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1 Introduction

In this manual we give a number of examples as illustration of how to use SEPRAN for specific
problems.

In fact the subdivision of this manual is exactly the same as in the Standard Problems except
for the first two chapters. So examples in for example Chapter 7 refer to elements introduced
in the Standard Problems Manual Chapter 7. These examples must be seen as a supplement to
the examples treated in the manual Standard Problems. In the rest of Chapter 1 we give some
examples showing some specific items treated in the Users Manual and in Chapter 2 the same for
items treated in the Programmers Guide.
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2 Typical examples showing the use of the Programmers Guide

This chapter is under preparation.
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3 Second order elliptic and parabolic equations

In this chapter we consider several types of elliptic and parabolic equations of second order.
The following Sections are available:

3.1

3.2

3.6

Second order real elliptic and parabolic equations with one-degree of freedom.

In this section the general second order quasi linear elliptic equation is treated. Due to the
presence of a time derivative the corresponding parabolic equation is treated as well.

The number of unknowns per point is 1.

Second order complex elliptic and parabolic equations with one degree of freedom.
This section has the same purpose as Section 3.1, however, in this case complex unknowns
are considered.

Non-linear equations.
This section is devoted to some special non-linear differential equations.

d-type source terms.
This section treats a very special type of source term. It has no general character.

Second order real elliptic and parabolic equations with two degrees of freedom.
This section has the same purpose as Section 3.1, however, in this case the number of unknowns
is equal to two per point.

Extended second order real linear elliptic and parabolic equations with two degrees of freedom
This section has the same purpose as Section 3.5, however extra terms defining the coupling
between the equations are present.
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3.1 Second order real linear elliptic and parabolic equations with one
degree of freedom

In this section we treat the following examples of real elliptic and parabolic equations with one
degree of freedom.

3.1.1 An artificial mathematical example, just to show how to solve an elliptic equation.

3.1.2 Propagation of concentration in a flow in a curved channel. This examples shows how to solve
the convection-diffusion equation.

3.1.3 An example of a simple heat equation.
3.1.4 An artificial example of the use of the membrane boundary condition.
3.1.5 Cooling with convective heat-transfer at the boundaries.

3.1.6 Tterative solution of layered problems. This example shows how to deal with large contrasts
in coeflicients in combination with an iterative linear solver.

3.1.7 Stability of a salt layer formed by salty ground-water upflow.
3.1.8 A comparison of some upwind schemes.
3.1.9 Some examples of the use of periodical boundary conditions.
3.1.10 Some examples of the use of periodical boundary conditions to connect two regions

3.1.11 Experiments with the shifted Laplace operator to solve the real Helmholtz equation.
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3.1.1 An artificial mathematical example

In this section we consider an artificial example of the solution of a Laplace equation with Neumann
type boundary conditions. The purpose of this example is to show how the elements of this chapter
may be used and how coefficients must be filled.

To get this example into your local directory use:

sepgetex exam3-1-1
and to run it use:

sepmesh exam3-1-1.msh
sepcomp exam3-1-1.prb

Consider the square Q: (0,1) x (0,1) drawn in Figure 3.1.1.1.

C3

C1

Figure 3.1.1.1: Definition of region for artificial mathematical example

We assume that we have to solve the Laplace equation:
—Ap=0

In order to solve this equation it is necessary to impose boundary conditions at each side. In our
example we define the following boundary conditions:

Cl: =0
CQ:%:
C3: qﬁ—i—g—i’:Qx
C4: =0

One easily verifies that the exact solution of this equation is given by ¢ = zy

The region is subdivided into triangles by the submesh generator ’7RECTANGLE”. As an example
linear triangles have been used.

SEPMESH needs an input file.

This input file is standard and will not be repeated.

The input file for sepcomp uses laplace as type of equation. At the curves C2 and C3 we need
boundary elements, since we are dealing with non-homogeneous natural boundary elements.

The potential at curves C1 and C4 is prescribed, hence we need essential boundary conditions at
those curves.

Since we have different values for the natural boundary conditions at the curves C2 and C3 it is
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necessary to use a coefficients block.

The values of the right-hand side functions for these boundary conditions are stored in the vectors
h1 and h2 respectively.

The following input file may be used to solve the problem:

sk sk sk ok o ok sk ok o ok sk sk ok o sk sk ok o sk sk ok sk o sk sk ok sk e ok sk sk sk o sk sk o sk o ok sk sk sk o ok sk sk ok o ok sk ok ok o sk sk sk ok e sk sk ok o ke ksk ok sk ok ok ok
File: exam3-1-1.prb
Contents: Input for program sepcomp described in Section 3.1.1 in

the manual examples
Artificial analytical example

* X X X X X *

3k 5k 3k 5k >k 5k >k Sk >k k 5k >k 5k >k 5k >k 5k 5k >k 3k >k 5k >k 5k 5k k 5k k 5k >k Sk >k >k 5k k 5k >k 5k >k 5k >k >k 5k >k 5k %k 5k >k 5k >k 5k 5k >k 5k >k 5k >k 5k 5k k 5k >k 5k >k 5k >k 5k >k >k 5k %k >k k sk >k k >k k
*

* Problem definition

problem
laplace # standard laplace problem
boundary_elements
belml=curves(c2) # natural boundary group 1 refers to c2
belm2=curves(c3) # natural boundary group 2 refers to c3

essential_boundary_conditions
curves (cl)
curves (c4)
end
structure
# Define the structure of the matrix
matrix_structure: symmetric # the matrix is symmetrical
# Fill essential boundary conditions
prescribe_boundary_conditions potential = 0O
# Build matrix and right-hand side and solve system of equations
# We need vectors along c2 and c3 to define the functions
# Since the boundary elements require different input at different

# boundaries, we need to use the input block coefficients

hl = y_coor, curves (c2)
h2 = 2*x_coor, curves (c3)

solve_linear_system potential, seq_coef =1
print potential

plot_contour potential

plot_colored_levels potential

end

* Definition of coefficients
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coefficients
bngrp 1 # First boundary group (curve 2)
diff_flux = hi #h=y
bngrp 2 # Second boundary group (curve 3)
diff_sigma =1 # sigma = 1
diff_flux = h2 # h = 2x
end

end_of_sepran_input

Figure 3.1.1.2 shows the contour plot. This plot may be visualized by the program sepdisplay.

andlytica test example

CeNons®N

=)

Contour levelsof POTENTIAL

Figure 3.1.1.2: Contour plot
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3.1.2 Propagation of concentration in a flow in a curved channel

In this section we consider the propagation of concentration in a flow in a curved channel.
To get this example into your local directory use:

sepgetex exam3-1-2a
and to run it use:

sepmesh exam3-1-2a.msh
sepcomp exam3-1-2a.prb

The region of definition is given in Figure 3.1.2.1. The cross-section in the x-y plane contains two

Figure 3.1.2.1: Curved channel. a) definition of region b) definition of curves

concentric arcs closed by straight lines. Through the channel we have a flow parallel to the arcs.
The flow in radial direction is quadratic with maximum velocity one and zero at the circular walls.
So the velocity can be described by the following formulae:

_ (r=R+b)(r—R)

Y “¢y4

ul__T
UpT

Uy = [}

r

R denotes the radius of the inner circle, b denotes the width of the channel and r the radial distance
from the origin. u4 denotes the velocity in ¢ direction.
At the inflow a concentration of some quantity c is given. c is defined as follows:

c=0for R<y<R+b/dand R+3b/4<y<R+b
c=1for R+b/4<y<R+3b/4

At the outflow boundary we assume that the concentration is constant in normal direction, which
means that we have the boundary condition:

Oc __
5. =0

We assume that the circular walls are weakly permeable with respect to the concentration. This
boundary condition may be described by

dc _
%‘FO’C—O

The concentration c satisfies the convection-diffusion equation:
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u-Ve— div(wVe) =0

In our example we suppose that R = 3 and b = 1. The definition of the various curves and user
points is given in Figure 3.1.2.1.

The region is subdivided into triangles by the submesh generator ”GENERAL”. As an example
linear triangles have been used.
An example of an input file with respect to the mesh generator SEPMESH is given below:

stk st ok ok o ok st ok s ok ok o ok sk sk ok ok ok sk o ok st ok ok s ok sk s ok st sk ok s ok sk s ok sk sk sk s ok sk sk ok st ok sk s ok sk sk ok st ok ok s ok sk sk ok sk sk sk ook sk sk ok ok ok ok ok
File: exam3-1-2a.msh

Contents: Mesh for the example 3-1-2 in the manual examples
Propagation of concentration in a flow in a curved channel
Coarseness of the grid defined by coarse
The mesh is somewhat refined in the neighborhood of the
two singular points P5 and P6

sk stk o ok sk sk o ok sk ok ok ok sk sk ok sk sk sk sk sk sk sk sk ok ok sksk sk sk ok sk sk sk ok sk sk ke ok sksk sk sk ok sk ok ok skskok o ok sk sk sk sk ok sk sk sk ok sk ok

* X X X X X X *

*
constants
reals
radius = 3
b=1
end
mesh2d
coarse(unit=.1)
points
pl = (0,0,1)
p2 = (radius,0,1)
p3 = (radius+b,0,1)
p4 = (0,radius+b,1)
p5 = (0,radius+0.75%b,.5)
p6 = (0,radius+0.25%b,.5)
p7 = (0,radius,1)
curves
cl = line ( p2,p3 )
c2 = arc ( p3,p4,pl )
c3 = line ( p4,p5 )
c4 = line ( p5,p6 )
c5 = line ( p6,p7 )
c6 = arc ( p7,p2,-pl )
surfaces
sl = general ( c1,c2,c3,c4,ch5,c6)
plot
end

Figure 3.1.2.2 shows the mesh generated by SEPMESH.
The internal elements are of type convection diffusion.

They require the parameters diffusion and velocity as input. In order to plot the velocity vectors we
have chosen to create a vector u and a vector v, each consisting of one component per point. The
velocity vector is created by velocity = (u,v) , which makes it a vector with two components
per node. The boundary conditions at curves C3 to C5 are essential boundary conditions, the
boundary conditions at curve C1 are natural boundary conditions requiring no special condition
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Figure 3.1.2.2: Plot of mesh generated by SEPMESH

and the boundary conditions at curves C2 and C6 are natural boundary conditions. For these
boundaries it is sufficient to give coefficient o) by diff_signma.

For out specific example we use the following coefficients:

v = 0.005
=0.01

following input file may be used to solve the problem:

sk sk sk ok e ok ok sk ok o ok sk sk ok ke sk sk ok o sk sk ok sk sk sk sk sk e ok sk sk sk e ok ok sk sk sk ok sk sk e ok sk sk sk s ok sk sk ke ok sksk sk e sk sk sk sk s ok sk sk sk ok sk ok
File: exam3-1-2a.prb

Contents: Input for program sepcomp described in section 3-1-2 in

the manual examples

Propagation of concentration in a flow in a curved channel
The standard sepcomp approach is used

* X X X ¥ ¥ * x

3k 5k 3k 3k 3k 5k sk Sk ok 3k sk 3k ok sk Sk sk Sk sk sk sk sk Sk sk Sk ok Sk ok sk ok sk Sk sk Sk sk sk sk sk ok sk Sk sk Sk sk sk sk sk Sk sk Sk ok sk sk sk ok sk Sk sk sk ok sk ok sk ok sk Sk ok sk ok sk sk sk ok ok kok kok >k
*

constants
reals
radius = 3
b=1
diffusion = 0.005

diff_sigma = 0.01
end
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* Problem definition

problem
convection_diffusion
boundary_elements
belml = curves ( c2 )
belm2 = curves ( c6 )
essential_boundary_conditions
curves ( c3 to c5 )
end

structure

# Fill essential boundary conditions

prescribe_boundary_conditions concentration = 1, curves(c4)

# Build matrix and right-hand side and solve system of equations

r = sqrt(x_coor~2+y_coor~2)

uphi = 0.25%(r-(Radius+b))*(r-Radius)
u = -uphi*y_coor/r

v = uphi*x_coor/r

velocity = (u,v)
plot_vector velocity

solve_linear_system concentration
print concentration

plot_contour concentration
plot_colored_levels concentration

end
end_of_sepran_input

Figure 3.1.2.3 shows the contour plot. This plot may be visualized by the program SEPDISPLAY.

If we want to compute the same problem with a very small diffusion term (v = 0.00005). The
input files in this case are called exam3-1-2b.msh and exam3-1-2b.prb. You get them in your

local directory by
sepgetex exam3-1-2b

Figure 3.1.2.4 shows the contour plot.
In order to get a slightly smoother plot upwind may be applied.

Use exam3-1-2c for this case. Figure 3.1.2.5 shows the contour plot. Due to the discontinuities of
the concentration at inflow a complete smooth contour is not possible.
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propagation of concentration; nu = 0.005

Contour levelsof CONCENTRATION

Figure 3.1.2.3: Contour plot
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propagation of concentration; nu = 0.00005
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Contour levelsof concentration

Figure 3.1.2.4: Contour plot with small value of v
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propagation of concentration; nu = 0.00005, upwind
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Contour levelsof concentration

Figure 3.1.2.5: Contour plot with small value of v and upwind
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3.1.3 An example of a simple heat equation

In this section we consider exactly the same problem as in Section 6.4.1 of the Users Manual. The
only difference is that in each time step we want to compute the gradient of the temperature and
also some other special quantities (see below).

In order to get this example in your local directory use the command:

sepgetex heatequéd
You can run the example by performing the following steps:

sepmesh heatequ4.msh

view the mesh for example by: sepview sepplot.001 or sepdisplay
seplink heatequ4

heatequ4 < heatequ4.prb

seppost heatequ4.pst

view the plots for example by: sepview sepplot.001 or sepdisplay

Consider the heat equation

oT
5 ~OBAT =0 (3.1.3.1)

with A the Laplacian operator. We assume that the region at which this equation is defined is the
unit square (0,1) x (0,1).
We suppose that the initial condition is given by

T(x,0) = sin(x)sin(y)

and the boundary conditions by

T(x,t) = sin(x)sin(y)exp(—t) at all four boundaries.

It is easy to verify that the exact solution in this case is also equal to
T(x,t) = sin(x)sin(y)exp(—t)

In order to solve this problem a mesh is created by sepmesh using the submesh generator general.
An example input file for sepmesh is the file heatequ4.msh:

* file heateq4.msh
*
* mesh for the unit square (0,1) x (0,1)
mesh2d
coarse(unit=0.1)
points
p1=(0,0,1)
p2=(1,0,1)
p3=(1,1,1)
p4=(0,1,1)
curves
cl=clinel(pl,p2)
c2=clinel(p2,p3)
c3=clinel(p3,p4)
c4=clinel(p4,pl)
surfaces
sl=general3(cl,c2,c3,c4)
plot (jmark=5, numsub=1)
end
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Since the initial and boundary conditions are space and time dependent it is necessary to provide
user written function subroutines.
The main program may have the following shape (file heatequ4.f)

program heatequation_4
implicit none

call sepcom(0)

end

1 skeookook ok ok sk sk sk ook ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok k

! function func for the initial condition
! contains also the exact solution

1 skokokokokok ok ok ok ok ok ok o ok ok ok o sk ok ok ko ok ok ok o ok ok ok ok 3 ok ok ok o ok ok sk o sk ok ok sk o ok ok sk ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok

function func ( ichoice, x, y, z )
implicit none
double precision func, x, y, z
integer ichoice
double precision t, tout, tstep, tend, tO, rtimdu
integer iflag, icons, itimdu
common /ctimen/ t, tout, tstep, tend, tO, rtimdu(5), iflag,

+ icons, itimdu(8)

func = exp(-t)*sin(x)*sin(y)

end
1 sokokokokokokok ok ok sk ok ok ok sk ok kok sk ok ok sk sk ok kok sk ok ok sk sk ok sk sk ok ok sk ok ok sk sk ok ok sk ok ok sk ok ok sk sk kok ok ok

! function for essential boundary conditions

1 skofokok ko sk ok ok ok ook ok ok o ok ok ok sk sk ok ok ok 3 ok ok ok ok sk ok ok ok ok ok sk ok ok sk ok sk ok ok sk o ok ok sk o ok ok sk sk ook ok ok ok ok ok ok ok ok ok
function funcbc ( ichoice, x, y, z )
implicit none
double precision funcbc, x, y, z
integer ichoice
double precision t, tout, tstep, tend, tO, rtimdu
integer iflag, icons, itimdu
common /ctimen/ t, tout, tstep, tend, tO, rtimdu(5), iflag,
+ icons, itimdu(8)

if ( ichoice.eq.l ) then
funcbc = sin(x)*sin(y)*exp(-t)
else if ( ichoice.eq.2 ) then
funcbc = sin(x)*sin(y)*exp(-t)
else if ( ichoice.eq.3 ) then
funcbc = sin(x)*sin(y)*exp(-t)
else if ( ichoice.eq.4 ) then
funcbc = sin(x)*sin(y)*exp(-t)
end if

end

In this example we want to perform some extra actions compared to the standard solution of a
time-dependent problem. For that reason we need an input block structure in the input file. The
structure of the main program consists of the following steps:
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e Create initial solution

e Solve heat equation (time-dependent)

e Create exact solution

e Compute and print error at the last time-step (i. e. t=1)

e Compute and print the gradient of the temperature at the last time-step

e Compute and print the volume integral of the temperature at the last time-step

e Compute and print the boundary integral over curve c2 of the temperature at the last time-
step

e Write the final solution and gradient to the file sepcomp.out for postprocessing purposes.
This last step is superfluous since in each time-step the result is written.

The following input file may be used as input for heatequ4:
file: heatequ4.prb

*
*
* problem definition for time-dependent heat equation
* linear triangles type number 800

*

set warn off ! suppress warnings
constants # See Users Manual Section 1.4
vector_names
temperature

exact_temperature
temperature_grad
variables
error
temp_int
int_temp_boun
end

problem
types
elgrpl = 800 # Standard general second order parabolic equation
essbouncond
curves(cl,cd) # Temperature given at all sides
end

* Definition of matrix structure
matrix
symmetric

end

* Definition of structure of the program

structure
create_vector, temperature # start vector (t=0)
solve_time_dependent_problem
create_vector, exact_temperature # exact solution (t=1)

error = norm_dif=3,vectorl=temperature, vector2=exact_temperature
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print error, text = ’difference at time = 1’
derivatives, seq_coef = 1, temperature_grad # grad(T) (t=1)
print temperature_grad
* Integral of the temperature over the whole region
temp_int = integral( seq_coef = 2, seq_integral = 1, temperature )
* Integral of the temperature over curve c2
boundary_integral, temperature, int_temp_boun
print temp_int, text = ’Volume integral of the temperature’
print int_temp_boun, text = ’Integral of the temperature over curve c2’
output
end
*
* Define initial conditions
*
create vector
func =1 # The initial condition is given in FUNCCF
end
*
* Essential boundary conditions
*
essential boundary conditions
curves(cl,c4d), (func=1) # The boundary conditions are given in FUNCBC
end
*

* Definition of coefficients for the heat equation (t=0 only)
*
coefficients, sequence_number = 1

elgrpl(nparm=20)

coef6 = 0.5 # all = 0.5
coef9 = coef 6 # a22 = 0.5
coefl7 =1 # rho = 1
end
*

* Definition of the coefficient for the volume integration
*
coefficients, sequence_number = 2

elgrpl (nparm=10)

coef4 =1 #f=1

end
*
derivatives

icheld = 6 # a * grad T = heat-flux
end
# Definition of integral to be computed
integrals

icheli = 2 # / fT d omega

end
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# Definition of boundary integral to be computed

boundary_integral

ichint = 1 # / fT d gamma
ichfun = 0 #f=1
curves(c2) # integration over C2
end
output
vl = icheld=6, seq_coefficients=1 # a * grad T = heat-flux
# It is necessary to give the coefficient
# sequence number, since output at t=0
# is produced before the system of
# equations is build.
end
# Definition of time integration
time_integration, sequence_number = 1
method = crank_nicolson # Second order accurate in time
tinit = 0
tend =1
tstep = 0.1
toutinit = 0
toutend =1
toutstep = 0.1 # In each time step the result is written

seq_boundary_conditions = 1
seq_coefficients = 1
diagonal_mass_matrix
stiffness_matrix = constant
mass_matrix = constant
right_hand_side = zero # There is no right-hand side contribution
# of source terms and natural bc’s
end

Mark that in the input block for the time integration we use the fact that the coefficients of both

matrices do not depend on time. Hence both matrices remain constant.

Since there is no source term, and there are no natural boundary conditions with non-zero right-

hand side, we may use the option right_hand_side = zero. The only reason that we have a

non-zero right-hand side in the system of equations to be solved in the time integration is due to

the previous time step and also to the essential boundary conditions.

For linear triangles a lumped mass matrix is accurate enough and for that reason we use diagonal _mass_matrix.
In each time step the results are written for postprocessing.

In the input block output we also compute the gradient of the temperature multiplied by the co-
efficient of the second order term. This requires the same coefficients as for the building of the
stiffness matrix. Since we want to produce output even at t = 0, it is necessary to give explicitly
the sequence number of the input block coefficients for the derivatives. First the derivatives are
computed and written to the file, and then the stiffness matrix is built.

The solution may be visualized by seppost using the file heatequd.pst as input file:

* file: heatequ4.pst
*

* input for seppost
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*
set warn off | suppress warnings

postprocessing
time = (0,1)
plot contour temperature, minlevel = 0, maxlevel = 1
plot vector temperature_grad, factor = 0.5
time history plot point(.5,.5) temperature, scales(0,1,0,0.25)//
number format = (1,1,1,3)
end
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3.1.4 An artificial example of the use of the membrane boundary con-
dition
In this section we consider an artificial example of the use of boundary conditions of type 6. This

boundary condition allows for a jump in the solution and is used to simulate a membrane. To get
this example in your local directory use the command:

sepgetex interf
To run the example use the commands:

sepmesh interf.msh
view the plots
seplink interf
interf < interf.prb
seppost interf.pst
view the plots

Consider the region drawn in Figure 3.1.4.1.

Cs

Cy

G

Figure 3.1.4.1: Definition of region for membrane boundary condition
This region consists of the squares (0,1) x (0,1) and (0,1) x (0,-1) separated by a membrane at
y = 0. We assume that in both squares we have to solve the Laplace equation:

—Ap=0
The following boundary conditions will be used:

C2,C3,C4: p=1—y
C6,C7.C8: p=2+y

At the membrane we impose the ”jump” condition:

op
v — —=h 3.1.4.1
oo 1) + o (3.1.4.1)
If we set: 0 = —1 and h = 2 then one easily verifies that the exact solution of this equation is given

byp=1—yfory>0and p=2+y for y <O0.
At y = 0 p has the value 1 for the upper region and 2 for the lower region, which implies that p is
discontinuous.
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In order to impose the membrane boundary condition it is necessary that the curves C1 and C5
are strictly disjoint. In this way we get two sets of disjoint points each of which representing a
different value for p. The coordinates of the curves C1 and C5, however, are identical. In order
to connect the curves C1 and C5 connection elements are used. These elements consist of a linear
element at C1 connected to the corresponding linear element at C5 and hence may be considered
as quadrilateral elements with thickness zero.

In our example we use linear triangles in each rectangle and linear connection elements at the
membrane.

An example of an input file for SEPMESH is given below:
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# interf.msh
#
# mesh file for 2d membrane example
# See Manual Standard Elements Section 3.1.4
#
# To run this file use:
# sepmesh interf.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
x_left =0 # x-coordinate of left-hand side
x_right =1 # x-coordinate of right-hand side
y_bottom = -1 # y—-coordinate of bottom
y_middle = 0 # y-coordinate of membrane
y_top =1 # y-coordinate of top
integers
n_horizontal = 5 # number of elements in horizontal direction
n_vertical =5 # number of elements in vertical direction per surface
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#

# user poi
#
points

#
# curves
#

curves

cl =
c2 =
c3 =
cd =
chb =
c6 =
c7 =
c8 =

#

# surfaces

nts

# See Users Manual Section 2.2

x_left, y_middle)
x_right, y_middle)

x_right, y_top
x_left, y_top

x_left, y_middle)
x_right, y_middle)
x_right, y_bottom)
x_left, y_bottom)

)
)

H OH H HHHHH

left-hand point of membrane in upper surface
right-hand point of membrane in upper surface
right-hand point on top boundary

left-hand point on top boundary

left-hand point of membrane in lower surface
right-hand point of membrane in lower surface
right-hand point on bottom boundary
left-hand point on bottom boundary

# See Users Manual Section 2.3

line(pl,p2,nelm=
line(p2,p3,nelm=
line(p3,p4,nelm=
line(p4,pl,nelm=
line(p5,p6,nelm=
line(p6,p7,nelm=
line(p7,p8,nelm=
line(p8,p5,nelm=

n_horizontal)
n_vertical)
n_horizontal)
n_vertical)
n_horizontal)
n_vertical)
n_horizontal)
n_vertical)

membrane curve in upper surface
right-hand curve in upper surface
top curve in upper surface
left-hand curve in upper surface
membrane curve in lower surface
right-hand curve in lower surface
bottom curve in lower surface

H OH H H HH HH

left-hand curve in lower surface
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#
surfaces # See Users Manual Section 2.4
sl = rectangle3 (cl,c2,c3,c4) # upper surface
s2 = rectangle3 (c5,c6,c7,c8) # lower surface
#
# Connect surfaces to element groups
#
meshsurf
selml = si # element group 1: upper surface
selm2 = s2 # element group 2: lower surface
#
# Define connection elements
#
meshconnect
celm3 = curvesl(cl,cb) # element group 3: connection elements
# from cl to cb
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

The internal elements are defined by type number 800. Only the coefficients 6 and 9 have to be
defined; they get the value 1.

The boundary conditions at sides C2 to C4 and C6 to C8 are essential boundary conditions, the
boundary conditions at sides C1 and C5 are the special membrane boundary conditions given by
type number 804. Both ¢ and h must be defined for these elements.

Since in this case it is necessary to define a function subroutine for the essential boundary condi-
tions, it is not possible to use the standard program SEPCOMP. Therefore we give the program
interf based upon sepcomp and extended with the function subroutine FUNCBC.

ok sk ok ok o ok sk ok ok s ok ok o ok sk sk ok s ok ok ok sk ok ok s ok ok ok sk 3k ok s ok ok ok sk sk ok s ok ok s ok sk ok ok ok ok s ok sk ok ok ok sk o ok sk ok ok ok ok ok ok ok ok
File: interf.f

Contents: Program for the test example
in the SEPRAN manual Standard Problems Section 3.1.4

Usage: Compile and link this program with the SEPRAN libraries
seplink interf
Run this program with input interf.prb
interf < interf.prb

* K X X X X X X X X *

stk s ok sk o ok sk sk ok sk s sk sk sk sk e ok sk sk ok sk sk sk sk sk sk sk sk e ok sk s ok sk sk ok sk sk sk sk sk sk sk sk e sk sk sk ok sk sk sk sk sk sk sk sk sk sk e ok sk sk ok ok
*

program interf
! --- example program for the interface boundary condition

call sepcom ( 0 )

end
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! --- Define essential boundary conditions as function of the coordinates

function funcbc ( ichoice, x, y, z )
implicit none

double precision funcbc, x, y, z
integer ichoice

if ( ichoice==1 ) then

! --— ichoice = 1, upper surface, p = 1-y
funcbc = 1-y
else
! --— ichoice = 2, lower surface, p = 2+y

funcbc = 2+y

end if
end

This program needs an input file which is the same as for SEPCOMP. The following input file may
be used to solve the problem:

# interf.prb
#
# problem file for 2d membrane example
# See Manual Standard Elements Section 3.1.4
#
# To run this file use:
# sepcomp interf.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
kappa =1 # diffusion parameter
sigma = -1 # Parameter sigma for membrane boundary condition
h =2 # Parameter h for membrane boundary condition
vector_names
pressure
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,

# See Users Manual Section 3.2.2
elgrpl = (type=800) # Type number for second order equation
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elgrp2 = (type=800)
elgrp3 = (type=804)

# Type number for second order equation
# Type number for membrane boundary condition
# See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are
#
#

given (not the value)
See Users Manual Section 3.2.2

curves(c2 to c4) # essential boundary conditions on c2 to c4
curves(c6 to c8) # essential boundary conditions on c6 to c8

end

# Define essential boundary conditions
# See Users Manual Section 3.2.5

essential boundary conditions

curves(c2 to c4), func=1 # The boundary conditions depend on y
curves(c6 to c8), func=2 # so a function is needed

end
# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients
elgrpl (nparm=20) # The coefficients are defined by 20 parameters
coef 6 = (value= kappa) # diffusion coefficient
coef 9 = coef 6 # in upper surface
elgrp2 (nparm=20)
coef 6 = (value= kappa) # diffusion coefficient
coef 9 = coef 6 # in lower surface
elgrp3 (nparm=15) # The natural boundary conditions require 2 parameters
coef 6 = (value= sigma) # sigma
coef 7 = (value= h) #h
end

end_of_sepran_input

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. The following input file prints the computed
solution, makes a standard contour plot as well as a coloured contour plot.

interf.pst
Input file for postprocessing for 2d membrane example
See Manual Standard Elements Section 3.1.4

To run this file use:
seppost interf.pst > interf.out

Reads the files meshoutput and sepcomp.out

H OH H H HHHEHHEH

postprocessing # See Users Manual Section 5.2
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# Print the pressure
# See Users Manual Section 5.3

print pressure

# Plot the pressure
# See Users Manual Section 5.4

plot contour pressure

plot coloured contour pressure
end

Figures 3.1.4.2 shows the contour plot of the pressure and Figure 3.1.4.3 the coloured contour plot.
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3.1.5 Cooling with convective heat-transfer at the boundaries

In this section we consider the problem, that a material at high temperature has to be cooled down.
We assume, that the problem is two dimensional and that the material-cross-section has the shape of
a rectangle (0.1 m x 0.05 m) with four cooled boundaries. As the cross-section is symmetrical, only
the fourth part (a rectangle of 0.05 m x 0.025 m) has to be considered with two cooled boundaries
and two boundaries with the boundary-condition ” ?TZ = 0” (symmetry-boundary-condition), which
in SEPRAN is satisfied automatically by not prescribing anything.

This example has been generated by Roman Denzin of the technical university of Darmstadt.
Consider the heat-equation:

oT
cpp— —AVIT =0 (3.1.5.1)
ot
with
¢y = heat-capacity of the material = 2000 J/(kg K),
p = density of the material = 1000 kg/m?,
cpp is coef 17 of the element of type 800.
A = heat-conductivity = 0.5 W/(m K)

coef6 respectively coef 9 of the element of type 800
The initial-condition is: T(x,y,t=0) = 200 degrees C
A common boundary condition of cooling- or heating-problems is a convective heat-transfer from
the material to a surrounding fluid, which has a constant temperature at sufficient distance to the
boundary. The specific heat-flux from the material to the fluid is given as:

q = a1y —To) (3.1.5.2)
with
a = surface-heat-transfer coefficient = 15 W(m? K),
T, = temperature at the boundary [degrees C],
Ty = temperature of the fluid at sufficient distance to the boundary = 5 degrees C.
The heat-flux from the inner of the material across the boundary is given as:
q=—A\VT, (3.1.5.3)
with
A = heat-conductivity of the material,
VT, = gradient of temperature at the boundary.
As these two heat-fluxes have to be equal, the boundary-condition is:
—AVTy, = a(Ty, — Tp), (3.1.5.4)
hence
ATy, + a Ty = oTh. (3.1.5.5)

To implement this in SEPRAN, boundary-elements of type 2 have to be used:
0
aija—z +oc=h. (3.1.5.6)

If you compare this equation with the boundary-condition above, you can see (with ¢ replaced by
T respectively Tp) that the coefficients of the boundary-elements of type 2 have to be defined as

ag = coef6 (), of the material)
follows: 411 = coef9 (A, of the material)
= coef6 (a)
h = coef7 (aTp)

(If coef 6 and coef 9 are omitted, these coefficients are taken from the input-block for the coefficients
of the heat-equation, which is correct as well.)
In order to get this example in your local directory use the command:

sepgetex heatequb
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You can run the example by performing the following steps:

sepmesh heatequb.msh

view the mesh for example by: sepview sepplot.001 or sepdisplay
sepcomp < heatequb.prb

seppost heatequb.pst

view the plots for example by: sepview sepplot.001 or sepdisplay

In order to solve this problem a mesh is created by sepmesh using the submesh generator rectangle.
An example input file for sepmesh is the following file:

* file: heatequb.msh
*
constants
integers
nelm1=20
nelm2=40
end

mesh2d
points
p1=(0 )
p2=(0.050 ,
p3=(0.050 ,
p4=(0 s
curves
cl=line2(p1l,p2,nelm= nelm?2)
c2=1ine2(p2,p3,nelm= nelml)
c3=1line2(p3,p4,nelm= nelm?)
c4=1line2(p4,pl,nelm= nelml)
surfaces
sl=rectangle4(cl,c2,c3,c4)
plot ( plotfm=10 )
end

25
25

o O O O
~ o

.0
.0

In this example we are solving a standard heat equation and we do not require any extras from
program sepcomp. For that reason it is sufficient to call program sepcomp with a standard input
file. No input block structure is necessary.

The following input file may be used as input for sepcomp:

* file: heatequb.prb
*
* problem definition for time-dependent heat equation
* linear triangles type number 800
set warn off ! suppress warnings
constants # See Users Manual Section 1.4
vector_names
temperature
end
problem

types
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nat

elgrpl = 800
bouncond
bngrpl = (type=801)
bngrp2 = (type=801)

bounelements

belml curves(c2)
belm2 = curves(c3)

end

*
*
*
mat

end
*
*
*

cre

end

* ¥ ¥ *

coe

*

end

Definition of matrix st

rix
symmetric

# Standard heat equation

# Boundary condition of type 2
# Boundary condition of type 2

# Boundary elements along curve c2
# Boundary elements along curve c3

ructure

Define initial conditions

ate vector
value = 200 #T (t=

0) = 200 degrees C

Definition of coefficients for the heat equation

and boundary conditions

fficients

Definition of coefficients for the heat equation

elgrpl (nparm=20)
coef6 = (value=0.5)
coef9 coef 6
coef17 = (value=2d6)

# Lambda_x
# Lambda_y
# cp*rho

Definition of coefficients for the boundary conditions

bngrpl (nparm=11)

icoef 1 = 2
coef 6 = (value=15)
coef 7 = (value=75)

bngrp2 (nparm=11)

icoef 1 = 2
coef 6 = (value=15)
coef 7 = (value=75)

H*

Boundary conditions of type 2 (Default)
# alpha
# alpha * t_0

# Boundary conditions of type 2 (Default)
# alpha
# alpha * t_0

time_integration, sequence_number = 1

method = euler_implicit
tinit = 0

tend 2000

tstep = 50

toutinit

0

toutend 2000
toutstep = 400
seq_boundary_conditions
seq_coefficients = 1

# time integration method

=1
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diagonal_mass_matrix

It is not zero since the natural
boundary conditions contain a
contribution for the rhs

stiffness_matrix = constant # the stiffness matrix does not depend
# on time

mass_matrix = constant # the mass matrix does not depend
# on time

right_hand_side = constant # the right-hand side does not depend
# on time
#
#
#

print_time_history = ((0,0))
end

Mark that in the input block for the time integration we use the fact that the coefficients of both
matrices do not depend on time. Hence both matrices remain constant.

Also the right-hand-side vector is constant. This vector is not zero, since the natural boundary
condition has a non-zero right-hand side aT. The solution may be visualized by seppost using the
file heatequb.pst as input file:

* file heatequb.pst
*
* input for seppost
*
set warn off ! suppress warnings
postprocessing
define plot parameters = height=0.5
plot identification, text=’Cooling with convective heat-transfer’//
origin=(3,19)
time = (0, 2000)
*  Temperature at line y=0
open plot
compute temp_intersect = intersection temperature origin=(0,0)
plot function temp_intersect, scales=(0,0.05,0,200), textx = ’x-coordinate [m]’ //
texty = ’Temperature [degree C]’, number format=(1,3,3,0)
close plot

*  Temperature-distribution

plot coloured levels temperature, nlevel=22, minlevel = 0, maxlevel = 200 //
(yfact=1,plotfm=15), plot_legenda

plot contour temperature, nlevel=21, minlevel = 0, maxlevel = 200
*  time history of temperature at (0,0)
time history plot point(0,0) temperature, scales (0, 1800, 0, 200), //
number format=(4,0,3,0), textx=’'Time [s]’, texty=’temperature [degree C]’
time history plot max temperature, scales (0, 1800, 0, 200), //

number format=(4,0,3,0), textx=’Time [s]’, texty=’temperature [degree C]’

* Time history of minimum and maximum
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time history print max temperature
time history print min temperature

end

Figure 3.1.5.1 shows the temperature at the line y = 0 for the time levels 0 to 2000 seconds with
steps of 400 seconds.
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1
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[height=Tcm] [height=7cm
Figure 3.1.4.2: Isobars (computed Figure 3.1.4.3: Coloured levels of pres-

pressure) sure
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Figure 3.1.5.1: Time history at line y =0
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Figure 3.1.5.2 shows the coloured temperature distribution at time 2000 sec.
Figure 3.1.5.3 shows the isotherms at time 2000 sec.

Figure 3.1.5.2: Temperature distribution at time 2000 seconds

Figure 3.1.5.3: Isotherms at time 2000 seconds
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3.1.6 Iterative solution of layered problems

In this section we shall focus ourselves on some aspects special for layered problems. With layered
problems we mean problems with large contrasts in the coefficients.

A typical example of such a problem is the computation of excess pressures in the underground.
Usually this concerns computations over a period of many millions of years and regions with a
surface of the size of 20 to 50 km in both directions and a depth of several kilometers. In the
underground we have layers that are relatively permeable, like sandstone layers and layers that are
nearly impermeable (like shale or rock). The quotient of the permeabilities in such layers may be
a factor of 107.

The result of such large contrasts in permeabilities is that the solution matrix becomes very ill-
conditioned. The ill-conditioning is not so bad that the matrix becomes singular, in fact a direct
solver does not have a problem solving the system of equations. However, for an iterative solver
such a bad condition may lead to very large numbers of iterations and large computation times.
Unfortunately for large three-dimensional problems direct solvers are much to slow and require too
much memory. So actually it is necessary to solve such problems iteratively.

In this section we shall show how one can solve this problem by an iterative solver without having
problems with the bad condition of the matrix. For a theoretical background the reader is referred
to Vuik et al (1998).

For the sake of demonstration we consider only academic problems, which however, contain all
difficulties present in this type of problems. First we consider a two-dimensional cross-section of
part of the underground, consisting of 7 straight layers. The top layer consists of sandstone, the
second one is shale, followed by a sandstone layer and so on. The region is sketched in Figure
3.1.6.1. In this region we solve the linearized 2D diffusion equation

eartn surtrace

sandstone

shale

sandstone

shale

sandstone

shale

sandstone

Figure 3.1.6.1: Artificial configuration with 7 straight layers

—div(cVp) =0, (3.1.6.1)

with p the excess pressure and o the permeability. At the earth’s surface the excess pressure is
prescribed.

For our model problem we assume that ¢ in sandstone is equal to 1 and ¢ in shale is equal to 1077.
Furthermore the Dirichlet boundary condition at the earth’s surface is set equal to 1. The solution
of equation (3.1.6.1) with these boundary conditions is of course p = 1, but if we start with p = 0
or a random vector, our linear solver will not notice the difference with a real problem. Numerical
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experiments show that the choice of one of these start vectors has only marginal effects.

In first instance we solve this equation by a Conjugate Gradient solver, without preconditioner.
After that we consider the effect of an ILU preconditioning and finally we study the behaviour of
the projection method mentioned in the Users Manual Section 3.2.8.

After the straight layers problem we consider the case of a curved mesh, and finally the case in
which the projection vectors computed in the straight layer mesh are reused for the curved mesh.
To get these examples into your local directory use the command sepgetex as follows:

sepgetex layerstrO1l (7 straight layers, no preconditioning)

sepgetex layerstr02 (7 straight layers, ILU preconditioning)

sepgetex layerstr03 (7 straight layers, ILU preconditioning, with projection)
sepgetex layerarcO1 (7 curved layers, ILU preconditioning, with projection)
sepgetex layerarc02 (7 curved layers, ILU preconditioning, with projection,

projection vectors created by straight layer mesh)
To run these examples use

sepmesh layerstrOl.msh
sepcomp layerstrOl.prb

and so on for all examples. There are no postprocessing files since the solution itself is trivial.

The mesh input file for the straight-layer problem is given by:
layerstrOl.msh

mesh file for straight layer problem

Test without preconditioning

See Manual Examples Section 3.1.6

To run this file use:
sepmesh layerstrOl.msh

Creates the file meshoutput

H OH H H H H HHEHHEH

set warn off ! suppress warnings
set time off ! suppress printing of time

# Define some general constants

#
constants # See Users Manual Section 1.4
integers
nelml = 10 # number of elements in horizontal direction
nelm2 = 5 # number of elements in vertical direction
reals
width =1 # width of the region
height = 7 # height of the region
hi =1 # top of 1-th layer
h2 = 2 # top of 2-th layer
h3 =3 # top of 3-th layer
h4 = 4 # top of 4-th layer
h5 =5 # top of 5-th layer
h6 = 6 # top of 6-th layer
h7 =7 # top of 7-th layer
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end

i

# Define the mesh
#

left-hand side of 1-th layer
right-hand side of 1-th layer
upper side of 1-th layer
left-hand side of 2-th layer
upper side of 2-th layer
right-hand side of 1-th layer
left-hand side of 3-th layer
upper side of 3-th layer
right-hand side of 3-th layer
left-hand side of 4-th layer
upper side of 4-th layer
right-hand side of 4-th layer
left-hand side of 5-th layer
upper side of 5-th layer
right-hand side of 5-th layer
left-hand side of 6-th layer
upper side of 6-th layer
right-hand side of 6-th layer
left-hand side of 7-th layer
upper side of 7-th layer
right-hand side of 7-th layer

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

pl =(0,0) # point left under
p2 =( width,0) # point right under
p3 =(0, hl) # left top of 1-th layer
p4 =( width, h1l) # right top of 1-th layer
p5 =(0, h2) # left top of 2-th layer
p6 =( width, h2) # right top of 2-th layer
p7 =(0, h3) # left top of 3-th layer
p8 =( width, h3) # right top of 3-th layer
p9 =(0, h4) # left top of 4-th layer
p10=( width, h4) # right top of 4-th layer
p11=(0, h5) # left top of 5-th layer
p12=( width, hb5) # right top of 5-th layer
p13=(0, h6) # left top of 6-th layer
pl4=( width, h6) # right top of 6-th layer
p15=(0, h7) # left top of 7-th layer
pl6=( width, h7) # right top of 7-th layer

#

# curves

#

curves # See Users Manual Section 2.3

cl =linel(pl,p2,nelm= nelmil) # straight line at bottom
c2 =linel(pl,p3,nelm= nelm2) #
c3 =translate c1(p3,p4) #
c4 =translate c2(p2,p4) #
c6 =linel(p3,p5,nelm= nelm2) #
c6 =translate c1(p5,p6) #
c7 =translate c5(p4,p6) #
c8 =linel(p5,p7,nelm= nelm2) #
c9 =translate c1(p7,p8) #
cl0=translate c8(p6,p8) #
c11=1inel(p7,p9,nelm= nelm2) #
cl2=translate c1(p9,p10) #
cl3=translate c11(p8,p10) #
c14=1inel1(p9,pll,nelm= nelm2) #
clb=translate c1(pl1l,pl2) #
cl6=translate c14(p10,pl12) #
c17=1linel(p11,p13,nelm= nelm2) #
cl8=translate c1(pl3,pl4) #
cl9=translate cl17(pl12,pl4) #
c20=1inel1(p13,p15,nelm= nelm?2) #
c21=translate c1(p15,p16) #
c22=translate c20(p14,pl6) #

#

# surfaces

#

surfaces

# See Users Manual Section 2.4
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sl=rectangle3(cl,c4,-c3,-c2) # 1-th layer
s2=rectangle3(c3,c7,-c6,-cb) # 2-th layer
s3=rectangle3(c6,c10,-c9,-c8) # 3-th layer
s4=rectangle3(c9,cl13,-c12,-c11) # 4-th layer
sb=rectangle3(c12,c16,-c15,-c14) # 5-th layer
s6=rectangle3(c15,c19,-c18,-c17) # 6-th layer
s7=rectangle3(c18,c22,-c21,-c20) # 7-th layer

#

# Connect surfaces with element groups and provide them with one integer

# property

# Integer property 1 = 1 means normal permeability (sandstone)

# Integer property 1 = O means low permeability (shale)

#

meshsurf # See Users Manual Section 2.2
selml = s1, int_property 1 = 1 # 1-th layer (sandstone)
selm2 = s3, int_property 1 = 1 # 3-th layer (sandstone)
selm3 = s5, int_property 1 =1 # 5-th layer (sandstone)
selm4 = s7, int_property 1 =1 # 7-th layer (sandstone)
selmb = s2, int_property 1 =0 # 2-th layer (shale)
selm6 = s4, int_property 1 = 0 # 4-th layer (shale)
selm7 = s6, int_property 1 = 0 # 6-th layer (shale)
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

The corresponding problem input file is given by

layerstrOl.prb

problem file for the straight layer problem
Test without preconditioning
See Manual Examples Section 3.1.6

sepcomp layerstrOl.prb

Reads the file meshoutput
Creates the file sepcomp.out

set warn off

#
#
#
#
#
#
# To run this file use:
#
#
#
#
#
#

! suppress warnings

# See Users Manual Section 1.4

# scaled permeability for shale
# scaled permeability for sandstone

#
# Define some general constants
#
constants
reals
k_shale = 1le-7
k_sand =1
vector_names
pressure

exact_pressure
variables
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error
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
elgrpl = 800 # type number for Laplacian type equations
elgrp2 = 800
elgrp3 = 800
elgrp4 = 800
elgrp5 = 800
elgrp6 = 800
elgrp7 = 800
essbouncond # Define where essential boundary conditions are
# given (not the value)
curves0(c21) # The pressure on the upper surface is 1
end

# Define the structure of the large matrix

matrix

end

# Fill the non-zero values of the essential boundary conditions

storage_method = compact, symmetric

# See Users Manual Section 3.2.4

# See Users Manual Section 3.2.5

essential boundary conditions

end

curves(c21) ,value=1

# The pressure on the upper surface is 1

# Define the coefficients for the problems
# See Users Manual Section 3.2.6
# See also standard problems Section 3.1

coe

fficients
elgrpl (nparm=20)

coef6 k_sand
coef9 = coefb
elgrp2 (nparm=20)
coef6 = k_sand
coef9 = coefb
elgrp3(nparm=20)
coef6 = k_sand
coef9 = coefb
elgrp4 (nparm=20)
coef6 = k_sand

coef9 = coefb
elgrp5 (nparm=20)

coef6 = k_shale

coef9 coef6
elgrp6 (nparm=20)

all = kappa
a22 = all

H H H H

**+

# Symmetric compact storage,
# hence an iterative method is used

coefficients for second order equation
Layer 1 (sandstone)

Layer 3 (sandstone)

# Layer 5 (sandstone)

# Layer 7 (sandstone)

# Layer 2 (shale)
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coef6 = k_shale # Layer 4 (shale)
coef9 = coef6 #

elgrp7 (nparm=20)
coef6 = k_shale # Layer 6 (shale)
coef9 = coef6 #

end

# Input for the linear solver
# See users manual, Section 3.2.8

solve
iteration_method = cg, preconditioning = none, accuracy = 1e-8//
print_level = 2, start=zero, max_iter = 10000
iseq_exact=exact_pressure

end

#

# Create vector with exact solution (p=1)

#

create vector # See users manual, Section 3.2.10
value = 1

end

# Define the steps that must be carried out by the main program and the
# sequence of these steps

structure # See users manual, Section 3.2.3
create_vector, exact_pressure

prescribe_boundary_conditions, pressure
solve_linear_system, pressure

error = norm_dif=3, vectorl = exact_pressure, vector2 = pressure
print error, text = ’difference ’
output

end

Mark that in the solve input block we have required an accuracy of 100 — 8). This may seem
overdone but will be clear after the explanation. Furthermore the option iseq_exact=1 is used
to compare the numerical solution with the true solution. In this way we can compute the true
error in each iteration step. The option max_iter = 10000 is just a large overestimate. SEPRAN
reduces this value to 10 times the number of unknowns.

Figure 3.1.6.2 shows the norm of the residual, the norm of the error and also the estimate of the
smallest eigenvalue as function of the number of iterations. In each layer 10 elements in the hori-
zontal and 5 elements in the vertical direction are used. From this figure the following remarkable
observations may be made.

1. The residual decreases monotonically between iterations 1 and 30. For the iterations between
31 and 1650 we have an erratic behaviour of the residual. After iterations 1650 again we have
a monotone decreasing of the residual.

2. If we require an accuracy of order 10~2, the process would stop after approximately 25 it-
erations, since then the residual divided by the estimate of the smallest eigenvalue is small
enough. Unfortunately the true error (|lz — xy|2) is still large. The estimated error is not
sharp, because the estimate of the smallest eigenvalue is very inaccurate.
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Figure 3.1.6.2: Convergence behaviour of CG Figure 3.1.6.3: Convergence behaviour of CG
without preconditioning with ILU preconditioning

3. In iterations 1-30 it looks as if the smallest eigenvalue is of order 1072, whereas from iteration
31 it is clear that the smallest eigenvalue is of order 1077,

So we see that the bad condition leads to a large number of iterations. Moreover, for practical
values of the error, the termination criterion is not reliable.

Repeating the same experiment using an ILU preconditioning (also called ICCG) gives a drastic
reduction of the number of iterations, but still the same conclusions as for the case without precon-
ditioning can be drawn. Figure 3.1.6.3 shows the convergence behaviour. Note that the horizontal
scales in Figures 3.1.6.2 and 3.1.6.3 are quite different. Although the number of iterations (48) is
small compared to the non-preconditioned algorithm (1650), still it is quite large compared to the
number of unknowns (385).

The mesh input file for the preconditioned case is identical to that of the non-preconditioned one.
In the problem file only the solve input block is different

solve, sequence_number = 1
iteration_method = cg, preconditioning = ilu, accuracy = 1le-8//
print_level = 2, start=zero, max_iter = 10000//
iseq_exact=exact_pressure

end

The graph of the residual in Figure 3.1.6.3, shows three bumps. This suggests that after the
preconditioning there are three small eigenvalues in the spectrum of the preconditioned matrix.
The reason why there are exactly three of such eigenvalues is explained in Vuik et al (1998). In
order to accelerate the convergence and moreover to make the termination criterion reliable we try
to approximate the corresponding eigenvectors and remove the contribution of these eigenvectors
by a projection algorithm. This method is called the deflated ICCG method.

An important aspect is of course, how to approximate the eigenvectors. In order to solve this
problem we solve Equation 3.1.6.1 for each of the shale layers separately with suitable boundary
conditions. The solution of these problems is relatively easy, since ¢ is constant in a shale layer and
the number of unknowns per layer is much smaller than in the original problem.

SEPRAN is only able to know how many small eigenvalues can be expected and how the approximate
eigenvectors must be computed if it knows which layers correspond to a large permeability and which
layers correspond to a small permeability. This can of course be verified by computing the value of
o in each element, but that process is time consuming and does not fit in the present way of dealing
with the coefficients. To simplify the task it has been decided to provide each layer with exactly
one integer property. In the input file layerstr01.msh it has been demonstrated how this is done.
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Integer property 1 = 1 means a large permeability (sandstone) and integer property 1 = 0 means
a low permeability (shale).

In order to activate the computation of the approximate eigenvectors and use of the projection
method the solve input block is adapted as follows:

solve, sequence_number = 1
iteration_method = cg, preconditioning = ilu, accuracy = 1le-8//
print_level = 2, start=zero, max_iter = 10000//
iseq_exact=exact_pressure, proj_method = approximate_eigenvectors//
proj_accuracy=1d-2, proj_ignore = 1d-3

end

New in this case are the keywords proj_method, proj_accuracy and proj_accuracy.
proj_method = approximate_eigenvectors indicates that the projection method with approxi-
mate eigenvectors is used and since no keyword proj_keep is given, the eigenvectors are computed
in this program.

proj_accuracy=1d-2 defines how accurate the subproblem on the shale layer must be solved. An
accuracy of 100 — 2) is sufficient in most practical applications.

Finally proj_ignore = 1d-3 indicates that all elements in the projection vector that are smaller
than 100 — 3) will be neglected. This may save computing time and memory, although for this
particular problem there is no need to use it.

Numerical experiments have shown that the deflated ICCG method is approximately 30% more
expensive per iteration. But since the number of iterations reduces considerably and moreover
the termination criterion becomes reliable, this approach is a clear improvement compared to the
classical ICCG method. Figures 3.1.6.4 and 3.1.6.5 show the convergence behaviour of the deflated
method (noted as DICCG2) and the norm of the error for the ICCG and DICCG2 method.

2 2

10 10
10 g 10° g
A
min
10~ - —407%F -
=
x
10~ g 107 g
lix-x Il
5 [IM7r || "
10k Kz 10°H DICCG2 IcCG
2 4 6 8 10 12 14 16 5 10 15 20 25 30 35 40 45 50 55
number of iterations number of iterations
Figure 3.1.6.4: Convergence behaviour of Figure 3.1.6.5: Norm of the error for the

DICCG?2 for the straight layers problem straight layers problem
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Now we have seen that the deflated ICCG method (the projection method) behaves well for the
straight layer problem we also apply it to an artificial curved example.
To the end the following mesh input file is used:

# layerarcOl.msh
#
# mesh file for curved layer problem
# See Manual Examples Section 3.1.6
#
# To run this file use:
# sepmesh layerarcOl.msh
#
# Creates the file meshoutput
set warn off ! suppress warnings
set time off ! suppress printing of time
#
# Define some general constants
#
constants # See Users Manual Section 1.4
integers
nelml = 10 # number of elements in horizontal direction
nelm2 = 5 # number of elements in vertical direction
reals
width =1 # width of the region
height = 7 # height of the region
hi =1 # top of 1-th layer
h2 =2 # top of 2-th layer
h3 =3 # top of 3-th layer
hd = 4 # top of 4-th layer
h5 =5 # top of 5-th layer
h6 = 6 # top of 6-th layer
h7 =7 # top of 7-th layer
hw = 0.5 # centre of circle defining bottom line
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pl =(0,0) # point left under
p2 =( width,0) # point right under
p3 =(0, hl) # left top of 1-th layer
p4 =( width, h1) # right top of 1-th layer
p5 =(0, h2) # left top of 2-th layer
p6 =( width, h2) # right top of 2-th layer
p7 =(0, h3) # left top of 3-th layer
p8 =( width, h3) # right top of 3-th layer
p9 =(0, h4) # left top of 4-th layer
p10=( width, h4) # right top of 4-th layer
p11=(0, h5) # left top of 5-th layer
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pl12=( width, h5) # right top of 5-th layer
p13=(0, h6) # left top of 6-th layer
pl4=( width, h6) # right top of 6-th layer
p15=(0, h7) # left top of 7-th layer
p16=( width, h7) # right top of 7-th layer
p40 = ( hw,0) # mid point of bottom line

#

# curves

#

curves # See Users Manual Section 2.3

cl =arc1l(pl,p2,-p40,nelm= nelml) # arc at bottom
c2 =linel(p1l,p3,nelm= nelm2) # left-hand side of 1-th layer
c3 =translate c1(p3,p4) # right-hand side of 1-th layer
c4 =translate c2(p2,p4) # upper side of 1-th layer
c5 =linel(p3,p5,nelm= nelm2) # left-hand side of 2-th layer
c6 =translate cl1(p5,p6) # upper side of 2-th layer
c7 =translate c5(p4,p6) # right-hand side of 1-th layer
c8 =1linel(p5,p7,nelm= nelm?2) # left-hand side of 3-th layer
c9 =translate c1(p7,p8) # upper side of 3-th layer
cl0=translate c8(p6,p8) # right-hand side of 3-th layer
c11=1inel(p7,p9,nelm= nelm?2) # left-hand side of 4-th layer
cl2=translate c1(p9,p10) # upper side of 4-th layer
cl3=translate c11(p8,p10) # right-hand side of 4-th layer
c14=1linel1(p9,pll,nelm= nelm2) # left-hand side of 5-th layer
clb=translate cl1(pll,pl2) # upper side of 5-th layer
cl6=translate c14(p10,pl2) # right-hand side of 5-th layer
c17=1inel1(p11,p13,nelm= nelm?2) # left-hand side of 6-th layer
cl8=translate c1(p13,p14) # upper side of 6-th layer
cl9=translate c17(p12,p14) # right-hand side of 6-th layer
c20=1inel1(p13,pl5,nelm= nelm?2) # left-hand side of 7-th layer
c21l=translate c1(pl5,pl6) # upper side of 7-th layer
c22=translate c20(pl4,p16) # right-hand side of 7-th layer

#

# surfaces

#

surfaces # See Users Manual Section 2.4

sl=rectangle3(cl,c4,-c3,-c2) # 1-th layer
s2=rectangle3(c3,c7,-c6,-cb) # 2-th layer
s3=rectangle3(c6,c10,-c9,-c8) # 3-th layer
s4=rectangle3(c9,c13,-c12,-c11) # 4-th layer
sb=rectangle3(cl12,c16,-c15,-c14) # 5-th layer
s6=rectangle3(c15,c19,-c18,-c17) # 6-th layer
s7=rectangle3(c18,c22,-c21,-c20) # 7-th layer

#

# Connect surfaces with element groups and provide them with one integer

# property

# Integer property 1 = 1 means normal permeability (sandstone)

# Integer property 1 = O means low permeability (shale)

#

# 1-th layer (sandstone)
# 3-th layer (sandstone)

# 5-th layer (sandstone)
# 7-th layer (sandstone)

meshsurf # See Users Manual Section 2.2
selml = s1, int_property 1 =1
selm2 = s3, int_property 1 =1
selm3 = sb5, int_property 1 =1
selm4 = s7, int_property 1 =1
selmb = s2, int_property 1 =0

# 2-th layer (shale)



EX Layered problems September 2008 3.1.6.11

selm6 = s4, int_property 1 =0 # 4-th layer (shale)
selm7 = s6, int_property 1 =0 # 6-th layer (shale)
plot # make a plot of the mesh

# See Users Manual Section 2.2
end

The mesh is plotted in Figure 3.1.6.6 Numerical results for this mesh are comparable to the straight

Figure 3.1.6.6: Mesh used in the parallel arcs layered problem

layer problem and will not be repeated here.

Finally we shall show how the method behaves if approximate eigenvectors computed in one con-
figuration are used in the other one. To that end we start with a mesh consisting of straight layers
and compute the approximate eigenvectors. After that we transform the coordinates such that the
curved mesh arises. Instead of recomputing the approximate eigenvectors we reuse the eigenvectors
computed in the straight layer case. Although these new eigenvectors are not as accurate as the
ones directly computed on the curved mesh, the results are almost comparable. The space spanned
by the eigenvectors of the straight layer problem does not differ too much of the space spanned by
the eigenvectors of the curved mesh. So it is not necessary to know the approximate eigenvectors
to accurately, as long as the main behaviour of the eigenvectors is present.

If we create the mesh for the straight layer problem and compare it with the curved mesh then we
see an essential difference. In the straight layer problem all rectangles are subdivided into triangles
that all are directed in the same direction. In the curved case, however the triangles at the left-hand
side of the symmetry axis are directed in the opposite direction of that of the right-hand side. This
is because the mesh generator tries to avoid large angles. If we start with the straight layer mesh
and change the coordinates without precautions, all diagonals would be pointing in one direction.
The results is an error message that the ILU preconditioning does not exist. This is due to the fact
that the matrix is not longer diagonal dominant due to the large angles. This is typical for this
extreme case.
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In order to create diagonals pointing in the right direction we start with a curved mesh, where the
centre of the arc defining the bottom line is defined by

p40 = (hw,-1000) # centroid of bottom line
# In order to get a "straight line" the
# point is moved a large distance downwards

The rest of the input file is not changed. The result is an almost straight mesh since the radius
of the circles is approximately equal to 1000, but the diagonals of the triangles are pointed in the
right direction.

To change the coordinates of the mesh we use the option change_coordinates in the input block
defined by the keyword structure. This requires an extra input block and also a function subroutine
FUNCCOOR that defines the transformation from old to new coordinates. For that reason it is
necessary to supply a new main program layerarc02.f with the following contents:

program layerarc02
--- Main program for straight/curved layer problem

See Manual Examples Section 3.1.6
To link this program use:

seplink layerarc02

call sepcom ( 0 )
end

subroutine funccoor ( ichoice, ndim, coor, nodes, numnodes )

--- This subroutine is used to change the coordinates
The input coordinates are for the straight mesh
The output coordinates are for the curved mesh
The transformation is given by:

x_curved = (1-cos(pi x_straight))/2
y_curved = y_straight+sin(pi x_straight)/2

implicit none
integer ichoice, ndim, numnodes , nodes(numnodes)
integer i, nodenr
double precision coor(ndim,*)
include ’SPcommon/consta’
do i = 1, numnodes
nodenr = nodes (i)
coor(2,nodenr) = coor(2,nodenr)+0.5d0*sin(pi*coor(l,nodenr))
coor(1l,nodenr) = 0.5d0*(1d0-cos(pi*coor(1,nodenr)))
end do
end

To link this program use the command seplink:

seplink layerarc02
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The corresponding input file is almost identical to the file layerstr03.prb, except for the following
parts:

# Input for the linear solver
# See users manual, Section 3.2.8

solve, sequence_number = 1
iteration_method = cg, preconditioning = ilu, accuracy = 1le-8//
print_level = 2, start=zero, max_iter = 10000//
iseq_exact=exact_pressure, proj_method = approximate_eigenvectors//
proj_accuracy=1d-2, proj_ignore = 1d-3, proj_keep = keep

end

solve, sequence_number = 2
iteration_method = cg, preconditioning = ilu, accuracy = le-8//
print_level = 2, start=zero, max_iter = 10000//
iseq_exact=exact_pressure, proj_method = approximate_eigenvectors//
proj_keep = old

end

# To transform the coordinates from the straight mesh to the curved mesh
#  change_coordinates is used

#

# See users manual, Sections 3.2.3 and 2.2

#

change_coordinates, sequence_number = 1
all
end

# Define the steps that must be carried out by the main program and the

# sequence of these steps

# Vector 1 contains the exact solution

# Vector 2 contains the numerical solution of the straight mesh and later on
# of the curved mesh

structure # See users manual, Section 3.2.3
create_vector, exact_pressure

prescribe_boundary_conditions, pressure
solve_linear_system, pressure

error = norm_dif=3, vectorl = exact_pressure, vector2 = pressure
print error, text = ’difference ’
output

end

First the exact solution is created, then the problem is solved on the straight layer mesh and the
approximate eigenvectors are kept.

This is the option proj_keep = keep.

Next the coordinates are changed and the problem is solved again starting with the zero vector.
The previously computed projection vectors are reused. This is the option proj_keep = old.
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3.1.7 Stability of a salt layer formed by salty ground-water upflow
3.1.7.1 Outline of the problem

This problem has been studied by Gert-Jan Pieters (2000), for more mathematical background on
the problem we refer to his Master’s Thesis .

Upflowing salty ground-water in the subsurface evaporates completely at the surface. After through-
flow induced by evaporation, the salt remains behind at the surface (salt-lakes). This saline layer
is referred to as a diffusion layer which may grow up to a finite thickness. This finite thickness is
an equilibrium between upflowing salt in solution and downward diffusion. It is our aim to analyze
this natural process numerically.

evaporation

accumulation of salt
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Figure 3.1.7.1: Geometry

Consider a bounded porous medium with a horizontal upper boundary (surface), see Figure 3.1.7.1.
For the case of a uniform upflow within the medium and through the boundary, we treat the problem
as one with one spatial dimension. However, for the case of a porous medium with non-homogeneous
and non-isotropic permeability the problem has to be treated as a two-dimensional problem. Van
Duijn et al (2000), Wooding (1960) found instabilities of the diffusion layer. These instabilities were
triggered by perturbation of either the initial condition (locally or globally) or by local perturbation
at all times. In this research the initial condition is globally perturbed (in this context globally
means the interior of the domain 2, or Q/9, see Figure 3.1.7.1). Wooding (1960) found instability
of the diffusion layer numerically and his observation were confirmed by experiments. Van Duijn et
al. (2000) analyzed these instabilities using semi-explicit expressions for an unbounded domain. In
the present work we are concerned with analysis of the stability of this diffusion layer with respect
to small perturbations of the initial condition of the saturation in the domain.

3.1.7.2 Equations for salt transport

We use the same equations as Van Duijn et al. (2000) and consider an isotropic, homogeneous
medium. Let the water density, fluid density far away from the surface, local fluid density and
maximum fluid density at the outflow boundary be denoted by po, p, p, and p, [keg/m?] respectively.
Clearly po < pr < pm and pr < p < pp,.

Assuming the porosity ¢ [-] to be constant, we have for the fluid mass-balance equation:

)
gba—? + V- (pq) =0, (3.1.7.1)
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where q [m?®/(m?s)] is the Darcy volume flow rate and ¢ is time. We use bold-face characters to
indicate that quantities are vectors. For the mass-balance of salt one obtains

¢5(pw)
ot
where w is the mass fraction of salt (i.e. salt mass per unit fluid volume). The dispersivity is given
by D. The equation of state is taken as (see van Duijn et al (1993))

p = poe™, (3.1.7.3)

+ V- (pwq — pDVw) = 0, (3.1.7.2)

where « is treated as a constant. The volume flow rate follows from Darcy’s Law:

%q-l—V(p—gprz) —(p—pr)gk = 0. (3.1.7.4)

Here p, g, k, p are pressure, gravity constant, permeability and fluid viscosity respectively. Combi-
nation of equations 3.1.7.1, 3.1.7.2 and 3.1.7.3 gives

0
¢5§ +q-Vp=DAp. (3.1.7.5)

Here A denotes the Laplacian operator. In order to simplify the subsequent analysis, we apply the
Boussinesq approximation. The approximation consists of setting constant all the properties of the
medium, except that the buoyancy term is retained in the Darcy equation. As a consequence the
equation of continuity reduces to ~q = 0. The Boussinesq is valid provided that density changes
remain small in comparison to p;.

3.1.7.3 Dimensionless equations

Introduce the saturation

§:=L"Pr Githo<S<1, (3.1.7.6)
pm - pr
and define the dimensionless vector U proportional to volume flow rate:
e}
U .= - (3.1.7.7)
(pm — pr)gr
2

subsequently we replace ¢ by a dimensionless time 7 := d)iD’ where € is the rate of through-flow by

evaporation through the surface. The Cartesian coordinates (z,y, z) are scaled to the thickness of
the equilibrium boundary layer, § = D/e. Finally we introduce the scale for the pressure p as

p— prgdz

P .= .
(pm - pr)gé

(3.1.7.8)

The dimensionless equations become

V-U=0,
(P)y U+VP-Sk=0,
95 4 RaU - VS = AS.
(Pm — pr)gk
ue
the diffusion layer with respect to small perturbations of the initial saturation profile for different
Rayleigh numbers. Problem (P;) has boundary conditions and initial conditions

Here the Rayleigh-number Ra is defined as Ra := . It is our aim to analyze stability of

S$72,0):07 (l‘7y)€ﬂ7
1

z,0,7) =1, 7>0,0<2<L,
S(x,W,7) =0, 7>0,0<z<L,
oS

(IB1) %x:OL:07 7>0,0<2<W,
U|z:0W:_5kv 7>0,0<z<1L,
opP|
o =0, 7>00<z<W.
O x=0,L




EX Salt layer May 2000 3.1.7.3

Since above conditions and P; imply that the pressure is determined up to an integration constant,
we use the numerically superior stream-function formulation to solve the two-dimensional problem.

3.1.7.4 The stream function formulation

We introduce a ”vector potential” such that U = curl ¥, which reassures that ~U = 0, since we
always have +(curl @) = 0. Furthermore, since U = (U,,0,U,) and all differentiations with respect
to y vanish, i.e. 9y = 0, we have ¥ = (0, ¥,,0). We substitute U = curl ¥ into P; and take
the curl of the third equation of P; and keep in mind that curl (grad P) = 0. Hirasaki & Hellums
(1968) prove that a vector potential ¥ exists and is solenoidal if the velocity field U is solenoidal,
i.e. +W = (. Keeping this in mind we obtain

05 |y (L0105 90,05\ o
(Py) or 0z Oz Jx 0z
au, =5,
x
Here A denotes the Laplacian in the x and z co-ordinates. The initial and boundary conditions
change into

S(x7 Z’ O) = 07 (x7 y) 6 Q7
S(I7077 =1, 7>0,0<z< L,
Sz, W,T) =0, 7>0,0<z<L,
oS

— =0, 7>0,0<2z<W,

(IBQ) Ox x=0,L

v, oW = T 7>0,0<zx<L,
v, (0,2,7) =0, T>0,0<2z<W,
U, (L,z,7)=—eL, 7>0,0<z<W.

3.1.7.5 Stability
We analyze P, and I By with respect to small perturbations of the initial saturations, i.e.
S=S5+ev, (3.1.7.9)

where S comes from (P») and (I Bs), S is the perturbed saturation and v = v(x) is the perturbation

function. The magnitude of the perturbation is given by e.

We are interested in the behaviour of the La-norm of the gradient of the perturbed stream-function,

ie. [|V(¥, — U,)[?, where U, is the perturbed stream-function. We denote this integral as
Q

1vV(v, — \T/y)|| Ls(Q)- Since the unperturbed problem is one-dimensional, we have

A¥, =0, 7 >0 (unperturbed),
AV, =€%%, 7=0 (perturbed).
In the stable case it can be shown that ||V(¥, — \T/y)|\L2(Q) < |||y for all 7> 0. We qualify

the system stable for perturbations when

d ~
IV @y =)L) <0. (3.1.7.10)

d ~ d
It turns out that often %|||V(\I/y — Yy )lllz,) < 0 for some time 0 < 7 < 7% and d—|||V(\I/y -
T

\T/y)||\L2(Q) > 0 when 7 > 7*. The routines developed in this problem keeps track of the Lo-norm of

the gradient of the perturbed stream function, i.e. |||V(¥, — CI}y)|||L2(Q), and gives output in terms
of the stream-function, saturation and velocities.
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3.1.7.6 Examples

We show an example of a perturbation v = sinaz, a = 0.25, ¢ = 0.001 and geometrical settings
L =50, W =5 and Ra = 5. Furthermore, we show the evaluation of ||[V(¥, — W¥,)|||1,q) as
function of time. We see that this norm decreases monotonically and hence the small fluctuations
are damped. See Figures 3.1.7.2, 3.1.7.3, 3.1.7.4 and 3.1.7.5. As a counter example we show a
calculation with the same settings, except Ra = 35. Now we see that S contains fingers and
VU, and U give rotations. The norm |||V(V¥, — W,)||[1,(o) decreases for some time and increases
subsequently, indicating its unstable behaviour with respect to small initial perturbations. See
Figures 3.1.7.6, 3.1.7.7, 3.1.7.8 and 3.1.7.9.

