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1 Introduction

In this manual we give a number of examples as illustration of how to use SEPRAN for specific
problems.

In fact the subdivision of this manual is exactly the same as in the Standard Problems except
for the first two chapters. So examples in for example Chapter 7 refer to elements introduced
in the Standard Problems Manual Chapter 7. These examples must be seen as a supplement to
the examples treated in the manual Standard Problems. In the rest of Chapter 1 we give some
examples showing some specific items treated in the Users Manual and in Chapter 2 the same for
items treated in the Programmers Guide.
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2 Typical examples showing the use of the Programmers Guide

This chapter is under preparation.
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3 Second order elliptic and parabolic equations

In this chapter we consider several types of elliptic and parabolic equations of second order.
The following Sections are available:

3.1 Second order real elliptic and parabolic equations with one-degree of freedom.
In this section the general second order quasi linear elliptic equation is treated. Due to the
presence of a time derivative the corresponding parabolic equation is treated as well.
The number of unknowns per point is 1.

3.2 Second order complex elliptic and parabolic equations with one degree of freedom.
This section has the same purpose as Section 3.1, however, in this case complex unknowns
are considered.

3.3 Non-linear equations.
This section is devoted to some special non-linear differential equations.

3.4 δ-type source terms.
This section treats a very special type of source term. It has no general character.

3.5 Second order real elliptic and parabolic equations with two degrees of freedom.
This section has the same purpose as Section 3.1, however, in this case the number of unknowns
is equal to two per point.

3.6 Extended second order real linear elliptic and parabolic equations with two degrees of freedom
This section has the same purpose as Section 3.5, however extra terms defining the coupling
between the equations are present.
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3.1 Second order real linear elliptic and parabolic equations with one
degree of freedom

In this section we treat the following examples of real elliptic and parabolic equations with one
degree of freedom.

3.1.1 An artificial mathematical example, just to show how to solve an elliptic equation.

3.1.2 Propagation of concentration in a flow in a curved channel. This examples shows how to solve
the convection-diffusion equation.

3.1.3 An example of a simple heat equation.

3.1.4 An artificial example of the use of the membrane boundary condition.

3.1.5 Cooling with convective heat-transfer at the boundaries.

3.1.6 Iterative solution of layered problems. This example shows how to deal with large contrasts
in coefficients in combination with an iterative linear solver.

3.1.7 Stability of a salt layer formed by salty ground-water upflow.

3.1.8 A comparison of some upwind schemes.

3.1.9 Some examples of the use of periodical boundary conditions.

3.1.10 Some examples of the use of periodical boundary conditions to connect two regions

3.1.11 Experiments with the shifted Laplace operator to solve the real Helmholtz equation.
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3.1.1 An artificial mathematical example

In this section we consider an artificial example of the solution of a Laplace equation with Neumann
type boundary conditions. The purpose of this example is to show how the elements of this chapter
may be used and how coefficients must be filled.
To get this example into your local directory use:

sepgetex exam3-1-1

and to run it use:

sepmesh exam3-1-1.msh

sepcomp exam3-1-1.prb

Consider the square Ω: (0,1) × (0,1) drawn in Figure 3.1.1.1.

C
C

C

4

C

2Ω

1

3

Figure 3.1.1.1: Definition of region for artificial mathematical example

We assume that we have to solve the Laplace equation:

−∆φ = 0

In order to solve this equation it is necessary to impose boundary conditions at each side. In our
example we define the following boundary conditions:

C1: φ = 0
C2: ∂φ

∂n = y

C3: φ+ ∂φ
∂n = 2x

C4: φ = 0

One easily verifies that the exact solution of this equation is given by φ = xy

The region is subdivided into triangles by the submesh generator ”RECTANGLE”. As an example
linear triangles have been used.
SEPMESH needs an input file.
This input file is standard and will not be repeated.
The input file for sepcomp uses laplace as type of equation. At the curves C2 and C3 we need
boundary elements, since we are dealing with non-homogeneous natural boundary elements.
The potential at curves C1 and C4 is prescribed, hence we need essential boundary conditions at
those curves.
Since we have different values for the natural boundary conditions at the curves C2 and C3 it is
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necessary to use a coefficients block.
The values of the right-hand side functions for these boundary conditions are stored in the vectors
h1 and h2 respectively.
The following input file may be used to solve the problem:

******************************************************************************

*

* File: exam3-1-1.prb

*

* Contents: Input for program sepcomp described in Section 3.1.1 in

* the manual examples

* Artificial analytical example

*

******************************************************************************

*

* Problem definition

problem

laplace # standard laplace problem

boundary_elements

belm1=curves(c2) # natural boundary group 1 refers to c2

belm2=curves(c3) # natural boundary group 2 refers to c3

essential_boundary_conditions

curves (c1)

curves (c4)

end

structure

# Define the structure of the matrix

matrix_structure: symmetric # the matrix is symmetrical

# Fill essential boundary conditions

prescribe_boundary_conditions potential = 0

# Build matrix and right-hand side and solve system of equations

# We need vectors along c2 and c3 to define the functions

# Since the boundary elements require different input at different

# boundaries, we need to use the input block coefficients

h1 = y_coor, curves (c2)

h2 = 2*x_coor, curves (c3)

solve_linear_system potential, seq_coef = 1

print potential

plot_contour potential

plot_colored_levels potential

end

* Definition of coefficients



EX Artificial mathematical example October 2015 3.1.1.3

coefficients

bngrp 1 # First boundary group (curve 2)

diff_flux = h1 # h = y

bngrp 2 # Second boundary group (curve 3)

diff_sigma = 1 # sigma = 1

diff_flux = h2 # h = 2x

end

end_of_sepran_input

Figure 3.1.1.2 shows the contour plot. This plot may be visualized by the program sepdisplay.
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Figure 3.1.1.2: Contour plot
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3.1.2 Propagation of concentration in a flow in a curved channel

