditions are treated in Section 8.
5.1 Invariant finite volume discretization

The general transport equation in Cartesian co-ordinates reads:

dc*o
ot

+u-V(c'p) —div (kV¢) + D¢ = f~, (5.1)

where ¢ stands for a physical scalar (e.g. temperature, concentration, turbulence quantities),
¢ and D are general functions, &k is a d X d symmetric diffusion matrix (d is the space
dimension) and f* is a source term. These functions may depend on other unknowns, like
U® and ¢. Translated into general co-ordinates this equation becomes (see [36], formula 5.4):

adc*¢

5 H(EUG)a = (K ) .0+ Do = f*, (5.2)

with K% = aga)a((;ﬁ)k“s. Using (2.20), equation (5.2) can be written in a form which is
suitable for the discretization by the finite volume method:

ia\/ﬁQo‘ B B 80*(]5
T e =4 Do (53)
with
Q% = U — K*P¢ g (5.4)

The transport equation (5.3) is integrated over a pressure cell with center (¢, 7, k) which
yields

1 [a% [a%
V99" 1o / OVIQ 11 gezges
Qijr f S Gijk S
i+1/2,5,k JH1/2,k) i k+1/2
~ VaQI g +VaQ I ) + VEQU ) (55)
whereas the right-hand side is integrated using the midpoint rule:

. ac o dc*¢
| = Do- TR0 x il - Do - ) (56)

ijk

Next, (5.4) is substituted in (5.5) which completes the discretization. Since the unknown ¢ is
only given in the center of a cell, further approximation is needed. Central differences should
be used because of second order accuracy. The problem here is, however, that such schemes
tend to give rise to oscillations which are found to damage the stability of solutions of the
two-equation models, since negative values of the turbulent quantities tend to be enlarged by
nonlinearities and strong coupling between the model equations, which prevents the solutions
to converge. This matter will be discussed in more detail in Section 5.3.
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5.2 Invariant discretization on non-smooth grids

The discretization of the transport equation (5.1) as explained in the previous section is
restricted to more or less smooth grids. Moreover, the diffusion coefficient k*2 often varies
rapidly, so that k*? has large jumps on cell faces. Hence, straightforward discretization of
the diffusivity may results in large errors even on smooth grids. Here we shall consider a
discretization which is exact for uniform and linear scalar fields, regardless the smoothness
of the grid and of the diffusion coefficient. For this purpose, we need an expression for the
partial derivative of any quantity ¢ with respect to @ in terms of general coordinates, namely

0 1 0
527 = Jrae V) 57

This can be derived using the chain rule and (2.27). We start with the equation (5.1), viz.,
oc*¢ + oc*ul o 90 (kP 09
ot dzh dzh 0z
and with (5.7) taken into account, the appropriate form of the transport equation becomes
* * VASS
00 | L0V 10 pyn 00
NS NGRS

Discretization of (5.9) is obtained by integration over a finite volume €2;;; with center

)+ Do = f*, (5.8)

)+ Do = f* (5.9)

(4,7, k). Hence, we have

i@c*Vo%bdQ _ / 86*Va¢d§1dfzdf3
G

Qi V9 082 i 08"
VISR VA VA 610

whereas the time derivative and the source terms are integrated using the midpoint rule:

dc*o ac*¢
AZ ot A~ f (4,5, (4,5,k / D¢dQ f (2,3,k) D¢| (4.9,k

ijk 3

/ 742 % G0 F i (5.11)

So far, no difficulties arose because none of the quantities used in the above formulae are
discontinuous. Furthermore, these discretizations are second order accurate and (5.10) is
exact for constant ¢. The cell-face values have to be approximated in terms of values of ¢
in neighbouring cell centers by means of interpolation. This will be discussed in the next
section. The only point left to discuss is the approximation of the diffusion term. First, for
the sake of easier manipulations, the diffusion term will hereafter be expressed as

1 0 (s, 06, 1 0

e (VR ) = N = e (V7@ KV 0) (5.12)

Integration over €2, yields:

2 1 i7 3 7k

/”k88”VF“ VOt~ —ygal) KVelE - Ve kel
9. 7k

—/ga® - kve|lit) (5.13)
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The physical quantity kV¢ is everywhere continuous for arbitrary mappings. Hence, when &
is discontinuous, V¢ is discontinuous. Thus, approximation of V¢ using central differences is
inaccurate. However, using the integration-path method an accurate approximation of kV¢
at point (i+ 1/2,7, k), for example, is obtained:

Ry LA G A S At R C P SR I

4
(5.14)
where
=2 I 5.15
v =Flepher), @by cyclic (5.15)
where C' is given by
C = ey (c(z) A 6(3)) (516)
and . 1 a(l) a(l) .
C) = i(Tl(i,j,k) + T|(i+1’j’k)) (5 7)
la: 1a:- 1la-
€2 = g%kzu—l,k) + Z%km}k) + §TZ)|(W+1JC) +
Lt lag lag
g%|(i+1,a—1,k) + Z%|(i+1,g,k) + §%|(i+1,j+1,k) (5.18)
la la la
Ci3) = g%kw,k—l) + Z%kz,],k) + §%|(17J7k+1) +
la 2 la 2 la 2
§%|(i+1’j’k_1) + Z%kiﬂu}k) + §%|(i+1,j,k+1) (5.19)

We hereby assume that k*? = £§*#. The two-dimensional version of (5.15) and (5.16) are
given by

1) l 2 1 T 2) l 2 1 T
e = 6(6(2)’ _0(2)) ) e® = 5(_0(1)’6(1)) (5.20)
with
C' = clycny — (1) (5.21)

Substitution of (5.14) in (5.13) gives a discretization which is exact when V¢ is constant,
and hence exact for linear scalar fields. The other cell-face fluxes can be derived in exactly
the similar way.

5.3 Approximation methods for convective flux

In this section we discuss several methods for expressing a cell-face value of a scalar in terms
of surrounding nodal values. For clarity, the discussion relates to a uniform infinite staggered
grid as depicted in Figure 5.1. For reasons of robustness and algorithmic simplicity, multidi-
mensional central and upwind schemes are treated by one-dimensional decomposition in the
normal direction for each cell face. Such schemes are called splitting schemes. Therefore we
restrict ourselves to interpolation of the face values along one specific direction in G-space,
taking for example the ¢!-direction. We need to consider only the cell-face value ®iy1/2- The
other face values will be treated in the same way.

Central difference scheme (CDS).
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Figure 5.1: One-dimensional staggered grid showing the nodes involved in the evaluation of
¢ at cell-face 7 + %

In this scheme, the face value ¢; ./, is approximated by means of linear interpolation in the
following way:

1
Piv1/2 = 5(@ + ¢it1) (5.22)
resulting in second order accuracy. This scheme is obviously conservative and is not positive
when a mesh-Péclet number defined as the ratio of the contributions to the convection and

the diffusion exceeds a certain value. For example, when orthogonal grids are employed the
scheme may produce wiggles when the mesh-Péclet number given by (see (5.5) and (5.4)):

el _ pi+1/2Vi{|—1/2
i+1/2 2\/§i+1/2(‘[{11)i+]/2

becomes greater than 1 in magnitude. In the case of skewed grids the expression for the

(5.23)

mesh-Péclet number depends on how the mixed-derivative terms are approximated. This will
be discussed in Section 5.4.

First order upwind difference scheme (UDS).

The face value ¢,y is equal to the upstream node value and, for reasons of efficient vector
coding, can be expressed as follows

1 . 1 .
Piy1/2 = 5[1 + Slgn(‘/i{}-lﬂ)]qbi + 5[1 - Slgn(vz'i-l/z)]gﬁ’iﬂ (5.24)

This scheme is conservative, first order accurate, and unconditionally positive. However,
when the flow direction is oblique to the grid lines this scheme produces numerical cross-flow
diffusion. This may result in a large error in the solution.

Hybrid central/upwind difference scheme (HDS).

In an effort to combine the advantages of both central and upwind schemes Spalding [29] has

proposed the hybrid central/upwind difference scheme. The approximation to ¢;,1/; is given
by

Gipr/z =[1 - 5(P6z1+1/2)]¢0 + S(Pezl+1/2)¢U (5.25)
where ¢¢ is given by (5.22), ¢y by (5.24) and s is a switching function depending on the
mesh-Péclet number Pe with 0 < s(Pe) < 1. With the hybrid scheme the convection terms
are approximated with central differences, unless |Pe| > 1 when a switch to the first order
upwind scheme is applied:

s(Pe) =

<
{ 0, |Pef <1 (5.26)

1, |Pel>1
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For convergence reasons, a smooth switching function may be used:

s(Pe) = 1 — min( (5.27)

L)
| Pe
This switching function is obtained by requiring that off-diagonal matrix elements involving
convective and diffusive contributions are non-positive, which is sufficient for suppression of
wiggles. A disadvantage of the hybrid scheme is that in convection-dominated flows first order

upwind is employed everywhere, irrespective of whether spurious wiggles arise or not.

A number of higher order convection schemes have been embedded in the computational
procedure. Also, a number of classes of flux-limited schemes based on the TVD methodology
will be presented. All may conveniently be written in a canonical form involving a few scheme-
related parameters. To this end, the face values ¢;,,/, are approximated by the first order
upwind scheme, corrected by adding an appropriate anti-diffusive flux controlled by a limiter.
That is, ¢;41/, is approximated by

¢i + %\Ij(rz'++1/2)(¢i = $i-1), ‘/:1-1/2 >0
Gig1/2 = (5.28)
Git1 — %\IJ(T;+1/2)(¢Z'+2 - ¢i+1)7 Vz‘}|-1/2 <0
where é é é p
po_Gm—di L S 529
i T g g, M T Pit2 — Pit1 5:29)

Formula (5.28) opens the possibility to incorporate arbitrary upwind biased schemes in an
algorithmically simple way. The most interesting schemes are

U(r) =514+ K)r+35(1- k) Linear x-scheme
U, (r) = max[ 0, min(®r, 1), min(r, @) ] Sweby ®-limiter
—T2 < K)r—K
(r 4 [r) ZH3EE=E <1, —1< k<0
To(r) = Gter=r r>1, ~1<k<0 R-# limiter

(rtIr) =2 0<k<

r+|r, r<i
U, (r)= USR- limiter
(8+9k)r®+(2—12k)r+2+43xk P> 1
3(147)2 23
o (1) = max[0, min(M, 1(14 k)r 4+ 2(1 - &), 2r)] PL-x limiter

v
T, i (r) = max[0, min(2r, 2), min(M, $(1 + k)r + £(1 — k), 2r)] USPL-« limiter
R

x(r) = max[0, min(2, $(1+ K)r + 3(1 — k),

B

(1= r)r+ 21+ &), 2r)] Symmetric PL-x limiter

where —1 <k < 1,1 <d < 2and 1 < M < 4. These classes of flux limiters bring together
most limiters known in the literature. For example, ® = 1 and ® = 2 define the Minmod
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and Superbee, respectively. Details can be found in [31, 9]. The functions R-0 and R—% are
Van Leer [9] and ISNAS [43] limiters. The limited & = § scheme proposed by Koren [13] and
SMART scheme [6] are identical to PL—% with M = 2 and PL—% with M = 4, respectively.
Finally, by taking x = %, M =2 and k =0, M = 2 for symmetric PL-x limiters the UMIST
[16] and MUSCL [37] schemes are recovered. Apart from linear s schemes, USR and USPL
limiters, the above classes of limiters reduce locally to first order accuracy at physical extrema
regardless of the order of accuracy in regions of monotonicity. If USR and USPL limiters are
employed uniform second order accuracy is obtained (x # %) For more details we refer to
[44], where further extensive references can be found.

Generally, the function ¥(r) is nonlinear, and more than 2 immediate neighbouring nodal
points per spatial direction may be involved in approximating the convective flux ¢; /5.
Difficulties for iterative solution methods can be circumvented by writing the flux ¢;,,/, in
terms of a lower order approximation plus a correction term. This is known as the defect
correction technique and was probably first used in the present context by Khosla and Rubin

[12]. More specifically, the face value ¢; 4/, is written as

Pit1)2 = @Lﬁn + (¢?-|?1S/2 - 95?4?;/2)0 (5.30)
where @397 stands for the approximation by a lower order scheme, for example, first order

i+1/2

upwind, ;n/d qﬁ:‘ff/z is the higher-order approximation. The term in brackets is evaluated
explicitly using the values from the previous time step, which is indicated by the superscript
‘o’. It is typically small compared to the implicit part, so that its explicit treatment does
not slow down convergence. This approach ensures diagonal dominance for the resulting
algebraic equations, thus enhancing iterative rate of convergence while restoring higher-order
accuracy at steady-state convergence. The limited anti-diffusive parts of (5.28) may be viewed
as deferred corrections to the first order upwind approximation and hence can be put into
the source term. Since the stencil associated with first order upwind is maintained, existing
codes can easily be modified.

5.4 Diffusion flux approximation

In this section we shall focus on schemes for expressing cell-face derivatives (diffusive flux)
in terms of neighbouring nodal values. Special attention will be paid to the mixed derivative
terms arising from non-orthogonality of the coordinate system, particularly in view of the
demand of positivity of turbulence quantities.

Finite volume discretization of the transport equation (5.3) yields equation (5.5). After
substituting (5.4) in (5.5) for all cell faces, the following expression for the diffusive flux at
cell face (i +1/2, 4, k), for example, results:

"o e 0 s 0
— VK" 3—;1|(i+1/2,j,k) - \/ﬁfﬂ‘Za—glw/z,zk) - \/ﬁfﬁ”@—;l(m/z,zk) (5.31)

For convenience we restrict ourselves to the cell-face (i 4 %,j, k). The other faces are treated
in the same way.

Remark: We assume the mapping ®(§) is smooth, so that /g and KB at cell faces may be
approximated by bi- or trilinear interpolations in the obvious way.

If the grid is orthogonal, the last two terms of (5.31) vanish and the first part is approximated
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with central differences, as follows:

09
91 |(+1/2,38) = G138 = D) (5.32)

and no further approximation is required. Clearly, this approximation is conservative and
contributes to a positive scheme. The local truncation error is second order. However, when
a non-orthogonal grid is used, the approximation of the mixed derivatives may cause spurious
wiggles. For example, if we approximate 8¢/0€2|(i+]/2’j7k) by central differences and bilinear
(4-point) interpolation (required to express the ¢-values at cell vertices in terms of nodal
values) as follows:

9¢

a—£2|(z‘+1/2,j,k) = ¢(z‘+1/2,j+1/2,k) - ¢(z’+1/2,j—1/2,k)
1
= 25410 T P18 = Plirri-1k) ~ PGg-1,k) (5.33)
then the coefficients corresponding to ¢(; ;_; r) and @(;41 j_1 &) get the wrong sign, if K(1i2-l-1/2 k)
0. On the other hand, if K'? < 0, we get negative contributions to the coeflicients of

(1+1/2,5,k)
PG j+1,k) and @(ig1 jy1k)- This does not necessarily result in oscillatory solutions. In fact,

these coefficients are usually small relative to the coefficients belonging to the normal derivat-
ive ¢/0¢L, but, in some circumstances, for example when the grid is highly non-orthogonal,
they become significant and wiggles may occur. Since this is undesirable, we shall consider
three methods to address this difficulty.