Future numerical analysis for this problem:

e further analysis of the instabilities
e different initial perturbation functions, e.g. random perturbations

e non-homogeneous and anisotropic media

3.1.7.7 SEPRAN files

To get the files into your local directory use
sepgetex salt_stable

The mesh, problem, postprocessing and Fortran code files are given below.
The mesh input file

salt_stable.msh

*
*
* mesh for natural convection problem
*
constants
integers
nx = 200
nz = 20
reals
length
depth

50

]
o

end
mesh2d
points
p1=(0,0)
p2=( length,0)
p3=( length, depth)
p4=(0, depth)
curves
cl=line 1(pl,p2, nelm= nx,ratio=1, factor=1)
c2=line 1(p2,p3, nelm= nz,ratio=1, factor=1)
c3=line 1(p3,p4, nelm= nx,ratio=1, factor=1)
c4=line 1(p4,pl, nelm= nz,ratio=1, factor=1)
surfaces
sl=rectangle5(cl,c2,c3,c4)
meshsurf
selml = si
plot (jmark=5, numsub=1)
end
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The main program and related subroutines:

! salt_stable.f
|

I This file contains additional subroutines

program salt_stable
implicit none

call sepcom ( O )
end

1 skookook ok sk sk ok sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok sk ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok

! functions for essential boundary conditions

1 skokesk ok ok ook ok sk ok ok ok 3 ok ok sk ok ok ok 3 ok K sk ok ok sk ok 3k ok ok ok ok ok 3k ok ok ok koK
function funcbc ( ichoice, x, y, z )
implicit none
double precision funcbc, x, y, z, R, getconst
integer ichoice
include ’SPcommon/ctimen’

R = getconst(’R’)

if ( ichoice==1 ) then
funcbc = -1 * (1/R) * (x)
end if

if ( ichoice==2) then
funcbc = -1 * (1/R) * (x)
end if

end

1 skookook ok ok sk ok ook ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok

! perturbation of the initial saturation

1 skokeskok sk ok ok ok ok ok ook ok ok 3k ok ok 3 ok ok 3 ok 3k 3k ok 3 ok sk 3 ok 3k ok ok 3 ok ok 3 ok 3 ok ok 3 ok kK ok
function func ( ichoice, x, y, z )
implicit none
double precision func, x, y, z, R, Depth, Length, a, getconst
integer ichoice
include ’SPcommon/ctimen’

R = getconst(’R’)

Depth = getconst(’Depth’)
Length = getconst(’Length’)
a = getconst(’a’)

if (ichoice==1) then
if ( (y.lt.Depth).and. (y.gt.0)
+ .and.(x.gt.0) .and. (x.1t.Length) ) then
func = 0.001 * sin(a * x)
else
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func = 0
end if
end if

end

subroutine compcons
implicit none
double precision R, R_inv, Length_div_R, Length, getconst

R = getconst(’R’)
Length = getconst(’Length’)

R_inv = 1/R
Length_div_R = Length/R

call putreal ( ’R_inv’, R_inv )

call putreal ( ’min_R_inv’, -R_inv )

call putreal ( ’Length_div_R’, Length_div_R )

call putreal ( ’min_Length_div_R’, -Length_div_R )

end
The input file for the computational program:
salt_stable.prb

%
*
* For details, see the text above
*

constants
reals

R = 35
R_inv
min_R_inv
Length_div_R
min_Length_div_R
D=1
Depth = 5
Length = 50
a =0.25

vector_names
min_R_inv
delta_grad_Psi
q
S
dS_dx
min_dS_dx
Psi
Psi_x
Psi_z
R_Psi_x
R_Psi_z
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min_R_Psi_x
min_R_Psi_z
Psi_x_min_R_inv
norm_grad_Psi

variables
res_int
end

problem 1 # stream-function equation

types

elgrpl = (type = 800)
essboundcond

curves(cl)

curves(c2)

curves(c3)

curves(c4)

problem 2 # saturation equation
types
elgrpl = (type = 800)
essboundcond
curves(cl)
curves (c3)
end

*

* Computations structure
*

structure

# create vector -1/R
create_vector, sequence_number=2, min_R_inv

# create delta_grad_Psi (initial with ones at both degrees of freedom)
create_vector, sequence_number=6, delta_grad_Psi

# create q (initial with ones at both degrees of freedom)
create_vector, sequence_number=3, q

# create perturbed startvector S
create_vector, sequence_number=1, S

# prescribe Dirichlet conditions for the saturation S
prescribe_boundary_conditions, sequence_number=2, S

# compute dS/dx
derivatives, seq_deriv=3, dS_dx

# compute min_dS_dx
min_dS_dx = - dS_dx

# prescribe boundary conditions for Psi
prescribe_boundary_conditions, sequence_number=1, Psi
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# solve pressure Psi
solve_linear_system, seq_coef=1, problem=1, Psi

# compute Psi_x
derivatives, seq_deriv=1, Psi_x

# compute Psi_z
derivatives, seq_deriv=2, Psi_z

# compute R times Psi_x
R_Psi_x = R * Psi_x

# compute min_R_Psi_x
min R_Psi_x = - R_Psi_x

# compute R times Psi_z
R_Psi_z = R * Psi_z

# compute min_R_Psi_z
min R_Psi_z = - R_Psi_z

# compute velocity q
copy min_R_Psi_z q degfd2=1
copy R_Psi_x q degfd2=2

# compute Psi_x - 1/R
Psi_x_min_R_inv = Psi_x - min_R_inv

# compute delta_grad_Psi
copy Psi_x_min_R_inv delta_grad_Psi degfd2=1
copy Psi_z delta_grad_Psi degfd2=2

# compute norm_grad_Psi
norm_grad_Psi = inner_product delta_grad_Psi delta_grad_Psi

# compute L2 norm of the velocity difference
integral, seq_coef=3, seq_integral=1, res_int, norm_grad_Psi

print res_int, text=’ "’

# write the solutions for t=0 to a file
output

# start first time loop
start_time_loop

# compute time step
time_integration, S

# compute dS/dx
derivatives, seq_deriv=3, dS_dx

# compute min_dS_dx
min_dS_dx = - dS_dx

# prescribe the boundary conditions for Psi
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# e

prescribe_boundary_conditions, sequence_number=1, Psi

# solve pressure Psi
solve_linear_system, seq_coef=1, problem=1, Psi

# compute Psi_x
derivatives, seq_deriv=1, Psi_x

# compute Psi_z
derivatives, seq_deriv=2, Psi_z

# compute R times Psi_x
R_Psi_x = R *Psi_x

# compute min R_Psi_x
min_ R_Psi_x = - R_Psi_x

# compute R times Psi_z
R_Psi_z =R *Psi_z

# compute min R_Psi_z
min_R_Psi_z = - R_Psi_z

# compute velocity q
copy min_R_Psi_z q degfd2=1
copy R_Psi_x q degfd2=2

# compute Psi_x - 1/R
Psi_x_min_R_inv = Psi_x - min_R_inv

# compute delta_grad_Psi
copy Psi_x_min_R_inv delta_grad_Psi degfd2=1
copy Psi_z delta_grad_Psi degfd2=2

# compute norm_grad_Psi
norm_grad_Psi = inner_product delta_grad_Psi delta_grad_Psi

# compute L2 norm of the velocity difference
integral, seq_coef=3, seq_integral=1, res_int, norm_grad_Psi

print res_int, text=’ ’

# write solutions for each time step to a file
output

nd time loop

end_time_loop

end

*

* Def

*

create
func

end

ine initial conditions for the saturation S

vector, sequence_number=1, problem = 2
=1
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*
* Define min_R_inv
*
create vector, sequence_number = 2
type = vector of special structure vl

value = min_R_inv
end
*
* Define q (initial)
*

create vector, sequence_number = 3
type = vector of special structure v2
value = 1, degfd = 1
value = 1, degfd = 2

end

E3

* Define delta_grad_Psi (initial)

*

create vector, sequence_number=6, problem=1
type = vector of special structure v2

value = 1, degfd =1
value = 1, degfd = 2
end
*

* Essential boundary conditions for stream-function Psi
*
essential boundary conditions, sequence_number=1, problem=1
curves (cl1l), func =1
curves (c4), value = 0
curves (c3), func = 2
curves (c2), value = min_Length_div_R
end

*

* Essential boundary conditions for saturation S

*

essential boundary conditions, sequence_number=2, problem=2
curves (c3), value = 0
curves (cl), value =1

end

*  Derivatives block, to compute Psi_x

*

derivatives, sequence_number=1, problem=1
icheld = 1, ix=1
seq_input_vector = Psi

end

* Derivatives block, to compute Psi_z
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*

derivatives, sequence_number=2, problem=1
icheld = 1, ix=2
seq_input_vector = Psi

end

*

* Derivatives block, to compute dS/dx
*
derivatives, sequence_number=3, problem=2
icheld = 1, ix=1
seq_input_vector = S
end

*

* Integral block, to compute the L_2_norm
*
integrals, sequence_number = 1
icheli = 2
end

*
* Definition of coefficients for the streamfunction
*
coefficients, sequence_number = 1, problem=1
elgrpl (nparm=20)

coef6 =1

coef9 = coef6

coefl6 = old_solution min_dS_dx
end

*

* Coefficients for the saturation equation
*

coefficients, sequence_number = 2, problem=2
elgrpl (nparm=20)

icoef2 =1
coef6 = D
coef9 = coefb
coefl7 =1

coefl2 = old_solution min_R_Psi_z
coefl3 = old_solution R_Psi_x
end

*

* Coefficients for the area integration
*

coefficients, sequence_number = 3, problem=1
elgrpl (nparm=10)
coefd =1
end

* Definition of the time loop
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time_integration
method = euler_implicit

tinit = 0
tend =5
tstep = 0.1
toutinit = 0
toutend =5
toutstep = 0.1

seq_boundary_conditions = 2
seq_coefficients = 2
end

The seppost input file

* salt_stable.pst
*
*
* input for seppost
*
postprocessing
time = (0,5)
plot vector q
plot contour Psi
plot coloured contour S
end
end
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3.1.8 A comparison of some upwind schemes

In this section we consider a number of classical test schemes for upwind methods.
It concerns the following problems:

Convection skew to the mesh.

Rotating cone problem.

3.1.8.1 Convection skew to the mesh

In this example we consider a convection-diffusion problem, with zero source term. The diffusivity
was taken to be 1076, The flow in the unit square is unidirectional and constant (||u|| = 1). At the
lower boundary of the square we have a Dirichlet boundary condition (¢ = 1). At the left-hand side
we have also a Dirichlet boundary condition (¢ = 1 for y < 0.2 and ¢ = 0 for y > 0.2). The angle
a of the flow is an input parameter, which in our example is equal to 45°. At all other boundaries
the natural boundary condition % = 0 is imposed.

Figure 3.1.8.1 shows the configuration used The result is a discontinuous concentration over the
region. The exact solution is equal to 1 in the region starting with boundary condition 1 and
following the straight line with the angle of the flow.

In this section we shall compare the behaviour of standard Galerkin and some upwind schemes for
this problem. Both linear triangles and bi-linear quadrilaterals are used.

Quadratic elements do not behave so well for this kind of problems and it is advised always to
use linear elements. If the velocity is the result of a quadratic velocity computation, the option
linear_subelements will subdivide the quadratic elements into linear ones.

The exact solution satisfies 0 < ¢ < 1 and a scheme is said to satisfy the maximum principle if the
numerical solution is also between 0 and 1.

If the result of a scheme does not satisfy the maximum principle we can always force this condition
by using the keyword 1imit_solution either in the linear solver or the nonlinear solver. Of course
this is brute force and also not accurate, but for some applications it is a must.

To get this example into your local directory use:
sepgetex conv_shockxx

with xx equal to 01 02 03 or 04.
These options correspond to the following cases:

01 Linear triangular elements
02 Linear triangular elements with limiting
03 Bi-linear quadrilaterals

04 Bi-linear quadrilaterals with limiting
To run these problems use:

sepmesh conv_shockxx.msh
sepview sepplot.001

seplink conv_shockxx
conv_shockxx < conv_shockxx.prb
seppost conv_shockxx.pst
sepview sepplot.001

The mesh input file for the linear triangle case is given by
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# conv_shockOl.msh
#
# mesh file for testing of upwind schemes for 2d convection-diffusion
# linear triangular elements
# See manual standard problems, Section 3.1.8.1
# Shock problem
#
# To run this file use:
# sepmesh conv_shockO1l.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
width = 1 # width of the square
length =1 # length of the square
discontinuity = 0.2 # height of the discontinuity point on left-hand
# side
integers
n =10 # number of elements in length direction
ml =2 # number of elements in width direction from below to
# point with discontinuity
m2 = 8 # number of elements in width direction from
# point with discontinuity to top
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0) # Left under point
p2=( length,0) # Right under point
p3=( length, width) # Right upper point
p4=(0, width) # Left upper point
p5=(0, discontinuity) # Discontinuity point
#
# curves
#
curves # See Users Manual Section 2.3
cl = line (pl,p2,nelm= n) # lower boundary
c2 = translate c4 (p2,-p3) # right-hand side boundary
c3 = line (p3,p4,nelm= n) # upper boundary
c4 = curves(cll,cl2) # left-hand boundary consisting of two parts
cl1l= line (pl,p5,nelm= ml) # lower part of left-hand boundary
c12= line (p5,p4,nelm= m2) # upper part of left-hand boundary
#
# surfaces
#

surfaces # See Users Manual Section 2.4
# Linear triangles are used
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plot

end

Since the velocity is a function of the angle, we need a main program

sl=rectangle3(cl,c2,c3,-c4)

# make a plot of the mesh

# See Users Manual Section 2.2

program conv_shockO1

--—- Main program for testing of upwind schemes for 2d convection-diffusion

linear triangular elements

See manual standard problems, Section 3.1.8.1

Shock problem
call sepcom ( 0 )

end

--- define velocity as function of the angle

function funccf ( ichoice, x, y, z )

implicit none
integer ichoice

double precision x, y, z, funccf, angle, getconst

--— The constant pi is stored in common block consta

include ’SPcommon/consta’

--- angle is defined as a constant

angle = getconst ( ’angle’ )

if ( ichoice==1 ) then

--- ichoice = 1, u = cos(angle)
funccf = cos(angle/180d0*pi)

else if ( ichoice==2 ) then

--- ichoice = 2, v = sin(angle)
funccf = sin(angle/180d0*pi)

else

--— Other case, should never be possible

funccf = 0dO

end if

end
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The corresponding input file is
conv_shockO1.prb

problem file for testing of upwind schemes for 2d convection-diffusion
linear triangular elements

See manual standard problems, Section 3.1.8.1

Shock problem

#

#

#

#

#

#

#

# To run this file use:
# sepcomp conv_shockO1l.prb
#

#

#

#

#

#

#

#

Reads the file meshoutput
Creates the file sepcomp.out

Define some general constants

constants # See Users Manual Section 1.4
reals
eps
angle
vector_names
pot_galerkin
pot_first_order
pot_doubly
pot_dcl
pot_tri_max
pot_flip_flop

le-6 # diffusion parameter
45 # angle of velocity

variables
iupwind
minimum
maximum
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=800 # Type number for second order elliptic equation
# See Standard problems Section 3.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
curves(cl) # Essential boundary conditions on lower boundary
curves (c4) # Essential boundary conditions on left-hand side
# boundary
end

# Define the essential boundary conditions
# See Users Manual Section 3.2.5
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essential boundary conditions
curves(cl) value = 1 # At C3 T=1,
curves(cl1l) value = 1 # At Cl11 T=1,
# at C12 we have T=0, which does not require input
end

# Define the coefficients for Convection-diffusion equation
# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters
icoef2 = iupwind # Type of upwind
coef6 = eps # all = eps
coef9 = coef 6 # a22 = eps
coefl2 = func = 1 # u = cos(angle), see subroutine FUNCCF
coef13 = func = # v = sin(angle), see subroutine FUNCCF

end

# Define the structure of the main program
# See Users Manual Section 3.2.3

structure

# First case: Galerkin solution
# Set essential boundary conditions
prescribe_boundary_conditions pot_galerkin, sequence_number = 1
# Compute the potential, by solving the linear equations
# Set the value of the upwind parameter
iupwind = 0
solve_linear_system, pot_galerkin, seq_solve = 1//
seq_coef =1
# Print minimum and maximum of the solution
minimum = min_max pot_galerkin, scal_max = maximum
print ’Galerkin solution’
print minimum, maximum, text = ’minimum and maximum values’
# Second case: SUPG first-order solution
# Set essential boundary conditions
prescribe_boundary_conditions pot_first_order//
sequence_number = 1
Compute the potential, by solving the linear equations
# Set the value of the upwind parameter
iupwind = 1
solve_linear_system, pot_first_order, seq_solve = 1//
seq_coef =1
# Print minimum and maximum of the solution

23

minimum = min_max pot_first_order, scal_max = maximum
print ’SUPG first-order solution’
print minimum, maximum, text = ’minimum and maximum values’
# Third case: SUPG doubly assymptotic solution
# Set essential boundary conditions
prescribe_boundary_conditions pot_doubly, sequence_number = 1
# Compute the potential, by solving the linear equations
# Set the value of the upwind parameter
iupwind = 3
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solve_linear_system, pot_doubly, seq_solve = 1//
seq_coef =1
# Print minimum and maximum of the solution
minimum = min_max pot_doubly, scal_max = maximum
print ’SUPG doubly assymptotic solution’
print minimum, maximum, text = ’minimum and maximum values’
# Fourth case: SUPG DC1 solution
# Set essential boundary conditions
prescribe_boundary_conditions pot_dcl, sequence_number = 1
# Compute the potential, by solving the non-linear equations
# Set the value of the upwind parameter
iupwind = 7
solve_nonlinear_system, pot_dcl, sequence_number = 1
# Print minimum and maximum of the solution
minimum = min_max pot_dcl, scal_max = maximum
print ’SUPG discontinuity capturing’
print minimum, maximum, text = ’minimum and maximum values’
# Fifth case: SUPG triangular elements with maximum principle
# Underelaxation is applied
# Set essential boundary conditions
prescribe_boundary_conditions pot_tri_max, sequence_number = 1
# Compute the potential, by solving the non-linear equations
# Set the value of the upwind parameter
# The iteration is started with the doubly assymptotic solution
iupwind = 3
solve_nonlinear_system, pot_tri_max, sequence_number = 2
# Print minimum and maximum of the solution
minimum = min_max pot_tri_max, scal_max = maximum
print ’SUPG triangular elements with maximum principle’

print minimum, maximum, text = ’minimum and maximum values’
# Sixth case: SUPG triangular elements with maximum principle
# suppress flip-flop

# Set essential boundary conditions

prescribe_boundary_conditions pot_flip_flop, sequence_number =

# Compute the potential, by solving the non-linear equations
Set the value of the upwind parameter
# The iteration is started with the doubly assymptotic solution
iupwind = 3
solve_nonlinear_system, pot_flip_flop, sequence_number = 3
# Print minimum and maximum of the solution
minimum = min_max pot_flip_flop, scal_max = maximum

H*

print ’SUPG triangular elements with maximum principle, no flip-flop’

print minimum, maximum, text = ’minimum and maximum values’
output
end

# input for non-linear solver
# Input for DC1

nonlinear_equations, sequence_number = 1 # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//

at_error return
equation 1
fill_coefficients 1
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end

# Input for SUPG triangular elements with maximum principle
nonlinear_equations, sequence_number = 2 # See Users Manual Section 3.2.9
global_options, maxiter=10, accuracy=1d-5,print_level=2, lin_solver=1//

at_error return, relaxation = 0.9
equation 1
£fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
end

# Input for SUPG triangular elements with maximum principle
# Suppress flip-flop
nonlinear_equations, sequence_number = 3 # See Users Manual Section 3.2.9
global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//
at_error return
equation 1
fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
at_iteration 4, sequence_number 3
end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7

change coefficients, sequence_number=1 # input for iteration 2
elgrpl
icoef2 =9 # triangular elements with maximum principle
end

change coefficients, sequence_number=2 # input for iteration 3
elgrpl
icoef2 = 10 # initialize flip flop array
end

change coefficients, sequence_number=3 # input for iteration 4
elgrpl
icoef2 = 11 # update flip flop array
end

In order to check the behaviour of the method, we have compared the minimum and maximum
values of the solution. This is a measure for the appearance of wiggles.
Table 3.1.8.1 gives these minimum and maximum values for the methods used.

Table 3.1.8.1 Minimum and maximum values of the solution (triangles)
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maximum value

Type of method minimum value
Galerkin -1.83421E-04
SUPG first-order -3.78362E-02
SUPG doubly asymptotic -3.78362E-02
SUPG discontinuity capturing -8.77571E-04
SUPG with maximum principle 0
SUPG with maximum principle suppressing flip-flop 0

1.33327E+00
1.17226E+00
1.17226E+00
1.05377E+00
1
1

In order to inspect the solution, the following input file for program SEPPOST may be used:

See manual standard problems, Section 3.1.8.1

seppost conv_shockOl.pst > conv_shockOl.post.out

Reads the files meshoutput and sepcomp.out

# conv_shockOl.pst

#

# linear triangular elements
#

# Shock problem

# To run this file use:
#

#

#

#

postprocessing

plot contour pot_galerkin
3d plot pot_galerkin, angle = 135

# See Users Manual Section 5.2
define colour table (1, 6,7,8,9,10,11,12,13,14,15,20)

plot coloured levels pot_galerkin//

minlevel

plot contour pot_first_order
3d plot pot_first_order, angle = 135

0, maxlevel = 1, nlevel =12

Input file for postprocessing of upwind schemes for 2d convection-diffusion

# make a contour plot of the potential
# 3d plot of potential

# coloured level plot of the potential

plot coloured levels pot_first_order//
minlevel = O, maxlevel = 1, nlevel =12
# coloured level plot of the potential

plot contour pot_doubly
3d plot pot_doubly, angle = 135

# 3d plot of potential

plot coloured levels pot_doubly//
minlevel = O, maxlevel = 1, nlevel =12
# coloured level plot of the potential

plot contour pot_dcl
3d plot pot_dcl, angle = 135

# 3d plot of potential

plot coloured levels pot_dcl//
minlevel = O, maxlevel = 1, nlevel =12
# coloured level plot of the potential

plot contour pot_tri_max
3d plot pot_tri_max, angle = 135

plot coloured levels pot_tri_max//
minlevel = O, maxlevel = 1, nlevel =12
# coloured level plot of the potential

plot contour pot_flip_flop
3d plot pot_flip_flop, angle = 135

plot coloured levels pot_flip_flop//
minlevel = O, maxlevel = 1, nlevel =12
# coloured level plot of the potential

end

# make a contour plot of the potential

# make a contour plot of the potential

# make a contour plot of the potential
# 3d plot of potential

# make a contour plot of the potential
# 3d plot of potential

# make a contour plot of the potential
# 3d plot of potential
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Figure 3.1.7.2: Coloured contour plot of the stable saturation S at 7 =5

L_2norm
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Figure 3.1.7.3: The Lo-norm versus time
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10|

Figure 3.1.7.4: The stream-function ¥, at 7 =15

Figure 3.1.7.5: The velocity field U at 7 =5
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Figure 3.1.7.6:

Coloured contour plot of the stable saturation S at 7 =5

L_2 norm

awn
T

Figure 3.1.7.7: The Lo-norm versus time



EX A comparison of some upwind schemes May 2008 3.1.8.12

@
2
=

Lo t Lof of

Figure 3.1.7.8: The stream-function ¥, at 7 =15

Figure 3.1.7.9: The velocity U at 7 =5
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Figure 3.1.8.1: Definition of region for skew convection
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Figures 3.1.8.2 to 3.1.8.5 show the three-dimensional representations for the solutions of the Galerkin
case, the SUPG case, SUPG with discontinuity capturing and SUPG satisfying the maximum
principle respectively.

s
7=
—

==
4-‘-.—-_—'43\%“
e
LN
REZEEA A
L 777

Figure 3.1.8.4: Discontinuity captur- Figure 3.1.8.5: SUPG, satisfying the
ing maximum principle
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Figures 3.1.8.6 to 3.1.8.9 show coloured contour levels for the same cases, where black defines the
region with values at most equal to 0, and yellow the values larger or equal to 1. All other colours
represent values between.

Mark that the yellow colour in the last picture is due to the plot subroutine; all values in the left
under corner triangle are exactly equal to 1.

Figure 3.1.8.6: Galerkin solution Figure 3.1.8.7: SUPG, first order

Figure 3.1.8.8: Discontinuity captur- Figure 3.1.8.9: SUPG, satisfying the
ing maximum principle
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Table 3.1.8.2 gives these minimum and maximum values for the methods used in case of bilinear

quadrilaterals.

Table 3.1.8.2 Minimum and maximum values of the solution (quadrilaterals)

Type of method

minimum value

maximum value

Galerkin

SUPG first-order

SUPG doubly asymptotic
SUPG discontinuity capturing

-3.38159E-04
-3.64150E-02
-3.64150E-02

0

1.37479E+00
1.09637E~+00
1.09637E+00
1.00003E+00

The result of the discontinuity capturing is reached after 6 iterations. Increasing the accuracy would
lead to a smaller maximum value and more iterations.
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3.1.8.2 Rotating cone problem

In this example we consider the so-called rotating cone problem. Consider the square : (-0.5,-0.5)
x (0.5,0.5) drawn in Figure 3.1.8.10. From the centre to the mid point of the under boundary a

0.5
/N
0
cutting line
-05
-05 0 0.5

Figure 3.1.8.10: Definition of region for rotating cone problem

cut C is defined. We assume that we have to solve the convection-diffusion equation:
—eAc+u-c=0

The parameter ¢ is chosen equal to 107%, which means that we are nearly dealing with pure
convection equation. At the outer boundary we impose the Dirichlet boundary condition ¢ = 0.
The velocity vector u is equal to (—y,z), which implies that the flow rotates around the centroid
counterclockwise. At the inflow side of the cut C the concentration c is given by a Gauss curve:
¢ = cos(2m(y + 0.25)). At the outflow part of the cut C no boundary condition is given, which
means that implicitly the boundary condition % = 0 is imposed.

Due to the small amount of diffusion the Gauss curve should be rotated without any damping and
the value of ¢ at the outflow part of the cut must be nearly identical to that at the inflow part.

To get this example into your local directory use:
sepgetex rotatxx

with xx equal to 01 02 03 or 04.
These options correspond to the following cases:

01 Linear triangular elements
02 Linear triangular elements with limiting
03 Bi-linear quadrilaterals

04 Bi-linear quadrilaterals with limiting
To run these problems use:

sepmesh rotatxx.msh
sepview sepplot.001
seplink rotatxx
rotatxx < rotatxx.prb
seppost rotatxx.pst
sepview sepplot.001
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The mesh input file for the linear triangle case is given by

# rotatOl.msh
#
# mesh file for testing of upwind schemes for 2d convection-diffusion
# linear triangular elements
# See manual standard problems, Section 3.1.8.2
# Rotating cone problem
#
# To run this file use:
# sepmesh rotat0Ol.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
xmin = -0.5 # minimum x-value
xmax = 0.5 # maximum x-value
ymin = -0.5 # minimum y-value
ymax = 0.5 # maximum y-value
integers
n =10 # number of elements along one half of a side
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pl=( zmin, ymin) # Left under point
p2=( xmax, ymin) # Right under point
p3=( xmax, ymax) # Right upper point
p4=( xmin, ymax) # Left upper point
p5=(0,0) # centroid
p10=(0, ymin) # centre of lower side (left part)
p11=(0, ymin) # centre of lower side (right part)
p12=(0, ymax) # centre of upper side
#
# curves
#
curves # See Users Manual Section 2.3
cl = line (p1,pl10,nelm= n) # lower boundary (left part)
c2 = line (p10,p5,nelm= n) cutting line (left part)
c3 = line (p5,pl2,nelm= n) artificial line from centroid to

#
#
# upper boundary
cll = curves(c2,c3) # artificial line from lower boundary to
# upper boundary (left part)
c4 = translate cl (p4,pl2) #
#
#
#

c5 = translate c11(pl,-p4)

upper boundary (left part)

left-hand boundary

the minus sign is used to indicate the end
point
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+H+

c6
c7

line (p11,p2,nelm= n)
translate c11(p2,-p3)

# lower boundary (right part)
# right-hand boundary
# the minus sign is used to indicate the end
# point

c8 = translate c6 (pl2,p3) # upper boundary (right part)
#
#
#

c9 = line (pl1l,p5,nelm= n) cutting line (right part)
c12 = curves(c9,c3) artificial line from lower boundary to
upper boundary (right part)

surfaces

surfaces # See Users Manual Section 2.4
# Linear triangles are used
sl=rectangle3(cl,cl1l,-c4,-c5) # left-hand part
s2=rectangle3(c6,c7,-c8,-c12) # right-hand part

plot # make a plot of the mesh
# See Users Manual Section 2.2

end

Since the velocity and the boundary conditions are a function of the coordinates, we need a main
program.

program rotatO1
--- Main program for testing of upwind schemes for 2d convection-diffusion
linear triangular elements
See manual standard problems, Section 3.1.8.2
Rotating cone problem
call sepcom ( O )
end
--- define velocity as function of the co-ordinates
function funccf ( ichoice, x, y, z )
implicit none
integer ichoice
double precision x, y, z, funccf
if ( ichoice==1 ) then
--—- ichoice =1, u = -y
funccf = -y
else if ( ichoice==2 ) then
—-—- ichoice = 2, v = x

funccf = x

else
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! —--- Other case, should never be possible
funccf = 040
end if
end
! --- define concentration as boundary condition on curve c2
function funcbc ( ichoice, x, y, z )
implicit none
integer ichoice
double precision x, y, z, funcbc

! --— The constant pi is stored in common block consta

include ’SPcommon/consta’

if ( ichoice==1 ) then
! —--- ichoice = 1, ¢ = cos(2pi (y+0.25))
funcbc = cos(2d0*pix*(y+0.25d0))
else
! --- Other case, should never be possible
funcbc = 040
end if
end

The corresponding input file is

+H+

rotatOl.prb

problem file for testing of upwind schemes for 2d convection-diffusion
linear triangular elements

See manual standard problems, Section 3.1.8.2

Rotating cone problem

To run this file use:
sepcomp rotatOl.prb

Reads the file meshoutput
Creates the file sepcomp.out

HOH H H HHHHHEFEHHEH K H K

Define some general constants
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#
constants # See Users Manual Section 1.4
reals
eps = le-6 # diffusion parameter
vector_names
pot_galerkin
pot_first_order
pot_doubly
pot_dcl
pot_tri_max
pot_flip_flop
variables
iupwind
minimum
maximum
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=800 # Type number for second order elliptic equation
# See Standard problems Section 3.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
curves(cl) # Essential boundary conditions on left part
# of lower boundary
curves(c4 to c8) # Essential boundary conditions on all other
# outer boundaries
curves(c9) # Essential boundary conditions on right part
# of cutting line
end

# Define the essential boundary conditions
# See Users Manual Section 3.2.5

essential boundary conditions
curves(c9) func = 1 # At C9 the concentration is a function
end

# Define the coefficients for Convection-diffusion equation
# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters
icoef2 = iupwind # Type of upwind
coef6 = eps # all = eps
coef9 = coef 6 # a22 = eps
coefl12 = func = 1 # u = cos(angle), see subroutine FUNCCF
coef13 = func = 2 # v = sin(angle), see subroutine FUNCCF

end
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# Define the structure of the main program
# See Users Manual Section 3.2.3

structure

# First case: Galerkin solution
# Set essential boundary conditions
prescribe_boundary_conditions pot_galerkin, sequence_number = 1
# Compute the potential, by solving the linear equations
# Set the value of the upwind parameter
iupwind = 0
solve_linear_system, pot_galerkin, seq_solve = 1//
seq_coef =1
# Print minimum and maximum of the solution
minimum = min_max pot_galerkin, scal_max = maximum
print ’Galerkin solution’
print minimum, maximum, text = ’minimum and maximum values’
# Second case: SUPG first-order solution
# Set essential boundary conditions
prescribe_boundary_conditions pot_first_order//
sequence_number = 1
Compute the potential, by solving the linear equations
# Set the value of the upwind parameter
iupwind = 1
solve_linear_system, pot_first_order, seq_solve = 1//
seq_coef =1
# Print minimum and maximum of the solution
minimum = min_max pot_first_order, scal_max = maximum
print ’SUPG first-order solution’
print minimum, maximum, text = ’minimum and maximum values’
# Third case: SUPG doubly assymptotic solution
# Set essential boundary conditions
prescribe_boundary_conditions pot_doubly, sequence_number = 1
# Compute the potential, by solving the linear equations
# Set the value of the upwind parameter
iupwind = 3
solve_linear_system, pot_doubly, seq_solve = 1//
seq_coef =1
# Print minimum and maximum of the solution
minimum = min_max pot_doubly, scal_max = maximum
print ’SUPG doubly assymptotic solution’
print minimum, maximum, text = ’minimum and maximum values’
# Fourth case: SUPG DC1 solution
# Set essential boundary conditions
prescribe_boundary_conditions pot_dcl, sequence_number = 1
# Compute the potential, by solving the non-linear equations
# Set the value of the upwind parameter
iupwind = 7
solve_nonlinear_system, pot_dcl, sequence_number = 1
# Print minimum and maximum of the solution
minimum = min_max pot_dcl, scal_max = maximum
print ’SUPG discontinuity capturing’
print minimum, maximum, text = ’minimum and maximum values’
# Fifth case: SUPG triangular elements with maximum principle

+*
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# Underelaxation is applied

# Set essential boundary conditions
prescribe_boundary_conditions pot_tri_max, sequence_number = 1

# Compute the potential, by solving the non-linear equations

Set the value of the upwind parameter

# The iteration is started with the doubly assymptotic solution
iupwind = 3
solve_nonlinear_system, pot_tri_max, sequence_number = 2

HH*

# Print minimum and maximum of the solution
minimum = min_max pot_tri_max, scal_max = maximum
print ’SUPG triangular elements with maximum principle’

print minimum, maximum, text = ’minimum and maximum values’
# Sixth case: SUPG triangular elements with maximum principle
# suppress flip-flop

# Set essential boundary conditions
prescribe_boundary_conditions pot_flip_flop, sequence_number = 1
# Compute the potential, by solving the non-linear equations
Set the value of the upwind parameter
# The iteration is started with the doubly assymptotic solution
iupwind = 3
solve_nonlinear_system, pot_flip_flop, sequence_number = 3
# Print minimum and maximum of the solution
minimum = min_max pot_flip_flop, scal_max = maximum
print ’SUPG triangular elements with maximum principle, no flip-flop’
print minimum, maximum, text = ’minimum and maximum values’

+*

output
end

# input for non-linear solver

# Input for DC1

nonlinear_equations, sequence_number = 1 # See Users Manual Section 3.2.9
global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//
at_error return
equation 1

fill_coefficients 1
end

# Input for SUPG triangular elements with maximum principle
nonlinear_equations, sequence_number = 2 # See Users Manual Section 3.2.9
global_options, maxiter=10, accuracy=1d-5,print_level=2, lin_solver=1//

at_error return, relaxation = 0.9
equation 1
fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
end

# Input for SUPG triangular elements with maximum principle

# Suppress flip-flop

nonlinear_equations, sequence_number = 3 # See Users Manual Section 3.2.9
global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//
at_error return
equation 1
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£fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
at_iteration 4, sequence_number 3
end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7

change coefficients, sequence_number=1 # input for iteration 2
elgrpl
icoef2 = 9 # triangular elements with maximum principle
end

change coefficients, sequence_number=2 # input for iteration 3
elgrpl
icoef2 = 10 # initialize flip flop array
end

change coefficients, sequence_number=3 # input for iteration 4
elgrpl
icoef2 = 11 # update flip flop array
end

In order to check the behaviour of the method, we have compared the minimum and maximum
values of the solution. This is a measure for the appearance of wiggles.
Table 3.1.8.3 gives these minimum and maximum values for the methods used.

Table 3.1.8.3 Minimum and maximum values of the solution (triangles)

Type of method minimum value | maximum value
Galerkin -6.64338E-02 1.06728E+00
SUPG first-order -1.35177E-02 1.00493E+00
SUPG doubly asymptotic -1.35177E-02 1.00493E+00
SUPG discontinuity capturing 0 1
SUPG with maximum principle 0 1
SUPG with maximum principle suppressing flip-flop 0 1

Both the method with discontinuity capturing and with the maximum principle get a divergence
message after 5 iterations. Carefully playing with underrelaxation may improve this behaviour but
it is hard to get real convergence. The flip-flop method behaves the best in this case, although the
final solution does not have a better quality.

In order to inspect the solution, the following input file for program SEPPOST may be used:

rotatOl.pst
Input file for postprocessing of upwind schemes for 2d convection-diffusion
linear triangular elements
See manual standard problems, Section 3.1.8.2
Rotating cone problem
To run this file use:
seppost rotatOl.pst > rotatOl.post.out

Reads the files meshoutput and sepcomp.out

H OH H H H H HEHHEH
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postprocessing # See Users Manual Section 5.2

define colour table (1, 6,7,8,9,10,11,12,13,14,15,20)
plot contour pot_galerkin # make a contour plot of the potential
3d plot pot_galerkin, angle = 135 # 3d plot of potential
plot coloured levels pot_galerkin//
minlevel = O, maxlevel = 1, nlevel =12
# coloured level plot of the potential
plot contour pot_first_order # make a contour plot of the potential
3d plot pot_first_order, angle = 135 # 3d plot of potential
plot coloured levels pot_first_order//
minlevel = O, maxlevel = 1, nlevel =12
# coloured level plot of the potential
plot contour pot_doubly # make a contour plot of the potential
3d plot pot_doubly, angle = 135 # 3d plot of potential
plot coloured levels pot_doubly//
minlevel = 0, maxlevel = 1, nlevel =12
# coloured level plot of the potential
plot contour pot_dcl # make a contour plot of the potential
3d plot pot_dcl, angle = 135 # 3d plot of potential
plot coloured levels pot_dcl//
minlevel = O, maxlevel = 1, nlevel =12
# coloured level plot of the potential
plot contour pot_tri_max # make a contour plot of the potential
3d plot pot_tri_max, angle = 135 # 3d plot of potential
plot coloured levels pot_tri_max//
minlevel = O, maxlevel = 1, nlevel =12
# coloured level plot of the potential
plot contour pot_flip_flop # make a contour plot of the potential
3d plot pot_flip_flop, angle = 135 # 3d plot of potential
plot coloured levels pot_flip_flop//
minlevel = 0, maxlevel = 1, nlevel =12
# coloured level plot of the potential

end
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EX

Figures 3.1.8.11 to 3.1.8.14 show the three-dimensional representations for the solutions of the
Galerkin case, the SUPG case, SUPG with discontinuity capturing and SUPG satisfying the max-
imum principle respectively. From these pictures it is clear that the non-linear methods do not
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Figure 3.1.8.11: Galerkin solution Figure 3.1.8.12: SUPG, first order
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Figure 3.1.8.13: Discontinuity captur- Figure 3.1.8.14: SUPG,ﬂsat;sfying the
maximum principle and flip-flop

ing
have values below 0 and above 1, but that the value of the concentration at the cutting line at
outflow is considerably smaller than 1. So these methods suffer from crosswind diffusion.
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Figures 3.1.8.15 to 3.1.8.18 show coloured contour levels for the same cases, where black defines the
region with values at most equal to 0, and yellow the values larger or equal to 1. All other colours
represent values between.

Figure 3.1.8.15: Galerkin solution Figure 3.1.8.16: SUPG, first order

Figure 3.1.8.17: Discontinuity captur- Figure 3.1.8.18: SUPG, satisfying the
ing maximum principle and flip-flop
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Table 3.1.8.4 gives these minimum and maximum values for the methods used in case of bilinear

quadrilaterals.

Table 3.1.8.4 Minimum and maximum values of the solution (quadrilaterals)

Type of method

minimum value

maximum value

Galerkin

SUPG first-order

SUPG doubly asymptotic
SUPG discontinuity capturing

-2.81864E-02
-7.26277E-03
-7.26277E-03

0

1.03667E-+00
1.00024E+00
1.00024E+00

1

The result of the discontinuity capturing is reached after 6 iterations, in which case divergence is
discovered. However, the quality of the result is comparable with the triangular mesh.
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3.1.9 Some examples of the use of periodical boundary conditions

In this section we give a number of artificial examples, to show the various possibilities of the use
of periodical boundary conditions. It concerns the following possibilities

3.1.9.1 Standard periodical boundary conditions
3.1.9.2 Periodical boundary conditions with jump

3.1.9.3 Periodical boundary conditions with multiplication factor

3.1.9.1 Standard periodical boundary conditions

In order to get this example into your local directory use:
sepgetex testperiod06
To run this example use

sepmesh testperiod06.msh

view mesh by jsepview

seplink testperiod06
testperiod06 < testperiodO6.prb
view results by jsepview

In this example we consider the following artificial problem.

Let €2 be the unit square ((0,1) x (0,1)).

Let T satisfy the standard Laplace equation, i.e —AT = 0.

On the lower boundary (y = 0) and the upper boundary (y = 1), we prescribe the temperature T'
by T(x,y) = sin(2rz) (Dirichlet boundary condition).

Furthermore on the left-hand and the right-hand side we assume periodical boundary conditions,

_ T _ T
hence Tjgpe = Tijgp, and o left = %hﬁight'
The equation itself is standard, and so are the Dirichlet boundary conditions. The periodical
boundary conditions, however, require so-called connection elements, which identify unknowns on
left-hand side and right-hand side. This coupling of unknowns is actually carried out if elements of

type -1 are used.
The mesh file used in this case is:

testperiod06.msh
mesh file for 2d periodical boundary conditions problem
See testperiod06.prb and the manual Examples Section 3.1.9

for a description

To run this file use:
sepmesh testperiod06.msh

Creates the file meshoutput

Define some general constants

H OH H H H H HHHHHEH K

constants # See Users Manual Section 1.4
reals
width = 1 # width of the region
length =1 # length of the region
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# number of elements in length direction
# number of elements in width direction

o
[O2 0

# Linear elements along curves
# Bi-linear quadrilaterals in surfaces

# See Users Manual Section 2.2

# See Users Manual Section 2.2
# Left under point

p2=( length,0)

p3=( length, width)

# Right under point
# Right upper point

# Left upper point

# See Users Manual Section

shape_cur
shape_cur
shape_cur
shape_cur

(p1,p2,neln=
(p2,p3,nelm=
(p3,p4,nelm=
(p4,pl,nelm=

n)
m)
n)
m)

#

#
#
#

# See Users Manual Section

integers
n = 40
m = 10
shape_cur =
shape_sur
end
#
# Define the mesh
#
mesh2d
#
# user points
#
points
p1=(0,0)
p4=(0, width)
#
# curves
#
curves
cl=line
c2=line
c3=line
c4=line
#
# surfaces
#
surfaces
sl=rectangle
plot
end

shape_sur (cl1,c2,c3,c4)

2.3

lower wall
right-hand side
upper wall
left-hand side

2.4

# make a plot of the mesh
# See Users Manual Section 2.2

Since the boundary conditions depend on the coordinates, we need a main program to define the
function.

program testperiod06
implicit none

--- File for

for a description

call startsepcomp

end

2d periodical boundary conditions problem
See testperiodO6.prb and the manual Examples Section 3.1.9

--— Function funcbc for the essential boundary conditions

function funcbc ( ichoice, x, y, z )

implicit none
integer ichoice
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double precision x, y, z, funcbc
include ’SPcommon/consta’ ! Contains the value of pi

if ( ichoice==1 ) then

—-—- ichoice = 1, standard case
funcbc = sin(2d0*pixx)

else

—-— ichoice # 1, error
call eropen(’funcbc’)
call errint(ichoice,1)
call errsub ( 1, 1, 0, 0)
call erclos(’funcbc’)
call instop
funcbc = 0dO

end if

end

The input file for the computational part is standard. The only special part is the definition of the
periodical boundary conditions.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

testperiod06.prb

problem file for 2d periodical boundary conditions problem
See manual Examples Section 3.1.9

The problem to be solved consist of a square of size 1x1:
S: (0,00 x (1,1)

The equation to be solved is the standard Laplacian equation

The boundary conditions at lower and upper wall are given by sin(2 pi x)

On the left-hand and right-hand sides we have periodical boundary conditions,
hence

T_left = T_right

dT/dx_left =d T/dx_right

To run this file use:
sepcomp testperiodO6.prb

Reads the file meshoutput
Creates the file sepcomp.out

# Define some general constants
#
constants # See Users Manual Section 1.4

reals
kappa =1 # conductivity
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vector_names

Temperature
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=800 # Type number for second order elliptic equation
# See Standard problems Section 3.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
curves(cl) # Fixed under wall
curves(c3) # Fixed upper wall

periodical_boundary-conditions
curves(c2,-c4)
end
#
# Define the structure of the problem
# 1In this part it is described how the problem must be solved
#
structure # See Users Manual Section 3.2.3
matrix_structure symmetric
# Compute the temperature
prescribe_boundary_conditions, vector = Temperature func=1, curves(cl)
prescribe_boundary_conditions, vector = Temperature func=1, curves(c3)
solve_linear_system, vector = Temperature
print Temperature
plot_colored_levels Temperature
output
end
# Define the coefficients for the problems
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients
elgrpl
coef6 = kappa # 6: Heat conduction
coef9 = coefb # 9: Heat conduction
end

end_of_sepran_input

Figure 3.1.9.1.1 shows the computed temperature.

3.1.9.2 Periodical boundary conditions with jump

The second example is almost identical to the first one, with the exception of the boundary con-
ditions. The Dirichlet boundary conditions in this case are T' = x and in the periodical boundary
conditions we have a jump of size 1, hence Tright = et + 1, and g%”right = %‘lef‘c'

In order to get this example into your local directory use:



EX Periodical boundary conditions January 2013 3.1.9.5

Figure 3.1.9.1: Coloured contour plot of Temperature

sepgetex testperiod07
To run this example use

sepmesh testperiod07.msh

view mesh by jsepview

seplink testperiod07
testperiod07 < testperiodO7.prb
view results by jsepview

The mesh file in this case is identical to that in Subsection 3.1.9.1.1, except that in the connection
elements c2 and c4 are interchanged. The fortran file requires an extra function func to define the
exact solution. The problem file is a little bit different because of the jump and since the exact
solution is compared with the computed one. The error is printed. The error appears to be of the
order of the machine precision. Also the postprocessing file is the same as for the first example.
For completeness we give the problem file.

testperiod07.prb

problem file for 2d periodical boundary conditions problem
See manual Examples Section 3.1.9

The problem to be solved consist of a square of size 1x1:
S: (0,0) x (1,1)

#
#
#
#
#
#
#
#
# The equation to be solved is the standard Laplacian equation

# The boundary conditions at lower and upper wall are given by x

# On the left-hand and right-hand sides we have periodical boundary conditions.
# Special in this case is that there is constant jump of size 1 between

# right-hand side and left-hand side, hence

# T_right = T_left + 1

# dT/dx_left =d T/dx_right

#

#

#

#

#

#

One can verify that the exact solution is given by T = x
To run this file use:

sepcomp testperiodO7.prb

Reads the file meshoutput
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# Creates the file sepcomp.out

#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
kappa =1 # conductivity
vector_names
Temperature
T_exact
variables
error
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=800 # Type number for second order elliptic equation
# See Standard problems Section 3.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
curves(cl) # Fixed under wall
curves(c3) # Fixed upper wall
periodical_boundary-conditions
curves(c4,-c2) constant = 1
end
#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Define the structure of the large matrix
matrix_structure symmetric

# Compute the Temperature
prescribe_boundary_conditions, Temperature func=1, curves(cl)
prescribe_boundary_conditions, Temperature func=1, curves(c3)
solve_linear_system, Temperature

# Create the exact solution
create_vector T_exact func=1

# Compute and print the error
error = norm_dif=3, vectorl= Temperature, vector2= T_exact
print error

# Write the results to a file
output
plot_colored_levels Temperature

end

# Define the coefficients for the problems
# All parameters not mentioned are zero
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# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients
elgrpl
coef6 = kappa # 6: Heat conduction
coef9 = coefb6 # 9: Heat conduction
end

end_of_sepran_input

3.1.9.3 Periodical boundary conditions with multiplication factor

exception of the boundary conditions and the right-hand side. The Dirichlet boundary conditions
in this case are T' = 3 + 42 — 22 and in the periodical boundary conditions we have a multiplication
factor of size 2, hence

_ aT _ T
Thight = 2Tleft> and 2G5 light = 3 lleft-
Furthermore the source term in the Poisson equation is equal to 2, hence we solve —AT = 2.

In order to get this example into your local directory use:
sepgetex testperiod09
To run this example use

sepmesh testperiod(09.msh

view mesh by jsepview

seplink testperiod09
testperiod09 < testperiod09.prb
view results by jsepview

The mesh file in this case is identical to that in Subsection 3.1.9.2.2. The fortran file requires an
extra function func to define the exact solution. The problem file is a little bit different because of
the multiplication factor and the source term.

Mark that in this case the multiplication factor in the boundary condition in combination with the

requirement 2%|right = aa%heft make the boundary condition periodical.

The error appears to be of the order of the machine precision. Also the postprocessing file is the
same as for the first example. For completeness we give the problem file.

testperiod09.prb

problem file for 2d periodical boundary conditions problem
See manual Examples Section 3.1.9

The problem to be solved consist of a square of size 1x1:
S: (0,0) x (1,1)

The boundary conditions at lower and upper wall are given by x

On the left-hand and right-hand sides we have periodical boundary conditions.
Special in this case is that there is multiplication factor of size 2 between
right-hand side and left-hand side, hence

T_right = 2 T_left

Furthermore the derivatives are different

#
#
#
#
#
#
#
#
# The equation to be solved is the standard Poisson equation with rhs 2
#
#
#
#
#
#
# dT/dx_left = 2 d T/dx_right
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#
# One can verify that the exact solution is given by T = 3+4x-x"2
# To run this file use:
# sepcomp testperiod09.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
kappa =1 # conductivity
vector_names
Temperature
T_exact
variables
error
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=800 # Type number for second order elliptic equation
# See Standard problems Section 3.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
curves(cl) # Fixed under wall
curves(c3) # Fixed upper wall
periodical_boundary-conditions
curves(c4,-c2) factor = 2
end
#

# Define the structure of the problem
# In this part it is described how the problem must be solved
#
structure # See Users Manual Section 3.2.3
# Define structure of matrix
matrix_structure, symmetric
# Compute the Temperature
prescribe_boundary_conditions, Temperature, func=1, curves(cl,c3)
solve_linear_system, Temperature
# Create the exact solution
create_vector T_exact func=1
# Compute and print the error
error = norm_dif=3, vectorl=Temperature, vector2=T_exact
print error
# Write the results to a file
output
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end

# Define the coefficients for the problems
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients
elgrpl
coef6 = kappa # 6: Heat conduction
coef9 = coefb # 9: Heat conduction
coefl6 = 2 # 16: Source term
end

end_of_sepran_input
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3.1.10 Some examples of the use of periodical boundary conditions to
connect two regions

In this section we give a number of artificial examples, to show how periodical boundary conditions
can be used to connect two regions through boundary conditions.
It concerns the following possibilities

3.1.10.1 Standard periodical boundary conditions

3.1.10.2 Periodical boundary conditions with multiplication factor

3.1.10.1 Standard periodical boundary conditions

In order to get this example into your local directory use:
sepgetex testperiod03
To run this example use

sepmesh testperiod03.msh

view mesh by jsepview

seplink testperiod03
testperiod03 < testperiod03.prb
view results by jsepview

In this example we consider the following artificial problem.

Let £ be the unit square ((0,1) x (0,1)) and 5 be the unit square ((1,1) x (2,1))

Let T satisfy the diffusion equation with different diffusion parameters x in each region, i.e — div k1 VT =
0in Q7 and — div ko VT =0 in Qs.

On the lower boundary (y = 0) and the upper boundary (y = 1), as well as the left-hand side of
Q; and the right-hand side of 29 we prescribe the temperature T' by T'(x,y) = sin(2nz) (Dirichlet
boundary condition).

Furthermore we assume that both regions which have separate boundaries for x = 1 are coupled
through coupling conditions. The number of coupling conditions must be the same as for periodical
boundary conditions. Since we are dealing with a second order equation with one unknown it is
necessary to prescribe exactly one condition on each boundary. This means that on the connecting
boundary we need two boundary conditions (one for each curve).

The boundary conditions we prescribe are continuity of T and that the flux that goes from € is
equal to the flux that enters (25 through the curves at = = 1.

So if the curves at x = 1 are defined as Cleft and Cright, actually the boundary condition is defined
as T(eft = TCright and ”1%|Clef‘c = ”2%|Cright' These are exactly the periodical boundary
conditions

The equation itself is standard, and so are the Dirichlet boundary conditions. The periodical bound-
ary conditions, however, require so-called connection elements, which identify unknowns on Cleft
and Cright. This coupling of unknowns is actually carried out if elements of type -1 are used.

The mesh file used in this case is:

testperiod03.msh

mesh file for 2d periodical boundary conditions problem
# See testperiod03.prb for a description

# To run this file use:
# sepmesh testperiod03.msh
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width of the region

# See Users Manual Section 1.4

length of the first subregion
length of the second subregion

number of elements in length direction
number of elements in width direction
Linear elements along curves

Bi-linear quadrilaterals in surfaces

Left under point

#

# Right under point
# Right upper point
#

Left upper point

# See Users Manual Section 2.2

# See Users Manual Section 2.2

# Left under point
# Right under point
h)  # Right upper point

(p1,p2,nelm= n)
(p2,p3,nelm= m)
(p3,p4,nelm= n)
(p4,pl,nelm= m)

(p11,p12,nelm=
(p12,p13,nelm=
(p13,pl4,nelm=
(p14,pll,nelm=

#
# Creates the file meshoutput
#
# Define some general constants
#
constants
reals
width = 1 #
length =1 #
length2 = 2 #
integers
n = 20 #
m = 10 #
shape_cur = 1 #
shape_sur = 5 #
end
#
# Define the mesh
#
mesh2d
#
# user points
#
points
# subregion 1
p1=(0,0)
p2=( length,0)
p3=( length, width)
p4=(0, width)
# subregion 2
pli=( length,0)
p12=( length2,0)
p13=( length2, widt
pl4=( length, width)
#
# curves
#
curves
# subregion 1
cl=line shape_cur
c2=1line shape_cur
c3=1line shape_cur
c4=1line shape_cur
# subregion 2
cll=1line shape_cur
cl12=1ine shape_cur
c13=1ine shape_cur
cl4=1ine shape_cur
#
# surfaces
#
surfaces # See

# subregion 1
sl=rectangle
# subregion 2

n)
m)
n)
m)

# See Users Manual Section

H B H H

# Left upper point

2.3

lower wall
right-hand side
upper wall
left-hand side

# lower wall
# right-hand side
# upper wall
# left-hand side

Users Manual Section 2.4

shape_sur (c1,c2,c3,c4)
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s2=rectangle shape_sur (cl1,c12,c13,c14)

# Coupling of surfaces to element groups

meshsurf
selml = si
selm2 = s2
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

Since the boundary conditions depend on the coordinates, we need a main program to define the
function.

program testperiod03
implicit none

! --- File for 2d periodical boundary conditions problem
! See testperiod03.prb and the manual Examples Section 3.1.10

! for a description

call startsepcomp
end

! --— Function funcbc for the essential boundary conditions
function funcbc ( ichoice, x, y, z )
implicit none
integer ichoice
double precision x, y, z, funcbc
include ’SPcommon/consta’ ! Contains the value of pi
if ( ichoice==1 ) then
! --— ichoice = 1, Omega_1
funcbc = sin(2d0*pi*x)
else if ( ichoice==3 ) then
! —--- ichoice = 3, Omega_2
funcbc = sin(2d0*pi*x)
else
! —--- ichoice # 1,3: error
call eropen(’funcbc’)
call errint(ichoice,1)
call errsub ( 1, 1, 0, 0)
call erclos(’funcbc’)

call instop
funcbc = 040
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end if
end
! —--— Function func for the creation of the exact solution
function func ( ichoice, x, y, z )
implicit none
integer ichoice
double precision x, y, z, func, funcbc
func = funcbc ( ichoice, x, y, z )

end

The input file for the computational part is standard. The only special part is the formed by the
definition of the periodical boundary conditions.

testperiod03.prb

problem file for 2d periodical boundary conditions problem
See manual Examples Section 3.1.10

The problem to be solved consist of two squares of size 1x1:
S1: (0,0) x (1,1)
s2: (1,0) x (2,1)

The squares are connected by connection elements

In S1 the solution of the diffusion equation is: T
In S2 the solution of the diffusion equation is: T

sin(2 pi x)
sin(2 pi x)

The coefficients for the diffusion equation are different for both squares

To run this file use:
sepcomp testperiod03.prb

Reads the file meshoutput
Creates the file sepcomp.out

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
# Define some general constants
#

constants # See Users Manual Section 1.4
reals
kappa_1 =1 # conductivity in S1
kappa_2 = # conductivity in S2
vector_names
Temperature
end

#
# Define the type of problem to be solved
#
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problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=800 # Type number for second order elliptic equation
# See Standard problems Section 3.1
elgrp2=800 # Type number for second order elliptic equation
# See Standard problems Section 3.
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
curves(cl) # Fixed under wall S1
curves(c3) # Fixed upper wall S1
curves (c4) # left-hand side S1
curves(cl11) # Fixed under wall S2
curves(cl13) # Fixed upper wall S2
curves(c12) # left-hand side S2
# All not prescribed boundary conditions

# satisfy corresponding stress is zero
periodical_boundary_conditions
curves(c2,-c14)
end
#
# Define the structure of the problem
# In this part it is described how the problem must be solved
#
structure # See Users Manual Section 3.2.3
# Compute the temperature
prescribe_boundary_conditions, Temperature &
degfdl, func=1, curves(cl to c4)
prescribe_boundary_conditions, Temperature &
degfdl, func=3, curves(cll to cl14) # curve cl4 has no effect
solve_linear_system, Temperature
print Temperature
plot_colored_levels Temperature
# Write the results to a file
output
end

# Define the coefficients for the problems
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients
elgrpl
coef6 = kappa_1l # 6: Heat conduction
coef9 = coefb # 9: Heat conduction
elgrp2
coef6 = kappa_2 # 6: Heat conduction
coef9 = coefb # 9: Heat conduction
end

end_of_sepran_input

Figure 3.1.10.1.1 shows the computed temperature.
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Figure 3.1.10.1: Coloured contour plot of Temperature

3.1.10.2 Periodical boundary conditions with multiplication factor

The second example is almost identical to the first one, with the exception of the boundary condi-
tions. The Dirichlet boundary conditions in this case are T = y in Q1 and T' = 2y in Q5. In the
periodical boundary conditions we have a multiplication factor of size 2, hence

_ or _ . aT
Tright = 2T}eft, and 2“2%|right = K1 lleft-

In order to get this example into your local directory use:
sepgetex testperiod02
To run this example use

sepmesh testperiod02.msh

view mesh by jsepview

seplink testperiod02
testperiod02 < testperiod02.prb
view results by jsepview

The mesh file in this case is identical to that in Subsection 3.1.10.1.1 The fortran file requires an
extra function func to define the exact solution. The problem file is a little bit different because of
the multiplication factor, the source term and the symmetry.

Mark that in this case the matrix is symmetrical due to the multiplication factor in the periodical
boundary condition in combination with the requirement 2&22—5 |right = “1g—g|left'

The error appears to be of the order of the machine precision. Also the postprocessing file is the
same as for the first example. For completeness we give the problem file.

testperiod02.prb

problem file for 2d periodical boundary conditions problem
problem is stationary and linear

The problem to be solved consist of two squares of size 1x1:
S1: (0,0) x (1,1

#
#
#
#
#
#
#
# S2: (1,0) x (2,1)
#
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# The squares are connected by connection elements
#
# In S1 the solution of the laplacian equation is: T =y
# In S2 the solution of the laplacian equation is: T = 2y
# Hence in the common interface we have a multiplication factor of 2 for T
#
# The coefficients for the diffusion equation are different for both squares
# In this case we use the symmetric solution method
#
# To run this file use:
# sepcomp testperiod02.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
kappa_1 =1 # conductivity in S1
kappa_2 = 2 # conductivity in S2
vector_names
Temperature
T_exact
variables
error
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types Define types of elements,
See Users Manual Section 3.2.2
elgrp1=800 Type number for double laplacian equation
See Standard problems Section 3.5
elgrp2=800 Type number for double laplacian equation
See Standard problems Section 3.5
the multiplication factor 2
may be used for connection elements only
essbouncond Define where essential boundary conditions are

given (not the value)
See Users Manual Section 3.2.2
Fixed under wall
Fixed side walls and instream boundary
inflow
Fixed under wall
Fixed side walls and instream boundary
Outstream boundary (v-component given)
A1l not prescribed boundary conditions
# satisfy corresponding stress is zero

periodical_boundary-conditions

curves(c2,-c14) degfdl, constant = 0, factor = 2 # The jump is O,

curves(cl)
curves(c3)
curves(c4)
curves(c11)
curves(c13)
curves(c12)

H o H H H H HHHHHHHEHHHEHH
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end

#

#
structure

matrix_structure, symmetric

# the multiplication factor 2

# See Users Manual Section 3.2.3
# Define structure of matrix

# Compute the Temperature (vector 1)

prescribe_boundary_conditions, Temperature, func=1, curves(cl to c4)

# curve c2 has no effect

prescribe_boundary_conditions, Temperature, func=3, curves(cll to c14)

# curve cl4 has no effect
T_exact degfdl, func=1, surface(sl)
T_exact degfdl, func=3, surface(s2)
Temperature

error = norm_dif=3, vectorl= Temperature, vector2= T_exact

plot_colored_levels Temperature
# Write the results to a file

create_vector vector=
create_vector vector=
solve_linear_system,

output
print error
end

# Define the coefficients for the problems (first iteration)
# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients
elgrpl
coef6 = kappa_1
coef9 = coefb
elgrp2
coef6 = kappa_2
coef9 = coefb
end

end_of_sepran_input

H #*

H H=
Nele))

O »

Heat
Heat

Heat
Heat

conduction
conduction

conduction
conduction
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3.1.11 Experiments with the shifted Laplace operator to solve the real
Helmholtz equation

The Helmholtz equation is usually the result of putting solution of the form e** into the wave
equation, where k is the wave number. A simple example a such a Helmholtz equation is given by

—Ap—K*p=Ff (3.1.11.1)

If k is large, the corresponding discretization matrix is indefinite. As a result, iterative linear solvers
do not converge, or converge very slowly.

A possibility to improve the convergence of such a solver is the use of a so-called shifted Laplace
preconditioner. This preconditioner is not based on the original equation (3.1.11.1), but on the
following shifted equation

—A¢+ Bk*¢p = f, (3.1.11.2)

with 8 some non-negative parameter.

The corresponding matrix is positive definite and hence the construction of an ILU preconditioner
based on this matrix does not introduce any difficulties. It appears that this shifted Laplace ILU
preconditioner may improve the convergence of iterative methods considerably for a well chosen
value of 8. Mark that § = —1 corresponds to a standard ILU preconditioner.

In this section we solve Equation (3.1.11.1) on the domain Q = [0, 1]? with boundary conditions
¢ = 0 everywhere. The function f is chosen equal to —(k? — 572)sin(7z)sin(27y).

To get this example into your local directory use:
sepgetex helmholtzlx

with x equal to 1 or 2, where 1 refers to the classical method and 2 to the shifted Laplace precon-
ditioner. and to run it use:

sepmesh helmholtzlx.msh
seplink helmholtzlx
helmholtzlx < helmholtzlx.prb

The input file for the mesh is very simple:

# helmholtzll.msh
#
# mesh file for the example as described in Section 3.1.11 of
# the manual Examples
#
# To run this file use:
# sepmesh helmholtz1l.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
integers
n = 50
reals
width = 1 # width of the region
heigth =1 # heigth of the region
end

#
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# Define the mesh

#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0)
p2=(width,0)
p3=(width,heigth)
p4=(0,heigth)
#
# curves
#
curves # See Users Manual Section 2.3
cl = line (pl1,p2,nelm=n)
c2 = line (p2,p3,nelm=n)
c3 = line (p3,p4,nelm=n)
c4 = line (p4,pl,nelm=n)
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl = rect3 (c1,c2,c3,cd)
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

It is clear that linear triangles are used. To compute the real error made by the iterative solver, we
first solve the equations by a direct solver (profile method) and afterwards by the iterative solver
and subtract both solutions to get the error. In case of helmholtz11 we use BICGSTAB as solver
with ILU preconditioner. The required accuracy is 10~* and by setting the print level to 2, we are
able to follow the convergence of the iteration process.

The corresponding input file is:

helmholtzll.prb

problem file for the example as described in Section 3.1.11 of

the manual Examples

The Helmholtz equation is solved by a BiCgstab method with ILU preconditioner

sepcomp helmholtzll.prb

Reads the file meshoutput

#

#

#

#

#

#

# To run this file use:
#

#

#

# Creates the file sepcomp.out
#

#

set warn off # suppress warnings

#

# Define some general constants

i

constants # See Users Manual Section 1.4

reals
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beta = -k~2
vector_names
potential
potex
diff
variables
error
end
#

# permeability
wave number

H+

# coefficient for the zeroth order term

H*

solution of the iterative solver
solution computed by the direct solver

# difference between potential and poted

# error made by the iterative solver

# Define the type of problem to be solved

#
problem

types
elgrpl = (type=800)
essbouncond

curves (cl to c4)
end

# See Users Manual Section 3.2.2

Define types of elements,

given (not the value)

H OoH H O HHHH

whole boundary

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix, sequence_number = 1
storage_scheme = profile

end

matrix, sequence_number = 2
storage_scheme = compact

end

See Users Manual Section 3.2.2

Type number for Poisson equation

See Standard problems Section 3.1

Define where essential boundary conditions are

See Users Manual Section 3.2.2

# storage scheme for the direct solver

# storage scheme for the iterative solver

Constant permeability
Constant permeability
coefficient for the zeroth order term, defined

#
# The coefficients for the differential equation
# All parameters not mentioned are zero
#
#
coefficients
elgrpl
coef 6 = mu #
coef 9 = coef 6 #
coefld = beta #
# by the wave number
coefl6 = func=1 #
end
#

# Linear solver
# See Users Manual, Section

1

solve, sequence_number
# no input required

end

solve, sequence_number = 2

3.2.8

use direct method

See Users Manual Section 3.2.6 and Standard problems Section 3.1

the right-hand side is a function of space

! use iterative method (bicgstab with ILU precon)
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iteration_method = cg, preconditioner = ilu, print_level = 2, eps = 1d-4
end

structure
# First we compute potex by a direct solver

prescribe_boundary_conditions potex ! no input required, since the value is O
solve_linear_system potex ! computes potex

# next we compute potential by the iterative solver
# It is necessary to change the structure of the matrix

change_structure_of_matrix, seq_structure = 2

prescribe_boundary_conditions potential ! no input required
solve_linear_system potential, seq_solve = 2 ! computes potential
diff = potential - potex ! difference between both
error = norm=3, diff I norm of difference

print error
end

end_of_sepran_input

Since the right-hand side is a function of x and y we need a function subroutine funccf and hence
a main program helmholtz11, given by:

program helmholtzll
! --- Standard main program

implicit none
integer, allocatable, dimension (:) :: ibuffr
integer pbuffr, error
parameter ( pbuffr=100000000)
allocate(ibuffr(pbuffr), stat = error)
if (error /= 0) then
! space for these arrays could not be allocated
print *, "error: (helmholtzll) could not allocate space."

stop
end if ! (error /= 0)
call sepcombf ( ibuffr, ibuffr, pbuffr )
end

! --- Function funccf is used to define the right-hand side

function funccf ( ichoice, x, y, 2z )
implicit none
integer ichoice
double precision x, y, z, funccf
include ’SPcommon/consta’
double precision k, getconst
k = getconst(’k’)
if ( ichoice==1 ) then
funccf = -(kx*2-5xpi**2)*sin(pi*x)*sin(2d0*pix*y)
else
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call errchr(’funccf’,1)
call errsub ( 349, 0, 0, 1)
call instop

end if

end

For the shifted Laplace operator we can use the same mesh file and program. The problem files

changes only in the matrix input block and the solve input block. Below we give the changed input
blocks:

matrix, sequence_number = 2

storage_scheme = compact, shifted_laplace # storage scheme for the iterative solver
end

solve, sequence_number = 2 ! use iterative method (bicgstab with ILU precon)
iteration_method = cg, preconditioner = ilu, print_level = 2, eps = 1d-4 //
laplace_shift = 1
end

Table (3.1.11.1) shows the number of iterations required to solve Equation (3.1.11.2) by a standard
Bi-Cgstab method, and for the shifted preconditioner for a shift equal to zero and one equal to one.
The number of nodes is equal to n?, where n takes the values 50, 100 and 150. The wave number,
k, varies from 10 to 40. A dash in the column means that the iteration process does not converge.
From the table it is clear that the gain for the shifted Laplace preconditioner is large for the com-
bination large wave number and smaller number of elements. Increasing the number of nodes, or

decreasing the wave number increases the condition of the matrix and makes it more suitable for
standard iterative solvers.

Table 3.1.11.1 Number of iterations for several values of the shift

Bi-CGstab shift 0 shift 1

n 50 | 100 | 150 || 50 | 100 | 150 || 50 | 100 | 150
k|10 38 | 60 | 84 | 44| 54 | 84 || 44 | 56 | 80
20| 72 | 56 | 62 || 60 | 58 | 58 || 58 | 62 | 50
30| 236 | 48 | 30 || 58| 36 | 32 || 32| 28 | 36
40 - 64 | 30 || 44| 32 | 24 || 16| 22 | 20
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3.2 Second order complex linear elliptic and parabolic equations with
one degree of freedom

In this section we treat the following examples of real elliptic and parabolic equations with one
degree of freedom.

3.2.1 An artificial mathematical example, just to show how to solve a complex elliptic equation.

3.2.2 Experiments with the shifted Laplace operator to solve the complex Helmholtz equation.

3.2.1 An artificial mathematical example

A simple model for wind generated movements in a harbor using a complex potential approach, is
given by the model equation:

A¢p+ K2 + ~ikd = 0 (3.2.1.1)
with
w2
k? =,
w= 2,

g the acceleration of gravity,
h the depth of the harbor,
~ the friction coefficient and

T the wave period.

It has been assumed that the depth of the harbor is uniform and that the wave period T is rather
large; T > 15 seconds.

To get this example into your local directory use:
sepgetex exam3-2-1
and to run it use:

sepmesh exam3-2-1.msh
seplink exam3-2-1
exam3-2-1 < exam3-2-1.prb
seppost exam3-2-1.pst

We consider a very simple model of a rectangular harbor: 0 <z < L, 0 <y < B.
Figure 3.2.1.1 shows a sketch of the harbor with corresponding definition of points and curves.

In this problem we shall use the following data:

L = 2000 m
B =690 m

g =9.81 m/s?
T=112s

w = 0.056 s~!
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Figure 3.2.1.1: Harbor with fixed boundaries C1-C5, C7, C8 and open boundary C6

h=15m

For a unique solution of the problem it is necessary to give boundary conditions for all boundaries.
Suppose that the incoming waves have an angle of incidence of 270° to the entrance of the harbor
and assume that all closed boundaries of the harbor give total reflection, i.e. % = 0.

Assume that an essential boundary condition of the form ¢ = e (zcos(@)+ysin(a) ig oiven at the open

boundary, with « the angle of incidence, and (z,y) the Cartesian co-ordinates.

The region is subdivided into triangles by the submesh generator "TRECTANGLE”. As an example
linear triangles have been used.