In this section we consider the propagation of concentration in a flow in a curved channel.
To get this example into your local directory use:

sepgetex exam3-1-2a

and to run it use:

sepmesh exam3-1-2a.msh

sepcomp exam3-1-2a.prb

The region of definition is given in Figure 3.1.2.1. The cross-section in the x-y plane contains two

c

c
c

c
c

c
6

1

24

5

3

P2 P3

P4

P5

P6

P7

b

P
1

φ
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Figure 3.1.2.1: Curved channel. a) definition of region b) definition of curves

concentric arcs closed by straight lines. Through the channel we have a flow parallel to the arcs.
The flow in radial direction is quadratic with maximum velocity one and zero at the circular walls.
So the velocity can be described by the following formulae:

uφ = (r−R+b)(r−R)
4

u1 = −uφyr
u2 =

uφx
r

R denotes the radius of the inner circle, b denotes the width of the channel and r the radial distance
from the origin. uφ denotes the velocity in φ direction.
At the inflow a concentration of some quantity c is given. c is defined as follows:

c = 0 for R ≤ y ≤ R+ b/4 and R+ 3b/4 ≤ y ≤ R+ b
c = 1 for R+ b/4 ≤ y ≤ R+ 3b/4

At the outflow boundary we assume that the concentration is constant in normal direction, which
means that we have the boundary condition:

∂c
∂n = 0

We assume that the circular walls are weakly permeable with respect to the concentration. This
boundary condition may be described by

∂c
∂n + σc = 0

The concentration c satisfies the convection-diffusion equation:
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u · ∇c− div (ν∇c) = 0

In our example we suppose that R = 3 and b = 1. The definition of the various curves and user
points is given in Figure 3.1.2.1.

The region is subdivided into triangles by the submesh generator ”GENERAL”. As an example
linear triangles have been used.
An example of an input file with respect to the mesh generator SEPMESH is given below:

******************************************************************************

*

* File: exam3-1-2a.msh

*

* Contents: Mesh for the example 3-1-2 in the manual examples

* Propagation of concentration in a flow in a curved channel

* Coarseness of the grid defined by coarse

* The mesh is somewhat refined in the neighborhood of the

* two singular points P5 and P6

******************************************************************************

*

constants

reals

radius = 3

b = 1

end

mesh2d

coarse(unit=.1)

points

p1 = (0,0,1)

p2 = (radius,0,1)

p3 = (radius+b,0,1)

p4 = (0,radius+b,1)

p5 = (0,radius+0.75*b,.5)

p6 = (0,radius+0.25*b,.5)

p7 = (0,radius,1)

curves

c1 = line ( p2,p3 )

c2 = arc ( p3,p4,p1 )

c3 = line ( p4,p5 )

c4 = line ( p5,p6 )

c5 = line ( p6,p7 )

c6 = arc ( p7,p2,-p1 )

surfaces

s1 = general ( c1,c2,c3,c4,c5,c6)

plot

end

Figure 3.1.2.2 shows the mesh generated by SEPMESH.

The internal elements are of type convection diffusion.

They require the parameters diffusion and velocity as input. In order to plot the velocity vectors we
have chosen to create a vector u and a vector v, each consisting of one component per point. The
velocity vector is created by velocity = (u,v) , which makes it a vector with two components
per node. The boundary conditions at curves C3 to C5 are essential boundary conditions, the
boundary conditions at curve C1 are natural boundary conditions requiring no special condition
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Figure 3.1.2.2: Plot of mesh generated by SEPMESH

and the boundary conditions at curves C2 and C6 are natural boundary conditions. For these
boundaries it is sufficient to give coefficient σ) by diff_sigma.

For out specific example we use the following coefficients:

ν = 0.005
σ = 0.01

The following input file may be used to solve the problem:

******************************************************************************

*

* File: exam3-1-2a.prb

*

* Contents: Input for program sepcomp described in section 3-1-2 in

* the manual examples

* Propagation of concentration in a flow in a curved channel

* The standard sepcomp approach is used

*

******************************************************************************

*

constants

reals

radius = 3

b = 1

diffusion = 0.005

diff_sigma = 0.01

end
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* Problem definition

*

problem

convection_diffusion

boundary_elements

belm1 = curves ( c2 )

belm2 = curves ( c6 )

essential_boundary_conditions

curves ( c3 to c5 )

end

structure

# Fill essential boundary conditions

prescribe_boundary_conditions concentration = 1, curves(c4)

# Build matrix and right-hand side and solve system of equations

r = sqrt(x_coor^2+y_coor^2)

uphi = 0.25*(r-(Radius+b))*(r-Radius)

u = -uphi*y_coor/r

v = uphi*x_coor/r

velocity = (u,v)

plot_vector velocity

solve_linear_system concentration

print concentration

plot_contour concentration

plot_colored_levels concentration

end

end_of_sepran_input

Figure 3.1.2.3 shows the contour plot. This plot may be visualized by the program SEPDISPLAY.