Method (i).

The most obvious approach is to treat the mixed-derivative terms explicitly, i.e. they are
evaluated at the previous time level and are incorporated in the source term. This method is
most frequently used in several numerical procedures. It reduces the size of the stencil to a
5-point or 7-point one in 2D and 3D, respectively, and does not lower the order of accuracy in
the stationary case. However, this method may cause serious deterioration in the convergence
rate, particularly when the grid is highly non-orthogonal, and wiggles may still show up in
the steady-state solution.

Method (ii).

In this method, proposed by Demird7i¢ [4], 2-point rather than 4-point interpolation is em-
ployed. For example, suppose that K 2 > 0, then the following approximation is

tak (44+1/2,5,k)
akKern.
¢
3—52|(z’+1/2,j,k) = Pli+1/2,541/2.k) ~ Pli+1/2.5-1/2,k)
1 1
= §(¢(z’,j,k) + Plit1,j4+1,k)) — §(¢(z’,j—1,k) + Blit1,5,k)) (5.34)
If I{(lz'2-|-1/2,j,k) < 0, we have
d¢ 1
3_52|(i+1/2,j,k) = §(¢(i,j+1,k) + OGg1.5k) — Pliik) — ¢(1:+1,j_1,k,)) (5.35)

This scheme is symmetric around (¢ + 1/2,j, k) and thus second order accurate. Similar
expressions follow for the last term of (5.31). The scheme is conservative, and produces
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unconditionally non-negative ”corner” coefficients, i.e. those corresponding to @11 ;_14),
Plit1,541,k)r Pli41,5k—1) and Pip1 jry1)- But it does not always guarantee positivity, since
the contributions to the ”principal” coefficients at points (¢, —1,k), (i+ 1,4, k), (i,5+ 1, k),
(i,j,k — 1) and (4,4, k+ 1) can be either positive or negative. However, the K'' terms give
contributions to these coefficients of the correct sign, which dominate if K'? is not too large.

Method (iii).
All schemes previously considered do not guarantee unconditional positivity of the scheme.
In what follows, a new scheme that satisfies positivity will be described. It employs one-sided

rather than central differences such that only non-negative coefficients are involved. The
mixed derivative with respect to &% at (i + 1/2, j, k) is evaluated as follows:

96 5O+1,541,k) F 3P j+1.k) — Plijk)s I{(lji_]/Q’j’k) >0

ggzli+1/2im) = 1 1 B (5.36)
Py = 2P(i+1,-1k) = 3PGi-1k) K (G1ya5k) <0

Obviously, this decreases the accuracy to order one, but the scheme is unconditionally positive.
Expressions similar to (5.36) follow for the last term of (5.31). Since the cell-face differences
are uniquely defined at each cell face, the scheme is also conservative.
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6 Space discretization of the continuity and momentum equa-
tions on colocated grids

In this section, we consider the discretization in the interior of the domain. We first present a
decoupled approach to solve the Navier-Stokes equations. Then, we describe the momentum
equation discretization which is based on the discretization of a transport equation in the
staggered case. Adaptions are made for several terms and especially for the pressure gradient.
Discretizations due to the boundary conditions are treated in Section 8.

6.1 Decoupled approach

In the colocated cell-center case (from now on, we call colocated case the colocated cell-center
case), all the variables are located at the center of the cell. It means that the control volume
is the cell itself for all the equations. Except for the pressure equation, the equations for ¢,
where ¢ is u® or a scalar, have the following form:

dcp 1 0cVPy 1 0

do .
W+ﬁ785/3 —ﬁ@ —7)—9 (6.1)

B
(VI K5

¢ denotes p in u*-equation; k%7 denotes (4 in u®-equation; g denotes an eventual force in u®-
equation and the second part of the contribution of the stress term which involves V7 u?Y ly#a-
To take into account the structure of formula (6.1), the decoupled approach is chosen. It
means that the terms of the left-hand side of (6.1) are discretized at the current time-step
and thus put in the matrix wheras the source terms contained in ¢ are discretized at the
previous time-step and put in the right-hand side of the linear system.

6.2 Momentum equation

The discretization is based on the invariant discretization on non-smooth grids (see Sec-
tion 5.1). The momentum equation is written in vector notation:

(.3
Jdpu 1 0pV7u 1 0y/gag’T T
- V" P o A= : 2
ot oo VT e hT YR YY 62
The time derivative and the source term pf are discretized over £ o) following (5.11), i.e. by
the midpoint rule. We remind shortly their expression:

dpu Jdpu
/9(070) WdQ ~ \/‘a(0,0)W |(0,0)7 /9(070) pf2dQ ~ \/‘E(O’O)pf? |(070) . (6.3)

All quantities are directly available because u and f2 are known at the center of the cell.

Integration of the convective terms over €2 o) gives with the divergence theorem:

1 0pV7u L 1,0) 2 (o)
/Q(o,o) \/g o0&y py-u |(—170) py-u |(0,—1) ( )

This expression needs further approximation, because the V! and V2 mass fluxes at the faces
of the control volume have to be interpolated. At this moment, linear interpolation is used.
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A conservative second order central scheme is obtained with:

1
Wmmmz§«Wm@m+wmmmy (6.5)
— Firstpath

Figure 6.1: Cells involved in the discretization of the stress term

Integration of the stress term over the control volume € o) leads to

(.8
1 8\/!7”’5 T (1)_8 (2)
dQN ﬁ . 6-6
/Q(o o VI o0&y \/‘aaﬁ r | 10) \/_a T | (6.6)

(fa ) 1,0) is known from the mapping. We rather evaluate Vu® than 7# (see equation
6.2). The d1sc1etlzat10n of VTu" |, 44 is easily deduced from the discretization of Vu®. The
integration path method [33] is applied to approximate Vu® (see Figure 6.1). Chosing a path
from (0,0) to (2,0), we have:

a 1(2,0) (2,0) o o (2,0)
u |(0’0): /(070) Vu® - dx =~ (Vu )(1’0) -‘/(0,0) dx = (VU )( 0) C(l) (67)

with B (2,0)d o)
1= foy =I5 o)

Another equation is necessary to determine Vu®. We choose a different path, or rather the
average of two paths to take into account the possible non-orthogonality of the mesh, as
follows:

Z |5812—)2> tu 2 —2) /0 /2 _a) *dx = (Vu®)a,0) - ¢, (6.9)
where 02) (o)
1 ' ' 1
== d /' dx) = ~(x |\ (22 ). 6.10
¢(2) 4( (0,-2) X+ (2.-2) x) 4(X |(0,—2) +x |(2,—2)) ( )
The equations (6.7) and (6.9) lead to the following system:
(Vu®) 0y - ey = u® |( o
S ”_1 02 L) (6.11)
(Vu) 10y e2) = 5 02 +u [52,)
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Its solution is given by:

1
(Va0 = u” [fg) €+ 70 [g.2) +u [G2)e (6.12)
where
1 1
C= c?z)cél) - 032)0%1)7 V= E(Cé)’ —c%z))T, c? = 5(—c%1),c%1))T. (6.13)

The complete discretization of the stress tensor involves nine cells (Fig. 6.1).

To get an accurate discretization of the pressure gradient, the divergence theorem is applied
to the a-th gradient component:

1
/Q(O o) E(Vp)“dﬂ ~ \/ﬁa((ll)p |E1_’?,)0) +\/§a£y2)p |E8:1_)1) . (6.14)

Expressing p(1,0) by linear interpolation does not lead to an accurate discretization over

Figure 6.2: Quadrilateral of cell centers containing “(1,0)”

nonsmooth grids, because it implies that a five-point molecule is built. On the other hand,
bilinear interpolation allows to calculate the pressure at the face accurately. Four cell centers
surrounding the cell face center are necessary to build the bilinear function. The first step
consists in searching in which quadrilateral of cell centers lays the “(1,0)”-point (Fig. 6.2).
Then, the coefficients of the bilinear function have to be calculated. An accurate and quick
way to get them is to use the Newton-Raphson method, for instance. Finally, the calculation
of p(1,0) is straightforward. The generalization of this process to the other faces of the control
volume leads to the use of a nine-point molecule.

6.3 2-D Pressure correction equation

We have seen that the pressure term in the momentum equation can be discretized by bilinear
interpolation. This discretization of the pressure gradient is suitable for the momentum
equation, but as usual over colocated grids, it allows spurious oscillations when it is used as
the cornerstone of the pressure equation. Thus, we apply the Rhie and Chow process. After
transformation, the continuous continuity equation reads:

alPu*) = 0. (6.15)



Integration over the control volume £} ¢ leads to:

1 9 N _ s
/%0) ﬁ@(\/ﬁagﬁm a2 ~ galu® |17 +y/galu o = 0. (6.16)

The same Cartesian approach consisting in defining an expression coming for the linearized

a Because it is

momentum equation at the face of the control volume is made to build Ul o)

inspired from the one followed in the Cartesian strategy, the expression:

At 1 ap’
1wl 172
U1 0) = Ui 0) A Z/-/Q(lyo) 3x1d$ dz*. (6.17)

has to be generalized for curvilinear grids. u%io) is easily obtained by bilinear interpolation.
The pressure gradient is required at the face center of the control volume. This configuration is
the same as the one encountered in the discretization of the stress term. Thus, the integration
path method still fits:

1
Voo = pligg <+ 70 o2 +2 152 (6.18)

where ¢(’) and ¢(?) are the same as in the stress term (Eq. 6.13).

This formulation of the gradient which prevents spurious modes in the pressure field implies
that the left-hand side of the pressure equation is the same for the staggered and colocated
strategies if the pressure-correction method is used.

Concerning the right-hand side of the pressure equation, the difference between staggered and
colocated lays on the use of the bilinear interpolation to get u*.
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7 Turbulence modeling and related numerical issues

7.1 Introduction

This section summarizes all turbulence models and the numerical implementation of these
models, which feature in the current ISNaS package. For this, several issues are considered.
Our goal is to develop an efficient and unconditionally positive scheme for turbulence equa-
tions, so that the non-negativity of the turbulence quantities (e.g., k& and ¢) is guaranteed.

7.2 Two-equation eddy-viscosity models

Two-equation eddy-viscosity models are based on approximate constitutive equations which
predict the unknown Reynolds stress tensor R*? that appears in the Reynolds-averaged
Navier-Stokes equations (4.1). Through the introduction of a turbulent viscosity u; these
models relate R*? to mean flow variables. The most popular eddy-viscosity model is due
to Boussinesq. He postulated that in analogy to molecular diffusion, the Reynolds stresses
depend on the deformation rates of the mean flow as follows:

2
R = (g™ UG + ¢°7UL) = 2pkg™” (7.1)

where k is the turbulent kinetic energy per unit mass, defined as

= %gagRo‘ﬁ (7.2)
The term %pkg“ﬁ has been added to ensure that the trace of equation (7.1) produces identical
expressions on either side of the equality sign. Furthermore, this term can be absorbed by
the pressure gradient term. We then have to replace static pressure by p + %pk. Expressions
similar to (7.1) are employed for the turbulent fluxes of heat and mass which are counterparts
of Fourier’s and Fick’s laws for the respective molecular fluxes. The turbulent diffusivit-
ies of heat and mass that result are then related directly to p; through constant turbulent
Prandtl/Schmidt numbers, which are empirically determined and are of the order of unity.
The eddy-viscosity u; is predicted from the solution of two semi-empirical transport equations
for two turbulence quantities to be presented later.

Although the Boussinesq hypothesis works quite well for many flows (i.e. two-dimensional
flows), it is too simplistic. More specifically, it assumes that turbulent diffusion is isotropic, so
that primary shear stresses will be predicted well, but not secondary shear stresses and normal
stresses. As a result the Boussinesq hypothesis may not be suitable for difficult flows involving
strong three-dimensional effects. This weakness can potentially be removed using anisotropic
eddy-viscosity models. The idea is to extend the stress-strain relationship (7.1) by adding
nonlinear elements of the mean velocity gradient tensor. This leads to better approximations
of the normal and shear stresses and therefore turbulence anisotropy structure.

Based on series-expansion arguments (details may be found in [7]), a general and coordinate-
invariant quadratic relationship between stresses and strains can be written as
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2 ap? 1
R = —2pkg™® + 2,57 - pftk [er1(9%°5™7 855 = 557 S5eg™")
1

1
+era(97PQ% S5 + g S 5) + crs(97PQ™ Qs — 59559559‘15 ] (7.3)

where §8, Sas; Q*# and (Qop are the contravariant and covariant components of the mean
rate of strain and rotation tensors, respectively, viz.,

o 1 e a 1
§% = S(¢"U5 +9™UL), Sap = 5(Vass + Usa) (7:4)
o 1 o o 1 v
Q% = S (¢"U5 - g*Uf), Qap = 5(Uap — Upa) (7:5)

Note that the quadratic products of strain and rotation tensors are grouped so that the
resultant is symmetric in @ and 3. Approach has been to determine the closure coefficients
Cuy Cr1,y Cr2 and cr3 so that agreement is achieved with a simple shear flow and with one other
difficult class of flow. Several researchers have proposed anisotropic eddy-viscosity models
(AEVM). These models in the current version of ISNaS include: the nonlinear AEVM of
Speziale [30], the RNG based nonlinear AEVM of Rubinstein and Barton [22], the nonlinear
variant of Nisizima and Yoshizawa arising from the Kraichnan’s DIA theory [19] and the
anisotropic eddy-viscosity closure of Myong and Kasagi [18]. Although the theoretical origins
and derivations of these eddy-viscosity models differ greatly, they can be cast into a common
mathematical form, like (7.3). They merely differ in respect of the numerical values of the
closure constants, as given in Table 7.1. It should be noted that the Boussinesq hypothesis is

AEVM Cu Cr1 Cro Cr3
Sperziale 0.09 | 0.1512 | 0.1512 0
Rubinstein-Barton | 0.085 0.68 0.14 -0.56
Nisizima-Yoshizawa | 0.09 | -0.7881 | 0.1769 | 1.0675
Myong-Kasagi 0.09 0.275 | 0.2375 | 0.05

Table 7.1: Numerical values of closure constants in stress-strain relation.

obtained by setting c,1, ¢ro and cr3 to zero.

The turbulent viscosity p; must be specified by the two-equation model. Two-equation
models are turbulence models in which the evolution of both the velocity and length scales
characterizing turbulent motion is obtain by solving semi-empirical partial differential equa-
tions. At the moment four two-equation models are dealt with: the standard k-¢ model of
Launder and Spalding [15], the RNG based k-¢ variant of Yakhot et al. [42], the extended
k- model of Chen and Kim [3] and Wilcox’s k-w closure [40].