SEPMESH needs an input file. An example of an input file for this region is given below:

KKK KKK KKK KKK KK KKK KKK KKK K S KKK ok ok KK KKK ok KoK KKK oK ok KK KKK K o

File: exam3-2-1.msh

Contents: Mesh for the example 3-2-1 in the manual examples

* ¥ X X *

3k >k >k K 3K 3K 3K 3K 5k 5k 3k 5k 5k 5k 5k %k 5k >k 5K 3k 5K 3k 3k 5k 5k 3k 5k 5k 5k %k %k 3K 3K 3K 5K 3K 3k 3k 5k 5k 5k 5k 5K %K K 3K 3K 5K 5K 3k 3k 5k 5k 5k 5k 5k %k % 3K 3K 3K 5K 5k 5k %k %k %k >k >k %k Xk Xk K K >k >k >k k

*
mesh2d
points
pl = ( -427.5 , 0)
p2 = ( -41.5 , 0)
p3=( 425, 0)
p4 = ( 1642.5 , 0 )
p5s = ( 1642.5 , 690 )
p6 = (. 41.5 , 690 )
p7 = ( -42.5 , 690 )
p8 = ( -427.5 , 690 )
curves
cl = linel ( p1, p2, nelm=2 )
c2 = linel ( p2, p3, nelm=2 )
c3 = linel ( p3, p4, nelm=6 )
c4 = linel ( p4, p5, nelm=6 )
c5 = linel ( p5, p6, nelm=6 )
c6 = linel ( p6, p7, nelm=2 )
c7 = linel ( p7, p8, nelm=2 )
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c8 = linel ( p8, pl, nelm=6 )
c9 curves ( cl, c2, c3 )
c10= curves ( c5, c6, c7 )
surfaces
sl = rectangle3 ( c9, c4, c10, c8 )
plot ( plotfm=10 )
end

Figure 3.2.1.2 shows the mesh generated by SEPMESH.

Figure 3.2.1.2: Plot of mesh generated by SEPMESH

The internal elements are defined by type number 150. Only the coefficients 1, 3 and 6 have to be
defined; 1 and 3 get the value 1, § is a function defined by the subroutine cfuncf.

The boundary conditions at side C6 are essential boundary conditions, the boundary conditions at
the other sides are natural boundary conditions requiring no boundary elements at all. Since in this
case it is necessary to define a function subroutine for the coefficient 8 and the essential boundary
condition, it is not possible to use the standard program SEPCOMP. We shall give here the simple
program based upon sepcomp and extended with the subroutines CFUNCF and CFUNCB.

First we give the program that is based upon SEPCOMP. The main program consists only of a call
to SEPCOM. The listing for this program is given by:

>k 5k 3k 5k 5k ok ok 5k 5k >k >k >k %k >k >k >k >k 5k 5k 5k 5k 5k >k >k %k >k %k %k >k >k >k 5k 5k 5k 5k >k >k >k >k %k %k >k >k >k >k 5k 5k 5k %k %k >k >k >k %k >k >k >k >k >k >k 5k 5k >k >k >k >k >k %k %k >k >k >k >k >k >k >k

File: exam3-2-1.f

in the SEPRAN manual examples 3-2-1
Waves in harbour
Since a function subroutine is used for the solution,

]

!

!

!

! Contents: Main program for the test example described
!

!

!

! it is not possible to use sepcomp

]
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Usage: Compile and link this program with the SEPRAN libraries
seplink exam3-2-1
Run this program with input: exam3-2-1.prb

version 1.0 date 17-06-94

!
!
!
!
! exam3-2-1 < exam3-2-1.prb > exam3-2-1.out
!
!
!
D skt feokokokok ok skl s ok stk sk ook sk ok ok stk ok s ok stk sk ok sk o ok stk ok s kst ok s sk sk ok o ok stk ok ok stk ok sk o skskok ok ok
!
program exam321
implicit none
double precision pi, omega, g, angle
common / hacons / pi, omega, g, angle
pi = 4x*atan(1.0d0)
g = 9.81d0
angle = 270d0
omega = 0.056d0
call sepcom (0)
end

! —--— subroutine cfuncb for the definition of the boundary conditions

subroutine cfuncb ( ichois, x, y, z, comval )
implicit none

complex * 16 comval

integer ichois

double precision x, y, z, depth, alpha, ak, arg

double precision pi, omega, g, angle
common / hacons / pi, omega, g, angle

! --- compute boundary condition in nodal point (x, y, z)
! determine wave-number ak :

depth = 15.0d0
! angle of incoming wave

alpha = (pi/180.0d0)*angle

ak = omega/sqrt(gxdepth)

arg = ak*(x*cos(alpha)+y*sin(alpha))
! prescribed elevation :

comval = dcmplx ( cos(arg), sin(arg) )

end

! —-- subroutine cfuncf for the definition of the coefficients

subroutine cfuncf ( ichois, x, y, z, comval )
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implicit none

complex * 16 comval

integer ichois

double precision x, y, z, gamma, depth, ak

double precision pi, omega, g, angle
common / hacons / pi, omega, g, angle

gamma = 040
depth = 15.0d0
ak = omega/sqrt(gxdepth)

if ( ichois==1 ) then

comval = dcmplx ( -ak*ak, -gammaxak/depth )
end if
end

This program needs an input file which is the same as for SEPCOMP. The following input file may
be used to solve the problem:

sk sk sk ok e ok ok sk ok o ok sk sk ok e ok sk sk sk s sk sk ok sk ok sk sk sk e ok sk sk o s ok ok sk sk ok sk sk e ok sk sk sk s sk sk sk ek sksk sk e ok sk sk sk s ke ok sk ok sk ke ok sk ok

File: exam3-2-1.prb

Contents: Input for program exam3-2-1 described in section 3-2-1 in
the manual examples

Waves in harbour
The standard sepcomp approach is used

* X X X ¥ ¥ X x

3k 3k 3k 3k 3k 3k >k Sk ok 3k sk >k ok sk Sk sk Sk sk sk sk sk sk sk Sk ok Sk ok sk ok sk Sk sk Sk sk sk sk sk ok sk Sk sk sk sk sk sk sk Sk sk Sk ok sk sk sk ok sk Sk sk Sk ok sk ok sk ok sk Sk ok sk ok sk sk sk ok ok sk ok kok >k
*

constants
vector_names
complex_potential
amplitude_potential
phase_potential
end

* Problem definition

problem
types
elgrpl=(type=150)
essbouncond
curves (c6)
end

* Since special vectors are required at output, it is necessary to
* define the structure of the program

structure
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prescribe_boundary_conditions, complex_potential
solve_linear_system, seq_coef=1, seq_solve=1, complex_potential
amplitude_potential = modulus complex_potential

phase_potential = phase complex_potential

output

end
* Define essential boundary conditions
essential complex boundary conditions
func =1 # Use subroutine cfuncb
end

* Definition of coefficients

complex coefficients

elgrp 1 ( nparm = 7 ) # Internal element has 7 coefficients
coef 1 =1 # all =1
coef 3 = coef 1 # a22 = all
coef 6 = (func=1) # beta is function given by cfuncf
# A1l other coefficients are 0

end

* Definition of matrix structure
#complex symmetrical matrix, direct solution method

matrix
symmetric, complex
end

end_of_sepran_input

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. The following input file prints the computed
solution, makes a standard contour plot as well as a colored contour plot. In order to identify the
plot an extra text identification is submitted.

K KoK K KR K oK KKK R K oK K KKK R KoK K K KK KR K oK KK R K oK K oK K ok Kok K oK KK Kok K oK K KR K ok ok Kk Kk ok kK o
File: exam3-2-1.pst

Contents: Input for the postprocessing part of the example described

in Section 3.2.1 of the manual examples
Waves in harbour

* X X X X X X *

Usage: seppost exam3-2-1.pst > exam3-21.out

stk ok sk sk sk sk sk sk sk sk sk sk o o s ok ok ook ok sk sk sk sk sksksksk sk sk sk sk sk ok ke ok ok ok ok sk sk sk sk sksksk sk sk sk sk s sk ok ke ke ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok kokokok ok ok
*

postprocessing

print amplitude_potential

print phase_potential

plot identification, text=’waves in harbour’, origin=(3,18)

define plot parameters = norotate

plot contour amplitude_potential, minlevel=-1, maxlevel=1, nlevel=11
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plot contour phase_potential, nlevel=12
3d plot complex_potential, degfd=1, angle=135, lindirec=3//
text = ’3D plot of elevation’

end

Figure 3.2.1.3 shows the contour plot of the magnitude made by program SEPPOST. This plot may
be visualized by the program SEPDISPLAY.

wavesin herbour

LEV

%7?

Contour levelsof it complex potntial

BERREFEERES

Figure 3.2.1.3: Contour plot of magnitude generated by SEPPOST

Figures 3.2.1.4 and 3.2.1.5 show the contour plot of the phase and the three-dimensional plot of the

elevation respectively.
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Figure 3.2.1.4: Contour plot of phase

3.2.2 Experiments with the shifted Laplace operator to solve the com-
plex Helmholtz equation

The example treated here is exactly the same as the one in Section (3.1.11). The only difference is
that the complex Helmholtz equations are used, which means that the coefficients may be complex
and that the Laplace shift may be complex. In this case we use real coefficients for the complex
case but consider a complex shift.

To get this example into your local directory use:
sepgetex helmholtz2x

with x equal to 1 or 2, where 1 refers to the classical method and 2 to the shifted Laplace precon-
ditioner. and to run it use:

sepmesh helmholtz2x.msh
seplink helmholtz2x
helmholtz2x < helmholtz2x.prb

The input file for the mesh is exactly the same as in Section (3.1.11). The problem file differs only
slightly from the real case. Below we give the complete input.

# helmholtz21.prb
problem file for the example as described in Section 3.2.2 of

the manual Examples
The Helmholtz equation is solved by a BiCgstab method with ILU preconditioner

H H OH R H
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wavesinharbour

Figure 3.2.1.5: 3D plot of elevation

Manual Section 1.4

permeability
wave number
coefficient for the zeroth order term

solution of the iterative solver
solution computed by the direct solver

difference between potential and poted

error made by the iterative solver

# To run this file use:
# sepcomp helmholtz21.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
set warn off # suppress warnings
#
# Define some general constants
#
constants # See Users
reals
mu = 1 #
k=10 #
beta = -k"2 #
vector_names
potential #
potex #
diff #
variables
error #
end
#

# Define the type of problem to be solved

#
problem # See

Users Manual Section 3.2.2
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types
elgrpl = (type=150)
essbouncond

curves (cl to c4)
end

Define types of elements,

given (not the value)

H oH HF O HH HH

whole boundary

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix, sequence_number = 1

storage_scheme = profile, complex

end
matrix, sequence_number = 2

storage_scheme = compact, complex

See Users Manual Section 3.2.2

Type number for complex Helmholtz equation
See Standard problems Section 3.2

Define where essential boundary conditions are

See Users Manual Section 3.2.2

# storage scheme for the direct solver

# storage scheme for the iterative solver

end
#
# The coefficients for the differential equation
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.1
#
complex coefficients
elgrpl
coef 1 = mu # Constant permeability
coef 3 = coef 1 # Constant permeability
coef 6 = beta # wave number
coef 7 = func=1 # the right-hand side is a function of space
end

#
# Linear solver

# See Users Manual, Section 3.2.8

#

solve, sequence_number
# no input required

end

solve, sequence_number = 2

1

end

structure

use direct method

! use iterative method (bicgstab with ILU precon)
iteration_method = cg, preconditioner = ilu, print_level = 2, eps = 1d-4

# First we compute potex by a direct solver

prescribe_boundary_conditions potex

solve_linear_system potex

! computes potex

# next we compute potential by the iterative solver
# It is necessary to change the structure of the matrix

change_structure_of_matrix, seq_structure = 2

prescribe_boundary_conditions potential
solve_linear_system potential, seq_solve = 2

! no input required, since the value is O

! no input required
! computes potential
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diff = potential - potex ! difference between both
error = norm=3, diff ! norm of difference
print error

end

end_of_sepran_input

Since the right-hand side is a function of x and y we need a subroutine cfuncf and hence a main
program helmholtz21, given by:

program helmholtz21
! --- Standard main program

implicit none
integer, allocatable, dimension (:) :: ibuffr
integer pbuffr, error
parameter ( pbuffr=100000000)
allocate(ibuffr(pbuffr), stat = error)
if (error /= 0) then
! space for these arrays could not be allocated
print *, "error: (helmholtz21) could not allocate space."

stop
end if ! (error /= 0)
call sepcombf ( ibuffr, ibuffr, pbuffr )
end

! —--- Subroutine cfuncf is used to define the right-hand side

subroutine cfuncf ( ichoice, x, y, z, comval )
implicit none
integer ichoice
double precision x, y, 2
double complex comval
include ’SPcommon/consta’
double precision getconst, k
k = getconst(’k’)
if ( ichoice==1 ) then
comval = - (k**2-5xpi**2)*sin(pi*x)*sin(2d0*pixy)
else
call errchr(’cfuncf’,1)
call errsub ( 349, 0, 0, 1)
call instop
end if
end

For the shifted Laplace operator we can use the same mesh file and program. The problem files
changes only in the matrix input block and the solve input block. Below we give the changed input
blocks:

matrix, sequence_number = 2
storage_scheme = compact, complex, shifted_laplace # iterative solver

end

! iteration with shifted Laplace preconditioner with shift = i
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solve, sequence_number = 2 ! use iterative method (bicgstab with ILU precon)

iteration_method = cg, preconditioner = ilu, print_level = 2, eps = 1d-4 //
laplace_shift = (0,1)
end

Table (3.2.2.1) shows the number of iterations required to solve Equation (3.1.11.2) by a standard

Bi-Cgstab method, and for the shifted preconditioner for shifts equal to 0, 1 and i respectively. The
results are almost the same as those in Table (3.1.11.1).

Table 3.2.2.1 Number of iterations for several values of the shift

Bi-CGstab shift 0 shift 1 shift ¢

n 50 | 100 | 150 || 50 | 100 | 150 || 50 | 100 | 150 || 50 | 100 | 150
k|10 59 | 60 | 84 | 40| 56 | 84 || 42| 52 | 86 || 60 | 56 | 84
20 || 76 | 52 | 56 || 62 | 46 | 48 || 56 | 48 | 42 || 66 | 56 | 58
30| 222 | 48 | 32 || 62| 34 | 30 |[ 28 | 34 | 26 || 92| 48 | 38
40 - 60 | 26 || 44 | 32 | 24 || 16| 22 | 20 | 42 | 68 | 22
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3.3 Non-linear equations

3.3.1 A special non-linear diffusion equation

This section is under preparation.
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3.3.2 The computation of the magnetic field in an alternator

Consider the alternator of Figure 3.3.2.1, consisting of an iron core (region 1) surrounded by vacuum.
In regions 2 and 3 a negative and a positive current respectively have been induced. Region 4 is
considered separately since this is the region of interest. The magnetic field intensity H and the

Figure 3.3.2.1: Definition of region for alternator

magnetic flux density B satisfy the following differential equations (Maxwell equations):

~VxH=-J (3.3.2.1)
V-B=0 (3.3.2.2)
B = poprH (3.3.2.3)

Both n - B and n x H must be continuous over the boundaries.
The electric current density J in regions 2 and 3 are given by:

Jo=—10% 4/ 2 (3.3.2.4)

J3 =108 4/ 2 (3.3.2.5)

The relative permeability p, in vacuum equals 1. In the iron core we use the non-linear constitutive
relations given by Glowinski and Marrocco (1974):

1 1B]I*

JT— o (IBD v-(I|B])) :a+(1—a)W (3.3.2.6)

In this example we use a = 3 x 10~* and 8 = 16 x 10%. Furthermore v = ﬁ = 7.957T471 x 10°.

Since B is divergence free we can write it as a rotation of a vector potential A.

B=VxA, (3.3.2.7)
1
H= V x A. (3.3.2.8)
o
From Equation 3.3.2.1 it follows that
1
-V x ( VA)=-J. (3.3.2.9)

Ko fhr
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Using the vector relation

VXxVxe¢=V(V-9¢)— Vo, (3.3.2.10)
and the notion that V - A can be chosen zero, we find

1

-V. VA)=1J. 3.3.2.11
(:U‘ONJT’ ) ( )

In 2D we have A, =0 and A, = 0, hence
—V(I/()VTVAZ) = Jz~ (33212)

At the outer boundary we may use either A, = 0 or 653: = 0. In this example we use the first option.

The continuity at the inner boundaries is automatically satisfied by the finite element method.

In order to get the example into your local directory use the command sepgetex:
sepgetex magnet
To run the example use the commands:

sepmesh magnet.msh
seplink magnet
magnet < magnet.prb
seppost magnet.pst
sepview sepplot.001

The region is subdivided into triangles by the submesh generators ”GENERAL” and "RECTAN-
GLE”. As an example linear triangles have been used.
The definition of the curves has been plotted in Figure 3.3.2.2.

SEPMESH needs an input file. An example of an input file for this region is given below:

Figure 3.3.2.2: Definition of curves for alternator

magnet .msh

mesh file for 2d non-linear magnet problem
See Manual Standard Elements Section 3.3.1
and Examples manual, Section 3.3.2

H H H R R
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#
# To run this file use:
# sepmesh magnet.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
1: half_width = 0.2 # width of the right part of the outer region
2: length = 0.6 # length of the outer region
3: x_core = 0.007 # half_width of the iron core
4: x_current = 0.012 # at most right x co-ordinate of current region
5: y_core_low = 0.24 # lower y co-ordinate of the iron core
6: y_core_upp = 0.36 # upper y co-ordinate of the iron core left
7: y_current = 0.30 # upper y co-ordinate of current region
8: y_core_uppr = 0.37 # upper y co-ordinate of the iron core right
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
coarse(unit=0.01)
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0,3) # Lower point at axis
p2=( half_width,0,3) # Right under point
p3=( half_width, length,3) # Right upper point
p4=(- half_width, length,3) # Left upper point
p5=(- half_width,0,1) # Left under point
p6=(0, y_core_low,1) # lower point of core at axis
p7=( x_core, y_core_low,0.5) # lower right point of core
p8=( x_core, y_core_uppr,1) # upper right point of core
p9=( x_core, y_current,0.5) # upper left point of current region(R)
p10=( x_current, y_core_low,0.5) # lower right point of current region(R)
pl1=( x_current, y_current,0.5) # upper right point of current region(R)
pl2=(- x_core, y_core_upp,1) # upper left point of core
pl3=(- x_core, y_current,0.5) # upper right point of current region(L)
pl4=(- x_current, y_current,0.5) # upper left point of current region(L)
pl5=(- x_current, y_core_low,0.5) # lower left point of current region(L)
pl6=(- x_core, y_core_low,0.5) # lower left point of core
#
# curves
#

curves # See Users Manual Section 2.3
# Linear elements are used

cl = cline (p1,p2) Lower boundary right part
c2 = cline (p2,p3) Right-hand side boundary
c3 = cline (p3,p4) Upper boundary
c4 = cline (p4,p5) Left-hand side boundary
c5 = cline (p5,pl) Lower boundary left part
c6 = cline (pl,p6) Lower part of axis

H OB H O HH
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c7 = cline (p6,p7)
c8 = curves (cl11,c12)
c9 = cline (p12,p8)
c10= curves (c16,cl17)
cl1l= cline (p7,p9)
c12= cline (p9,p8)

Lower right part of iron core
Right-hand boundary of iron core

Upper boundary of iron core

Left-hand boundary of iron core
Left-hand boundary of current region(R)
Upper part of right-hand boundary

of iron core

Lower part of current region(R)
Right-hand boundary of current region (R)
Upper boundary of current region (R)
Upper part of left-hand boundary

of iron core

Right-hand boundary of current region(L)
Lower part of current region(L)
Left-hand boundary of current region (L)
c20= cline (p14,pl3) Upper boundary of current region (L)
c21= cline (p6,pl6) Lower left part of iron core

c22= curves(cl,c2,c3,c4,c5) # Outer boundary

c23= curves(c21,c18,c19,c20,-c16,c9,-c12,-c15,-c14,-¢c13,-c7)

c24= curves(-c21,c7)

c13= cline (p7,pl0)
cl4= cline (p10,pll)
c15= cline (p11,p9)
c16= cline (p12,p13)

cl17= cline (p13,pl6)
c18= cline (p16,pl5)
c19= cline (p15,pl4)

H oH HF O H HH O HHHHHEHHEHH

#
# surfaces
#
surfaces # See Users Manual Section 2.4
# Linear triangles are used
sl=general3(c24,c8,-c9,c10) # iron core
s2=rectangle3(c13,c14,c15,-c11) # current region (R)
s3=rectangle3(c18,c19,c20,c17) # current region (L)
s4=general3(c22,c6,c23,-c6) # vacuum
#
# Connect elements groups to surfaces
#
meshsurf # See Users Manual Section 2.4
selml = si
selm2 = s2
selm3 = s3
selmd4 = s4
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

Figure 3.3.2.3 shows the mesh generated by SEPMESH.

In order to solve this problem we need to use elements of type 800 for the vacuum and of type 803
for the iron core.

The non-linear problem is solved by a Newton linearization method. Unfortunately this method
does not converge for a current density of 1084 /,,> For that reason we start with a current density
of 1074/,,> and gradually increase this value by steps of 2 x 1074/,.> until the final value has
been reached. Such a method, in which a significant parameter is changed gradually, is called a
continuation method.

The input for the continuation method can be found in the input block ”’NONLINEAR_EQUATIONS”.
The minimum number of iterations is set to 6, in order to ensure that the final value will be reached.
As start vector for the iteration the zero vector is used.
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Figure 3.3.2.3: Plot of mesh generated by SEPMESH

An important quantity to be computed is of course the magnetic flux density B, which is done by
computing the gradient of the potential. Another important issue is the magnitude of B. In order
to compute all these quantities it is necessary to introduce the input block "STRUCTURE”, which
defines how the process develops.

e First the initial vector is created.

Next the non-linear equation is solved and A, is stored in vector V.

e Then B is computed as a derivative and stored in vector V5.

Finally the magnitude ||B|| is computed and stored in vector Vj.

Although superfluous, the input block "STRUCTURE” is closed by the output command,
which writes all three vectors.

Since we have to add the unction subroutine funcc2, in order to define 1 and % it is not possible to

use program SEPCOMP, but we have to write out main program magnet, which consists of three
statements only. The listing for this program is given by:

program magnet
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main program for 2d non-linear magnet problem
See Manual Standard Elements Section 3.3.1
and Examples manual, Section 3.3.2

To link this file use:
seplink magnet

call sepcom(0)
end

! --— subroutine funcc2 is used to define nu and d nu / dB
! as function of the B computed before

subroutine funcc2 ( ichois, x, y, z, graphi, alpha, dalpha )
integer ichois
double precision x, y, z, graphi, alpha, dalpha

The formula for nu(|b|) can be found in

R. Glowinski and A. Marocco

Analyse numerique du champ magnetique d’un alternateur par

element finis et sur-relaxation ponctuelle non lineaire

Computer Methods in applied mechanics and engineering 3 (1974), 55-85

double precision col, co2, anu, fac, grap

col = 3d-4

co2 = 1.6d4

anu = 7.9577471d5

grap = abs(graphi)

fac = grap**8

alpha = anu*(col+(1d0-col)x*fac/(fac+co2))

dalpha = 8d0*anu*(1d0-col)*co2x(grap**7)/((fac+co2)*(factco2))
end

This program needs an input file which is the same as for SEPCOMP. The following input file may
be used to solve the problem:

magnet.prb
problem file for 2d non-linear magnet problem
See Manual Standard Elements Section 3.3.1

and Examples manual, Section 3.3.2

To run this file use:
magnet < magnet.prb

Reads the file meshoutput
Creates the file sepcomp.out

#
#
#
#
#
#
#
#
#
#
#
#
#
#
# Define some general constants
#

constants # See Users Manual Section 1.4
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reals
rho =1 # density
eta = 0.01 # viscosity

vector_names
potential
magnetic_field_strength
magnitude_of_magnetic_field

end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrpl, (type=803) # Type number for non-linear diffusion equation
# iron core
elgrp2, (type=800) # Type number for linear diffusion equation
elgrp3, (type=800)
elgrp4, (type=800)
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
# Only velocities are prescribed, not the
# pressures
curves (cl to cb) # The potential is prescribed on the outer
# boundary, curves cl to cb
end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
storage_scheme = compact, symmetric # Symmetrical compact matrix
# So an iterative method will be applied

end

# Define the structure of the problem

# 1In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary
# 1is required

structure # See Users Manual Section 3.2.3
# create the start vector for the non-linear iteration
create_vector, potential # make vector O

# compute the potential by solving a system of non-linear equations
solve_nonlinear_system, potential

# compute the magnetic field strength by computing the gradient of the
# potential
derivatives, magnetic_field_strength

# compute the magnitude of the magnetic field strength
! compute_vector magnitude_of_magnetic_field//
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! length vector magnetic_field_strength
magnitude_of_magnetic_field = length vector magnetic_field_strength

end

# input for non-linear solver
# See Users Manual Section 3.2.9

nonlinear_equations
global_options, maxiter=15, accuracy = 1d-4, miniter=6, print_level=2
equation 1
£fill_coefficients = 1
change_coefficients
at_iteration 2, sequence_number =
at_iteration 3, sequence_number =
at_iteration 4, sequence_number =
at_iteration 5, sequence_number =

D W N

end

# Define the coefficients for the problems (first iteration)
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients
elgrpl (nparm=20) iron-core (type=803)
icoefb = 2 Picard iteration

elgrp2 (nparm=20)
coef6 = 7.9577471d5
coef9 = coef6
coefl16= -247

source with negative current
nu = 1/(4d-7*pi)

H H HH

**+

f at start = -2d47

elgrp3(nparm=20) # source with positive current
coef6 = 7.9577471d5 # nu = 1/(4d-7*pi)
coef9 = coef6
coefl16= 247 # £ at start = 247
elgrp4 (nparm=20) # vacuum, no source
coef6 = 7.9577471d5 # nu = 1/(4d-7*pi)
coef9 = coef6
coefl6= 0 # £=0

end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7

change coefficients, sequence_number=1

elgrp2
coef16=-4d7 # f at second iteration is -4d7
elgrp3
coefl16= 447 # f at second iteration is 447
end
change coefficients, sequence_number=2
elgrp2
coef16=-6d47 # f at third iteration is -647
elgrp3
coefl16= 647 # f at third iteration is 6d7

end
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change coefficients, sequence_number=3

elgrp2
coef16=-8d7 # f at fourth iteration is -8d7
elgrp3
coefl16= 8d7 # f at fourth iteration is 847
end
change coefficients, sequence_number=4
elgrp2
coef16=-1d8 # f at other iterations is -1d8
elgrp3
coefl16= 1d8 # f at other iterations is 1d8
end

# input for linear solver
# See Users Manual Section 3.2.8

solve
iteration_method=cg,accuracy = 1d-5,print_level=0
end

# input for derivatives, i.e. computation of the magnetic field strength
# See Users Manual Section 3.2.11 and Standard Problems Section 3.1

derivatives
icheld = 2 # Compute gradient
element_groups = 4 # The magnetic field strength is only computed
# in the outer field
end

end_of_sepran_input

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. Mark that the numbering of vectors in SEPCOMP
and SEPPOST differ by one. hence now V; is called V|, and so on.

The following input file plots the curves of the region, with and without curve numbers, plots the
mesh and a part of the mesh, plots the equi-potential lines with two different types of levels as well
as restricted to region 4 and finally plots the vector B and its magnitude in region 4.

magnet.pst
Input file for postprocessing for 2d non-linear magnet problem

See Manual Standard Elements Section 3.3.1
and Examples manual, Section 3.3.2

#
#
#
#
#
#
#
# To run this file use:

# seppost magnet.pst > magnet.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

# Plot the complete mesh

plot mesh
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# Plot a part of the mesh in the outer region
plot mesh, skip element groups(1,2,3), region=(-0.035,0.035,0.37,0.39)
# Make contour plots of the potential
plot contour potential
plot contour potential,minlevel=-0.02, maxlevel=0.02,nlevel=21
plot contour potential,minlevel=-0.0035, maxlevel=0.0035,nlevel=21//
region=(-0.035,0.035,0.37,0.39)
# Make a contour plot of the magnetic field strength
plot vector magnetic_field_strength, region=(-0.06,0.06,0.35,0.41)
# Make a contour plot of the magnitude of the magnetic field strength
plot contour magnitude_of_magnetic_field, region=(-0.06,0.06,0.35,0.41)
end
Figure 3.3.2.4 shows the contour plots made by program SEPPOST. Figure 3.3.2.5 shows the vector

plot and the contour plot of the magnitude of B in region 4. These plots may be visualized by the
program SEPDISPLAY or SEPVIEW.
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3.3.3 The solution of Hamilton-Jacobi-Bellman equation

In this section we consider special Hamilton-Jacobi-Bellman differential equation:
Oc Oc
—eA — —| =1 3.3.3.1
Bt || +150 (333.1)

This is a typical non-linear equation due to the modulus of the convective terms. Equation 3.3.3.1
is solved on the square (-1,-1) x (1,1) and provided with the Dirichlet boundary condition ¢ = 0 at
the complete boundary.

Since the equation is non-linear an iteration procedure to solve it is necessary. We start for example
by the solution of the Poisson equation (no convective terms) and use this solution in the next
iteration to compute the sign of the derivatives. This procedure is repeated until convergence is
reached.

For small values of ¢ it is known that the first derivatives of the solution is discontinuous in the
neighbourhood of the lines x = y and x = —y. For that reason the mesh is adapted to these lines.
The following input file may be used to generate the mesh by program sepmesh:

* modconv2.msh
mesh2d
coarse (unit=0.03)
points
pl=(-1,-1)
p2=(1,-1)
p3=(1,1)
p4=(-1,1)
p5=(0,0)
curves
cl=clinel(p1l,p2)
c2=clinel(p2,p3)
c3=clinel(p3,p4)
c4=clinel(p4,pl)
c5=clinel(p1,p5)
c6=clinel(p2,p5)
c7=clinel(p3,p5)
c8=clinel (p4,p5)
surfaces
sl=general3(cl,c6,-cb)
s2=general3(c2,c7,-c6)
s3=general3(c3,c8,-c7)
s4=general3(c4,c5,-c8)
plot
end

Figure 3.3.3.1 shows the mesh generated by SEPMESH.

In order to solve this problem we need to use elements of type 800. We start with the solution of
the Poisson equation, without convective terms. Next we proceed with the special equation, which
requires that the integer coefficient 5 is set equal to 2.

The system of linear equations that arises in each step of the non-linear iteration process is solved
by an iterative solver (CGSTAB) using the solution of the previous iteration as a start.
Experiments showed that for convergence it was necessary to solve these equations rather accurate
(e =107*) and for small values of ¢ it was necessary to use upwinding in order to get convergence
and an accurate solution.

The following input file may be used to solve the problem by program sepcomp in the case ¢ = 1073:

* modconv2.prb
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constants
vector_names
solution
end
problem
types
elgrpl=(type=800) # Use standard type 800
essbouncond
curves(cl,c4) # essential boundary conditions on each side
end
matrix
storage_method = compact # compact storage for iterative solution
end
coefficients, sequence_number=1

elgrpl (nparm=20) # Poisson equation (first step)
coef6 = 0.001 # eps
coef9 = coef 6 # eps
coefl6= 1 # f
end
change coefficients, sequence_number=1
elgrpl (nparm=20) # Special equation (next steps)
icoef2 = 3 # upwind
icoefb = 2 # absolute values of convective terms
end

create vector

end

nonlinear_equations
global_options, accuracy=1d-2, print_level=2, maxiter=10//
at_error = return, lin_solver=1
equation 1

fill_coefficients = 1 # start with Poisson
change_coefficients
at_iteration 2, sequence_number=1 # resume with special equation

end
solve, sequence_number=1
iteration_method=cg, accuracy=1d-4, start=old_solution, print_level=1
end
end_of_sepran_input

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. Mark that the numbering of vectors in SEPCOMP
and SEPPOST differ by one. hence now V; is called Vj and so on.

The following input file makes a 3D plot of the solution as well as a contour plot.

* modconv2.pst
postprocessing

3d plot solution

plot contour solution
end

Figure 3.3.3.2 shows the 3D plot made by program SEPPOST and Figure 3.3.3.3 shows the contour
plot.
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3.3.4 An example of non-linear convection

In this section we consider a mathematical example of non-linear convection as treated in Section
3.1. The example is strongly related to the example of Section 3.3.3.

0
—ebet (50)7 + (

ac 5
5'y> =1 (3.3.4.1)
This is a typical non-linear equation due to the quadratic convective terms. Equation 3.3.4.1 is
solved on the square (-1,-1) x (1,1) and provided with the Dirichlet boundary condition ¢ = 0 at
the complete boundary.

Since the equation is non-linear an iteration procedure to solve it is necessary. We start for example
by the solution of the Poisson equation (no convective terms) and use this solution in the next
iteration to compute the sign of the derivatives. This procedure is repeated until convergence is
reached.

For small values of ¢ it is known that the first derivatives of the solution is discontinuous in the
neighbourhood of the lines x = y and x = —y. For that reason the mesh is adapted to these lines.
The following input file may be used to generate the mesh by program sepmesh:

* convnon2.msh
mesh2d
coarse(unit=0.10)
points
pl=(-1,-1)
p2=(1,-1)
p3=(1,1)
p4=(-1,1)
p5=(0,0)
curves
cl=clinel(p1l,p2)
c2=clinel(p2,p3)
c3=clinel(p3,p4)
cd4=clinel(p4,pl)
c5=clinel(p1l,p5)
c6=clinel(p2,p5)
c7=clinel(p3,p5)
c8=clinel(p4,p5)
surfaces
sl=general3(cl,c6,-c5)
s2=general3(c2,c7,-c6)
s3=general3(c3,c8,-c7)
s4=general3(c4,c5,-c8)
plot
end

Mark that this mesh is identical to the one in Section 3.3.3, however, with a large coarseness and
hence less elements.

In order to solve this problem we need to use elements of type 800. We start with the solution of
the Poisson equation, without convective terms. Next we proceed with the non-linear convection,
which requires that the integer coefficient 5 is set equal to 3.

This problem requires a user written subroutine FUNCC2 in which the function of the gradient
must be evaluated as well as its partial derivatives with respect to the gradient of the solution.

Hence we get:
e, e,
900 = (50 +(5) (3.3.4.2)
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The system of linear equations that arises in each step of the non-linear iteration process is solved
by an iterative solver (CGSTAB) using the solution of the previous iteration as a start.
Experiments showed that for convergence it was necessary to solve these equations rather accurate
(e =107*) and for small values of ¢ it was necessary to use upwinding in order to get convergence
and an accurate solution.

Since a user written subroutine is provided, it is also necessary to create your main program. This
program consists only of a call to subroutine sepcom.

program convnon2
call sepcom ( O )
end

subroutine funcc2 ( ichoice, x, y, z, gradc, g, dgdgrad )
implicit none

integer ichoice

double precision x, y, z, gradc(*), g, dgdgrad(x)

g = gradc(1)**2 + gradc(2)**2

dgdgrad (1) = 2d0*gradc(1)

dgdgrad(2) = 2d0*gradc(2)

end

The following input program may be used to solve the problem The corresponding input file in the
case ¢ = 1073 is:

* convnon2.prb

problem
types
elgrpl=(type=800) # Use standard type 800
essbouncond
curves(cl,c4) # essential boundary conditions on each side
end
matrix
method=6 # compact storage for iterative solution
end

coefficients, sequence_number=1

elgrpl (nparm=20) # Poisson equation (first step)
coef6 = 0.001 # eps
coef9 = coef 6 # eps
coefl6= 1 # f
end
change coefficients, sequence_number=1
elgrpl (nparm=20) # Special equation (next steps)
icoef2 = 3 # wupwind
icoefb = 3 # Nonlinear convective terms with newton
end
create vector
end

nonlinear_equations
global_options, accuracy=1d-2, print_level=2, maxiter=20//
at_error = return, lin_solver=1, criterion = relative
equation 1
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£fill_coefficients = 1 # start with Poisson
change_coefficients
at_iteration 2, sequence_number=1 # resume with special equation

end
solve, sequence_number=1
iteration_method=cg, accuracy=1d-4, start=old_solution, print_level=2
end
end_of_sepran_input

In order to run this program we have to link it by seplink and than run it.
Hence:

seplink convnon2
convnon2 < convnon2.prb > convnon2.out

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. Mark that the numbering of vectors in SEPCOMP
and SEPPOST differ by one. hence now V; is called V{, and so on.

The following input file makes a 3D plot of the solution as well as a contour plot.

* convnon2.pst
postprocessing

name v0O = solution

3d plot vO

plot contour vO
end

Figure 3.3.4.1 shows the 3D plot made by program SEPPOST and Figure 3.3.4.2 shows the contour
plot.
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3.3.5 An example of compressible potential flow

In this section we consider a compressible flow through a nozzle as sketched in Figure 3.3.5.1.
In order to get this example in your local directory use the command

sepgetex nozzle
To run the example use the following commands:

seplink nozzlemesh
nozzlemesh < nozzle.msh
view mesh

seplink nozzle

nozzle < nozzle.prb
seppost nozzle.pst

view results

If we assume that the flow is stationary, frictionless and isentropic, then the flow can be considered
as a potential flow.

Let u be the velocity of the fluid, p the pressure and p the density.
Define the potential ¢ such that u = V.
From the continuity equation it follows that

—div(pVe) =0 (3.3.5.1)

In case of an incompressible flow the density p is constant. For a compressible flow the density
depends on the equation of state. For a ideal gas the following relation can be derived of the
various equations.

vy—11 oy L
=po(l - ———=||V v—1
p = po( 7+103H ol
with v the ratio of specific heats (y = 1.4 in air),
po the density for Uy, (the velocity at = 00),

C the velocity of sound.
With ||[V¢||? we mean the Euclidean norm:

dp dp
2 _ (9¥\2 0P 2
Vel —(8:5) Hay)

Boundary conditions with respect to the problem:
We assume that the wall of the nozzle is impermeable, hence u - = 0
We assume that at the inflow and outflow the flow is one-dimensional with size U, hence:

Uso
Ulp=—1 = Ulp=r = ( 0 )

Because of the symmetry it is sufficient to consider only the top half of the nozzle.
The curve that defines the top wall of the nozzle can be approximated by the following formula:
-10<z<-5 ylz) =1
-5<z<h yl) =1- e
5<z<10 ylx) =1
Program sepmesh may be used to create a mesh for this problem. Since the upper wall is given

by a function we need a user written function funccv. Therefore program sepmesh is replaced by a
program nozzlemesh that contains the subroutine funccv:
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program nozzlemesh

--- Main program to create the mesh for the nozzle in example 3.3.5
of the Examples Manual
This main program is necessary in order to provide a function funccv
which defines the parameter curve

call sepmsh ( O )
end

subroutine funccv ( icurve, t, x, y, 2z )

--- Function subroutine to define the upper wall in the nozzle of
example 3.3.5 of the Examples Manual
The curve is defined as follows:
x < -6 yx) =1
-5 <= x <= 5: y(x) = 1- alpha exp(-beta x72)
x>5: ykx =1

implicit none

integer icurve

double precision t, x, y, Z
double precision alpha, beta
double precision getconst

! --- alpha and beta are provided as real constants in the input file
! X is equal to the parameter t

alpha = getconst(’alpha’)

beta = getconst(’beta’)
X =t
if ( abs(t)>5 ) then
y = 1d0
else
y = 1d0 - alpha*exp(-beta*xx**2)
end if
end

This program requires input form the input file:
nozzle.msh

mesh file for 2d nozzle problem
See Examples Manual Section 3.3.5

To run this file use:
sepmesh nozzle.msh

Creates the file meshoutput

Define some general constants

H OH OH H H H HHHHHEH

constants # See Users Manual Section 1.4
reals
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half_width =1 # width of the upper half of the channel
half_length = 10 # half the length of the channel
alpha = 0.7 # parameter defining the nozzle
# the half width at the smallest part is
# 1-alpha
beta = 0.4 # parameter defining the nozzle
integers
n = 50 # number of elements in length direction
m=6 # number of elements in width direction
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# wuser points
#
points # See Users Manual Section 2.2
pl=( -half_length,0) # Left under point
p2=( half_length,0) # Right under point
p3=( half_length, half_width) # Right upper point
p4=( -half_length, half_width) # Left upper point
#
# curves
#
curves # See Users Manual Section 2.3
# Linear elements are used
cl=line (pl1,p2,nelm= n) # symmetry axis
c2=line (p2,p3,nelm= m) # outflow boundary
c3=param (p3,p4,nelm= n,init= half_length,end=- half_length)
# upper wall is defined by a parameter
# function, with t=x
c4=line (p4,pl,nelm= m) # inflow boundary
#
# surfaces
#
surfaces # See Users Manual Section 2.4
# Linear triangles are used
sl=rectangle3(cl,c2,c3,c4)
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

Figure 3.3.5.2 shows the mesh created by nozzlemesh.

Equation 3.3.5.1 is non-linear because p depends on the potential ¢ and therefore this equation
can be considered as a special case of Equation (3.3.1.1) in the manual STANDARD PROBLEMS.
This implies that the user must provide a function subroutine funcc2, which defines p and g—g as
function of ¢. See Section 3.3.1.

This subroutine is used in the following file nozzle.f

program nozzle

! --- Main program to solve the non-linear potential problem in the nozzle
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example 3.3.5 of the manual Examples

This main program is necessary in order to provide a function funcc2
which defines the dependence of the density on the gradient of the
potential phi

call sepcom ( 0 )
end

subroutine funcc2 ( ichoice, x, y, z, gradc, g, dgdgrad )

--— Function subroutine to define the density in the non-linear potential
problem in the nozzle as function of the gradient of the potential
In case of Newton also the derivative with respect to
the norm of the gradient is defined
example 3.3.5 of the manual Standard Problems
The density for the compressible potential flow is defined by

rho = rho_0 c2 ~ 1/(gamma-1)

with

c2 = 1 - (gamma-1)/(gamma+1) (1/C*)"2 ||grad phill|~2
The derivative d rho / d |lgrad phill| by

d rho / d |lgrad phil|| = rho_0/(gamma-1) c2~(1/(gamma-1)-1) *
(-2 (gamma-1)/(gamma+1) (1/C*)"2 ||grad phill )

implicit none

integer ichoice

double precision x, y, z, gradc, g, dgdgrad

double precision rho_0, cstar, gamma, gminl, gplusl, c, cl, c2
double precision getconst

! --- rho_0, gamma and C* are provided as real constants in the input file

rho_0 = getconst(’rho_0’)
gamma = getconst(’gamma’)
cstar = getconst(’Cstar’)
gminl = gamma-1d0

gplusl = gamma+1d0

c = gminl/gplusl

cl = c/cstar**2

c2 1d0-cl*gradc**2

! --— The function rho is stored in g
g = rho_O*c2**(1d0/gminl)
if ( ichoice==2 ) then

! ——— ichoice = 2, Newton linearization;
! also d rho / d |lgrad phil|l is required

dgdgrad = rho_0/gminl*c2**(1d0/gmin1-1d0)*(-2d0*cl*gradc)
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end if
end

The corresponding input file is given by

# nozzle.prb
#
# problem file for 2d nozzle problem
# mnon-linear potential flow problem
# See Examples Manual Section 3.3.5
#
# To run this file use:
# sepcomp nozzle.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
rho_ 0 = 1.2 # density where u = U_inf
gamma = 1.4 # specific heat ratio (air)
Cstar = 340 # Velocity of sound
u_infinity = 50 # Velocity at infinity U_inf
m_infinity = 60 # Momentum at infinity rho_O U_inf
vector_names
potential # unknown phi
velocity # derived quantity u = grad phi
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=803 # Type number for non-linear diffusion equation
# See Standard problems Section 3.1
# Define the type of natural boundary conditions
natbouncond
bngrpl = type=801 # Boundary group 1, standard natural boundary
# condition for diffusion equation
bngrp2 = type=801 # Boundary group 2, standard natural boundary
# condition for diffusion equation
bounelements # Defines where natural boundary conditions
# are given
belml = curves(c2) # On curve 2: boundary group 1
belm2 = curves(c4) # On curve 4: boundary group 2
end
#

# Define the structure of the problem
# In this part it is described how the problem must be solved
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# This is necessary because the integral of the pressure over the boundary
# 1is required

#

structure # See Users Manual Section 3.2.3
# Create start vector for the potential
create_vector potential
# Compute the potential, by solving the non-linear equations
solve_nonlinear_system, potential
# Compute the velocity as gradient of the potential
derivatives,velocity
# Write the results to sepcomp.out
output

end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
storage_scheme=compact, symmetric # Symmetrical compact matrix
# So an iterative method will be applied
end

# Create start vector
# See Users Manual Section 3.2.5

create
# The start vector is set equal to zero, so no extra information is required
end

# Define the coefficients for the problems (first iteration)
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.3

coefficients
elgrpl ( nparm=20 ) # The coefficients for the non-linear diffusion
# equation are defined by 20 parameters
icoefb = 1 # 5: Type of linearization (1=Picard)
bngrpl ( nparm=15) # The natural boundary condition requires
#
#

15 parameters

coef7 = m_infinity On c2 we have alpha d phi / d n = m_inf
bngrp2 ( nparm=15)
coef7 = - m_infinity # On c4 we have alpha d phi / d n = - m_inf

end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7
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change coefficients, sequence_number = 1 # Input for iteration 2
elgrpl
icoefb =1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 2 # 5: Type of linearization (2=Newton iteration)
end

# input for non-linear solver
# See Users Manual Section 3.2.9

nonlinear_equations
global_options, maxiter=20, accuracy=1d-4,print_level=2, lin_solver=1//
at_error return
equation 1
fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 1
end

# compute velocity
# See Users Manual, Section 3.2.11

derivatives
icheld=2 # icheld=2, velocity in nodes
# See Standard problems Section 3.1
end

# input for the linear solver
# See Users Manual, Section 3.2.8

solve
iteration_method = cg, accuracy=1d-2//
termination_crit = rel_residual, start=old_solution//
print_level=0

end

end_of_sepran_input

In order to view the computed potential and the corresponding velocity program seppost may be
used with the following input:

nozzle.pst

Input file for postprocessing for 2d nozzle problem
non-linear potential flow problem

See Examples Manual Section 3.3.5

To run this file use:
seppost nozzle.pst > nozzle.out

H OH H H H H H HEH
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# Reads the files meshoutput, sepcomp.inf and sepcomp.out
#
postprocessing # See Users Manual Section 5.2

# Plot the results
# See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity
plot contour potential # Contour plot of pressure
plot coloured contour potential

end

Figure 3.3.5.3 shows the computed velocities, and Figures 3.3.5.4 and 3.3.5.5 the contourlines and
colored contour levels of the potential



EX S-type source terms April 1993 3.4.1

3.4 J-type source terms

This section is under preparation
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3.5 Second order real linear elliptic and parabolic equations with two
degrees of freedom

3.5.1 Falling film absorption with a large heat effect in one-dimensional
film flow

Falling film absorption accompanied by a large heat effect is encountered in absorption heat pumps
or cooling machines and in some industrial applications like the absorption of ammonia or hy-
drochloric acid as well as in strongly exothermic reactions like detergent making by sulfonation of
organic alkylates (Yih, 1986). Figure 3.5.1.1 gives the geometry of the absorber. On one side of
the plate a solution of substance 1 in substance 2 flows down as a thin laminar film. At the liquid-
vapour interface the vapour (substance 1) is absorbed and then transported into the bulk of the
film. The heat of absorption is released at the interface and transported through the film and the
wall to the cooling medium. The cooling medium flows on the other side of the plate parallel to the
film (cocurrent or countercurrent flow), or in a direction perpendicular to the plane of illustration
(cross-flow).

In case of a steady state, constant properties, a film thickness and velocity that are not influenced
by the vapour absorption, and only diffusion of heat and mass perpendicular to the wall and con-
vection along the wall, the absorption in the liquid film is described by the following dimensionless
convection diffusion equations (van der Wekken and Wassenaar, 1988).

0 0?
a—gz = LeaT/Z (3.5.1.1)
00 0926

Here U denotes the velocity along the wall, normalized on the average velocity,

Gz is the co-ordinate along the wall, normalized on a characteristic length for heat transfer (Graetz
number),

Y is the co-ordinate perpendicular to the wall, normalized on the film thickness,

~ is the normalized mass fraction of the volatile component,

0 is the normalized temperature, and

Le is the Lewis number, the ratio between mass and heat diffusivity.

A two-dimensional version of this problem is considered in van der Wekken et al. (1988).

The mixture enters the absorber at Gz = 0 at uniform temperature and mass fraction, the wall
Y = 1 is impermeable for mass, but there is a cooling condition for heat (Bi — oco: isothermal
wall, Bi = 0: adiabatic wall). At the interface Y = 0 there is thermodynamic equilibrium between
vapour and liquid, and the heat released is proportional to the absorbed mass (Equation 3.5.1.4).
In dimensionless form the boundary conditions transform to:

Gz=00<Y<1:0=0,7v=0 (3.5.1.3)
00 oy
oy 00 .

Here A is the dimensionless heat of absorption, Bi is the Biot number, the ratio of heat transfer
in the film to that to the cooling medium, 6. is the dimensionless cooling medium temperature. A
version of this problem with co- or countercurrent flow cooling is elaborated in Wassenaar (1994).

The boundary conditions 3.5.1.4 at the phase change surface Y = 1 are similar to the conditions at
x = s(t) in the solidification problem in Section 6.1. The difference is that in the above case there
are two components in the densest phase. The Gibbs phase rule then dictates that there is still one
thermodynamic degree of freedom, so that if the pressure p is fixed, the temperature is not fixed,
but still depends on the mass fraction, a relation that is linearized in 3.5.1.4.
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The region is subdivided into triangles by the submesh generator ’/RECTANGLE”. As an example
linear triangles have been used.
SEPMESH needs an input file. An example of an input file for this region is given below:

# absorb.msh

#
# mesh for absorber
#
# P5 cd4 P4
# h—m———————— ———————— *
# cb ~ ~ c3
# P6* *P3
# | S1 |
# c6 ~ T c2
# | |
# k—m———————— Se————— *
# P1 cl P2
#
#
mesh2d
points
p1=(0,0)
p2=(1000,0)
p3=(1000,0.9)
p4=(1000,1.0)
p5=(0,1.0)
p6=(0,0.9)
curves
cl=linel(pl,p2,nelm=60,ratio=2,factor=1.17707)
c2=1linel(p2,p3,nelm=15)
c3=1linel(p3,p4,nelm=15,ratio=3,factor=40)
c4=translate c1(p5,p4)
cb=translate c3(p6,p5)
c6=translate c2(pl,p6)
c7=curves(c2,c3)
c8=curves (c6,ch)
surfaces
sl=rectangle3(cl,c7,-c4,-c8)
plot
end

In order to solve the problem program SEPCOMP is used. The differential equation as well as most
of the boundary conditions are standard and do not need any special explanation. The boundary
conditions at the side Gz > 0;Y = 1, however, are special since they contain linear combinations
of v and 0. In order to be able to deal with these boundary conditions it is necessary to use local
transformations.

Let us define the vectors T and T by:

tr:(i),’f:(eiv)::<i ?)1‘ (3.5.1.6)

In order to satisfy the boundary condition 8 +~ = 1 at the boundary Gz > 0;Y = 1, we transform
the unknowns at that boundary from T to T using the transformation given in Equation 3.5.1.6.
After this transformation the second unknown at the boundary is prescribed (essential boundary
condition) and has value 1.

The transformation is defined in the input of program SEPCOMP in the input block PROBLEM
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under the keyword localtransform. The transformation matrix is defined in matrixr.

In order to satisfy the other boundary condition at Gz > 0;Y = 1, we follow the method in van
der Wekken et al (1988). This method requires some knowledge of weak formulations.

One can easily verify that the weak formulation corresponding to the equations 3.5.1.1 and 3.5.1.2
under the boundary conditions 3.5.1.3 to 3.5.1.5 is given by:

06T 1 0 0 oT 06T 1 0 0
Q

vapour

where I'yqpour is the interface between vapour and mixture with the special boundary condition
and 0T is the test function to be used in the weak formulation. In order to satisfy the boundary
condition g—g = Ag—g we transform the test function such that the boundary integral vanishes under
the boundary condition 3.5.1.4.

If we introduce 6T by the transformation

= (6N (-1 0
5T(6ﬁ)(fe 1>

we see that the boundary integral can be written as
0T -1 A 1 0 0
- . Le —

The first row in 3.5.1.9 vanishes because of boundary condition 3.5.1.4 the second row vanishes
because the second unknown is prescribed after transformation. So the test function must be
transformed by equation 3.5.1.8. In the input of program SEPCOMP this is done by matrixv.
Since the transformation of unknowns and test functions is different we need a non-symmetric
transformation in this case.

=t

(3.5.1.8)

vapour

First we give the program that is based upon SEPCOMP. The main program consists only of a call
to SEPCOM. The listing for this program is given by:

program absorber
call sepcom(0)
end
function funccf ( ifunc, x, y, z )
implicit none
double precision funccf, x, y, z
integer ifunc
if ( ifunc==1 ) then
! --- ifunc = 1, compute u, with respect to teta
funccf = 1.5*%(2xy-y*x2)

else

! --- ifunc = 2, compute u, with respect to gamma

funccf = 1.5*%(2xy-y*%2)

end if
end

This program needs an input file which is the same as for SEPCOMP. The following input file may
be used to solve the problem:
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# absorb.prb
#
constants
reals
LE = 2e-3 # LE =D/a
# Lewis number
LAMBDA = le-2 # LAmBDA =-LexdH/Cp/A/(1-WO)
# dim.less heat of absorption
Bi =5 # BI =Ac*delta/lambda
# Biot number cooling/film
TETAC = -0.2 # TETAC =(Tc-TO)/(Te-TO)
TETAC_BI = tetac*bi # TETAC_BI = TETAC*BI
Lam_Le = lambda/le # LAMBDA/LE
vector_names
theta
end
*
* problem definition
*
problem
types
elgrpl=(type=805)
natboundcond
bngrpl=(type=806)
bounelements
belml=curves (shape=1,cl)
essbouncond
degfdl,degfd2=curves0(c8)
degfd2=curves200(c4)
* Transformation of the unknowns T and w at the interface

localtransform

degfdl,degfd2=curves200(c4) ,transformation=non_symmetric//
matrixr=(1,0,-1,1), matrixv=(-1,0, Lam_Le,1)

END

essential boundary conditions
degfd2, curves200 (c4), value = 1

end
coefficients
elgrl ( nparm=45 )
coef 6 =0
coef 9 =1
coef12 = func=1
coef1l3 =0
coef21 =0
coef24 = LE
coef27 = func=2
coef28 = 0
bngrpl ( nparm=25 )
coef 6 = BI

coef 7 = TETAC_BI
end

H o HF O HH HH

HH*

diffusion in x-dir (teta equation)
diffusion in y-dir
velocity in x-dir
velocity in y-dir
diffusion in x-dir (gamma equation)
diffusion in y-dir
velocity in x-dir
velocity in y-dir

sigma=bi (teta equation)
h = tetac bi
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structure
prescribe_boundary_conditions
solve_linear_system

end

end_of_sepran_input

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. The following input file prints the computed
solution, makes a standard contour plot as well as a coloured contour plot. In order to identify the
plot an extra text identification is submitted.

# absorb.pst
#
post processing
# Define names of vectors
# Print both vectors completely
print theta
# PLot the results
plot contour theta, degfd=1
plot contour theta, degfd=2
plot coloured contour theta, degfd=1

plot coloured contour theta, degfd=2

end

Figure 3.5.1.2 shows the computed isotherms.
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3.5.2 An artificial example of the use of periodical boundary conditions
to connect two regions

In this section we an artificial example, to show how periodical boundary conditions can be used
to connect two regions through boundary conditions. The main difference with the examples in
Section 3.1.10 is that we have two unknowns per point and each of these unknowns has different
connection boundary conditions.

In order to get this example into your local directory use:

sepgetex testperiodO4
To run this example use

sepmesh testperiod04.msh

view mesh by jsepview

seplink testperiodO4
testperiod04 < testperiodO4.prb
view results by jsepview

In this example we consider the following artificial problem.
Let £ be the unit square ((0,1) x (0,1)) and 5 be the unit square ((1,1) x (2,1))
Let each component of the vector T defined by

T= ( % ) (3.5.2.1)

satisfy the diffusion equation with different diffusion parameters « in each region, i.e — div k1 VT; =
0in Q; and — div ke VT; =0in Qs (1 = 1, 2).

On the lower boundary (y = 0) and the upper boundary (y = 1), as well as the left-hand side
of 7 and the right-hand side of Q5 we prescribe the temperature components T; by Ti(x,y) =
y, To(z,y) =z in @y and Ty (x,y) = 2y, Ta(z,y) = 0.5z +0.5 in Qs (Dirichlet boundary condition).
Furthermore we assume that both regions which have separate boundaries for x = 1 are coupled
through coupling conditions. Since in this case we have two unknowns per point the number of
coupling conditions must be twice that used in Section 3.1.10

The coupling boundary conditions we prescribe are for 737 that the value in the left-hand side of 2,
is twice the value in the right-hand side of 1, and that the fluxes on both sides are equal.

For Ty we assume continuity of the temperature as well as the flux.

So if the curves at x = 1 are defined as Cleft and Cright, actually the boundary condition is defined
as Ty Cleft = 2T Cright and ﬁl%bleft = ”2%|Cright'

T>Cleft = T5Cright and & 88%|Cleft = Hg% ‘Cright' This means that we have a periodical bound-
ary conditions for 75 and a periodical boundary condition with a multiplication factor 2 for T7.
One easily verifies that if k1 = 1 and ko = 2, the exact solution is given by 77 =y in 4, T} = 2y
in Qo, and Ty =z in Qq, T, = 0.5+ 0.5 in Q9

The equation itself is standard, and so are the Dirichlet boundary conditions. The periodical bound-
ary conditions, however, require so-called connection elements, which identify unknowns on Cleft
and Cright.

The mesh file used in this case is:

testperiod04.msh

mesh file for 2d periodical boundary conditions problem
See testperiod04.prb for a description

To run this file use:
sepmesh testperiod04.msh

H H HHHHEH
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width of the region

# See Users Manual Section 1.4

length of the first subregion
length of the second subregion

number of elements in length direction
number of elements in width direction
Linear elements along curves

Bi-linear quadrilaterals in surfaces

Left under point

#

# Right under point
# Right upper point
#

Left upper point

# See Users Manual Section 2.2

# See Users Manual Section 2.2

# Left under point
# Right under point
h)  # Right upper point

(p1,p2,nelm= n)
(p2,p3,nelm= m)
(p3,p4,nelm= n)
(p4,pl,nelm= m)

(p11,p12,nelm=
(p12,p13,nelm=
(p13,pl4,nelm=
(p14,pll,nelm=

#
# Creates the file meshoutput
#
# Define some general constants
#
constants
reals
width = 1 #
length =1 #
length2 = 2 #
integers
n=4 #
m=4 #
shape_cur = 1 #
shape_sur = 5 #
end
#
# Define the mesh
#
mesh2d
#
# user points
#
points
# subregion 1
p1=(0,0)
p2=( length,0)
p3=( length, width)
p4=(0, width)
# subregion 2
pli=( length,0)
p12=( length2,0)
p13=( length2, widt
pl4=( length, width)
#
# curves
#
curves
# subregion 1
cl=line shape_cur
c2=1line shape_cur
c3=1line shape_cur
c4=1line shape_cur
# subregion 2
cll=1line shape_cur
cl12=1ine shape_cur
c13=1ine shape_cur
cl4=1ine shape_cur
#
# surfaces
#
surfaces # See

# subregion 1
sl=rectangle
# subregion 2

n)
m)
n)
m)

# See Users Manual Section

H B H H

# Left upper point

2.3

lower wall
right-hand side
upper wall
left-hand side

# lower wall
# right-hand side
# upper wall
# left-hand side

Users Manual Section 2.4

shape_sur (c1,c2,c3,c4)
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s2=rectangle shape_sur (cl1,c12,c13,c14)

# Coupling of surfaces to element groups

meshsurf
selml
selm?2

plot

end

s1
s2

# make a plot of the mesh

# See Users Manual Section 2.2

Since the boundary conditions depend on the coordinates, we need a main program to define the

function.

program

testperiod04

implicit none

! --- File for 2d periodical boundary conditions problem

! See testperiodO04.prb and the manual Examples Section 3.5.2

! for

a description

call startsepcomp

end

! --- Function funcbc for the essential boundary conditions

function funcbc ( ichoice, x, y, z )
implicit none

integer

ichoice

double precision x, y, z, funcbc
if ( ichoice==1 ) then
funcbc =y

else if

( ichoice==2 ) then

funcbc = x

else if

( ichoice==3 ) then

funcbc = 2d0x*y

else if

( ichoice==4 ) then

funcbc = 0.5d0*x+0.5d0

else

! ——— ichoice <1 or > 4: error

call
call

eropen(’funcbc’)
errint(ichoice,1)

call errsub ( 1, 1, 0, 0)
call erclos(’funcbc’)
call instop
funcbc = 0dO

end if

end
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! —-—- Function func for the creation of the exact solution

function func ( ichoice, x, y, z )
implicit none

integer ichoice

double precision x, y, z, func, funcbc

func = funcbc ( ichoice, x, y, z )
end

The input file for the computational part is standard. The only special part is the formed by the
elements of type -1 defining the periodical boundary conditions.

testperiodO4.prb

problem file for 2d periodical boundary conditions problem
See manual Examples Section 3.5.2

The problem to be solved consist of two squares of size 1x1:
S1: (0,0) x (1,1)
s2: (1,0) x (2,1)

The squares are connected by connection elements

#

#

#

#

#

#

#

#

#

#

#

# In S1 the solution of the double diffusion equation is: u = (y, x )

# In S2 the solution of the double diffusion equation is: u = (2y, 0.5x+0.5 )
# Hence in the common interface we have continuity of v and a multiplication
# factor of 2 for T

#

# The coefficients for the diffusion equation are different for both squares
#
#
#
#
#
#
#
#
#
#
#

To run this file use:
sepcomp testperiodO4.prb

Reads the file meshoutput
Creates the file sepcomp.out

Define some general constants

constants # See Users Manual Section 1.4

reals
kappa_1
kappa_2

vector_names
Temperature
T_exact

variables
error

# conductivity in S1
# conductivity in S2

L}
N =

end

#

# Define the type of problem to be solved
#
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problem # See Users Manual Section 3.2.2

types
elgrp1=805
elgrp2=805

essbouncond

curves(cl)
curves(c3)
curves(c4)
curves(c11)
curves(c13)
curves(c12)

periodical_boundary-conditions

H OH HF HH O HHEHHHHHEHHEHR

#

Define types of elements,

See Users Manual Section 3.2.2

Type number for double laplacian equation
See Standard problems Section 3.5

Type number for double laplacian equation
See Standard problems Section 3.5

Define where essential boundary conditions are

given (not the value)
See Users Manual Section 3.2.2

Fixed under wall S1
Fixed upper wall S1
left-hand side S1
Fixed under wall S2
Fixed upper wall S2
left-hand side S2

A1l not prescribed boundary conditions
satisfy corresponding stress is zero

curves(c2,-c14) degfdl, constant=0, factor=2
# T_1, multiplication factor 2

curves(c2,-c14) degfd2, constant=0, factor=1
# T_2, multiplication factor 1

end
#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute the temperature

prescribe_boundary_conditions,
degfdl, func=1, curves(cl to c4) # curve c2 has no effect
prescribe_boundary_conditions,
degfd2, func=2, curves(cl to c4) # curve c2 has no effect
prescribe_boundary_conditions,
degfdl, func=3, curves(cll to c14) # curve cl4 has no effect
prescribe_boundary_conditions,
degfd2, func=4, curves(cll to cl14) # curve cl14 has no effect

Temperature &
Temperature &
Temperature &

Temperature &

solve_linear_system, Temperature

# Compute and print the error

create_vector T_exact degfdl, func=1, surface(sl)
create_vector T_exact degfd2, func=2, surface(sl)
create_vector T_exact degfdl, func=3, surface(s2)
create_vector T_exact degfd2, func=4, surface(s2)

error = norm_dif=3, vectorl=Temperature, vector2=T_exact

plot_colored_levels Temperature, degfd = 1, text
plot_colored_levels Temperature, degfd = 2, text

# Write the results to a file
output
print error
end

# Define the coefficients for the problems
# All parameters not mentioned are zero

T 10
)T
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# See Users Manual Section 3.2.6 and Standard problems Section 3.5

coefficients
elgrpl
# Omega_1
coef6 = kappa_1 # 6: Heat conduction equation 1
coef9 = coef6 # 9: Heat conduction equation 1
coef21 = kappa_1 # 21: Heat conduction equation 2
coef24 = coef6 # 24: Heat conduction equation 2
elgrp2
# Omega_2
coef6 = kappa_2 # 6: Heat conduction equation 1
coef9 = coefb # 9: Heat conduction equation 1
coef21 = kappa_2 # 21: Heat conduction equation 2
coef24 = coef6 # 24: Heat conduction equation 2
end

end_of_sepran_input
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3.6 Extended second order real linear elliptic and parabolic equations
with two degrees of freedom

In this section we treat some examples corresponding to Section 3.6 of the manual Standard Prob-
lems. At this moment the following examples are available:

1D biharmonic equation (3.6.1)This concerns an artificial test problem.
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Contour levelsof magritudect 8

Figure 3.3.2.5: Vector plot of B and contour plot of ||B]|
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3.6.1 Example of 1d biharmonic equation, solved as a coupled system of
second order equations

As an example of the use of two coupled second order equations, we consider the solution of a 1d
biharmonic equation. It concerns an artificial mathematical example.

To get this example into your local directory use:
sepgetex testbiharmonischldl
and to run it use:

sepmesh testbiharmonischldl.msh
sepcomp testbiharmonischldl.prb

Consider the 1d biharmonic equation:

0*u
— = 3.6.1.1
. (36.1.1)
with boundary conditions:
2
uanda—xggiven (3.6.1.2)
Due to the special boundary conditions, this equation can be written as
0%u
0%v
- = 3.6.1.4
=1 (36.1.4)
(3.6.1.5)
or in the form used by the manual Standard Problems:
0%u
0%v
i — 3.6.1.7
= (36.1.7)
(3.6.1.8)

We solve this problem on the region [0,1] with the following boundary conditions:

1. u(0) = 1,u(1) = 1,v(0) = 0,v(0) = 0, exact solution: u=1,v =0

2. u(0)
3. u(0)

0,u(1) = 1,v(0) = —2,v(0) = —2, exact solution: u = 2%, v = —2
0,u(1) = 1,v(0) = 0,v(0) = —12, exact solution: u = z*,v = —1222

The first two problems are solved exactly and the third one has a small error.

The mesh file for this problem is given by
testbiharmonischildl.msh

mesh file for 1d biharmonic equation
See Examples Manual Section 3.6.1

To run this file use:

#
#
#
#
#
#
# sepmesh testbiharmonischldl.msh
#
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# Creates the file meshoutput
#
#
#
# Define some general constants
#
constants
integers
n = 10
reals
L=1
end
# Create mesh
meshild
points
pl
p2
curves
cl = linel ( pl, p2, nelm = n )

0
L

end

and the problem file by

# testbiharmonischldl.prb
#
# problem file for 1d biharmonic equation
# See Examples Manual Section 3.6.1
#
# To run this file use:
# sepcomp testbiharmonischldl.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
kappa =1 # diffusion parameter
vector_names
potential
end
#
# Define the type of problem to be solved
#
problem, sequence_number = 1 # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=808 # Type number for second order elliptic equation
# See Standard problems Section 3.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
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# See Users Manual Section 3.2.2
points ( pl, p2) # Essential boundary conditions on all boundaries
end

# Define the essential boundary conditions
# See Users Manual Section 3.2.5
# First problem u =1

essential boundary conditions, sequence_number = 1
points pl, degfdl, value =1
points p2, degfdl, value 1

end

# Second problem u = x72, v=-2

]
N

essential boundary conditions, sequence_number
points pl, degfdl, value = 0
points pl, degfd2, value = -2
points p2, degfdl, value = 1
points p2, degfd2, value = -2
end

# Third problem u = x"4, v=-12x"2

essential boundary conditions, sequence_number = 3
points pl, degfdl, value =
points pl, degfd2, value =
points p2, degfdl, value =
points p2, degfd2, value = -12

end

= O O

# Define the coefficients for Laplacian equation
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrpl ( nparm=65 ) # The coefficients are defined by 65 parameters
coef6 = kappa # all = kappa
coef21 =1 # a22 =1
coef4b = -1 # beta_21

end

coefficients, sequence_number = 2

elgrpl ( nparm=65 ) # The coefficients are defined by 65 parameters
coef6 = kappa # all = kappa
coef21 =1 #a22 =1
coef3l = 24 # £f2 = 24
coefdb = -1 # beta_21

end

# Define the structure of the problem

# In this part it is described how the problem must be solved
#

structure # See Users Manual Section 3.2.3
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# Compute the solution of the first problem (u=1, v=0)
# First prescribe the essential boundary conditions
# The sequence number refers to the sequence number used in the
# essential boundary conditions block
# Since only one input block is present this information is superfluous
prescribe_boundary_conditions, potential, sequence_number = 1

# Next solve the system of equations
# The sequence number seq_coef refers to the sequence number of the
# input block coefficients and
# the sequence number seq_solve refers to the sequence number of the
# input block solve

solve_linear_system, potential, seq_coef =1
print potential

# Compute the solution of the second problem (u=x"2, v=-2)
prescribe_boundary_conditions, potential, sequence_number = 2
solve_linear_system, potential, seq_coef =1
print potential

# Compute the solution of the third problem (u=x"4, v=-12x"2)
prescribe_boundary_conditions, potential, sequence_number = 3
solve_linear_system, potential, seq_coef = 2

print potential

# Write the results to a file
# Since no extra information is used, we have omitted an input block

output

end
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3.7 Second order wave equations

At this moment we have only one example:

3.8 An artificial example of the solution of a 2d wave equation
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3.8 An artificial example of the solution of a 2d wave equation

Consider the wave equation
@ —Au=f (3.8.0.9)
Ero) .8.0.
with f = —cos(t)(x + 3y).
This equation must be solved on a unit square with initial conditions

ou

u(t = 0) = cos(t)(z + 3y) E(t

=0)=0 (3.8.0.10)
and boundary conditions
u = cos(t)(x + 3y) (3.8.0.11)

on the whole boundary.
One easily verifies that the exact solution of this problem is given by u = cos(t)(z + 3y)
To get this example in you local directory use:

sepgetex examwavel

And to run it use
sepmesh examwavel.msh
seplink examwavel
examwavel < examwavel.prb

seppost examwavel.pst

A version in which we use the exact solution and the error of the numerical solution is computed is
also available under the name:

examwave2
This version can be copied and run in exactly the same way as examwavel.
In order to solve this problem we apply the standard finite element discretization with elements of
type 800 as described in the manual Standard Problems Section 3.1.
The time discretization we apply is the central difference scheme, that is a special method for second
order time derivatives.
The mesh for this problem is standard. The input file is

examwavel.msh

mesh file for 2d artificial wave problem
See Manual Examples Section 3.7.1

To run this file use:
sepmesh examwavel.msh

Creates the file meshoutput

Define some general constants

H OH H OH HH HHHFEH AR

constants # See Users Manual Section 1.4
reals
width = 1 # width of the region
length =1 # length of the region
integers
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shape_cur = 1 # Type of elements along curves
# linear elements
shape_sur = 3 # Type of elements in surface
# Linear triangles
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
coarse(unit=0.1) # unit length
#
# user points, provided with local coarseness
#
points # See Users Manual Section 2.2
p1=(0,0,1)
p2=( width,0,1)
p3=( width, length,1)
p4=(0, length,1)
#
# curves
#
curves # See Users Manual Section 2.3
cl=cline shape_cur (p1,p2)
c2=cline shape_cur (p2,p3)
c3=cline shape_cur (p3,p4)
c4=cline shape_cur (p4,pl)
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl=general shape_sur (cl1,c2,c3,c4)
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

In order to define the initial conditions, boundary conditions and right-hand side, we need function
subroutines. These are given in the following fortran file:

program examwavel
call sepcom(0)
end

! —-— function func for the initial condition

function func ( ichoice, x, y, 2z )

implicit none

double precision func, x, y, z

integer ichoice

double precision t, tout, tstep, tend, tO, rtimdu

integer iflag, icons, itimdu

common /ctimen/ t, tout, tstep, tend, t0, rtimdu(5), iflag,
+ icons, itimdu(8)
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func = cos(t) * ( x + 3d0 * y )

end

! --— function funccf for the right-hand side:

function funccf ( ichoice, x, y, z )

implicit none

double precision funccf, x, y, z

integer ichoice

double precision t, tout, tstep, tend, tO, rtimdu
integer iflag, icons, itimdu

common /ctimen/ t, tout, tstep, tend, t0, rtimdu(5), iflag,

+ icons, itimdu(8)
funccf = -cos(t) * ( x + 3d0 * y )

end

! --- function funcbc for essential boundary conditions

function funcbc ( ichoice, x, y, z )

implicit none

double precision funcbc, x, y, z

integer ichoice

double precision t, tout, tstep, tend, tO, rtimdu
integer iflag, icons, itimdu

common /ctimen/ t, tout, tstep, tend, tO, rtimdu(5), iflag,

+ icons, itimdu(8)
funcbc = cos(t) * ( x + 3d0 * y )

end

In the input file for this program we need to define two vectors: the function u and its time

derivative, which is stored in un. The input file is given by
examwavel.prb

problem file for 2d artificial wave problem
See Manual Examples Section 3.7.1

To run this file use:
sepcomp examwavel.prb

Reads the file meshoutput
Creates the file sepcomp.out

#
#
#
#
#
#
#
#
#
#
#
#
#
# Define some general constants
#
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constants # See Users Manual Section 1.4
reals

t0 =0 # initial time
t1 1 # end time
dt = 0.05 # time step
tout0 = tO # first time for output to sepcomp.out
toutl = t1 # last time for output to sepcomp.out
dtout = 2x*dt # time step for output to sepcomp.out

vector_names

u ! Contains solution
un ! Contains solution at prior time level
! At the start it contains the time-derivative at t = tO
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrpl = 800 # General second order equation
# See Standard problems Section 3.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
curves(cl to c4) # all outer boundaries are prescribed
end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
storage_method = compact, symmetric
# Symmetric matrix, stored as compact matrix
end

# Create initial conditions
# See Users Manual Section 3.2.5
create vector 1

func = 1 ! u at t=0 (function)
create vector 2
value = 0 I du/dt at t=0 (derivative)
end
#
# Essential boundary conditions
#
essential boundary conditions
curves(cl to c4), (func=1) # Boundary contions are only necessary for u

# They depend on time and place, hence a
# function is used
end
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# Define the coefficients for the wave equation
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients
elgrpl (nparm=20)
coef6 =1 # all = 1 (laplace)
coef9 = coef 6 # a22 =1
coefl6 = func = 1 # £ is a function
coefl7 =1 # rho = 1
end
# Define input for the time integration
time_integration
method = central_differences ! standard method for second order
! time derivatives
tinit = tO ! initial time
tend = t1 ! end time
tstep = dt ! time step
toutinit = toutO ! initial time for output
toutend = toutl ! end time for output
toutstep = dtout ! time step for output
seq_coefficients = 1 ! defines which coefficients must
! be used
diagonal_mass_matrix ! The mass matrix is diagomal
end

# Define the structure of the problem
# In this part it is described how the problem must be solved

structure
# Fill initial condition in u and derivative at t=0 in un
create_vector u
# Integrate the equation for tO to tend
solve_time_dependent_problem, u
end

end_of_sepran_input
Finally we can plot the solution using the following input file for seppost.
# examwavel.pst

# Input file for postprocessing for 2d artificial wave problem
# See Manual Examples Section 3.7.1

#

#

# To run this file use:

# seppost examwavel.pst > examwavel.out

#

# Reads the files meshoutput and sepcomp.out

#

#

postprocessing # See Users Manual Section 5.2

time = (0,1)



EX 2d wave equation November 2008 3.8.0.6

print u
plot contour u
time history plot point(.5,.5) u
end
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4 Elements for lubrication theory
4.1 The Reynolds equation

4.1.1 Oil lubricated radial sliding bearing (Reynolds equation)

Consider an oil lubricated radial bearing with eccentricity e. In Figure 4.1.1.1 the cross-section
of the bearing has been sketched. The oil film thickness is small and therefore the Navier-Stokes
equations describing the flow may be approximated by the Reynolds equation for the pressure. See
4.1.