If we want to compute the same problem with a very small diffusion term (ν = 0.00005). The
input files in this case are called exam3-1-2b.msh and exam3-1-2b.prb. You get them in your
local directory by

sepgetex exam3-1-2b

Figure 3.1.2.4 shows the contour plot.

In order to get a slightly smoother plot upwind may be applied.

Use exam3-1-2c for this case. Figure 3.1.2.5 shows the contour plot. Due to the discontinuities of
the concentration at inflow a complete smooth contour is not possible.
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Figure 3.1.2.3: Contour plot
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Figure 3.1.2.4: Contour plot with small value of ν
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Figure 3.1.2.5: Contour plot with small value of ν and upwind
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3.1.3 An example of a simple heat equation

In this section we consider exactly the same problem as in Section 6.4.1 of the Users Manual. The
only difference is that in each time step we want to compute the gradient of the temperature and
also some other special quantities (see below).
In order to get this example in your local directory use the command:

sepgetex heatequ4

You can run the example by performing the following steps:

sepmesh heatequ4.msh

view the mesh for example by: sepview sepplot.001 or sepdisplay

seplink heatequ4

heatequ4 < heatequ4.prb

seppost heatequ4.pst

view the plots for example by: sepview sepplot.001 or sepdisplay

Consider the heat equation
∂T

∂t
− 0.5∆T = 0 (3.1.3.1)

with ∆ the Laplacian operator. We assume that the region at which this equation is defined is the
unit square (0, 1)× (0, 1).
We suppose that the initial condition is given by

T (x,0) = sin(x)sin(y)

and the boundary conditions by

T (x, t) = sin(x)sin(y)exp(−t) at all four boundaries.

It is easy to verify that the exact solution in this case is also equal to

T (x, t) = sin(x)sin(y)exp(−t)

In order to solve this problem a mesh is created by sepmesh using the submesh generator general.
An example input file for sepmesh is the file heatequ4.msh:

* file heateq4.msh

*

* mesh for the unit square (0,1) x (0,1)

mesh2d

coarse(unit=0.1)

points

p1=(0,0,1)

p2=(1,0,1)

p3=(1,1,1)

p4=(0,1,1)

curves

c1=cline1(p1,p2)

c2=cline1(p2,p3)

c3=cline1(p3,p4)

c4=cline1(p4,p1)

surfaces

s1=general3(c1,c2,c3,c4)

plot (jmark=5, numsub=1)

end
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Since the initial and boundary conditions are space and time dependent it is necessary to provide
user written function subroutines.
The main program may have the following shape (file heatequ4.f)

program heatequation_4

implicit none

call sepcom(0)

end

! *******************************************************************

!

! function func for the initial condition

! contains also the exact solution

!

! *******************************************************************

function func ( ichoice, x, y, z )

implicit none

double precision func, x, y, z

integer ichoice

double precision t, tout, tstep, tend, t0, rtimdu

integer iflag, icons, itimdu

common /ctimen/ t, tout, tstep, tend, t0, rtimdu(5), iflag,

+ icons, itimdu(8)

func = exp(-t)*sin(x)*sin(y)

end

! *******************************************************************

!

! function for essential boundary conditions

!

! *******************************************************************

function funcbc ( ichoice, x, y, z )

implicit none

double precision funcbc, x, y, z

integer ichoice

double precision t, tout, tstep, tend, t0, rtimdu

integer iflag, icons, itimdu

common /ctimen/ t, tout, tstep, tend, t0, rtimdu(5), iflag,

+ icons, itimdu(8)

if ( ichoice.eq.1 ) then

funcbc = sin(x)*sin(y)*exp(-t)

else if ( ichoice.eq.2 ) then

funcbc = sin(x)*sin(y)*exp(-t)

else if ( ichoice.eq.3 ) then

funcbc = sin(x)*sin(y)*exp(-t)

else if ( ichoice.eq.4 ) then

funcbc = sin(x)*sin(y)*exp(-t)

end if

end

In this example we want to perform some extra actions compared to the standard solution of a
time-dependent problem. For that reason we need an input block structure in the input file. The
structure of the main program consists of the following steps:
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• Create initial solution

• Solve heat equation (time-dependent)

• Create exact solution

• Compute and print error at the last time-step (i. e. t=1)

• Compute and print the gradient of the temperature at the last time-step

• Compute and print the volume integral of the temperature at the last time-step

• Compute and print the boundary integral over curve c2 of the temperature at the last time-
step

• Write the final solution and gradient to the file sepcomp.out for postprocessing purposes.
This last step is superfluous since in each time-step the result is written.