If the k- modeling framework is employed, the turbulent viscosity is related to £ and e,
the dissipation rate of k, through the following semi-empirical expression:

k2
e = pcu? (7.6)
where k£ and ¢ are determined from the coordinate-invariant semi-empirical transport equa-
tions opk s
O (U D)0~ (4 21"k ) = P = p (.7
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dpe o Bt o €«
o T (PU%)a = ((n+ U—t)y Pe8) 0 = 7 (a1l = ceape) (7.8)

where Py is the production rate of turbulent energy given by
Py = gay R*PU, (7.9)

Different variants of the above model arise from the different approaches to determining
the model coefficients ¢, oy, 0., ¢, and c.3. The coefficient ¢}, is made a function of the
equilibrium state of turbulence which is characterizes by the ratio of times scales of turbulence
and mean strain, denoted as n = Sk/e. Here S = (250‘53(15)% is the magnitude of the mean
rate of strain. It should be noted that if the production rate of turbulent energy (7.9) is
modeled using the Boussinesq hypothesis, then we obtain a simple expression for 7, namely

n = y/Px/pcue. In the above three k- models ¢%; is obtained as follows:

Cely standard model
iy =1 e — M) RNG model (7.10)
Co1 + c€3cﬂ7]2, extended model

where v = 0.012 and ny = 4.38. The numerical values used in the three k-¢ variants for the
closure constants are tabulated below. The extended model in ISNaS employs slightly revised

k-¢ variant Cu oL . Ce1 Ce2 Ce3
Standard 0.09 1.0 1.3 1.44 | 1.92 -
RNG 0.085 | 0.7179 | 0.7179 | 1.42 | 1.68 -
Extended 0.09 0.75 1.15 1.35| 1.9 | 0.05

Table 7.2: Numerical values of closure constants in k-¢ closure.

values for coefficients c.; and c.3. Chen and Kim [3] recommended ¢,y = 1.15 and ¢.3 = 0.25
which produce significantly wrong solutions over a wide range of flows. In [8], it was reported
that this model give consistently better results, when c.; = 1.35 and c.3 = 0.05.

The three k-¢ variants are of the high-Reynolds-number type and the viscosity-affected
near wall region is resolved with a low-Reynolds-number model according to Lam and Brem-
horst [14]. An alternative and still widely employed approach is the use of so-called wall
functions. This issue will be presented in Section 8. When the low-Reynolds-number k-¢
model is used the values of the closure constants ¢, c.1, c.2, 0} and o, remain the same and
the viscous damping functions are introduced into the constants, as follows:

Cu — f,uc,uv Cel flcala Ce — f2ca2 (711)

The damping functions are chosen according to the model proposed by Lam and Bremhorst
[14]:

f,u — (l _ 6_0'0165Ry)2 (l n izoef) (712)
fi=14 (%)3 (7.13)
fr=1-eFr (7.14)
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with

R ="— emn = —— 7.15

= R = (7.15)

the local and turbulent Reynolds numbers, respectively. Furthermore, Y is the normal dis-
tance to the solid boundary. Boundary conditions for the momentum, & and ¢ equations are,

respectively,
=0, k=0 = 82k| (7.16)
u =0, =0, e=varglv=o .
For computational expediency, we choose
Oe
— = t Y= 1
BYG 0 a 0 (7.17)

as the boundary condition for the dissipation rate, as suggested by Lam and Bremhorst [14].
The disadvantage of the low-Reynolds-number models is that they impose a very fine mesh
normal to the wall, which can be prohibitive when dealing with large 3D applications.
Many proposals for the k-w model have been made (for a review, see [41]). The version
devised by Wilcox [40] is perhaps the most popular one and will be presented here. Rather
than solving for the dissipation rate of turbulent energy, the second variable considered here is
the specific dissipation rate, i.e. the rate of dissipation per unit kinetic energy. This variable
is denoted as w (= ¢/k). On the basis of a simple dimensional analysis, the eddy-viscosity is
taken to be the quotient of the turbulent energy and the specific dissipation rate, thus:

k
=p— 7.1
He =P (7.18)

The two turbulent parameters obey the following modeled transport equations:

O0pk

00K (V%K) o = (4 ") ) = Pi = 8°phs (7.9

apw e’ af w 2 -
o T (PU @) = ((n+op)g*wp) 0 = apPe = fpw (7.20)

where Py is given by (7.9). The closure constants employed are as follows:
5 3 9 1 1

—_ — = — R = — R 21
=y P T 7T 77 (7-21)

The k-w model is a low-Reynolds-number closure which means that it can be integrated
through the viscous sub-layer without requiring a near-wall model. Hence, standard boundary
conditions must be employed at a solid wall, i.e. for the momentum equations noslip conditions
are imposed on the boundary and % is simply zero on the wall. Due to the singular behaviour
of w at the wall, a special boundary condition for w must be used, which is given by

) Nyv
lim w =

V=50 Y2 (7.22)

where
6/0, without viscous corrections

N, = (7.23)

2/p*, with viscous corrections.
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The singularity at Y = 0 does not allow this boundary condition to be imposed on the wall.
The numerical treatment of this singularity will be presented in the next section.

For stagnation flows, the so-called Kato-Launder modification [10], which replaces the
strain in the production of turbulent energy term by the vorticity, has been implemented.
Using the Boussinesq eddy-viscosity approximation, we obtain

P, = 1 S? (7.24)

In a stagnation flow, the very high levels of S produce excessive levels of turbulent energy

whereas deformation near stagnation point is nearly irrotational. Defining the magnitude of
I

the mean rotation as Q = (2Q*#Q,43)? and replacing (7.24) by

P, = 1,59 (7.25)

leads to a marked reduction in energy production near the stagnation point, while having
no effect in a simple shear flow [10]. In [2] a hybrid form is proposed in which (7.24) and
Kato-Launder correction (7.25) are averaged:

P, =mS((1-a)S+ aQ) (7.26)

with 0 < a < 1 a weight factor. This hybrid model is particularly used for stagnation flows.
In that case the weight factor is chosen to be a = 0.85, as recommended by [2].

7.3 Numerical aspects of two-equation eddy-viscosity modeling
7.8.1 Space discretization of the stress-strain model

The anisotropic eddy-viscosity model contains nonlinear elements. Difficulties for iterative
solution methods can be circumvented by writing the stress term R*? in terms of the implicit
Boussinesq formulation plus an explicit quadratic term. This can be regarded as the well-
known defect correction technique. Hence, we define the extra turbulent stress Q%8 for
the nonlinear model as the difference between the total stress R*? and the linear model
contribution,

2
Q*? = R*P 4 gpkgaﬁ — 244, 8P (7.27)

which is explicitly calculated at every time step, using the values from the previous time step.
The linear model is treated implicitly, which means that the laminar viscosity u is increased
by the turbulent viscosity g in the deviatoric stress term (4.2). The right-hand side of the
momentum equations is updated with the extra turbulent stress, as follows

pf* e pf*+ QY (7.28)
Taken o = 1 as an example, the finite volume discretization results in

1, 10VgRY 1 g o
/| e e Q70 = i
0./9Q"? 1
/Gi+1/2,j,k \a/jqifﬁdfldgdf?) ~ \/E(Pfl + {ﬂ,y}Qm”(iH/z,j,k) +

i+1,5,k i+1/2,541/2,k i+1/2,5,k+1/2 -
VIR +VaQ I e + VIR ) (7.29)

1 1 By
(f' + {5, }Q™)a2 +

i+1/2,5,k
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The discretization is completed by substituting (7.27) in (7.29), followed by central differences
and bilinear interpolations. Due to the covariant derivatives of the contravariant velocity
components in (7.27) extra Christoffel symbols are introduced in the discretized right-hand
side of the momentum equations. At this moment, the above discretization is only carried
out in the inner region.

7.3.2 Space discretization of the production term in two-equation models

One of the source terms in turbulence model equations is the production rate of turbulent
energy given by (7.9). The discretization of this term is carried out at center (7,7, k) with
central differences and bilinear interpolations in which the fewest number of neighbouring
nodal points are taken. Since we use V* = ,/gU® as unknowns, the covariant derivative of
the contravariant velocity components must be expressed in terms of flux components. We
have

Lo

The partial derivative of the flux component can be approximated by central differences.

e S 7.
Vo4, 077 (7.30)

The same interpolation rules as for the momentum equations are applied. All geometrical
quantities are evaluated at the centre of a scalar cell. Closest to a boundary, some derivatives
OV /9P also contain virtual fluxes. These virtual quantities are expressed in internal fluxes
by using linear extrapolation. In two-dimensional case, for example, at lower boundary we
get:
Vi, =2V, = Vi (7.31)
The above discretization is not well-suited When a non-smooth grid is employed. An
approach to discretize the production term in case of non-smooth grids is to integrate the
Cartesian expression of P over a finite volume €2, so that no Christoffel symbols or metric
tensors occur in the formulation. At this moment we restrict ourselves to the Boussinesq
hypothesis for the modeling of the production of turbulent energy. From (7.24) it follows that
the Cartesian expression for Py is given by
Py = Nt(gua Oup ) Ot
rg Oz Oug
The remain task is to discretize the partial derivatives of the Cartesian velocity components
with respect to @ at point (7, j, k). This can be done with the integration-path method. Here
a ”quick” approach is given. To approximate the zP-derivative of u® this derivative has to be

(7.32)

expressed in terms of the derivative with respect to £. Using the chain rule, one gets:

ou® 98 Ju” (v) Ou®

028 028067 "% Bev (7.33)
The approximation of (7.33) at point (7, j, k) leads to
8 o
a;w' (i) = 45 65 Ay (7.34)

Here Ayuo‘|(i7j7k) represents the difference in u®, across the cell enclosing point (7, j, k), in &7
direction. The differences are evaluated as:

Avu[(i ) = U(ip1y2,5k) — Uiz1/2,5k)
Aqu® |1], "?z,g+1/2 k) — “?z,] 1/2,k)1
ABU |(Zv.77k) U/?;7]k+1/2) u?;,],k‘ 1/2) (735)
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The final expression of the approximation for

Ju® OQu® Ou® )T
Ox'’ 922’ 0x3

Vu® = ( (7.36)

becomes

Ozl(i‘l'l/zvjvk) (i7j+1/27k) (i,j,k+1/2)

Vus|(i k) = a(l)l(i,j,k)u (i-1/25k) T a’(Z)|(i7j7k)ua|(z’,j—1/2,k) + a(3)|(i7j7k)ua|(i,j,k—1/2) (7.37)

The velocity components on cell faces are to be obtained with

a,WV*
w=— (7.38)
NZI
Since u is only given at center of cell faces, discontinuous geometric quantities and fluxes have
to be replaced by suitable definitions such that (7.38) is exact for constant w on arbitrary
grids. An example:

a(l)Vl + a(g)V2 + a(3)V3

W(ij+1/2,k) = i |(i.j+1/2.k) (7.39)
with
1 ~
a@)lgti/2m = 3 (@@l6-17250 Fa@li-1725000 Fa@lGr/250 T a@)lir1/2500) (7-40)
1 T
Viigr2m = 7 Viciszim + Vicyzgenn T Vieyegm + Vie/ziem) (7.41)

7.3.3 2D implementation of low-Reynolds-number modeling

When implementing the Lam-Bremhorst model, a serious aspect to consider is the near-wall
behaviour of the damping functions. For example, consider the damping function

20.5)
Renq

fu — (l _ 6_0'0165Ry)2 (l n (742)

Approaching the wall, desired asymptotic behaviour depends upon accurate values of this
function. Using Taylor series expansions, this damping function can be written as

(1 — ¢~00165Ry)2 (] 4 ??%i)’ R,>1.0

fu = (7.43)
(0.0165R,)* (14 £2), R, <1.0

Furthermore, the limiting form of f, should be asymptotically consistent with the near-wall
behaviour of time-averaged properties. For example, it is well known that the asymptotic
variation of turbulent energy and dissipation rate near the wall are

1
ko~ 5Y2, e~v as Y =0 (7.44)
Hence, we have
V2Y? Y4
Ry ~ 2 y ReT ~ m as Y —0 (745)



Substituting in (7.42) gives
(7.46)

11/1210 fu=0.01116225

Because the order of the leading term of Req is larger than that of R, it sometimes happen,
numerically, that f, is relatively large even when Y — 0. Therefore, if Rey < 1 and f, > 1,
fu should be set to its limit value. In order to avoid very small (or negative) values of k in
regions in which p; becomes very small, the implementation of the damping function f; is
slightly modified: fy should not be smaller than 0.01.

The calculation of the normal distance from a grid point in the inner region to the wall,
i.e. Y, will now be described. We consider the following situation as depicted in Figure 7.1.
The distance of a cell-center point P from a boundary surface can be found as the scalar

Xg

2
X Xl B X2

Figure 7.1: Calculation of normal distance between node P and boundary point B

x1

product of a vector connecting a boundary point B and P and the unit normal vector n:

Yo =n-BP =n- (2, — xp) (7.47)
The index numbers of the cell containing P and the near-wall volume including B are identical.
The co-ordinates of B and P are obtained from the co-ordinates of cell vertices by linear

interpolations, hence

1 1
zp = 5(%1 +z3), @p = Z(w3+ x4+ @5+ @6)

The unit normal vector is computed as follows:

Ly — Iq (7

= (—ty,t)7, t=-—2"1_
n = (—ty,ty) ", T2y — 21|

(7.48)

In the presence of several walls - the usual case - Y; is, in some sense, a weighted average of
distances to all points on the solid boundary seen by the point at which Y is to be computed.
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There is no consensus, however, on how Y should be computed in general. A simple approach,
adopted in complicated geometrical domains, is to take Y as the distance to the nearest wall.

In the case of k-w model, standard boundary conditions must be employed at a solid wall,
i.e. for the momentum equations noslip conditions are imposed on the boundary, whereas
for turbulent energy k& a homogeneous Dirichlet condition holds. However, in order to avoid
non-positive values of k£, & = 107% may be taken as boundary condition on the wall. In order
to impose condition (7.22), the equation for w is solved up to the second grid point closest to
the wall, applying the condition

N,v

7 Y,F < 5.0 (7.50)
P

w =
at the first grid point P above the surface. Here, N, is given by (7.23), Yt = pu,Y/u is the
nondimensional distance from the wall and u, = /7, /p is the friction velocity with 7, the
wall shear stress.

7.3.4 Implementation of the positive scheme for two-equation models

The turbulence model equations, as discussed in the previous section, are transport equa-
tions. Hence, for the implementation of the two-equation models the equation (5.2) will be
considered. The evaluation of the functions ¢*, K*? D and f* for each turbulence equa-
tions must result in a positive scheme, which means that the solution of turbulence quantities
assumes non-negative. This positivity consideration is urged because of our desire to de-
velop efficient and robust method for turbulent transport equations. See also [44]. It should
be mentioned that in case of space discretization the positivity of the turbulence quantit-
ies is guaranteed via TVD constraints on the convection scheme, as has been discussed in
Section 5.3.