In order to get this example into your local directory use:

sepgetex bearing

Figure 4.1.1.1: Cross-section of the oil lubricated radial sliding bearing

The computational region is mapped onto a rectangle, where the computational x-co-ordinate is
equal to the parameter along the surface of the bearing in ¢-direction (0 < x < 7D, D diameter of
the bearing). The computational y-co-ordinate is equal to the z-co-ordinate of the bearing. Since
the solution is symmetric with respect to the plane z = L /2, only one half of the bearing is com-
puted.

The thickness of the film is described by the function h.

The following parameters are used in the computation:

h(¢) = 8.2 x107°(1 — ecos(¢)) m

D = 0.06m

2 =04

p = 0.04 Ns/m?

hy = 0m/s

k = 0m3/Ns

po = 0 N/m?

up = 2.04d m/s uy = 0m/s

The mesh is generated by the mesh generator SEPMESH and consists of a rectangle with sides C1
to C4. The midpoints of the lower and upper sides are used to define a larger coarseness than for
the end points. For the mesh we refer to the file bearing.msh.

The following boundary conditions are used:

Lower boundary Cp: no flow  (£4-22 — hy.p = 0)
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Upper boundary C3 of the bearing: boundary pressure p =0

Curves Cs4 respectively Cy: Since these boundaries coincide with ¢ = 0 respectively ¢ = 27 we
need periodical boundary conditions to couple both boundaries.

If the Reynolds equation is solved by the preceding parameters, we get negative pressures (cavita-
tion). In order to prevent the negative pressures we the need the extra constraint:

p=>0
Important physical parameters are the load f = (f, f,)” and the attitude angle ¢ = arctan(%),
with f, = [ —pcos(¢)dS?, and f, = [ —psin(¢)dQ. Both parameters are computed in the
Q

Q
subroutine LOAD.
Solution procedure

In order to satisfy the constraint p > 0,we have the option to apply either the linear solver us-
ing constrained overrelaxation or Kumars mass conservation method. In this section we solve the
problem in three different ways, all giving the same results:

1. Solving the standard Reynolds equation described in the manual ” Standard Problems” Section
4.1, using constrained overrelaxation.

2. Solving the Reynolds equation as a special case of the second order elliptic equation described
in the manual ”Standard Problems” Section 3.1, using constrained overrelaxation.

3. Solving the standard Reynolds equation described in the manual ” Standard Problems” Section
4.1, using Kumars mass conservation method.
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Standard Reynolds equation using constrained overrelaxation

As starting value the solution of the Reynolds equation without constraint is used.

The region is subdivided into triangles by the submesh generator ”"RECTANGLE”. As an example
linear triangles have been used.

The input file for sepmesh can be found in the directory $SPHOME/sourceexam/bearing The input
file for sepcomp is given by:

# bearing.prb
#
# problem file for 0il lubricated radial sliding bearing
#
# To run this file use:
# sepcomp bearing.prb
#
# Uses the file meshoutput
#
# Define some general constants
#
constants
reals
mu = 0.04 ! viscosity
ul = 2.04 ! velocity in x-direction
diam = 0.05 ! diameter
deltar = 8.2e-5 ! delta_r
eps =0.4 ! eccentricity
end
* Problem definition
problem
reynolds # Reynolds equation

periodical_boundary_conditions
curves (c2,c4d)
essential_boundary_conditions # Positions where essential boundary
curves(c3) # conditions are given
end

* Structure of the program
structure

# First part: without the effect of cavitation

matrix_structure compact, symmetric ! an iterative method is used

vector pressure = 0 ! create and clear pressure vector

phi = x_coor*2/diam ! phi is a vector depending on x
layer_thickness = deltar*(l-eps*cos(phi)) ! h is a vector depending on phi

viscosity = mu
u_velocity = ul
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solve_linear_system pressure ! The standard preconditioned CG method
! is applied

# Compute load and attitude angle

fx = integral ( -pressure*cos(phi) ) ! / -p cos(phi) d Omega
fy = integral ( -pressure*sin(phi) ) ! / -p sin(phi) d Omega
ftot = sqrt(fx**2+fy**x2)

angle = atan(fy/fx)

print_text ’No effect of cavitation’

print fx , text = ’ horizontal component of load’

print fy , text > vertical component of load °’

print ftot, text > modulus of load ’

print angle , text = ’ attitude angle ’

# Prints and plots

plot_contour pressure
plot_coloured_levels pressure

# Second part: with the effect of cavitation
press_pos = pressure
matrix_structure row_compact ! use overrelaxation

sol_minimum = O ! constraint: p>=0
solve_linear_system, press_pos

# Compute load and attitude angle

fx = integral ( -press_pos*cos(phi) ) ! / -p cos(phi) d Omega
fy = integral ( -press_pos*sin(phi) ) ! / -p sin(phi) d Omega
ftot = sqrt(fx**2+fy*%x2)

angle = atan(fy/fx)

print ’With effect of cavitation’

print fx , text = ’ horizontal component of load’
print fy , text = ’ vertical component of load °’
print ftot, text = ’ modulus of load ’

print angle , text = ’ attitude angle
# Prints and plots

plot_contour press_pos
plot_coloured_levels press_pos
no_output

end

This program needs an input file which is the same as for SEPCOMP. Since the solution procedure
is more complex than the standard solution of linear problems, the structure of the program must
also be defined in the input file.

The structure of the program consists of the following steps:
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The linear problem is solved without constraints. The system of equations is solved by a
preconditioned CG algorithm. As a consequence the structure of the matrix is defined by
method = 5.

The result of the computation is stored in pressure.

The load and the attitude angle are computed and printed

The linear problem is solved with constraints. At this moment only overrelaxation with
constraints is available. Since this method requires a structure defined by method = 9, the
structure of the matrix must be recomputed. The result of the computation is stored in
press_pos, the result stored in pressure is used as starting vector and hence must be copied
in the second vector first.

The new load and the attitude angle are computed and printed

Both vectors computed are plotted.

Figure 4.1.1.2 shows the contour plots for the first approximation, Figure 4.1.1.3 for the final
solution. Both plots may be visualized by the program SEPVIEW.

Oil lubricated radial sliding bearing without effect of cavity
LEV

1-35¢
2281
3218
414
5-7.0¢
6333
7723

[ | 7703

Contour levelsof PRESSURE

Figure 4.1.1.2: Isobars generated by SEPCOMP with cavity not taking into account

Oil lubricated radial sliding bearing with effect of cavity
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5154
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Contour levelsof PRESSURE

Figure 4.1.1.3: Isobars generated by SEPCOMP with cavity taking into account
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4.1.2 Oil lubricated radial sliding bearing solved by general elliptic equa-
tion

Instead of using the standard Reynolds element, the same results can be achieved by using the
standard element for second order elliptic equations.

The mesh file is identical to the one in Section 4.1 but the problem file is a little bit different.

In order to get this example into your local directory use:

sepgetex bearing_elliptic

To solve the Reynolds equation we consider the general elliptic equation from the manual Standard

Problems Section (3.1).

The translation into the elliptic equation is as follows:

The diffusion is equal to h3/(12u).

The v vector is equal to (-uh/2,0).

All other terms in the general elliptic equation are zero. We shall not print the input file bearing_elliptic.prb
below but consider only the differences with the file bearing.prb.

First of all the type number reynolds is replaced by general_elliptic_equation.

Further more the filling of coefficients changes to

phi = x_coor*2/diam ! phi is a vector depending on x
h = deltar*(l-eps*cos(phi)) ! h is a vector depending on phi
diffusion = h**3/(12*mu)

X_gamma = -ulxh/2

The rest of the file is identical to the file bearing.prb.
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4.1.3 Oil lubricated radial sliding bearing using Kumars algorithm
To get the corresponding files into your directory use

sepgetex bearingmasscons
The mesh file is exactly the same as in Section 4.1.

The the problem file differs a little bit as can be seen below

File: bearingmasscons.prb
Contents: Input for program bearingmasscons described in section 4-1-3
the manual examples

0il lubricated radial sliding bearing
Kumars mass conservation scheme is used

To run this file use:
sepcomp bearingmasscons.prb

Reads the file meshoutput

Define some general constants

HOH H OH H H HEHHEFEHHEHHEH KR H

constants # See Users Manual Section 1.4

integers
maxiter = 10 # maximum number of iterations

reals
mu = 0.04
ul = 2.04
diam =
deltar =
eps =
p_cavity

viscosity

velocity

diameter of bearing
maximum height of film
eccentricity
cavitation pressure

.05
.2d-5

I o 0 O
H OH OH OH B H

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

reynolds # Reynolds equation
periodical_boundary_conditions
curves (c2,c4)
essential_boundary_conditions # Positions where essential boundary
curves(c3) # conditions are given
cavitation 1 # Pressure is prescribed in cavitation region

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved
#

structure # See Users Manual Section 3.2.3
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matrix_structure compact, symmetric ! an iterative method is used

H*

Compute the potential
# First prescribe the essential boundary conditions

vector pressure = 0 ! create and clear pressure vector
phi = x_coor*2/diam ! phi is a vector depending on x
layer_thickness = deltar*(l-eps*cos(phi)) ! h is a vector depending on phi

viscosity = mu
u_velocity = ul

# Next compute pressure by Kumars algorithm
solve_bearing

# Compute load and attitude angle

fx = integral ( -pressure*cos(phi) ) ! / -p cos(phi) d Omega
fy = integral ( -pressure*sin(phi) ) ! / -p sin(phi) d Omega
ftot = sqrt(fx*x*2+fy*%2)

angle = atan(fy/fx)

print fx , text = ’ horizontal component of load’

print fy , text > vertical component of load ’

print ftot, text > modulus of load ’

print angle , text = ’ attitude angle ’

# Prints and plots
plot_contour pressure
plot_coloured_levels pressure

no_output

end
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4.1.4 Compressible slider bearing

In this example we consider the one-dimensional slider bearing. This example is a good choice to
verify the validity of the finite element method, since the exact solution for this problem can be
found in Harrison (1913).

In Figure 4.1.4.1 the cross-section of the bearing has been sketched. The film thickness is small and
therefore the Navier-Stokes equations describing the flow may be approximated by the Reynolds
equation for the pressure. See 4.1. As lubricant air is used, which means that the compressible
version of the Reynolds equation must be solved.

In order to get this example into your local directory use:

sepgetex bearingl

4

u

—_—

i T,

Figure 4.1.4.1: Cross-section of the air lubricated one-dimensional sliding bearing

Since it is known that the pressure has a steep gradient near the minimum height of the film, the
mesh is refined in the last part of the region. Figure 4.1.4.2 shows the mesh used in the computa-
tion. This mesh has been created by program SEPMESH using the following input.

# Dbearingl.msh
#
# mesh file for Air lubricated radial sliding bearing
#
# To run this file use:
# sepmesh bearingl.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants
integers
n = 20 ! number of elements for first and last part
reals
mid = 0.7 ! split of first and second part
length =1 ! length of bearing
end
#

# Define the mesh
#
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meshild # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=0
p3=mid
p2=length
curves

cl=line (p1l,p3,nelm=n)
c2=line (p3,p2,nelm=n)
plot, nodes =1
end

Figure 4.1.4.2: Mesh for one-dimensional slider bearing

The test example described in Harrison is dimensionless, but in SEPRAN we have to define values
for the physical parameters. In order to get exactly the same dimensionless parameter as Harrison,
the following choices have been made:

B =1

h = 03—-0.2x,i.e. hy = 0.3and hy = 0.1
= 0.0166666

ht =0

k=20

po =0

Uy = 1

The atmospheric pressure p, is normalized to 1, hence the computed pressure indicates the ratio
L. Mark that for the compressible bearing the pressure must always be positive, since otherwise
the non-linear algorithm fails.

The compressible Reynolds equations are non-linear, so a non-linear solver must be used. Such a
solver always requires a starting value. In this particular example the solution of the incompressible
bearing defines a nice starting value. If we compute the solution of this bearing first, we have also
the opportunity to compare the pressures computed by the incompressible and the compressible
Reynolds equations.

Since the solution procedure is more complex than the standard solution of linear or non-linear
problems, the structure of the program must also be defined in the input file.

The structure of the program consists of the following steps:
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e The linear problem is solved. The solution is stored in vector 1. A direct method is used for
this one-dimensional problem.

e The solution is copied from vector 1 to vector 2. In this way both vector 1 and vector 2 can
be plotted.

e The non-linear problem is solved, where the copied vector is used as starting value. The
equations are linearized by a newton linearization. This example took only 2 iterations to
converge to the final solution.

e Both vectors computed are written to the output file sepcomp.out for post-processing pur-
poses.

The following input file may be used to solve the problem:

# bearingl.prb

#

# problem file for Air lubricated radial sliding bearing

#

# To run this file use:

# sepcomp bearingl.prb

#

# Uses the file meshoutput

#

# Define some general constants

#

constants

reals

viscosity = 0.0166666
velocity =1

end

* Problem definition
problem
types
Reynolds
essbouncond
points(pl to p2)
end
* Structure of the program
structure
# Define layer_thickness h
h = 0.3-0.2*%x_coor

layer_thickness = h

# First solve incompressible (linear) system
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prescribe_boundary_conditions press_incp = 1
solve_linear_system press_incp

#

Next compressible (non-linear) system
#

Use incompressible pressure as start

press_comp = press_incp
type_of_bearing = ’compressible’

solve_nonlinear_system press_comp, print_level=1

print press_incp

print press_comp

plot_function press_incp, press_comp
no_output

end

Figure 4.1.4.3 shows the pressure plot made by program SEPCOMP.

Figure 4.1.4.3: Pressures generated by SEPCOMP. blue incompressible, red compressible
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4.1.5 A hydrostatic thrust bearing

Consider an externally pressurized, water lubricated, circular thrust bearing sliding on a track (see
Figure 4.1.5.1). The pressure in the thin water film between the bearing and the track can be

11Q

L

Figure 4.1.5.1: Thrust bearing

described using the Reynolds equation. The water is fed by a pump through a resistor into the
central recess of the bearing (see Figure 4.1.5.2). We want to calculate the load capacity and the

Figure 4.1.5.2: Film geometry

flow of this bearing given certain operating conditions. The parameters used in the computation
are given in table 4.1.5.1.

Bearing diameter D | 0.740 m
Water film height h 011073 m
Recess diameter | Dg | 0.530 m
Recess height | hg | 501073 m
Water viscosity | 0.001 Ns/m?
Bearing velocity | w; | 0.25 m/s
Supply resistor v 1061076 m*/N'/2s
Supply pressure | ps | 15.010° N/m?

Table 4.1.5.1: Parameters

To get this example into your local directory give the command:

sepgetex hydrostat_thrust
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Figure 4.1.5.3: Definition of curves

The mesh is generated by the mesh generator SEPMESH. Figure 4.1.5.3 shows the curves in the
mesh. The input file for the mesh generator is given below:
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#  hydrostat_thrust.msh
#
# Circular Thrust Bearing, 1 recess
#
# Contents: Mesh file for hydrostatic thrust bearing
#  See Manual Standard Elements Section 4.1.5
#
#  Author: R.A.J. van Ostayen
# Date: 21-11-97
#
#
# To run this file use:
# sepmesh hydrostat_thrust.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
Rb = 0.370 # Radius of the thrust bearing
Rr = 0.100 # Radius of the bearing recess
Cc =1.0 # Coarse value (centre)
Cb = 1.0 # Coarse value (bearing)
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
coarse (unit = 0.04) # The unit length = 0.04
# Coarseness is applied
#

# user points
#

points # See Users Manual Section 2.2
pt = (0.0, 0.0, Cc) # Centre of the bearing
p2 = ( -Rb, 0.0, Cb ) # At most left point of bearing
p3 = ( -Rr, 0.0, Cb ) # At most left point of bearing recess
#
# curves
#
curves # See Users Manual Section 2.3
cl = carc ( p3, p3, pl ) # Boundary of bearing recess
c2 = carc ( p2, p2, pl ) # Boundary of bearing
c3 = cline ( p2, p3) # Help line to connect bearing and bearing
# recess ( not necessary if triangle is used)
c4d = cline ( p3, pl) # Connection line between bearing recess
# and centre point. This is necessary since
# the centre point must be a nodal point
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# surfaces

i
surfaces # See Users Manual Section 2.4
sl = general 3 ( cl, c4, -c4) # Bearing recess
s2 = general 3 ( c2, c3, -cl, -c3) # Bearing minus bearing recess

# Connect surfaces to element groups

meshsurf
selml = s1 # Bearing recess
selm2 = s2 # Bearing minus bearing recess
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

Figure 4.1.5.3 shows the mesh generated by SEPMESH. The following boundary conditions are

1 recess bearing

1.10E6 : : :

10.00E5 B L
9.00E5 T T
8.00E5 T L
7.00E5 T T
6.00E5 T T
5.00ES T ™
4.00E5 T L
3.00ES T L
2.00ES T ™

LF 1000E4 r

0.00 f f f T T

-0.50E0 -0.30E0 -1.00E-1 0.10E0 0.30E0 0.50E0

Figure 4.1.5.4: Thrust bearing

used:

e Outer edge: Curves Cq, Cy, C3 and Cy:
Essential boundary condition: pressure p = 0.
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e Center point: Point P;:
Natural boundary condition: inertial (= non-linear) supply resistor ¢ = v+/ps — pPr

The calculation is performed by the program SEPCOMP. Due to the non-linear supply resistor an
iterative procedure is used. The flow through the bearing can be calculated using 4 methods:

e Summing the reaction forces on the outer edge of the bearing (Curves C; to Cy).

e Summing the surface flow (icheld=22) on the outer edge.

Integrating the flow vector (icheld=23) normal to the outer edge.

e Calculating the flow through the supply resistor using the calculated pressure fall across the
resistor.

In the input file for the calculation a number of bearing properties are calculated: the load, the
flow and the friction forces on the bottom and top surfaces. The input file is given below:

hydrostat_thrust.prb
Circular Thrust Bearing, 1 recess

Contents: Problem file for hydrostatic thrust bearing
See Manual Standard Elements Section 4.1.3

Problem is stationary and non-linear

Author: R.A.J. van Ostayen
Date: 21-11-97

To run this file use:
sepcomp hydrostat_thrust.prb

Reads the file meshoutput
Creates the file sepcomp.out

Define some general constants

H OH H H H H HHHHHFHHHHEHEHEHHEHHEH

constants # See Users Manual Section 1.4
reals
Hf = 0.1e-3 # film height [m]
Hr = 5e-3 # recess height [m]
vH20 = 0.001 # viscosity water [Ns/m2]
U=0.25 # velocity [m/s]
Ps = 15eb5 # supply pressure [N/m2]
G = 0.6e-6 # resistor value (non-linear)
end
#
# Define the type of problem to be solved
#

problem # See Users Manual Section 3.2.2
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reynolds
bounelements # Defines where the natural boundary conditions
# are present
belm 1 = points (pl) # The resistor is only present in the center
essbouncond # Define where essential boundary conditions are
# given (not the value)
curves (c2) # Outer boundary of bearing
end
# Define the structure of the problem
# In this part it is described how the problem must be solved
# This is necessary because some special integrals and derivatives are computed
#

structure
matrix_structure, storage_scheme = compact, symmetric, reaction_force
# initialize solution vector

create_vector pressure, surfaces (sl), value = 10e5
# The pressure in the recess is set to 1076

# Coefficients for the Reynolds equation

u_velocity = U

viscosity = vH20 # viscosity of water

restriction = ’non_linear’ # type of restriction relation
capillary_restriction = G # capillary restriction coefficient gamma
0il_supply_pressure = Ps # Water supply pressure

# Compute the pressure by solving a non-linear system
# Non-linearity due to resistor

solve_nonlinear_system pressure, reaction_force = flow_through_surface &
maxiter = 50, accuracy = 1d-4, criterion = relative, print_level = 2

# Compute flow in film (vector)

inplane_force = derivatives ( pressure, icheld = 23 )
# Compute traction on bottom surface

bottom_surface_traction = derivatives ( pressure, icheld = 24 )
# Compute traction on top surface

top_surface_traction = derivatives ( pressure, icheld = 25 )
# calculate load, flow and friction

load = integral ( pressure )
flow = boundary_sum (flow_through_surface, curves (c2) )

x_friction_bottom = integral ( bottom_surface_traction, degfd 1 )
y_friction_bottom = integral ( bottom_surface_traction, degfd 2 )
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x_friction_top
y_friction_top

integral ( top_surface_traction, degfd 1 )
integral ( top_surface_traction, degfd 2 )

# Print the load, flow and friction

print load, text =’ Load [N]: °
print flow, text =’ Flow [m3/s]: ?
print x_friction_bottom, text ’Friction force (x, bottom) [N]: ’
print y_friction_bottom, text = ’Friction force (y, bottom) [N]: ’
print x_friction_top, text = ’ Friction force (x, top) [N]: °
print y_friction_top, text = ’° Friction force (y, top) [N]: °

plot_contour pressure

plot_3D pressure

plot_contour flow_through_surface
plot_contour inplane_force
plot_vector bottom_surface_traction
plot_vector top_surface_traction

no_output
end

# coefficients for Reynolds equation
# Only those that depend on the element groups

coefficients
elgrp 1 # coefficients for the bearing recess
layer_thickness = Hr # height of the recess
elgrp 2 # coefficients for the rest of the bearing
layer_thickness = Hf # film height

end
end_of_sepran_input

A contour plot of the calculated pressure is shown in Figure 4.1.5.5. The pressure along a centerline
of the bearing is shown in Figure 4.1.5.6.
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1 recess bearing

Figure 4.1.5.5: Pressure iso-lines

4.2 Coupled elasticity-flow interaction for a bearing (Reynolds equation
coupled with mechanical elements)

4.2.1 Example: the elasto-hydrodynamic lubrication of an oil pumping
ring seal

Consider the pumping ring and scraper as given in Figure 4.2.1.1. The pump forms a part of the
Philips Stirling engine (See van Heyningen and Kassels 1987). The geometry of the pumping ring
is given in Figure 4.2.1.2 For the computations the axi-symmetric model given in Figure 4.2.1.1 has
been used.

For the generation of the mesh and the boundary conditions we define 6 user points, 6 curves and
one surface. See Figure 4.2.1.2 for an definition.

The problem to be computed is time-dependent. In S1 the axi-symmetric elasticity equations must
be satisfied. See 5.1. A linear triangular element with type number 250 is used. At curve C6
the elasticity-Reynolds element is used, since the pressure satisfies the Reynolds equations (time-
dependent). Furthermore the following boundary conditions must be satisfied:

Cl: T, = 0, T, = 6x105 N/m?

C2: T, = —11x105 N/m?, T, = 0

C3,Cs:T. = 0,7, =0

C4: displacement u = 0

P6:p =0

Pl: p = 6 x 105 N/m?
At t = 0 a velocity U = 0 is assumed. The initial condition is found by solving the non-linear
stationary equations by the Newton iteration. As starting value for the iteration we use a zero
displacement u = 0 and a linear varying pressure.

The following parameters are used in the computation:
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1 recess bearing
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Figure 4.1.5.6: Pressure along a centerline

Seal length L = 8mm
Rod diameter D = 12mm
Seal thickness d = 1mm
Clearance ho = 8 um

Oil viscosity n = 0.0278 Ns/m?
Young’s modulus E = 5.27 x 10'° N/m?
Poisson’s ratio v = 044

In the program all quantities are given in p/N and pm, because of the small film thickness.
For t ; 0, the problem becomes time-dependent with a velocity U given by:
U = dasin(wt) m/s
with w = 151.8 rad/s and @ = 3.492 m/s.
During the time-dependent part, the pressure may become negative (cavitation). Since nega-

tive pressures are not physical a so-called ”Reynolds” boundary condition is realized by the non-
negativity constraint:

p <0

This constraint is imposed in the program by using subroutine OVERCS (overrelaxation with con-
straint; see Programmers Guide 6.10.1). To increase the convergence speed, some experiments have
been performed with various values of A and the overrelaxation factor w. These experiments showed
that for this problem A = 0.99 and w = 1.6 might be a good choice. However, the solution time for
the overrelaxation process is large compared to that of subroutine SOLVE (LU-decomposition). So
an improvement of this part of the program might be possible.

As time discretization the modified Crank-Nicolson scheme is used (§ = %), combined with a
Newton linearization.

Remark
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Figure 4.2.1.1: Axisymmetric model used for the calculation
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Figure 4.2.1.2: Definition of user points, curves and surface

Since the number of degrees of freedom at curve C6 (3) is unequal to the number of degrees of
freedom at the internal elements (2), line elements must be introduced at curves C6 and C1. At
curve C2, both line elements and boundary elements may be used. In the program line elements
have been chosen, but the results with boundary elements are exactly the same.

To get this example in your local directory type:
sepgetex pump
To run it perform the following steps:
sepmesh pump.msh
view mesh
seplink pump
pump < pump.prb

seppost pump.pst

The mesh is generated by the mesh generator SEPMESH.
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The region is subdivided into triangles by the submesh generator ’/RECTANGLE”. As an example

linear triangles have been used.
SEPMESH needs an input file. An example of an input file for this region is given below:

>k >k >k K 3K 3K 3K 3k 3k 5k 3k 3k 5k 5k >k 5k %k >k 3K 3K 3K 3k 3k 5k 5k 3k 5k 5k 5k %k %k >k 3K 3K 5K 3k 3k 3k %k %k 5k 5k 5k %K K 5K 3K 5K 5K 5k 3k %k 5k 5k >k %k %k K 3K 5K 3K 5K 5k >k %k %k >k >k >k %k %k K >k >k > >k >k k

* X ¥ ¥ * X *x

>k >k >k >k >k 5k ok ok ok 5k 5k >k >k >k >k >k >k >k >k 5k >k 5k 5k 5k >k >k %k %k %k >k >k >k >k 5k 5k 5k 5k %k >k >k >k >k %k >k >k >k >k 5k 5k 5k %k %k >k >k >k %k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k

*

File: pump.msh

Contents: Input for mesh generation part of example described in
Section 4.2.1 in the manual standard problems

Elastohydrodynamic lubrication of an oil pumping ring seal

Submesh generator RECTANGLE is used

mesh2d

* X X X X X X *

points

p1=(6.008d3,0d0)
p2=(7.008d3,0d0)
p3=(7.008d3,1.5d3)
p4=(7.008d3,8d3)
p5=(6.008d3,8d3)
p6=(6.008d3,3.5d3)
curves
cl=linel(pl,p2,nelm=2)
c2=1linel(p2,p3,nelm=3)
c3=1linel(p3,p4,nelm=13)
c4=linel(p4,p5,nelm=2)
c5=1linel(p5,p6,nelm=9)
c6=1linel(p6,pl,nelm=7)
surfaces
sl=rectangle3(n=2,m=16,c1,c2,c3,c4,c5,c6)
meshline

introduction of line elements

line elements are necessary because the number of degrees of freedom

at curve c6 (3) differs from that in the internal elements (2)

The line elements at c2 may be replaced by boundary elements, the other
ones, however are necessary

lelml=(shape=1,c6)

lelm2=(shape=1,cl)

lelm3=(shape=1,c2)
meshsurf

Only one surface element

selm4=(s1)
plot

end

Mark that the unit used in this mesh is um instead of m.
Figure 4.2.1.3 shows the mesh generated by SEPMESH.

The internal elements are defined by type number 325. Only the coefficients 6, 7 and 11 have to be
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Figure 4.2.1.3: Plot of mesh generated by SEPMESH

defined; all others are zero.
The boundary conditions at sides C5 and C6 are essential boundary conditions, the boundary
conditions at sides C2 and C3 are natural boundary conditions requiring no boundary elements at

all.

In this particular example, where the problem is time-dependent the complete program is defined.
Hence in this case SEPCOMP is not used.
The listing for this program is given by:

1 skookook ok sk sk ok ook ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok

* X X X X X X X X X X X ¥ ¥

Solution of the elastohydrodynamic lubrication of an oil pumping
ring seal by SEPRAN

Time-dependent problem

At t=0 the non-linear stationary equations are solved by a Newton
iteration

For t>0 a modified Crank-Nicolson scheme is used.

The non-negative pressure condition is imposed by subroutine OVERCS

Programmers: Kees Kassels and Guus Segal
version 2.0 date 05-12-93

1 skookook ok ok sk ook ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok

program pump

1 skookook ok ok sk ok ook ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok k

DECLARATIONS

integer lnmesh, lnprob

parameter ( lnmesh=100, lnprob = 500 )

integer kmesh(lnmesh), kprob(lnprob), intmat(5), isol(5),
+ islold(5), iinstr(3), iincrt(l), iinsol(4), istep, nstep,
+ iinvec(2), jmetod, istop, iinout(1)

double precision pi, omeg, rinvec(3)

1 skeookook ok ok sk sk ook ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok k

COMMON BOCKS

include ’SPcommon/ctimen’

1 skooko ok ok ok sk ok ook ok ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok ok sk ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok k
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—-—- start sepran

kmesh = 0
kprob = 0
kmesh(1) = lnmesh
kprob(1) = lnprob

iinstr(1) = 2
iinstr(2) =1
call sepstn ( kmesh, kprob, intmat, iinstr )

—--— create start vector

t0 = 0d0

t = t0

iincrt(1) = 0

call creatn ( iincrt, kmesh, kprob, isol )

—-- non-linear iteration to find solution at t = 0

iinsol(1) = 0

call nlnprb ( kmesh, kprob, intmat, isol, iinsol )
iinout(1) = 0

call outsol ( kmesh, kprob, isol, iinout, t )

--- Compute time-dependent solution with non-constant velocity
Set time parameters ( two strokes will be computed )

omeg = 151.84d0

pi = 4d0*atan(1d0)
tend = 4d0*pi/omeg
nstep = 80

theta = 0.5d0

tstep = (tend-t0)/nstep

--- define type of matrix for subroutine OVERCS (jmetod=9)

jmetod = 9
call commat ( jmetod, kmesh, kprob, intmat )

--- Time iteration by Crank-Nicolson (theta=.5)
nstep time steps are carried out

do istep = 1, nstep
—--- Copy old solution in islold
call copyvc ( isol, islold )
--- Compute u(t n+1/2)
t = t+0.5d0*tstep
iinsol(1) = 4

iinsol(2) 0
iinsol(3) 2
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N

iinsol(4) =
call linprb ( kmesh, kprob, intmat, isol, iinsol )

-—— u(n+1) := 2 u(n+1/2) - u(n)
iinvec(1) = 2

iinvec(2) = 39

rinvec(1l) = 2d0

rinvec(2) = -1d0

rinvec(3) = 0dO

call manvec ( iinvec, rinvec, isol, islold, isol, kmesh,
kprob )

t = t+0.5d0*tstep

—--— Output of the solution at 10, 20, 30, ... ,nstep steps

if ( mod(istep,10).eq.0 ) call outsol ( kmesh, kprob, isol,
iinout, t )

end do

--— Stop SEPRAN

istop=0
call finish ( istop )
end

--- funccf for the computation of the velocity as function of time

function funccf ( ichois, r, z, dummy )
double precision funccf, r, z, dummy
integer ichois

include ’SPcommon/ctimen’

funccf = 3.492d6 * sin ( 151.84d0 * t )
end

--- function func, for the computation of the starting pressure

function func ( ichois, r, z, dummy )
double precision func, r, z, dummy
integer ichois

func=max (0d0,6d40*(3.5d3-z)/3.5d3)

end

The following input file may be used to solve the problem:

>k >k >k >k 5k 5k 5k ok ok 5k 5k >k >k >k %k %k >k >k >k >k >k 5k 5k 5k >k >k >k >k %k %k >k >k >k >k 5k 5k 5k %k >k >k >k >k >k >k >k >k >k >k 5k 5k 5k %k >k >k >k %k >k >k >k >k >k >k >k >k >k >k >k >k >k %k >k >k >k >k >k >k >k >k

* X X ¥ ¥

File: pump.prb

Contents: Input for computational part of example described in
Section 4.2.1 in the manual standard problems
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* Elastohydrodynamic lubrication of an oil pumping ring seal
* SEPMESH must have been run before with input: pump.msh
* Program puump must have been linked by seplink
* Usage: pump < pump.prb > pump.out

stk ok sk sk sk sk ok sk ok ok sk ok o s s ok ok ook ok sk sk sk sk sk sk sk sk sk sk s sk ok ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk s ok ke ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok kok ok ok ok ok
constants

vector_names
disp_pressure

end

problem definition

problem

*

* type numbers to be used are:

* curve cb5: 302 (elasto-hydrodynamic Reynolds element)

* curve cl: 251 (non-zero load for axisymmetric stress analysis)
* curve c2: 251 (non-zero load for axisymmetric stress analysis)
* surface s1: 250 (axisymmetric stress analysis)

types
elgrpl, (type=302)
elgrp2, (type=251)
elgrp3, (type=251)
elgrp4, (type=250)

*
* essential boundary conditions
* The pressure is prescribed in user points pl and p6
* The displacement is given at curve c4
*
essbouncond

degfd3=points(pl)

degfd3=points(p6)

degfdl,degfd2=curves (c4)
end

* Structure of matrix

matrix
end

* Creation of start vector (displacement zero)

create

degfd3, func = 1 # pressure given by func

user point (pl), degfd3, value = 6 # prescribed boundary condition
end

* Input for non-linear solver

nonlinear_equations
global_options, maxiter = 10, accuracy=1d-3, lin_solver=1
equation 1
fill_coefficients = 1
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end

* Coefficients for non-linear start

coefficients, sequence_number = 1
elgrp 1 (nparm=6)
coef 1 = 1243

coef 2 = 0.0278d-6
coef 3 =0
coef 4 =0
coef 5 =0
icoef 6 = 2
elgrp 2 (nparm=25)
icoef 2 = 2
coef 6 =0
coef 7 =6
elgrp 3 (nparm=25)
icoef 2 = 2
coef 6 = -11
coef 7 =0
elgrp 4 (nparm=45)
icoef 2 = 2
coef 6 = 7d4

5.2
coef 7 = 0.44
end

solve, sequence_number = 1
end

H O HF HHHEHHEHHHEHHEHHHEHHER

Elastic Reynolds element
Diameter of rod

Dynamic viscosity
Constant k

Reference pressure
Velocity

Stationary, Newton linearization
External boundary load
Axisymmetric stress

Tr

Tz

External boundary load
Axisymmetric stress

Tr

Tz

Elasticity element
Axisymmetric stress

E

nu

Direct solver for non-linear problem

* Input for linear time-dependent problem

coefficients, sequence_number = 2
elgrp 1 (nparm=6)
coef 1 = 1243

coef 2 = 0.0278d-6

coef 3 =0

coef 4 =0

coef 5 = func=1

icoef 6 = 4
elgrp 2 (nparm=25)

icoef 2 = 2

coef 6 =0

coef 7 =6
elgrp 3 (nparm=25)

icoef 2 = 2

coef 6 = —-11

coef 7 =0
elgrp 4 (nparm=45)

icoef 2 = 2

coef 6 = 5.27d4
coef 7 = 0.44
end

solve, sequence_number = 2

H O H HHHEHHEHHHEHHEHHHEHHER

Elastic Reynolds element
Diameter of rod

Dynamic viscosity
Constant k

Reference pressure
Velocity

Instationary, Newton linearization
External boundary load
Axisymmetric stress

Tr

Tz

External boundary load
Axisymmetric stress

Tr

Tz

Elasticity element
Axisymmetric stress

E

nu

Iterative solver for linear problem
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iteration_method = overrelaxation, accuracy = 1d-2, maxiter = 10000//
niterl = -2, lambda=.99, omega=1.6, minimum = O, start=old_solution//
degfd = 3

end

end_of_sepran_input
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4.3 Decoupled elasticity-flow interaction for a bearing (Reynolds equa-
tion coupled with mechanical elements)

4.3.1 An example of a combined Reynolds-elasticity problem: A hydro-
static thrust bearing on an elastic track

In Section 4.1.5 we calculated the pressure distribution in the lubrication film of a water lubricated,
circular thrust bearing sliding on a track. Now, we will examine the same bearing sliding on an
elastic track (see Figure 4.3.1.1). The pressure in the lubrication film and the deformation of the
track are mutually dependent: The track will deform due to the hydrostatic pressure in the water
film, the hydrostatic pressure is dependent on the local film height which is a function of the track
deformation. The calculation consists of the iterative solution to 2 sub-problems and the relation

11Q

L

Figure 4.3.1.1: Thrust bearing on an elastic track
between both sub-problems:

e Solution of the Reynolds equation in the lubrication film
e Solution of the elasticity equations in the track

e Calculation of the film height using the track deformation

The solution to the Reynolds equation for this example is similar to the one in Section 4.1.5. Instead
of a constant film height a new vector is created with the film height calculated using the following
equation:

h; = hg — (Z, + uz,i)

where h; is the film height in node 4, h¢ is the height of the bearing surface above the plane z = 0,
z; is the z-co-ordinate of node i and w,; is the displacement in the z-direction of node ¢. In order to
calculate this vector, use is being made of a create vector block with a call to the user subroutine
funcvect (see program). Because of to the non-linear supply resistor, the Reynolds equation is
solved using an iterative procedure.

The solution to the elasticity equations in the track is performed using the standard elasticity
elements (element type 250). The boundary conditions to this problem are:

e Displacement = 0 on the bottom surface of the track.

e Distributed load = -pressure on the Reynolds part of the top surface.
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Although the elasticity equation is linear and could be solved using a direct solver, the iterative
solution to the combined Reynolds-elasticity problem suggests an iterative approach to the solution
of the elasticity equation also.

The solution is assumed to be converged when the change in the calculated film height becomes
relatively small.

The parameters for this calculation are presented in table 4.3.1.1. To get this example in your local

Track length L|15 m
Track width | W | 1.0 m
Track height H | 0.07 m
Young’s modulus track | E | 2.010® N
Poisson’s constant track v | 0.3 —
Bearing diameter D m
Waterfilm height h|011073 m
Recess diameter | Dgr | 0.530 m
Recess height | hr | 501072 m
Water viscosity | 0.001 Ns/m?
Bearing velocity | w; | 0.25 m/s
Supply resistor v 1061076 m*/N/2s
Supply pressure | ps | 15.0 105 N/m?

0.740

Table 4.3.1.1: Parameters

directory type:
sepgetex bearing4d
The mesh for this calculation is shown in Figure 4.3.1.2. The pressure along a centerline of the

bearing is shown in Figure 4.3.1.3, the displacement along the centerline of the track is shown in
Figure 4.3.1.4. The input file for the mesh program (sepmesh) is given here:

#
# Circular Thrust Bearing, 1 recess on a track
#
# Contents: Mesh file for example 4.3.1
#
#  Author: R.A.J. van Ostayen
# Date: 23-11-97
#
constants
reals
L2 = 0.750 # Half track length
W2 = 0.500 # Half track width
H = -0.070 # Track height
Rb = 0.370 # Radius of the thrust bearing
Rr = 0.100 # Radius of the bearing recess
Cc =1.0 # Coarse value (centre)
Cb = 1.0 # Coarse value (bearing)
Ce = 2.0 # Coarse value (track edge)
integers
nz = 2 # number of elements
end
mesh3D

coarse (unit = 0.05)
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Figure 4.3.1.2: Mesh for the thrust bearing on an elastic track
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1 recess bearing

6.00E%
5.00E€
4.00E€
3.00E€
2.00E€

10 . OOEK

y —

0.00- T T T T T T T T T
—-0.50E0  -0.30EO —1.00E-1 ©0.10E0O  0.30E0O  0.50EO

X —

xmin = -3.700E-01, xmax = 3.700E-01, ymin = 0.000E+00, ymx = 6.782E+05

Figure 4.3.1.3: Pressure along a centerline of the bearing

pl9 = H, Cb)
p20 = ( 0.0, Rb, H, Cb)
p21 = (- Rb, 0.0, H, Cb)
p22 = ( 0.0,- Rb, H, Cb)

I
~~
=S
o
o
o

p23 = ( Rr, 0.0, H, Cb)
p24 = ( 0.0, Rr, H, Cb)
p25 = (- Rr, 0.0, H, Cb)
p26 = ( 0.0,- Rr, H, Cb)

p27 H, Ce)
p28 = (- L2, W2, H, Ce)
p29 = (- L2,- W2, H, Ce)
p30 = ( L2,- W2, H, Ce)

( L2, W2,

p31 H, Cb)
p32 = (- L2, 0.0, H, Ce)
p33 = ( 0.0,- W2, H, Cb)
p34 = ( L2, 0.0, H, Ce)
curves
cl =carc 1 ( p2, p3 , pl)
c2 =carc 1 ( p3, p4, pl)

(0.0, W2,
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1 recess bearing
—0. 68E-RR———rrrr e
0. 18E44 I
0. 36E-44 I
—~0.55E44 i
~0.73E44 I
~0.91E44 i
0. 11E43 i
0. 13643 I
0. 15E43 i
0. 16E43 i
4-0. 18643 I
> [ ]
L T R B e B T B ma
—-0.75E0 -0.45E0 -0.15E0 0.15E0 0.45E0 0.75E0
X —p
xmin = -7,500E-01, wmax = 7.500E-01, ymin = —1,783E-04, ymx =
Figure 4.3.1.4: Displacement along the centerline of the track
c3 carc 1 ( p4 , p5 , pl)
c4 carc 1 ( p5 , p2 , pl)
ch carc 1 ( p6 , p7 , pl)
c6 carc 1 ( p7 , p8 , pl)
c7 carc 1 ( p8 , p9 , pl)
c8 carc 1 ( p9 , p6 , pl)
c9 cline 1 ( p1 , p6)
c10 = cline 1 ( p1 , p7)
cll = cline 1 ( p1 , p8)
c12 = cline 1 ( p1 , p9)
c13 = cline 1 ( p6 , p2)
cl4 = cline 1 ( p7 , p3)
cl5 = cline 1 ( p8 , p4)
c16 = cline 1 ( p9 , p5)
cl7 = cline 1 ( p2 , pl17)
c18 = cline 1 ( p3 , pl4)
c19 = cline 1 ( p4 , pl5)
c20 = cline 1 ( p5 , pl6)
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c21 = cline 1 ( p10, pi14)
c22 = cline 1 ( pi4, pl1)
c23 = cline 1 ( pl1, pi1b)
c24 = cline 1 ( pi5, p12)
c25 = cline 1 ( pl2, pl6)
c26 = cline 1 ( p16, p13)
€27 = cline 1 ( p13, pl7)
c28 = cline 1 ( pl7, p10)
c29 = tramslate c1 ( pl9, p20)
c30 = translate c2 ( p20, p21)
c31 = translate c¢3 ( p21, p22)
c32 = translate c4 ( p22, pl9)
c33 = translate c5 ( p23, p24)
c34 = translate c6 ( p24, p25)
c35 = translate c¢7 ( p25, p26)
c36 = translate c¢8 ( p26, p23)
c37 = translate c¢9 ( pl8, p23)
c38 = translate c10 ( p18, p24)
c39 = translate c11 ( p18, p25)
c40 = translate c12 ( p18, p26)
c4l = translate c13 ( p23, pl19)
c42 = translate c14 ( p24, p20)
c43 = translate c15 ( p25, p21)
c44 = translate c16 ( p26, p22)
c45 = translate c17 ( pl9, p34)
c46 = translate c18 ( p20, p31)
c47 = translate c19 ( p21, p32)
c48 = translate c20 ( p22, p33)
c49 = translate c21 ( p27, p31)
c50 = tramnslate c22 ( p31, p28)
cb1l = translate c¢23 ( p28, p32)
c52 = translate c24 ( p32, p29)
cb3 = translate c¢25 ( p29, p33)
c54 = translate c26 ( p33, p30)
cb5 = translate c27 ( p30, p34)
cb6 = translate c28 ( p34, p27)
cb7 = curves ( c21, c22, c23, c24, c25, c26, c27, c28)
c58 = curves ( c49, c50, c51, cb2, c53, cb4, cb55, c56)
c59 = line 1 ( pl0, p27, nelm =
c60 = curves (-c15,-cl11, c9 , c13)
c61 = curves (-c19,-c15,-c11, c9 , c13, c17)
surfaces
sl = general 3 ( c13, cl,-c14,-c5 )
s2 = rotate s1 ( cl14, c2,-c15,-c6 )
s3 = rotate s1 ( c15, c3,-c16,-c7 )
s4 = rotate s1 ( c16, c4,-c13,-c8 )
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sb = general 3 ( c9 , cb,-c10)
s6 = rotate s5 ( c10, c6,-c11)
s7 = rotate sb ( cl1l, c7,-c12)
s8 = rotate s5 ( c12, c¢8,-c9 )
s9 = general 3 ( c21,-c18,-cl , cl17, c¢28)
510 = similar s9 (-c22,-c18, c2 , c19,-c23)
s11 = rotate s9 ( c25,-¢c20,-c3 , cl19, c24)
s12 = similar s9 (-c26,-¢c20, c4 , cl17,-c27)
s13 = translate s1 ( c41l, c29,-c42,-c33)
s14 = translate s2 ( c42, c30,-c43,-c34)
s15 = translate s3 ( c43, c31,-c44,-c35)
s16 = translate s4 ( c44, c32,-c41,-c36)
s17 = translate s5 ( c37, c33,-c38)
s18 = translate s6 ( ¢38, c34,-c39)
s19 = translate s7 ( ¢39, c35,-c40)
s20 = translate s8 ( c40, c36,-c37)
s21 = translate s9 ( c49,-c46,-c29, c45, c56)
s22 = translate s10 (-c50,-c46, c30, c47,-c51)
s23 = translate s11 ( ¢53,-c48,-c31, c47, c52)
s24 = translate s12 (-c54,-c48, c32, c45,-cb5)
s25 = surfaces ( s1 , s2 , s3 , s4 , //
sb , s6 , s7 , s8, //
s9 ,-s10, si11, -12)
s26 = surfaces ( s13, si14, si5, si16, //
s17, s18, s19, s20, //
s21,-s22, s823,-s24)
s27 = pipesurface 3 ( c57, cb58, c59)
volumes
vl = pipe 11 ( s25, s26, s27)
meshsurf
selml = s1, s4
selm2 = s5, s8
meshvolume
velm3 = vi
plot, eyepoint = (-2.0, -4.0, 4.0)
end

The input file for the calculation program is given here followed by the source of the program
(needed because of the call to funcvect).

Date:

H OH H H H H HH

constants
reals

23-11-97

Author: R.A.J. van Ostayen

Circular Thrust Bearing, 1 recess on a track

Contents: Problemfile for example 4.3.1
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Hf = 0.1d-3
Hr = 5.0d4-3
vH20 = 0.001
U=0.25

Ps = 15.0d45
G = 0.64-6
EPE = 2.0d8
vPE = 0.3

# Definition of vec

vector_names
pressure
displacement
film_height
surf_height !

scalars
max_film_height
max_rel_error =
act_rel_error =
old_max

end

# Reynolds equation
problem 1

types

elgrp 1 = (type

elgrp 2 = (type

elgrp 3 = (type
natbouncond

bngrp 1 = (type
bounelements

belm 1 = points
essbouncond

degfd 1 = curves

# elasticity equatio
problem 2

types
elgrp 1 = (type
elgrp 2 = (type
elgrp 3 = (type
natbouncond
bngrp 1 = (type
bounelements
belm 1 = surface
essbouncond
degfd 1 = degfd
end
structure

# film height [m]

# recess height [m]

# viscosity water [Ns/m2]

# velocity [m/s]

# supply pressure [N/m2]

# resistor value (non-linear)
# Young’s modulus [N/m2]

#

tors and scalars

height of bearing surface relative to z = 0

! store previous value of max_film_height

(lubrication problem)

= 325)

= 325)

= 0)

= 304)

(p6, p7, P8, P9
(cl to c4)

n

= 0)
= 0)
= 250)
= 251)

s (s1 to s8)

2 = degfd 3 = surfaces (s26)

# initialize vectors

create_vector pres
create_vector disp

sure, problem = 1, surfaces (s to s8), value = 10eb

lacement, problem = 2, value = 0
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create_vector surf_height, problem = 1, value = Hf

# while no convergence (actual relative error > max. rel. error)
while (act_rel_error>max_rel_error ) do

old_max = max_film_height ! store present max film height

# calculate film height and max. film height, at thos moment via input block
create_vector film_height, problem = 1, sequence_number = 1

max_film_height, norm = 3, film_height

act_rel_error = abs(l-max_film_height/o0ld_max)

print max_film_height, text = ’Max filmheight [m]: °
print max_rel_error, text =’ Conv. criterion: °’
print act_rel_error, text =’ Conv. number: °’

# solve Reynolds equation
solve_nonlinear_system pressure, problem = 1, maxiter = 50//
accuracy = le-4, print_level = 0, criterion = relative

# solve elasticity equations

solve_linear_system displacement, seq_coef = 2, problem = 2
end_while
print max_film_height, text = ’Max filmheight [m]: °’

print max_rel_error, text =~ Conv. criterion: ’
print act_rel_error, text ’ Conv. number: °’

output
end

# matrix (iterative method)
matrix
storage_scheme = compact, symmetric, problem
storage_scheme = compact, symmetric, problem =
end

I
N =

# calculate film height
create vector, sequence_number = 1
value = Hf
surfaces (s1 to s8), old_vector = 100//
seq_vectors = (displacement, surf_height)
end

# coefficients for Reynolds equation
coefficients, sequence_number = 1, problem = 1
elgrp 1 (mparm = 20)
icoef 1 =0
icoef 56 =1
coef 6 = old_solution film_height
coef 7 vH20
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coef 11 =T
coef 12 =0
coef 19 =0
coef 20 = 0
elgrp 2 (nparm = 20)

icoef 1 =0
icoef 5 =1
coef 6 = Hr
coef 7 = vH20
coef 11 = U
coef 12 =0
coef 19 =0
coef 20 = 0

bngrp 1 (nparm = 3)
icoef 1 =1
coef 2 =G
coef 3 = Ps
end

# coefficients for elasticity equation
coefficients, sequence_number = 2, problem = 2
elgrp 3 (nparm = 45)
icoef 2 =0
coef 6 = EPE
coef 7 = vPE
bngrp 1 (nparm = 25)

icoef 1 =2

icoef 2 = 0

coef 8 = old solution pressure, coef = -1
end

# input for linear solver (Reynolds equation)
solve, sequence_number = 1

iteration_method = cg, accuracy = le-2, start = old_solution, print_level = 0
end

end_of_sepran_input

! st ke ke ok ok ok ok sk sk sk ok sk sk sk ok ok ok sk sk sk sk sk ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk k k k
| *

! * COMPPROGRAM: THRUST BEARING ON ELASTIC TRACK

! * usage: comp < in.prb

! *

! st ke ke ok ok ok ok sk sk sk ok sk sk sk s o ok sk sk sk sk sk sk sk sk koo sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk k sk sk ok
1

program ctbtrk
call sepcom(0)
end

subroutine funcvect( ichoice, ndim, coor, numnodes, uold,
+ nuold, result, nphys)

implicit none
integer ichoice, ndim, numnodes, nuold, nphys
double precision coor(ndim,numnodes),
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+ uold(numnodes,nphys,nuold), result(numnodes,*)

coor(1/2/3, *) = node co-ordinates
uold(*, 1/2/3, 1) = displacement vector (ex, ey, ez)
uold(x, 1, 2) = contact plane height

integer i
double precision z_coor, z_disp, h_contact

if (ichoice .eq. 100) then
do i = 1, numnodes
z_coor = coor(3,1i)
z_disp = uwold(i,3,1)
h_contact = uold(i,1,2)
result(i,1) = h_contact - (z_coor + z_disp)
end do
end if

end

The input file for the post-processing program is given here:

#
# Circular Thrust Bearing, 1 recess on elastic track
#
# Contents: Post-processing file for example 4.3.1
#
#  Author: R.A.J. van Ostayen
# Date: 23-11-97
#
postprocessing
plot identification, text = ’1 recess bearing’, origin = (3,18)
open plot
plot boundary function pressure, curves (c60), //
arc_scales = (-0.37, 0.37), //
scales = (-0.5, 0.5, 0.0, 7.0d5), steps = (10, 7)
close plot
open plot
plot boundary function displacement, degfd 3, curves (c61), //
arc_scales = (-0.75, 0.75), //
scales = (-0.75, 0.75, -2.0d-4, 0.0d0), steps = (10, 11)
close plot
open plot
plot boundary function film_height, curves (c60), //
arc_scales = (-0.37, 0.37)
close plot

end
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5 Mechanical elements
5.1 Linear elastic problems

5.1.1 The hole-in-plate problem (example of plane stress)

Consider the plate in Figure 5.1.1.1

1000 mm
< T >
| ifa |
S N N N SO N O WO N N | S
|
= ! =
80 mm diahole Iy
fl(_' *’fi E
o 2 | s
E =200 GN/m
.l v=025 [
h=10mm

T T T T T

Figure 5.1.1.1: The hole-in-plate problem

For symmetry reasons it is sufficient to discretize only one quarter of the plate. The problem is
solved by bilinear quadrilateral elements. For the generation of the mesh we define the 6 user points,
and 5 curves. The definition of user points and curves is given in Figure 5.1.1.2.

P
S P,

7
C

3

c
4
S

Figure 5.1.1.2: Definition of user points and curves

This example is nearly identical to the one described in the SEPRAN INTRODUCTION Section 7.2.
As an example we use quadrilaterals instead of triangles. Consequence is that the mesh generation
is somewhat more sensitive to the spacing and therefore a more uniform spacing is used. In order
to check the mesh the option CHECK_MESH is used.

The material is supposed to be orthotropic (IGPROB=3).
The following parameters are used:

Young’s modulus: F; = 107 N/m?, Es = 107 N/m?
Poisson’s ratio: v9 = 0.25

Plate thickness is 0.01m.

The boundary loads f; and fy are given by:

fi = —10*N/m? f = 0 N/m?

Essential boundary conditions:
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symmetry axis: C1: v=0Cy: u=0

The mesh is created by SEPMESH with the following input file:

3k >k K 3K 3K 3K 3K 3K 3k 5k 3k 3k 3k 5k 5k 5k 5k >k 5k 3K 5K 3k 5k 5k 5k 3k 5k 5k 5k %k %k 3k 3K 3K 5K 3k 3k 3k 5k 5k 5k 5k 5K %K K 3K 3K 5K 5K 5k 3k 5k 5k 5k >k 5k %k %K 3K 5K 3K 5K 5k 5k %k %k >k >k >k %k Xk Xk >k >k >k >k >k k

* X X X X X X X ¥

File: platholl.msh

Contents: Input for mesh generation part of the example as described
in the SEPRAN STANDARD PROBLEMS Section 5.1.1

Usage: In UNIX: sepmesh platholl.msh
Usage: In DOS: sepmesh platholl.msh

3k 3k K 3K 3K 3K 3K 3K 5k 5k 5k k 3k 5k 5k 5k 5K >k 5k 3K 5K 5k 5k 5k 5k 5k 5k 5k 5k 5k 5K 3K 3K 5K 5K 3K 3k 5k 5k 5k 5k 5k 5K %K K 3K 5K 5K 5K 5k 3k 5k 5k 5k 5k 5k %K %K 3K 5K 5K 5K 5k 5k %k %k >k 5k >k %k %k K >k >k >k >k >k k

*
*
*
* mesh for hole in plate problem
*
mesh2d
* unit length is 1 cm
coarse(unit=0.01)
* definition of user points with corresponding coarseness:
points
p1=(0, o, D
p2=(0.04, O, 1)
p3=(0.5, O, 2)
p4=(0.5, 0.2, 2)
p5=(0, 0.2, 1
p6=(0, 0.04, 1)
* curves defining the surfaces:
curves
cl=clinel(p2,p3,nodd=3)
c2=clinel(p3,p4,nodd=3)
c3=clinel(p4,p5,nodd=3)
c4=clinel (p5,p6,nodd=3)
cb=carc1(p6,p2, -pl,nodd=2)
the surface is created by general:
bilinear quadrilaterals
surfaces
sl=generalb(cl,c2,c3,c4,ch)
plot:

the submesh is skipped
numbers are not plotted

plot (jmark=5,numsub=1)

Check the mesh:
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check_level = 2
end

Figure 5.1.1.3 shows the mesh created by SEPMESH.

Figure 5.1.1.3: Mesh plot of hole-in-plate region

Once the mesh has been generated, sepcomp may be run to compute the displacement. For the
linear elasticity problem element type 250 may be used, see Section 5.1. Type 250 requires 45
coeflicients, however, it is sufficient to give only the non-zero values.

skt sk ok sk sk ok ok stk ok skskok sk sk sk sk sk ok sksk sk ok stk sk sk ok sk sk sk ok stk sk ok stk sk sk ok sksk ok ok skskok sk ok sksk sk ok ok sk sk sk ok ok ok
File: plathol4.prb

Contents: Input for computational part of the example as described
in the SEPRAN manual STANDARD PROBLEMS Section 3.1.1
Model used: IGPROB=3, i.e. orthotropic material

Usage: sepmesh should have been run with input: plathole.msh
In UNIX: sepcomp plathol4.prb > plathol4.out
In DOS: sepcomp plathol4.prb

¥ X X X X X X X X X *

3k 3k >k K 3K 3K 3K 3K 3k 5k 3k 5k k 5k 5k 5k 5k >k 3K 3K 5K 3k 3k 5k 5k 5k 5k 5k 5k 5k K 3K 3K 5K 5K 3K 3k 3k 5k 5k 5k 5k 5K %K K 3K 3K 5K 5K 3k 3k 5k 5k 5k 5k 5k %K % 3K 5K 5K 5K 5k 5k %k %k 5k >k >k %k %k K >k >k >k >k >k k

problem definition

* ¥ X X *

problem

* only one type is used (250: Linear elastic element)

types
elgrpl, (type=250)

*  for the boundary loads natural boundary condition elements are necessary
*  type number: 251 linear line element
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* Different element groups are used for the curves c2 and c3

natbouncond
bngrpl, (type=251)
bngrp2, (type=251)
bounelements
belml = curves (shape=1, c2)
belm2 = curves (shape=1, c3)

essential boundary conditiomns:
the curves cl and c4 are symmetry axis, hence the normal displacements
must be suppressed

essbouncond
degfd2 = curves0(cl)
degfdl = curves0(c4)
end
* Define type of matrix
matrix
method = 1
end

* Define coefficients

coefficients

elgrpl (nparm=45)
icoef 2 =3 # IGPROB=3 (orthotropic material)
coef 6 = ( value = 1d7 ) # E_1
coef 7 ( value = 147 ) # E_2
coef 8 ( value = 0.3 ) # nu_1
coef 9 ( value = 0.3 ) # nu_2
coef 10 = ( value = 0.38461538447 ) # G_2
coef 27 = ( value = 0.01 ) # h

bngrpl (nparm=25)
coef 6 = ( value = -1d4 ) # T_x
coef 9 = ( value = 0.01 ) # h

bngrp2 (nparm=25)
coef 6 = ( value = 040 ) # T_x
coef 9 = ( value = 0.01 ) # h

end

* The matrix is positive definite

solve
positive definite
end
output
vl = icheld = 6
v2 = icheld = 7
end

end_of_sepran_input

Program seppost allows us to print and plot the solution. It requires input from the standard input
file.
If, for example, we want to print the displacements and the stresses, make a vector plot of the
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displacements, make a contour plot of the three non-zero components of the stress tensor as well as
coloured contour plots, plus some prints at the boundaries then the following input file may be used:

>k >k >k >k 3K 3K 3K 3k 5k 5k 3k 3k 5k 5k >k %k %k >k 5k 3k 3k 3k 3k 5k 3k 3k 5k 5k 5k %k %k >k 5k 3K 3k 3k 3k 3k %k %k %k >k %k % K 5K 3K 3K 5k 5k 3k %k 5k >k >k >k %k XK 3K 5k 3k 5k 5k >k 3k %k %k >k >k %k Xk %k >k >k %k %k %k k

¥ X X X X X X X X *

File: plathole.pst

Contents:

Usage:

Input for post processing part of the example as described
in the manual Standard Problems Section 5.1.1

sepmesh should have been run with input: platholl.msh
sepcomp should have been run with input: plathol4.prb

In UNIX: seppost plathole.pst

>k >k >k >k 3K 3K 3K 3k 5k 5k 3k 3k 5k 5k >k %k %k >k 5k 3k 3k 3k 3k 5k 3k 3k 5k 5k >k %k %k >k 5k 5k 3k 3k 3k 3k %k 5k >k >k %k %k K 5K 5K 5K 5k 5k 3k %k >k >k >k >k %k XK 3K 3k 3k 5k 5k 5k %k %k >k >k >k %k Xk % >k >k %k >k >k k

*
*
postprocessing
name v0 = displacement
name vl = stresses
print vO
plot identification, text=’ Test example "hole in plate" ’, origin = (15,18)
open plot
plot vector vO
plot text, text = ’Displacements vectors’, origin = (0.15,-0.04)
close plot
print vl
open plot
plot contour v1, degfd=1,smoothing factor =1
plot text, text = ’Contours of xx-component of stress’//
origin = (0.15,-0.04)
close plot
open plot

plot contour v1, degfd=2,smoothing factor =1
plot text, text = ’Contours of yy-component of stress’//
origin = (0.15,-0.04)

close plot
open plot
plot contour vl1, degfd=4,smoothing factor =1
plot text, text = ’Contours of xy-component of stress’//
origin = (0.15,-0.04)
close plot
open plot
plot coloured contour vl, degfd=1
plot text, text = ’Contours of xx-component of stress’//
origin = (0.15,-0.04)
close plot
open plot

plot coloured contour vl, degfd=2
plot text, text = ’Contours of yy-component of stress’//
origin = (0.15,-0.04)
close plot
open plot
plot coloured contour vl, degfd=4
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plot text, text = ’Contours of xy-component of stress’//

close

print

print

print

print

print
end

origin =
plot

(0.15,-0.04)

boundary function vO, curves(cl,c2,c3)

boundary function v1, curves(c2,c3,c4,cb)
boundary function v1, curves(c2), degfd=1
boundary function v1, curves(c3), degfd=2
boundary function v1, curves(c4), degfd=3

Figure 5.1.1.4 shows the required vector plot, Figures 5.1.1.5 - 5.1.1.7 the contour plots of the
stresses. The coloured plots are not shown in this manual.

Figure 5.1.1.4:

Figure 5.1.1.5: Contour plot of o,, in hole-in-plate problem
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Figure 5.1.1.6: Contour plot of oy, in hole-in-plate problem

5.1.2 A simple normal load example

In this example we consider some variations on the tube as sketched in Figure 5.1.2.1

In the first two examples the outer boundary of the tube has displacement zero, whereas at the
inner circle a normal load of 10°N is given. The thickness of the pipe is equal to 1 m. This example
shows how a normal load could be treated in combination with the stress elements of this chapter.
Since the outer side of the tubes has zero displacement, this is an example of plane strain (IG-
PROB=1). If the outer side could move freely, it would have been a plane stress (IGPROB=0)
example. This is the case in the last two examples.

To get these examples into your local directory use:

sepgetex normload$

$ refers to the sequence number of the example. The available sequence numbers are 1 to 4.
To run such an example carry out the following commands:

sepmesh normloadl.msh
view mesh

sepcomp normloadl.prb
seppost normloadl.pst
view results

viewing may be done by: sepdisplay, xsepask or xsepplot, like
xsepplot sepplot.001
xsepplot sepplot.002 ....
sepview sepplot.001 (provided you have os-motif)
output may be redirected to a file by:

command > file..

normloadl must be replaced by normload2, 3 or 4 depending on the example.
The mesh is generated by program SEPMESH using bilinear quadrilateral elements. The input file
for SEPMESH for the first two examples is:
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Testexample "ol in plte
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Figure 5.1.1.7: Contour plot of 7, in hole-in-plate problem

Figure 5.1.2.1: Hollow tube with internal load

# normloadl.msh
#
# mesh for normal load example
# See Manual Standard Elements Section 5.1.2
# and examples manual Section 5.1.2
#
# To run this file use:
# sepmesh normloadl.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
integers
nelw = 5 # number of elements in wall-thickness
nelc = 40 # number of elements in circumference direction
reals
ri =2 # inner radius
ro =3 # outer radius

end
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#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pl = (0,0) # centre of circles
p2 = ( ri,0) # point at inner circle
p3 = ( ro,0) # point at outer circle
#
# curves
#
curves # See Users Manual Section 2.3
cl = arc1(p2,p2,pl,nelm= nelc) # inner circle
c2 = arc1(p3,p3,pl,nelm= nelc) # outer circle
c3 = linel(p2,p3,nelm= nelw) # connection line, only necessary to
# define a closed region
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl = rectangle 5 ( c1,c3,-c2,-c3 ) # number of elements at opposite
# sides is constant
# See Users Manual Section 2.4.2
plot # make a plot of all parts
# and also of the final mesh
# See Users Manual Section 2.2
end

Figure 5.1.2.2 shows the mesh created by SEPMESH.

Figure 5.1.2.2: Mesh plot of normal load example
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Once the mesh has been generated, sepcomp may be run to compute the displacement. For the
linear elasticity problem element type 250 may be used, see Section 5.1. Type 250 requires 45
coefficients, however, it is sufficient to give only the non-zero values.

The physical parameters used are:

Young’s modulus: E = 107 N/m?

Poisson’s ratio: v = 0.3

Plate thickness is 1m.