The following input file may be used as input for heatequ4:

* file: heatequ4.prb

*

* problem definition for time-dependent heat equation

* linear triangles type number 800

*

set warn off ! suppress warnings

constants # See Users Manual Section 1.4

vector_names

temperature

exact_temperature

temperature_grad

variables

error

temp_int

int_temp_boun

end

problem

types

elgrp1 = 800 # Standard general second order parabolic equation

essbouncond

curves(c1,c4) # Temperature given at all sides

end

* Definition of matrix structure

matrix

symmetric

end

* Definition of structure of the program

structure

create_vector, temperature # start vector (t=0)

solve_time_dependent_problem

create_vector, exact_temperature # exact solution (t=1)

error = norm_dif=3,vector1=temperature, vector2=exact_temperature



EX Example of heat equation August 2008 3.1.3.4

print error, text = ’difference at time = 1’

derivatives, seq_coef = 1, temperature_grad # grad(T) (t=1)

print temperature_grad

* Integral of the temperature over the whole region

temp_int = integral( seq_coef = 2, seq_integral = 1, temperature )

* Integral of the temperature over curve c2

boundary_integral, temperature, int_temp_boun

print temp_int, text = ’Volume integral of the temperature’

print int_temp_boun, text = ’Integral of the temperature over curve c2’

output

end

*

* Define initial conditions

*

create vector

func = 1 # The initial condition is given in FUNCCF

end

*

* Essential boundary conditions

*

essential boundary conditions

curves(c1,c4),(func=1) # The boundary conditions are given in FUNCBC

end

*

* Definition of coefficients for the heat equation (t=0 only)

*

coefficients, sequence_number = 1

elgrp1(nparm=20)

coef6 = 0.5 # a11 = 0.5

coef9 = coef 6 # a22 = 0.5

coef17 = 1 # rho = 1

end

*

* Definition of the coefficient for the volume integration

*

coefficients, sequence_number = 2

elgrp1(nparm=10)

coef4 = 1 # f = 1

end

*

derivatives

icheld = 6 # a * grad T = heat-flux

end

# Definition of integral to be computed

integrals

icheli = 2 # / fT d omega

end
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# Definition of boundary integral to be computed

boundary_integral

ichint = 1 # / fT d gamma

ichfun = 0 # f = 1

curves(c2) # integration over C2

end

output

v1 = icheld=6, seq_coefficients=1 # a * grad T = heat-flux

# It is necessary to give the coefficient

# sequence number, since output at t=0

# is produced before the system of

# equations is build.

end

# Definition of time integration

time_integration, sequence_number = 1

method = crank_nicolson # Second order accurate in time

tinit = 0

tend = 1

tstep = 0.1

toutinit = 0

toutend = 1

toutstep = 0.1 # In each time step the result is written

seq_boundary_conditions = 1

seq_coefficients = 1

diagonal_mass_matrix

stiffness_matrix = constant

mass_matrix = constant

right_hand_side = zero # There is no right-hand side contribution

# of source terms and natural bc’s

end

Mark that in the input block for the time integration we use the fact that the coefficients of both
matrices do not depend on time. Hence both matrices remain constant.
Since there is no source term, and there are no natural boundary conditions with non-zero right-
hand side, we may use the option right_hand_side = zero. The only reason that we have a
non-zero right-hand side in the system of equations to be solved in the time integration is due to
the previous time step and also to the essential boundary conditions.
For linear triangles a lumped mass matrix is accurate enough and for that reason we use diagonal_mass_matrix.
In each time step the results are written for postprocessing.

In the input block output we also compute the gradient of the temperature multiplied by the co-
efficient of the second order term. This requires the same coefficients as for the building of the
stiffness matrix. Since we want to produce output even at t = 0, it is necessary to give explicitly
the sequence number of the input block coefficients for the derivatives. First the derivatives are
computed and written to the file, and then the stiffness matrix is built.

The solution may be visualized by seppost using the file heatequ4.pst as input file:

* file: heatequ4.pst

*

* input for seppost
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*

set warn off ! suppress warnings

postprocessing

time = (0,1)

plot contour temperature, minlevel = 0, maxlevel = 1

plot vector temperature_grad, factor = 0.5

time history plot point(.5,.5) temperature, scales(0,1,0,0.25)//

number format = (1,1,1,3)

end
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3.1.4 An artificial example of the use of the membrane boundary con-
dition

In this section we consider an artificial example of the use of boundary conditions of type 6. This
boundary condition allows for a jump in the solution and is used to simulate a membrane. To get
this example in your local directory use the command:

sepgetex interf

To run the example use the commands:

sepmesh interf.msh

view the plots

seplink interf

interf < interf.prb

seppost interf.pst

view the plots

Consider the region drawn in Figure 3.1.4.1.
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Figure 3.1.4.1: Definition of region for membrane boundary condition

This region consists of the squares (0,1) × (0,1) and (0,1) × (0,-1) separated by a membrane at
y = 0. We assume that in both squares we have to solve the Laplace equation:

−∆p = 0

The following boundary conditions will be used:

C2,C3,C4: p = 1− y
C6,C7,C8: p = 2 + y

At the membrane we impose the ”jump” condition:

σ(pu − pl) +
∂p

∂n
= h (3.1.4.1)

If we set: σ = −1 and h = 2 then one easily verifies that the exact solution of this equation is given
by p = 1− y for y > 0 and p = 2 + y for y < 0.
At y = 0 p has the value 1 for the upper region and 2 for the lower region, which implies that p is
discontinuous.
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In order to impose the membrane boundary condition it is necessary that the curves C1 and C5
are strictly disjoint. In this way we get two sets of disjoint points each of which representing a
different value for p. The coordinates of the curves C1 and C5, however, are identical. In order
to connect the curves C1 and C5 connection elements are used. These elements consist of a linear
element at C1 connected to the corresponding linear element at C5 and hence may be considered
as quadrilateral elements with thickness zero.
In our example we use linear triangles in each rectangle and linear connection elements at the
membrane.
An example of an input file for SEPMESH is given below:
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# interf.msh