The turbulence source term has a considerable impact on the time integration. It turns out
that we are compelled to use standard Newton linearization in order to avoid the possibility
of negative solution of turbulence quantities. As an example, we consider the equation for
turbulent kinetic energy in the high-Reynolds-number standard k-¢ model where the source

term is
2

k
Pr — pe = 2pcM?G — pe (7.51)

with G = S“ﬁsaﬁ. The treatment of the quadratic term in the production rate of turbulent
energy, due to the use of an anisotropy model, will be discussed later. The eddy-viscosity and
consequently the production term will be frozen at time level n, whereas the dissipation term
will be treated implicitly and linearized as follows:

kn+] 2 2 2 kn kn 2 n
( o L ~- p:ﬁf AR p2cu(un) =pe" - 29%’6”“ (7.52)
t t t

n+1

—pe ~ _IOQCM
where n denotes the preceding time level and n + 1 the new time level. The functions D and

f* becomes
n

€ * n n -
D:2pk—n, f =P+ pe (7.53)

The other functions are given by

n

¢ =p, K" =g+ (7.54)
k
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The same holds for the equation for dissipation rate. We have

y o N n en » eh . eh 2
c=p, K 529 ﬁ(,“"‘ l;__t)y D=2P052k—n, f :Cslk_npk +,06'52(k—n) (755)

An analogous procedure is followed in respect of the k-w model.
So far, we have considered the standard k-¢ model. The extra term in the RNG dissipation
rate equation should also be treated appropriately. Consider the term

77(1—77/770)5
-t " _ P .
1 Bk % (756)

then by replacing the functions D and f*, respectively, with

B WER (7.57)
En(14yn3)’ nok™(1 4+ vn?)

and 1 = /Pl /pcue™, it can be verified that the right-hand side of the discrete equation for ¢

and the coefficient of e"*! consist of positive contributions.

Physically, the production rate of turbulent energy is always non-negative. The problem,
however, is that, when employing an anisotropic model, there is no guarantee that Py is non-
negative numerically. Hence, special measures are taken to ensure that at no stage of the time
stepping the production rate assume negative values. By virtue of (7.9), (7.3) and (7.27) one
sees that

Py = 205" Sap + 9ay QU (7.58)

The first term in the right-hand side of (7.58) is always non-negative and hence, can be
contributed to f*, as explained before. The second term would normally be expected to
contribute to f*. However, it must only do so if it is non-negative, otherwise it must be
allocated to D. This can be done in the following way: this negative term is first divided by
the value of k available from the previous time level and then added to D. Algebraically, this
is implemented through,

=4+ maX(O,ngaﬁU’zj)

: 0’ o aﬁU’Y
p.—p_ ngQ ) (7.59)

An analogous procedure is followed in respect of the dissipation rate equation.
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8 Implementation of the boundary conditions

In the present version of the ISNaS incompressible program, the following types of boundary
conditions have been implemented.

Boundary conditions for the momentum equations:

Type 1: Velocity prescribed (Dirichlet boundary condition)

Type 2: Stress prescribed (Natural boundary condition)

Type 3: Normal stress and tangential velocity given (Semi natural flow)

Type 4: Tangential stress and normal velocity given (Slip boundary condition and also sym-
metry condition)

Boundary conditions for the transport equation are:

Type 1: Scalar ¢ prescribed (Dirichlet boundary condition)

Type 2: 0¢ + (kV¢) - n prescribed (Robbins boundary condition)

In the next paragraphs we consider the various boundary conditions separately.

In 2D the notion normal and tangential vector have been defined in a somewhat strange way.
For a user the normal vector is defined as the outward normal in the case of a counterclockwise
direction and as the inward normal in the case of a clockwise direction. The tangential vector
is defined in the direction of the outer boundary. In the program, however, the normal and
tangential vector are always defined in the 1 or 2 direction in the computational grid. Hence
at the boundary &2 = 0, the normal direction is the £? direction and tangential direction the
¢! direction. At the boundary ¢! = nz, the normal direction is ¢' and the tangential direction
&2 ete.

In the sequel the internal definition will be used.

8.1 Prescribed velocities

8.1.1 2D implementation

In 2D, prescribed velocity given means in the present version w -mn and w -t given. These
quantities are transformed to contravariant components using the formulae (6.1) and (6.4)
from Van Kan et al. (1991):

Ur = Vg"u-n (8.1)
1

Ut = g—(qlgtt’l.l/ -t — gntUn) (82)
it

Here the definitions of n and t as described above are meant both for the physical components
as for the computational components.

The given normal velocity component (in computational space) is implemented by explicitly
prescribing the velocity unknown at the boundary. In the program this is implemented by
setting the corresponding main diagonal element equal to 1 and the off-diagonal elements in
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the corresponding rows to 0. The right-hand-side component corresponding to this unknown
is made equal to the unknown itself.

The given velocity component U? is implemented in the following way:

The matrix is built for all unknowns including all the ”"tangential” unknowns. The rows
corresponding to the "tangential” unknowns closest to the boundary (see Figure 8.1) contain
elements referring to virtual pressures and virtual ”tangential” velocity unknowns. The virtual

2 C3a1 + E|:| + 1
1 ] M Iy M
L] LJ

’ T E - f T
1 ] M
L] ] L LJ

2 O+ O +
-3 -2 -1 0 1 2 3

Figure 8.1: A "tangential” velocity cell at the boundary

quantities are expressed in internal unknowns and prescribed velocity components at the
boundary using linear extrapolation. For example for the lower boundary (Figure 8.1) we
get:

Pi—2 = 2pio— Pi2 (8.3)

-1 _ 1 1
Viea = 2Vi_i —Vio

where Vi}—l is the value of \/§Ut at the boundary point. The coefficient in the matrix corres-
ponding to the virtual unknown multiplied by the expression (8.3) or (8.4) is transported to
the right-hand side or the other matrix terms.
8.1.2 3D implementation
We give here two ways to describe the velocities in the physical domain:

(i) with Cartesian velocity components,

(i) with normal and tangential components.
In the present version, only the first approach is implemented.

(i) If the Cartesian velocity components are prescribed we can compute the contravariant
components in the following way:

Ut =a® . u (8.5)
(ii) Normal and tangential components are prescribed on the plane where £" is constant.

The scalar products - n, w71 and w - 79 with the tangential vectors 71 and 74 are
given by the user. See Figure 8.2.
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n
& = constant

£t

Figure 8.2: The scalar products u - n,
prescribed. Here is ||n|| = ||71]| = ||72]|

[] 1=

1.

tangent plane

-7y and u - 74 and tangential vectors 7, and T, are

From w-n, w- 7y, w7y, 71 and 73 we can compute U", U and U by:

where

U" = sign (@™ n)V/gmu-n (8.6)
ot -1 -1 _
_ it Gtits 11 O3 u-T _yn 9nt, (8.7)
Ut Gtot,  Gtots a1 Qg2 URE S Gnts
T Q) Guty
T Qg Gtot
iy = ) et | (8.8a)
Giitr Giits
Giotr  Gioty
Gty Ti Q) ‘
Giot, Ti QA
Qg = L2t () 1 (8.8b)
Giity Giity
Jtstn Gtots

Formula (8.7) makes no sense if the tangential vectors 7y and 7, are linear dependent, so
they have to be linear independent.

The given U", U" and U are implemented in almost the same way as in the 2D-case.
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8.2 Stresses prescribed
8.2.1 2D implementation

In 2D stresses prescribed implies that normal and tangential stress components at the bound-
ary are prescribed. Let S™ and S™ be the normal resp. tangential physical stress at the
boundary, where the normal and tangential vector are defined as in 5.1.1.

From $™" and S™ we can compute ™" and o™ by

gy grmsnn (8.9)
o™ = (VI guS™ — gno™)/gut, (8.10)

where ¢*? is defined by
P = —g*Fp 4 8, (8.11)

An important remark is that in this formulation pressure and deviatoric stress tensor can not
be separated, hence the discretization of both must be the same at the boundary. For that
reason the discretization of the pressure at the boundary will be different from the one in the
inner region.

Since no velocities are prescribed, it is necessary to consider finite volume cells around each
velocity unknown, including the "normal” velocity points at the boundary.

Let us first consider the "tangential” boundary cell as sketched in Figure 8.1. The discretiza-
tion of the convective terms, the right-hand side and the time derivative are exactly the same
as for the inner cells, with the exception that virtual (tangential) velocities are eliminated by
linear extrapolation as in formula (8.4).

The stress tensor (deviatoric part and pressure together) is discretized by:

\f‘711| 10) +\/—012| _|_{ ﬂ}avﬁ\f| 0,0) (8.12)

In this expression o'%|(y _yy is given by formula (8.4). All other terms are treated in the usual

way (except of course for the pressure).

With respect to the normal velocity unknown at the boundary a half cell is defined as in
Figure 8.3. The discretization of the convective terms plus the stress tensor at the boundary
is given by formula (6.14) from Van Kan et al. (1991):

1 1 2
VAT ) + VAT 60 + 5V T o) (8.13)

where
7% = pUU? — o*f (8.14)

The discretization of the right-hand side gives

1
§Pfa\/£7|(0,0) (815)
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Figure 8.3: A ”"normal” velocity half cell at the boundary

and of the time-derivative:

22 PNy (5.16)
The discretization of the convective terms is derived from (8.13) by substitution of
T8 = pU°U” (8.17)
and the approximation
Vol,o = %(Vll,l + V—ll,l) (8-18)

The discretization of the stress tensor at the boundary is given by formulae (6.14), (6.15) of
Van Kan et al. (1991):

1 2
RHS — /90| 0,1y — SZART Yot 0.0y (8.19)
where RHS is defined by
1 1
RHS = —5v/59" |10+ 5V (<100 + V37 ] 0,0)

1 2 2
_5\/.6{ 29 }022|(0,0) - \/g{ 12 }0-12|(070) (820)

The evaluation of 011|(070) introduces extra difficulties.
Following Van Kan et al. (1991), page 76, we use po, instead of pg o.
Furthermore %H0,0) is computed at the preceding time-level, and %H0,0) replaced by

%ROJ). Virtual velocities are not used. To compute %“0’0) at the preceding time level,

U' at the boundary is computed by linear extrapolation from inside, using two points.

8.2.2 3D implementation

The normal and tangential stress components at the boundary are prescribed. Let S™" be
the normal stress component at the boundary and S™” the tangential stress component in the
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7 direction (see Figure 8.4). So:

S = §"n 4 S"Tr (8.21)

M =const

where n is an unit normal vector and 7 is an unit tangential vector. From S""n and S"" 1 we
compute 6™, 6™ and 62 the stresses in the computational domain. Just asin the 2D-case

tangent plane

& "= constant

Etl

Figure 8.4: The normal and tangential stress in the physical domain at the boundary &" =
constant.

is:
nn — nn Snn

: (8.22)

o™ and o™ are computed by:

a2 Gty Gtoty Int,

nt1 -1
EAR e I P A

T Q) Ghi,
T Q) Gtaty

a) = ; (8.24a)
Geit1 Gty
Jtot1  Gioto
Gty T Q) ‘
g T.a
ay = 170 (t2) (8.24b)

Jtit1 Gits
Giaty  Giots

The stress 0 is defined by 08 = —g*Pp+ 73, At the boundary it is impossible to separate
the pressure from te deviatoric stress tensor 7%?. So the discretization of the pressure at the
boundary will be different from the one in the inner region.

We have to consider three different cells closest to the boundary two ”tangential” and one
"normal” velocity cell.
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Let us first consider the ”tangential” cells. The two ”tangential” cells closest to the boundary
are considered differently from the ones in the inner region, because the stencil contain virtual
unknowns (see Figure 8.5). The discretization of the convective terms, the right-hand side

_ [ [
k=2 [ J C ] J C ] ] 2 point
k=1 —1 D u3 point
k=0 [ C 1 J p point
23 = constant
k=-1// Y
k=-2 (.2 e [ e
17 7
k=-3 I I
() La
Figure 8.5: A cross-section (¢! = constant) over an UZ-cell closest to the bottom of the

region.

and the time derivative are the same as for the inner cells, with the exception that virtual
velocities are eliminated by linear extrapolation. For example for the bottom boundary (see
Figure 8.5) we get:

Vs = 2o, (52)
V,Zm = 2V} 30 me (8.26)
‘ :73.77 2V7]7_1 V?]v (827)

The stress tensor 0*? is discretized in the following way for the V®-cell:
(0,0,1)

1,0,0 (0,1,0)
_'\/57‘70(”%—’1:0)0 faazl ’—’1 0) faa3| 00—1

«
—\/ﬁ{vﬁ}zﬂﬂ(o’o’o) for a=1,2.

(8.28)

Term O'a3|(0’0’_1) is given by formula (8.23), if we are concerned with the bottom boundary.
All other terms are treated in the usual way.

Since no normal velocity components are prescribed at the boundary we have to consider a
finite volume around a ”"normal” velocity point at the boundary (see Figure 8.6). We will
now consider the discretization for a "normal” velocity cell at the bottom boundary.

The discretization of the time-derivative gives:

——(pV?) |(0,0,0) (8.29)



k=2 D D D 1 u? point
k=t C1 o [LCF--~--{3 o [ []  u® point
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&~ = constant

| =
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Figure 8.6: A cross-section ({' = constant) over an U”-cell at the bottom.

and of the right-hand side:

1
§(Pf3'\/§)|(0,0,0) . (8.30)
The discretization of the convective terms is given by:
1 p o 3:,1(1,00) P ,3:,2(0,1,0) 3+7,3((0,0,1)
LA VS Ve + 3y + V Vv
2\/— | -1,0,0) 2./7 | (0,—1,0) Vi |( 0,0,0)
1 P /
\/—{ }‘”V'3|(0,0,0) (8.31)
and the approximation:
Viso = Vija 8.32)
o = Vi 8.33)
If V! or V2 are not present at (7,7,1) then they are approximated by:
‘/rz',lj,l = (‘ zl 1,501 Vz‘i—l,j,l) (8.34)
‘/,23,1 = (‘ 1,j—1,1 + V,]-H 1) : (8-35)

The discretization of the stress tensor at the boundary is given by the following formula:

(1,0,0) 1 (0,1,0)
__'f 31| 100 5\/57032| 0,—1,0) f033|
__f{Yﬂ} |000 (8.36)
or
RHS - \/!703 |001 f{11}011|000
34 12 3y 2
- \/!7{12}0 |(0,0,0)—§\/!7{22}U |(0,0,0) (8.37)
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where RHS is given by:
1 1,0,0 1 (0,1,0)
RHS = _5\/50-31%_1707)0) - 5\/5_] | 0,—-1 0 + \/_U | 000
3
_\/g{ 13 }Ul3|(0,00 \/_{ 23 }02 | 000 \/_{ 33} | 000 (838)

The evaluation of o'« 0,0, 0(10200) and 0'(000) introduces some difficulties. First we need

the pressure in point (0,0, 0), because we have to split up o'!, ¢'? and 0?2 Instead of py g0
we use po,o,1 just as in the 2D-case.