In order to prescribe the normal load we may choose between local transformations in combination
with ILOAD=1, or no transformation and ILOAD=4. Both give exactly the same results. We give
the input files in both cases:

normloadl.prb

Problem definition for normal load example
See Manual Standard Elements Section 5.1.2
and examples manual Section 5.1.2

To run this file use:
sepcomp normloadl.prb

Reads the file meshoutput
Creates the file sepcomp.out

Example with local transform

H OH OH H H H HHEHHEHHEH

constants

vector_names

displacement

end
# Define the type of problem to be solved
problem See Users Manual Section 3.2.2

types Define types of elements,
See Users Manual Section 3.2.2
Linear elastic element
See Manual Standard Elements Section 5.1
Define type of natural boundary conditions (loads)
See Users Manual Section 3.2.2

elgrpl (type=250)
natboundcond

Given load for linear elastic element

See Manual Standard Elements Section 5.1
Define where the natural boundary conditions
are given. See Users Manual Section 3.2.2
Load at inner circle cl

Define where essential boundary conditions are
given (not the value)

See Users Manual Section 3.2.2

Displacement is prescribed on outer circle
Define local transformation

bngrpl (type=251)
bounelements

belml=curves(cl)
essbouncond

curves(c2)
localtransform
See Users Manual Section 3.2.2
The first unknown on curve 1 is in the normal
direction, the second one in the tangential
direction

curves(cl)

H OH H HHHEHHEHHHEHHEHRHEHREHHEHHER

end
# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4
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symmetric # The matrix is symmetrical and stored as profile
# matrix, hence a direct solver is applied
end

# Define the coefficients for the problem

Due to the local transformation, this is
the normal direction

coefficients # See Users Manual Section 3.2.6
elgrpl (nparm=45) # The number of coefficients for type 250 is 45
# See Manual Standard Elements Section 5.1
icoef2 =1 # Plane strain
coef 6 = 1d7 # Youngs modulus E
coef 7 =0.3 # Poisson ratio nu
bngrpl (nparm=25) # The number of coefficients for type 251 is 25
# See Manual Standard Elements Section 5.1
icoefl =1 # ILOAD = 1, load in co-ordinate direction
icoef2 =1 # Plane strain
coef 6 = -1d5 # Load in the first co-ordinate direction
#
#

end

# The following input parts are not explicitly given:

#

# essential boundary conditions, See Users Manual Section 3.2.5

# Reason, the given displacement is 0O

# solve, See Users Manual Section 3.2.8

# Reason, the default solver is used

# output, See Users Manual Section 3.2.13

# Reason, the default output is written

end_of_sepran_input

normload2.prb

Problem definition for normal load example
See Manual Standard Elements Section 5.1.2
and examples manual Section 5.1.2

#

#

#

#

#

# To run this file use:
# sepcomp normload2.prb
#

#

#

#

#

Reads the file meshoutput
Creates the files sepcomp.inf and sepcomp.out

Example with ILOAD=4
constants

vector_names

displacement

end
#
# Define the type of problem to be solved
problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2
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Linear elastic element

See Manual Standard Elements Section 5.1
Define type of natural boundary conditions (loads)
See Users Manual Section 3.2.2

Given load for linear elastic element

See Manual Standard Elements Section 5.1
Define where the natural boundary conditions
are given. See Users Manual Section 3.2.2

Load at inner circle cl

Define where essential boundary conditions are
given (not the value)

See Users Manual Section 3.2.2

Displacement is prescribed on outer circle

elgrpl (type=250)
natboundcond

bngrpl (type=251)
bounelements

belmi=curves(cl)
essbouncond

H OH H HHHEHHEHHEHHH

curves(c2)
end

# Define the structure of the large matrix
matrix # See Users Manual Section 3.2.4
symmetric # Symmetrical profile matrix
# matrix, hence a direct solver is applied

end

# Define the coefficients for the problem

coefficients # See Users Manual Section 3.2.6
elgrpl (nparm=45) # The number of coefficients for type 250 is 45
# See Manual Standard Elements Section 5.1
icoef2 =1 # Plane strain
coef 6 = 1d7 # Youngs modulus E
coef 7 =0.3 # Poisson ratio nu
bngrpl (nparm=25) # The number of coefficients for type 251 is 25
# See Manual Standard Elements Section 5.1
icoefl = 4 # ILOAD = 4, load in normal direction
icoef2 =1 # Plane strain
coef 6 = -1d5 # Load in the normal direction

end

# The following input parts are not explicitly given:

#

# essential boundary conditions, See Users Manual Section 3.2.5

# Reason, the given displacement is O

# solve, See Users Manual Section 3.2.8

# Reason, the default solver is used

# output, See Users Manual Section 3.2.13

# Reason, the default output is written

end_of_sepran_input

Program seppost allows us to print and plot the solution. It requires input from the standard input
file.
A very simple example is given in the following file:

# normloadl.pst

# Input file for postprocessing for normal load example
# See Manual Standard Elements Section 5.1.2

# and examples manual Section 5.1.2
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#
# To run this file use:
# seppost normloadl.pst > normloadl.out
#
# Reads the files meshoutput, sepcomp.inf and sepcomp.out
#
postprocessing # See Users Manual Section 5.2
print displacement # Print the complete displacement
# See Users Manual Section 5.3
print displacement, curves=cl # Print the displacement along the inner
# circle
# See Users Manual Section 5.3
plot vector displacement # Make a vector plot of the displacement
# See Users Manual Section 5.4
end

In the third example we use only a quarter of the region and make use of the symmetry of the solu-
tion. Only the part in the first quadrant is used. Furthermore we do not prescribe the displacement
on the outer circle. As a consequence we use plain stress instead of plane strain.

The mesh input file is given by:

normload3.msh
mesh for normal load example
In this case only a quarter of the region is used
See Manual Standard Elements Section 5.1.2
and examples manual Section 5.1.2
sepmesh normload3.msh

Creates the file meshoutput

#

#

#

#

#

#

#

# To run this file use:
#

#

#

#

# Define some general constants
#

constants # See Users Manual Section 1.4
integers
nelw = 5 # number of elements in wall-thickness
nelc = 10 # number of elements in circumference direction
reals
ri =2 # inner radius
ro =3 # outer radius
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pl = (0,0) # centre of circles
pd2 = ( ri,0) # point at inner circle (at O degrees)

# coordinates are given in radius and angle
( ri,90) # point at inner circle (at 90 degrees)

pd3
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pd4 = ( ro,90) # point at outer circle (at 90 degrees)
pd5 = ( ro,0) # point at outer circle (at O degrees)
#
# curves
#
curves # See Users Manual Section 2.3
cl = arc1(p2,p3,pl,nelm= nelc) # inner circle
c2 = linel(p3,p4,nelm= nelw) # line at 90 degrees
c3 = arcl(p4,p5,-pl,nelm= nelc) # outer circle
c4 = linel(p5,p2,nelm= nelw) # line at O degrees
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl = rectangle 5 ( c1,c2,c3,c4 ) # number of elements at opposite
# sides is constant
# See Users Manual Section 2.4.2
plot # make a plot of all parts
# and also of the final mesh
# See Users Manual Section 2.2
end

The corresponding problem input file becomes:

# mnormload3.prb
# Problem definition for normal load example
# 1In this case only a quarter of the region is used
# See Manual Standard Elements Section 5.1.2
# and examples manual Section 5.1.2
#
# To run this file use:
# sepcomp normload3.prb
#
# Reads the file meshoutput
# Creates the files sepcomp.inf and sepcomp.out
#
# Example with ILOAD=4 and free outer circle
constants

vector_names

displacement

end
#
# Define the type of problem to be solved
problem See Users Manual Section 3.2.2

types
elgrpl (type=250) Linear elastic element
natboundcond

bngrpl (type=251)

bounelements

H OH H HHHEHHEHHHEH

belml=curves(cl) Load at inner circle cil

Define types of elements,
See Users Manual Section 3.2.2

See Manual Standard Elements Section 5.1

Define type of natural boundary conditions (loads)
See Users Manual Section 3.2.2

Given load for linear elastic element

See Manual Standard Elements Section 5.1

Define where the natural boundary conditions

are given. See Users Manual Section 3.2.2
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essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
degfdl = curves(c2) # x-displacement is prescribed on line at 90 degrees
degfd2 = curves(c4) # y-displacement is prescribed on line at O degrees
# The last two are symmetry conditions

end
# Define the structure of the large matrix
matrix # See Users Manual Section 3.2.4
symmetric # The matrix is symmetrical and stored as profile
# matrix, hence a direct solver is applied

end

# Define the coefficients for the problem

coefficients # See Users Manual Section 3.2.6
elgrpl (nparm=45) # The number of coefficients for type 250 is 45
# See Manual Standard Elements Section 5.1
icoef2 = 0 # Plane stress
coef 6 = 147 # Youngs modulus E
coef 7 =0.3 # Poisson ratio nu
bngrpl (nparm=25) # The number of coefficients for type 251 is 25
# See Manual Standard Elements Section 5.1
icoefl = 4 # ILOAD = 4, load in normal direction
icoef2 =0 # Plane stress
coef 6 = -1d5 # Load in the normal direction

end

# The following input parts are not explicitly given:

#

# essential boundary conditions, See Users Manual Section 3.2.5

# Reason, the given displacement is O

# solve, See Users Manual Section 3.2.8

# Reason, the default solver is used

# output, See Users Manual Section 3.2.13

# Reason, the default output is written

end_of_sepran_input

Finally we extend the third example to R3. To that end the mesh is extended in the third direction.
The mesh input file in this case is given by:

normload4.msh

mesh for normal load example

3D example

See Manual Standard Elements Section 5.1.2

#
#
#
#
#
# and examples manual Section 5.1.2
#
#
#
#
#
#

To run this file use:
sepmesh normload4.msh

Creates the file meshoutput
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# Define some general constants

#
constants # See Users Manual Section 1.4
integers
nelw = 5 # number of elements in wall-thickness
nelc = 5 # number of elements in circumference direction
nelz = 5 # number of elements in z direction
reals
ri =2 # inner radius
ro 3 # outer radius
height = 3 # outer radius
end
#
# Define the mesh
#
mesh3d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pl = (0,0,0) # centre of circles
pd2 = ( ri,0,0) # point at inner circle (at O degrees)
# coordinates are given in radius and angle
pd3 = ( ri,90,0) # point at inner circle (at 90 degrees)
pd4 = ( ro,90,0) # point at outer circle (at 90 degrees)
pd5 = ( ro,0,0) # point at outer circle (at O degrees)
p6 = ( ri,0, height) # point above p2
p9 = (0,0,0) # The points p7-p9 are generated by translate
#
# curves
#
curves # See Users Manual Section 2.3
cl = arc1(p2,p3,pl,nelm= nelc) # inner circle
c2 = linel(p3,p4,nelm= nelw) # line at 90 degrees
c3 = arc1(p4,p5,-pl,nelm= nelc) # outer circle
c4 = linel(p5,p2,nelm= nelw) # line at O degrees
c5 = translate cl (p6,p7) # inner circle on upper surface
c6 = translate c2 (p7,p8) # line at 90 degrees on upper surface
c7 = translate c3 (p8,p9) # outer circle on upper surface
c8 = translate c4 (p9,p6) # line at O degrees on upper surface
c9 = linel (p2,p6,nelm= nelz) # generating curve for pipe surface
c10= translate c9 (p3,p7) # generating curve for pipe surface
cl1l= translate c9 (p4,p8) # generating curve for pipe surface
c12= translate c9 (p5,p9) # generating curve for pipe surface
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl = rectangle 5 ( c1,c2,c3,c4 ) # lower surface

# See Users Manual Section 2.4.2

s2 = translate sl ( c5,c6,c7,c8) # upper surface
# See Users Manual Section 2.4
s3 = pipesurface 5 ( c1,c5,c9,c10) # pipe surface along inner curves
# See Users Manual Section 2.4.5
s4 = pipesurface 5 ( c2,c6,c10,cl11) # pipe surface along curves at 90 deg
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s5 = pipesurface 5 ( c3,c7,cl1,c12) # pipe surface along outer curves
s6 = pipesurface 5 ( c4,c8,c12,c9) # pipe surface along curves at O deg

s7 = ordered surfaces ( s3, s4, sb, s6 ) # Complete pipe surface
# Necessary for pipe
# See Users Manual Section 2.4
#
# volumes
#
volumes # See Users Manual Section 2.5
vl = pipe 13 ( s1, s2, s7 ) # Complete region
# See Users Manual Section 2.5.2
plot(eyepoint(0,-10,10) # make a plot of all parts
# and also of the final mesh
# See Users Manual Section 2.2
# Only with the eye point the complete mesh is drawn
end

The mesh is shown in Figure 5.1.2.3

Figure 5.1.2.3: Mesh plot of 3D normal load example

In this case it is necessary to prescribe the z-displacement in at least one point. To make things
simple the z-displacement in the upper surface is made equal to zero. The corresponding problem
input file is:

normload4.prb

Problem definition for normal load example

In this case only a quarter of the region is used
See Manual Standard Elements Section 5.1.2

and examples manual Section 5.1.2

To run this file use:
sepcomp normload4.prb

H H OB H H H HH HH

Reads the file meshoutput
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# Creates the files sepcomp.inf and sepcomp.out
#
# Example with ILOAD=4 and free outer circle
constants

vector_names

displacement

end
#
# Define the type of problem to be solved

degfd2
degfd3

surfaces(s6)
surfaces(s2)

y-displacement is prescribed on line at O degrees
z-displacement is prescribed on upper surface
The last three are symmetry conditions

problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrpl (type=250) # Linear elastic element
# See Manual Standard Elements Section 5.1
natboundcond # Define type of natural boundary conditions (loads)
# See Users Manual Section 3.2.2
bngrpl (type=251) # Given load for linear elastic element
# See Manual Standard Elements Section 5.1
bounelements # Define where the natural boundary conditions
# are given. See Users Manual Section 3.2.2
belml=surfaces(s3) # Load at inner circle s3
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
degfdl = surfaces(s4) # x-displacement is prescribed on line at 90 degrees
#
#
#

end
# Define the structure of the large matrix
matrix # See Users Manual Section 3.2.4
symmetric # The matrix is symmetrical and stored as profile
# matrix, hence a direct solver is applied

end

# Define the coefficients for the problem

coefficients # See Users Manual Section 3.2.6
elgrpl (nparm=45) # The number of coefficients for type 250 is 45
# See Manual Standard Elements Section 5.1
icoef2 = 0 # Linear Elasticity (3D)
coef 6 = 1d7 # Youngs modulus E
coef 7 =0.3 # Poisson ratio nu
bngrpl (nparm=25) # The number of coefficients for type 251 is 25
# See Manual Standard Elements Section 5.1
icoefl = 4 # ILOAD = 4, load in normal direction
icoef2 = 0 # Linear Elasticity (3D)
coef 6 = -1d5 # Load in the normal direction

end

# The following input parts are not explicitly given:
#
# essential boundary conditions, See Users Manual Section 3.2.5
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# Reason, the given displacement is O
# solve, See Users Manual Section 3.2.8

# Reason, the default solver is used

# output, See Users Manual Section 3.2.13

# Reason, the default output is written

end_of_sepran_input
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5.1.3 Time-dependent linear beam response

In this example a simple clamped beam is excited by a time-dependent distributed load (Figure
5.1.3.1), and then released. The beam is clamped in the right-hand side, and the load is applied on
top of the beam.

To get this example into your local directory use:

sepgetex beamresponse
To run such the example carry out the following commands:

sepmesh beamresponse.msh

view mesh

seplink beamresponse
beamresponse < beamresponse.prb
seppost beamresponse.pst

view results

In Figure 5.1.3.2 the corresponding finite element mesh with linear triangular elements is displayed.
For the description of the material of the beam, a linear constitutive law is used in combination
with linear geometric assumptions (element type 250). For the time integration the Newmark time
integration method is used, with 8 = 0.25 and v = 0.5. For detailed information about solid time
integration, see the Sepran Theory Manual Section 5.6. The beam is loaded by a distributed load
f(t) that is equal to:

Ft) = 10t for0<t<25
f&) = 0 for t > 2.5

Due to this load, the beam is going to oscillate. The deformation in x and y direction of the
upper left point of the beam is plotted in Figure 5.1.3.3. Because linear geometric assumptions are
used, the response is only accurate for small displacements. For large displacements the updated
Lagrange formulation of the solid is recommended (element types 200-202).

f(t)

]V ‘ ‘ ‘ Y

Figure 5.1.3.1: Clamped beam loading

Figure 5.1.3.2: Simple beam mesh
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Linear Solid
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Figure 5.1.3.3: Response of the beam

The input file for SEPMESH is given by:

beamresponse.msh

mesh file for time-dependent linear beam response
See Manual Standard Elements Section 5.1.3

and Examples Manual Section 5.1.3

Author: Martijn Booij 2007

To run this file use:
sepmesh beamresponse.msh

Creates the file meshoutput

H OH H H H H HHHHEHHEH

Define some general constants

constants

integers
n = 40 # number of elements in horizontal direction
m = 4 # number of elements in vertical direction
shape_cur = 1 # shape of elements along curves
# linear elements
shape_sur = 3 # shape of elements in surface
# linear triangles
reals

length = 10 # length of the beam
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height = 1 # height of the beam
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0) # Left under point
p2=(length,0) # Right under point
p3=(length,height) # Right upper point
p4=(0,height) # Left upper point
#
# curves
#
curves # See Users Manual Section 2.3
cl=line shape_cur (pl,p2,nelm=n) # lower boundary
c2=line shape_cur (p2,p3,nelm=m) # right-hand side boundary
c3=line shape_cur (p3,p4,nelm=n) # upper
c4=line shape_cur (p4,pl,nelm=m) # left-hand side boundary
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl=rectangle shape_sur (cl,c2,c3,c4)
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

Since the load is a function of time we need to supply a function subroutine FUNCCF to define the

function. The following program defines this function.
program beamresponse

! --- Main program for time-dependent linear beam response

! The main program is standard and consists of 1 statement only

! See Examples Manual, Section 5.1.3
call sepcom ( O )

end

! --— Function subroutine funccf to define the time-dependent load

! See SEPRAN introduction 5.5.3

double precision function funccf ( ichoice, x, y, z )
implicit none

! --— declaration of input parameters

integer ichoice
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double precision x, y, z

! ——- include common ctimen, which contains the time t

include ’SPcommon/ctimen’
if ( ichoice==1 ) then
! ——— ichoice = 1, define load
if ( t<=2.500001d0) then
! --— t <= 2.5, load is equal to 10t
funccf = 10x*t
else
! -—— t > 0, no load
funccf = 0
end if ! ( t<=2.5)
else

! ——- ichoice > 1, not defined

print *, ’wrong value of ichoice ’, ichoice,
stop

end if ! ( ichoice==1 )

end

The input file for the computational part reads:

beamresponse.prb

problem file for time-dependent linear beam response

See Manual Standard Elements Section 5.1.3
and Examples Manual Section 5.1.3
Author: Martijn Booij 2007

#

#

#

#

#

#

#

# To run this file use:
# sepcomp beamresponse.prb
#

#

#

#

#

#

#

#

Reads the file meshoutput
Creates the file sepcomp.out

Define some general constants

constants # See Users Manual Section 1.4

)

in funccf’
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integers
num_int = 3 # Numerical integration rule
reals
t0 = 0 # Start time
tl = 10 # End time
dt = 0.001 # Timestep
tstep = 0.05 # step for output
rho = 50 # density
E = le6 # E modulus
nu = 0.4 # Poisson ratio
vector_names
u # Solution: displacement
v # Derivative of solution: velocity
a # Derivative velocity: acceleration
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrpl = 250 # Type number for linear elasticity
# See Standard problems Section 5.1
natbouncond # Define natural boundary conditions (prescribed load)
bngrpl = 251 # Type number for prescribed load
bounelements # Define where natural boundary conditions
# are given
belml = curves(c3) # boundary elements along top boundary
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
curves (c4) # Clamped along left-hand side boundary
end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

mat

end

rix
symmetric

#
#

symmetrical profile matrix
hence a direct solver is used

# Define the coefficients for the problem
# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.1

coe

# 1

fficients
nternal elements

elgrpl (nparm = 45)

# The coefficients are defined by 45 parameters
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icoef2 = 0 # 2d plain strain
icoef3 = num_int # type numerical integration
coef6 = E # E modulus
coef7 = nu # Poisson ratio
coefd43 = rho # Density
# boundary elements
bngrpl (nparm=25)
icoefl = 2 # ILOAD
icoef2 = 0 # IGPROB
icoef3 = num_int # type numerical integration
coef6 = 0 # Load in x-direction (0)
coef7 = (func= 1) # Load in y-direction is time dependent
# Is defined by funccf with ichoice =1

end

# Define the structure of the problem

# 1In this part it is described how the problem must be solved

# This is necessary since we need to define initial velocity and displacement

structure
create_vector u # Set initial displacement to O
create_vector v # Set initial velocity to O

# Solve the time-dependent equations
solve_time_dependent_problem, vector = u
end

# Definition of the time integration scheme
# See Users Manual Section 3.2.15

time_integration

method = newmark # The second order time-derivative is integrated
# by the Newmark scheme

tinit = tO # Initial time

tend = t1 # End time

tstep = dt # Time step

toutinit = tO # Initial time for output to sepcomp.out

toutend = t1 # End time for output to sepcomp.out

toutstep = tstep # Time step for output to sepcomp.out

print_level = 2 # Produce some extra output during integration

beta = 0.25 # Parameter beta for Newmark scheme (default value)
gamma = 0.5 # Parameter gamma for Newmark scheme (default value)

end

# input for linear solver
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# See Users Manual Section 3.2.8
solve
positive_definite # the matrices are positive definite
end
end_of_sepran_input
Finally the following input file for seppost may be used.
beamresponse.pst
postprocessing file for time-dependent linear beam response
See Manual Standard Elements Section 5.1.3
and Examples Manual Section 5.1.3

#
#
#
#
#
# Author: Martijn Booij 2007
#
#
#
#
#

To run this file use:
seppost beamresponse.pst

Reads the files meshoutput and sepcomp.out

postprocessing
# Plot time history of both displacements in right-upper point

time history (0,10), plot point (10,1), u, degfd 1
time history (0,10), plot point (10,1), u, degfd 2

# Print time history of both displacements in right-upper point
time history (0,10), print point (10,1), u, degfd 1

time history (0,10), print point (10,1), u, degfd 2
end
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5.2 Linear incompressible or nearly incompressible elastic problems

This Chapter is under preparation.
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5.3 Nonlinear solid computation

Non-linear solid mechanics problems can be solved either by a Total Lagrange approach or an
updated Lagrange approach. In SEPRAN elements for both types of equations are available.
Section (5.3.1) treats elements using the Total Lagrange approach.

Elements using the updated Lagrange approach are treated in Section (5.3.2).
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5.3.1 Nonlinear solid computation using a Total Lagrange approach

In this section we treat examples of the total Lagrange approach.
At this moment the following examples are available:

leafspring (5.3.1.1) Computes the displacement of a leafspring.



EX Leafspring May 2008 5.3.1.1.1

5.3.1.1 The leafspring example

Consider a leafspring as pictured in Figure 5.3.1.1.1. Point 1 is fixed, point 3 can only slide in
z direction. The loading is applied at point 2. The loading can be a prescribed displacement
(essential boundary condition) or a prescribed force (natural boundary condition). The front of the
spring will be fixed (no translation in y direction), while the back can move freely. For the material
of the spring we choose steel (E = 10M Pa,v = 0.3), and the material will behave Hookean for
small strains. This material behavior must be programmed in routine FNMATERI. Although the
material is isotropic, this example is extended with a local direction in order to demonstrate the
usage of FNLOCDIR. In this case it is used to compute strains and stresses in local directions. (For
computation of the actual displacements, these local directions are irrelevant).

In this particular example it is not necessary to program the subroutine FNMATERI yourself since
the standard (default) subroutine already provides the possibility of using Hookean material. In
fact if you leave FNMATERI you will notice no difference.

To get this example into your local directory use:
sepgetex leafspring

and to run it use:
sepmesh leafspring.msh
seplink leafspring

leafspring leafspring.prb

In this example you will see that the displacements are large, but the strains are small. So, a linear
material model is allowed.

Figure 5.3.1.1.1: leafspring problem

The mesh for the leafspring example may be generated by program sepmesh. Sepmesh requires an
input file, for example the file leafspring.msh (5.3.1.1)

Figure 5.3.1.1.2 shows the mesh generated by program sepmesh.

To compute the displacements, program leafspring may be used. This program consists of a simple
call to subroutine sepcom only. The reason that this program is used is that the material subroutines
FNMATERI and FNLOCDIR must be provided. Otherwise it would be sufficient to call program
sepcomp. (5.3.1.1)

In this example we show two different input files, one with respect to prescribed displacements
(leafspring.prb) and one with respect to prescribed forces (leafspringl.prb). In both cases
the computed displacements are of the order 0.1 which is relatively big compared to the strains,
which are less than 0.01. (5.3.1.1)
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z
L
MESH
Figure 5.3.1.1.2: Mesh as generated with the mesh input
Mesh file
# leafspring.msh
#
# mesh input file for leafspring example
#
# example for nonlinear solid mechanics.
# - large displacements
# - small strains (linear material model)
# - Total Lagrange approach
#
#
# See Examples Manual Section 5.3.1.1
#
# To create the mesh run:
#
# sepmesh leafspring.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
integers
nelx = 5 # number of elements in length of spring
nelx2= 2*nelx # 2 nelx
nely = 2 # number of elements in y-direction
nelz = 2 # number of elements in z-direction
reals
lof =10.6 # length of leafspring
rct = 0.8 # radius center
rds = 1.0 # leafspring radius
axp = 0.2 # axis position
wd = 0.05 # leaf width
wh = 0.02 # leaf heigth
axmh = axp-wh # axp - wh
end
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# Define the mesh

i
mesh3d
#

# See Users Manual Section 2.2

# user points

#
points

pl =

p2 =
p3 =
p4 =

p5 =
p6 =
p7 =

p8 =

PO =
pl0

pil

pl2

pl3
#

# curves
#

curves

cl

c2

c3

cd

cb

c6

c7
c8 =
c9 =
cl10=

cll=
cl2=
cl3=
cl4=

clb=
#
# surface
#
surface
sl =
s2 =
s3 =
s4 =

S

# See Users Manual Section 2.2
( 0, 0, rct )

( -lof, 0, O )
( 0, 0, -axp )
( 1lof, 0, 0.0 )

( -lof, 0, wh )
( 0, 0,-axmh )
( 1lof, 0, wh )

( -lof, wd, O )
( 0, wd, -axp )
( lof, wd, O )

( -lof, wd, wh)
( 0, wd,-axmh )
( lof, wd, wh)

# See Users Manual Section 2.3
arcl( p2, p3, pl, nelm= nelx )
arcl( p3, p4, pl, nelm= nelx )
curves ( c1, c2 )
translate c¢3 ( p5, p6, p7 )
linel ( p5, p2, nelm= nely )
linel ( p4, p7, nelm= nely )

translate c¢3 ( p8, p9, pl0 )
translate c3 ( pill, pl2, p13 )
linel (pl1, p8, nelm= nely )
linel (p10, p13, nelm= nely )

linel (p2, p8, nelm= nelz )
linel (p4, p10, nelm= nelz )
linel (p5, pll, nelm= nelz )
linel (p7, p13, nelm= nelz )

linel (p3, p6, nelm= nely)

# See Users Manual Section 2.4
rectangle5( c3, c6, -c4, cb )
rectangle5( c7, c10,-c8, c9 )
coons5(c3, cl12,-c7,-cl1 )
coons5(c4, cl14,-c8,-c13)
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sb = rectangle5( cl11,-c9,-c13,c5)

s6 = rectangle5( c12,c10,-c14,-c6)
#
# volume
#
volumes # See Users Manual Section 2.5

vl = brick13( s3, s1, s6, s2, s5, s4 )

plot # make a plot of the mesh
# See Users Manual Section 2.2

end
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Program

program leafspring
! program file for leafspring example
! See Examples Manual Section 5.3.1.1
call sepcom( 0 )
end

subroutine fnmateri ( ichoice, s, se, eps, detf, matpar, makese )

! DESCRIPTION
! MATERI : routine for ELM250. Material behaviour in nonlinear case

! Compute 2nd-Piola-Kirchoff stress from given Green-Lagrange
! strains. The determinant of the deformation gradient, can be
! used in this relationship

! EXAMPLE MATERIAL

! linear elastic material model (isotropic hooke)

! the large displacement/rotation are taken into account
! in the Green-Lagrange strain, which is small.

D skeskokokokokokok ok sk ok skok sk ok skl ok e ok sk sk ok sk ok sk sk e ok sksk ok e ok sksk ok s ok sk sk s ke sk sk sk sk ek sk sk sk s sk sk sk sk ok sk ok sk ok
! KEYWORDS
! elasticity

! nonlinear
1 ok sk ok sk ok ok ok sk ook ok ok ook sk ook sk sk sk ook sk sk ok ook sk ook sk sk ok ok sk ook sk sk ok ok sk o ok sk sk ok ok sk ook ok ok ok sk ok ok ok

! INPUT / OUTPUT PARAMETERS

logical makese
double precision s(6), eps(6), detf, matpar(10),
+ se(6,6)

integer ichoice

! detf i determinant of deformation gradient
! eps i Green-Lagrange strains
! eps(i) : i: components (symmetric!);

! ichoice i  material model number ( icoef 4 )

! 0 : hookean

! coef6 = E

! coef7 = nu

! makese i  se must be computed (true) or not (false)

! matpar i  material parameters (User defines!) for every
! integration point

! nip i number of data points
! s o 2nd-PK-stresses: You only have to store symmetric
! components!

! s(j) : j: component (1=11, 2=22, 3=33,
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! 4=12, 5=23, 6=31)

! se o tangential matrix.

! se(i,j) : i,j components (symmetric!)

I skokokokoskokokok ok ok ok ok ook ok ook ok ook ok ook ok ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok oK oK oK KK ook KoK K ook K o

! COMMON BLOCKS
D skeokeoksk sk sk sk ok o o ok ok ok ok sk sk sk sk sk o ok ok ok ok ok sk sk sk sk ok o o ok sk ok sk sk sk sk sk sk o s o ok ok sk ok sk sk sk sk sk ok ok ok ok ok ok ok sk sk k sk ok ok
! LOCAL PARAMETERS

integer i, ]
double precision a0, al, a2, a3, E, nu

I stokokokokakofok koo koo koo ook ook stk kool stk stk ok ok ok ok ok ko ok ok ko ok o ok ok ok
! SUBROUTINES CALLED

D skt ok ko sk stk sk stk stk sk stk sk ok ko e ks sk ko sk ok sk ok sk ok sk ok sk sk ok ok
I I/0

I stokokokokokokok koo koo koo koo sk ook sk ook sk ook sk ook sk ook ko ok ko ok ok ook ko ok ok ook ok ook ok ook ok ok ok ok ok ok ok ok ok ok ok ok ok o
! ERROR MESSAGES

I stokokokokokokok koo koo koo kool koo koo sk ook sk ok sk ook koo koo koo koo koo koo ook ks ok ook ok o ok ok o
! PSEUDO CODE

I stokokofokakofok ook koo koo ok ook kol stk stk stk ok ok ke ok ok o ok ok ok ok o ok o ok

! DATA STATEMENTS

! --- material parameters

E = matpar(1)

nu = matpar(2)

a0 = E / ( 1d0 + nu )

al = a0 * ( 1d0 - nu ) /( 1d0 - 2dO*nu)
a2 = a0 * nu /( 1d0 - 2dO*nu)

a3 = a0 / 2d0

! —--— clear se and s

doi=1,686
s(i) = 040
do j =1, 6
se(i,j) = 0dO
end do
end do

o~

do i=1,3
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se(i,i) = a1l
se(i+3,i+3) = a3

end do
se(1,2) = a2
se(2,1) = a2
se(2,3) = a2
se(3,2) = a2
se(1,3) = a2
se(3,1) = a2
do i=1,3
do j=1,3
s(i1) = s(i) + se(i,j)*eps(j)
end do
s(i+3) = se(i+3,i+3)*eps(i+3)
end do
doi=1, 3

se(i,i) = al

se(i+3,i+3) = a3%0.5d0
end do
end
subroutine fnlocdir ( pos, dir, ielgrp )
--— example for usage of fnlocdir
implicit none
double precision pos(3), dir(3,3)

integer ielgrp

double precision rct, x, y, z, len

rct = 0.8d0
x = pos(1)
y = pos(2)

z = pos(3) + rct

len = sqrt( z*z + x*x )

—--- local x-vector

dir(1,1) = z/len
dir(2,1) = 0d0
dir(3,1) = -x/len

--- local y-vector (unchanged)

dir(1,2) = 040
dir(2,2) = 1d0
dir(3,2) = 040

--- local z-vector
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dir(1,3)
dir(2,3)
dir(3,3)

end

= -dir(3,1)

0d0

= dir(1,1)
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Problem definition file
leafspring.prb

problem input file for leafspring example
See Examples Manual Section 5.3.1.1

example for nonlinear solid mechanics.

- large displacements

- small strains (linear material model)
- Total Lagrange approach

To run this file use:
seplink leafspring
leafspring leafspring.prb

Reads the file meshoutput
Creates the file sepcomp.out

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
vector_names

incr_displacement # the incremental displacement in each step

tot_displacement # contains the total displacement

strain # contains the strain

stress # contains the stress
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2

# solves the velocity (momentum equations: predictor)

types # Define types of elements,
# See Users Manual Section 3.2.2

elgrpl, (type=250) # element type for solid material

essbouncond # Define where essential boundary conditions are

# given (not the value)
# See Users Manual Section 3.2.2
# suppressed displacements and prescribed displ.

degfd3 = points (p3,p9)

degfdl = curves (c11)

degfd3 = curves (cll)

degfd3 = curves (cl12)

degfd2 = surfaces (s1)

end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4
matrix
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symmetric # Symmetrical profile matrix
# So a direct solver is applied

end
#
# Define the structure of the problem
# In this part it is described how the problem must be solved
#
structure

# First initialize both vectors
create_vector, tot_displacement
prescribe_boundary_conditions, incr_displacement

# Solve system of equations
solve_nonlinear_system, incr_displacement
print tot_displacement, text=’displacement’

# Compute stresses and strains
derivatives, seq_deriv=1, strain
print strain
derivatives, seq_deriv=2, stress
print stress

# The vectors are written to the file sepcomp.out
# The vector incr_displacement is skipped
output, vector = tot_displacement
end
#
# essential boundary conditions:
#

essential boundary conditions
points (p3,p9), degfd3 = (value=0.10)
end

# Define the coefficients for the problem
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients
elgrpl (nparm=45)

icoef 2 = 10

coef 6 = ( value = 147 )

coef 7 = ( value = 0.3 )
end
#
# Information concerning the non-linear problem
#

nonlinear_equations
global_options, maxiter=25, accuracy=1d-4, print_level=2//
iteration_method = incremental_newton//
seqtotal_vector= tot_displacement
equation 1
fill_coefficients = 1
end
#
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# Information about the derivatives to be computed
#

derivatives
icheld=7
seq_input_vector = tot_displacement
end
derivatives, sequence_number=2
icheld=6
seq_input_vector = tot_displacement
end

end_of_sepran_input
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5.3.2 Nonlinear solid computation using an updated Lagrange approach

In this section we treat examples of the updated Lagrange approach.
At this moment the following examples are available:

beam2d (5.3.2.1) Bending of a beam (2D)

block2d (5.3.2.2) Deformation with volume change of a block (2D)
artery2d (5.3.2.3) Arterial wall with internal pressure (2D)
block3d (5.3.2.4) Uni-axial tension test (3D)

artery3d (5.3.2.5) Arterial wall with internal pressure (3D)



EX Bending of beam May 2008 5.3.2.1.1

5.3.2.1 Bending of a beam (2D)

In this example the deformation of a 2D solid beam is demonstrated. Both rotations and strains are
large. The material behavior is described by a hyper elastic incompressible Neo-Hookean material
law as described in the manual Standard Problems Section 5.3.2 (element type 202). The elements
chosen for the mesh are 9-noded quadratic quadrilaterals (shape=6). The beam is fixed at the
bottom edge by applying homogeneous dirichlet boundary conditions. Along the left edge a normal
force is applied. Since this problem is geometrically non-linear the force is increased gradually
and each force-increment a new equilibrium is computed using a Newton-Raphson iterative loop.
Note that the normal direction of the force also varies depending on the deformation of the beam
during each iteration step. The mesh for this problem with the corresponding boundary conditions
is shown in figure 5.3.2.1.1 on the left. On the right in this figure the deformation of the beam at
increasing force is shown going from A-E.

To get this example into your local directory use:
sepgetex beam2d
and to run it use:

sepmesh beam2d.msh
sepcomp beam2d.prb
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Figure 5.3.2.1.1: Mesh with boundary conditions (left) and corresponding deformations for different
values of the normal force (right)

In this problem the displacements are large (geometrically non-linear deformation) and therefore
the updated Lagrange approach is used.

The method works as follows:

A pseudo time integration is applied, in which the time is only used to increase the applied pressure.
In this example we use 10 time steps and the pressure is increased from 0 to 4, by making it equal
to 10¢.

In each pseudo time step, we have to solve a non-linear iteration procedure.

In this method we need the following displacement vectors:

un The total displacement

u The displacement per time step.
This one is used to increment the total displacement.
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du the incremental displacement vector per iteration.
This one is used to increment the displacement per time step.

The method can be explained in the following algorithm

Create the mesh
Set tg, At and tend
un =0
t := tg; end_time_loop := false
while not end_time_loop do
t :=t+ At Clear u
while not converged do
Clear du
Build matrix and right-hand side based on u and un
Solve system of equations to get new du
u:=u+ du
end while
un :=un + u
end_time_loop := t < tend
end while

The element assumes that u and un are the first 2 vectors in the list of vectors.

In order to construct the applied pressure as function of the time, we introduce two scalars incr
and force.

incr is used to count the number of time steps performed and

force is used to store the value of —0.1 ¢.

In the next pages the mesh file and the problem input file are given
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Mesh file

H OH H H HHHFEHHHHTEHHEHHEHEHHEH R

beam2d.msh

mesh input file for a 2D beam with a 1:20 ratio

geometrically non-linear deformation of a beam.

Bending of a beam by applying an external force in normal direction
The updated Lagrange approach is used

This includes a pseudo time loop, with non-linear iteration per step

The pressure is increased during the time stepping

See Manual Standard Elements Section 5.3.2
and examples manual Section 5.3.2.1

To create the mesh run:
sepmesh beam2d.msh
Creates the file meshoutput

Define some general constants

constants # See Users Manual Section 1.4
integers
nelemx = 2  # number of elements over width of beam
nelemy = 20 # number of elements over height of beam
lin=2 # ishape => quadratic line elements
surf=6 # ishape => quadratic quadrilaterals
reals
xx1 = 0 # origin
xx2 = .5 # width of beam

yyl = 0 # origin
yy2 = 10 # height of beam

end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pl = ( xx1, yyl) # left bottom point
p2 = ( xx2, yyl) # right bottom point
p3 = ( xx2, yy2) # right upper point
p4 = ( xx1, yy2) # left upper point
#
# curves
#

curves # See Users Manual Section 2.3
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**+

end

cl
c2
c3
cd

surface

line
line

= line

surfaces

s1

plot

line

lin(pl,p2,nelm=
lin(p2,p3,nelm=
lin(p3,p4,nelm=
lin(p4,pl,nelm=

nelemx)
nelemy)
nelemx)
nelemy)

# bottom curve
# right curve
# upper curve
# left curve

# See Users Manual Section 2.4

rectangle surf( cl, c2,

c3, c4)

# make a plot of the mesh
# See Users Manual Section 2.2
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Problem definition file

beam2d.prb

The pressure is

H OH H H HHHHHFHHEHHEHHEHHEHHEH

set warn off
set output none

#

geometrically non-linear deformation of a 2D plain-strain artery.
A pressure is applied at the inner arterial wall.

The updated Lagrange approach is used
This includes a pseudo time loop, with non-linear iteration per step

increased during the time stepping

See Manual Standard Elements Section 5.3.2
and examples manual Section 5.3.2.1

To run this file use:
sepcomp beam2d.prb

Reads the file meshoutput
Creates the file sepcomp.out

Suppress superfluous output

# Define some general constants

#
constants

integers

nincr = 400
reals

tstart = 0O

tend = 4

dt = tend/
variables

incr = 0

force = 0
vector_names

# See Users Manual Section 1.4

# number of increments

# start of artificial time algorithm
# end of artificial time algorithm
nincr # artificial time step defined by tend/nincr

# counter for increments (used for printing only)
# is used to define pressure at inner wall

# The following vectors are used for the computation of the displacement
# Mark that the vectors u and un must always be given
# as first and second vector

u #
un #
stress #
strain #
pressure #
end

#

# Define the type
#

problem

Displacement vector per pseudo time step
Total displacement vector

stress

strain

pressure

of problem to be solved

# See Users Manual Section 3.2.2
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# solves the velocity (momentum equations: predictor)
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrpl = 202 # element type for solid material
# updated Lagrange approach
# Taylor-Hood elements (continuous pressure)
natbouncond # Definition of type numbers for natural
# boundary conditions
bngrpl = 210 # boundary group used to apply internal pressure
bounelements # Definition of boundary elements
belml = curves(c4) # curve at which force is applied
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
degfdl,degfd2 = curves(cl) # fix bottom curve of beam
renumber levels (1,2),(3) # renumbering of unknowns per level
# first displacements, then pressures
# in this way zero pivots are avoided
end

# Define the coefficients for the problem
# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coe

fficients

# internal elements

elgrpl (nparm =
icoef2 = 0
icoef3 =0
icoefd = 2
icoef5 = 0
coef7 =1
coefl0 = 1d4

45)

# boundary elements

end

bngrpl (nparm =
icoefl= 2

icoef3=1

coef6= force

25)

** H OH H HEHHEHHEHHH

H H H HH

The coefficients are defined by 45 parameters

type of stress-strain relation
0 - 2D plane strain

type of numerical integration
0 - default value

constitutive law

2 - incompressible Neo-Hookean

user flags

jusrvc = 0 - user vector is not filled
Take into account the linearization of

the Jacobian

Mooney-Rivlin: material parameter cO

The coefficients are defined by 25 parameters

2 - local coor system with linearization

for boundary conditions

Integration rule (1=Newton Cotes)

force in normal direction as a function (p=0.1 t)
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#
# Define the structure of the problem
# In this part it is described how the problem must be solved

#
structure
### Create total displacement vector and set to O
create_vector, un
### Start incremental (pseudo-time) loop
start_time_loop
### Clear solution vector (Displacement vector per pseudo time step)
create_vector, u
time_integration # Adjust the time parameters
# No actual action
incr = incr+1 # Raise increment counter
# t = incr*dt
force = -10*incr*dt # Compute force as function of t
### Print time and increment number
print_time
print incr, text = ’increment’
### Solve system of non-linear equations to get new increment vector
solve_nonlinear_system, u
### Compute stress, strain and pressure vectors
# This must be done before updating the mesh and un
derivatives, seq_deriv = 1, stress
derivatives, seq_deriv = 2, strain
derivatives, seq_deriv = 3, pressure
### Deform mesh using the displacement vector
deform_mesh, u
### Update total solution vector
un = un + u
### End time loop
end_time_loop
end

# Definition of (pseudo) time integration
# See Users Manual Section 3.2.15

time_integration

method = stationary # no action, just adjusting time parameters
tinit = tstart # start time
tend = tend # end time

tstep = dt # time step
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end

# Definition of iteration for non linear equations
# See Users Manual Section 3.2.9

nonlinear_equations
global_options, maxiter = 50, miniter = 1, accuracy = 1d-3//
criterion = relative, print_level 2, at_error= return //
iteration_method = newton
equations 1
fill_coefficients = 1
end

# Compute stress tensor
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives

icheld = 6 # compute stress

seq_input_vector = u # use the total displacement as input vector
end

# Compute stress tensor
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 2

icheld = 8 # compute strain
seq_input_vector = u # use the total displacement as input vector
end

# Compute pressure
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 3

icheld = 7 # compute pressure

seq_input_vector = u # use the total displacement as input vector
end
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5.3.2.2 Deformation with volume change of a block (2D)

In this example the deformation and volumetric change of a 2D block are presented. A hyper-elastic
compressible Neo-Hookean material model is used to describe the material behavior as described in
the manual Standard Problems Section 5.3.2 (element type 200). The mesh for this block consists
of 7-noded quadratic triangles (shape=7)(figure 5.3.2.2.1 on the left). The bottom and the left side
of the block are fixed in y and x-direction, respectively. At the top and right side the force in y
and x-direction is applied, respectively. This force is enforced incrementally and is a function of
the coordinates. The resulting deformations of the block with the red lines denoting the original
shape, are shown in figure 5.3.2.2.1 on the right.

To get this example into your local directory use:
sepgetex block2d

and to run it use:
sepmesh block2d.msh

seplink block2d
block2d < block2d.prb
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Figure 5.3.2.2.1: Mesh with boundary conditions (left) and corresponding deformations with red
line denoting the original form (right)

In this problem the displacements are large (geometrically non-linear deformation) and therefore
the updated Lagrange approach is used.

Exactly the same method as in Section 5.3.2.1 is used.
The pressure at the boundary depends on space and so we need a function subroutine FUNCCF

and consequently a main program.

The files are given at the following pages
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Mesh file

H OH H H H H HHHHHFHHEHHEHEHEHHEHHEH

block2d.msh

mesh input file for a 2D block with a 1:1 ratio

geometrically non-linear deformation of a (2D plain-strain) block.
The compressible material is stretched from two sides resulting in

a volume increase

The updated Lagrange approach is used

This includes a pseudo time loop, with non-linear iteration per step

The pressure is increased during the time stepping

See Manual Standard Elements Section 5.3.2.2
and examples manual Section 5.3.2.2

To create the mesh run:
sepmesh block2d.msh
Creates the file meshoutput

Define some general constants

constants # See Users Manual Section 1.4
integers
nelemx = 10  # number of elements in x-direction
nelemy = 10  # number of elements in y-direction
lin=2 # ishape => quadratic line element
surf=7 # ishape => extended quadratic triangular element
reals
xx1l = 0
xx2 = 1 # width of block
yyt = 0
yy2 = 1  # height of block
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pl = ( xx1, yyl) # left bottom point
p2 = ( xx2, yyl) # right bottom point
p3 = ( xx2, yy2) # right upper point
p4 = ( xx1, yy2) # left upper point
#
# curves
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curves # See Users Manual Section 2.3
cl line 1in(pl,p2,nelm= nelemx) # bottom curve

c2 = line 1in(p2,p3,nelm= nelemy) # right curve
c3 = line lin(p3,p4,nelm= nelemx) # upper curve
c4 = line lin(p4,pl,nelm= nelemy) # left curve
#
# surface
#
surfaces # See Users Manual Section 2.4
sl = rectangle surf( cl, c2, c3, c4) # total surface
plot # make a plot of the mesh

# See Users Manual Section 2.2

end
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Program

program block2d

main program for

geometrically non-linear deformation of a (2D plain-strain) block.
The compressible material is stretched from two sides resulting in
a volume increase

The updated Lagrange approach is used
This includes a pseudo time loop, with non-linear iteration per step
The pressure is increased during the time stepping

See Manual Standard Elements Section 5.3.2
and examples manual Section 5.3.2.2

call sepcom ( 0 )

end

double precision function funccf ( ichoice, x, y, z )
implicit none

include ’SPcommon/ctimen’

integer ichoice;
double precision x, y, z, cl, c2

cl= 2d1
c2= 2d1

if ( ichoice==1 ) then
funccf = cl*yx*t

else if ( ichoice==2 ) then
funccf = c2xxx*xt

end if

end
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Problem definition file

block2d.prb

The pressure is

H OH H H HHHFEHHHHTEHHEHHEHEHHEH R

set warn off
set output none

#

geometrically non-linear deformation of a (2D plain-strain) block.
The compressible material is stretched from two sides resulting in
a volume increase

The updated Lagrange approach is used
This includes a pseudo time loop, with non-linear iteration per step

increased during the time stepping

See Manual Standard Elements Section 5.3.2
and examples manual Section 5.3.2.2

To run this file use:
seplink block2d
block2d < block2d.prb

Reads the file meshoutput
Creates the file sepcomp.out

Suppress superfluous output

# Define some general constants

#
constants

integers

nincr = 20
reals

tstart = 0

tend = 1

dt = tend/
variables

incr = 0
vector_names

# See Users Manual Section 1.4

# number of increments
# start of artificial time algorithm
# end of artificial time algorithm

nincr # artificial time step defined by tend/nincr

# counter for increments (used for printing only)

# The following vectors are used for the computation of the displacement
# Mark that the vectors u and un must always be given
# as first and second vector

u #
un #
stress #
strain #
pressure #
end

#

# Define the type
#

problem

Displacement vector per pseudo time step
Total displacement vector

stress

strain

pressure

of problem to be solved

# See Users Manual Section 3.2.2
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# solves the velocity (momentum equations: predictor)
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrpl = 200 # element type for solid material
# updated Lagrange approach
# Compressible material
natbouncond # Definition of type numbers for natural
# boundary conditions
bngrpl = 210 # boundary group to apply force
bngrp2 = 210 # boundary group to apply force
bounelements # Definition of boundary elements
belml = curves(c2) # apply force on right side
belm2 = curves(c3) # apply force on upper side
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
degfdl = curves(c4) # fix left side in x-direction
degfd2 = curves(cl) # fix bottom side in y-direction
end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix

storage_method = compact
# So an iterative solver is applied

end

# Non-symmetrical compact matrix

# Define the coefficients for the problem
# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients
# internal elements

elgrpl (nparm = 45)

icoef2 = 0
icoef3 =0
icoefd =1

icoefb = 0
coef7 =1

coefl10 = 40
coefll = 40

#
# type of stress-strain relation

# 0 - 2D plane strain

# type of numerical integration

# 0 - default value

# constitutive law

# 1 - compressible Neo-Hookean

# user flags

# iusrvc = 0 - user vector is not filled
# Take into account the linearization of
# the Jacobian

# shear modulus

# bulk modulus

# coefficients concerning the first boundary group

bngrpl (nparm = 25)
icoefl= 0
icoef3=1

The coefficients are defined by 45 parameters

# 0 - global coordinate system for boundary conditions
# Integration rule (1=Newton Cotes)
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coef6= func=1 # force in global x-direction as a function (see block2d.f)
coef7= 0d0 # force in global y-direction

# coefficients concerning the second boundary group
bngrp2 (nparm = 25)

icoefl= 0 # 0 - global coordinate system for boundary conditions
icoef3=1 # Integration rule (1=Newton Cotes)
coef6= 0d0 # force in global x-direction

coef7= func=2 # force in global y-direction as a function (see block2d.f)
end
structure

### Create total displacement vector and set to O
create_vector, un

### Start incremental (pseudo-time) loop
start_time_loop

### Clear solution vector (Displacement vector per pseudo time step)
create_vector, u

time_integration # Adjust the time parameters
# No actual action

incr = incr+l # Raise increment counter
# t = incrxdt

### Print time and increment number
print_time
print incr, text = ’increment’

### Solve system of non-linear equations to get new increment vector
solve_nonlinear_system, u

### Compute stress, strain and pressure vectors
# This must be done before updating the mesh and un

derivatives, seq_deriv = 1, stress
derivatives, seq_deriv = 2, strain
derivatives, seq_deriv = 3, pressure

### Deform mesh using the displacement vector
deform_mesh, u

### Update total solution vector
un = un + u

### End time loop
end_time_loop

end

# Definition of (pseudo) time integration
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# See Users Manual Section 3.2.15

time_integration

method = stationary # no action, just adjusting time parameters
tinit = tstart # start time
tend = tend # end time
tstep = dt # time step
end

# Definition of iteration for non linear equations
# See Users Manual Section 3.2.9

nonlinear_equations
global_options, maxiter = 50, miniter
criterion = relative, print_level
iteration_method = newton
equations 1
fill_coefficients = 1
end

1, accuracy = 1d-3//
2, at_error= return //

# Compute stress tensor
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives

icheld = 6 # compute stress

seq_input_vector = u # use the total displacement as input vector
end

# Compute stress tensor
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 2

icheld = 8 # compute strain
seq_input_vector = u # use the total displacement as input vector
end

# Compute pressure
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 3

icheld =7 # compute pressure
seq_input_vector = u # use the total displacement as input vector
end

# Information for linear solver
# See Users Manual Section 3.2.8

solve
iterative_method = BICGSTAB, preconditioner = ilu
end



EX 2D arterial wall January 2006 5.3.2.3.1

5.3.2.3 Arterial wall with internal pressure (2D)

In this problem an 2D arterial wall is considered that deforms by an internal pressure. A hyper-
elastic incompressible Neo-Hookean material law describes the material behavior (element type
201). The mesh is subdivided into 9-noded quadratic quadrilaterals (shape=6). The boundary
conditions corresponding to this problem are shown together with the mesh in Figure 5.3.2.3.1 on
the left. An internal pressure is applied at the inner wall and the displacements at some of the
radial curves are prescribed to fix the mesh in space. On the right side of Figure 5.3.2.3.1 the
deformation of the mesh is shown with the corresponding pressure contour bands.

To get this example into your local directory use:
sepgetex artery2d
and to run it use:

sepmesh artery2d.msh
sepcomp artery2d.prb

-20 : - : :
20 -0 0 10 20

Figure 5.3.2.3.1: Mesh with boundary conditions (left) and deformations with pressure contour-
bands (right)

The mesh is created by splitting the region into four parts. This is not necessary but makes the
prescription of boundary conditions more easy.

The method used to solve the problem is exactly identical to the one in Section 5.3.2.1. The only
difference is that the force is equal to -0.1t and that the time increases form 0 to 1, with steps 0.1.

On the next pages the input files can be found.
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Mesh file

H OH H H H H HHHHHFHHEHHEHEHEHHEHHEH

artery2d.msh

mesh input file for

geometrically non-linear deformation of a 2D plain-strain artery.
A pressure is applied at the inner arterial wall.

The region is enclosed by two concentric circles

The updated Lagrange approach is used

This includes a pseudo time loop, with non-linear iteration per step
The pressure is increased during the time stepping

See Examples Manual Section 5.3.2.3

To create the mesh run:

sepmesh artery2d.msh

Creates the file meshoutput

Define some general constants

constants # See Users Manual Section 1.4
integers

nelmarc = 20 # number of elements in 1/4 circumferential
nelmw = 10 # number of elements in artery wall thickness
line = 2 # quadratic line elements
surf = 6 # quadratic quadrilaterals
inner_circ = 20 # sequence number of inner circle
outer_circ = 21 # sequence number of outer circle

reals

inner_radius = 12.5 # Radius of inner circle
outer_radius = 14.5 # Radius of outer circle

end

#
#
#

Define the mesh

mesh2d # See Users Manual Section 2.2

#
#
#

user points

points # See Users Manual Section 2.2
# Centre
pl = (0,0)
# Inner circle: subdivided into 4 parts because of boundary conditions
p2 = ( inner_radius,0)
p3 = (0, inner_radius)
p4 = (- inner_radius,0)
p5 = (0,- inner_radius)
# Outer circle: subdivided into 4 parts because of boundary conditions
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p6 = ( outer_radius,0)

p7 = (0, outer_radius)
p8 = (- outer_radius,0)
p9 = (0,- outer_radius)
#
# curves
#
curves # See Users Manual Section 2.3
# inner circle, consists of 4 arcs
cl = arc 1line (p2,p3,pl,nelm = nelmarc)
c2 = arc line (p3,p4,pl,nelm = nelmarc)
c3 = arc line (p4,p5,pl,nelm = nelmarc)
c4 = arc 1line (p5,p2,pl,nelm = nelmarc)
¢ inner_circ = curves (cl1,c2,c3,c4d)
# outer circle, consists of 4 arcs
c¢5 = arc line(p6,p7,pl,nelm = nelmarc)
c6 = arc line(p7,p8,pl,nelm = nelmarc)
c7 = arc line(p8,p9,pl,nelm = nelmarc)
c8 = arc line(p9,p6,pl,nelm = nelmarc)
¢ outer_circ = curves (c5,c6,c7,c8)
# connection, used for boundary conditions
c9 = line line(p2,p6, nelm = nelmw)
c10 = line line(p3,p7,nelm = nelmw)
cll = line line(p4,p8,nelm = nelmw)
c12 = line line(p5,p9,nelm = nelmw)
#
# surface
#
surfaces # See Users Manual Section 2.4
# Created from 4 parts
sl = quadrilateral surf(c9,c5,-c10,-cl)
s2 = quadrilateral surf(c10,c6,-c11,-c2)
s3 = quadrilateral surf(cll,c7,-c12,-c3)
s4 = quadrilateral surf(cl12,c8,-c9,-c4)
plot # make a plot of the mesh

# See Users Manual Section 2.2

end
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Problem definition file

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

set
set

#
#
#

con

end
#

artery2d.prb

geometrically non-linear deformation of a 2D plain-strain artery.
A pressure is applied at the inner arterial wall.

The updated Lagrange approach is used
This includes a pseudo time loop, with non-linear iteration per step

The pressure is increased during the time stepping

See Manual Standard Elements Section 5.3.2
and examples manual Section 5.3.2.3

To run this file use:
sepcomp artery2d.prb

Reads the file meshoutput
Creates the file sepcomp.out
Suppress superfluous output
warn off

output none

Define some general constants

stants # See Users Manual Section 1.4
integers
nincr = 10 # number of artificial time steps
inner_circ = 20 # sequence number of inner circle
reals
tstart = 0 # start of artificial time algorithm
tend = 1 # end of artificial time algorithm
dt = tend/ nincr # artificial time step defined by tend/nincr
variables
incr = 0 # counter for increments (used for printing only)
force = 0 # is used to define pressure at inner wall

vector_names

# The following vectors are used for the computation of the displacement
# Mark that the vectors u and un must always be given

# as first and second vector

u # Displacement vector per pseudo time step
un # Total displacement vector
#  Output vectors
stress # stress
strain # strain

pressure # pressure

# Define the type of problem to be solved

#
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problem # See Users Manual Section 3.2.2
# solves the velocity (momentum equations: predictor)

types # Define types of elements,
# See Users Manual Section 3.2.2

elgrpl = 201 # element type for solid material
updated Lagrange approach
# Crouzeix-Raviart elements (discontinuous pressure)

+*

natbouncond # Definition of type numbers for natural
# boundary conditions
bngrpl = 210 # boundary group used to apply internal pressure
bounelements # Definition of boundary elements
belml = curves(c inner_circ) # apply pressure on inner boundary
essbouncond Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

fix right radial curve in y-direction
fix left radial curve in y-direction
fix upper radial curve in x-direction
fix bottom radial curve in x-direction
# renumbering of unknowns per level
first displacements, then pressures

in this way zero pivots are avoided

degfd2 = curves(c9)
degfd2 = curves(cll)
degfdl = curves(c10)
degfdl = curves(cl2)
renumber levels (1,2),(3,4,5

H OH— HH R HHH

end

# Define the coefficients for the problem
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients
# internal elements

elgrpl (nparm = 45) # The coefficients are defined by 45 parameters
icoef2 =0 # type of stress-strain relation
# 0 - 2D plane strain
icoef3 = 0 # type of numerical integration
# 0 - default value
icoefd = 2 # constitutive law
# 2 - incompressible Neo-Hookean
icoefb =0 # user flags
# iusrvc = 0 - user vector is not filled
coef7 =1 # Take into account the linearization of
# the Jacobian
coefl0 =1 # shear modulus

# boundary elements

bngrpl (nparm = 25) # The coefficients are defined by 25 parameters
icoefl= 2 # 2 - local coor system with linearization
# for boundary conditions
icoef3=1 # Integration rule (1=Newton Cotes)
#

coef6= force force in normal direction as a function (p=0.1 t)
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end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#
structure
### Create total displacement vector and set to O
create_vector, un
### Start incremental (pseudo-time) loop
start_time_loop
### Clear solution vector (Displacement vector per pseudo time step)
create_vector, u
time_integration # Adjust the time parameters
# No actual action
incr = incr+l # Raise increment counter
# t = incrxdt
force = -0.1*xincr*dt # Compute force as function of t
### Print time and increment number
print_time
print incr, text = ’increment’
### Solve system of non-linear equations to get new increment vector
solve_nonlinear_system, u
### Compute stress, strain and pressure vectors
# This must be done before updating the mesh and un
derivatives, seq_deriv = 1, stress
derivatives, seq_deriv = 2, strain
derivatives, seq_deriv = 3, pressure
### Deform mesh using the displacement vector
deform_mesh, u
### Update total solution vector
un = un + u
### End time loop
end_time_loop
end

# Definition of (pseudo) time integration
# See Users Manual Section 3.2.15

time_integration
method = stationary # no action, just adjusting time parameters
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tinit = tstart # start time

tend = tend # end time

tstep = dt # time step
end

# Definition of iteration for non linear equations

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter = 50, miniter
print_

criterion = relative,
iteration_method = newton
equations 1
fill_coefficients = 1
end

# Compute stress tensor
# See Users Manual Section 3.2.11

derivatives
icheld = 6 #
seq_input_vector = u #
end

# Compute stress tensor
# See Users Manual Section 3.2.11

derivatives, sequence_number = 2

icheld = 8 #
seq_input_vector = u #
end

# Compute pressure
# See Users Manual Section 3.2.11

derivatives, sequence_number = 3
icheld = 7 #
seq_input_vector = u #

end

1, accuracy = 1d-3//
2, at_error= return //

level

and Standard problems Section 5.3.2

compute stress

use the total displacement as input vector

and Standard problems Section 5.3.2

compute strain

use the total displacement as input vector

and Standard problems Section 5.3.2

compute pressure

use the total displacement as input vector
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5.3.2.4 Uni-axial tension test (3D)

In this example a uni-axial tension test is simulated for a 3D solid block. The material is described
by an incompressible Neo-Hookean material law as described in the manual Standard Problems
Section 5.3.2 (element type 201).

To get this example into your local directory use:
sepgetex block3d
and to run it use:

sepmesh block3d.msh
seplink block3d
block3d < block3d.prb

27-noded quadratic hexahedrons (shape=14) are used for the mesh. The mesh is fixed at the bottom,
left and front surface (these surfaces fall within the x-y, y-z and x-z plane, respectively) in the z, x
and y-direction, respectively. This way, the block is free to have lateral contraction. At the back
surface the displacement is prescribed in several increments. The mesh with boundary conditions
are shown on the left in figure 5.3.2.4.1, while on the right in the same figure the deformation of
this mesh is shown with contour-bands of the y-displacements.

// 1
0 // 4]
-1

z

1 y X

Figure 5.3.2.4.1: Mesh and boundary conditions (left) and deformed block with y-displacement
contour-bands (right)

In the next pages the files can be found.
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Mesh file

block3d.msh

along one surface.

sepmesh block3d.msh

H OH H H HHHFEHHHHTEHHEHHEHEHHEH R

To create the mesh run:

mesh input file for a 3D block of dimensions 1 x 1 x 1
geometrically non-linear deformation of a 3D block
A uniaxial tension test enforced by prescribing the displacement

The updated Lagrange approach is used
This includes a pseudo time loop, with non-linear iteration per step

See Manual Standard Elements Section 5.3.2
and examples manual Section 5.3.2.4

Creates the file meshoutput

Define some general constants

constants # See Users Manual Section 1.4
integers
n=4 # number of elements in x-direction
m=4 # number of elements in y-direction
1 =4 # number of elements in z-direction
lin = 2 # quadratic line elements
sur = 6 # bi-quadratic quadrilaterals
vol =14 # tri-quadratic hexahedrons
reals
x1 =1.0 # length of block in x-dir
yl =1.0 # length of block in y-dir
zl1 =1.0 # length of block in z-dir
end
#
# Define the mesh
#
mesh3d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2

pl=(- x1,- y1,- zl)
p2=( x1,- yl,- z1)
p3=( x1, yl,- zl)

p4=(- x1, yl,- zl)
p5=(- x1,- y1l, z1)

# Left under point bottom surface
# Right under point bottom surface
# Right upper point bottom surface
# Left upper point bottom surface
# Left under point top surface
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p6=( x1,- yl, zl) # Right under point top surface
p7=( x1, yl, zl) # Right upper point top surface
p8=(- x1, yl, zl) # Left upper point top surface

#

# curves

#

curves # See Users Manual Section 2.3
#curves of bottom surface

cl = line lin ( pl,p2,nelm= n)

c2 = line lin ( p2,p3,nelm= m)

c3 = line 1lin ( p3,p4,nelm= n)

c4d = line lin ( p4,pl,nelm= m)

#curves of top surface

cs = line lin ( p5,p6,nelm= n)

c6 = line lin ( p6,p7,nelm= m)

c¢?7 = line 1lin ( p7,p8,nelm= n)

c8 = line 1lin ( p8,p5,nelm= m)

#curves determining the height of the block
c9 = line lin ( pl,p5,nelm= 1)

c10 = line 1lin ( p2,p6,nelm= 1)

cll = line 1lin ( p3,p7,nelm= 1)

c12 = line 1in ( p4,p8,nelm= 1)

#

# surface

#

surfaces # See Users Manual Section 2.4

si rectangle sur (c1,c2,c3,cd) # bottom surface
s2 = rectangle sur (cl,c10,-c5,-c9 ) # front surface
s3 rectangle sur (c2,cl1l,-c6,-c10) # right surface
s4 = rectangle sur (-c3,cl1,c7,-c12) # back surface
sb = rectangle sur (-c4,c12,c8,-c9 ) # left surface
s6 = rectangle sur (c5,c6,c7,c8) # top surface

#

# volume

#

volumes # See Users Manual Section 2.5

vl = brick vol (s1,s2,s3,s4,s5,s6)

# Plot of mesh

plot, eyepoint =

end

(50, 20, 20)
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Problem definition file

block3d.prb

geometrically non-linear deformation of a 3D block

A uniaxial tension test enforced by prescribing the displacement

along one surface.

The updated Lagrange approach is used
This includes a pseudo time loop, with non-linear iteration per step.

See Manual Standard Elements Section 5.3.2
and examples manual Section 5.3.2.4

To run this file use:
sepcomp block3d.prb

Reads the file meshoutput
Creates the file sepcomp.out

H OH H H HHHHEHHEHHEHHEHHEHHEH

# Suppress superfluous output

set warn off
set output none

#
# Define some general constants
#
constants # See Users Manual Section 1.4
integers
nincr = 10 # number of artificial time steps
reals
tstart = 0 # start of artificial time algorithm
tend = 0.5 # end of artificial time algorithm
dt = tend/ nincr # artificial time step defined by tend/nincr
variables
incr = 0 # counter for increments (used for printing only)
vector_names
# The following vectors are used for the computation of the displacement
# Mark that the vectors u and un must always be given
# as first and second vector
u # Displacement vector per pseudo time step
un # Total displacement vector
#  Output vectors
stress # stress
strain # strain
pressure # pressure
end

problem # See Users Manual Section 3.2.2
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types # Define types of elements,
# See Users Manual Section 3.2.2

elgrpl = 201 # element type for solid material
# updated Lagrange approach
# Crouzeix-Raviart elements (discontinuous pressure)

essbouncond # Define where essential boundary conditions are

# given (not the value)
# See Users Manual Section 3.2.2

degfdl = surfaces(sb)  #left surface

degfd2 = surfaces(s2) #front surface

degfd3 = surfaces(sl)  #bottom surface

degfd2 = surfaces(s4)  #back surface

#i#t# Crouzeix-Raviart (201)
renumber levels (1,2,3),(4,5,6,7) # renumbering of unknowns per level
# first displacements, then pressures
# in this way zero pivots are avoided
end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
storage_method = compact # Non-symmetrical compact matrix
# So an iterative solver is applied
end

# define essential boundary conditions
# no extra input since all are equal to zero
# See Users Manual Section 3.2.5

essential boundary conditions
surfaces(s4), degfd2, value = 0.1 # Displacing back surface in positive
# y-direction each increment
end

# Define the coefficients for the problem
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients
# internal elements

elgrpl (nparm = 45) # The coefficients are defined by 45 parameters
icoef2 =0 # type of stress-strain relation
# 0 - full 3D
icoef3 =0 # type of numerical integration
# 0 - default value
icoefd = 2 # constitutive law
# 2 - incompressible Neo-Hookean
icoefb = 0 # user flags, coef = iusrvec + 100*iusrflg
# iusrvc = 0 - user vector is not filled
coefl0 = 3d3

# Mooney-Rivlin: material parameter cO
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end
i

# Define the structure of the problem
# In this part it is described how the problem must be solved

#

structure

end

### Create total displacement vector and set to O
create_vector, un

### Start incremental (pseudo-time) loop
start_time_loop

### Clear solution vector (Displacement vector per pseudo time step)
create_vector, u

time_integration # Adjust the time parameters
# No actual action
# No actual action

incr = incr+l # Raise increment counter
### Print time and increment number
print_time

print incr, text = ’increment’

### Solve system of non-linear equations to get new increment vector
solve_nonlinear_system, u

### Compute stress, strain and pressure vectors
# This must be done before updating the mesh and un

derivatives, seq_deriv
derivatives, seq_deriv
derivatives, seq_deriv

1, stress
2, strain
3, pressure

### Deform mesh using the displacement vector
deform_mesh, u

### Update total solution vector
un = un + u

### End time loop
end_time_loop

# Definition of (pseudo) time integration
# See Users Manual Section 3.2.15

time_integration

method = stationary # no action, just adjusting time parameters
tinit = tstart # start time
tend = tend # end time

tstep = dt # time step
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end

# Definition of iteration for non linear equations
# See Users Manual Section 3.2.9

nonlinear_equations
global_options, maxiter = 50, miniter = 1, accuracy = 1d-3//
criterion = relative, print_level 2, at_error= return //
iteration_method = newton
equations 1
fill_coefficients = 1
end

# Compute stress tensor
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives

icheld = 6 # compute stress

seq_input_vector = u # use the total displacement as input vector
end

# Compute stress tensor
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 2

icheld = 8 # compute strain
seq_input_vector = u # use the total displacement as input vector
end

# Compute pressure
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 3

icheld = 7 # compute pressure
seq_input_vector = u # use the total displacement as input vector
end

# Information for linear solver
# See Users Manual Section 3.2.8

solve
iterative_method = BICGSTAB, preconditioner = ilu
end
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5.3.2.5 Arterial wall with internal pressure (3D)

This example treats the deformation of a 3D arterial wall by an internal pressure. The solid material
is described by a neo-Hookean incompressible material law as described in the manual Standard
Problems Section 5.3.2 (element type 202). 27-noded hexahedrons are used for the mesh (shape
14). Making use of symmetry, 1/4th of the arterial wall is meshed as shown at the left side of figure
5.3.2.5.1. The pressure is applied at the inner wall of the artery and is increased incrementally. The
geometry and pressure contour-bands after deformation are shown on the right of figure 5.3.2.5.1.

To get this example into your local directory use:
sepgetex artery3d

and to run it use:

sepmesh artery3d.msh
sepcomp artery3d.prb

-0.139

-0.14

-0.141

-0.142

-0.143

-0.144

-0.145

Figure 5.3.2.5.1: Mesh (left) and corresponding deformations with pressure contour bands (right)

Exactly the same method as in Section 5.3.2.1 is applied.

In the next pages the files can be found.



EX

3D Arterial wall May 2008 5.3.2.5.2

Mesh file

H OH H H HHHFEHHHHTEHHEHHEHEHHEH R

artery3d.msh

mesh input file for

geometrically non-linear deformation of a 3D artery wall
A pressure is applied at the inner arterial wall.

Only 1/4-th of the region is used

The updated Lagrange approach is used

This includes a pseudo time loop, with non-linear iteration per step
The pressure is increased during the time stepping

See Examples Manual Section 5.3.2.5

To create the mesh run:

sepmesh artery3d.msh

Creates the file meshoutput

Define some general constants

constants # See Users Manual Section 1.4

integers
linetype =2 # quadratic line elements
surftype =6 # bi-quadratic quadrilaterals
voltype = 14 # tri-quadratic hexahedrons
n_r =3 # number of elements over tube radius
n_len =3 # number of elements along the tube length
n_arc =3 # number of elements along the wall

reals
ri = 2.3 # inner radius
wt = 0.85 # wall thickness
len =1.0 # length of the tube
mshfac =2 # mesh factor
arc = (90/360)*2* pi # angle of 90 degrees, expressed in radians

# constants computed in COMPCONS:
rl = ri+ wt # r1 = ri + wt (outer radius)

x3 = ri* cos( arc) # x-coordinate of end point
y3 = ri* sin( arc) # y-coordinate of end point
x4 = rilx cos( arc) # x-coordinate of end point
y4 = rilx sin( arc) # y-coordinate of end point

end

#

# Define the mesh

#

mesh3d # See Users Manual Section 2.2
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#
# user points
#
points # See Users Manual Section 2.2
p99 = ( 0, 0, 0) # Centre
pl = ( ri, 0, 0)
p2 = ( rl, 0, 0)
p3 = ( x3, y3, 0)
péd = ( x4, y4, 0)
p9 = ( ri, 0, len)
plo = ( rl, 0, len)
pit = ( x3, y3, len)
pl2 = ( x4, y4, len)
#
# curves
#
curves # See Users Manual Section 2.3
cl = line linetype (pl, p2, nelm = n_r, ratio = 1, factor = mshfac)
c2 = arc linetype(pl, p3, p99, nelm= n_arc)
c3 = line linetype(p3, p4, nelm = n_r, ratio = 1, factor = mshfac)
c4 = arc linetype(p4, p2, p99, nelm= n_arc)
# front to back connection
c5 = line linetype (pl, p9, mnelm = n_len) #inner
c6 = line linetype (p2, pl0, nelm = n_len) #outer
c7 = line linetype (p3, pll, nelm = n_len) #inner
c8 = line linetype (p4, pl2, nelm = n_len) #outer
# translate into the back
c9 = tramslate cl (p9, pl0)
c10 = translate c2 (p9,pll) #inner
cll = translate c3 (pl1l, pl2)
cl12 = translate c4 (pl12,pl0) #outer
#
# surface
#
surfaces # See Users Manual Section 2.4
sl = quadrilateral surftype (-cl, c2, c3, c4, curvature = 2) #front
s2 = translate s1 (-c9, c10, cl11, c12) #back
s3 = pipesurface surftype (c2, c10, cb, c7) #inner
s4 = pipesurface surftype (c4, cl12, c8, c6) #outer
sb = pipesurface surftype (-cl, -c9, c6, cb) #horz
s6 = pipesurface surftype (c3, cll, c7, c8) #vert
s7 = ordered surface (s5, s3, s6, s4)
#
# volume
#
volumes # See Users Manual Section 2.5

vl = pipe voltype (sl1, s2, s7)

# renumbering of nodes



EX 3D Arterial wall May 2008 5.3.2.5.4

renumber best, levels
# Plot of mesh
plot, curve = 2, eyepoint = (50, 20, 20), rotate = 1

end
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Problem definition file
artery3d.prb

geometrically non-linear deformation of an arterial wall.
Using symmetry, 1/4th of the wall is modeled.
An internal pressure is applied at the inner arterial wall.