#

# mesh file for 2d membrane example

# See Manual Standard Elements Section 3.1.4

#

# To run this file use:

# sepmesh interf.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

x_left = 0 # x-coordinate of left-hand side

x_right = 1 # x-coordinate of right-hand side

y_bottom = -1 # y-coordinate of bottom

y_middle = 0 # y-coordinate of membrane

y_top = 1 # y-coordinate of top

integers

n_horizontal = 5 # number of elements in horizontal direction

n_vertical = 5 # number of elements in vertical direction per surface

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=( x_left, y_middle) # left-hand point of membrane in upper surface

p2=( x_right, y_middle) # right-hand point of membrane in upper surface

p3=( x_right, y_top ) # right-hand point on top boundary

p4=( x_left, y_top ) # left-hand point on top boundary

p5=( x_left, y_middle) # left-hand point of membrane in lower surface

p6=( x_right, y_middle) # right-hand point of membrane in lower surface

p7=( x_right, y_bottom) # right-hand point on bottom boundary

p8=( x_left, y_bottom) # left-hand point on bottom boundary

#

# curves

#

curves # See Users Manual Section 2.3

c1 = line(p1,p2,nelm= n_horizontal) # membrane curve in upper surface

c2 = line(p2,p3,nelm= n_vertical) # right-hand curve in upper surface

c3 = line(p3,p4,nelm= n_horizontal) # top curve in upper surface

c4 = line(p4,p1,nelm= n_vertical) # left-hand curve in upper surface

c5 = line(p5,p6,nelm= n_horizontal) # membrane curve in lower surface

c6 = line(p6,p7,nelm= n_vertical) # right-hand curve in lower surface

c7 = line(p7,p8,nelm= n_horizontal) # bottom curve in lower surface

c8 = line(p8,p5,nelm= n_vertical) # left-hand curve in lower surface

#

# surfaces
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#

surfaces # See Users Manual Section 2.4

s1 = rectangle3 (c1,c2,c3,c4) # upper surface

s2 = rectangle3 (c5,c6,c7,c8) # lower surface

#

# Connect surfaces to element groups

#

meshsurf

selm1 = s1 # element group 1: upper surface

selm2 = s2 # element group 2: lower surface

#

# Define connection elements

#

meshconnect

celm3 = curves1(c1,c5) # element group 3: connection elements

# from c1 to c5

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The internal elements are defined by type number 800. Only the coefficients 6 and 9 have to be
defined; they get the value 1.
The boundary conditions at sides C2 to C4 and C6 to C8 are essential boundary conditions, the
boundary conditions at sides C1 and C5 are the special membrane boundary conditions given by
type number 804. Both σ and h must be defined for these elements.

Since in this case it is necessary to define a function subroutine for the essential boundary condi-
tions, it is not possible to use the standard program SEPCOMP. Therefore we give the program
interf based upon sepcomp and extended with the function subroutine FUNCBC.

******************************************************************************

*

* File: interf.f

*

* Contents: Program for the test example

* in the SEPRAN manual Standard Problems Section 3.1.4

*

* Usage: Compile and link this program with the SEPRAN libraries

* seplink interf

* Run this program with input interf.prb

* interf < interf.prb

*

******************************************************************************

*

program interf

! --- example program for the interface boundary condition

call sepcom ( 0 )

end
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! --- Define essential boundary conditions as function of the coordinates

function funcbc ( ichoice, x, y, z )

implicit none

double precision funcbc, x, y, z

integer ichoice

if ( ichoice==1 ) then

! --- ichoice = 1, upper surface, p = 1-y

funcbc = 1-y

else

! --- ichoice = 2, lower surface, p = 2+y

funcbc = 2+y

end if

end

This program needs an input file which is the same as for SEPCOMP. The following input file may
be used to solve the problem:

# interf.prb

#

# problem file for 2d membrane example

# See Manual Standard Elements Section 3.1.4

#

# To run this file use:

# sepcomp interf.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa = 1 # diffusion parameter

sigma = -1 # Parameter sigma for membrane boundary condition

h = 2 # Parameter h for membrane boundary condition

vector_names

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 = (type=800) # Type number for second order equation
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elgrp2 = (type=800) # Type number for second order equation

elgrp3 = (type=804) # Type number for membrane boundary condition

# See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c2 to c4) # essential boundary conditions on c2 to c4

curves(c6 to c8) # essential boundary conditions on c6 to c8

end

# Define essential boundary conditions

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c2 to c4), func=1 # The boundary conditions depend on y

curves(c6 to c8), func=2 # so a function is needed

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1 (nparm=20) # The coefficients are defined by 20 parameters

coef 6 = (value= kappa) # diffusion coefficient

coef 9 = coef 6 # in upper surface

elgrp2 (nparm=20)

coef 6 = (value= kappa) # diffusion coefficient

coef 9 = coef 6 # in lower surface

elgrp3 (nparm=15) # The natural boundary conditions require 2 parameters

coef 6 = (value= sigma) # sigma

coef 7 = (value= h) # h

end

end_of_sepran_input

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. The following input file prints the computed
solution, makes a standard contour plot as well as a coloured contour plot.