Secondly we need gga and gga at (0,0,0) for & = 1,2, 3. The derivatives %ko,o,o)v %|(07070),
2

U au!t au!t U

W|(0,0,0) and 2 352 |(0,0,0) are replaced respectively by W|(0,0,1)7 3—§2|(0,0,1)7 W|(0,0,1) and
%|(07071)' In Van Kan et al. (1991), page 34, there are three strategies mentioned to compute
%ko,o,o) and %l(oﬁﬁ)' It seems reasonable if we use the same strategy as used in the 2D-
case. That is, the derivatives %RO@O) and %RO@O) are computed at the preceding time

level, U' and U? at the boundary are computed by linear extrapolation, using two points, so:

ou” o o
6‘53 | 0,0,0) =U |(0,0,3) -U |(0,0,1) (8-39)

(at the preceding time level) for a = 1,2.

8.3 Semi-natural outflow condition
8.3.1 2D implementation

With semi-natural outflow condition we mean tangential velocity and normal stress prescribed
at the boundary, i.e.
u -t and S™" given. (8.40)

Although u - ¢ prescribed does in general not imply U? prescribed we assume that instead of
(8.40) the following boundary condition is given:

U' and S™ given (8.41)

where S™" is related to o™ by (8.9).

Boundary condition (8.41) influences both the tangential velocity cell as sketched in Figure 8.1,
as the normal velocity half-cell sketched in Figure 8.3.

With respect to the tangential cell, the molecule is built in the same way as for the inner cells.
The only difference is that virtual velocity components and virtual pressures are eliminated
by linear extrapolation, i.e. by applying formulae (8.3) and (8.4).

The normal velocity half cell gives rise to the following discretization of the stress tensor (see

[36], formula (6.19)):
21 1 23 11 or 2y 0
——.fU | fa | 5\/'6({11}0- + {12 }U )l(0,0)
1 2
+\/§U22|(070) - 5\/‘6{ 29 }022|(0,0)7 (842)
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where U“| 0,0) is given by (8.9). Virtual velocities are eliminated by linear extrapolation
using formula (8.3). It must be remarked that the first term with respect to the pressure is
evaluated in the points (1,1) and (-1,1) instead of (1,0) resp. (-1,0).

The convective terms are evaluated by expanding

prZUﬂ W) VU0 + pf { ﬁ}U”Uﬁl 0.0) (8:43)
using the standard inter- and extrapolations.

8.3.2 3D implementation
The tangential velocity and normal stress are prescribed at the boundary, i.e.:
w-Ty, W-To, T1, T2 and S™ are given . (8.44)

From equation (8.7) it is clear that we can calculate U and U™ as g,;, and g, are zero,
otherwise we have to make an assumption about U’ and U*2. In the remainder of this section
we assume that

U, U and S™ are given , (8.45)

at the boundary.
From S™ and equation (8.22) follows the stress ¢”" at the boundary in the computational
domain.

Boundary condition (8.45) influences the two "tangential” velocity cells (see Figure 8.5) and
the "normal” velocity half-cell (see Figure 8.6).

The U' and U? "tangential” cells (bottom boundary) are built in a similar way as the inner
cells. The only difference is that virtual velocity components and pressures are eliminated by
linear extrapolation. For example for the bottom boundary we get:

Ve = 2V% 1 = V%o for a=1,2 (8.46)
Viies = 2Vij—1 = Vi (8.47)
pl7.77_ = 2pi7j70 - pl7.77 : (848)

The normal velocity half-cell at the bottom boundary. The discretization of the convective
term gives

Lp o 1,0,0 p 0,1,0
57‘/3‘/1 |E_1’0)0 + _7‘/3‘/2|( ) )

ﬂ}V7V5| 0,0,0) (8.49)

p < < 07071
+ gV

|_\

+375,
Terms with the factor V3V?3 are the only terms where we need a linearization procedure, since

V! and V? are given at the boundary.
We use the following discretization of the stress tensor:

1 (1,0,0) (0,1,0)
— VAR — 5Var ot — v

1
- 5‘/“7{7ﬂ}"w|(o,o,o)v (8.50)
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where 033|(0,070) is given by (g33533)|(0’0,0). So the right-hand side gets the contribution:

1.3
(_1 + 5{ 33 })\/50’33“0’0’0) . (851)

The virtual velocities introduced by formula (8.51) are eliminated by linear extrapolation.
Just as in 2D is the pressure evaluated in the points (1,0,1), (-1,0,1), (0,1,1) and (0,-1,1)
instead of (1,0,0), (-1,0,0), (0,1,0) and (0,-1,0).

8.4 Slip boundary condition

8.4.1 2D implementation

The slip boundary condition is equivalent to tangential stress as well as normal velocity
component given. The treatment of this type of boundary conditions is the subject of [25].
All formulae in this section are copied from that report.

The normal velocity given implies U” given by the relation (8.1). The tangential stress given,
however, does not automatically imply that a component of the contravariant stress tensor
is prescribed. In fact it only implies a linear combination between stress components at the
boundary through the relation

VI S™ = gnio™" + gro™ (8.52)

Since the normal velocity component is given no normal half cells are introduced.

The discretization of the convective terms implies the evaluation of virtual velocities by linear
extrapolation. The discretization of the stress tensor is given by

1
~Vae (L) = Ve Loy = L 53 Vel oo (8.53)
The linear extrapolation formula for the velocities is given by
Vz‘,1—2 = QVi}o - Vz,lz (8-54)

The term (/go'?)(o,—1 is equal to:
\/@712|(0,—1) = 5nt|(0,—1) - \/5%022|(0,—1)a (8.55)

where the first term is given and the second term involves virtual velocities and pressures
that can be eliminated by (8.54) resp. (8.3).

8.4.2 3D implementation

In this condition the normal velocity u - n and tangential stress S™” with T are prescribed.
So we don’t need "normal” velocity half-cells. We have only to consider the two ”tangential”
cells. For the remainder of this section is the slip boundary condition given on the bottom
boundary.
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The discretization of the convective terms is given by:

atr11(1,0,0 ax,21(0,1,0 o 0,0,1
\/gV v | 10)0 +ﬁv VZE —1)0)+ 7V V3|EO,0,—)1)

p
+ﬁ{7ﬂ }V7V6|(07070) for a=1,2. (8.56)
Since V3 = \/§U3 is prescribed at the bottom boundary we do not have to use a linear

approximation for VV?|(g o _1y (see [25], formula (3.9)):

VeV 0,21 = 53V w000 = V002V l00,-1) for a=1,2. (8.57)

DN —

The discretization of the stress tensor is given by:
al 1 0 0 a2 (07170) a3 (07071)
V90 | 1,0 o - V990 |(0,—1,o) -0 |(0,0,—1)
-V 3 }07ﬁ|(0’0’0) for a=1,2. (8.58)

The virtual velocities introduced by formula (8.58) are eliminated by linear extrapolation, i.e.
using formula (8.25), (8.26) and (8.27).

The term 6%%|(g 0 1) in (8.58) is for v =1 (U'-cell) equal to:

-1
ey = (o w0 w2 02| [ 2]}y 030
where el =[1 0], s

7|(0,0-1) = (329" n)y/g*S" 033w> l(0,0,-1) - (8.60)
g11922 — g12921

Term UO‘3|(0’0’_]) in (8.58) is for @ = 2 equal to:

-1
23 nr 33 T | 911 12 931
o _1 = | sign ( n)y/g33S —oc™e _ 8.61
|(o,o, 2 ( g ’ [921 g22 ] l g32 ]) |(0’0’ R ( )
where el = [0 1], so
23 N (3) . /433577y, — 533911932 — 921931> 8.62
o _1 = | sign (a n)\/g oy — O _1) - .
00, ( ( ) ? 911922 — 921912 0o ( )

The factors a; and «y are calculated with formula (8.24a)-(8.24b).
The 0%(0,-1) in (8.60) and (8.62) involves virtual velocities and pressures that can be

eliminated by (8.25)-(8.27) and (8.48).

Before treating the boundary conditions for the scalar equations we shall first consider the
special cases where we have a transition of one type of a boundary condition to another as
well the case of a corner of the region.
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8.5 Transition of types of boundary conditions
8.5.1 2D implementation

Just as in the preceding cases we restrict ourselves to the lower boundary in the computational
domain. Let at the vertex point S we have two types of boundary conditions (see Figure 8.7).

[ [ [
L L L
] ] ]
[ . [ [
oz L L L Y
S

Figure 8.7: transition point S (vertex of cell). At the left of point S the type of boundary
condition differs from the one on the right.

We shall only consider the boundary condition at the left of point S but in relation to the
boundary condition at the right. In all cases the most restrictive boundary conditions, i.e. the
one that influences the velocity most directly will be applied. Let us first consider Dirichlet
boundary conditions at the left of S. Since Dirichlet boundary conditions are the most
restrictive, it is assumed that also in point S the velocity is prescribed. All points left of S
are treated in the usual way. The only special treatment is required for the tangential cell
just above point S (Figure 8.8).

) - - -

. M M M
L] L

0 - -

] M
1 s U L
2 L L [

-2 -1 0 1 2

Figure 8.8: Tangential cell just above transition point S.

The molecule corresponding to V(%),o contains 3 virtual points, 2 of which can be eliminated
by linear extrapolation using the boundary conditions.

The only special point is 1/127_2). If at the right side of S we have a boundary condition of
type 3 this point may be treated in the usual way. However, if boundary conditions of type
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2 or 4 are prescribed V(l2 ~2) must be eliminated by the linear extrapolation:

2
‘/(127_2) - 2‘/(1270) N ‘/(1272) (863)

Now suppose that we have a boundary condition of type 2 at the left side of S and a boundary
condition of type 1, 3 or 4 at the right side of S. It is sufficient to consider the tangential cell
sketched in Figure 8.8 and the normal half cell left of point S sketched in Figure 8.9.

M M M
L] L] L]
1 IZ}————EE
M M
0 L] I >
S
1 . [

Figure 8.9: Normal half cell left of the transition point S

All other cells are treated in the usual way. Let us first consider the tangential cell of
Figure 8.8. If at the right side of point S we have a boundary condition of type 1 or type 3,
the tangential velocity in point S is given and the cell is treated as if corresponding to the
right side. In the case of boundary conditions of type 4 the cell may be treated in the usual
way.

With respect to the normal half cell we can proceed as usual. Since no virtual velocities
appear no special treatment is necessary.

In the case that we have a boundary condition of type 3 at the left side of S we also distinguish
between the tangential cell of Figure 8.8 and the normal half cell of Figure 8.9. With respect
to the tangential cell the procedure described in 5.3.1 can be applied without any restriction.
With respect to the normal half cell we may also proceed in the standard way, i.e. apply
formula (8.42). This procedure leads to virtual unknowns which may be eliminated in the
usual way. There is no need to use extra information if velocities are given at the right of
point S.

Finally with respect to boundary conditions of type 4 it is sufficient to consider the tangential
cell of Figure 8.8. If at the right side of point S boundary conditions of type 1 or type 3
are given (i.e. u; prescribed) these boundary conditions prevail. In the case of boundary
condition of type 2 at the right side of S, no special action is necessary.

8.5.2 3D implementation

Just as in the 2D case we restrict ourselves to only one boundary, the bottom boundary in the
computational domain. First we assume that only one boundary condition type is prescribed
on a ”"bottom boundary”-face of a p-cell, see Figure 8.10.

It is clear that the only thing that has to be treated very carefully is the extrapolations of
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Figure 8.10: There is only one boundary condition type prescribed on A, the "bottom
boundary”-face of a p-cell.

the virtual points, see Figure 8.11.

For the extrapolation of for instance V2171’_2) in a U'-cell (see Figure 8.11(a)) we have to
consider the boundary conditions in the two ”bottom boundary”-faces A and B. If boundary
condition type 1 (Dirichlet) or type 3 (semi-natural outflow) is prescribed in one of the two
"bottom boundary”-faces then the following extrapolation is used:

V(21,1,—2) = 2‘/(21,1,—1) - V(21,1,0) ) (8.64)

otherwise

‘/(21717_2) = 2‘/(217170) N ‘/(217172) ' (865)

It is clear that a similar procedure can be used for all virtual velocities in the ”tangential”
cells and "normal” half cell.

8.6 Treatment of boundary conditions at the corners of the region

With respect to the corners of the region, it is necessary to consider the boundary condi-
tions carefully, because unknowns may be not present anymore. Let us investigate the four
boundary conditions in this special case.

8.6.1 2D

For simplicity we restrict ourselves to the case of a boundary condition at the right side of
the lower boundary in the computational region.

In the case of Dirichlet boundary conditions (type 1), no points at the right of the left
boundary appear, hence no special precautions are necessary.

In the case of boundary conditions of type 2 we have to distinguish between ”tangential”
cells and normal half cells. Only tangential cells of tangential velocities not lying on another
boundary are considered. As a consequence the last tangential cell is at a distance 1 from the
boundary and no special treatment is necessary.

With respect to the normal half cell sketched in Figure 8.12 we have to be more careful.
The discretization of the convective terms using formulae (8.13), (8.17) and (8.18) introduces
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Figure 8.11: A cross-section of the bottom boundary and an (a) U'-cell, (b) U?-cell and (c)
U3-cell, with the positions of the virtual unknowns.

virtual velocities in the points (2,0) and (2,2). These virtual velocities are eliminated in the
standard way by linear extrapolation using the value of V2 at the right boundary if available
and otherwise using the values V%),i and V(2_272- . Hence even if V% is given at the right
boundary, we still use the interpolated values. Tflis approach simplifies the treatment of the
boundary conditions.

The stress tensor in this cell as treated in formulae (8.19), (8.20) does not introduce virtual

unknowns at the right of the right boundary. Hence this part does not require a special
treatment.

With respect to boundary conditions of type 3 and type 4 the standard procedure may be

"right" boundary

(.
-

M | -

L L1 0
-2

"lower" boundary

Figure 8.12: "normal” half-cell at the intersection of ”lower” and right boundary.
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followed, provided virtual velocities are eliminated in the usual way. This is the case both for
the tangential cells and the normal half cells.

8.6.2 3D

In the 3D-case we have to consider two kinds of corners, edges and vertices.