The updated Lagrange approach is used

This includes a pseudo time loop, with non-linear iteration per step.
The axial length is constrained by fixing the begin and end surface.
The pressure is increased during the time stepping

See Manual Standard Elements Section 5.3.2
and examples manual Section 5.3.2.5

To run this file use:
sepcomp artery3d.prb

Reads the file meshoutput

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
# Creates the file sepcomp.out
#

#

+*

Suppress superfluous output

set warn off
set output none

#
# Define some general constants
#
constants # See Users Manual Section 1.4
integers
nincr = 10 # number of artificial time steps
reals
tstart = 0 # start of artificial time algorithm
tend = 1 # end of artificial time algorithm
dt = tend/ nincr # artificial time step defined by tend/mincr
variables
incr = 0 # counter for increments (used for printing only)
force = 0 # is used to define pressure at inner wall

vector_names

# The following vectors are used for the computation of the displacement
# Mark that the vectors u and un must always be given

# as first and second vector

u # Displacement vector per pseudo time step
un # Total displacement vector
#  Output vectors
stress # stress
strain # strain

pressure # pressure
end
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problem # See Users Manual Section 3.2.2

types # Define types of elements,
# See Users Manual Section 3.2.2

elgrpl = (type = 202) # element type for solid material
# updated Lagrange approach
# Taylor-Hood elements (continuous pressure)

natbouncond # Definition of type numbers for natural
# boundary conditions
bngrpl = 210 # boundary group used to apply internal pressure
bounelements # Definition of boundary elements
belml = surfaces (s3) # inner surface
essbouncond # Define where essential boundary conditions are

# given (not the value)
# See Users Manual Section 3.2.2

degfdl = surfaces(s6) # symmetry plane in y-z plane
degfd2 = surfaces(sb) # symmetry plane in x-z plane
degfd3 = surfaces(sl) # bottom

degfd3 = surfaces(s2) # top

renumber levels (1,2,3),(4) # renumbering of unknowns per level
# first displacements, then pressures
# in this way zero pivots are avoided
end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
storage_method = compact # Non-symmetrical compact matrix
# So an iterative solver is applied
end

# Define the coefficients for the problem
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients
# internal elements

elgrpl (nparm = 45) # The coefficients are defined by 45 parameters
icoef2 =0 # type of stress-strain relation
# 0 - full 3D
icoef3 =0 # type of numerical integration
# 0 - default value
icoefd = 2 # constitutive law
# 2 - incompressible Neo-Hookean
icoefb = 0 # user flags
# iusrvc = 0 - user vector is not filled
coef7 =1 # Take into account the linearization of
# the Jacobian
coefl0 =1 # shear modulus
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# boundary elements

bngrpl (nparm = 25) # The coefficients are defined by 25 parameters
icoefl= 2 # 2 - local coor system with linearization for
# boundary conditions
icoef3=1 # Integration rule (1=Newton Cotes)
coef6= force # force in normal direction as a function (p=0.1 t)
end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved
#

structure

### Create total displacement vector and set to O
create_vector, un

### Start incremental (pseudo-time) loop
start_time_loop

### Clear solution vector (Displacement vector per pseudo time step)
create_vector, u

time_integration # Adjust the time parameters
# No actual action
# No actual action

incr = incr+l # Raise increment counter
# t = incrxdt
force = 0.1*incrxdt # Compute force as function of t

### Print time and increment number
print_time
print incr, text = ’increment’

### Solve system of non-linear equations to get new increment vector
solve_nonlinear_system, u

### Compute stress, strain and pressure vectors
# This must be done before updating the mesh and un

derivatives, seq_deriv = 1, stress
derivatives, seq_deriv 2, strain
derivatives, seq_deriv 3, pressure

### Deform mesh
deform_mesh, u

### Update total solution vector
un = un + u

### End time loop
end_time_loop

end
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# Definition of (pseudo) time integration
# See Users Manual Section 3.2.15

time_integration

method = stationary # no action, just adjusting time parameters
tinit = tstart # start time
tend = tend # end time
tstep = dt # time step
end

# Definition of iteration for non linear equations
# See Users Manual Section 3.2.9

nonlinear_equations
global_options, maxiter = 50, miniter
criterion = relative, print_level
iteration_method = newton
equations 1
fill_coefficients = 1
end

1, accuracy = 1d-3//
2, at_error= return //

# Compute stress tensor
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives

icheld = 6 # compute stress

seq_input_vector = u # use the total displacement as input vector
end

# Compute stress tensor
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 2

icheld = 8 # compute strain
seq_input_vector = u # use the total displacement as input vector
end

# Compute pressure
# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 3

icheld =7 # compute pressure
seq_input_vector = u # use the total displacement as input vector
end

# Information for linear solver
# See Users Manual Section 3.2.8

solve
iterative_method = BICGSTAB, preconditioner = ilu
end
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5.4 (Thick) plate elements

5.4.1 Some analytical tests for the plate elements

In order to test the plate elements we compare the numerical solution with some simple examples
of which the analytical solution is known. It concerns the uniform load on three types of plates:

e A circular plate (radius 5)
e A rectangular plate (Size 10 x 20 )
e A square plate (Size 10)

Both case of a clamped plate and a plate of which the boundary is simply supported are investigated.
These examples can be found in Hughes (1987). Because of symmetry it is in all cases sufficient to
consider only one quarter of the region. In order to get these examples into your local directory use
the command sepgetex. The following files are available with sepgetex:

sepgetex circplatecl (Circular plate clamped)

sepgetex circplatess (Circular plate simply supported)
sepgetex rectplatecl (Rectangular plate clamped)

sepgetex rectplatess (Rectangular plate simply supported)
sepgetex squaplatecl (Square plate clamped)

sepgetex squaplatess (Square plate simply supported)

Comparison with the analytical results shows a good convergence behaviour when the mesh is
refined. Table 5.4.1.0.1 compares the analytical solution in the centre of the plate with the numerical
one for various mesh sizes. Mark that the results on the circular plate can not be compared with
those of Hughes, since the meshes are different.

Table 5.4.1.0.1 Accuracy of the plate elements

Type of plate | number of elms | analytical | numerical
Circular 2x2 0.097656 | 0.0867866
Clamped 4x6 0.0939645
10x16 0.0964283

Circular 2x2 0.398137 | 0.344108
Simply 4x6 0.384165
supported 10x16 0.394718
Rectangular 2x2 0.260073 | 0.251341
Clamped 4x4 0.247073
8x8 0.251917

32x32 0.253550

Rectangular 2x2 1.016484 | 0.998857
Simply 4x4 1.00748
supported 8x8 1.01221
32x32 1.01508

Square 2x2 0.126374 | 0.121342
Clamped 4x4 0.125315
8x8 0.126414

32x32 0.126762

Square 2x2 0.406593 | 0.397278
Simply 4x4 0.404656
supported 8x8 0.406530
32x32 0.408408

Some of the corresponding input files are given below without extra text, except the comments that
can be found in the input files. First we consider circplatecl.msh



EX Test plate elements May 2009 5.4.1.0.2

# circplatecl.msh
# Test problem for the plate elements
# Circular plate, uniform load, clamped edge
# Only a quarter of the plate is computed
#
# See Manual Standard Elements Section 5.4.1
# and examples manual Section 5.4.1
#
# To run this file use:
# sepmesh circplatecl.msh
#
# Creates the file meshoutput
#
# Define some constants
#
constants # See Users Manual Section 1.4
integers
na = 4 # number of elements along the radius
nb = 6 # number of elements along the arc
reals
radius = 5 # Radius of circle
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pl=(C0, 0 # Centre of circle
p2 = ( radius, 0) # At most left point
p3 = ( 0, radius) # At most upper point
#
# curves
#
curves # See Users Manual Section 2.3
cl = line 1 (pl, p2, nelm = na) # straight horizontal line
c2 = arc 1 (p2, p3, pl, nelm = nb) # quarter of circle
c3 = line 1 (p3, pl, nelm = na) # straight vertical line
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl = general 5 (c1, c2, c3)
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

The corresponding problem file circplatecl.prb is given by:
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# circplatecl.prb
#
# problem file for the plate elements
# Circular plate, uniform load, clamped edge
# Only a quarter of the plate is computed
#
# See Manual Standard Elements Section 5.4.1
# and examples manual Section 5.4.1
#
# To run this file use:
# sepcomp circplatecl.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
# Define some constants
#
constants # See Users Manual Section 1.4
reals
E = 10.92e5 # Young’s modulus
nu = 0.3 # Poisson’s ratio
h =0.1 # thickness of the plate
load =1 # distributed load in z-direction
vector_names
displacement
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
elgrpl = (type = 255) # Type number for plate elements
essbouncond # Define where essential boundary conditions are
# given (not the value)
curves (c2) # clamped edge (w=0, theta = 0)
degfd2, curves (cl) # symmetry edge (Theta_l = 0 )
degfd3, curves (c3) # symmetry edge (Theta_2 = 0 )
end
#
# Define the structure of the main program
#
structure # See Users Manual Section 3.2.3

prescribe_boundary_conditions displacement

solve_linear_system displacement

print displacement, points(pl) # print the solution in the centre of the plate
end

# Define the coefficients for the problems
# See Users Manual Section 3.2.6
# See also standard problems Section 5.4

coefficients
elgrpl (nparm = 45) # coefficients for plate elements
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icoef 2 =0 # Isotropic material
coef 6 = E # Young’s modulus
coef 7 = nu # Poisson’s ratio
coef 27 = h # thickness of the plate
coef 28 = 1load # distributed load in z-direction
end

end_of_sepran_input

The file circplatess.msh is identical to circplatecl.msh and will not be repeated.
The corresponding file circplatess.prb differs a little bit from circplatecl.prb.
In fact only the part under the keyword problem, subkeyword essbouncond is different. This part

is printed only.
essbouncond
degfdl, curves (c2)
degfd2, curves (cl)

degfd3, curves (c3)
end

# Define where essential boundary conditions are
# given (not the value)
# simply supported edge (w=0)

# symmetry edge (Theta_1

0)
# symmetry edge (Theta_2 = 0 )
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The file rectplatecl.msh is given below.

Rectangular plate (10x20), uniform load, clamped edge
Only a quarter of the plate is computed

See Manual Standard Elements Section 5.4.1

# See Users Manual Section 1.4

# number of elements along a side

# Half length of plate
# Half height of plate

# See Users Manual Section 2.2

# See Users Manual Section 2.2

# Point left under

0) # Point right under
H) # Point left upper
H) # Point right upper

# See Users

nelm
nelm
nelm
nelm

Manual Section 2.3
= ne)
= ne)
ne)
ne)

# rectplatecl.msh
# Test problem for the plate elements
#
#
#
#
# and examples manual Section 5.4.1
#
# To run this file use:
# sepmesh rectplatecl.msh
#
# Creates the file meshoutput
#
# Define some constants
#
constants
integers
ne = 8
reals
L= 5
H =10
end
#
# Define the mesh
#
mesh2d
#
# user points
#
points
pi = (0, 0)
p2 = ( L,
p3 = ( L,
ptd = (O,
#
# curves
#
curves
cl = line 1 (p1, p2,
c2 = line 1 (p2, p3,
c3 = line 1 (p3, p4,
c4 = line 1 (p4, pi,
#
# surfaces
#
surfaces

plot

end

# See Users
sl = rectangle 5 (c1, c2,

Manual Section 2.4
c3, c4)

# make a plot of the mesh

# See Users Manual Section 2.2
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The other files are not repeated here. If you want to investigate them, use the command sepgetex.
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5.5 Contact problems

In this Chapter we demonstrate a number of contact problems Presently the following examples are
available:

The Hertz problem (5.5.1) An infinitely long, elastic, half cylinder is pressed on a flat surface.
The Roll problem (5.5.2) A cylinder is pressed between two flat surfaces.

The Wheel problem (5.5.3) A tire fixed on a hub is pressed downwards on the ground.
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5.5.1 The Hertz problem

In this example we consider a very simple example of a contact problem. Consider an infinitely
long half cylinder that is pressed onto a flat surface. Since the cylinder is pressed downwards it
deforms and displacement is directed downwards. However, the flat surface prevents the cylinder
to move below the plane. To analyze this problem it is sufficient to consider only a slice of the half
cylinder, due to symmetry in the length direction.
To get this example into your local directory use:

sepgetex hertz
To run the problem use

seplink hertz

hertz < hertz.prb

seppost hertz.pst

The shape of the slice can be seen easily by the plot of the curves in Figure 5.5.1.1. The flat surface

9 1 5/ 2 10

Figure 5.5.1.1: Definition of the curves in the slice

is represented by the plane z = 0. On the top of the half cylinder we prescribe a fixed displacement
downwards, which represents the downwards pressing. The cylinder is supposed to be linearly
elastic with Poisson’s ratio v = 0.3. The elasticity modulus E is not important for this problem so
we take the value ¥ = 1. The free parts of the cylinder are stress free. Since the cylinder is pressed
onto the flat surface, contact is made. On those places where we have contact the position of the
cylinder must be equal to z = 0. Since this is a contact problem it is essentially non-linear.

The following algorithm is applied to compute the contact surface:

In each step of the algorithm the contact surface is computed. The contact surface is defined as
the set of points with z coordinate less than or equal to 0. Hence all points that are on or below
the flat surface z = 0. Since the contact surface is not known a priori this surface may change in
each iteration. Not only is it possible that points are added to the contact surface also they may
be removed from the contact surface. This is the case if the reaction force in the contact surface
points is pointed upwards, i.e. the third component of the reaction force is positive.

Once the contact surface is computed the displacement of the z-component of these point is set
equal to —z. Hence the sum of the displacement and the original position of the surface is precisely
equal to 0. The linear elasticity problem is solved and the reaction force computed.

Next the contact distance is computed as the sum of the z-component of the original cylinder
and the z-component of the displacement. Hence a negative contact distance means that there is
contact. Also the contact force is computed, which is actually the third component of the reaction
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force.
This process is repeated until convergence is achieved.
In a scheme the contact algorithm can be written as
Create the mesh
Initialize all vectors
while not converged do
Compute the contact surface
Store the essential boundary conditions into the displacement vector
Solve the linear elasticity problem and compute the reaction force
Compute the contact distance and the contact force
end while

Due to the symmetry in length direction it is sufficient to take only one row of elements in that
direction. Since we expect that the displacement changes the most in the neighbourhood of the
contact surface, the region is refined in the neighbourhood of the plane z = 0. The following input
file may be used to solve the hertz problem. It contains both a description of the mesh and the
problem file.

hertz.prb

Hertz-problem:

An infinitely long, elastic, half cylinder is pressed
on a flat surface.

A slice of this cylinder is analyzed.

#

#

#

#

#

#

# See Manual Examples Section 5.5.1

#

# To run this file use:

# seplink hertz

# hertz < hertz.prb

#

# Creates the files meshoutput and sepcomp.out
#

# Define some general constants

#

constants
vector_names # names of vectors to be used in the computation

displacement # displacement_vector
reaction_force # vector with reaction_forces
contact_distance # vector in which the contact distance is stored
contact_force # vector in which the contact force is stored
stress # stress tensor
strain # strain tensor
end
#
# Some information at the start of the program
#
start # See Users Manual Section 3.2.1
norotate # Plots may not be rotated
end
#
# First we define the mesh in the slice
#
mesh3d # See Users Manual Section 2.2
coarse (unit = 0.1) # define the unit length of elements

# In the contact region at the bottom the
# mesh is refined
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#
# user points
#
points # See Users Manual Section 2.2
pl = (0.0, 0.0, 1.0, 1.00) # centre point at front side of top of
# cylinder
p2 = (1.0, 0.0, 1.0, 1.00) # right-hand side point at front side of top
# of cylinder
p3 = (-1.0, 0.0, 1.0, 1.00) # left-hand side point at front side of top
# of cylinder
p4d = (0.0, 0.0, 0.0, 0.25) # bottom point of front side of cylinder
psb = (0.0, 0.1, 1.0, 1.00) # centre point at back side of top of
# cylinder
p6 = ( 1.0, 0.1, 1.0, 1.00) # right-hand side point at back side of top
# of cylinder
p7 = (-1.0, 0.1, 1.0, 1.00) # left-hand side point at back side of top
# of cylinder
p8 = ( 0.0, 0.1, 0.0, 0.25) # bottom point of back side of cylinder
#
# curves
#
curves # See Users Manual Section 2.3
cl = cline 1 (p3, pl) # Line at front side of top of
# cylinder from left to centre
c2 = cline 1 (p1, p2) # Line at front side of top of
# cylinder from centre to right
c3 = carc 1 (p2, p4, pl) # Right-hand side part of curved part of
# front side of cylinder
cd = carc 1 (p4, p3, pl) # Left-hand side part of curved part of
# front side of cylinder
c5 = curves (cl, c2) # Top of half cylinder (front side)
c6 = curves (c3, c4) # Curved part of half cylinder (back side)
c7 = translate c5 (p7, p5, p6) # Top of half cylinder (back side)
c8 = translate c6 (p6, p8, p7) # Curved part of half cylinder (front side)
c9 = line 1 (p3, p7, nelm = 1) # Line from front side to back side the
# left
c10 = line 1 (p2, p6, nelm = 1) # Line from front side to back side the
# right
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl = general 5 (c5, c6) # front end of half cylinder
s2 = translate sl (c7, c8) # back end of half cylinder
s3 = pipesurface 5 (c5, c7, c9, c10) # top of half cylinder
s4 = pipesurface 5 (c6, c8, cl10, c9) # curved envelope of half cylinder
sb = ordered surface ((s3,s4)) # total envelope of half cylinder
#
# volumes
#
volumes # See Users Manual Section 2.5
vl = pipe 13 (s1, s2, sb) # Complete half cylinder

plot, eyepoint = (2.0, -3.0, 2.0) # make a plot of the mesh
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# See Users Manual Section 2.2

end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp 1 = (type=250) # Type number for linear elasticity
# See Standard problems Section 5.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
degfd 2, surfaces (s1) # No displacement in y-direction of front end
degfd 2, surfaces (s2) # No displacement in y-direction of back end
surfaces (s3) # Prescribed displacement in top of half
# cylinder
degfd 3, contact 1 # The z-displacement is -z in contact points
end
#
# Input for the contact algorithm
#
contact, sequence_number = 1 # See Users Manual Section 3.2.16
contact_surface = s4 # surface that makes contact
contact_distance = contact_distance # vector to be used to store the
# contact distance
contact_force = contact_force # vector to be used to store the
# contact force
contact_method = NEG_DISTANCE # defines when a point is supposed
# to make contact (in this case
# if the contact distance < 0)
contact_disable_method = CONTACT_FORCE # defines when a point is supposed
# to lose contact (in this case
# if the contact force < 0)
end
#

# Define non-zero essential boundary conditions
# See Users Manual Section 3.2.5

#
essential boundary conditions, sequence_number = 1
degfd 3, surfaces (s3), value = -0.2 # The displacement in z-direction of
# the top surface = -0.2
degfd 3, contact 1, func =1 # In those points where we have contact
# the displacement is made equal to -z,
# so that the points are moved back to
#z=0
end

# Define the structure of the problem
# In this part it is described how the problem must be solved
# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3
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write_mesh # First the mesh is written to the file meshoutput
# in order to be used for postprocessing

# Next create 4 vectors that are used during the analysis

# The displacement vector and the reaction force vector are set equal to O
# They contain 3 degrees of freedom per point

create_vector, sequence_number = 1, displacement

create_vector, sequence_number = 1, reaction_force

# The vectors contact_distance and contact_force contain one degree of
# freedom per unknown and are also initialized to O

create_vector, sequence_number = 2, contact_distance

create_vector, sequence_number = 2, contact_force

# In order to solve the (non-linear) contact problem we define a
# loop by start_loop ... end_loop

start_loop, sequence_number = 1
# Compute the contact surface using the input for the contact problem
compute_contact_surface, sequence_number = 1

# Store the essential boundary conditions in the displacement vector
# Since they depend on the contact surface they may change in each step
prescribe_boundary_conditions, sequence_number = 1, displacement

# Solve the displacement vector by the linear elasticity problem
# Compute the reaction force vector, necessary for the contact
# algorithm
solve_linear_system, //
seq_solve = 1, seq_coef = 1, displacement//
reaction_force = reaction_force

# Recompute the contact distance and the contact force
create_vector, sequence_number = 3, contact_distance
create_vector, sequence_number = 4, contact_force

end_loop
# Finally compute the stress and the strain tensors

derivatives, seq_deriv = 1, seq_coef = 1, stress
derivatives, seq_deriv = 2, seq_coef = 1, strain

output
end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
storage_scheme = compact, symmetric, reaction_force
# symmetrical matrix with compact storage
# hence an iterative linear solver is used
# reaction forces must be computed
end
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Input for the loop in the structure block

and when the process is finished
See Users Manual Section 3.2.3

H O H H H

loop_input, sequence_number = 1

maxiter = 50 # maximum number of iterations
minimum number of iterations

=+

miniter = 2

accuracy = 1d4-4 # relative accuracy

criterion = relative

Defines how many iterations may be carried out at most

seq_vector = contact_distance # vector to be used to check the convergence

print_level = 2 # defines the amount of output

end

# Input for the linear solver
# See Users Manual Section 3.2.8

solve, sequence_number = 1
iteration_method = cg, //
start=old_solution, //
preconditioning=ilu, //
accuracy = 0.01
end

# Define the coefficients for the problems
# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.1

coefficients, sequence_number = 1

elgrp 1 (nparm=45) #
icoef 2 =0 #
# 0: plane stress
coef 6 = 1.0 # Elasticity modulus
coef 7 =0.3 # Poisson ratio

end

# Create start vectors

# See Users Manual Section 3.2.10

# First displacement and reaction force
# Type solution vector

create vector, sequence_number = 1
value = 0
end

# Next contact_distance and contact_force
# One degree of freedom per point

create vector, sequence_number = 2
type = vector of special structure vl
value = 0

end

# Create contact_distance during the iterations

The coefficients are defined by 45 parameters
type of stress-strain relation
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# The contact distance is defined as the sum of the z-displacement and
# the z coordinate
# The summation is carried out in subroutine funcvect

create vector, sequence_number = 3

type = vector of special structure vl

surfaces (s4), old_vector = contact_distance, seq_vectors = displacement
end

# Create contact_force during the iterations
# The contact force is equal to the third component of the reaction force
# The extraction is carried out in subroutine funcvect

create vector, sequence_number = 4

type = vector of special structure vl

surfaces (s4), old_vector = contact_force, seq_vectors = reaction_force
end

# compute stress
# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 1
icheld = 6
end

# compute strain
# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 2
icheld = 7
end

# write the results to the file sepcomp.out
# See Users Manual, Section 3.2.13

output
end

Figure 5.5.1.2 shows the mesh used in this problem This file requires a main program with subrou-
tines, since the boundary condition in the contact surface depends on space and in order to compute
the contact distance and contact force. Th main program used by us is:

program hertz

! --- Main program for the Hertz-problem:
! An infinitely long, elastic, half cylinder is pressed
! on a flat surface.
! A slice of this cylinder is analyzed.
! This main program is necessary because of the variable boundary
! conditions
implicit none

integer, allocatable, dimension (:) :: ibuffr
integer pbuffr, error
parameter ( pbuffr=25000000)
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+

Figure 5.5.1.2: Mesh created in the slice

allocate(ibuffr(pbuffr), stat = error)

if (error /= 0) then
! space for these arrays could not be allocated
print *, "error: (hertz) could not allocate space.
stop

end if ! (error /= 0)

call freebsub ( ibuffr, ibuffr, pbuffr )
end

--- Function subroutine for the boundary conditions

function funcbc( ichoice, x, y, z)
implicit none

integer ichoice
double precision funcbc, x, y, z

if (ichoice==1) then
--— ichoice = 1, boundary condition for the contact points
The z-displacement is made equal to -z
In this way points are moved back to z=0
funcbc = -z

end if

end

——-— Subroutine funcvect defines the contact distance and the

contact force

subroutine funcvect ( ichoice, ndim, coor, numnodes,
uold, nuold, result, nphys )
implicit none
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integer ichoice, ndim, numnodes, nuold, nphys
double precision coor(ndim, numnodes),

uold( numnodes, nphys, nuold),
result( numnodes, *)

+
+

int

eger k

if ( ichoice==3 ) then

! —-—- ichoice = 3,

do k = 1, numnodes

result(k,1) =

end do

contact distance = u_z + z

coor(3,k) + uold(k,3,1)

else if ( ichoice==4 ) then

! --- ichoice = 4, contact force is third component of reaction force

end

end

do k = 1, numnodes

result(k,1) =

end do

if

uold(k,3,1)

Postprocessing may be performed for example by program seppost using the following input file:

hertz.

pst

Input file for postprocessing for Hertz-problem:
See Manual Examples Section 5.5.1

To run this file use:
seppost hertz.pst > hertz.out

Reads the files meshoutput and sepcomp.out

H H H H H H HHHHEHH

postproce

ssing

# Plot the results
# See Users Manual Section 5.4

plot
plot
plot
plot
plot
plot
plot
end

identification, text = ’Hertz contact (cylinder)’, origin =

boundary
boundary
boundary
boundary
boundary
boundary

function
function
function
function
function
function

# See Users Manual Section 5.2

displacement, degfd 3, curves (c6)
reaction_force, degfd 3, curves (c6)
contact_distance, curves (c6)
contact_force, curves (c6)

stress, degfd 3, curves (c6)

strain, degfd 3, curves (c6)

(3,18)
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The Hertz example can be made more efficient by changing the loop in the contact problem.
Instead of checking on the difference of the contact distance in two succeeding iterations, the
process is stopped as soon as the contact region is not changed anymore. This reduces the number
of iterations considerably.

The test is performed in a while loop, where common block ccontact is used to see if the contact
region is changed or not. This actual check is done in the user function userbool.

This updated example is called hertz2.

To get this example into your local directory use:

sepgetex hertz2
To run the problem use

seplink hertz2
hertz < hertz2.prb
seppost hertz2.pst

The files that are (slightly) different from the hertz example are the fortran file hertz.f and the
input file hertz2.prb.
These files are given below

program hertz2

--- Main program for the Hertz-problem:
An infinitely long, elastic, half cylinder is pressed
on a flat surface.
A slice of this cylinder is analyzed.
This main program is necessary because of the variable boundary
conditions

implicit none

integer, allocatable, dimension (:) :: ibuffr

integer pbuffr, error

parameter ( pbuffr=25000000)

allocate(ibuffr(pbuffr), stat = error)

if (error /= 0) then
! space for these arrays could not be allocated
print *, "error: (hertz2) could not allocate space."
stop

end if ! (error /= 0)

call freebsub ( ibuffr, ibuffr, pbuffr )
end

! --— Function subroutine for the boundary conditions

function funcbc( ichoice, x, y, z)
implicit none

integer ichoice
double precision funcbc, x, y, z

if (ichoice==1) then
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--— ichoice = 1, boundary condition for the contact points
The z-displacement is made equal to -z
In this way points are moved back to z=0
funcbc = -z
end if

end

—-— Subroutine funcvect defines the contact distance and the
contact force

subroutine funcvect ( ichoice, ndim, coor, numnodes,

+ uold, nuold, result, nphys )

+
+

implicit none
integer ichoice, ndim, numnodes, nuold, nphys
double precision coor(ndim, numnodes),
uold( numnodes, nphys, nuold),
result( numnodes, *)
integer k
if ( ichoice==3 ) then
—-—- ichoice = 3, contact distance = u_z + z
do k = 1, numnodes
result(k,1) = coor(3,k) + uold(k,3,1)
end do
else if ( ichoice==4 ) then
--- ichoice = 4, contact force is third component of reaction force
do k = 1, numnodes
result(k,1) = uold(k,3,1)
end do
end if
end
—-— Function user bool is used to set the boolean
In this case the boolean is true if the contact region has been
changed
function userbool( ichoice )
implicit none
logical userbool

integer ichoice

include ’SPcommon/ccontact’
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if ( ichoice==1 ) then

! —--- ichoice = 1, the only possible value in this program

! set userbool equal to the value of contact_changed(1)

! This indicates if the contact region corresponding to the first
! (and in this case only) contact problem has been changed

userbool = contact_changed(1)

end if
end
# hertz2.prb
#
# Hertz-problem:
# An infinitely long, elastic, half cylinder is pressed
# on a flat surface.
# A slice of this cylinder is analyzed.
# See Manual Examples Section 5.5.1
#
# This example is completely identical to hertz
# The only difference is that the process is stopped as soon as the contact
# surface remains unchanged
#
# To run this file use:
# seplink hertz2
# hertz2 < hertz2.prb
#
# Creates the files meshoutput and sepcomp.out
#
# Define some general constants
#
constants
vector_names  # names of vectors to be used in the computation
displacement # displacement_vector
reaction_force # vector with reaction_forces
contact_distance # vector in which the contact distance is stored
contact_force # vector in which the contact force is stored
stress # stress tensor
strain # strain tensor
end
#
# Some information at the start of the program
#
start # See Users Manual Section 3.2.1
norotate # Plots may not be rotated
end
#
# First we define the mesh in the slice
#
mesh3d # See Users Manual Section 2.2
coarse (unit = 0.1) # define the unit length of elements

# In the contact region at the bottom the
# mesh is refined
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#
# user points
#
points # See Users Manual Section 2.2
pl = (0.0, 0.0, 1.0, 1.00) # centre point at front side of top of
# cylinder
p2 = (1.0, 0.0, 1.0, 1.00) # right-hand side point at front side of top
# of cylinder
p3 = (-1.0, 0.0, 1.0, 1.00) # left-hand side point at front side of top
# of cylinder
p4d = (0.0, 0.0, 0.0, 0.25) # bottom point of front side of cylinder
psb = (0.0, 0.1, 1.0, 1.00) # centre point at back side of top of
# cylinder
p6 = ( 1.0, 0.1, 1.0, 1.00) # right-hand side point at back side of top
# of cylinder
p7 = (-1.0, 0.1, 1.0, 1.00) # left-hand side point at back side of top
# of cylinder
p8 = ( 0.0, 0.1, 0.0, 0.25) # bottom point of back side of cylinder
#
# curves
#
curves # See Users Manual Section 2.3
cl = cline 1 (p3, pl) # Line at front side of top of
# cylinder from left to centre
c2 = cline 1 (p1, p2) # Line at front side of top of
# cylinder from centre to right
c3 = carc 1 (p2, p4, pl) # Right-hand side part of curved part of
# front side of cylinder
cd = carc 1 (p4, p3, pl) # Left-hand side part of curved part of
# front side of cylinder
c5 = curves (cl, c2) # Top of half cylinder (front side)
c6 = curves (c3, c4) # Curved part of half cylinder (back side)
c7 = translate c5 (p7, p5, p6) # Top of half cylinder (back side)
c8 = translate c6 (p6, p8, p7) # Curved part of half cylinder (front side)
c9 = line 1 (p3, p7, nelm = 1) # Line from front side to back side the
# left
c10 = line 1 (p2, p6, nelm = 1) # Line from front side to back side the
# right
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl = general 5 (c5, c6) # front end of half cylinder
s2 = translate sl (c7, c8) # back end of half cylinder
s3 = pipesurface 5 (c5, c7, c9, c10) # top of half cylinder
s4 = pipesurface 5 (c6, c8, cl10, c9) # curved envelope of half cylinder
sb = ordered surface ((s3,s4)) # total envelope of half cylinder
#
# volumes
#
volumes # See Users Manual Section 2.5
vl = pipe 13 (s1, s2, sb) # Complete half cylinder

plot, eyepoint = (2.0, -3.0, 2.0) # make a plot of the mesh
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# See Users Manual Section 2.2

end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp 1 = (type=250) # Type number for linear elasticity
# See Standard problems Section 5.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
degfd 2, surfaces (s1) # No displacement in y-direction of front end
degfd 2, surfaces (s2) # No displacement in y-direction of back end
surfaces (s3) # Prescribed displacement in top of half
# cylinder
degfd 3, contact 1 # The z-displacement is O in contact points
end
#
# Input for the contact algorithm
#
contact, sequence_number = 1 # See Users Manual Section 3.2.16
contact_surface = s4 # surface that makes contact
contact_distance = contact_distance # vector to be used to store the
# contact distance
contact_force = contact_force # vector to be used to store the
# contact force
contact_method = NEG_DISTANCE # defines when a point is supposed
# to make contact (in this case
# if the contact distance < 0)
contact_disable_method = CONTACT_FORCE # defines when a point is supposed
# to lose contact (in this case
# if the contact force < 0)
end
#

# Define non-zero essential boundary conditions
# See Users Manual Section 3.2.5

#
essential boundary conditions, sequence_number = 1
degfd 3, surfaces (s3), value = -0.2 # The displacement in z-direction of
# the top surface = -0.2
degfd 3, contact 1, func =1 # In those points where we have contact
# the displacement is made equal to -z,
# so that the points are moved back to
#z=0
end

# Define the structure of the problem
# In this part it is described how the problem must be solved
# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3
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write_mesh # First the mesh is written to the file meshoutput
# in order to be used for postprocessing

# Next create 4 vectors that are used during the analysis

# The displacement vector and the reaction force vector are set equal to O
# They contain 3 degrees of freedom per point

create_vector, sequence_number = 1, displacement

create_vector, sequence_number = 1, reaction_force

# In order to solve the (non-linear) contact problem we define a

# loop by while ( boolean_expr(1)) ... end_while

# The loop is finished if the contact region does not change anymore
# The check iscarried out in subroutine userbool

while ( boolean_expr(1l)) do

# Store the essential boundary conditions in the displacement vector
# Since they depend on the contact surface they may change in each step
prescribe_boundary_conditions, sequence_number = 1, vector =1
solve_linear_system, //
seq_solve = 1, seq_coef = 1, vector = 1, reaction_force = reaction_force

# The vectors contact_distance and contact_force contain one degree of
# freedom per unknown

create_vector, sequence_number = 3, contact_distance

create_vector, sequence_number = 4, contact_force

# Compute the contact surface using the input for the contact problem
compute_contact_surface, sequence_number = 1

end_while

# Finally compute the stress and the strain tensors
derivatives, seq_deriv = 1, seq_coef = 1, stress
derivatives, seq_deriv = 2, seq_coef = 1, strain

output
end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
storage_scheme = compact, symmetric, reaction_force
# symmetrical matrix with compact storage
# hence an iterative linear solver is used
# reaction forces must be computed
end

# Input for the linear solver
# See Users Manual Section 3.2.8

solve, sequence_number = 1
iteration_method = cg, //
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start=old_solution, //
preconditioning=ilu, //
accuracy = 0.01

end

# Define the coefficients for the problems
# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.1

coefficients, sequence_number = 1

elgrp 1 (nparm=45) # The coefficients are defined by 45 parameters
icoef 2 =0 # type of stress-strain relation
# 0: plane stress
coef 6 = 1.0 # Elasticity modulus
coef 7 =0.3 # Poisson ratio

end

# Create start vectors

# See Users Manual Section 3.2.10

# First displacement and reaction force
# Type solution vector

create vector, sequence_number = 1
value = 0
end

# Next contact_distance and contact_force
# One degree of freedom per point

create vector, sequence_number = 2
type = vector of special structure vl
value = 0

end

# Create contact_distance during the iterations

# The contact distance is defined as the sum of the z-displacement and
# the z coordinate

# The summation is carried out in subroutine funcvect

create vector, sequence_number = 3

type = vector of special structure vl

surfaces (s4), old_vector = contact_distance, seq_vectors = displacement
end

# Create contact_force during the iterations
# The contact force is equal to the third component of the reaction force
# The extraction is carried out in subroutine funcvect

create vector, sequence_number = 4

type = vector of special structure vl

surfaces (s4), old_vector = contact_force, seq_vectors = reaction_force
end

# compute stress
# See Users Manual, Section 3.2.11 and Standard problems Section 5.1
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derivatives, sequence_number = 1
icheld = 6
end

# compute strain
# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 2
icheld = 7
end

# write the results to the file sepcomp.out
# See Users Manual, Section 3.2.13

output
end
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5.5.2 The Roll problem

This problem shows the use of multiple contact blocks. It is comparable to the Hertz example of
Section 5.5.1 in that a massive, elastic cylinder with a hole is compressed between two plane, rigid
surfaces. In this case contact occurs both on top and on the bottom of the cylinder. The treatment
of these contact areas is identical to that for the Hertz example.

To get this example into your local directory use:

sepgetex roll
To run the problem use

seplink roll
roll < roll.prb
seppost roll.pst

The outer radius of the cylinder (Ru) is equal to 1 and the inner radius (Ri is equal to 0.6. The
centre of the cylinder is taken at y = 0,z = 0. In the x-direction the cylinder is supposed to be
infinitely long so it is sufficient to take a slice (in this case of thickness 0.1) and to apply symmetry
conditions in the x-direction. Also symmetry allows us to use only one half of the cylinder. The
top contact surface is defined by z = Ru — dH and the bottom contact surface by z = —Ru. In our
example dH has the value 0.8, which means that the upper surface and as a consequence the top
of the roll is pushed down over a distance of 0.8.

The shape of the slice can be seen easily by the plot of the curves in Figure 5.5.2.1. In this case the

Figure 5.5.2.1: Definition of the curves in the slice

contact distance at the bottom is equal to u, + z+ Ru, and at the top equal to Ru —dH — (u, + z).
The mesh and problem file used in this case is:

roll.prb

roll-problem:

An infinitely long, elastic, hollow cylinder is pressed
between two flat surfaces.

A slice of this cylinder is analyzed.

See Manual Examples Section 5.5.2

To run this file use:
seplink roll

H H H H H K HH HH
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# roll < roll.prb
#
# Creates the files meshoutput and sepcomp.out
#
# Define some general constants
#
constants
reals
Ru =1.0 # Radius of outer cylinder
Ri = 0.6 # Radius of inner cylinder
L=20.1 # Thickness of cylinder
dH = 0.8 # Downwards displacement of upper contact surface
vector_names # names of vectors to be used in the computation
displacement # displacement_vector
reaction_force # vector with reaction_forces
contact_distance # vector in which the contact distance is stored
contact_force # vector in which the contact force is stored
stress # stress tensor
strain # strain tensor
end
#
# Some information at the start of the program
#
start # See Users Manual Section 3.2.1
norotate # Plots may not be rotated
end
#
# First we define the mesh in the slice
#
mesh3d # See Users Manual Section 2.2
coarse (unit = 0.1) # define the unit length of elements
# In the contact region at the bottom and
# the top the mesh is refined
#
# user points
#
points # See Users Manual Section 2.2
# First points on front side ( x = 0 )
pt = (0.0, 0.0, 0.0, 1.0) # centre point of top of cylinder
# Outer cylinder
p2 = ( 0.0, 0.0,- Ru, 0.2) # point at bottom of outer cylinder
p3 = (0.0, Ru, 0.0, 1.0) # point at right-hand side of outer cylinder
p4 = (0.0, 0.0, Ru, 0.2) # point at top of outer cylinder
# Inner cylinder
ps = ( 0.0, 0.0,- Ri, 0.6) # point at bottom of inner cylinder
p6 = ( 0.0, Ri, 0.0, 1.0) # point at right-hand side of inner cylinder
p7 = ( 0.0, 0.0, Ri, 0.6) # point at top of inner cylinder
# Next points on back side ( x = -L )
p8=(-1L, 0.0, 0.0, 1.0) # Point opposite to pil

# Outer cylinder

p9=(C-1L, 0.0,- Ru, 0.2) # Point opposite to p2
plo= ( - L, Ru, 0.0, 1.0) # Point opposite to p3
pli= ( - L, 0.0, Ru, 0.2) # Point opposite to p4

# Inner cylinder
pl2= ( - L, 0.0,- Ri, 0.6) # Point opposite to pb
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p13= ( - L, Ri, 0.0, 1.0) # Point opposite to p6
pl4= ( - L, 0.0, Ri, 0.6) # Point opposite to p7
#
# curves
#
curves # See Users Manual Section 2.3
# First curves on front side ( x = 0 )
# Outer cylinder
cl = carc ( p2 , p3 , pl , nodd=2) # lower part of circle
c2 = carc ( p3 , p4 , pl , nodd=2) # upper part of circle
# Inner cylinder
c3 = carc ( p5 , p6 , pl , nodd=2) # lower part of circle
c4 = carc ( p6 , p7 , pl , nodd=2) # upper part of circle
# Connection lines between two circles
c5 = cline ( p5 , p2 , nodd=2)
c6 = cline ( p6 , p3 , nodd=2)
c7 = cline ( p7 , p4 , nodd=2)
# Next curves on back side ( x = -L )
# Outer cylinder
c8 = carc ( p9 , pl0, p8 , nodd=2) # lower part of circle
c9 = carc ( pl10, pil, p8 , nodd=2) # upper part of circle
# Inner cylinder
c10= carc ( p12, p13, p8 , nodd=2) # lower part of circle
cl1= carc ( p13, pl4, p8 , nodd=2) # upper part of circle
# Connection lines between two circles
c12= cline ( pl12, p9 , nodd=2)
c13= cline ( p13, pl0, nodd=2)
cl4= cline ( pl4, pll, nodd=2)
# Connection lines between front side and back side
# Outer cylinder
c15= line ( p2 , p9 , nelm=1)
c16= line ( p3 , pl0, nelm=1)
c17= line ( p4 , pll, nelm=1)
# Inner cylinder
c18= line ( p5 , pl2, nelm=1)
c19= line ( p6 , pl3, nelm=1)
c20= line ( p7 , pl4, nelm=1)
#
# surfaces
#
surfaces # See Users Manual Section 2.4

# First surfaces on front side ( x

sl = general 5 ( c1 ,-c6 ,-c3 , c5 )
s2 = general 5 ( c2 ,-c7 ,-c4 , c6 )

# Next surfaces on back side ( x =

s3 = general 5 ( c8 ,-c13,-c10, c12)
s4 = general 5 ( c9 ,-cl4,-cl1l, c13)
# enveloping surfaces

sb
s6

s7
s8

s9

pipesurface 5 ( c56 , cl12,

pipesurface 5 (

pipesurface 5 (
pipesurface 5 (

pipesurface 5 (

c7

cl
c2

c3

>

cl4,

c8 ,
c9 ,

cl10,

cl8,
c20,

cl5,
cl6,

cl8,

=0)

—L)

c15)
cl7)

c16) # bottom contact surface
cl7) # top contact surface

c19)

# lower part
# upper part

# lower part
# upper part

of circle
of circle

of circle
of circle



EX Roll problem May 2008 5.5.24

s10= pipesurface 5 ( c4 , cl11, c19, c20)
# Reorganization into 3 surfaces

s11= surfaces ( s1 , s2 ) # front side
s12= surfaces ( s3 , s4 ) # back side

s13= ordered surfaces (( s7 , s8 ,-s6 ,-s10,-s9 , sb5 )) #envelope

# See Users Manual Section 2.2

#
# volumes
#

volumes # See Users Manual Section 2.5

vl = pipe 13 ( s11, s12, s13)

plot, eyepoint = (2.0, 0.5, 0.5) # make a plot of the mesh
end
#

# Define the type of problem to be solved
#

problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp 1 = (type=250) # Type number for linear elasticity
# See Standard problems Section 5.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
degfd 1, surfaces (s3, s4) # No displacement in y-direction of front end
degfd 2, surfaces (s5, s6) # No displacement in y-direction of back end
degfd 3, contact 1 # The z-displacement in the bottom contact
# surface is prescribed
degfd 3, contact 2 # The z-displacement in the top contact
# surface is prescribed
end
#
# Input for the contact algorithm
#
contact, sequence_number = 1 # See Users Manual Section 3.2.16
contact_surface = s7 # contact at bottom contact surface
contact_distance = contact_distance # vector to be used to store the
# contact distance
contact_force = contact_force # vector to be used to store the
# contact force
contact_method = NEG_DISTANCE # defines when a point is supposed
# to make contact (in this case
# if the contact distance < 0)
contact_disable_method = CONTACT_FORCE # defines when a point is supposed
# to lose contact (in this case
# if the contact force < 0)
end
contact, sequence_number = 2
contact_surface = s8 # contact at top contact surface
contact_distance = contact_distance # vector to be used to store the

# contact
contact_force = contact_force # vector to

distance
be used to store the
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contact force

defines when a point is supposed
to make contact (in this case

if the contact distance < 0)
defines when a point is supposed
to lose contact (in this case

if the contact force < 0)

contact_method = NEG_DISTANCE

contact_disable_method = CONTACT_FORCE

H H H HHHEH

end
#
# Define non-zero essential boundary conditions
# See Users Manual Section 3.2.5
#
essential boundary conditions, sequence_number = 1

degfd 3, contact 1, func = 11 # In those points of the bottom contact surface

# where we have contact the displacement is

made equal to -Ru-z, so that the points are
moved back to z = -Ru
In those points of the top contact surface
where we have contact the displacement is
made equal to Ru-dH-z, so that the points are
moved back to z = Ru-dH

degfd 3, contact 2, func = 12

H OH H H HH

end

# Define the structure of the problem
# In this part it is described how the problem must be solved
# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3

write_mesh # First the mesh is written to the file meshoutput
# in order to be used for postprocessing

# Next create 4 vectors that are used during the analysis
# The displacement vector and the reaction force vector are set equal to O
# They contain 3 degrees of freedom per point

create_vector, sequence_number = 1, displacement
create_vector, sequence_number = 1, reaction_force

# The vectors contact_distance and contact_force contain one degree of
# freedom per unknown and are also initialized to O

create_vector, sequence_number = 2, contact_distance

create_vector, sequence_number = 2, contact_force

# In order to solve the (non-linear) contact problem we define a
# loop by start_loop ... end_loop

start_loop, sequence_number = 1
# Compute the contact surfaces using the input for the contact problem
# First the bottom contact surface

compute_contact_surface, sequence_number = 1
# Next the top contact surface
compute_contact_surface, sequence_number = 2

# Store the essential boundary conditions in the displacement vector
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# Since they depend on the contact surface they may change in each step
prescribe_boundary_conditions, sequence_number = 1, displacement

# Solve the displacement vector by the linear elasticity problem
# Compute the reaction force vector, necessary for the contact
# algorithm
solve_linear_system, //
seq_solve = 1, seq_coef = 1, displacement//
reaction_force = reaction_force

# Recompute the contact distance and the contact force
create_vector, sequence_number = 3, contact_distance
create_vector, sequence_number = 4, contact_force

end_loop

# Finally compute the stress and the strain tensors
derivatives, seq_deriv = 1, seq_coef = 1, stress
derivatives, seq_deriv = 2, seq_coef = 1, strain

output
end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
storage_scheme = compact, symmetric, reaction_force
# symmetrical matrix with compact storage
# hence an iterative linear solver is used
# reaction forces must be computed

end

# Input for the loop in the structure block

# Defines how many iterations may be carried out at most
# and when the process is finished

# See Users Manual Section 3.2.3

loop_input, sequence_number = 1

maxiter = 200 # maximum number of iterations

miniter = 2 # minimum number of iterations

accuracy = 1d-5 # relative accuracy

criterion = relative

seq_vector = displacement # vector to be used to check the convergence
end

# Input for the linear solver
# See Users Manual Section 3.2.8

solve, sequence_number = 1
iteration_method = cg, //
start=old_solution, //
preconditioning=ilu, //
accuracy = 0.01
end
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# Define the coefficients for the problems
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 5.1

coefficients, sequence_number = 1

elgrp 1 (nparm=45) # The coefficients are defined by 45 parameters
icoef 2 =0 # type of stress-strain relation
# 0: plane stress
coef 6 = 1.0 # Elasticity modulus
coef 7 =0.3 # Poisson ratio

end

# Create start vectors

# See Users Manual Section 3.2.10

# First displacement and reaction force
# Type solution vector

create vector, sequence_number = 1
value = 0
end

# Next contact_distance and contact_force
# One degree of freedom per point

create vector, sequence_number = 2
type = vector of special structure vl
value = 0

end

# Create contact_distance during the iterations

# The contact distance is defined as the sum of the z-displacement and
# the z coordinate

# The summation is carried out in subroutine funcvect

create vector, sequence_number = 3
type = vector of special structure displacement
surfaces (s7), old_vector = 31, seq_vectors = displacement
surfaces (s8), old_vector 32, seq_vectors = displacement
end

# Create contact_force during the iterations
# The contact force is equal to the third component of the reaction force
# The extraction is carried out in subroutine funcvect

create vector, sequence_number = 4
type = vector of special structure displacement
surfaces (s7), old_vector = 41, seq_vectors = reaction_force
surfaces (s8), old_vector = 42, seq_vectors = reaction_force
end

# compute stress
# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 1
icheld = 6
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end

# compute strain
# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 2
icheld = 7

end

# write the results to the file sepcomp.out
# See Users Manual, Section 3.2.13

output
end

Figure 5.5.2.2 shows the mesh used in this problem This file requires a main program with subrou-

Figure 5.5.2.2: Mesh created in the slice

tines, since the boundary condition in the contact surface depends on space and in order to compute
the contact distance and contact force. The main program used by us is:

program roll

--- Main program for the Roll-problem:
An infinitely long, elastic, cylinder is pressed
between two flat surfaces.
A slice of this cylinder is analyzed.
This main program is necessary because of the variable boundary
conditions

implicit none

integer, allocatable, dimension (:) :: ibuffr
integer pbuffr, error
parameter ( pbuffr=25000000)
allocate(ibuffr(pbuffr), stat = error)
if (error /= 0) then
! space for these arrays could not be allocated
print *, "error: (roll) could not allocate space."



EX

Roll problem May 2008

5.5.2.9

stop
end if ! (error /= 0)

call freebsub ( ibuffr, ibuffr, pbuffr )
end

--— Function subroutine for the boundary conditions

function funcbc( ichoice, x, y, z)
implicit none

integer ichoice

double precision funcbc, x, y, z
integer ifirst

double precision Ru, dH

double precision getconst

save Ru, dH

data ifirst /0/

if ( ifirst==0 ) then

—-—- ifirst = 0, first call of funcbc
Get the values of some constants

ifirst =1

Ru = getconst ( ’Ru’ )
dH = getconst ( ’dH’ )
end if

if (ichoice==11) then

—-— ichoice = 11, bottom contact surface
In order to restrict the solution to z = -Ru it is necessary
to set the displacement equal to -Ru - z

funcbc = -Ru - z
else if (ichoice==12) then
--- ichoice = 12, top contact surface

In order to restrict the solution to z = Ru-dH it is necessary
to set the displacement equal to Ru-dH - z

funcbc = Ru-dH - z
end if
end

——-— Subroutine funcvect defines the contact distance and the
contact force

subroutine funcvect ( ichoice, ndim, coor, numnodes,
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+ uold, nuold, result, nphys )
implicit none

integer ichoice, ndim, numnodes, nuold, nphys
double precision coor(ndim, numnodes),
+ uold( numnodes, nphys, nuold),
+ result( numnodes, *)

integer k, ifirst

double precision Ru, dH

save Ru, dH

double precision getconst

data ifirst /0/

if ( ifirst==0 ) then

! —--— ifirst = 0, first call of funcbc
! Get the values of some constants

ifirst = 1
Ru = getconst ( ’Ru’ )
dH = getconst ( °dH’ )
end if
if (ichoice==31) then
! ——- ichoice = 31, contact distance = u_z + z + Ru
do k = 1, numnodes
result(k,1) = (coor(3,k) + uold(k,3,1)) + Ru
end do
else if (ichoice==32) then
! --— ichoice = 32, contact distance = + Ru-dH- (u_z + z)
do k = 1, numnodes
result(k,1) = Ru-dH - (coor(3,k) + uold(k,3,1))
end do
else if (ichoice==41) then
! --- ichoice = 41, contact force is third component of reaction force
do k = 1, numnodes
result(k,1) = uold(k,3,1)
end do
else if (ichoice==42) then

! --- ichoice = 42, contact force is minus third component of reaction force

do k = 1, numnodes
result(k,1) = -uold(k,3,1)
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end do
end if
end

The post processing file is almost the same as in the Hertz problem (5.5.1)
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5.5.3 The Wheel problem

An elastic layer (the ”tire”) is fixed to a rigid cylinder (the "hub”). This hub is compressed
downwards and the tire is pressed onto the ”"road”. The contact area increases for increasing
load. The contact algorithm used here is identical to that for the Hertz example of Section 5.5.1.
Furthermore there is a large resemblance with the Roll problem of Section 5.5.2. In fact the
definition of the curves is the same and the only difference in the mesh is that since contact is made
on the lower boundary only, no refinement in the top is applied.

To get this example into your local directory use:

sepgetex wheel
To run the problem use

seplink wheel
wheel < wheel.prb
seppost wheel.pst

The load on the wheel is simulated by prescribing the z-displacement of the hub in downwards
direction. This is effectuated by prescribing the displacement in the inner cylinder.
The mesh and problem file used in this case is:

wheel.prb

wheel-problem:
An elastic layer (the "tire") is fixed to a rigid cylinder (the "hub").
This hub is compressed downwards and the tire is pressed onto the
"road". The contact area increases for increasing load.
See Manual Examples Section 5.5.3

seplink wheel
wheel < wheel.prb
Creates the files meshoutput and sepcomp.out

#

#

#

#

#

#

#

#

# To run this file use:
#

#

#

#

#

# Define some general constants
#

constants
reals
Ru = 1.0 # Radius of outer cylinder
Ri = 0.6 # Radius of inner cylinder
L=20.1 # Thickness of cylinder
dH = 0.3 # Downwards displacement of upper contact surface

vector_names  # names of vectors to be used in the computation

displacement # displacement_vector
reaction_force # vector with reaction_forces
contact_distance # vector in which the contact distance is stored
contact_force # vector in which the contact force is stored
stress # stress tensor
strain # strain tensor

end

#

# Some information at the start of the program
#
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start # See Users Manual Section 3.2.1
norotate # Plots may not be rotated

end

#

# First we define the mesh in the slice
# The mesh is almost identical to the mesh in the roll problem
# except that refinement is only applied at the bottom

#
mesh3d # See Users Manual Section 2.2
coarse (unit = 0.1) # define the unit length of elements
# In the contact region at the bottom and
# the top the mesh is refined
#
# user points
#
points # See Users Manual Section 2.2
# First points on front side ( x = 0 )
pt = (0.0, 0.0, 0.0, 1.0) # centre point of top of cylinder
# Outer cylinder
p2 = ( 0.0, 0.0,- Ru, 0.2) # point at bottom of outer cylinder
p3 = (0.0, Ru, 0.0, 1.0) # point at right-hand side of outer cylinder
p4 = (0.0, 0.0, Ru, 1.0) # point at top of outer cylinder
# Inner cylinder
ps = ( 0.0, 0.0,- Ri, 0.6) # point at bottom of inner cylinder
p6 = ( 0.0, Ri, 0.0, 1.0) # point at right-hand side of inner cylinder
p7 = ( 0.0, 0.0, Ri, 1.0) # point at top of inner cylinder
# Next points on back side ( x = -L )
p8=(-1, 0.0, 0.0, 1.0) # Point opposite to pl
# Outer cylinder
p9 = ( - L, 0.0,- Ru, 0.2) # Point opposite to p2
pl0o= ( - L, Ru, 0.0, 1.0) # Point opposite to p3
plt= ( - L, 0.0, Ru, 1.0) # Point opposite to p4
# Inner cylinder
pl2= ( - L, 0.0,- Ri, 0.6) # Point opposite to p5
p13= ( - L, Ri, 0.0, 1.0) # Point opposite to p6
pl4= ( - L, 0.0, Ri, 1.0) # Point opposite to p7
#
# curves
#
curves # See Users Manual Section 2.3

# First curves on front side ( x = 0 )

# Outer cylinder

cl = carc ( p2 , p3 , pl , nodd=2) # lower part of circle
c2 = carc ( p3 , p4 , pl , nodd=2) # upper part of circle
# Inner cylinder

c3 = carc ( p5 , p6 , pl , nodd=2) # lower part of circle
c4d = carc ( p6 , p7 , pl , nodd=2) # upper part of circle
# Connection lines between two circles

c5 = cline ( p5 , p2 , nodd=2)

c6 = cline ( p6 , p3 , nodd=2)

c7 = cline ( p7 , p4 , nodd=2)

# Next curves on back side ( x = -L )

# Outer cylinder

c8 = carc ( p9 , pl0, p8 , nodd=2) # lower part of circle
c9 = carc ( p10, pll, p8 , nodd=2) # upper part of circle
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# Inner cylinder
c10= carc ( pl2, p13, p8 , nodd=2) # lower part of circle
cl1l= carc ( p13, pl4, p8 , nodd=2) # upper part of circle
# Connection lines between two circles
c12= cline ( pl12, p9 , nodd=2)
c13= cline ( p13, pl0, nodd=2)
cl4= cline ( pl14, pill, nodd=2)
# Connection lines between front side and back side
# Outer cylinder
c15= line ( p2 , p9 , nelm=1)
c16= line ( p3 , pl0, nelm=1)
c17= line ( p4 , pll, nelm=1)
# Inner cylinder
c18= line ( p5 , pl2, nelm=1)
c19= line ( p6 , pl3, nelm=1)
c20= line ( p7 , pl4, nelm=1)
#
# surfaces
#
surfaces # See Users Manual Section 2.4
# First surfaces on front side ( x = 0 )
sl = general 5 ( c1 ,-c6 ,-c3 , c5 ) # lower part of circle
s2 = general 5 ( c2 ,-c7 ,-c4 , c6 ) # upper part of circle
# Next surfaces on back side ( x = -L )
s3 = general 5 ( c8 ,-c13,-c10, c12) # lower part of circle
s4 = general 5 ( c9 ,-cl4,-cll, c13) # upper part of circle
# enveloping surfaces
sb = pipesurface 5 ( c56 , cl12, c18, c15)
s6 = pipesurface 5 ( c7 , cl14, c20, ci7)
s7 = pipesurface 5 ( cl1 , ¢8 , cl1lb5, c16) # contact surface
s8 = pipesurface 5 ( c2 , ¢9 , cl16, cl17) # top surface
s9 = pipesurface 5 ( ¢3 , c10, c18, c19)
s10= pipesurface 5 ( c4 , cl1, c19, c20)
# Reorganization into 3 surfaces
sl1= surfaces ( s1 , s2 ) # front side
s12= surfaces ( s3 , s4 ) # back side
s13= ordered surfaces (( s7 , s8 ,-s6 ,-s10,-s9 , s5 )) #envelope
#
# volumes
#
volumes # See Users Manual Section 2.5
vl = pipe 13 ( s11, s12, s13)
plot, eyepoint = (2.0, 0.5, 0.5) # make a plot of the mesh
# See Users Manual Section 2.2
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2

types # Define types of elements,
# See Users Manual Section 3.2.2
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elgrp 1 = (type=250) # Type number for linear elasticity
# See Standard problems Section 5.1

essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2

degfd 1, surfaces (s3, s4) #

degfd 2, surfaces (sb, s6) #

surfaces (s9, s10) #

#

#

degfd 3, contact 1

No displacement in y-direction of front end
No displacement in y-direction of back end

No displacement at inner side of the wheel

The z-displacement in the contact

surface is prescribed

end
#
# Input for the contact algorithm
#
contact, sequence_number = 1 # See Users Manual Section 3.2.16
contact_surface = s7 # contact at contact surface
contact_distance = contact_distance # vector to be used to store the
# contact distance
contact_force = contact_force # vector to be used to store the
# contact force
contact_method = NEG_DISTANCE # defines when a point is supposed
# to make contact (in this case
# if the contact distance < 0)
contact_disable_method = CONTACT_FORCE # defines when a point is supposed
# to lose contact (in this case
# if the contact force < 0)
end
#

# Define non-zero essential boundary conditions
# See Users Manual Section 3.2.5
#
essential boundary conditions, sequence_number = 1
degfd 3, contact 1, func = 11 # In those points of the contact surface
# where we have contact the displacement is
# made equal to -Ru-z, so that the points are
# moved back to z = -Ru
degfd 3, surfaces (s9, s10), value = - dH # The load on the wheel is
# represented by a vertical (downwards)
# displacement of the inner side of the wheel
# 9the hub)
end

# Define the structure of the problem
# 1In this part it is described how the problem must be solved
# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3

write_mesh # First the mesh is written to the file meshoutput
# in order to be used for postprocessing

# Next create 4 vectors that are used during the analysis
# The displacement vector and the reaction force vector are set equal to O
# They contain 3 degrees of freedom per point
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create_vector, sequence_number 1, displacement
create_vector, sequence_number = 1, reaction_force

# The vectors contact_distance and contact_force contain one degree of
# freedom per unknown and are also initialized to O

create_vector, sequence_number = 2, contact_distance

create_vector, sequence_number = 2, contact_force

# In order to solve the (non-linear) contact problem we define a
# loop by start_loop ... end_loop

start_loop, sequence_number = 1
# Compute the contact surfaces using the input for the contact problem
compute_contact_surface, sequence_number = 1

# Store the essential boundary conditions in the displacement vector
# Since they depend on the contact surface they may change in each step
prescribe_boundary_conditions, sequence_number = 1, displacement

# Solve the displacement vector by the linear elasticity problem
# Compute the reaction force vector, necessary for the contact
# algorithm
solve_linear_system, //
seq_solve = 1, seq_coef = 1, displacement//
reaction_force = reaction_force

# Recompute the contact distance and the contact force
create_vector, sequence_number = 3, contact_distance
create_vector, sequence_number = 4, contact_force

end_loop

# Finally compute the stress and the strain tensors
derivatives, seq_deriv = 1, seq_coef = 1, stress
derivatives, seq_deriv = 2, seq_coef 1, strain

output
end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
storage_scheme = compact, symmetric, reaction_force
# symmetrical matrix with compact storage
# hence an iterative linear solver is used
# reaction forces must be computed
end

Input for the loop in the structure block

Defines how many iterations may be carried out at most
and when the process is finished

See Users Manual Section 3.2.3

H H H

loop_input, sequence_number = 1
maxiter = 200 # maximum number of iterations
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miniter = 2 # minimum number of iterations

accuracy = 1d-5 # relative accuracy

criterion = relative

seq_vector = displacement # vector to be used to check the convergence
end

# Input for the linear solver
# See Users Manual Section 3.2.8

solve, sequence_number = 1
iteration_method = cg, //
start=old_solution, //
preconditioning=ilu, //
accuracy = 0.01
end

# Define the coefficients for the problems
# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.1

coefficients, sequence_number = 1

elgrp 1 (nparm=45) # The coefficients are defined by 45 parameters
icoef 2 =0 # type of stress-strain relation
# 0: plane stress
coef 6 = 1.0 # Elasticity modulus
coef 7 =0.3 # Poisson ratio

end

# Create start vectors

# See Users Manual Section 3.2.10

# First displacement and reaction force
# Type solution vector

create vector, sequence_number = 1
value = 0
end

# Next contact_distance and contact_force
# One degree of freedom per point

create vector, sequence_number = 2
type = vector of special structure vl
value = 0

end

# Create contact_distance during the iterations

# The contact distance is defined as the sum of the z-displacement and
# the z coordinate

# The summation is carried out in subroutine funcvect

create vector, sequence_number = 3

type = vector of special structure displacement

surfaces (s7), old_vector = 31, seq_vectors = displacement
end
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# Create contact_force during the iterations
# The contact force is equal to the third component of the reaction force
# The extraction is carried out in subroutine funcvect

create vector, sequence_number = 4

type = vector of special structure displacement

surfaces (s7), old_vector = 41, seq_vectors = reaction_force
end

# compute stress
# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 1
icheld = 6
end

# compute strain
# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 2
icheld = 7
end

# write the results to the file sepcomp.out
# See Users Manual, Section 3.2.13

output
end

The main program used by us is:
program wheel

! --- Main program for the Wheel-problem:

! An elastic layer (the "tire") is fixed to a rigid cylinder

! (the "hub").

! This hub is compressed downwards and the tire is pressed onto the
! "road". The contact area increases for increasing load.

! This main program is necessary because of the variable boundary

! conditions

implicit none

integer, allocatable, dimension (:) :: ibuffr

integer pbuffr, error

parameter ( pbuffr=25000000)

allocate(ibuffr(pbuffr), stat = error)

if (error /= 0) then
! space for these arrays could not be allocated
print *, "error: (wheel) could not allocate space."
stop

end if ! (error /= 0)

call freebsub ( ibuffr, ibuffr, pbuffr )
end
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--— Function subroutine for the boundary conditions

function funcbc( ichoice, x, y, z)
implicit none

integer ichoice
double precision funcbc, x, y, z

integer ifirst

double precision Ru
double precision getconst
save Ru

data ifirst /0/

if ( ifirst==0 ) then

—-—- ifirst = 0, first call of funcbc
Get the values of some constants

ifirst =1
Ru = getconst ( ’Ru’ )

end if

if (ichoice==11) then

——- ichoice = 11, contact surface

In order to restrict the solution to z = -Ru it is necessary
to set the displacement equal to -Ru - z
funcbc = -Ru - z

end if

end

subroutine funcvect ( ichoice, ndim, coor, numnodes,
+ uold, nuold, result, nphys )
implicit none

integer ichoice, ndim, numnodes, nuold, nphys
double precision coor(ndim, numnodes),
+ uold( numnodes, nphys, nuold),
+ result( numnodes, *)

integer k, ifirst

double precision Ru

save Ru

double precision getconst

data ifirst /0/

if ( ifirst==0 ) then

—--— ifirst = 0, first call of funcbc
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! Get the values of some constants

ifirst =1
Ru = getconst ( ’Ru’ )

end if
if (ichoice==31) then
! —-— ichoice = 31, contact distance = u_z + z + Ru
do k = 1, numnodes
result(k,1) = (coor(3,k) + uold(k,3,1)) + Ru
end do
else if (ichoice==41) then
! —--- ichoice = 41, contact force is third component of reaction force
do k = 1, numnodes
result(k,1) = uold(k,3,1)
end do
end if

end

The post processing file is almost the same as in the Hertz problem (5.5.1)
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6 Solidification problems
6.1 A fixed grid method: the enthalpy method

6.1.1 Enthalpy approach by non-linear over-relaxation
6.1.1.1 A classical semi-infinite half-space solidification problem

In this example we consider a classical Stefan problem for which an analytic solution is available,
Chun and Park (2000). In this example, which is essentially one dimensional, we consider a semi-
infinite half space. We start with a liquid with constant temperature. On the left-hand side a
constant temperature below the melting temperature is imposed. So the liquid starts freezing. We
solve this problem on a one-dimensional mesh and also as illustration on a two-dimensional one.
For the 1D case we consider two sets of parameters.

To get these examples into your local directory use:

sepgetex enthalpyxd_y

with x and y one-digit numbers.
and to run it use:

sepmesh enthalpyxd_y.msh
sepcomp enthalpyxd_y.prb
seppost enthalpyxd_y.pst

After the first and last step you may view the results using sepview.

The following values for x are available:

x =1, 2
and for y:
y=1to 2

Not all combinations of x and y have been programmed yet.
x defines the dimension of the space and y the sequence number of the parameter set.
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1D Stefan problem with equal parameters for both phases

This is the most simple 1D case in which the parameters for liquid and solid phase are the same.
Following Chun and Park (2000) we use the following set:

p 1kg/m?

Kk 2W/m°C

cp 2.5 x10% J/kg°C
L 10® J/kg

The initial temperature is set to 2°C, the melting temperature 7,, = 0°C.

On the left-hand side a Dirichlet boundary condition is given: T = —4°C.

On the right-hand side, the region is cut at x = 10m, and since this is an infinite half space, the
solution may not change on that boundary. So the natural boundary condition k0T /dn = 0 is used,
which implies that no action is required in the FEM formulation. The computation is carried out
for 30 days, with a step size Az of 0.1m.

The mesh is defined by the following mesh input file

# enthalpyld_1.msh
#
# mesh file for 1d stefan problem with equal parameters in both phases
# The enthalpy method is applied
# Solution by over-relaxation
# See Manual Examples Section 6.1.1.1
#
# To run this file use:
# sepmesh enthalpyld_1.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
length = 10 # length of the region in meters
integers
n = 100 # number of elements
lin =1 # linear elements
end
#
# Define the mesh
#
meshild # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pl =0 # Left point
p2 = $length # Right point
#
# curves
#
curves # See Users Manual Section 2.3
# Linear elements are used
cl=line $lin (pl,p2,nelm=%n) # lower boundary
plot, nodes =1 # make a plot of the mesh and plot all nodes

# See Users Manual Section 2.2
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end

For an explanation of the input file for sepcomp see the manual Standard Problems Section 6.1.1.