# interf.pst

# Input file for postprocessing for 2d membrane example

# See Manual Standard Elements Section 3.1.4

#

#

# To run this file use:

# seppost interf.pst > interf.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2
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# Print the pressure

# See Users Manual Section 5.3

print pressure

# Plot the pressure

# See Users Manual Section 5.4

plot contour pressure

plot coloured contour pressure

end

Figures 3.1.4.2 shows the contour plot of the pressure and Figure 3.1.4.3 the coloured contour plot.
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3.1.5 Cooling with convective heat-transfer at the boundaries

In this section we consider the problem, that a material at high temperature has to be cooled down.
We assume, that the problem is two dimensional and that the material-cross-section has the shape of
a rectangle (0.1 m x 0.05 m) with four cooled boundaries. As the cross-section is symmetrical, only
the fourth part (a rectangle of 0.05 m x 0.025 m) has to be considered with two cooled boundaries
and two boundaries with the boundary-condition ”∂T∂n = 0” (symmetry-boundary-condition), which
in SEPRAN is satisfied automatically by not prescribing anything.
This example has been generated by Roman Denzin of the technical university of Darmstadt.
Consider the heat-equation:

cpρ
∂T

∂t
− λ∇T = 0 (3.1.5.1)

with
cp = heat-capacity of the material = 2000 J/(kg K),
ρ = density of the material = 1000 kg/m3,

cpρ is coef 17 of the element of type 800.
λ = heat-conductivity = 0.5 W/(m K)

coef6 respectively coef 9 of the element of type 800
The initial-condition is: T(x,y,t=0) = 200 degrees C
A common boundary condition of cooling- or heating-problems is a convective heat-transfer from
the material to a surrounding fluid, which has a constant temperature at sufficient distance to the
boundary. The specific heat-flux from the material to the fluid is given as:

q = α(Tb − T0) (3.1.5.2)

with
α = surface-heat-transfer coefficient = 15 W(m2 K),
Tb = temperature at the boundary [degrees C],
T0 = temperature of the fluid at sufficient distance to the boundary = 5 degrees C.

The heat-flux from the inner of the material across the boundary is given as:

q = −λ∇Tb (3.1.5.3)

with
λ = heat-conductivity of the material,
∇Tb = gradient of temperature at the boundary.

As these two heat-fluxes have to be equal, the boundary-condition is:

−λ∇Tb = α(Tb − T0), (3.1.5.4)

hence
λ∇Tb + α Tb = αT0. (3.1.5.5)

To implement this in SEPRAN, boundary-elements of type 2 have to be used:

αij
∂c

∂n
+ σc = h. (3.1.5.6)

If you compare this equation with the boundary-condition above, you can see (with c replaced by
T respectively Tb) that the coefficients of the boundary-elements of type 2 have to be defined as

follows:

α8 = coef6 (λx of the material)
α11 = coef9 (λy of the material)
σ = coef6 (α)
h = coef7 (αT0)

(If coef 6 and coef 9 are omitted, these coefficients are taken from the input-block for the coefficients
of the heat-equation, which is correct as well.)
In order to get this example in your local directory use the command:

sepgetex heatequ5
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You can run the example by performing the following steps:

sepmesh heatequ5.msh

view the mesh for example by: sepview sepplot.001 or sepdisplay

sepcomp < heatequ5.prb

seppost heatequ5.pst

view the plots for example by: sepview sepplot.001 or sepdisplay

In order to solve this problem a mesh is created by sepmesh using the submesh generator rectangle.
An example input file for sepmesh is the following file:

* file: heatequ5.msh

*

constants

integers

nelm1=20

nelm2=40

end

mesh2d

points

p1=(0 , 0 )

p2=(0.050 , 0 )

p3=(0.050 , 0.025 )

p4=(0 , 0.025 )

curves

c1=line2(p1,p2,nelm= nelm2)

c2=line2(p2,p3,nelm= nelm1)

c3=line2(p3,p4,nelm= nelm2)

c4=line2(p4,p1,nelm= nelm1)

surfaces

s1=rectangle4(c1,c2,c3,c4)

plot ( plotfm=10 )

end

In this example we are solving a standard heat equation and we do not require any extras from
program sepcomp. For that reason it is sufficient to call program sepcomp with a standard input
file. No input block structure is necessary.
The following input file may be used as input for sepcomp:

* file: heatequ5.prb

*

* problem definition for time-dependent heat equation

* linear triangles type number 800

set warn off ! suppress warnings

constants # See Users Manual Section 1.4

vector_names

temperature

end

problem

types
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elgrp1 = 800 # Standard heat equation

natbouncond

bngrp1 = (type=801) # Boundary condition of type 2

bngrp2 = (type=801) # Boundary condition of type 2

bounelements

belm1 = curves(c2) # Boundary elements along curve c2

belm2 = curves(c3) # Boundary elements along curve c3

end

*

* Definition of matrix structure

*

matrix

symmetric

end

*

* Define initial conditions

*

create vector

value = 200 #T(t=0) = 200 degrees C

end

*

* Definition of coefficients for the heat equation

* and boundary conditions

*

coefficients

* Definition of coefficients for the heat equation

elgrp1(nparm=20)

coef6 = (value=0.5) # Lambda_x

coef9 = coef 6 # Lambda_y

coef17 = (value=2d6) # cp*rho

* Definition of coefficients for the boundary conditions

bngrp1 (nparm=11)

icoef 1 = 2 # Boundary conditions of type 2 (Default)

coef 6 = (value=15) # alpha

coef 7 = (value=75) # alpha * t_0

bngrp2 (nparm=11)

icoef 1 = 2 # Boundary conditions of type 2 (Default)