Edges We restrict ourselves to the case of boundary conditions at the edge left under
(€2 =0 and & = 0) in the computational domain. There are 42 = 16 possible combinations
44+2-1

5 ) = 10 are really different, see

to prescribe the boundary conditions, but only (
Table 8.1.

boundary condition type
combination | left boundary | bottom boundary

(=0 (& =0)
(1) 1 1
(i) 1 2
(iif) 1 3
(iv) 1 4
(v) 2 2
(vi) 2 3
(vii) 2 4
(viii) 3 3
(ix) 3 4
(x) 4 4

Table 8.1: Combinations of the boundary conditions for the edge left under (£ = 0 and
& =0)
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Combination (i)
Since the normal velocities are given at the boundaries we have only to consider the "tangen-
tial” U'-cell, see Figure 8.13.

Ieftbou2r1dary
k=3 P& gopa =0) 1
/
k=2 oo O Cd 0O
/
T/ ] ]
k=1 [
La u u
/]
k=0 cCc_2 o) CJ W CJ1 0O C
/]
_ /] [ [ bottom boundary
k=-1 .
L VAN VAV ey4En Ve 3
(plane Eglobal =0)
k=-2 L S U S A
ul i
=3 R
j=-3 j=-2 j=-1 j=0 j=1 j=2 =3
! ul point
] u?

point at a half cell distance from the cross-section

D u3 point at a half cell distance from the cross-section

Figure 8.13: Cross-section over the ”tangential” cell near the edge left under.

The virtual velocities are eliminated in the usual way ! one exception that is for V(

1
0,-2,-2)"
This virtual quantity can be extrapolated in the following way:

1 _ 1 1 1 1
‘/(07_27_2) - 4‘/(07_17_1) - 2‘/(07_170) - 2‘7(0707_1) + ‘/(07070) (866)
1
V(?yjy_z) = 2\/(?7j7_1) — V(?yjyo) for a=1,2 and j# -2
Vizaw = 2Vi_iw —Vior for a=1,3 and k# -2
V(%,—s,o) = 2V(2:',—1,0) - V(%,l,o)
V(?,o,—s) = 2‘/(:3,0,—1) - V(?,O,l) .
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or

-‘/-(})7_27_2) = 2‘/(%)7_17_1) o ‘/(%)7070) ' (867)
Both equations have the same order of accuracy.

Combination (ii)
Here we have to consider the ”tangential” cell and the "normal” half-cell at the bottom

boundary, see Figures 8.13 and 8.14.

Ief;_ boundary
(&global = 0)
/]
/]
T/ [ [
2 I
Lia LT, LI,
1.2 oy 5}-6;1:}—5—[3 q Oy
- bottom boundary
k:o : : /.',o'I»' m (E3 :0)
L., 778 7 /U777 Sgloba
o I .
2 B B B
L Bl L Bl L Bl
-3 2 1 j=o0 1 2 3

O ut point at a half cell distance from the cross-section

1 u? point

D us point
Figure 8.14: Cross-section over a "normal” U3 half-cell.

”Tangential” U-cell.

The approach is here al most the same as the one prescribed in paragraph 8.2.2. Although
there are more virtual unknowns they can be eliminated in the usual way. The ‘/(%),—2,—2)
velocity forms an exception in this case. We can only use equation (8.67) for the elimination

of V(%) —2,-2) since V! is not prescribed at the bottom boundary.

"Normal” U? half-cell.

Only the velocities marked an a in Figure 8.14 appear in the discretization, since ¢3!, 632 and
033 respectively U, U? and U? are given at the bottom boundary respectively left bound-
ary. The approach is almost identical to the one given in paragraph 8.2.2, only the terms
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%%Vlﬂﬂko,—l,o) and %|(0,07_1) are treated in a different way. The first term is completely
known since V2 and V3 are prescribed at the left boundary. So this term can be transported
to the right-hand side.

The derivative 2~ (00,1) = %(U(lo2 1)~ U(l 9 1)) introduced by the stress tensor can be

computed using tie standard elimination rules so:

out 1
0—£2|(0’0’1) = §(U(10,2,1) - (QU(IO,—1,1) - U(10,0,1)) (8-68)

where .
1 _ 1 1
Uo,ig) = 501, T Uig) - (8.69)

Combination (iii)

The U', U? and 033 are given at the bottom boundary and U', U? and U? at the left boundary,
so it is necessary to consider besides the ”"tangential” cell the "normal” U?® half-cell.

The ”tangential” cell can be treated in almost the same way as the ”"tangential” cell in

combination (i), see also paragraph 8.2.2.
The discretization for the ”"normal” U3 half-cell is almost given in paragraph 8.2.2. But

now there are more virtual unknowns and some of them: V(B —2,-1)) V(% —3,-1) and V(% —2,-2)
can not be eliminated in the usual way. The virtual unknowns V(%) —2,-1) and V(o —3,-1) and
V(% —2,-2) (see Figure 8.14) can be eliminated by using one of the following equations:
.‘/&7_27_1) = 4‘/&7_170) - 2.‘/&7070) - 2‘/&7_171) + ‘/(17071) (870)
fori=—-1orl,
‘/(%7_37_1) = 4‘/(%7_170) o 2-‘/(%7170) o 2‘/(%7_171) + ‘/(%7171) ’ (871)
and

Combination (iv)

Here we have only to consider the "tangential” cell, since the "normal” velocities are given (U*
at the left boundary and U? at the bottom boundary). For the treatment of the ”tangential”

cell, we refer to paragraph 8.4.2. All virtual unknowns (see Figure 8.13) exept of ‘/(%J,—Z,—Z)

are eliminated in the usual way. For V(%) _g,—) We can use formula (8.67).
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Combination (v)
The stresses %!, 022 and 0?3 are prescribed at the left boundary and ¢3!, 032 and ¢33 at the

botom boundary. So we have to consider two "normal’ half-cells and the "tangential” U'-cell.
See paragraph 8.2.2, for the treatment of the ”tangential” U' cell (Figure 8.15) and the
"normal” half-cells (Figure 8.14). However, in this case there are some differences:

Firstly, there are more virtual unknowns, but they caus no extra problems, since they can be
eliminated by using the standard rules.

Secondly, the discretization of the stress tensor ¢®? for the ”tangential” U'-cell produces a
difference. In formula (8.28) not only 0'?|( 0,1 is given, but also o]

(0,0,—1)*
Ieftbou2r1dary
(plane & =0) M
k=3 global (]
/
k=2 S Cd O CO 0O
/
_ CoA T M
k=1 [
La u u
/]
k=0 (2 ) COJ ®m C3O 0O [CJ
na /
_ /] [ [ bottom bound
k=-1 B avell nvayersll nyer ey et abad
(plane & y5ny =0)
k=-2 S T Y N S T R N
na
k=-3 | | na

j=-3 j=-2 j=-1 j=0 j=1 j=2 =3
! ul point

] u?

point at a half cell distance from the cross-section

D u3 point at a half cell distance from the cross-section
12

na  unknowns do not appear, since o and o3

(0-1,0) (00-1 aegiven

Figure 8.15: Cross-section over the "tangential” U'-cell.

8.7 Boundary conditions for the transport equation

The boundary conditions for the transport equation are much easier to implement than the
boundary conditions for the velocity components.
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In the case of Dirichlet boundary conditions it is sufficient to use linear extrapolation to
eliminate virtual scalars. So for example in Figure 8.16 we use the following formulae:

G.0=20¢ 12— .1 (8.73)

for normal boundary points and

$0,0 = %(2¢14)—'¢2p)-+ %(2¢0J,_'¢02) (8.74)

for the corner points. In the case of a Robbins boundary condition we follow Van Kan et al.

3+ + + +
2 + + + +
1+ + + +
0o+ + + +

0 1 2 3

Figure 8.16: Cells for scalar quantities and corresponding virtual points.

(1991). This means that the Robbins boundary condition
kP gng =b— o (8.75)
is substituted in the diffusive term:

/—(ka%ﬁ),ﬂdg = —/kaﬁqﬁﬁnadf
T

Q
__ / kB g dl — /(b— o@)dr (8.76)
'\l Iy

where I’y is the boundary at which the robbins boundary condition is given. The approxima-
tion of the first integral in the right-hand side of (8.76) is the same as for the inner region. The
evaluation of the last term of the right-hand side of (8.76) on, for example, the left boundary
of the domain is as follows:

/(b — 0d)dT & g Jg1 (b — 06) (8.77)
Iy
In the case of non-smooth grids, the following approximation could be better used:

Je—cadr =~ (gl + (5o (b= o0)

Ty

= \/(G%Q))2 + (‘%2))2 (b—09) (8.78)

Virtual scalars ¢ are eliminated in the usual way. Similar expressions may be found for the
three-dimensional case.
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8.8 The wall function method

It is a well-known fact that integrating of the k-¢ type models through the near-wall region and
applying the no-slip condition yields unsatisfactory results. A way to overcome this deficiency
is to introduce damping effects, resulting in a low-Reynolds-number form of these models, as
outlined in the previous section. An alternative and still widely employed approach is the use
of so-called wall functions, which model the near-wall region. Wall functions use empirical
laws to circumvent the inability of the k- model to predict a logarithmic velocity profile near
a wall. With these laws it is possible to express the mean velocity parallel to the wall and
turbulence quantities outside the viscous sublayer in terms of the distance to the wall and
wall conditions such as wall shear stress, pressure gradient and wall heat transfer. Hence, the
wall functions can be used to provide near-wall boundary conditions for the momentum and
turbulence transport equations, rather than conditions at the wall itself, so that the viscous
sublayer does not have to be resolved and the need for a very fine mesh is circumvented. This
method is proposed by Launder and Spalding [15].

The wall function method can be summarized as follows. The near-wall flow is modeled
as a steady Couette flow. Experimental and dimensional analysis shows that the wall shear
stress T, is related to the mean velocity parallel to the wall through the so-called logarithmic
law of the wall:

_ PC;I/45 ke

w=—— 8.79
ln(E-Yl-;}-) UP ( { )
where the wall-coordinate YT is given by
1/4
o YAk
Y+ = pe YVE (8.80)

7

Here, u' is the tangential velocity vector, « is the Von Kérmdan constant (=~ 0.4) and E is a
roughness parameter, approximately equal to 9.0 for a smooth wall. The subscript P refers
to the center of a cell adjacent to the wall. The location of the cell center away from the wall
must be such that Yzt > 11.3 for the wall law (8.79) to be valid. Otherwise, it is calculated
from the viscous sublayer profile:

Tw = iuf, (8.81)

b
These relations are accurate only for two-dimensional near-wall turbulent flows where local
equilibrium prevails, but we shall use them also in more general circumstances, for lack of
anything better of comparable simplicity.

The wall shear stress 7, can be employed as a boundary condition for the momentum
equations, as follows:

Tw

S™ = —|1y|, t (8.82)

B | 7wl

so that the tangential stress S™¢ is prescribed. The second condition is assumed to be

uw-n=0 (8.83)

t

The vector w' can be obtained by subtracting the normal vector u” from the velocity

vector w:
u = u—u (8.84)
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with o
u=U%y,) and u"=(u-n)n= —a™
gnn

The contravariant velocity components U% and U™ at cell centers are calculated by linear

(8.85)

interpolations using the neighbouring points. The distance of a near-wall node P from a
boundary surface can be found as the scalar product of a vector connecting a boundary point
B and P and the unit normal vector n (see Figure 8.17):

n

Figure 8.17: Calculation of normal distance Y, between node P and boundary surface.

BP-a"
VIET

The coordinates of B and P are obtained from the coordinates of cell vertices by linear
interpolations.

Y, = BP -n= (8.86)

Remark: this method for the calculation of the normal wall distance is particularly meant
for three dimensions. For the two-dimensional case, we refer to Section 7.3.3.

To ensure an accurate numerical representation of near-wall effects on the turbulent energy,
special care is needed in evaluating the source terms in wall-adjacent cells. Let us consider
the production term of the equation for turbulent energy k. Because the near-wall flow is
modeled as steady Couette flow, the dominant contribution to the production is

out

P.o=7Ty —
T By

(8.87)
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Following Launder and Spalding [15], we assume that the local value of production at wall-
adjacent cell center can be best obtained by averaging it over half of the near-wall cell:

— 1 Y ou! ul

Ty, /0 vy Y, (8.88)
assuming that 7,, is constant across the near-wall cell. The dissipation rate of k in near-wall
cells must be handled analogously. To evaluate the dissipation rate in the logarithmic layer,

we take 5/4
o k3/2
€= (8.89)

assuming local equilibrium, consistent with the use of the logarithmic law of the wall. Within
the viscous sublayer we adopt the following expression:
k2

€= pcuz (8.90)

With (8.89) and (8.90) we can compute the average of the dissipation rate over half of the
near-wall cell:

+
L L SR
£= 7/ edY = (8.91)
0 : 3/2In(BYg
2 IRy > 113

Here, we assume that the variation of turbulent energy across the near-wall cell is negligible.
The expressions (8.88) and (8.91) replace Py and e, respectively, which are source terms in
the standard form of the equation for turbulent energy (7.7). Finally, the flux of turbulent
energy through the wall is set to zero and, instead of solving the equation for ¢, the value of
¢ at the first grid point away from the wall is determined from (8.89).

An important advantage of wall functions is that they allow inclusion of empirical inform-
ation for special cases, such as wall roughness, pressure gradients and mass and heat transfer.
Here, we shall discuss wall functions applicable to a rough wall. We consider a turbulent flow
over rough surfaces. Let hy denote the average height of roughness elements. We assume
that the roughness has no influence on the flow except near the wall, i.e. hg/L < 1 where
L is the characteristic length of the flow geometry. Following Tennekes and Lumley [32], the
law of the wall for a rough wall is given by

I IR S (8.92)

[ur| Tk R

Here, T, = p|u,|u, and A is the roughness Reynolds number defined as

ht = % (8.93)

A generalized form of the wall law (8.92) can be found with the aid of a one-equation model
in which the transport equation is provided for the turbulent energy k:

ul 01/4\/E 1 Y pcl/4\/%h
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This law of the wall (8.94) is preferable because it allows non-equilibrium effects on the
turbulent energy k. If the roughness elements are submerged in the viscous sublayer then the
turbulence will not be affected by the roughness. In other words, the wall can be considered
as smooth. Thus, in the limit 2F — 0, we should have

1
f(ht) — Eln(h;‘;) +55 asht =0 (8.95)

On the other hand, Nikuradse (see [24]) found by means of experiments that when the surface
is very rough, i.e. for large values of i, the function f(h;) becomes independent of i, viz.,

f(ht) — 8.5 if At > 30 (8.96)

If the roughness elements are submerged in the buffer layer (a transition region between the
viscous sublayer and the log layer), i.e. 5 < hf < 30, then the function f depends on the
roughness Reynolds number. However, in many engineering calculations, the buffer layer is
ignored. Hence, the location of the edge of viscous sublayer and log layer is taken equal to
Y+ = 11.3, which value is obtained by simply linking the linear velocity profile in the viscous
sublayer to the logarithmic velocity profile in the log layer. Thus, for Af < 11.3, the wall
is considered to be smooth, otherwise the wall is rough. The generalized law of the wall for
rough walls then becomes:

w Y
pu! cb“f = T—ln(E,n—
K

), hi >11.3 (8.97)
hx

where E, =~ 30. From this wall law the wall shear stress can be computed, which can be used
as boundary condition for the momentum equations (see (8.82)).