# enthalpyld_1.prb
#
# problem file for 1d stefan problem with equal parameters in both phases
# The enthalpy method is applied
# Solution by over-relaxation
# See Manual Examples Section 6.1.1.1
#
# To run this file use:
# sepcomp enthalpyld_1.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
kappa = 2 thermal conductivity (kg/m"3)
rho =1 density (kg/m~3)
t0 =0 initial time
hour = 3600 number of seconds in an hour
day = {$hourx24} number of seconds in a day
dt = {6*$hour} time step (6h)
t_end = {30*$day} end time (30 days)

kappa_s = $kappa
kappa_l = $kappa
latent_heat = 1e8
capacity_s = 2.5d6
capacity_1l = 2.5d6
melt_temp = 0
vector_names

thermal conductivity (solid)

thermal conductivity (liquid)

Latent heat (J/kg)

specific heat (solid) (J/kg degree C)
specific heat (liquid)

melting temperature (degree C)

H H HHHHEHHEHHEHHEHR

Temperature # temperature vector
Enthalpy # enthalpy vector
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=800 # Type number for second order elliptic equation
# See Standard problems Section 3.1
# Is also used to solve the heat equation
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
points pl # left-hand side point

end
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Define the structure of the large matrix
See Users Manual Section 3.2.4

H H H H

matrix
method = 9 # compact matrix, stored per row
# necessary for overrelaxation
end

# Define the initial temperature
# See Users Manual Section 3.2.10

create vector
value = 2 # initial Temperature (degree C)
end

# Define the essential boundary conditions
# See Users Manual Section 3.2.5

essential boundary conditions
points, pl, value=-4 # boundary Temperature (degree C)
end

# Define the coefficients for heat equation
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients
elgrpl (nparm=20)
coef6 =1 # kappa in Kirchoff Temperature,
# must be 1, see Standard Problems 6.2
coefl7 =1 # rho*c in enthalpy,
# must be 1, see Standard Problems 6.2
end

# Input for time integration
# See Users Manual Section 3.2.15

time_integration

method = euler_implicit # Integration by Euler implicit

tinit = $t0 # initial time

tend = $t_end # end time

tstep = $dt # time step

toutinit = $t0 # initial time for output

toutend = $t_end # end time for output

toutstep = $dt # time step for output

seq_coefficients = 1 # sequence number for coefficients (default)
seq_solution_method = 1 # sequence number for linear solver (default)
mass_matrix = constant # mass matrix is constant for each time
stiffness_matrix = constant # stiffness matrix is constant for each time
right_hand_side = zero # no source

end

# Input for enthalpy integration
# See Manual Standard Problems Section 6.1.1
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enthalpy_integration

seq_time_integration = 1 # refers to time integration input (default)
seq_boundary_conditions = 1 # refers to essential boundary conditions
# default
# All other parameters are given in the block
# constants

end

# Define which linear solver must be used and what accuracy is required
# Overrelaxation is used
# See Users Manual Section 3.2.8

solve
iteration_method = overrelaxation, omega = 1, max_iter = 1000//
niterl = 5, niter2 = 10, print_level= 0 # omega must be reset each time
# step
# niterl and niter2 are used to estimate a
# value for omega in each step
# These values do not have to be optimal
end

# Define the structure of the problem
# In this part it is described how the problem must be solved

structure
# Fill initial condition for the temperature
create_vector, vector %Temperature
# Compute the initial enthalpy
compute_enthalpy
# Write both vectors to sepcomp.out
output, sequence_number=1

# Time loop

start_time_loop
# Raise time and compute new temperature and enthalpy
enthalpy_integration
# Write both vectors to sepcomp.out
output, sequence_number=1

end_time_loop

end

Finally the postprocessing file has the following contents
enthalpyld_1.pst

#

#

# Input file for postprocessing for 1d stefan problem with equal parameters
# 1in both phases

# The enthalpy method is applied

# Solution by over-relaxation

# See Manual Examples Section 6.1.1.1

#
#
#
#

To run this file use:
seppost enthalpyld_1.pst > enthalpyld_1.out
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# Reads the files meshoutput and sepcomp.out
#
# Define some general constants
#
constants
reals
day = {1/(3600%24)%} # 1/ (number of seconds in a day)
end
#
postprocessing # See Users Manual Section 5.2
time = (0, 2592000, 10) # Do for each ten-th time step
plot function V)Temperature, one_picture//
texty =’Temperature’, noplot_legenda
plot function V/Enthalpy, one_picture, factor=1d-8//
texty =’Enthalpy (*1e8)’, noplot_legenda
# Plot the time history of enthalpy and temperature at = 0.3
# The time scale is made in days, so we have to divide the x scale
# by the number of seconds in a day
# The enthalpy is scaled by a factor of 107-8

time history plot point (0.3) V/Enthalpy, xscale=$day, factor=1d4-8//

textx = ’time (days)’, texty = ’Enthalpy at x=0.3 (*1e8)’, noplot_legenda
time history plot point (0.3) V/Temperature, xscale=$day//

textx = ’time (days)’, texty =’Temperature at x=0.3’, noplot_legenda

end
Figure 6.1.1.1 shows the temperature plotted each tenth step. In Figure 6.1.1.2 the enthalpy (scaled

by 107®) is shown and Figures 6.1.1.3 and 6.1.1.4 contain the time history of the enthalpy and
temperature respectively at position x = 0.3.

t
’i‘ 22 § 01
% 28 é 04
E 34 E 07
Figure 6.1.1.1: Temperature Figure 6.1.1.2: Enthalpy

The staircase shape of the temperature at x= 0.3 is inherent to the enthalpy method. It can only
be reduced by either using smaller space steps, or refining near the interface.
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Figure 6.1.1.3: Enthalpy at x=0.3

Figure 6.1.1.4: Temperature at x=0.3
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6.1.1.2 1D Stefan problem with different parameters for both phases

This is the same example as in Section 6.1.1.1, however with different parameters in solid nd liquid
phase. The following set of parameters is used:
p=ps=p 1kg/m?

K 2.22 W/m °C

K1 0.556 W /m °C

cps 1.762 x 106 J/kg°C
cpy 4.226 x 105 J/kg°C
L 3.38 x 108 J/kg

The initial temperature is set to 10°C', while the melting temperature is again set to be T,, = 0°C.
The temperature at the left boundary is kept at —20°C.

The time step used is At = 2000s.

The mesh is exactly the same as in Section 6.1.1.1

The problem file now reads

# enthalpyld_2.prb
#
# problem file for 1d stefan problem with different parameters in both phases
# The enthalpy method is applied
# See Manual Examples Section 6.1.1.2
#
# To run this file use:
# sepcomp enthalpyld_2.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
rho =1 density (kg/m~3)
t0 =0 initial time
hour = 3600 number of seconds in an hour
day = {24x*$hour} number of seconds in a day
dt = 2000 time step (seconds)
t_end = {30*$day} end time (30 days)

kappa_s = 2.22
kappa_l = 0.556
latent_heat = 3.38e8
capacity_s = 1.762e6
capacity_l = 4.226e6
melt_temp = 0
vector_names

thermal conductivity (solid)

thermal conductivity (liquid)

Latent heat (J/kg)

specific heat (solid) (J/kg degree C)
specific heat (liquid)

melting temperature (degree C)

H OH H HHHEHHEHHEHRH

Temperature # temperature vector
Enthalpy # enthalpy vector

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,
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# See Users Manual Section 3.2.2
elgrp1=800 # Type number for second order elliptic equation
# See Standard problems Section 3.1
# Is also used to solve the heat equation
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
points pil # left-hand side point
end
#

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

#
matrix
method = 9 # compact matrix, stored per row
# necessary for overrelaxation
end

# Define the initial temperature
# See Users Manual Section 3.2.10

create vector
value = 10 # initial Temperature (degree C)
end

# Define the essential boundary conditions
# See Users Manual Section 3.2.5

essential boundary conditions
points, pl, value=-20 # boundary Temperature (degree C)
end

# Define the coefficients for heat equation
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients
elgrpl (nparm=20)
coef6 =1 # kappa in Kirchoff Temperature,
# must be 1, see Standard Problems 6.2
coefl7 =1 # rho*c in enthalpy,
# must be 1, see Standard Problems 6.2
end

# Input for time integration
# See Users Manual Section 3.2.15

time_integration

method = euler_implicit Integration by Euler implicit
tinit = $t0 initial time

tend = $t_end end time

tstep = $dt time step

toutinit = $tO
toutend = $t_end
toutstep = {10*$dt}

initial time for output
end time for output
time step for output (once in 10 time steps)

H H HHHHEH
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sequence number for coefficients (default)
sequence number for linear solver (default)

seq_coefficients =1

seq_solution_method = 1
mass_matrix = constant mass matrix is constant for each time
stiffness_matrix = constant stiffness matrix is constant for each time
right_hand_side = zero

end

H H H HH

no source

# Input for enthalpy integration
# See Manual Standard Problems Section 6.1

enthalpy_integration

seq_time_integration = 1 # refers to time integration input (default)
seq_boundary_conditions = 1 # refers to essential boundary conditions
# default
# All other parameters are given in the block
# constants

end

# Define which linear solver must be used and what accuracy is required
# Overrelaxation is used
# See Users Manual Section 3.2.8

solve, sequence_number = 1
iteration_method = overrelaxation, omega = 1, max_iter = 1000//
niterl = 5, niter2 = 10, print_level= 0 # omega must be reset each time
# step
# niterl and niter2 are used to estimate a
# value for omega in each step
# These values do not have to be optimal
end

# Define the structure of the problem
# 1In this part it is described how the problem must be solved

structure
# Fill initial condition for the temperature
create_vector, vector %Temperature
# Compute the initial enthalpy
compute_enthalpy
# Write both vectors to sepcomp.out
output, sequence_number=1

# Time loop

start_time_loop
# Raise time and compute new temperature and enthalpy
enthalpy_integration
# Write both vectors to sepcomp.out
output, sequence_number=1

end_time_loop

end

The postprocessing file is almost identical to the one given in Section 6.1.1.1 and will not be repeated
here. Figures 6.1.1.5 to 6.1.1.8 have the same meaning as Figures 6.1.1.1 to 6.1.1.4, but now for the
new parameters.
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Figure 6.1.1.7: Enthalpy at x=0.3

Figure 6.1.1.8: Temperature at x=0.3
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6.1.1.3 2D Stefan problem with equal parameters for both phases

This example is completely identical to the one in Section 6.1.1.1. The only difference is that we
have a second dimension, but the solution is constant in y-direction.
The mesh is defined by the following mesh input file

enthalpy2d_1.msh
mesh file for 2d stefan problem with equal parameters in both phases
The enthalpy method is applied
See Manual Examples Section 6.1.1.3
sepmesh enthalpy2d_1.msh

Creates the file meshoutput

#

#

#

#

#

#

# To run this file use:
#

#

#

#

# Define some general constants
#

constants
reals
length = 10 # length of the region
width =1 # width of the region
integers
n = 100 # number of elements in height direction
m = 25 # number of elements in width direction
lin =1 # linear elements
shape_sur = 3 # triangles
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pi=(0, 0) # Left bottom point
p2=($length, 0) # Right bottom point
p3=($length, $width) # Right upper point
p4=(0, $width) # Left upper point
#
# curves
#
curves # See Users Manual Section 2.3
# Linear elements are used
cl=line $lin (pl,p2,nelm=$%n) # lower boundary
c2=line $lin (p2,p3,nelm=%m) # right boundary
c3=line $lin (p3,p4,nelm=%n) # top boundary
c4=line $lin (p4,pl,nelm=$m) # left boundary
surfaces
sl = rectangle $shape_sur (cl, c2, c3, c4)
plot # make a plot of the mesh

# See Users Manual Section 2.2
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end

The difference in problem file in Section 6.1.1.1 is very small and the reader is referred to the input
file in the directory sourceexam.
Finally the postprocessing file has the following contents

# enthalpy2d_1.pst
#
# Input file for postprocessing for 2d stefan problem with equal parameters
# 1in both phases
# The enthalpy method is applied
# See Manual Examples Section 6.1.1.3
#
# To run this file use:
# seppost enthalpyld_1.pst > enthalpyld_1.out
#
# Reads the files meshoutput and sepcomp.out
#
# Define some general constants
#
constants
reals
day = {1/(3600%24)} # 1/ (number of seconds in a day)
end
#
postprocessing # See Users Manual Section 5.2
time = (0, 2592000,10) # Do for each ten-th time step
plot contour ViTemperature
plot contour V/Enthalpy
time = 2.592e6
plot contour VyTemperature
plot intersection V/Temperature origin = (0, 0.5), angle = 0 //
texty = ’Temperature at y=0.5’, textx = ’x’, noplot_legenda
# Plot the time history of enthalpy and temperature at = (0.3,0.4)
# The time scale is made in days, so we have to divide the x scale
# by the number of seconds in a day
# The enthalpy is scaled by a factor of 107-8

time history plot point (0.3,0.4) V)Enthalpy, xscale=$day, factor=1d-8//
textx = ’time (days)’, texty = ’Enthalpy at x=0.3 (*1e8)’, noplot_legenda
time history plot point (0.3,0.4) V/Temperature, xscale=$day//
textx = ’time (days)’, texty =’Temperature at x=0.3’, noplot_legenda

end

Pictures are comparable to that in Section 6.1.1.1.
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6.1.2 Enthalpy approach by quasi-Newton
6.1.2.1 A classical semi-infinite half-space solidification problem

We consider the same example as in Section 6.1.1.1. The only difference is that the problem is
solved by the quasi-Newton method of Nedjar, rather than the over-relaxation method.
To get these examples into your local directory use:

sepgetex enthalpyxd_y

with x and y one-digit numbers.
and to run it use:

sepmesh enthalpyxd_y.msh
sepcomp enthalpyxd_y.prb
seppost enthalpyxd_y.pst

In case the file enthalpyxd_y.f exists this must be replaced by:

sepmesh enthalpyxd_y.msh
seplink enthalpyxd_y
enthalpyxd_y < enthalpyxd_y.prb
seppost enthalpyxd_y.pst

After the first and last step you may view the results using sepview.

The following values for x are available:

x =1, 2
and for y:
y=3,4,5

Not all combinations of x and y have been programmed yet.
x defines the dimension of the space and y the sequence number of the parameter set.
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1D Stefan problem with equal parameters for both phases

This is the same example as in Section 6.1.1.1.
The mesh file is almost identical to the one in Section 6.1.1.1.
The reader is referred to the actual input file (enthalpyld_3.xxx) to see the text.

Also the problem file looks very much the same as in Section 6.1.1.1. We show only different parts.

# enthalpyld_3.prb

#

# problem file for 1d stefan problem with equal parameters in both phases

# The enthalpy method is applied

# Solution by quasi-newton

# See Manual Examples Section 6.1.2.1

#

# To run this file use:

# sepcomp enthalpyld_3.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,
# See Users Manual Section 3.2.2
elgrpl=810 # Type number for enthalpy equation
# solved by quasi-newton
# See Standard problems Section 6.1.2
# Is also used to solve the heat equation
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
points pl # left-hand side point
end
#

# Define the structure of the large matrix
# See Users Manual Section 3.2.4
#
matrix
method = 5 # compact symmetric matrix
end

# Define the initial temperature
# See Users Manual Section 3.2.10

create vector
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value = 2 # initial Temperature (degree C)
points, pl, value=-4 # boundary Temperature (degree C)
end

# Define the essential boundary conditions
# See Users Manual Section 3.2.5

essential boundary conditions
points, pl, value=-4 # boundary Temperature (degree C)
end

# Define the coefficients for heat equation
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients
elgrpl (nparm=25)
icoef3 =3 Type of numerical integration (2 point Gauss)
icoefb = YTemperature sequence number of temperature vector

coef6 = $kappa
coefl7 = $rho
coef18 = $capacity_s
coefl19 = $capacity_1l
coef20 = $latent_heat
coef21 = $melt_temp
icoef22 = YEnthalpy
end

thermal conductivity

density

heat capacity in solid

heat capacity in fluid

latent heat

melting temperature

sequence number of enthalpy vector

H OH H HHHEHHEHR

# Input for time integration
# See Users Manual Section 3.2.15

time_integration

method = euler_implicit Integration by Euler implicit
tinit = $t0 initial time

tend = $t_end end time

tstep = $dt time step

toutinit = $t0 initial time for output
toutend = $t_end end time for output

toutstep = $dt time step for output

seq_solution_method = 1 sequence number for linear solver (default)

mass_matrix = constant mass matrix is constant for each time
stiffness matrix is constant for each time
no source

accuracy for non-linear iteration

maximum number of non-linear iterations
defines amount of output

necessary to activate the non-linear

iteration per time step

stiffness_matrix = constant
right_hand_side = zero
abs_iteration_accuracy = 1d-5
max_iter = 1000

print_level = 2
non_linear_iteration

H OH H HEHHEHHHEHHEHRHEHRHH

end

# Input for enthalpy integration
# See Manual Standard Problems Section 6.1.1

enthalpy_integration
seq_time_integration = 1 # refers to time integration input (default)
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solution_method = nedjar #
seq_coefficients = 1 # sequence number for coefficients (default)
seq_boundary_conditions = 1 # refers to essential boundary conditions
# default
# All other parameters are given in the block
# constants

end

# Define which linear solver must be used and what accuracy is required
# Conjugate gradients is used with a default preconditioner
# See Users Manual Section 3.2.8

solve
iteration_method = cg
end

# Define the structure of the problem
# 1In this part it is described how the problem must be solved

structure

Also the postprocessing file is almost the same as in Section 6.1.1.1. The only difference is that
plotting of the enthalpy is not yet possible. Also the pictures do not show new results.
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6.1.2.2 1D Stefan problem with different parameters for both phases

This is the same example as in Section 6.1.1.2.

The mesh is exactly the same as in Section 6.1.1.1

The problem file is a combination of the ones in Sections 6.1.1.2 and 6.1.2.1. See the actual files
enthalpyld_4.xxx for the details.

An essential difference is that because the heat conduction is a function of the temperature, we
need a function subroutine funcc3 to compute k.

See the file enthalpyld_4.f

The postprocessing file is almost identical to the one given in Section 6.1.1.2 and will not be repeated
here.

The pictures are a little bit different. They show some extra oscillations compared to the standard
method.

Temperaure
Temperaure =03

Figure 6.1.2.1: Temperature Figure 6.1.2.2: Temperature at x=0.3
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6.1.2.3 2D Stefan problem with equal parameters for both phases

This example is completely identical to the one in Section 6.1.1.3. The only difference is that we
use the quasi newton method of Nedjar.

The mesh with name enthalpy2d_2.msh is almost identical to the mesh file in Section 6.1.1.3.
The problem file enthalpy2d_2.prb is a combination of the one in Section 6.1.1.3 and in Section
6.1.2.1 and also the postprocessing file enthalpy2d_2.pst is the same as in Section 6.1.1.3.
Pictures are comparable to that in Section 6.1.1.1.
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6.1.2.4 1D Stefan problem combined with a heat equation

In this example we consider the combination of a part where we have a melting front and a part of
the region where the standard heat equation must be solved. Usually this is of importance in case
of different materials but just to show how this works we use the same type of parameters in both
parts.

Mark that with the non-linear over-relaxation method the combination of enthalpy equation with
standard heat equation is not possible, so we have to use either this quasi newton method or the
Newton method treated in Section 6.2.

This example is completely artificial and is in fact identical to the one in Section 6.1.2.1. The only
difference is that we have extended the region with a part of the same length in which the heat
equation is solved.

To get the corresponding files use

sepgetex enthalpyld_5

Below you can find the mesh and problem file without much comment.
The pictures are not very different from pictures shown before.

Mesh file:
# enthalpyld_5.msh
#
# mesh file for 1d stefan problem with equal parameters in both phases
# The enthalpy method is applied and in a part of the region only the
# heat equation solved
# Solution by quasi-newton
# See Manual Examples Section 6.1.2.4
#
# To run this file use:
# sepmesh enthalpyld_5.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
length =1 # length of the region in meters
integers
n = 20 # number of elements in phase change part
m = 20 # number of elements in heat equation part
lin =1 # linear elements
end
#
# Define the mesh
#
meshild # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pl =0 # Left-hand point
p2 = $length # Right-hand point of phase change region
p3 = {2*$length} # Right-hand point

#
# curves
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#
curves # See Users Manual Section 2.3
# Linear elements are used
cl=line $lin (pl,p2,nelm=%n) # phase change region
c2=line $lin (p2,p3,nelm=%$m) # heat equation region
# Since we use two different types of elements, we also need two element groups
meshline
lelml = (shape=1,cl) # element group 1: phase change region
lelm2 = (shape=1,c2) # element group 2: heat equation region
plot, nodes =1 # make a plot of the mesh and plot all nodes
# See Users Manual Section 2.2
end

And problem file:

# enthalpyld_5.prb
#
# problem file for 1d stefan problem with equal parameters in both phases
# The enthalpy method is applied and in a part of the region only the
# heat equation solved
# Solution by quasi-newton
# See Manual Examples Section 6.1.2.4
#
# To run this file use:
# sepcomp enthalpyld_5.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
kappa = 2 thermal conductivity (kg/m"3)
rho =1 density (kg/m~3)
t0 =0 initial time
hour = 3600 number of seconds in an hour
day = {$hourx*24} number of seconds in a day
dt = {6*$hour} time step (6h)

t_end = {100*$day}
kappa_s = $kappa
kappa_1l = $kappa
latent_heat = 1e8
capacity_s = 2.5d6
capacity_1l = 2.5d6
melt_temp = 0
vector_names
Temperature temperature vector
Enthalpy # enthalpy vector

end time (100 days)

thermal conductivity (solid)

thermal conductivity (liquid)

Latent heat (J/kg)

specific heat (solid) (J/kg degree C)
specific heat (liquid)

melting temperature (degree C)

H OH H HHHEHHHHHEHH

H

end
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#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrpl=810 # Type number for enthalpy equation
# solved by quasi-newton
# See Standard problems Section 6.1.2
elgrp2=800 # Type number for second order elliptic equation
# See Standard problems Section 3.1
# Is used to solve the heat equation
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
points pl,p3 # Both end points
end
#

# Define the structure of the large matrix
# See Users Manual Section 3.2.4
#
matrix
method = 5 # compact symmetric matrix
end

# Define the initial temperature
# See Users Manual Section 3.2.10

create vector

value = 1 # initial Temperature (degree C)

points, pl, value=-4 # boundary Temperature (degree C)

points, p3, value=-10 # boundary Temperature (degree C)
end

# Define the essential boundary conditions
# See Users Manual Section 3.2.5

essential boundary conditions
points, pl, value=-4 # boundary Temperature (degree C)
points, p3, value=-10 # boundary Temperature (degree C)
end

# Define the coefficients for enthalpy and heat equation
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients
elgrpl (nparm=25) # enthalpy equation
icoef3 =3 # Type of numerical integration (2 point Gauss)
icoefb = YTemperature # sequence number of temperature vector
coef6 = $kappa # thermal conductivity
coefl7 = $rho # density
coefl18 = $capacity_s # heat capacity in solid
coefl9 = $capacity_l # heat capacity in fluid
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coef20 = $latent_heat # latent heat
coef2l = $melt_temp # melting temperature
icoef22 = YEnthalpy # sequence number of enthalpy vector
elgrp2 (nparm=25) # heat equation
icoef3 =3 # Type of numerical integration (2 point Gauss)
coef6 = $kappa # thermal conductivity
coefl7 = {$rho*$capacity_s}# rho c_p
end
# Input for time integration
# See Users Manual Section 3.2.15

time_integration

method = euler_implicit
tinit = $t0

tend $t_end

tstep = $dt
toutinit =
toutend $t_end
toutstep = $dt
seq_solution_method = 1

$t0

mass_matrix = constant
stiffness_matrix = constant
right_hand_side = zero

abs_iteration_accuracy = 1d-5

max_iter = 1000
print_level = 2

non_linear_iteration

end

H OH H HHHEHHEHHEHHHEHHE

# Input for enthalpy integration
# See Manual Standard Problems Section 6.1

enthalpy_integration

seq_time_integration = 1
solution_method = nedjar

seq_coefficients 1
seq_boundary_conditions

1

end

H OH H H HH HH

Integration by Euler implicit

initial time

end time

time step

initial time for output

end time for output

time step for output

sequence number for linear solver (default)
mass matrix is constant for each time
stiffness matrix is constant for each time
no source

accuracy for non-linear iteration

maximum number of non-linear iterations
defines amount of output

necessary to activate the non-linear

refers to time integration input (default)
Defines the Quasi-Newton approach of

Nedjar

sequence number for coefficients (default)
refers to essential boundary conditions
default

A1l other parameters are given in the block
constants

# Define which linear solver must be used and what accuracy is required

#

Overrelaxation is used

# See Users Manual Section 3.2.8

solve

iteration_method = cg

end

# Define the structure of the problem
# In this part it is described how the problem must be solved
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structure
# Fill initial condition for the temperature
create_vector, vector JTemperature
# Compute the initial enthalpy
compute_enthalpy
# Write both vectors to sepcomp.out
output, sequence_number=1

# Time loop

start_time_loop
# Raise time and compute new temperature and enthalpy
enthalpy_integration
# Write both vectors to sepcomp.out
output, sequence_number=1

end_time_loop

end
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6.1.2.5 2D Stefan problem combined with a heat equation

This example is the natural extension of the example treated in Section 6.1.2.4.

It concerns a rectangular region of PC material in a large rectangular region consisting of a dielectric.
Boundary conditions are only given at the outer boundary of the dielectric. This example shows
the behavior of the method for sharp corners. Without showing the pictures we can say that this
example shows that in this case a local refinement would lead to much smoother results.

In order to get this example into your directory use:

sepgetex enthalpy2d_3

The files will not be printed here.
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6.1.2.6 2D and 3D Stefan problems with source

These examples concern a region in which initially all material is in a liquid phase. The material
has initial temperature 0 (the melting temperature), except for a circle(2D) or sphere(3D), where
it varies linearly from 1 in the center to zero at the boundary of the circle. The boundary is kept
at a temperature of -2. Due to the boundary condition solidification takes place.

Two examples are available: enthalpy2d_4 (a square with a circular source) and enthalpy3d_1 (a
3D block with a spherical source).

To define the linear varying temperature within the source a user function is defined, hence a main
program is required.

In order to get these examples into your directory use:

sepgetex enthalpyxd_y

with xd_y equal to 2d_4 or 3d_1.
To run the examples use:

sepmesh enthalpyxd_y.msh

view plots

seplink enthalpyxd_y
enthalpyxd_y < enthalpyxd_y.prb
seppost enthalpyxd_y.pst

The files will not be printed here.



EX Newton approach March 2005 6.2.1

6.2 The Newton approach of Fachinotti et al.

This Section is under preparation.
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6.3 The heat capacity method

This Section is under preparation.
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7 Flow problems

7.1 The isothermal laminar flow of incompressible or slightly compress-
ible liquids

7.1.1 Stationary flow over a backward facing step

As an example of the use of the incompressible flow elements we consider the flow over a backward
facing step.

This flow is generally accepted as a benchmark problem used for the comparison of incompressible
codes. See Morgan et al for a complete description and results generated by a number of programs.
Consider the flow in the backward facing step as demonstrated in Figure 7.1.1.1.

L

Figure 7.1.1.1: Definition of region for backward facing step

The boundary is subdivided in curves as indicated in Figure 7.1.1.2.

Figure 7.1.1.2: Definition of curves for backward facing step

At the inflow boundary (C7) we assume a quadratic velocity profile with maximum velocity v,,qe =
1. The lower wall (C1, C2, C3) and the upper wall (C5 and C6) are fixed, hence a no-slip condition
must be prescribed. At the outflow boundary (C4) an outflow boundary condition must be given.
This may be for example parallel flow (u; = 0,0, = 0) or completely free flow (o, = 0,0,, = 0).
Although mathematically incorrect this last boundary condition is the less restrictive and should
be used if the end of the outflow region is too close to the step.

Depending on the Reynolds number a recirculation zone arises at the bottom of the step. The

Reynolds number is defined as Re = umMHT_h, with

H the width of the outflow pipe.
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h the width of the inflow pipe.
1 the length of the inflow pipe.

L the sum of the length of inflow and outflow pipe.

Since the flow in inlet and near the outlet is more or less a horizontal flow with a quadratic velocity
profile, whereas the flow in the neighborhood of the step shows a recirculation zone, the mesh is
refined in the vicinity of the step. In this example the following data are used:

H=1
h=0.5
=6

L=19
Re =50

To solve this problem we may use a number of solution techniques:

e Penalty method in combination with Crouzeix-Raviart type elements
e Direct (coupled) approach in combination with Crouzeix-Raviart type elements

e Direct (coupled) approach in combination with Taylor-Hood elements.

We shall consider each of these approaches separately.

7.1.1.1 Penalty function approach

The penalty function approach is by far the fastest approach as long as the problem is two-
dimensional and the number of elements is not too large. This method is restricted to Crouzeix-
Raviart elements only.

In Section 7.1.7 a number of possible elements that can be used is given, but hear we restrict our-
selves to quadratic triangles.

In order to get this example into your local directory use

sepgetex backwrd2
To run the example use
sepmesh backwrd2.msh
sepview sepplot.001
sepcomp backwrd2.prb
seppost backwrd2.pst > backwrd2.out
sepview sepplot.001

sepmesh requires input from the standard input file:
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# backwrd2.msh
#
# mesh file for backward facing step
# See Manual Examples Section 7.1.1
#
# To run this file use:
# sepmesh backwrd2.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
integers
n_in 5 # Number of elements in inlet (flow direction)
m_step = 5 # Number of elements in step
m_in = 5 # Number of elements in inlet (perpendicular to flow)
n_out = 20 # Number of elements in outlet (flow direction)
m_tot = m_in+m_step # m_in+m_step
shape_curve = 2  # quadratic elements along the lines
shape_surf =4 # quadratic triangular elements in the surfaces
reals
h_wide =1 # H
h_step = 0.5 # H-h
l_in =6 #1
l_out = 19 # L
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
pl = (0, h_step) # Lower point of inlet
p2 = ( 1_in, h_step) # upper point of step
p3 = ( 1_in,0) # Lower point of step
p4 = ( 1_out,0) # Lower point of outlet
p5 = ( 1_out, h_wide) # upper point of outlet
p6 = ( 1_in, h_wide) # Point above step
p7 = (0, h_wide) # upper point of inlet
#
# curves
#

curves # See Users Manual Section 2.3

# Lower boundary of inlet part

cl = line shape_curve (pl,p2,nelm = n_in,ratio=1,factor=0.4)

# step

c2 = line shape_curve (p2,p3,nelm = m_step)

# Lower boundary of channel

c3 = line shape_curve (p3,p4,nelm = n_out,ratio = 1,factor = 5 )
# Outlet

c4 = line shape_curve (p4,p5,nelm = m_tot)
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# right-hand side part of upper boundary
c5 = translate c3(p6,p5)

# left-hand side part of upper boundary

c6 = translate cl(p7,p6)

# inlet

c7 = line shape_curve (p7,pl,nelm = m_in)
# artificial line to define 2 surfaces

c8 = translate c7(p6,p2)

# left-hand side of channel

c9 = curves(c8,c2)

# The next curves are not important for the mesh generation,
however, they are used to prescribe the boundary conditions in
# an easier way

H+

c20 = curves(cl,c2,c3) # lower wall
c21 = curves(c4) # outflow boundary
c22 = curves(c6,cb) # upper wall
c23 = curves(c7) # inlet
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl = rectangle shape_surf (cl,-c8,-c6,c7) # inlet part
s2 = rectangle shape_surf (c3,c4,-c5,c9) # channel
plot # Plot the mesh
end

The parameter refine_factor defines how many times the mesh must be refined. If this factor is
1 the standard mesh is used. Is the factor equal to 2, then the number of elements along each of
the elements is multiplied by 2, resulting in 4 times the original number of elements.

In order to compute the velocity and pressure program SEPCOMP may be used.

The iteration process is carried out by starting with the Stokes solution, followed by one Picard
iteration and followed by Newton iterations.

In this way we get the following input file:

backwrd2.prb

problem file for backward facing step
penalty function approach

problem is stationary and non-linear
See Manual Examples Section 7.1.1

To run this file use:
sepcomp backwrd2.prb

#
#
#
#
#
#
#
#
#
#
# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

set warn off ! suppress warnings
#
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# Define some general constants

#
constants # See Users Manual Section 1.4
reals
eps = 1d-6 # penalty parameter for Navier-Stokes
rho =1 # density
eta = 0.01 # viscosity
integers
lower_wall = 20 # curve number for lower wall
outflow =21 # curve number for outflow boundary
upper_wall = 22 # curve number for upper wall
inflow = 23 # curve number for inflow boundary
vector_names
velocity
pressure
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,

# See Users Manual Section 3.2.2
elgrp1=900 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2
curves(c lower_wall) # Fixed under wall (velocity given)
curves (c upper_wall) # Fixed upper wall (velocity given)
degfd2,curves(c outflow) # Outflow boundary (v-component 0)
curves(c inflow) # Inflow boundary (velocity given)

end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
# Non-symmetrical profile matrix, So a direct method will be applied
end
# Create start vector and put the essential boundary conditions into this
# vector
# See Users Manual Section 3.2.5
essential boundary conditions
curves(c inflow), degfdl, quadratic # The u-component of the velocity at
# instream is quadratic
# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)
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# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients
elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters
icoef2 =1 # 2: type of constitutive equation (1=Newton)
icoefb = 0 # 5: Type of linearization (0=Stokes flow)
coef6 = eps # 6: Penalty function parameter eps
coef7 = rho # 7: Density
coefl2 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2
elgrpl
icoefb =1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 2 # 5: Type of linearization (2=Newton iteration)
end

# input for non-linear solver
# See Users Manual Section 3.2.9

nonlinear_equations
global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1
equation 1
fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved
#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions
prescribe_boundary_conditions, velocity

# Compute the velocity, i.e. solve non-linear problem
solve_nonlinear_system, velocity

# Compute the pressure
derivatives, pressure

# Write the results to a file
output
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end
# The pressure is computed as a derived quantity of the Navier-Stokes
# equation
# See Users Manual Section 3.2.11 and Standard Problems Section 7.1
derivatives, sequence_number = 1

icheld = 7 # means compute pressure

end

# write the velocity and the pressure to file
# See Users Manual Section 3.2.13

output
end

end_of_sepran_input
To run the program the following steps are performed:

sepcomp backwrd2.prb > backwrd.out

If the mesh is refined too much, the buffer length of sepcomp must be enlarged. The procedure to

do so is described in the Introduction Manual Section 3.2.

Finally some post-processing actions are carried out by program SEPPOST using the following

input file.

# backwrd2.pst

# Input file for postprocessing for backward facing step
# See Manual Examples Section 7.1.1

#

#

# To run this file use:

# seppost backwrd2.pst > backwrd2.out
#

# Reads the files meshoutput sepcomp.out
#

#

postprocessing # See Users Manual Section 5.2
# Plot the mesh
plot mesh

# Plot the results
# See Users Manual Section 5.4

plot identification = text = ’> 2D backward facing step ’,origin =(10,12)
plot vector velocity text=’velocity field Re=50’

plot contour pressure, nlevel = 20 text=’pressure contour Re=50’

3d plot pressure, nlevel=20

plot coloured levels pressure, nlevel=8

# compute the stream function
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# See Users Manual Section 5.2
# store in stream_function

compute stream function velocity

# Plot the stream function
# See Users Manual Section 5.4

plot contour stream_function, negpos_levels, text=’streamlines Re=50"
plot contour stream_function, region=(5.5, 10, 0, 1), negpos_levels//
text=’streamlines in the recirculation zone Re=50"

plot coloured levels stream_function, negpos_levels
# Some examples of the use of particle tracking

# first standard print and plot
plot track, velocity, pstart = (0,0.6, 0,0.7, 0,0.8, 0,0.9)//
nmark = 20, tmax = 200, print track
# mnext standard plot, print with interpolation and given step
plot track, velocity, pstart = (0,0.6, 0,0.7, 0,0.8, 0,0.9), nmark = 20//
tmax = 200, tstep_print = 1, values = (velocity, pressure)
# finally standard plot, print with interpolation without given step
plot track, velocity, pstart = (0,0.6, 0,0.7, 0,0.8, 0,0.9)//
nmark = 20, tmax = 200, values = (velocity)

# Print of the computed vectors

print vector velocity
print vector pressure

end
Figure 7.1.1.3 shows the velocity computed and Figure 7.1.1.4 the stream lines. The pressure is

shown in Figure 7.1.1.5. Finally Figure 7.1.1.6 shows the streamlines in the recirculation zone. The
mesh is too coarse in the neighborhood of the step to get smooth stream lines.
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Figure 7.1.1.3: Velocities in backward facing step
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Figure 7.1.1.4: Isobars in backward facing step
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Figure 7.1.1.5: Streamlines in backward facing step

7.1.1.2 Coupled approach

The coupled approach does not need a penalty function parameter and is therefore in general more
reliable than the penalty function approach. Unfortunately the coupled approach requires also extra
unknowns, since pressure and velocity are solved in one large system of equations. Besides that it
is necessary to renumber the unknowns in order to avoid zero diagonal elements. In this example
we have combined the coupled approach with an iterative solver for the linear systems of equations.
In order to get this example into your local directory use

sepgetex backwrd2_it
To run the example use
sepmesh backwrd2_it.msh
sepview sepplot.001
sepcomp backwrd2_it.prb
seppost backwrd2_it.pst > backwrd2_it.out

sepview sepplot.001

The version without iterative linear solver is also available under the name backwrd2_cp. To get it
locally use

sepgetex backwrd2_cp
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Figure 7.1.1.6: Streamlines in recirculation zone

The mesh file in this case is identical to that of the penalty function approach, except that quadratic
triangles with 7 points instead of 6 are used.

The renumbering of the unknowns to avoid zero diagonal elements is done per level since that gives
a smaller local band width and in case of an iterative linear solver, usually also a better convergence.
To be sure that there is no possibility of zero diagonal elements in the matrix we have used a very
small penalty parameter ¢ = 10719, which does not influence the solution at all, but puts elements
of order 107 '° on the main diagonal for the rows corresponding to the continuity equation.

The solution of the linear systems with iterative solvers poses extra complications. Due to the
stretching of the elements, we have a large aspect ratio (i.e. ratio of the length and width of
elements). The effect is that the linear solver has great difficulties to converge of does not converge
at all. In order to be able to apply the iterative solver, it was necessary to combine an ILU
preconditioner with extra fill in. This produces a larger matrix with many more "non-zero” elements,
where we mean by "non-zero” an element that is stored in the matrix. It may become non-zero
when the ILU preconditioning is applied. The only alternative is to decrease the aspect ratio. If
the aspect ratio is larger, even in this case no convergence could be reached.

Another problem is that the Newton linearization may produce smaller diagonal elements, which
also may influence the convergence dramatically. To that end we use a Picard type linearization in
each step of the non-linear iteration process.

Combining all these aspects results in the following input file for the program sepcomp.

backwrd2_it.prb

problem file for backward facing step
direct (coupled) approach

problem is stationary and non-linear
An iterative linear solver is applied
See Manual Examples Section 7.1.1

To run this file use:
sepcomp backwrd2_it.prb

#
#
#
#
#
#
#
#
#
#
#
# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

set warn off ! suppress warnings
#

# Define some general constants

#
constants # See Users Manual Section 1.4
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reals
eps = 1d4-10 # penalty parameter for Navier-Stokes
# This parameter is used only to avoid
# zero diagomnals
rho =1 # density
eta = 0.01 # viscosity
integers
lower_wall = 20 # curve number for lower wall
outflow =21 # curve number for outflow boundary
upper_wall = 22 # curve number for upper wall
inflow = 23 # curve number for inflow boundary
vector_names
velocity_pressure # velocity and pressure are stored in
# one solution vector
# The pressure is only available in the
# centroid
pressure # Pressure in the vertices
end
#

# Define the type of problem to be solved
#

See Users Manual Section 3.2.2
Type number for Navier-Stokes, without swirl

See Standard problems Section 7.1

problem # See Users Manual Section 3.2.2
types Define types of elements,
elgrp1=902
Coupled approach
essbouncond

given (not

curves(c lower_wall)
curves (c upper_wall)
degfd2,curves(c outflow)
curves(c inflow)

H OH H O OH O H O HHHH

renumber levels (1,2),(3,4,5)

In this

H OH OH OB

end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4
matrix

storage_scheme = compact, extra_fillin =

Define where essential boundary conditions are

the value)

See Users Manual Section 3.2.2

Fixed under wall (velocity given)
Fixed upper wall (velocity given)
Outflow boundary (v-component O0)
Inflow boundary (velocity given)

The unknowns are renumbered per level in
order to ensure that first some velocities
are eliminated before pressures are started

way zero elements at the main

diagonal are removed by elimination

2 # Non-symmetrical compact matrix

# So an iterative linear solver will be applied
# For convergence of the iterative method we
# need extra fill in

end

# Create start vector and put the essential
# vector

boundary conditions into this
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# See Users Manual Section 3.2.5
essential boundary conditions
curves(c inflow), degfdl, quadratic # The u-component of the velocity at
# instream is quadratic
# The rest of the vector is 0
end
# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients
elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)
icoefb = 0 # 5: Type of linearization (0=Stokes flow)
coef6 = eps # 6: Penalty function parameter eps
coef7 = rho # 7: Density
coefl2 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2
elgrpl
icoefb = 1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 1 # 5: Type of linearization (1=Picard iteration)
# In case of an iterative linear solver it is
# necessary to use Picard instead of Newton
end

# input for non-linear solver
# See Users Manual Section 3.2.9

nonlinear_equations
global_options, maxiter=10, accuracy=1d-2,print_level=2, lin_solver=1
equation 1
fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved
#
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structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions
prescribe_boundary_conditions, sequence_number=1, velocity_pressure

# Compute the velocity, i.e. solve non-linear problem
solve_nonlinear_system, velocity_pressure

# Compute the pressure
derivatives, pressure

# Write the results to a file
output
end

# The pressure is computed as a derived quantity of the Navier-Stokes
# equation
# See Users Manual Section 3.2.11 and Standard Problems Section 7.1

derivatives
icheld = 7 # means compute pressure
seq_input_vector = velocity_pressure
end
solve
iteration_method = bicgstab, accuracy = 1d-2, print_level = 2 //
start = old_solution, preconditioning = ilu
end

end_of_sepran_input

Results of the computation are almost the same as for the penalty function method and are not
repeated here. Of course the post processing file is the same as for the penalty function method.



EX Flow over a backward facing step October 2008

7.1.1.3 Coupled approach with Taylor-Hood elements

The usage of Taylor-Hood elements is almost the same as for the coupled approach. The only
difference is that now the pressure is defined in vertices of the elements. This gives a slight difference
in the problem file. Available are the quadratic Taylor-Hood triangles (backwrd2_th) and the linear
Taylor-Hood triangles, the so-called mini element (backwrd2_-mini). To get these examples into

your local directory use

sepgetex backwrd2_xx

with xx either th or mini. As illustration we give here the quadratic problem file.

# backwrd2_th.prb
#
# problem file for backward facing step
# direct (coupled) approach using Taylor-Hood elements
# problem is stationary and non-linear
# A direct linear solver is applied
# See Manual Examples Section 7.1.1
#
# To run this file use:
# sepcomp backwrd2_th.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
set warn off ! suppress warnings
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
eps = 1d4-10 # penalty parameter for Navier-Stokes
# This parameter is used only to avoid
# zero diagomnals
rho =1 # density
eta = 0.01 # viscosity
integers
lower_wall = 20 # curve number for lower wall
outflow =21 # curve number for outflow boundary
upper_wall = 22 # curve number for upper wall
inflow = 23 # curve number for inflow boundary
vector_names
velocity_pressure # velocity and pressure are stored in
# one solution vector
end
#

# Define the type of problem to be solved
#

problem # See Users Manual Section 3.2.2

types # Define types of elements,
# See Users Manual Section 3.2.2
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elgrp1=903 Type number for Navier-Stokes, without swirl
Coupled approach
See Standard problems Section 7.1
Define where essential boundary conditions are
given (not the value)
See Users Manual Section 3.2.2
degfdl, degfd2, curves(c lower_wall) # Fixed under wall
# (velocity given, not the pressure)
degfdl, degfd2, curves(c upper_wall) # Fixed upper wall
# (velocity given, not the pressure)
degfd2,curves(c outflow) # Outflow boundary (v-component 0)
degfdl, degfd2, curves(c inflow) # Inflow boundary (velocity given)

essbouncond

H OH O H HH

renumber levels (1,2),(3) # The unknowns are renumbered per level in

# order to ensure that first some velocities
# are eliminated before pressures are started
# In this way zero elements at the main

#

diagonal are removed by elimination
end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
# Non-symmetrical profile matrix, So a direct method will be applied
end

# Create start vector and put the essential boundary conditions into this
# vector
# See Users Manual Section 3.2.5

essential boundary conditions
curves(c inflow), degfdl, quadratic # The u-component of the velocity at
# instream is quadratic
# The rest of the vector is 0O
end
# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients
elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 =1 # 2: type of constitutive equation (1=Newton)
icoefs = 0 # 5: Type of linearization (0=Stokes flow)
coef6 = eps # 6: Penalty function parameter eps
coef7 = rho # 7: Density
coefl2 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7
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change coefficients, sequence_number = 1 # Input for iteration 2
elgrpl
icoefb =1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 2 # 5: Type of linearization (2=Newton iteration)
end

# input for non-linear solver
# See Users Manual Section 3.2.9

nonlinear_equations
global_options, maxiter=10, accuracy=1d-2,print_level=2, lin_solver=1
equation 1
fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved
#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions
prescribe_boundary_conditions, velocity_pressure

# Compute the velocity, i.e. solve non-linear problem
solve_nonlinear_system, velocity_pressure

# Write the results to a file
output

end

end_of_sepran_input
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7.1.1.4 Time dependent approach with Taylor-Hood elements

Another way to solve the stationary equations is by solving it as the limit of a time-dependent
problem. So we start with a zero velocity (except for the boundary conditions) and solve the
instationary equations. As time proceeds the solution approaches the stationary solution.

This example is called backwrd2_thinst.

In order to get this example into your local directory use.

sepgetex backwrd2_thinst
To run the example use
sepmesh backwrd2_thinst.msh
sepview sepplot.001
sepcomp backwrd2_thinst.prb
seppost backwrd2_thinst.pst > backwrd2_thinst.out
sepview sepplot.001

Only the problem file differs essentially from the ones previously treated. This file is given by

# backwrd2_thinst.prb

#
# problem file for backward facing step
# direct (coupled) approach using Taylor-Hood elements
# problem is stationary and non-linear, but is solved instationary
#
# An iterative linear solver is applied
# See Manual Examples Section 7.1.1
#
# To run this file use:
# sepcomp backwrd2_thinst.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
set warn off ! suppress warnings
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
eps = 1d-10 # penalty parameter for Navier-Stokes
# This parameter is used only to avoid
# zero diagonals
rho =1 # density
eta = 0.01 # viscosity
t0 =0 # initial time
dt =0.1 # time step
tend =5 # end time
toutO = t0 # First time that a result is written
toutend = tend # End time for writing

toutstep = 5xdt # In each 5°th time step the result is written
integers
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outflow =21 # curve number for outflow boundary
wall = 25 # curve number for walls
inflow = 23 # curve number for inflow boundary

vector_names
velocity_pressure # velocity and pressure are stored in
# one solution vector

end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=903 # Type number for Navier-Stokes, without swirl
# Coupled approach
# See Standard problems Section 7.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2

degfdl, degfd2, curves(c wall) # Fixed wall
# (velocity given, not the pressure)

degfd2,curves(c outflow) # Outflow boundary (v-component 0)

degfdl, degfd2, curves(c inflow) # Inflow boundary (velocity given)
renumber levels (1,2),(3) # The unknowns are renumbered per level in
# order to ensure that first some velocities
# are eliminated before pressures are started
# In this way zero elements at the main
# diagonal are removed by elimination

end

# Define the structure of the large matrix
# See Users Manual Section 3.2.4

matrix
storage_scheme = compact # Non-symmetrical compact matrix
# So an iterative linear solver will be applied
end

# Create start vector and put the essential boundary conditions into this
# vector
# See Users Manual Section 3.2.5
essential boundary conditions
curves(c inflow), degfdl, quadratic # The u-component of the velocity at
# instream is quadratic
# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)
# All parameters not mentioned are zero
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# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients
elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters
icoef2 = 1 # 2: type of constitutive equation (1=Newton)
icoefb = 1 # 5: Type of linearization (1=Picard)
coef6 = eps # 6: Penalty function parameter eps
coef7 = rho # 7: Density
coefl2 = eta #12: Value of eta (viscosity)

end

# Definition of time integration
# See Users Manual Section 3.2.15

time_integration

method = euler_implicit Integration by the Euler implicit method
tinit = tO Initial time

tend = tend End time

tstep = dt Time step

toutinit = toutO First time that a result is written
toutend = toutend End time for writing

toutstep = toutstep
boundary_conditions = constant

time steps for writing

The boundary conditions do not depend on
time

Sequence number for the input of the
essential boundary conditions

Sequence number for the coefficients
Sequence number for the output
Time-independent mass matrix

There is only one equation

seq_boundary_conditions = 1

seq_coefficients =1
seq_output = 1
mass_matrix = constant

H o HF OH OH HH O HHHHHEHH

number_of_coupled_equations = 1
end

# input for the linear solver
# See Users Manual Section 3.2.8

solve
iteration_method = cg, preconditioner = ilu, print_level =1
end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved
#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions
prescribe_boundary_conditions, sequence_number=1, velocity_pressure

# Time loop
start_time_loop

# One time step to compute the velocity
time_integration, velocity_pressure
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output, sequence_number=1
end_time_loop
end

end_of_sepran_input
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7.1.2  Stationary isothermal non-Newtonian flow in a T-shaped region
using the penalty function method

In this example we consider the non-Newtonian flow in a channel in a t-configuration (Cartesian
co-ordinates). In fact this is the same example as in the Introduction Section 7.3, however with a
non-Newtonian model instead of the Newtonian model. The region of definition has the same shape
as in Figure 7.3.3 in the Introduction, however, with slightly different co-ordinates. The boundary
conditions are taken exactly the same as in the Introduction.

As viscosity model a power law model with 5, = 0.1 and n = 0.5 is used. The penalty parameter
¢ is equal to 1076,

The iteration process starts with the Stokes equation (MCONV=0), the second iteration is per-
formed by Picard iteration (MCONV=1), and the succeeding iterations by the Newton method

(MCONV=2).
To increase the convergence of the iteration process for the non-Newtonian iteration process it is
useful to take an overrelaxation parameter w of the shape: w = 1+ S (1 —n) with n the power

in the Power law model. Tanner et al (1975) have shown that 5 =~ 0.4 gives satisfactory results.
Therefore in the program relaxation = 1.2 is used.

The mesh input file for this example is:

* tshapenn.msh
mesh2d

points

p1=(0,0)
p2=(3,0)
p3=(20,0)
p4=(20,3)
p5=(3,3)
p6=(3,20)
p7=(0,20)
p8=(0,3)

curves

Fixed under wall: C1, C2
Outstream boundary: C3
Fixed side walls: Cc4, C5
Instream boundary: Cé
Symmetry axis: C7, C8

Straight lines with equidistant grid: C1, C3, C6, C8, C9, C10
Straight lines with graded grid: C2, C4, C5

¥ X X X X X X X X ¥

cl=1line2(pl,p2,nelm=4)
c2=1ine2(p2,p3,nelm=8,ratio=1,factor=3)
c3=1ine2(p3,p4,nelm=4)
c4=1ine2(p4,p5,nelm=8,ratio=3,factor=3)
c5=1ine2(p5,p6,nelm=8,ratio=1,factor=3)
c6=1ine2(p6,p7,nelm=4)
c7=1ine2(p7,p8,nelm=8,ratio=3,factor=3)
c8=1ine2(p8,pl,nelm=4)
c9=1ine2(p8,p5,nelm=4)
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c10=1ine2(p2,p5,nelm=4)
surfaces

The surfaces are generated by QUADRILATERAL in order to get a rectangular
grid

sl=quadrilateral4(cl,c10,-c9,c8)
s2=quadrilaterald(c2,c3,c4,-c10)
s3=quadrilateral4(c5,c6,c7,c9)
* Plot the mesh:
plot
end
In order to compute the velocity and pressure program SEPCOMP may be used. The iteration
process is carried out by starting with the Stokes solution, followed by one Picard iteration and
followed by Newton iterations.

In this way we get the following input file:

* tshapenn.prb

set warn off ! suppress warnings
#
# Define some general constants
#
constants # See Users Manual Section 1.4
vector_names
velocity
pressure
end
problem
# Define type of elements
types
elgrp1=900 # Type number for Navier-Stokes, without swirl

# 6-point triangle
# Approximation 7-point extended triangle
# Penalty function method

# Define where essential boundary conditions are present

essbouncond
curves(cl,c2) # Fixed under wall
curves (c4,c6) # Fixed side walls and instream boundary

degfdl=curves(c7,c8) # Symmetry axis (only u-component)
end
* define type of matrix
matrix
# Non-symmetrical profile matrix, So a direct method will be applied

end

* Create start vector and put the essential boundary conditions into this
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* vector

essential boundary conditions
value = 0 # First set vector equal to zero

# Next fill all non-zero essential boundary conditions
curves(c6), degfd2, value = -1 # The v-component of the velocity at
# instream is -1

end

* Define coefficients for the first iteration

coefficients
elgrpl ( nparm=20) # The coefficients are defined by 8 parameters
icoef2 = 2 # 2: type of constitutive equation (2=Power-law)
icoefs = 0 # 5: Type of linearization (0=Stokes flow)
coef6 = 1d-6 # 6: Penalty function parameter eps
coef7 =1 # 7: Density
# 8: angular velocity = 0
# 9: Dbody force in x-direction = 0O
#10: Dbody force in y-direction = O
coef12 = 0.1 #12: Value of etha_n (viscosity)
coefl3 = 0.5 #13: Viscosity parameter n
end

* Define the coefficients for the next iterations

change coefficients, sequence_number = 1 # Input for iteration 2
elgrpl
icoefb = 1 # 3: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 2 # 3: Type of linearization (2=Newton iteration)
end

* Define the parameters for the non-linear solver

nonlinear_equations, sequence_number = 1
global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1//
relaxation=1.2
equation 1
£fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end

* Define output, and compute pressure
output

vl = icheld=7 # pressure
end
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end_of_sepran_input
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Finally some post-processing actions are carried out by program SEPPOST using the following
input file.

* tshapenn.pst
post processing
* Print both vectors completely

print velocity
print pressure

* Compute stream funnction, store in stream_function, and name this vector
compute stream_function = stream function velocity

* PLot the results

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot contour stream_function # Contour plot of stream function
end

Figure 7.1.2 shows the velocity computed and Figure 7.1.2 the stream lines. The pressure is shown
in Figure 7.1.2.
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Figure 7.1.2.1: Vector plot of velocity in flow problem
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Figure 7.1.2.2: Isobars in flow problem

7.1.3 Stationary isothermal Newtonian flow in a T-shaped region using
the integrated solution method

In this example we consider the Newtonian flow in a channel in a t-configuration (cartesian co-
ordinates). In fact this is the same example as in the Section 7.1.2, however with a Newtonian
model instead of the Non-newtonian model. The region of definition has the same shape as in
Figure 7.3.3 in the Introduction, however, with slightly different co-ordinates. The boundary con-
ditions are taken exactly the same as in the Introduction.

The viscosity model is the standard Newtonian model.

Instead of the penalty function method the (direct) integrated solution method is used, which im-
plies that pressure and velocity are computed in a coupled way.

Furthermore the bi-linear quadrilateral elements with shape number 9 are used. In these elements
the velocities are defined in the vertices of the elements and the pressure is a constant per element.
The corresponding unknown is positioned in the centroid of the element.

This element does not satisfy the so-called Brezzi-Babuska condition (Cuvelier et al, 1986). How-
ever, at the outflow we do not describe the normal velocity component and for this specific element
this means that the element is still admissible.

The iteration process starts with the Stokes equation (MCONV=0), the second iteration is per-
formed by Picard iteration (MCONV=1), and the succeeding iterations by the Newton method
(MCONV=2).

The mesh input file for this example is:

* tshapedr.msh
mesh2d

points

p1=(0,0)
p2=(1,0)
p3=(10,0)
p4=(10,1)
p5=(1,1)
p6=(1,10)
p7=(0,10)
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Figure 7.1.2.3: Stream line plot in flow problem

p8=(0,1)

curves
Fixed under wall: C1, C2
OQutstream boundary: C3
Fixed side walls: Cc4, C5
Instream boundary: C6
Symmetry axis: C7, C8

Straight lines with equidistant grid: C1, C3, C6, C8, C9, C10
Straight lines with graded grid: C2, C4, C5

c1=1line2(p1l,p2,nelm=8)
c2=1ine2(p2,p3,nelm=16,ratio=1,factor=3)
c3=1ine2(p3,p4,nelm=8)

c4=translate c2 (p5,p4)
c5=1ine2(p5,p6,nelm=16,ratio=1,factor=3)
c6=translate cl (p7,p6)

c7=translate c5 (p8,p7)

c8=translate c3 (p1,p8)

c9=translate cl (p8,p5)

cl0=translate c3 (p2,p5)

surfaces

The surfaces are generated by QUADRILATERAL in order to get a
rectangular grid

sl=quadrilateral9(c1,c10,-c9,-c8)
s2=quadrilateral9(c2,c3,-c4,-c10)
s3=quadrilateral9(ch,-c6,-c7,c9)

Plot the mesh:
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plot
renumber start = c3
end

Mark that in this example we have given an explicit start for the renumbering procedure. Experi-
ments have shown that starting at the small side (in this case the outflow) considerably decreases
the computation time.

In order to compute the velocity and pressure program SEPCOMP may be used. The iteration
process is carried out by starting with the Stokes solution, followed by one Picard iteration and
followed by Newton iterations.

Since the integrated solution method is applied, it is necessary to reorder the unknowns such that
it is guaranteed that the first unknowns are velocities and not pressures.

In combination with a direct solver this is only efficient if renumbering per level is applied.

In this way we get the following input file:

* tshapedr.prb

*
*
set warn off ! suppress warnings
#
# Define some general constants
#
constants # See Users Manual Section 1.4
vector_names
velocity
pressure
end
problem
# Define type of elements
types
elgrp1=902 # Type number for Navier-Stokes, without swirl
# Define where essential boundary conditions are present
essbouncond
curves(cl,c2) # Fixed under wall
curves (c4) # Fixed side wall
curves(c5) # Fixed side wall
curves (c6) # instream boundary
degfdl=curves(c7) # Symmetry axis (only u-component)
degfdl=curves(c8) # Symmetry axis (only u-component)
degfd2=curves(c3) # Outstream boundary (v-component given)
# All not prescribed boundary conditions satisy
# corresponding stress is zero, i.e.
# Tangential stress at C7, C8
# Normal stress at C3
renumber levels (1,2), 3 # For each level, first the velocities and then
# the pressure
end

* define type of matrix

matrix
# Non-symmetrical profile matrix, So a direct method will be applied
end
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* Create start vector and put the essential boundary conditions into this
* vector

essential boundary conditions
value = 0 # First set vector equal to zero

# Next fill all non-zero essential boundary conditions
curves(c6), degfd2, value = -1 # The v-component of the velocity at
# instream is -1

end

* Define coefficients for the first iteration

coefficients
elgrpl ( nparm=20) # The coefficients are defined by 8 parameters
icoef2 =1 # 2: type of constitutive equation (1=Newton)
icoef5 = 0 # 5: Type of linearization (0=Stokes flow)
coef7 =1 # 7: Density
# 8: angular velocity = 0
# 9: Dbody force in x-direction = 0O
#10: body force in y-direction = 0
coefl2 = 0.01 #12: Value of etha (viscosity)
end

* Define the coefficients for the next iterations

change coefficients, sequence_number = 1 # Input for iteration 2
elgrpl
icoefb = 1 # 3: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 2 # 3: Type of linearization (2=Newton iteration)
end

* Define the parameters for the non-linear solver

nonlinear_equations, sequence_number = 1
global_options, maxiter=10, accuracy=1d-4,print_level=2, lin_solver=1
equation 1
£fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end

* Define output, and average the pressure

output

vl = icheld=7 # averaged pressure
end
end_of_sepran_input



EX Newtonian flow in T-shape October 2008 7.1.3.5

Although the pressure is already computed in the integrated method, this pressure is discontinuous
over the elements. In order to be able to make contour plots the pressure is averaged and new
values in the vertices are computed.
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Finally some post-processing actions are carried out by program SEPPOST using the following
input file.

* tshapedr.pst
postprocessing

* Print both vectors completely

print velocity
print pressure

* Compute stream function, store in stream_function, and name this vector
compute stream_function = stream function velocity

* Plot the results

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot contour stream_function # Contour plot of stream function
end

Figure 7.1.3.1 shows the velocity computed and Figure 7.1.3.2 the isobars. The stream lines are
shown in Figure 7.1.3.3.

Figure 7.1.3.1: Vector plot of velocity in flow problem
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Figure 7.1.3.2: Isobars in flow problem

7.1.4 Stationary flow over a 3D backward facing step using the integrated
solution method

In this example we consider a three-dimensional example of a stationary flow. Since three-dimensional
problems are usually too large to be solved by a direct linear solver, this example is combined with
an iterative method. This automatically implies that we can not use the penalty function method,
since the matrix produced by the penalty function method is very ill-conditioned and no iterative
solver is able to converge. Hence the integrated approach is applied.

The example we consider is the natural extension of the 2D backward facing step shown in example
7.1.1. Figure 7.1.1.1 shows the cross-section of the region in the y is constant plane. From the
results in Section 7.1.1 it is clear that we may take a smaller inlet and outlet to get comparable
results in the vicinity of the step. In order to get this example into your local directory use

sepgetex backwrd3
To run the example use

sepmesh backwrd3.msh

sepview sepplot.001

seplink backwrd3

backwrd3 < backwrd3.prb

seppost backwrd3.pst > backwrd3.out
sepview sepplot.001

To create the mesh, we first have to define the points, curves, surfaces and volumes. Figure 7.1.4.1
shows the points, curves and surfaces of the front plane. The curves C5 and C6 are clustered to
a new curve C10 and the curves C1, C2 and C3 to a new curve Cl11. The surfaces S1 and S2 are
clustered to a surface S3.

The back plane S4 is just a translation of S3, where the curves are translated as follows:

C11: C12, C4: C13, C10: C14 and C7: C15.

The total volume is considered as a pipe. The front and back surfaces are considered as bottom
and top surface of this pipe respectively and the other 4 surfaces as parts of a pipe surface. These
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Figure 7.1.4.1: Definition of front surface for 3D backward facing step

4 subsurfaces are sketched in Figure 7.1.4.2. In the y-direction we have a constant thickness of
1. Figure 7.1.4.3 shows a plot of all curves. At the inflow boundary (S5) we assume a quadratic
velocity profile with maximum velocity v,,q; = 1. The lower wall (S6) and the upper wall (S8) and
the side walls (S3 and S4) are fixed, hence a no-slip condition must be prescribed. At the outflow
boundary (S7), an outflow boundary condition must be given. For the same reason as in Example
7.1.1 we choose for a completely free flow.

Depending on the Reynolds number a recirculation zone arises at the bottom of the step. The
Reynolds number is defined as Re = umw%, with

H the width of the outflow pipe.
h the width of the inflow pipe.
1 the length of the inflow pipe.

L the sum of the length of inflow and outflow pipe.

Since the flow in inlet and near the outlet is more or less a horizontal flow with a quadratic velocity
profile, whereas the flow in the neighborhood of the step shows a recirculation zone, the mesh is
refined in the vicinity of the step. In this example the following data are used:

H=1



EX Flow over a backward facing step in R3 October 2008 7.1.4.3

[0 Cu P10
Cg Sg Cy
Py Cyo
Cio
R
Cp R
G
Cy
Se c

~0

/ﬁgé 10 1§ 13
79 1 2 417

Figure 7.1.4.3: Definition of curves for 3D backward facing step

h=0.5
=2

L =20
Re =50

The mesh is generated by program sepmesh. The elements used are quadratic hexahedrons with 27
points per element.
sepmesh requires input from the standard input file:

* backwrd3.msh
*

*  Mesh for 3D backward facing step as defined in
* manual Standard Problems Section 7.1.4

constants
integers
n_in = 5 # Number of elements in inlet (flow direction)
m_step = 5 # Number of elements in step
m_in = 5 # Number of elements in inlet (perpendicular to flow)
n_out = 20 # Number of elements in outlet (flow direction)
m_tot = m_in+m_step # m_in+m_step
n_y = 5 # Number of elements in y-direction

reals
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h_wide = 1 # H
h_step = 0.5 # H-h
l_in = 2 #1
1_out =20 # L
y_min = 0 # ymin
y_max = 1 # ymax
end
mesh3d
points
pl = (0, y_min, h_step)
p2 = ( 1_in, y_min, h_step)
p3 = ( 1_in, y_min,0)
p4 = ( 1_out, y_min,0)
p5 = ( 1l_out, y_min, h_wide)
p6 = ( 1_in, y_min, h_wide)
p7 = (0, y_min, h_wide)
p8 = (0, y_max, h_step)
pli= (0, y_max, h_wide)
curves
cl = line2(pl,p2,nelm = n_in,ratio=1,factor=0.4)
c2 = line2(p2,p3,nelm = m_step)
c3 = line2(p3,p4,nelm = n_out,ratio = 1,factor = 5 )
c4 = line2(p4,p5,nelm = m_tot)
c5 = translate c3(p6,p5)
c6 = translate cl(p7,p6)
c7 = line2(p7,pl,nelm = m_in)
c8 = translate c7(p6,p2)
c9 = curves(c8,c2)
c10= curves(c6,c5)
cl1= curves(cl,c2,c3)
c12= translate cl11l (p8,-p9)
c13= translate c4 (p9,p10)
cl4= translate c10 (p11,-p10)
c15= translate c7 (p11,p8)
c16= 1line2 (p1,p8,nelm= n_y)
cl17= translate c16 (p4,p9)
c18= translate c16 (p7,pll)
c19= translate c16 (p5,p10)
surfaces
sl = rectangle6(cl,-c8,-c6,c7)
s2 = rectangle6(c3,c4,-c5,c9)
s3 = surfaces(sl,s2)
s4 = translate s3 ( cl12, c13,-c14, c15 )
sb = pipesurface 6 ( c7 , cl15, c18, c16 )
s6 = pipesurface 6 ( cl1l, c12, cl16, ci17 )
s7 = pipesurface 6 ( c4 , c13, cl17, c19 )
s8 = pipesurface 6 (-c10,-c14, c19, c18 )
s9 = ordered surface ( s6,s7,s8,s5)
volumes
vl = pipeld4 ( s3, s4, s9 )
plot, eyepoint = (50,-10,5)
end

To create the mesh the following steps are performed:

sepmes

h < backwrd3.msh
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sepview

Figure 7.1.4.4 shows the final mesh. In order to compute the velocity and pressure program SEP-

|
1
i
/

4
|

/11T
sy
iy
/11111

Figure 7.1.4.4: Mesh for 3D backward facing step
COMP may be used. Since the inflow velocity depends on the space, a function subroutine is

necessary for the essential boundary conditions. Furthermore for this 3D problem we need a larger
buffer. For that reason sepcomp is replaced by program backwrd3.f.

program backwrd3

integer nbuffr

parameter ( nbuffr = 25 000 000)
common ibuffr(nbuffr)

call sepcom ( nbuffr )

end

function funcbc ( ichois, x, y, z )
implicit none

integer ichois

double precision funcbc, x, y, z

funcbc = 64d0*(1d0-z)*(z-0.5d0) *y* (1d0-y)
end

The iteration process is carried out by starting with the Stokes solution, followed by only Picard
iterations. The reason is that Picard in combination with an iterative solver has a better convergence
behavior.

Since we are using an iterative solver we must take some precautions.

e The storage method of the large matrix must be set to 6, which means that a compact storage
for a non-symmetric matrix is applied.

e We have to use the integrated method, i.e. type 902 or 903.

e Due to the incompressibility condition it is necessary to renumber the unknowns such that first
the velocities and then the pressures per level are used. There are three velocity unknowns per
point and in the centroid of the element we have 4 pressure unknowns (pressure and gradient
of pressure). The velocity physical degrees of freedom have sequence numbers 1, 2 and 3, the
pressure physical degrees of freedom have sequence numbers 4, 5, 6 and 7. Hence we use:
renumber levels (1,2,3),(4,5,6,7) in the problem input.
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e The linear solver requires some extra input.
The preconditioner used is ILU which is the most robust one.
The linear solver is part of a non-linear iteration process, so that we can start with the solution
of the previous non-linear iteration.
In the linear solver, we are only improving the solution from the previous non-linear iteration
and so it suffices to use an accuracy of two extra digits, which means that we set the accuracy
equal to 1072,

In this way we get the following input file:
Kok KoK KoK Kok KoK KoK K ok oK oK KoK K ok oK ok K oK K o Kok K oK K oK K ok Kok K oK ok ok oK ok K ok KK o Kok K oK K oK Kok K ok oK
File: backwrd3.prb

Backward facing step in R"3

* ¥ X X *

stk ok ok ok sk sk sk sk sk sk sk sk ok o ok sk ok ok ok ok sk sk sk sk sksk sk sk sk sk sk ok sk ke ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ke sk sk ok ok ok sk sk sk sk sk sk sk sk ok
constants
vector_names
velocity
pressure
end
problem
# Define type of elements
types
elgrp1=902 # Type number for Navier-Stokes, without swirl
# 7-point triangle
# Approximation 7-point extended triangle
# Direct method

# Define where essential boundary conditions are present

essbouncond
surfaces(s3,s4) # Fixed side walls
surfaces(s6) # Lower wall
surfaces(s8) # Upper wall
surfaces(sb) # Instream boundary

# Renumber such that per level the velocities are treated before the
# pressures

renumber levels (1,2,3),(4,5,6,7)
end
* define type of matrix
matrix
storage_scheme = compact # Non-symmetrical compact matrix
# So an iterative linear solver will be applied

end

* Create start vector and put the essential boundary conditions into this
* vector
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essential boundary conditions
surfaces(sb), degfdl, func =1 # Quadratic inflow profile

end

* Define coefficients for the first iteration

coefficients
elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters
coef7 =1 # 2: Density
coef12 = 0.01 # 8: Value of etha (viscosity)

end

* Define the coefficients for the next iterations

change coefficients, sequence_number = 1 # Input for iteratiomns 2, 3,
elgrpl
icoefb =1 # 3: Type of linearization (1=Picard iteration)
end

* Define the parameters for the non-linear solver

nonlinear_equations
global_options, maxiter=20, accuracy=1d-4,print_level=2, lin_solver=1
equation 1
fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
end

* Define the parameters for the linear solver

solve
iteration_method = cg, preconditioning = ilu, print_level=1 //
start=old_solution, accuracy = 1d-2

end

* Define output, and compute pressure

output

vl = icheld=7
end
end_of_sepran_input

To run the program the following steps are performed:

seplink backwrd3
backwrd3 < backwrd3.prb > backwrd.out

Finally some post-processing actions are carried out by program SEPPOST using the following
input file.

sk sk sk ok e ok sk sk ok o ok sk sk ok e ok sk sk ok s sk sk sk sk ok sk sk sk e ok sk sk s s ok ok sk sk ke ok sk sk e ok sk sk sk s ok sk sk sk sk sk sk e ke sk sk sk o ok sk sk sk ok sk ok
*
* File: backwrd3.pst
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*
* Backward facing step in R"3

*

stk ok sk of sk ke sk ok ok ok sk sk sk ok ok sk sk s ok ok sk sk e ko ok sk sk ke sk sk ok ok sk sk s sk ok sk sk e sk ok ok sk sk ke sk sk ok ok sk sk sk ok ok sk sk ok ok

post processing
# The velocity in the symmetry plane is computed
# In order to get the components in the plane we need the option

# transformation=plane_oriented

compute velocity_in_symmetry_plane = intersection velocity, plane(y=0.5), //
numbunknowns=3 transformation=plane_oriented

# The pressure in the symmetry plane is computed
compute pressure_in_symmetry_plane = intersection pressure, plane(y=0.5)
# Velocity and pressure in the symmetry plane are plotted

plot vector velocity_in_symmetry_plane
plot contour pressure_in_symmetry_plane

end

Figure 7.1.4.5 shows the velocity and the pressure in the symmetry plane (y=0.5).
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Figure 7.1.4.5: Velocity and pressure in symmetry plane
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7.1.5 Time-dependent incompressible flow around a cylinder

In this example we consider vertex shedding behind a circular cylinder as treated by Frans van de
Vosse in his thesis (1987). To get this example in your local directory use the command:

sepgetex karman
To run the example use the commands:

sepmesh karman.msh
view the plots
sepcomp karman.prb
seppost karman.pst
view the plots

To demonstrate the behaviour of time integration methods, the vortex shedding behind a circular
cylinder with diameter D = 1 is simulated. The geometry is shown in Figure 7.1.5.1.
At inflow (curves C6 and C10) uniform Dirichlet inflow boundary conditions are used (v = 1,v =

Cs

Figure 7.1.5.1: Geometry for vortex shedding problem

0), at outflow (C4 and C8) we assume uniform stress-free boundary conditions. These boundary
conditions have the smallest influence on the flow. At the two parallel outer boundaries (C5 and
C9) we assume the same given velocity as at the inflow. At the cylinder (curves C2 and C7) a
no-slip boundary condition is given.

To create the mesh program SEPMESH is used with the following input file may be used:

* karman.msh

#

# mesh for vortex shedding problem
#

constants
reals
left = -5
right =17
t =6
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r =0.5
end
mesh2d
coarse (unit=1)
points
p9=(0,0) # centre of cylinder
p3=( r,0,0.3) # point at the right of the cylinder
p2=(-r,0,0.3) # point at the left of the cylinder

pl=( left,0,1)

p6=( left, t,1)

p8=( left,- t,1)

p4=( right,0,1.3)

p5=( right, t,1.5)

p7=( right,- t,1.5)
curves

cl = cline2(pl,p2)

c2 = carc2(p2,p3,-p9)

c3 = cline2(p3,p4)

c4 = cline2(p4,p5)

c5 = cline2(p5,p6)

c6 = cline2(p6,pl)

c7 = carc2(p2,p3,p9)

c8 = rotate c4 (p4,p7)

c9 = translate c5 (p7,p8)

cl0 = rotate c6 (p8,pl)
surfaces

sl = generald ( c1,c2,c3,c4,c5,c6 )

s2 reflect s1 ( c1,c7,c3,c8,c9,c10 ) # creates a symmetrical mesh
plot

end

The mesh is made completely symmetrical with respect to lower and upper part. This is achieved
by the command reflect.