coef 6 = (value=15) # alpha

coef 7 = (value=75) # alpha * t_0

end

time_integration, sequence_number = 1

method = euler_implicit # time integration method

tinit = 0

tend = 2000

tstep = 50

toutinit = 0

toutend = 2000

toutstep = 400

seq_boundary_conditions = 1

seq_coefficients = 1
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diagonal_mass_matrix

stiffness_matrix = constant # the stiffness matrix does not depend

# on time

mass_matrix = constant # the mass matrix does not depend

# on time

right_hand_side = constant # the right-hand side does not depend

# on time

# It is not zero since the natural

# boundary conditions contain a

# contribution for the rhs

print_time_history = ((0,0))

end

Mark that in the input block for the time integration we use the fact that the coefficients of both
matrices do not depend on time. Hence both matrices remain constant.
Also the right-hand-side vector is constant. This vector is not zero, since the natural boundary
condition has a non-zero right-hand side αT0. The solution may be visualized by seppost using the
file heatequ5.pst as input file:

* file heatequ5.pst

*

* input for seppost

*

set warn off ! suppress warnings

postprocessing

define plot parameters = height=0.5

plot identification, text=’Cooling with convective heat-transfer’//

origin=(3,19)

time = (0, 2000)

* Temperature at line y=0

open plot

compute temp_intersect = intersection temperature origin=(0,0)

plot function temp_intersect, scales=(0,0.05,0,200), textx = ’x-coordinate [m]’ //

texty = ’Temperature [degree C]’, number format=(1,3,3,0)

close plot

* Temperature-distribution

plot coloured levels temperature, nlevel=22, minlevel = 0, maxlevel = 200 //

(yfact=1,plotfm=15), plot_legenda

plot contour temperature, nlevel=21, minlevel = 0, maxlevel = 200

* time history of temperature at (0,0)

time history plot point(0,0) temperature, scales (0, 1800, 0, 200), //

number format=(4,0,3,0), textx=’Time [s]’, texty=’temperature [degree C]’

time history plot max temperature, scales (0, 1800, 0, 200), //

number format=(4,0,3,0), textx=’Time [s]’, texty=’temperature [degree C]’

* Time history of minimum and maximum
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time history print max temperature

time history print min temperature

end

Figure 3.1.5.1 shows the temperature at the line y = 0 for the time levels 0 to 2000 seconds with
steps of 400 seconds.



EX Cooling problem August 2008 3.1.5.6

1

2

3

4

5

6

7

8

9

10

11

[height=7cm]
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Figure 3.1.5.1: Time history at line y = 0
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Figure 3.1.5.2 shows the coloured temperature distribution at time 2000 sec.
Figure 3.1.5.3 shows the isotherms at time 2000 sec.

Figure 3.1.5.2: Temperature distribution at time 2000 seconds
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Figure 3.1.5.3: Isotherms at time 2000 seconds
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3.1.6 Iterative solution of layered problems

In this section we shall focus ourselves on some aspects special for layered problems. With layered
problems we mean problems with large contrasts in the coefficients.
A typical example of such a problem is the computation of excess pressures in the underground.
Usually this concerns computations over a period of many millions of years and regions with a
surface of the size of 20 to 50 km in both directions and a depth of several kilometers. In the
underground we have layers that are relatively permeable, like sandstone layers and layers that are
nearly impermeable (like shale or rock). The quotient of the permeabilities in such layers may be
a factor of 107.
The result of such large contrasts in permeabilities is that the solution matrix becomes very ill-
conditioned. The ill-conditioning is not so bad that the matrix becomes singular, in fact a direct
solver does not have a problem solving the system of equations. However, for an iterative solver
such a bad condition may lead to very large numbers of iterations and large computation times.
Unfortunately for large three-dimensional problems direct solvers are much to slow and require too
much memory. So actually it is necessary to solve such problems iteratively.
In this section we shall show how one can solve this problem by an iterative solver without having
problems with the bad condition of the matrix. For a theoretical background the reader is referred
to Vuik et al (1998).

For the sake of demonstration we consider only academic problems, which however, contain all
difficulties present in this type of problems. First we consider a two-dimensional cross-section of
part of the underground, consisting of 7 straight layers. The top layer consists of sandstone, the
second one is shale, followed by a sandstone layer and so on. The region is sketched in Figure
3.1.6.1. In this region we solve the linearized 2D diffusion equation

earth surface

shale

shale

shale

sandstone

sandstone

sandstone

sandstone

Figure 3.1.6.1: Artificial configuration with 7 straight layers

−div(σ∇p) = 0 , (3.1.6.1)

with p the excess pressure and σ the permeability. At the earth’s surface the excess pressure is
prescribed.

For our model problem we assume that σ in sandstone is equal to 1 and σ in shale is equal to 10−7.
Furthermore the Dirichlet boundary condition at the earth’s surface is set equal to 1. The solution
of equation (3.1.6.1) with these boundary conditions is of course p = 1, but if we start with p = 0
or a random vector, our linear solver will not notice the difference with a real problem. Numerical
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experiments show that the choice of one of these start vectors has only marginal effects.