The rapid variation of turbulence quantities also necessitates special measures in evaluat-
ing the production and dissipation rates of turbulent kinetic energy near the rough wall. The
average production and dissipation rates used in the near-wall cells have the following form:

ul In(E,Y/hg)

PrL =1, " v and Z = cf’/4k3/2 v (8.98)

72



9 Time-discretization

9.1 Introduction

After application of the space discretization of momentum and transport equations and the
implementation of the boundary conditions as described in Section 7, the discretized equations
in the time-domain read:

av

ME+S(V7¢D'-7¢N)+GP:F (91)
DV =0 (9.2)

de; :
M +Ti(v,¢1,--,¢N) :Si+sdc,i7 Vi € {172a"7N} (93)

dt

where V' and p denote algebraic vectors containing the velocity and pressure unknowns in
grid points, @, is the ith discrete scalar grid function and the total number of scalar unknowns
is given by N. For two-equation turbulence models in the absence of other physical effects, N
= 2. Furthermore, M is the diagonal matrix containing the value of p in the centroids on the
diagonal, D and G are the discretized divergence and gradient operators, S represents the
space discretization of the convection and viscous stress tensors and T is an operator involving
the discretization of convection and diffusion of the it? scalar. In fact this term may also be
non-linear, but in our program it is treated as if it is linear. The vector F contains the volume
forces and boundary values of the velocities and §; represents the source term with respect
to ¢;, which is generally a function of V' and ¢;, Vj € {1,..,N} and the boundary conditions.
The extra source term Sg.; result from the anti-diffusive parts as deferred corrections to the
first order upwind approximation.

The time discretization is performed with a standard technique for the solution of ordinary
differential equations. At this moment only one type of time-solver is present: the so-called
f method, i.e. a linear combination of the forward and backward Euler schemes.

9.2 The 6-method

In this section we restrict ourselves to the time discretization of the momentum equations. The
treatment of the transport equations will be done in exactly the same manner. Furthermore,
for brevity the arguments ¢, .., ¢ will be dropped from the operator S. Application of the
6-method to (9.1), (9.2) gives

Vn-l—'l _ Vn
M— aS(V™h + (1-6)S(V"™) +6Gp"t! + (1 - 6)Gp™
= GF" L (1-6)F" (9.4)
pv™tt = 0 (9.5)

where 6 lies between zero and unity, n denotes the preceding time level, n + 1 the new time
level and At is the time step. For # = 0 and § = 1 we obtain the first order explicit and
implicit Euler schemes, respectively, and for § = % we have the second order Crank-Nicolson
scheme. The #-method is unconditionally stable for 0.5 < § < 1. In the range 0 < 0 < 0.5 a
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time-step restriction is necessary. At this moment 6 < 0.5 has not been tested, except § = 0.

To solve (9.4), (9.5) it is necessary to linearize the term S(V"™*!). In ISNaS, the convective
terms are linearized by a Newton linearization as given in formula (4.7). Coefficients that
depend on the solution, like for example the viscosity, are evaluated at the preceding time-
level.

Practical implementation:
Instead of solving (9.4), (9.5) immediately, we introduce an intermediate level n + 6 by:

Vvitl = vt L (1- V"
Pt = op" 4+ (1-0)p" (9.6)
Ft9 — gF"tl L (1-6)F"

If we assume that S(V) is linearized, i.e. can be written as S(V"*!) ~ A(V")+ B(V™")V "+
then (9.4) reduces to:

n+l _ n
MV \ 4

7 + B(VV™ 4 (1-6)B(V")V" +6Gp"t + (1 - 6)Gp"

+ A(V")=0F"' 4 (1-0)F" (9.7)

Substitution of (9.6) into (9.7) and (9.5) gives

Vn-|-9 —_yn
M=o+ BV V™ 4 Gp™ = PO - A(V?) (9.8)
DVt =0 (9.9)
From (9.6) it then follows that:
1
vt g(V”” - (1-6)V") (9.10)
1
prtt = S - (1-0)p")

Once the momentum equations have been solved for t"*1, each of the transport equations
for ¢, is solved for one time step. Exactly the same methodology as described above is
employed. Quantities already computed, like the velocity are substituted in these equations,
thus improving the stability. However, it should be noted that the source term Sg.; contains
deferred corrections which are evaluated explicitly, so that no contribution to coefficients of
the system to be solved for the new time level is involved.

9.3 The solution algorithm

The spatial and temporal discretizations yield a set of coupled algebraic equations for the
velocity, pressure and scalar quantities. One should have some idea about how this coupled
set of equations is going to be solved. The choice affects the coupling of the various unknowns.
Basically, the velocity and pressure fields are coupled through the continuity equation. For tur-
bulent flows, the momentum equations are coupled to turbulence transport equations through
the eddy-viscosity. Also a strong coupling exists between the turbulence equations.
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In principle, there are two approaches for the solution of the coupled set of discretized
equations. The first one is to solve all equations simultaneously at each grid point. By
contrast, an uncoupled solution technique proceeds sequentially through the equations by
treating the other variables as known until the converged solution of the coupled set of equa-
tions is obtained. The coupled solution method requires a very large computer memory, but
may have better rate of convergence and numerical stability than the uncoupled one. Nev-
ertheless, solving all equations simultaneously may be so complicated that coupled solution
procedures are difficult to use. It may then be preferable to employ uncoupled methods or a
blended form of both strategies.

Here, the following overall solution algorithm will be used. For each time step, the process
start by guessing the variables V*, p and ¢;, Vi € {1, .., N}, either initially or from the previous
time level. Note that the guessed velocity must satisfy the incompressibility constraint. Then
the continuity equation and the coupled momentum equations are solved using the non-
updated eddy-viscosity, if applicable. To ensure a divergence-free velocity field the pressure
correction scheme as will be outlined in Section 10 is used. Note that the linear momentum
and pressure correction equations are solved sequentially. Because of the nonlinearities this
loop (V* — p) may be repeated until a converged nonlinear result is obtained, but one Newton
iteration in each time step is sufficient. Finally, the transport equations and then turbulence
equations are solved in a decoupled way using the updated mean flow quantities and non-
updated eddy-viscosity, if applicable. The transport equations are solved in the sequence
given by their index number, whereas the equation for ¢ or w is solved after k. It may be
necessary to repeat this loop (k — ¢ or w) in each time step until convergence is reached. In
addition, the outer loop (V* — p — ¢1 — .. = ¢n — k — ¢ or w), which contains three
inner loops (V* — p), (¢1 = .. = ¢n) and (k — € or w) coupled via turbulent viscosity,
may be repeated until all variables at time level n 4+ 1 converge. However, at this moment
one inner and one outer iteration cycle per time step suffice.
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10 Pressure correction

10.1 Introduction

An essential difficulty in the solution of the coupled momentum equations and continuity
equation (9.1), (9.2) or its (time discretized form (for example (9.8), (9.9), is the absence of
the pressure in the continuity equation. If we consider the system of equations as one large
system of linear equations to be solved, this means that in the part corresponding to the
continuity equations we have zeros at the main diagonal. Formally equations (9.8), (9.9) may
be written as:

Vn-l—ﬂ ]

pn+6

= l Fi“"a ] , (10.1)

where F;"’H is only non-zero if non-zero Dirichlet boundary conditions for the velocity are

S G
D 0

prescribed.

The solution of systems of equations of the form (10.1) is in general more difficult for a linear
solver than the solution of equations arising from the discretization of standard convection-
diffusion equations. There are several ways to solve this problem. One of the possible ways is
to perturb the continuity equation. This leads to methods like the penalty method or Uzawa
iterations. An alternative way to solve the problem is formed by projection methods. In these
methods first the pressure at the new level is estimated, for example by the old pressure, and
then the momentum equations are solved yielding an intermediate velocity field. By projecting
this velocity onto the space of divergence-free vector fields a new velocity and pressure may
be computed. An important representant of this class is the so-called pressure-correction
method, which will be treated in 10.2.

10.2 The pressure-correction method

The pressure-correction method as implemented in the ISNaS incompressible code is the one
described in Van Kan et al. (1991). Starting point is the #-method formulated by (9.4), (9.5)
or the variant (9.8), (9.9).

Following Van Kan et al. (1991) we define an intermediate velocity V* by:

V* _ VTL
M= ——+ B(V")V"+Gp" = FrH0_A(vm) (10.2)

V™ must be such that the boundary conditions at t = t” + At are satisfied. In the case of
prescribed normal velocities this means that the corresponding rows in the matrix G contain
7€r0s.

Subtraction of (10.2) from (9.8) gives

n+6 _ *
uY =V

_ n+f . n

where the term B(V")(V"t? — V*) has been neglected.
Application of (9.9) to (10.3) gives

DV* = AtDM~'G(p" " — p") , (10.4)
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n+60

which is a Laplacian-type equation for the pressure correction. Once p has been computed

v"t0 follows from (10.3):
Vi — v AtM TG (p" Y — pn) (10.5)

Remark: the matrix DM ~'G is in general non-symmetrical.
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11 The linear solver

11.1 Introduction

The discretization of the incompressible Navier-Stokes equations in general curvilinear co-
ordinates is described in the foregoing sections. The space discretization consists of a finite
volume technique on a structured grid. The motivation for these choices is that we want to
solve large two and three dimensional problems. In these problems it is important to obtain
fast iterative methods to solve the discretized equations. This is easier using a finite volume
technique instead of a finite element technique. Finally the structured grid enables us to
develop a good implementation of the methods on vector computers.

The linear systems to be solved are [38, 39]:

the momentum equations

LMn-I-lun-I-l — fn+1 n+1 — n+1

the pressure equation
PApn-l-l — gn-l-l , Apn-l-l — pn-l-l _ pn ,

and eventually one or more transport equations:

transport equations

n+1 n+l1 n+1
& G = i,

n+1 n+1 _ n+1
Cy cr = d;" .

Suppose n; is the number of grid points in the x;-direction, where we take ng = 1 for a 2-
dimensional problem. The pressure and transport matrices have ny - ny - n3 rows and columns.
The dimension of the momentum matrix is 2-nq -ny in 2-dimensional problems and 3-nq-ny-ng
in 3-dimensional problems.

For the structure of the matrices in 2-dimensions we refer to Vuik (1992) and Vuik (1993). In
the 3-dimensional case the nonzero structure is symmetric for all matrices. In 3 dimensions
the structure of the pressure equation is given in Figure 11.1.

Note that the nonzero structure is symmetric. The momentum matrix can be partitioned in
the following form:

My Myy, Mz uy f1
My May Mg () = f2
Mz, Mszy, M3 U3 f3

The structure of M;;, ¢+ = 1,2, 3 is the same as for the pressure equations. The off-diagonal
blocks contain 16 non zero diagonals. The non zero structure of the momentum matrix is non
symmetric. To illustrate this we give M5 and My in Figures 11.2 and 11.3 and note the non
zero structure of Mys is not equal to the non zero structure of LM271.

In the following table we summarize the number of non zero elements in some matrices.
In three dimensions the momentum matrix is much larger than the pressure matrix. The
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2D 3D
pressure matrix 9.n1-n9 19 ny - ng - ng
momentum matrix | 13-2-ny -ng | 51-3 - nq - ng - n3

Figure 11.1: The pressure matrix P

513 __

ratio in 2D is equal to 22 = 3 whereas the ration in 3D is equal to 25 =8.

9

So in 3D a momentum matrix times vector is 8 times as expensive as a pressure matrix times
vector.

The momentum matrix and the transport matrix depend on the time ¢. In many problems
the pressure matrix is independent of the time. However, this property of the pressure matrix
is not used in the current implementation.
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Figure 11.3: The momentum-matrix My,

11.2 Survey of iterative methods

The systems given in Section 11.1 are solved with iterative methods of CG-type. All the
methods used in ISNaS can be applied to unsymmetric matrices. The methods used in ISNaS
are:

LSQR
This is a stable implementation of CG applied to the normal equations [20].

CGS
CGS is an iterative method based on the Bi-Lanczos algorithm [28].

GMRES

An iterative method, which computes an approximation with a minimal residual [23].

GMRESR
A method based on GMRES, but in general cheaper with respect to work and memory [35].
In Table 11.2 we summarize the properties of the iterative methods. This table only gives

properties bad good

— —
memory GMRES | GMRESR | CGS LSQR
robustness | CGS GMRES GMRESR | LSQR
CPU-time | LSQR GMRES CGS GMRESR

Table 11.2: Properties of the iterative methods
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an indication of the properties. So in many experiments the results agree with Table 11.2.
However, for specific problems the results may be different.
Stopping criteria

For iterative methods it is necessary to specify a stopping criterion. In general the norm of
the residual: ||rg||o = ||b — Azg||2 is easy to obtain. So all our stopping criteria are based on
|Irk||2. For the different equations we recommend different stopping criteria. For the details
we refer to Vuik (1992), p. 8 for the momentum equations, Vuik (1992), p.13 for the pressure
equation, and Vuik (1992), p. 15 for a transport equation.

Starting vector

Finally we have to choose a starting vector for the iterative methods. Since we solve the
systems for every timestep, the solution of the foregoing timestep is in general a good starting
vector. For the details we refer to Vuik (1992), p. 6, 7 for the momentum equations, Vuik
(1992), p. 13 for the pressure equation, and Vuik (1992), p. 15 for a transport equation.

11.3 Preconditioning

In many applications, iterative methods are combined with a preconditioner [17]. It is a well
known fact that a good preconditioner is very important in order to obtain fast iterative
methods. The preconditioners used in ISNaS are based on incomplete LU decompositions.
In such a preconditioner, one constructs a lower triangular matrix L and an upper triangular
matrix U, where L and U have a prescribed nonzero pattern, and LU is a good approximation
of A. The iterative methods can be applied to

UT'L™'Az = U'L™'p, (11.1)
AUT'L™ Yy = b, (11.2)

or
L7'AU Yy =L . (11.3)

We call equation (11.1) a preconditioned system and equation (11.2) a postconditioned sys-
tem. The final equation is only used in combination with the Eisenstat implementation [5].
In general, the convergence behaviour of a Krylov type iterative method depends on the ei-
genvalue distribution of the matrix. In the three equations given above the eigenvalues of
the product-matrices are the same. So the convergence behaviour is approximately the same
when we use (11.1), (11.2), or (11.3). A small advantage of a postconditioned system is that
the norm of a residual is not influenced by the matrices L and U (compare [38], p. 12, 13).

Below we give a short description of the preconditioners used in ISNaS.

Diagonal scaling

A diagonal preconditioner is obtained by choosing L = I and U = diag (A). This is a cheap
preconditioner with respect to memory and can be used in combination with vector and par-
allel computers. For most problems the gain in the number of iterations is small.