The density of the mesh is defined by the given coarseness. In the neighbourhood of the cylinder
the length of the elements is 0.3 times the unit length, this length is taken much larger at the points
far away from the cylinder. Figure 7.1.5.2 shows the mesh generated. The boundary conditions in
this case are simple. At the inflow and both parallel boundaries we use the uniform velocity.

At the outflow we use the least restrictive outflow boundary conditions, i.e. zero stress.

At the cylinder we use the no-slip condition.

If no precautions are taken both the Euler implicit and Crank Nicolson time integration reach a
steady state after about 30 time steps. Due to the symmetry of the mesh and boundary conditions,
the vortex shedding was not generated spontaneously. To trigger the vortex shedding, the initial
field has been disturbed by setting the velocity of the cylinder equal to 0.1 in y-direction. The
boundary conditions at the cylinder are kept at zero.

Following van de Vosse, 10 Euler Implicit steps were performed to damp this distortion and to avoid a
too important influence on the flow field. If the Euler implicit scheme is continued the solution again
converges to the steady state solution. However, the Crank-Nicolson scheme performs excellent and
shows the typical von Karmann vortices one expects. One may try to start with the Crank Nicolson
scheme immediately, but since this scheme has no damping properties, the transient will never be
damped.

In our example we follow van de Vosse and take the following time steps: 0 < ¢t < 10, At =1
Euler Implicit, followed by Crank Nicolson with 10 < ¢ < 60, At =1, 60 <t <75, At =0.5 and
75 <t <105, At = 0.25. The results at time ¢t = 30 to ¢t = 105 with steps 1 are written to the files
sepcomp.inf and sepcomp.out for postprocessing purposes.

The corresponding input file is given by
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Figure 7.1.5.2: Mesh for vortex shedding problem

* karman.prb
* problem definition for vortex shedding problem
#
# Define some general constants
#
set warn off ! suppress warnings
constants # See Users Manual Section 1.4
vector_names
velocity
end
problem
types
elgrpl = 900 # Standard Navier-Stokes
essbouncond
curves (c2) # part of the cylinder
curves (cb) # upper boundary
curves (c6) # inflow
curves(c7) # other part of the cylinder
curves(c9) # lower boundary
curves (c10) # inflow
end

*

* Definition of matrix structure
%

matrix

# Non-symmetrical profile matrix, So a direct method will be applied

end
*

* Define initial conditiomns
b3

create vector
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degfdl , (value = 1) # Start vector = (1,0)
degfd2 , (value = 0)

degfd2, curves(c2), value = 0.1 # At the cylinder we start with v = 0.1
degfd2, curves(c7), value = 0.1

end

*

* Essential boundary conditions
*

essential boundary conditions

curves(cb), degfdl=value=1 # upper boundary
curves(c6), degfdl=value=1 # inflow
curves(c9), degfdil=value=1 # lower boundary
curves(c10), degfdl=value=1 # inflow
curves(c2), value = 0 # cylinder
curves(c7), value = 0 # cylinder

end

*

* Definition of coefficients for the Navier-Stokes equation (t=0 only)
E3

coefficients
elgrpl (nparm=20)
icoefb = 2 # Newton linearization
coef6 = 1d-6 # penalty parameter eps
coef7 = 1 # rho
coefl12= .01 # eta
end
*
* Define the time integration
*
time_integration, sequence_number = 1
method = theta
tinit = 0 # theta method (EI and CN)
tend = (10,60,75,105) # end times of intervals
tstep = (1,1,0.5,0.25) # time steps of intervals
theta=(1,0.5,0.5,0.5) # corresponding theta values
toutinit = 30 # start writing at t=30
toutend = 150
toutstep = 1

seq_boundary_conditions = 1
seq_coefficients = 1
seq_output = 1
mass_matrix = constant

end

In fact it is not necessary to start with Euler implicit and then proceed with Crank Nicolson. It
is also possible to use the generalized theta method or the fractional step method. These methods
are both accurate and have sufficient damping properties to damp the transient, without damping
the vortices. In fact if these method were used the vortex shedding had been reached at an earlier
time.

With program seppost it is possible to show the results of the computations. If all time steps are
shown a nice movie of the vortex shedding process is produced. However, for the manual we only
plot the results at time 30, 55, 80 and 105.

The corresponding input file is given by

* File: karman.pst
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* input for seppost
postprocessing
compute stream_function = stream function velocity
time = (0, 150, 25)
plot vector velocity, factor=.15
plot contour stream_function
plot coloured contour stream_function, nlevel=21, mincolour=51
time history (0,150) plot point(10,0) velocity, degfd=2
end

Figures 7.1.5.3 to 7.1.5.6 show the velocity vectors at these time levels. To show the vortices we

Figure 7.1.5.3:  Vector plot of the ve- Figure 7.1.5.4: Vector plot of the ve-
locity at t=30 locity at t=55

Figure 7.1.5.5:  Vector plot of the ve- Figure 7.1.5.6: Vector plot of the ve-
locity at t=80 locity at t=105

have computed the stream function. Mark that in this time-dependent case the stream lines are
not particle trajectories. However, stream lines give a nice insight in the vortex shedding process.
Figures 7.1.5.7 to 7.1.5.10 show the stream lines at these time levels.

Figures 7.1.5.11 to 7.1.5.14 show the coloured stream levels at these time levels. Finally in Figure
7.1.5.15 the velocity component in y-direction in point (0,10) is plotted as function of time. From
the fluctuations the Strouhal number can be detected. See van de Vosse for the details.
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Figure 7.1.5.7: Stream lines at t=30

Figure 7.1.5.9: Stream lines at t=80

7.1.6

Figure 7.1.5.8: Stream lines at t=>55

Figure 7.1.5.10: Stream lines at t=105

Free Surface Flow; co-flowing streams

In this example we consider the laminar flow out of two parallel channels that come together. See
Figure 7.1.6.1 for a definition of the geometry. The driving forces of the flow are pressure differences.
At the outflow (curves C3—Cy) the pressure is assumed to be zero. At the inflow part of the channels,
the pressure levels are different; p = 2 at C7, and p = 1 at Cg. The curve Cq is a solid wall that
divides the co-flowing streams. The curve Cyg is the initial position of the streamline between the
two co-flowing streams. The position of this streamline must be determined during the calculations.

To get this example into your local directory use:

sepgetex coflow
and to run it use:

sepfree coflow.prb
seppost coflow.pst

The initial mesh has also been given in Figure 7.1.6.1.

The equations to be solved are the incompressible Navier-Stokes equations.

The boundary conditions can be formulated as:
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Figure 7.1.5.11: Stream levels at t=30 Figure 7.1.5.12: Stream levels at t=55

Figure 7.1.5.13: Stream levels at t=80

Figure 7.1.5.14: Stream levels at

t=105
v = 0 at fixed walls: Cy, Cy, Cg.
Symmetry conditions (v, =0, o = 0) at C5—Cs.
Pressure level uniform at outflow (o, = —p = 0) at C3-C4, and fully-developed flow, i.e.

v; = 0. It is, however, essential that v; is not prescribed at the last point of C3 and the first
point of Cy.

Pressure level uniform at inflow (0, = —p = —2 at C7; 0, = —p = —1 at Cg), and fully-
developed flow i.e. vy = 0.

The streamline Cy is not known, hence this is a so-called free boundary. In order to determine
the position of this streamline an extra boundary condition is necessary. The standard bound-
ary conditions is of course that the velocity is continuous, i.e. the velocity at the streamline
belongs to both regions. Furthermore, along a streamline we have v,, = 0. This condition is
used to compute the free boundary Cyg during the iterations.

It is not required to compute a boundary integral explicitly along a curve when is it zero everywhere.
This is the case when o,, = 0, v; = 0 or the combination oy = 0, v, = 0. So a boundary integral is
needed only at C; and Csg.
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Figure 7.1.5.15: Velocity component in y-direction as function of time

The properties of the fluid have been chosen equal to each other, and p =1, n = 1. This prevents
instabilities due to property differences. Extended quadratic triangles, in combination with the
penalty function method have been applied. For the internal elements type number 900 has been
used, the boundary integrals are computed by boundary elements of type number 910.

The unknown free boundary is adapted using the so-called film method of Caswell and
Viriyayuthakorn (1983). Starting from an initial guess the Navier-Stokes equations are solved using
the boundary conditions given above. At the common streamline only the trivial continuity bound-
ary conditions are applied. After each solution of the equations the free boundary is adapted to
the third boundary condition, until the difference between the computed velocity in two succeeding
iterations is small enough.

Program SEPFREE does the mesh generation, solves the problem, adapts the mesh, solves again,
until convergence has been reached.

The structure of the main program is defined by the user. To that end the block ?STRUCTURE”
is used. Three vectors are defined:

1. the velocity vector v
2. the pressure p

3. the stress tensor t
The structure of the program is as follows:

e First the initial mesh is generated and the problem description is read. This is the standard
start of program SEPFREE.

e Next the essential boundary conditions are prescribed at ¢t = 0.

e Finally the free boundary problem is solved.
In the first step the linear Stokes equations are solved.
In all other iterations the convective terms are linearized by Picard. To that end the coeffi-
cients are changed before the free boundary loop.
It is not necessary to solve the non-linear equations in each step. In fact one iteration (i.e.
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12 11

Figure 7.1.6.1: Geometry definition for the co-flowing streams problem; initial mesh

solution of a linear system) is sufficient, since after each iteration the boundary is adapted.
Since this process is a Picard iteration itself, it makes no sense to use a Newton linearization
of the convective terms.

e Once the process has been converged, the pressure and the stress are computed and all vectors
are written to the files sepcomp.out and sepcomp.inf for post-processing purposes.

The following input file has been used:

*coflow.prb
constants
vector_names
velocity
pressure
stress
end
mesh2d
points
pl=(2,0)
p2=(2,1)
p3=(2,6)
p4=(1,6)
p5=(0,6)
p6=(0,1)
p7=(0,0)
p8=(1,0)
p9=(1,1)
curves
cl =1ine2(p1l,p2,nelm=4,ratio=2,factor=0.7)
c2 =1ine2(p2,p3,nelm=8,ratio=4,factor=0.8)
c3 =line2(p3,p4,nelm=4)
c4 =1line2(p4,p5,nelm=4)
c5 =1ine2(p5,p6,nelm=8,ratio=2,factor=0.8)
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c6 =1ine2(p6,p7,nelm=4,ratio=4,factor=0.7)
c7 =line2(p7,p8,nelm=4)

c8 =1ine2(p8,pl,nelm=4)

c9 =1ine2(p8,p9,nelm=4,ratio=2,factor=0.7)
c10=1ine2(p9,p4,nelm=8,ratio=4,factor=0.8)
c11=1ine2(p2,p9,nelm=4,ratio=2,factor=0.7)
c12=1ine2(p9,p6,nelm=4,ratio=4,factor=0.7)

surfaces
sl=rectangle4(cl,c11,-c9,c8)
s2=rectangle4(c2,c3,-c10,-c11)

s3=rectangle4(c9,c12,c6,c7)
s4=rectangle4(c10,c4,c5,-c12)
plot(jmark=5, numsub=4,plotfm=15)
end
problem
types
elgrpl=(type=900)
natboundcond
bngrpl=(type=910)
bngrp2=(type=910)
bounelements
belml=curves (shape=2,c8)
belm2=curves (shape=2,c7)
essbouncond
* symmetry
degfdl=curves (c5,c6)

* fixed wall
degfdl,degfd2=curves (cl,c2)
degfdl,degfd2=curves (c9)

* outlet
degfdl=curves200(c3)
degfdl=curves100(c4)

* inlet
degfdl=curves (c7,c8)
end
coefficients
elgrpl (nparm=20)
icoef2 =1 # Newtonian fluid
icoefb = 0 # stokes
coef6 = 1d-8 # penalty parameter
coef7 =1 # rho
coefl12= 1 # etha

bngrpl (nparm=15)

icoefl =1 # normal and tangential direction
coef6 = -1 # Pressure boundary condition
bngrp2 (nparm=15)
icoefl =1 # normal and tangential direction
coef6 = -2 # Pressure boundary condition

end
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change coefficients
elgrpl
icoefb =1 # Picard
end

adapt_boundary
curves=cl0, adaptation_method=film_method, quadratic, exclude_begin = both
exclude_end = second

end

adapt_mesh
end

structure
prescribe_boundary_conditions, velocity
solve_linear_system
change_coefficients
start_stationary_free_boundary

solve_linear_system

end_stationary_free_boundary
derivatives, seq_deriv=1, pressure
derivatives, seq_deriv=2, stress
output

end

stationary_free_boundary
maxiter=20, miniter=3, print_level=2, accuracy=1d-6, criterion = relative

end

derivatives, sequence_number=1

icheld = 7 # pressure
end
derivatives, sequence_number=2

icheld = 6 # stress
end

end_of_sepran_input
It is essential that the velocity v; in the last point of Cg, which is the same as the first point of Cy,
is not prescribed as an essential boundary condition. The adaptation of the position of curve Cyg

is subjected to the following constraints:

e The first point of Cyy has a fixed position.

e The last point of C1¢ has a fixed xo co-ordinate.

The resulting mesh has been plotted in Figure 7.1.6.2.
The commands that are required for the program SEPPOST are given below:

*xcoflow.pst

post processing

* Print all three vectors completely
print velocity

print pressure
print stress
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Figure 7.1.6.2: Final mesh and velocity vectors

* Compute stream function, store in stress, and name this vector
compute stream_function = stream function velocity
* Plot the results

plot mesh

plot vector velocity # Vector plot of velocity

plot contour pressure (nlevel=25) # Contour plot of pressure

plot contour stream_function (nlevel=20) # Contour plot of stream function

end

The resulting velocity vectors have also been plotted in Figure 7.1.6.2. The pressure contour lines
(isobars) and the streamlines have been plotted in Figure 7.1.6.3.
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Figure 7.1.6.3: Isobars and streamlines

7.1.7 Convection in the earth mantle

Studying convection in planetary interiors requires a -costly- solution of the 3D Stokes and heat
equations in spherical geometry. A reduction in computational cost can be made by approximating
the sphere by a 2D cylinder geometry. For convection in the silicate mantle of Earth the geometry
shown in Figure 7.1.7.1a may be used. Gravity is directed towards the centre of the planet and the

P5
freedip
P4
b -
%
freedip
C1
P2
y P1
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Figure 7.1.7.1: Definition of region and boundary conditions

boundary conditions at top and bottom of the mantle are free-slip. The Stokes equations may be
solved in Cartesian coordinates, but this requires local transformations for the free-slip boundary
conditions. The reason is that we want to prescribe the normal component (u,, = 0) of the velocity,
but that the tangential component is free. This component is not in the direction of the co-ordinate
axis.

Since the solution is fixed upon an additive constant, it is necessary to prescribe the velocity in one
point.

To get this example into your local directory use:
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sepgetex earth
and to run it use:

sepmesh earth.msh
seplink earth

earth < earth.prb
seppost earth.pst

Below is a simple example that show how the mesh needs to be defined to make sure that the local
transformations work correctly.

The mesh can be defined by the five points and four curves shown (with orientation) in Fig-
ure 7.1.7.1b. For the local transformations the inner and outer boundary are defined as two separate
curves (C5 and C6), where the orientation of the inner curve is reversed, such that the normal to
the curve points away from the computational domain.

In the computational part the boundary conditions are prescribed on curves C5 and C6. The iso-
viscous, incompressible Stokes equations are solved using the penalty function method. The gravity
vector is directed to the centre of the cylinder and consequently the buoyancy forces are described

by two components:
_ sin(0)
_f |:COS( ):| ) (7171)

where 6 is the co-latitude. In the example below, the buoyancy forces are described by a simple
harmonic perturbation in 6. The applied buoyancy force leads to a pattern of eight convection cells,
symmetric around x=0 and y=0. The outer curves for the local transformation have been chosen
such that a counter clockwise direction is used. In this specific example this is not necessary.

The following input file may be used to define the mesh:

*xearth.msh

mesh2d

coarse (unit=20)

points
p1=(0, -1.0, 0.005)
p2=(0, -0.5, 0.005)
p3=(0, 0.0, 0.005)
p4=(0, 0.5, 0.005)
p5=(0, 1.0,0.005)

curves

cl = carc2(pl,p5,p3)
c2 = carc2(p5,pl,p3)
c3 = carc2(p2,p4,p3)
c4d = carc2(p4,p2,p3)

cb = curves(c3,cd)

c6 = curves(cil,c2)

c7 = cline2(p1l,p2)
surfaces

sl =general4(cl,c2,c7,-c4,-c3,-c7)
plot

end

The mesh created can be found in Figure 7.1.7.2.

Since the right-hand side is a function of the co-ordinates, it is necessary to write a simple program
provided with the function subroutine FUNCCF. This program is given below:
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program earthconvection

call sepcom(0)
end

FUNCCF

K 3K 3K 3K 3K 3k 3k 5k 3k 3k 5k 5k 5k %k %k >k 3K 3k 3k 3k 3k 3k 3k %k 5k 5k %k % K 3K 3K 5K 5k 3k 3k %k %k 5k >k %k % K 3K 3K 3K 5k 5k 5k %k %k %k >k >k Xk Xk K K K >k >k >k

Define buoyancy forces to drive flow in a cylindrical
geometry. It is assumed that the gravity points to the
center of the cylinder (as if to model a self-gravitating
planet): g = - (sin(theta),cos(theta))

The buoyancy forces specified below should lead to an 8-cell
convection pattern, symmetrical around x=0.

function funccf(ifunc,x,y,z)
implicit none

integer ifunc

double precision funccf,x,y,z

K 3K 3K 3K 3K 3K 5k 5k 5k 3k 5k 5k 5k %k %k 5k 3K 3K 3k 3k 3k 5k 5k 5k 5k 5k %k %K K 3K 3K 5K 3k 3k 3k %k 5k 5k 5k %k XK K 3K 3K 3K 5K 5k 5k %k %k 5k >k %k %k Xk K K K >k >k k

double precision r,theta,sint,cost,asin,pi

parameter (pi=3.1415926d0)

--- find polar coordinates for this point

r = sqrt(x*xx+y*y)
theta = asin(y/r)

-—— sin(theta),cos(theta)

x/r
y/r

sint

cost

if ( ifunc.eq.l ) then

funccf = cos((theta+pi/2d0)*4d0)
else if ( ifunc.eq.2 ) then

funccf = cos((theta+pi/2d0)*4d0)
end if

end

* sint

* cost

The corresponding input file is a standard function for program SEPCOMP. It has the following

shape:

*earth.prb

constants

vector_names

end

velocity

problem
types

elgrpl=(type=900)

essboundcond

degfd2=points(pl)
degfdl=curves(cb)
degfdl=curves(c6)

localtransform

# See Users Manual Section 1.4
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curves (-cb)
curves (c6)

degfdl,degfd2

degfdil

degfd2

B

symmetric

end
matrix

coefficients

end

elgrpl (nparm=20)

1
(value

icoef2 =

coefb
(value
(func

coef7
coef9

=1d-6)
1)
1)

= (func=2)

coefl10
coefl12

(value=1)

end
solve

positive_definite

direct_solver

profile

The output of this program may be vizualised with program seppost in combination with sepview.

In the input file below we plot the velocity vector

plot vector velocity
The velocity field is plotted in Figure 7.1.7.2.

postprocessing
end

*earth.pst

end

Figure 7.1.7.2: Mesh and velocity vectors
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7.1.8 Application of all 2D elements to a simple channel flow

In this section we consider a simple channel flow (Cartesian co-ordinates) for low Reynolds numbers.
The exact solution is a quadratic velocity profile perpendicular to the flow direction and a linear
pressure field. The reason to solve this simple problem is that it shows how the various element
shapes and element types may be used to solve the same problem.

In order to get these examples into your local directory use the command

sepgetex channelxx

where xx is a 2 digit number. The following numbers are available:

number | shape | type | description
11 4 900 | extended quadratic triangle, penalty method
12 5 900 | linear quadrilateral, penalty method
13 6 900 | biquadratic quadrilateral, penalty method
21 6 902 | biquadratic quadrilateral, integrated method
22 7 902 | extended quadratic triangle, integrated method
23 9 902 | bilinear quadrilateral, integrated method
31 7 901 | extended quadratic triangle, integrated method (elimination)
41 3 903 | linear triangle, Taylor Hood
42 4 903 | quadratic triangle, Taylor Hood
43 6 903 | biquadratic quadrilateral, Taylor Hood
44 10 903 | extended linear triangle, Taylor Hood

Figure 7.1.8.1 shows the channel and the corresponding curves. In curve C4 we have a parabolic

Cs

C,

Figure 7.1.8.1: Definition of region and boundary conditions

inflow profile. This means that the tangential velocity is 0 and the normal velocity component is
prescribed by a quadratic function.

The curves C1 and C3 denote fixed walls and at curve C2 we prescribe parallel outflow. In all our
examples we use a 8 x 8 linear or 8 x 8 quadratic subdivision in elements.

The exact solution is shown in Figures 7.1.8.2 (velocity vectors), 7.1.8.3 (isobars), 7.1.8.4 (colored
pressure levels), 7.1.8.5 (stream lines) and 7.1.8.6 (colored stream function levels).
We consider the input of the different methods separately.

Penalty function approach For these elements type number 900 must be used. A penalty func-
tion parameter must be chosen, which for scaled problems is usually of the order 1075. The
quadratic velocity profile is prescribed with the option QUADRATIC, and since we take a
maximum velocity of 1, MAX does not have to be given.
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Figure 7.1.8.2: Vector plot of velocity field
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Figure 7.1.8.3: Isobars

To show how one can compute special quantities during the computation, a structure block
is provided. In this block not only the velocity is computed, but also the pressure and a
boundary integral of the pressure over the inflow curve C4 is computed and printed.

At this moment 3 different element shapes are available for the 2D case.

shape = 4 The input for program SEPMESH is given in the following input file (chan-
nelll.msh):

channelll.msh

mesh file for 2d channel problem
See Manual Standard Elements Section 7.1.8

#

#

#

#

#

# To run this file use:
# sepmesh channelll.msh
#

#

#

#

#

Creates the file meshoutput
Define some general constants
constants # See Users Manual Section 1.4

reals
width = 1 # width of the channel
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Figure 7.1.8.4: colored pressure levels
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Figure 7.1.8.5: stream lines
length = 4 # length of the channel
integers
n=4 # number of elements in length direction
m=4 # number of elements in width direction
shape_cur = 2 # Type of elements along curves
# quadratic elements
shape_sur = 6 # Type of elements in surface
# Quadratic triangles
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# wuser points
#

points # See
p1=(0,0)
p2=(length,0)
p3=(length,width)
p4=(0,width)

Users Manual Section 2.2
# Left under point
# Right under point
# Right upper point
# Left upper point
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# curves
#
curves
cl=line
c2=line
c3=line
c4=line
#
# surfaces
#
surfaces
plot
end

Figure 7.1.8.

6: colored stream function levels

# See Users Manual Section 2.3
# Quadratic elements are used

shape_cur
shape_cur
shape_cur
shape_cur

(p1,p2,nelm=n)
(p2,p3,nelm=m)
(p3,p4,nelm=n)
(p4,pl,nelm=m)

# lower wall
# outflow boundary
# upper wall
# inflow boundary

# See Users Manual Section 2.4
sl=rectangle shape_sur (cl,c2,c3,c4)

# make a plot of the mesh

# See Users Manual Section 2.2

The input file for SEPCOMP is given by the file channelll.prb:

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

channelll.p

problem file for 2d channel problem

rb

penalty function approach
problem is stationary and non-linear
See Manual Standard Elements Section 7.1.8

To run this file use:
sepcomp channelll.prb

Reads the file meshoutput
Creates the file sepcomp.out

Define some general constants

constants

reals

# See Users Manual Section 1.4
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eps = 1d-6 # penalty parameter for Navier-Stokes
rho =1 # density
eta = 0.01 # viscosity
vector_names
velocity
pressure
variables
pressure_int
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=900 # Type number for Navier-Stokes, without swirl
# See Standard problems Section 7.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
curves(cl) # Fixed under wall
curves(c3) # Fixed side walls and instream boundary
curves (c4) # inflow
degfd2=curves(c2) # Outstream boundary (v-component given)
# All not prescribed boundary conditions
# satisfy corresponding stress is zero
end
# Define the structure of the problem
# In this part it is described how the problem must be solved
# This is necessary because the integral of the pressure over the boundary
# 1is required
#

structure # See Users Manual Section 3.2.3
# Compute the velocity
prescribe_boundary_conditions velocity
solve_nonlinear_system velocity
# Compute the pressure
derivatives pressure
# Compute the integral of the pressure over curve c2 (outflow boundary)
boundary_integral,pressure, scalarl = pressure_int

print pressure_int, text = ’integral of pressure over curve c2’
# Write the results to a file

output
end

# Create start vector and put the essential boundary conditions into this
# vector
# See Users Manual Section 3.2.5

essential boundary conditions
curves(c4), degfdl, quadratic # The u-component of the velocity at

# instream is quadratic
# The rest of the vector is 0O
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end

# Define the coefficients for the problems (first iteration)
# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients
elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)
icoef5 = 0 # 5: Type of linearization (0=Stokes flow)
coef6 = eps # 6: Penalty function parameter eps
coef7 = rho # 7: Density
coefl2 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2
elgrpl
icoefb = 1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 2 # 5: Type of linearization (2=Newton iteration)
end

# input for non-linear solver
# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1
global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1
equation 1
fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end
#
# Define information with respect to the boundary integral to be computed
# See Users Manual, Section 3.2.14

#
boundary_integral, sequence_number = 1
ichint = 1 # Standard integration
curves = c4 # integral over curve c4
end

# compute pressure
# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1
icheld=7 # icheld=7, pressure in nodes
# See Standard problems Section 7.1
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end

end_of_sepran_input

The standard nonlinear algorithm, i.e. start with Stokes, do one step Picard and finally
use Newton is applied. However, for this particular problem the solution is reached in
two steps due to the fact that the convective terms do not play a role.

The solution with this element is of course exact up to an accuracy of the order of 1076,
which is the penalty function parameter.

The postprocessing input file channelll.pst, which produces the pictures shown before
is defined by:

# channelll.pst

# Input file for postprocessing for channel problem
# See Manual Standard Elements Section 7.1.8

#

#

# To run this file use:

# seppost channelll.pst > channelll.out

#

# Reads the files meshoutput and sepcomp.out

#

#

postprocessing # See Users Manual Section 5.2
#

# compute the stream function

# See Users Manual Section 5.2

# store in stream_function

compute stream_function = stream function velocity

# Plot the results
# See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot coloured contour pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

end

shape = 5 In this case we use an element that does not satisfy the Brezzi Babuska condition.
However, still the results are reasonable, due to the fact that at outflow no velocity is
prescribed.
One can not expect exact results since the pressure approximation is only constant per
element and the velocity approximation is only linear.
The mesh input file channell2.msh is given by:

channell2.msh

#
#
# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8
#

#

#

To run this file use:
sepmesh channell2.msh
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#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
width = 1 # width of the channel
length = 4 # length of the channel
integers
n =28 # number of elements in length direction
m=38 # number of elements in width direction
shape_cur = 1 # Type of elements along curves
# linear elements
shape_sur = 5 # Type of elements in surface
# Bilinear quadrilaterals
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0) # Left under point
p2=(length,0) # Right under point
p3=(length,width) # Right upper point
p4=(0,width) # Left upper point
#
# curves
#
curves # See Users Manual Section 2.3
# Quadratic elements are used
cl=line shape_cur (pl,p2,nelm=n) # lower wall
c2=line shape_cur (p2,p3,nelm=m) # outflow boundary
c3=line shape_cur (p3,p4,nelm=n) # upper wall
c4=line shape_cur (p4,pl,nelm=m) # inflow boundary
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl=rectangle shape_sur (cl,c2,c3,c4)
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

The problem file and the postprocessing file are completely identical to the one used for
shape = 4.

The pictures for the velocity and the stream lines do not show any difference with the
exact solution. The isobars in Figure 7.1.8.7 however, show that the solution is not exact.

shape = 6 In this biquadratic case the solution is again nearly exact. The problem file and
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Figure 7.1.8.7: Isobars (shape=5)

the postprocessing file are completely identical to the one used for shape = 4.
The mesh input file channell13.msh is given by

# channell3.msh
#
# mesh file for 2d channel problem
# See Manual Standard Elements Section 7.1.8
#
# To run this file use:
# sepmesh channell3.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
width = 1 # width of the channel
length = 4 # length of the channel
integers
n=4 # number of elements in length direction
m=4 # number of elements in width direction
shape_cur = 2 # Type of elements along curves
# quadratic elements
shape_sur = 6 # Type of elements in surface
# Bi-quadratic quadrilaterals
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0) # Left under point
p2=(length,0) # Right under point
p3=(length,width) # Right upper point

p4=(0,width) # Left upper point
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#
# curves
#
curves # See Users Manual Section 2.3
# Quadratic elements are used
cl=line shape_cur (pl,p2,nelm=n) # lower wall
c2=line shape_cur (p2,p3,nelm=m) # outflow boundary
c3=line shape_cur (p3,p4,nelm=n) # upper wall
c4=line shape_cur (p4,pl,nelm=m) # inflow boundary
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl=rectangle shape_sur (c1,c2,c3,c4)
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

Integrated method In the integrated method, there is no need to prescribe a penalty parameter.

However, in this case we must be careful with respect to the solution method since the conti-
nuity equation does not contain the pressure. As a consequence the equations corresponding
to the pressure unknowns contain a zero at the main diagonal. Since the linear solver does not
apply a kind of pivoting it is necessary to order the unknowns such that the first rows of the
matrix correspond to velocity unknowns and that rows corresponding to pressure unknowns
follow these velocity rows. This can be achieved by the option renumber in the problem file.
However, if we start with all velocity unknowns and then all pressure unknowns the size of the
matrix is very large. For that reason the option renumber levels is used. If this option is used
it is best to take care of a good numbering of the nodes. It is best to start the renumbering
with the outflow boundary, since there only a part of the velocity unknowns are prescribed.
Furthermore for this problem the Cuthill-McKee numbering is preferred above the standard
renumbering. In order to force such a numbering we use the option

renumber, start = c2, Cuthill_McKee, always

in the mesh input files.
Next we consider the three shapes that are available for type number 902.

shape = 6 The mesh input file is given by:

H

channel2l.msh

mesh file for 2d channel problem
See Manual Standard Elements Section 7.1.8

To run this file use:
sepmesh channel2l.msh

Creates the file meshoutput

Define some general constants

H OH H HHHEHHEHHER

constants # See Users Manual Section 1.4
reals
width = 1 # width of the channel
length = 4 # length of the channel
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integers
n=4 # number of elements in length direction
m=4 # number of elements in width direction
shape_cur = 2 # Type of elements along curves
# quadratic elements
shape_sur = 6 # Type of elements in surface
# Bi-quadratic quadrilaterals
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0) # Left under point
p2=(length,0) # Right under point
p3=(length,width) # Right upper point
p4=(0,width) # Left upper point
#
# curves
#
curves # See Users Manual Section 2.3
# Quadratic elements are used
cl=line shape_cur (pl,p2,nelm=n) # lower wall
c2=line shape_cur (p2,p3,nelm=m) # outflow boundary
c3=line shape_cur (p3,p4,nelm=n) # upper wall
c4=line shape_cur (p4,pl,nelm=m) # inflow boundary
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl=rectangle shape_sur (cl,c2,c3,c4)
plot # make a plot of the mesh
# See Users Manual Section 2.2
renumber, start = c2, Cuthill_McKee, always
# Force a renumbering
# See Users Manual Section 2.2
end

The problem input file is given by:

#
#
#
#
#
#
#
#
#
#
#

channel2l.prb

problem file for 2d channel problem
integrated method

problem is stationary and non-linear

See Manual Standard Elements Section 7.1.8

To run this file use:
sepcomp channel2l.prb

Reads the file meshoutput
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# Creates the file sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
rho =1 # density
eta = 0.01 # viscosity
vector_names
velocity
pressure
variables
pressure_int
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=902 # Type number for Navier-Stokes, without swirl
# integrated approach
# See Standard problems Section 7.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
curves(cl) # Fixed under wall
curves (c3) # Fixed side walls and instream boundary
curves (c4) # inflow
degfd2=curves(c2) # Outstream boundary (v-component given)
# All not prescribed boundary conditions
# satisfy corresponding stress is zero
renumber levels (1,2),(3,4,5) # renumber the unknowns such that for each
# level first we have all velocities and then
# all pressures, thus avoiding zero pivots
end
# Define the structure of the problem
# In this part it is described how the problem must be solved
# This is necessary because the integral of the pressure over the boundary
# 1is required
#
structure # See Users Manual Section 3.2.3

# Compute the velocity
prescribe_boundary_conditions, velocity
solve_nonlinear_system, velocity
# Compute the pressure
derivatives, pressure
# Compute the integral of the pressure over curve c2 (outflow boundary)
boundary_integral, pressure, scalarl = pressure_int
print pressure_int, text = ’integral of pressure over curve c2’
# Write the results to a file
output
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end

# Create start vector and put the essential boundary conditions into this
# vector
# See Users Manual Section 3.2.5

essential boundary conditions
curves(c4), degfdl, quadratic # The u-component of the velocity at
# instream is quadratic
# The rest of the vector is O
end
# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients
elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters
icoef2 = 1 # 2: type of constitutive equation (1=Newton)
icoefs = 0 # 5: Type of linearization (0=Stokes flow)
coef7 = rho # 7: Density
coefl2 = eta #12: Value of eta (viscosity)
end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1  # Input for iteration 2
elgrpl
icoefb = 1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 2 # 5: Type of linearization (2=Newton iteration)
end

# input for non-linear solver
# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1
global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1
equation 1
£fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end
#
# Define information with respect to the boundary integral to be computed
# See Users Manual, Section 3.2.14
#
boundary_integral, sequence_number = 1
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I
[

ichint =
curves
end

# Standard integration
c4 # integral over curve c4

# compute pressure
# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1
icheld=7 # icheld=7, pressure in nodes
# See Standard problems Section 7.1
end

end_of_sepran_input

The input file for the postprocessing is the same as for the penalty function approach.

shape = 7 The mesh input file is given by:

# channel22.msh
#
# mesh file for 2d channel problem
# See Manual Standard Elements Section 7.1.8
#
# To run this file use:
# sepmesh channel22.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
width = 1 # width of the channel
length = 4 # length of the channel
integers
n=4 # number of elements in length direction
m=4 # number of elements in width direction
shape_cur = 2 # Type of elements along curves
# quadratic elements
shape_sur = 7 # Type of elements in surface
# Extended quadratic triangles
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0) # Left under point
p2=(length,0) # Right under point
p3=(length,width) # Right upper point
p4=(0,width) # Left upper point
#

# curves
#
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curves # See Users Manual Section 2.3
# Quadratic elements are used
cl=line shape_cur (pl,p2,nelm=n) # lower wall
c2=line shape_cur (p2,p3,nelm=m) # outflow boundary
c3=line shape_cur (p3,p4,nelm=n) # upper wall
c4=line shape_cur (p4,pl,nelm=m) # inflow boundary
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl=rectangle shape_sur (cl,c2,c3,c4)
plot # make a plot of the mesh
# See Users Manual Section 2.2
renumber, start = c2, Cuthill_McKee, always
# Force a renumbering
# See Users Manual Section 2.2
end

The input files for SEPCOMP and SEPPOST are the same as for shape 6.
shape = 9 The mesh input file is given by:

# channel23.msh
#
# mesh file for 2d channel problem
# See Manual Standard Elements Section 7.1.8
#
# To run this file use:
# sepmesh channel23.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
width = 1 # width of the channel
length = 4 # length of the channel
integers
n =28 # number of elements in length direction
m=8 # number of elements in width direction
shape_cur = 1 # Type of elements along curves
# linear elements
shape_sur = 9 # Type of elements in surface
# Extended bi-linear quadrilaterals
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# wuser points
#
points # See Users Manual Section 2.2

p1=(0,0) # Left under point
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p2=(length,0) # Right under point
p3=(length,width) # Right upper point
p4=(0,width) # Left upper point
#
# curves
#
curves # See Users Manual Section 2.3
# Quadratic elements are used
cl=line shape_cur (pl,p2,nelm=n) # lower wall
c2=line shape_cur (p2,p3,nelm=m) # outflow boundary
c3=line shape_cur (p3,p4,nelm=n) # upper wall
c4=line shape_cur (p4,pl,nelm=m) # inflow boundary
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl=rectangle shape_sur (cl,c2,c3,c4)
plot # make a plot of the mesh
# See Users Manual Section 2.2
renumber, start = c2, Cuthill_McKee, always
# Force a renumbering
# See Users Manual Section 2.2
end

The corresponding problem input file is:

# channel23.prb
#
# problem file for 2d channel problem
# 1integrated method
# problem is stationary and non-linear
# See Manual Standard Elements Section 7.1.8
#
# To run this file use:
# sepcomp channel23.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
rho =1 # density
eta = 0.01 # viscosity
vector_names
velocity
pressure
variables

pressure_int
end
#
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# Define the type of problem to be solved

#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=902 # Type number for Navier-Stokes, without swirl
# integrated approach
# See Standard problems Section 7.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
curves(cl1) # Fixed under wall
curves (c3) # Fixed side walls and instream boundary
curves (c4) # inflow
degfd2=curves(c2) # Outstream boundary (v-component given)
# All not prescribed boundary conditions
# satisfy corresponding stress is zero
renumber levels (1,2),(3) # renumber the unknowns such that for each
# level first we have all velocities and then
# all pressures, thus avoiding zero pivots
end
# Define the structure of the problem
# In this part it is described how the problem must be solved
# This is necessary because the integral of the pressure over the boundary
# 1is required
#
structure # See Users Manual Section 3.2.3

# Compute the velocity
prescribe_boundary_conditions, velocity
solve_nonlinear_system, velocity
# Compute the pressure
derivatives, pressure
# Compute the integral of the pressure over curve c2 (outflow boundary)
boundary_integral, pressure scalarl = pressure_int

print pressure_int, text = ’integral of pressure over curve c2’
# Write the results to a file

output
end

# Create start vector and put the essential boundary conditions into this
# vector
# See Users Manual Section 3.2.5

essential boundary conditions
curves(c4), degfdl, quadratic # The u-component of the velocity at
# instream is quadratic
# The rest of the vector is O
end
# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 7.1
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coefficients
elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 =1 # 2: type of constitutive equation (1=Newton)
icoef5 = 0 # 5: Type of linearization (0=Stokes flow)
coef6 = 1d-12 # 6: Penalty parameter to prevent singular matrix
coef7 = rho # 7: Density
coefl2 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1  # Input for iteration 2
elgrpl
icoefb = 1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 2 # 5: Type of linearization (2=Newton iteration)
end

# input for non-linear solver
# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1
global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1
equation 1
£fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end
#
# Define information with respect to the boundary integral to be computed
# See Users Manual, Section 3.2.14

#
boundary_integral, sequence_number = 1
ichint = 1 # Standard integration
curves = c4 # integral over curve c4
end

# compute pressure
# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1
icheld=7 # icheld=7, pressure in nodes
# See Standard problems Section 7.1
end

end_of_sepran_input

You can see that in this case we have introduced a penalty function parameter. The
reason is that the matrix is singular if we set the penalty function parameter equal
to zero. This is caused by the fact that this element does not satisfy the BB condition.
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Adding a very small amount of penalty function, which means the diagonal of the matrix
corresponding to the pressure rows is updated by a small number, is sufficient to get rid

of this singularity.

Integrated method with elimination A special possibility is to use shape number 7 in combi-
nation with the elimination of the centroid velocity and the gradient of the pressure in the
element centers. In this case type number 901 must be used. Furthermore there is no differ-

ence with type number 902.

The mesh input file is given by:

# channel31.msh
#
# mesh file for 2d channel problem
# See Manual Standard Elements Section 7.1.8
#
# To run this file use:
# sepmesh channel3l.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
width = 1 # width of the channel
length = 4 # length of the channel
integers
n=4 # number of elements in length direction
m=4 # number of elements in width direction
shape_cur = 2 # Type of elements along curves
# quadratic elements
shape_sur = 7 # Type of elements in surface
# Extended quadratic triangles
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0) # Left under point
p2=(length,0) # Right under point
p3=(length,width) # Right upper point
p4=(0,width) # Left upper point
#
# curves
#
curves # See Users Manual Section 2.3

cl=line shape_
c2=1line shape_
c3=1line shape_
c4=1ine shape_

# Quadratic elements are used

cur (pl,p2,nelm=n) # lower wall
cur (p2,p3,nelm=m) # outflow boundary
cur (p3,p4,nelm=n) # upper wall
cur (p4,pl,nelm=m) # inflow boundary
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#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl=rectangle shape_sur (cl,c2,c3,c4)
plot # make a plot of the mesh
# See Users Manual Section 2.2
renumber, start = c2, Cuthill_McKee, always
# Force a renumbering
# See Users Manual Section 2.2
end

the problem input file is:

# channel3l.prb
#
# problem file for 2d channel problem
# integrated method, centroid velocity and pressure gradient eliminated
# problem is stationary and non-linear
# See Manual Standard Elements Section 7.1.8
#
# To run this file use:
# sepcomp channel3l.prb
#
# Reads the file meshoutput
# Creates the files sepcomp.inf and sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
rho =1 # density
eta = 0.01 # viscosity
vector_names
velocity
pressure
variables
pressure_int
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrp1=901 # Type number for Navier-Stokes, without swirl
# integrated approach
# See Standard problems Section 7.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
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curves(cl) # Fixed under wall
curves(c3) # Fixed side walls and instream boundary
curves (c4) # inflow
degfd2=curves(c2) # Outstream boundary (v-component given)
# All not prescribed boundary conditions
# satisfy corresponding stress is zero
renumber levels (1,2),(3) # renumber the unknowns such that for each
# level first we have all velocities and then
# all pressures, thus avoiding zero pivots
end
# Define the structure of the problem
# 1In this part it is described how the problem must be solved
# This is necessary because the integral of the pressure over the boundary
# 1is required
#

structure # See Users Manual Section 3.2.3
# Compute the velocity
prescribe_boundary_conditions, velocity
solve_nonlinear_system, velocity
# Compute the pressure
derivatives, pressure
# Compute the integral of the pressure over curve c2 (outflow boundary)
boundary_integral, pressure, scalarl = pressure_int

print pressure_int, text = ’integral of pressure over curve c2’
# Write the results to a file

output
end

# Create start vector and put the essential boundary conditions into this
# vector
# See Users Manual Section 3.2.5

essential boundary conditions
curves(c4), degfdl, quadratic # The u-component of the velocity at
# instream is quadratic
# The rest of the vector is O
end
# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients
elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters
icoef2 =1 # 2: type of constitutive equation (1=Newton)
icoef5 = 0 # 5: Type of linearization (0=Stokes flow)
coef7 = rho # 7: Density
coefl2 = eta #12: Value of eta (viscosity)
end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7
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change coefficients, sequence_number = 1 # Input for iteration 2
elgrpl
icoefb = 1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 2 # 5: Type of linearization (2=Newton iteration)
end

# input for non-linear solver
# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1
global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1
equation 1
£ill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end
#
# Define information with respect to the boundary integral to be computed
# See Users Manual, Section 3.2.14

#
boundary_integral, sequence_number = 1
ichint =1 # Standard integration
curves = c4 # integral over curve c4
end

# compute pressure
# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1
icheld=7 # icheld=7, pressure in nodes
# See Standard problems Section 7.1
end

end_of_sepran_input

Taylor Hood elements Taylor Hood elements are characterized by the fact that the pressure is
not longer discontinuous but that a continuous approximation with unknowns in the vertices
is applied.

In this case type number 903 must be used.
At this moment 4 different shapes of elements are available.

shape = 3 This is the so-called mini element. Both the velocity and the pressure are ap-
proximated linearly. However, the velocity field consists of a linear part plus a bubble
function that is eliminated later on.
Since the pressure is available in the vertices, one could think of prescribing the pressure
at the outflow. However, mathematically speaking one should not prescribe the pressure
explicitly but use the normal stress instead. In fact prescribing the pressure does not
give essentially different results.
The mesh input file is given by

# channel4l.msh
#
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# mesh file for 2d channel problem
# See Manual Standard Elements Section 7.1.8
#
# To run this file use:
# sepmesh channel4l.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
width = 1 # width of the channel
length = 4 # length of the channel
integers
n=28 # number of elements in length direction
m=38 # number of elements in width direction
shape_cur = 1 # Type of elements along curves
# linear elements
shape_sur = 3 # Type of elements in surface
# Linear triangles (mini element)
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0) # Left under point
p2=(length,0) # Right under point
p3=(length,width) # Right upper point
p4=(0,width) # Left upper point
#
# curves
#
curves # See Users Manual Section 2.3
# Quadratic elements are used
cl=line shape_cur (pl,p2,nelm=n) # lower wall
c2=line shape_cur (p2,p3,nelm=m) # outflow boundary
c3=line shape_cur (p3,p4,nelm=n) # upper wall
c4=line shape_cur (p4,pl,nelm=m) # inflow boundary
#
# surfaces
#
surfaces # See Users Manual Section 2.4

sl=rectangle shape_sur (cl,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2
renumber, start = c2, Cuthill_McKee, always

# Force a renumbering

# See Users Manual Section 2.2
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end
And the corresponding problem input file:
channel4l.prb

problem file for 2d channel problem
integrated method

problem is stationary and non-linear

See Manual Standard Elements Section 7.1.8

#

#

#

#

#

#

#

# To run this file use:
# sepcomp channel4l.prb
#

#

#

#

#

#

#

#

Reads the file meshoutput
Creates the file sepcomp.out

Define some general constants

constants # See Users Manual Section 1.4

reals

rho =1 # density

eta 0.01 # viscosity
vector_names

velocity_pressure
variables

pressure_int

end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,
# See Users Manual Section 3.2.2
elgrpl1=903 # Type number for Navier-Stokes, without swirl
# integrated approach, Taylor Hood approach
# See Standard problems Section 7.1
essbouncond # Define where essential boundary conditions are
# given (not the value)
# See Users Manual Section 3.2.2
# Only velocities are prescribed, not the
# pressures
degfdl,degfd2=curves(cl) # Fixed under wall
degfdl,degfd2=curves(c3) # Fixed side walls and instream boundary
degfdl,degfd2=curves(c4) # inflow
degfd2 =curves(c2) # Outstream boundary (v-component given)
# All not prescribed boundary conditions
# satisfy corresponding stress is zero
end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary
# 1is required
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#
structure # See Users Manual Section 3.2.3
# Compute the velocity
prescribe_boundary_conditions, velocity_pressure
solve_nonlinear_system, velocity_pressure
# Compute the integral of the pressure over curve c2 (outflow boundary)
# Now the pressure is part of the solution vector
boundary_integral, velocity_pressure scalarl = pressure_int

print pressure_int, text = ’integral of pressure over curve c2’
# Write the results to a file

output
end

# Create start vector and put the essential boundary conditions into this
# vector
# See Users Manual Section 3.2.5

essential boundary conditions
curves(c4), degfdl, quadratic # The u-component of the velocity at
# instream is quadratic
# The rest of the vector is O
end
# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero
# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients
elgrpl ( nparm=20 ) # The coefficients are defined by 20 parameters
icoef2 = 1 # 2: type of constitutive equation (1=Newton)
icoefs = 0 # 5: Type of linearization (0=Stokes flow)
coef7 = rho # 7: Density
coefl2 = eta #12: Value of eta (viscosity)
end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2
elgrpl
icoefb = 1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 2 # 5: Type of linearization (2=Newton iteration)
end

# input for non-linear solver
# See Users Manual Section 3.2.9

nonlinear_equations
global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1
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equation 1
fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end
#
# Define information with respect to the boundary integral to be computed
# See Users Manual, Section 3.2.14

#
boundary_integral
ichint =1 # Standard integration
curves = c4 # integral over curve c4
degree_of_freedom = 3 # The pressure is third degree of freedom
end

end_of_sepran_input

Note that in this case it is necessary to prescribe explicitly the degrees of freedom 1 and
2 at boundaries where the velocity is given, since the third degree of freedom corresponds
to the pressure. The pressure is not prescribed at the boundary. Since the pressure is
already available in the vertices, there is no need to write the pressure separately to the
output file. However, using the output option as in the case of the Crouzeix Raviart
elements is also allowed.

The corresponding postprocessing file is

# channel4l.pst
# Input file for postprocessing for channel problem
# See Manual Standard Elements Section 7.1.8

#
#
# To run this file use:
# seppost channel4l.pst > channel4l.out
#
# Reads the files meshoutput and sepcomp.out
#
#
postprocessing # See Users Manual Section 5.2
#
# compute the stream function
# See Users Manual Section 5.2
# store in stream_function
compute stream_function = stream function velocity_pressure
# Plot the results

# See Users Manual Section 5.4

plot vector velocity_pressure # Vector plot of velocity

plot contour velocity_pressure, degfd=3 # Contour plot of pressure

plot coloured contour velocity_pressure, degfd=3

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

end

The quality of the solution in this case is less than that of the other elements. The
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velocity field looks al-right but the pressure contours (Figure 7.1.8.8) are definitely less
accurate. The only reason to use this element is that it has only a limited number of
unknowns and that it can be used easily in combination with iterative linear solvers.

Figure 7.1.8.8: Isobars (mini element shape=3)

shape = 4 The quadratic element is of course exact.

The mesh input file is given by

See Manual Standard Elements Section 7.1.8

H =

H H H H HH

# See Users Manual Section 1.4

width of the channel
length of the channel

number of elements in length direction
number of elements in width direction
Type of elements along curves
quadratic elements

Type of elements in surface

quadratic triangles

# See Users Manual Section 2.2

# channel42.msh
#
# mesh file for 2d channel problem
#
#
# To run this file use:
# sepmesh channel42.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants
reals
width = 1
length = 4
integers
n=4
m=4
shape_cur = 2
shape_sur = 4
end
#
# Define the mesh
#
mesh2d
#
# user points
#
points

p1=(0,0)

# See Users Manual Section 2.2
# Left under point
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p2=(length,0) # Right under point
p3=(length,width) # Right upper point
p4=(0,width) # Left upper point

#
# curves
#
curves # See Users Manual Section 2.3
# Quadratic elements are used
cl=line shape_cur (pl,p2,nelm=n) # lower wall
c2=line shape_cur (p2,p3,nelm=m) # outflow boundary
c3=line shape_cur (p3,p4,nelm=n) # upper wall
c4=line shape_cur (p4,pl,nelm=m) # inflow boundary
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl=rectangle shape_sur (cl,c2,c3,c4)
plot # make a plot of the mesh
# See Users Manual Section 2.2
renumber, start = c2, Cuthill_McKee, always
# Force a renumbering
# See Users Manual Section 2.2
end

The input files for SEPCOMP and SEPPOST are identical to the ones for the mini

element.

shape = 6 Also in this case we have an exact solution.
The mesh input file is given by:

# channel43.msh
#
# mesh file for 2d channel problem
# See Manual Standard Elements Section 7.1.8
#
# To run this file use:
# sepmesh channel43.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
width = 1 # width of the channel
length = 4 # length of the channel
integers
n=4 # number of elements in length direction
m=4 # number of elements in width direction
shape_cur = 2 # Type of elements along curves
# quadratic elements
shape_sur = 6 # Type of elements in surface
# Bi-quadratic quadrilaterals
end
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# Define the mesh

#
mes
#
#
#

++

H* =

end

shape = 10 This element is equivalent to the mini element. The only difference is that the

h2d

# See Users Manual Section 2.2

user points

points

# See Users Manual Section 2.2

p1=(0,0) # Left under point
p2=(length,0) # Right under point
p3=(length,width) # Right upper point
p4=(0,width) # Left upper point

curves

curves

# See Users Manual Section 2.3
# Quadratic elements are used

cl=line shape_cur (pl,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m)

outflow boundary

#
c3=line shape_cur (p3,p4,nelm=n) # upper wall
#

c4=line shape_cur (p4,pl,nelm=m)

inflow boundary

surfaces

surfaces # See Users Manual Section 2.4
sl=rectangle shape_sur (cl,c2,c3,c4)

plot

# make a plot of the mesh
# See Users Manual Section 2.2

renumber, start = c2, Cuthill_McKee, always

# Force a renumbering
# See Users Manual Section 2.2

mid point has not been eliminated.
The mesh input file is:

#
#
#
#
#
#
#
#
#
#
#
#

con

channel44.msh

mesh file for 2d channel problem
See Manual Standard Elements Section 7.1.8

To run

this file use:

sepmesh channel44.msh

Creates the file meshoutput

Define

some general constants

stants # See Users Manual Section 1.4
reals
width = 1 # width of the channel
length = 4 # length of the channel
integers

n =

8 # number of elements in length direction
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m=38 # number of elements in width direction
shape_cur = 1 # Type of elements along curves

# linear elements
shape_sur = 10 # Type of elements in surface
# Extended linear triangles
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0) # Left under point
p2=(length,0) # Right under point
p3=(length,width) # Right upper point
p4=(0,width) # Left upper point
#
# curves
#
curves # See Users Manual Section 2.3
# Quadratic elements are used
cl=line shape_cur (pl,p2,nelm=n) # lower wall
c2=line shape_cur (p2,p3,nelm=m) # outflow boundary
c3=line shape_cur (p3,p4,nelm=n) # upper wall
c4=line shape_cur (p4,pl,nelm=m) # inflow boundary
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl=rectangle shape_sur (cl,c2,c3,c4)
plot # make a plot of the mesh

# See Users Manual Section 2.2
renumber, start = c2, Cuthill_McKee, always

# Force a renumbering

# See Users Manual Section 2.2

end
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7.1.9 Example of a periodic channel flow

In this section we consider a simple channel flow (Cartesian co-ordinates) for low Reynolds numbers.
This is the same problem as treated in Section 7.1.8. However, in this case we prescribe the mass
flux at the inflow boundary C4, see Figure 7.1.8.1 and we assume that velocity is periodical at sides
C2 and CA4.

As a consequence the pressure at inflow and outflow will also be periodical, however, with an
unknown pressure difference. This difference is implicitly defined by the mass flux.

To solve this problem both the penalty function approach (elements of type 912) and the approach
with global unknowns (elements of type 913) is considered.

Just as in Section 7.1.8 there are a number of examples available.

In order to get these examples into your local directory use the command

sepgetex chanperx

where x is a 1 digit number. The following numbers are available:
number | shape | type | description
1 4 900 | extended quadratic triangle, penalty method, penalty approach
900 | extended quadratic triangle, penalty method, global unknowns
902 | extended quadratic triangle, integrated method, global unknowns
902 | See 3, iterative linear solver
903 | linear triangle, Taylor Hood, global unknowns
902 | See b5, iterative linear solver
901 | biquadratic quadrilateral, Taylor Hood, global unknowns
903 | See 7, iterative linear solver

0 J O Ui Wi
SO W W

penalty function approach
In order to get this example into your local directory use the command

sepgetex chanperl

The mesh definition is nearly the same as in 7.1.8, except for two items. First of all we need to
define a line element along C4, that is used to define the mass flux. Next we need connection
elements to define the periodical boundary conditions.

The input file for SEPMESH (chanper.msh) has the following form:

chanperl.msh

mesh file for 2d channel problem

periodical boundary conditions

penalty function approach

Mass flux given, treated with large line element and penalty approach
Crouzeix-Raviart type elements

See Manual Standard Elements Section 7.1.9

To run this file use:
sepmesh chanperl.msh

Creates the file meshoutput

Define some general constants

H oH HF H H H HHHHHHHEHHH

constants # See Users Manual Section 1.4
reals
width = 1 # width of the channel
length = 4 # length of the channel
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integers
n=4 # number of elements in length direction
m=4 # number of elements in width direction
shape_cur = 2 # Type of elements along curves
# quadratic elements
shape_sur = 4 # Type of elements in surface
# quadratic triangles
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# user points
#
points # See Users Manual Section 2.2
p1=(0,0) # Left under point
p2=(length,0) # Right under point
p3=(length,width) # Right upper point
p4=(0,width) # Left upper point
#
# curves
#
curves # See Users Manual Section 2.3
# Quadratic elements are used
cl=line shape_cur (pl,p2,nelm=n) # lower wall
c2=line shape_cur (p2,p3,nelm=m) # outflow boundary
c3=line shape_cur (p3,p4,nelm=n) # upper wall
c4=line shape_cur (p4,pl,nelm=m) # inflow boundary
#
# surfaces
#
surfaces # See Users Manual Section 2.4
sl=rectangle shape_sur (cl,c2,c3,c4)
meshline
lelml = (shape=-1,c4) # One large line element for the
# mass flux
meshsurf
selm2=s1 # Internal elements
meshconnect
celm3 = curves300(c2,-c4) # Connection elements for the
# periodical boundary conditions
plot # make a plot of the mesh
# See Users Manual Section 2.2
end

To run program SEPCOMP we need an input file. Instead of the usual one element group as
in Section 7.1.8, we need 3 groups.

element group 1 corresponds to the line element and has type number 912. This defines
the mass flux.

element group 2 corresponds to the internal elements and has type number 900. This
defines the Navier-Stokes equations.
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element group 3 corresponds to the connection elements and has type number -1. This
defines the periodical boundary conditions.

Furthermore in the computation of the pressure it is necessary to skip over the periodical
boundary elements, since otherwise the pressure is also made periodical. This means that we
can not define the pressure in the input block OUTPUT but need a separate block DERIVA-
TIVES.

As a consequence a block STRUCTURE is necessary, since otherwise the derivatives block is
never used.

The input file for SEPCOMP looks like:

# chanperl.prb
#
# problem file for 2d channel problem
# periodical boundary conditions
# penalty function approach
# Mass flux given, treated with large line element and penalty approach
# Crouzeix-Raviart type elements
# problem is stationary and non-linear
# See Manual Standard Elements Section 7.1.9
#
# To run this file use:
# sepcomp chanperl.prb
#
# Reads the file meshoutput
# Creates the file sepcomp.out
#
#
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
massflux = 0.66666667 # mass flux
penalflux = 1d6 # penalty parameter for mass flux
eps = 1d-6 # penalty parameter for Navier-Stokes
rho =1 # density
eta = 0.01 # viscosity
vector_names
velocity
pressure
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types # Define types of elements,

# See Users Manual Section 3.2.2
elgrpl=912 # Type number for given mass flux
elgrp2=900 # Type number for Navier-Stokes, without swirl
elgrp3=-1 # periodic boundary conditions

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2
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curves(cl) # Fixed under wall
curves (c3) # Fixed upper wall
end
# Define the structure of the problem
# In this part it is described how the problem must be solved
# This is necessary since the computation of the pressure requires some
# extra care
#

structure # See Users Manual Section 3.2.3
# Compute the velocity
prescribe_boundary_conditions, velocity
solve_nonlinear_system, velocity
# Compute the pressure
derivatives, pressure
# Write the results to a file
output
end

# Define the coefficients for the problems
# See Users Manual Section 3.2.6

coefficients
elgrpl ( nparm=10 ) # The coefficients for the mass flux bc
# are defined by 10 parameters
icoef3 = 2 # 3: type of integration (2=quadratic)
icoefb = 1 # 5: Degree of freedom (1=u)
coef6 = massflux # 6: Mass flux
coef7 = penalflux # 7: Penalty parameter
elgrp2 ( nparm=20 ) # The coefficients for Navier-Stokes are defined
# by 20 parameters
icoef2 = 1 # 2: type of constitutive equation (1=Newton)
icoefs = 0 # 5: Type of linearization (0=Stokes flow)
coef6 = eps # 6: Penalty function parameter eps
coef7 = rho # 7: Density
coefl2 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2
elgrp2
icoefb =1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrp2
icoefb = 2 # 5: Type of linearization (2=Newton iteration)
end

# input for non-linear solver

nonlinear_equations # See Users Manual Section 3.2.9
global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1



EX Periodical channel flow January 2002 7.1.9.5

equation 1
fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end

# The pressure is computed as a derived quantity of the Navier-Stokes
# equation
# See Users Manual Section 3.2.11

derivatives
icheld = 7
skip_element_groups = (3) # The pressure is not periodic and hence
# this group must be skipped
end

end_of_sepran_input

The postprocessing file is in this case exactly the same as for the standard channel flow
problem:

chanperl.pst

Input file for postprocessing for channel problem

periodical boundary conditions

penalty function approach

Mass flux given, treated with large line element and penalty approach
Crouzeix-Raviart type elements

See Manual Standard Elements Section 7.1.9

To run this file use:
seppost chanperl.pst > chanperl.out
Reads the files meshoutput and sepcomp.out

ostprocessing # See Users Manual Section 5.2

HO H H H HHHHHHHHEHHEH

# compute the stream function
# See Users Manual Section 5.2
#
compute stream function velocity

# Plot the results
# See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity
plot contour pressure text=’isobars’ # Contour plot of pressure
plot coloured contour pressure
plot contour stream_function # Contour plot of stream function
plot coloured contour stream_function
end

The results produced are identical to the ones shown in Section 7.1.8 and will not be repeated.

global unknowns approach
In order to get this example into your local directory use the command
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sepgetex chanper?2

In this case there is no need to introduce a large line element. Only the periodical boundary
conditions are needed and hence the connection elements. The mesh input file is for example

# chanper2.msh
#
# mesh file for 2d channel problem
# periodical boundary conditions
# Mass flux given, treated with global unknowns
# Crouzeix-Raviart type elements
# See Manual Standard Elements Section 7.1.9
#
# To run this file use:
# sepmesh chanper2.msh
#
# Creates the file meshoutput
#
# Define some general constants
#
constants # See Users Manual Section 1.4
reals
width =1 # width of the channel
length = 4 # length of the channel
integers
n=4 # number of elements in length direction
m=4 # number of elements in width direction
shape_cur = 2 # Type of elements along curves
# quadratic elements
shape_sur = 4 # Type of elements in surface
# quadratic triangles
end
#
# Define the mesh
#
mesh2d # See Users Manual Section 2.2
#
# wuser points
#
points # See Users Manual Section 2.2
p1=(0,0) # Left under point
p2=(length,0) # Right under point
p3=(length,width) # Right upper point
p4=(0,width) # Left upper point
#
# curves
#
curves # See Users Manual Section 2.3
# Quadratic elements are used
cl=line shape_cur (pl,p2,nelm=n) # lower wall
c2=line shape_cur (p2,p3,nelm=m) # outflow boundary
c3=line shape_cur (p3,p4,nelm=n) # upper wall
c4=line shape_cur (p4,pl,nelm=m) # inflow boundary
#
# surfaces
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surfaces # See Users Manual Section 2.4

sl=rectangle shape_sur (c1,c2,c3,c4)
meshsurf

selml=s1 # Internal elements
meshconnect

celm2 = curves300(c2,-c4) # Connection elements for the

# periodical boundary conditions

plot # make a plot of the mesh
# See Users Manual Section 2.2

end

In the problem definition we have to introduce one global unknown, representing the pressure
jump. This global unknown corresponds to the mass flux and is defined over the inflow
boundary c4.

So now we have two element groups and one global element group.

element group 1 corresponds to the internal elements and has type number 900. This
defines the Navier-Stokes equations.

element group 2 corresponds to the connection elements and has type number -1. This
defines the periodical boundary conditions.

global element group 1 corresponds to the curve c4 and has type number 913. This defines
the mass flux.

The rest of the input is more or less the same as for the penalty approach.
The input file for SEPCOMP is:

chanper2.prb

problem file for 2d channel problem
periodical boundary conditions

penalty function approach

Mass flux given, treated with global unknowns
Crouzeix-Raviart type elements

problem is stationary and non-linear

See Manual Standard Elements Section 7.1.9

sepcomp chanper2.prb

Reads the file meshoutput
Creates the file sepcomp.out

#

#

#

#

#

#

#

#

#

#

# To run this file use:
#

#

#

#

#

#

#

# Define some general constants
#

constants # See Users Manual Section 1.4
reals
massflux = 0.66666667 # mass flux
eps = 1d-6 # penalty parameter for Navier-Stokes
rho =1 # density
eta = 0.01 # viscosity

vector_names
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velocity
pressure
end
#
# Define the type of problem to be solved
#
problem # See Users Manual Section 3.2.2
types Define types of elements,
See Users Manual Section 3.2.2
elgrp1=900 Type number for Navier-Stokes, without swirl
elgrp2=-1 periodic boundary conditions
essbouncond Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

Fixed under wall

Fixed upper wall

define element group for global unknown
Type number for given mass flux

curves(cl)

curves(c3)
global_unknowns

glgrp1=913
global_elements

H O H OHHHEHHEHHER

gelml = curves(c4) # mass flux is defined along inflow boundary
end
# Define the structure of the problem
# In this part it is described how the problem must be solved
# This is necessary since the computation of the pressure requires some
# extra care
#

structure # See Users Manual Section 3.2.3
# Compute the velocity
prescribe_boundary_conditions, velocity
solve_nonlinear_system, velocity
# Compute the pressure
derivatives, pressure
# Write the results to a file
output
end

# Define the coefficients for the problems
# See Users Manual Section 3.2.6

coefficients
elgrpl ( nparm=20 ) # The coefficients for Navier-Stokes are defined
# by 20 parameters
icoef2 = 1 # 2: type of constitutive equation (1=Newton)
icoefs = 0 # 5: Type of linearization (0=Stokes flow)
coef6 = eps # 6: Penalty function parameter eps
coef7 = rho # 7: Density
coefl2 = eta #12: Value of eta (viscosity)
glgrpl ( nparm=10 ) # The coefficients for the mass flux bc
# are defined by 10 parameters
icoefb = 1 # 5: Degree of freedom (1=u)
coef6 = massflux # 6: Mass flux

end
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# Define the coefficients for the next iterations
# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2
elgrpl
icoefb = 1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrpl
icoefb = 2 # 5: Type of linearization (2=Newton iteration)
end

# input for non-linear solver

nonlinear_equations, sequence_number = 1 # See Users Manual Section 3.2.9
global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1
equation 1

fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end

# The pressure is computed as a derived quantity of the Navier-Stokes
# equation
# See Users Manual Section 3.2.11

derivatives
icheld =7
skip_element_groups = (2) # The pressure is not periodic and hence
# this group must be skipped
end

end_of_sepran_input

The post processing file is exactly the same as for the penalty approach and is not repeated
here.
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7.1.10 Flow between staggered pipes with anti-symmetric boundary con-
ditions

In this section we consider the flow between a number of pipes in a staggered arrangement. Due
to the staggering of the pipes it is sufficient to consider the dashed region in Figure 7.1.10.1. At

Figure 7.1.10.1: Computational region in array of staggered pipes with anti-periodic boundary
conditions

the boundaries I'; and I'y symmetry boundary conditions are used, i.e. u-n = 0,0" = 0 and
along the boundaries I'y and I's we need anti-symmetrical boundary conditions. This means that
the velocity is anti-symmetric periodical and that the pressure has a pressure difference. In fact
the same method as in Section 7.1.9 is used, with the exception that points at sides I'y and I's are
connected in crossed way. Hence points at the top of I'y are connected with points at the lower
part of I's and vice versa.

The example we use is described in Segal et al (1994).

The radius of the pipes is 10.85 mm, the distance between the centroids of neighboring pipes is
45 mm both in horizontal as in vertical directions. The mean velocity Vp (from left to right) at
the inlet is 1.06 m/s, which implies that the flow rate @ is given by @ = 0.01235 m3/s. The
Reynolds number Rep is related to the diameter D of the pipes. The flow has been computed for
Rep = 28 ~ 362.

In order to get this example into your local directory use the command
sepgetex tube

The definition of the curves is given in Figure 7.1.10.2.
The input file for SEPMESH (tube.msh) has the following form:

*
* tube.msh
*
* mesh input for the staggered pipes example
*
mesh2d
coarse ( unit=0.001)
points

p1=(-0.01165,0)
p2=(0,0)



EX

Staggered tubes

November 2008

7.1.10.2

end

Figure 7.1.10.2: Definition of curves for tube problem

p3=(0,0.01165)
p4=(-0.01085,0.0225)
p5=(-0.0225,0.0225)
p6=(-0.0225,0.01085)
p7=(-0.0225,0)
p8=(0,0.0225)

curves

cl=cline2(p1l,p2)
c2=cline2(p2,p3)
c3=carc2(p3,p4,-p8)
c4=cline2(p4,p5)
c5=cline2(p5,p6)
c6=carc2(p6,pl,-p7)

surfaces

sl=general4(cl,c2,c3,c4,c5,c6)

meshline

lelml = (shape=-1,c5h)

meshsurf

selm2=s1

meshconnect

celm3 = curves0(c2,cb)

plot

# Line element for mass flux
# Internal element
# Connection elements for

# anti-symmetric periodical
# boundary conditions

The mesh created including the connection elements is shown in Figure 7.1.10.3.
The input file for SEPCOMP is nearly the same as the one described in Section 7.1.10

* X X X X X X *x

tube.prb

Penalty function method

input for computing program Navier-Stokes in staggered pipes with
anti-symmetrical periodical boundary conditions
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Figure 7.1.10.3: Mesh for tube problem

#
# Define some general constants
#
constants # See Users Manual Section 1.4
vector_names
velocity
pressure
end

problem

* Define type of elements

types
elgrpl=912 # Type number for given mass flux
elgrp2=900 # Type number for Navier-Stokes, without swirl
elgrp3=-1 # periodic boundary conditions

* Define where essential boundary conditions are present

essbouncond
curves (c3) # Fixed upper tube
curves (c6) # Fixed lower tube
degfd2, curves (c4) # v=0 at c4, (symmetry)
degfd2, curves (cl) # v=0 at cl, (symmetry)

end

* Define structure of the program
* This is necessary since the compuation of the pressure requires some
* extra care

structure

* Compute the velocity
prescribe_bounday_conditions, velocity
solve_nonlinear_system, velocity

* Compute the pressure
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derivatives, pressure

output
end
* Input for subroutine FILCOF at the first iteration (iteration 0)
* At this moment the input for FILCOF is required for each iteration
* with a change in the input.
* In a forthcoming version it will not longer be necessary to repeat this
* input completely

coefficients
elgrpl ( nparm=10 ) # The coefficients for the mass flux bc
#are defined by 10 parameters
icoef3 = 2 # 3: type of integration (2=quadratic)
icoefb = 1 # 5: Degree of freedom (1=u)
coef6 = 0.01235 # 6: Mass flux
coef7 = 1d6 # 7: Penalty parameter
elgrp2 ( nparm=20 ) # The coefficients for Navier-Stokes are defined
# by 20 parameters
icoef2 =1 # 2: type of constitutive equation (1=Newton)
icoefb = # 5: Type of linearization (0=Stokes flow)
coef6 = 1d-6 # 6: Penalty function parameter eps
coef7 =1 # 7: Density
coefl2 = 0.000635 #12: Value of eta (viscosity)

end
* Define the coefficients for the next iterations

change coefficients, sequence_number = 1 # Input for iteration 2
elgrp2
icoefb = 1 # 5: Type of linearization (1=Picard iteration)
end

change coefficients, sequence_number = 2 # Input for iteration 3
elgrp2
icoefb = 2 # 5: Type of linearization (2=Newton iteration)
end

* Define the parameters for the non-linear solver

nonlinear_equations
global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1
equation 1
fill_coefficients 1
change_coefficients
at_iteration 2, sequence_number 1
at_iteration 3, sequence_number 2
end

* Define the computation of the pressure
derivatives

icheld = 7
skip_element_groups = (3) # The pressure is not periodic and hence
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# this group must be skipped
end
end_of_sepran_input
The postprocessing file is in this case exactly the same as for the standard channel flow problem:
*
* tube.pst
*
post processing
* Compute stream funnction, store in stream_function, and nam