ILUD
For this preconditioner we construct LD~'U as an approximation of A. To obtain L, D, and
U we use the following rules [34]:
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- diag (L) = diag (U) = D;
- the off-diagonal parts of L and U are equal to the corresponding parts of A;
- diag (LD™'U) = diag (A).
The third rule can be replaced by the following:
rowsum (LD™'U) = rowsum (A) for every row,

which leads to the MILU preconditioning. We always use an average of ILUD and MILUD.
This preconditioner is also cheap with respect to memory. It costs two extra vectors, one
for D and the other one for D~!. Using the Eisenstat implementation we are able to save
one matrix vector product per iteration. In the ISNaS program ILUD preconditioner means
application of the iterative method to (11.3) and not to (11.1), which is done in the other
preconditioners. Multiplication with L=! and U~! leads to recurrencies. So these parts do
not run in vector speed on a vector computer.

ILU
This preconditioner is only used for the pressure and transport equations. The matrices L
and U are constructed such that LU approximates A and satisfies the following rules:

- diag (L) = I;
- the structure of L and U is comparable to the structure of A;
- if aj; # 0 then (LU);; = aij.
Again the last rule for i = j can be repaced by
- rowsum (LU) = rowsum (A),

which leads to MILU. We always use an average of ILU and MILU. The convergence beha-
viour of an iterative method combined with MILU is in general beter than a combination
with MILUD. A disadvantage is that extra memory space is needed to store L and U. The
amount of extra memory is the same as the amount of memory to store A. Furthermore it is
impossible to save a matrix vector product per iteration (compare the Eisenstat implement-
ation). From our experiments we conclude that if the memory space is available than it is
better to use MILU.

Memory space

During the solution of the pressure or transport equation the memory space of the momentum
matrix is available. For this reason we always use the MILU preconditioner to solve the pres-
sure and transport equations, and the MILUD preconditioner for the momentum equations.

Vectorization

Due to the recurrencies, the multiplication of L=! or U~ for MILUD or MILU runs in scalar
speed on a vector computer. In the ISNaS program the loops are rewritten in such a way
that they run in vectorspeed [1]. Note that the rewritten loops use indirect adressing and are
much shorter than the original loops. On the Convex C3840 this leads to good results.
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11.4 Concluding remarks

Not all the combinations described in the foregoing sections are implemented. In the User
Manual all the implemented combinations are summarized.
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12 Post-processing

The ISNaS incompressible program computes the fluxes V¢ in the midside points of the cells
and the scalars in the centroids. For post-processing purposes these quantities are needed in
the vertices of the cells. For that reason it is necessary to interpolate (or at the boundary
extrapolate) the computed values to the vertex points. Numerical examples have shown that
a straighforward interpolation in the computational space is not accurate enough. For that
reason a weighted approach, taking into account the distances in physical space, is necessary.
In the following sections we consider the interpolation and backtransformation applied both
for scalar quantities and for the fluxes.

12.1 Interpolation of scalars in 2D

The scalar unknowns are positioned in the centroids of the cells. In order to interpolate these
values to the vertices a weighted mean value of the four surrounding cells is used. Figure 12.1
sketches a typical example. In this figure point ¢, j is the vertex in which the interpolated

12 22

_________+____

yLX

Figure 12.1: Vertex ¢, j with four surrounding cells and mapping of quadrilateral formed by
centroids on to a square.

values must be computed. This point is part of 4 cells with centroids 11, 21, 12 and 22.
In order to compute the interpolated value, the quadrilateral spanned by the 4 centroids is
mapped onto a unit square (0, 1) x (0,1) by a bilinear mapping as is usual in finite elements.

So ,

l ' ] =D Ail&Arn) l ' ] , (12.1)

Yy S y|..
i ij

with Ay () = 1- &, M(€) = ¢

The value of the scalar in (z,y) is computed by

2

Scalar (z,y) = Z Xi(&)Aj(n) scalar (25, yij) (12.2)

1,5=1

To evaluate (12.2) it is necessary to know the value of (£, ) in point (z,y). This value can be
computed from (12.1) by solving this system of non-linear equation with a Newton-Raphson
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method.
Define

Fl(gan) o 2 ' ' T R
l Fy(¢,n) ] = ;1 Xi(©)Ai(n) l y ]J l y ] (12.3)

The Newton-Raphson method can be written as:

&' =(1/2,1/2)

orjoc oFjon " [¢1™ [e1" . [m]"
[6‘%/8& aFQ/aZ] ([n] —[n] ——[FJ n=12.. (12.4)

Since Newton is a fast converging process, the maximal number of iterations is restricted to
5. At this moment the iterations is stopped if ||€"1 — €| < 0.001.

From (12.3) it follows that:

F(&n) = (1= -nzn+E&nea + (1 - nzis — 2
= @1+ (@11 + @22 — @21 — @12)En+ (221 — @11)E + (12 — @11)n — 2 (12.5)

and
OF
(9—5 = (@11 + @2 — @21 — T12)n+ 221 — @11 (12.6)
OF
3—77 = (@11 + @32 — @21 — @12) + @12 — 211 (12.7)

With respect to the boundary points it is not longer possible to use an interpolation. In that
case an extrapolation is used. Figure 12.2 shows the four points that are used to compute
the value at an under boundary.

i

Figure 12.2: Cells that are used to extrapolate the scalar value at the under boundary 1, j.

12.2 Interpolation of the velocity in 2D

The interpolation of the velocity is performed in three steps.
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In the first step the Cartesian velocity is computed in the cell centre. First the fluxes V! and
V2 are averaged according to

V(%),o) = (V(ll,o)‘}‘v(l—Lo))/Qv (12.8)
V(%),O) = (‘/(%,1)‘}“/—(%,—1))/27 (12.9)

see Figure 12.3 for the notations. Next the fluxes are transformed to Cartesian velocity

V 2
L0
vi o+ + + vi
('1!0) (0,0) (1’0)
V 2
(0!'1)

Figure 12.3: Cell with fluxes and centroid

components using;:

Ve = v\/gUoz ’
v = U%a,,
hence
u=(V'au)+Viaw)/\9g (12.10)

In the second step each of the components is interpolated to the vertices by exactly the
procedure described for scalars in 12.1.

Finally at the boundary essential boundary conditions, if present, are substituted in order to
avoid unnecessary interpolation erors.
12.3 Computation of the stream function

A special scalar that is computed, is the stream function . Since in fact ISNaS incompressible
computes the fluxes, the steam function computation is straightforward.

At present we assume ? = 0 at the vertex point (1,1). The values in the other vertices are
computed by summation:

For j :=1(1)nj do
P11 =Y+ VY

Vit1,541 1= Vijy1 + V7772j+1
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Appendices

In these appendices we prove equations (8.6), (8.7), (8.22) and (8.23).

A Proof of (8.6) and (8.7)

We have to prove (see Figure A.1):

U" = sign(a™ - n)/g" u-n

and
Ut ! , 17! .
_ ity Gtrts a1p O u-T1 | U Int,
Ut2 gt2t1 gt2t2 0421 0422 u - T2 gnt2
where
Ti Q) Gits
TiQty) Yoty
a1 =
Giity Gty
Giat1  Gioty
and
Gty T Q)
Gty Ti® a(tz)
Oy =
Gttty Gtits
Gist: Gty
First (A.1):
a() un
u-n=1u- =
la™] Vg™
SO
U'=V¢g""u-n.

This formula is true if @(® and n have the same direction else we have to use:

U =—Vg"u-n.

Formula (A.2):
The tangential vector 7;, given by the user can be decomposed in the following way:

Ti = Q1@ (1) + Q2Q (1)

see Figure A.2.

The calculation of a;;:
From Figure A.2 it is clear that

a(t1) ' ai2a(t2) = a’(t1) ' (Ti - aila’(h))
A(ty) " Q(ty)Xi1 + A1) " B(py) Qa2 = C(py) " Tii
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tangent plane
Enz constant
Figure A.1: Normal and tangential velocity components are given by the user (||n|| = ||| =
[z2]] = 1)
and
A(ty) * O1G (1) = A(py) * (Ti = QizG(ry)) (A7)
Q1) * Q1)) V1 + Q1) " Q) Vg = Q1) * T
Frome (A.6), (A.7) and Cramer’s rule we obtain.
a(tl) * T a(tl) . a(t2) a(tl) ST gt1t2
i = Qo) * Ti Q) " Qi) _ Q(ty) " Ti Yoty (A.8)
Q) " Q) Q) " A(ty) It:ty Gty
Qg,) " A1) Aey) * C(ty) Gtatr  Gtaty
and
Q) " Aty) Qty) " Ty Ity Q) " T
Qo = a/(tz) a(tl) a(tz) Ti — It a(tz) "Ti (A9)
Aty) " At)  Aty) " A(ty) ity Gtit
a(tg) * a’(tl) a’(tz) * a(tz) gt2tl gt2t2
Back to formula (A.5):
u-T; = - (epay) + apagp,)
o gptla(p) + aou - gptga(p)
= (Oéilgptl + ai2gpt2)Up7 (A.10)

S0:

w1 = (1gnt + 01206) U 4 (011966 + 0129, ) U™ +
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“mgag

Aty
12 1y
&y
Figure A.2: Decomposition of 7,.
(011gnt, + 0129nt,) U™, (A.11)
w-Ty = (o0t + @2206,6,) U™ + (@210, + Q22011 ) U™ +
(91Gnt, + @229n,) U™ . (A.12)

Formula (A.11) and (A.12) in matrix notation gives:

allgtltl + 04129t1t2 allgtztl + 04129t2t2 Utl — u - Tl - (allgntl + alZQntz)Un
Q21011 T+ 022088, O210t,8, T Q220101 Ut w- Ty — (Q21Gnt, + O220n1,) U™

or:

11 O3 gt.t;  Gits Ut _ u-T _yn 11 O Int,
g1 (9 Gtotr  Gtots Ut U Ty Qg1 23 Inty

Hence:
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-1
Uh _ | 9un Gun
Ut Giot,  Gioty

where «;; is given by (A.8) and (A.9).

-1
Q11 02
Qg1 Q9

"This formula can be modified in the following way:

Ut _ Gtaty Jtyts B B -
e —Gtaty Giity Bor Ba2

where
B = ‘
and

ﬁ12=‘

| =
3
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u-T7T _ Un gnt1
u-Ty Int,

ur

Gt1t1Gtaty — JtrtaJtaty

|

] :

Gnty
Gntq

)



B Proof of (8.22) and (8.23)

We have to prove (see Figure B.1):

n

3

‘e
O -

¢ "= congtant

tangent plane

Figure B.1: The normal and tangential stress in the physical domain at the boundary &" =

constant.
G_rm, — gnnsnn
and
-1
o . o
nty _ szgn(a(”) . ,n) . \/gwsnr 1| _ nn gut1 Gty Int;

Ont, (89} Gtot,  Giots Int,

where

T a@w) Guts

T Q) YGiots
o] =

ity Gtits
Giot1  Giots

2This formula can also be modified in the following way:

[ Z:Z: :| = ! {sign(a(n) 'Q)\/Q"_"Sm— [ Zl :| — """ [ Giata THtrts
P

Gtity " Gtata = Gtyta * Gioty —Gtot, Gtqtq

where
T-a Gtita
6 = (t1)
T (t2) Gtotq
and
B2 = Gutn I 4y
Gtaty TGy,

(B.1)

2 (B.2)

I[5:]}



It T a‘(tl)
oy = 1920 T 0) (B.4)
gty T Q)
gt Jtits
Jtstq Gty
We start with formula (3.17) from [11]:
SE":constant - 5’”(71, ' ei)ej (B5)
where % is stress tensor in the physical domain.
From S¢n—constant = S™"n + S"71 and (B.5) we get:
9 (n-e)e;=8S"n+ ST (B.6)
S0 -
(67 (n-ej)e;)) g = (S"n 4+ S""T) - a™ = 5" . al" (B.7)

It should be noticed that S™" and S™ are not tensors.

The normal vector n pointing in the outside direction of the domain is equal to: ||a e

if a(™ is pointing in the outside direction and — ||a1'“ Ha(") otherwise. Formally we can write:

; (n) .
_ sign(a™ ) ) ®9
lat]
From (B.7) and (B.8) we get:
(37 (a - e;)e;) - a™ = 57a™) . o™

79(a™)(al"); = 5™g""

7zJ 85” asn — nnsnn
dat Oxd
S0
nn — gnnsnn .
O
Formula (B.2):
The tangential vector T is just as in the previous proof equal to:
T = aa,) + 20, (B.9)
where
T Q) Gt
T Q) Giaty
o] =
Ity Gtit
Giot1  Gtots
and
gty T Q)
oty Tt Q(gy)
Oy =

Iut, Gty
Gisty  Gioty
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From (B.7), (B.8) and (B.9) it follows that:

sign(a™ . n)

—l]
(@*( [a®]|

sign(a™ -n

a™ .e;)e;) ray) = S (e, + azaq,)) aq

)5 (@M)i(aw)); = la S (arap,) - ag) + c2aq,) - ay))
Sign(a(”) 'n)a'”(a(n))igptl (a(p))j =g S" (1 gny + 22911,
)

- 0&™ OEP nr
8§m’ 8—4;3 = V98" (a1gn e + 296n)

sign(a(”) ‘n

s0:
sign(a™ - n)gp,0"™ = Vg™ (a1 g1y, + @2gir,) 4
where ¢®? is the stress tensor in the computational domain. For [ = 1,2 we get:

sign(@™ - n){gi1, 0™ + Giyt, "2 + Gt 0"} = VISV (@1 Ga4, + 220101,
and
sign(@™ - ) {gi 1, 0™ + Giy1,0™2 + grr, 0™} = VIS (e gty 1, + agtaty)
or:
l It
Giyts

gtztl l U::: ] + O_nn l gnt1 ] — S'lgn(a(n) _n)\/gmsnf [ gtltl gt2t1 ] l 051
_ Giots (23]

Jiats ag Ini, Jt1t
SO: i -
onth . (n) o Gt Gtot - Gt
= s1gnla m)\/qgnn S"T — o™ 111 ot 1
[ O'ntg ] g ( ) g [8) gtltz gt2t2 | gntz
hence:

g Gioty

—-1r
Gtits Inty ]
gtg t2 L gnt2

nt1
[ O'nt2 ‘| — gign(a(n) n) /gnnsnf [ Zi ] —ghn [ gt

By using Cramers rule in formula (B.11) we get:

(B.10)

(B.11)

o L ) (n) [ B Giots  — Gty gnt
= sign(a‘\™ - mn)\/g"S"T — g 212 12 1
o ] Gt Gtaty = GtatxGtoty { I ( ) g L ﬂ? —Gtaty Ity Int,
(B.12)
where
T-a gt
B = (t1) 1t2 B.13
! T a(tg) gt2t2 ( )
and
— | Intn T Q) B.14
ﬂZ Gtot, T a(tz) ‘ ( )
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