In first instance we solve this equation by a Conjugate Gradient solver, without preconditioner.
After that we consider the effect of an ILU preconditioning and finally we study the behaviour of
the projection method mentioned in the Users Manual Section 3.2.8.
After the straight layers problem we consider the case of a curved mesh, and finally the case in
which the projection vectors computed in the straight layer mesh are reused for the curved mesh.
To get these examples into your local directory use the command sepgetex as follows:

sepgetex layerstr01 (7 straight layers, no preconditioning)

sepgetex layerstr02 (7 straight layers, ILU preconditioning)

sepgetex layerstr03 (7 straight layers, ILU preconditioning, with projection)

sepgetex layerarc01 (7 curved layers, ILU preconditioning, with projection)

sepgetex layerarc02 (7 curved layers, ILU preconditioning, with projection,

projection vectors created by straight layer mesh)

To run these examples use

sepmesh layerstr01.msh

sepcomp layerstr01.prb

and so on for all examples. There are no postprocessing files since the solution itself is trivial.

The mesh input file for the straight-layer problem is given by:

# layerstr01.msh

#

# mesh file for straight layer problem

# Test without preconditioning

# See Manual Examples Section 3.1.6

#

# To run this file use:

# sepmesh layerstr01.msh

#

# Creates the file meshoutput

#

set warn off ! suppress warnings

set time off ! suppress printing of time

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nelm1 = 10 # number of elements in horizontal direction

nelm2 = 5 # number of elements in vertical direction

reals

width = 1 # width of the region

height = 7 # height of the region

h1 = 1 # top of 1-th layer

h2 = 2 # top of 2-th layer

h3 = 3 # top of 3-th layer

h4 = 4 # top of 4-th layer

h5 = 5 # top of 5-th layer

h6 = 6 # top of 6-th layer

h7 = 7 # top of 7-th layer
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end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 =(0,0) # point left under

p2 =( width,0) # point right under

p3 =(0, h1) # left top of 1-th layer

p4 =( width, h1) # right top of 1-th layer

p5 =(0, h2) # left top of 2-th layer

p6 =( width, h2) # right top of 2-th layer

p7 =(0, h3) # left top of 3-th layer

p8 =( width, h3) # right top of 3-th layer

p9 =(0, h4) # left top of 4-th layer

p10=( width, h4) # right top of 4-th layer

p11=(0, h5) # left top of 5-th layer

p12=( width, h5) # right top of 5-th layer

p13=(0, h6) # left top of 6-th layer

p14=( width, h6) # right top of 6-th layer

p15=(0, h7) # left top of 7-th layer

p16=( width, h7) # right top of 7-th layer

#

# curves

#

curves # See Users Manual Section 2.3

c1 =line1(p1,p2,nelm= nelm1) # straight line at bottom

c2 =line1(p1,p3,nelm= nelm2) # left-hand side of 1-th layer

c3 =translate c1(p3,p4) # right-hand side of 1-th layer

c4 =translate c2(p2,p4) # upper side of 1-th layer

c5 =line1(p3,p5,nelm= nelm2) # left-hand side of 2-th layer

c6 =translate c1(p5,p6) # upper side of 2-th layer

c7 =translate c5(p4,p6) # right-hand side of 1-th layer

c8 =line1(p5,p7,nelm= nelm2) # left-hand side of 3-th layer

c9 =translate c1(p7,p8) # upper side of 3-th layer

c10=translate c8(p6,p8) # right-hand side of 3-th layer

c11=line1(p7,p9,nelm= nelm2) # left-hand side of 4-th layer

c12=translate c1(p9,p10) # upper side of 4-th layer

c13=translate c11(p8,p10) # right-hand side of 4-th layer

c14=line1(p9,p11,nelm= nelm2) # left-hand side of 5-th layer

c15=translate c1(p11,p12) # upper side of 5-th layer

c16=translate c14(p10,p12) # right-hand side of 5-th layer

c17=line1(p11,p13,nelm= nelm2) # left-hand side of 6-th layer

c18=translate c1(p13,p14) # upper side of 6-th layer

c19=translate c17(p12,p14) # right-hand side of 6-th layer

c20=line1(p13,p15,nelm= nelm2) # left-hand side of 7-th layer

c21=translate c1(p15,p16) # upper side of 7-th layer

c22=translate c20(p14,p16) # right-hand side of 7-th layer

#

# surfaces

#

surfaces # See Users Manual Section 2.4
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s1=rectangle3(c1,c4,-c3,-c2) # 1-th layer

s2=rectangle3(c3,c7,-c6,-c5) # 2-th layer

s3=rectangle3(c6,c10,-c9,-c8) # 3-th layer

s4=rectangle3(c9,c13,-c12,-c11) # 4-th layer

s5=rectangle3(c12,c16,-c15,-c14) # 5-th layer

s6=rectangle3(c15,c19,-c18,-c17) # 6-th layer

s7=rectangle3(c18,c22,-c21,-c20) # 7-th layer

#

# Connect surfaces with element groups and provide them with one integer

# property

# Integer property 1 = 1 means normal permeability (sandstone)

# Integer property 1 = 0 means low permeability (shale)

#

meshsurf # See Users Manual Section 2.2

selm1 = s1, int_property 1 = 1 # 1-th layer (sandstone)

selm2 = s3, int_property 1 = 1 # 3-th layer (sandstone)

selm3 = s5, int_property 1 = 1 # 5-th layer (sandstone)

selm4 = s7, int_property 1 = 1 # 7-th layer (sandstone)

selm5 = s2, int_property 1 = 0 # 2-th layer (shale)

selm6 = s4, int_property 1 = 0 # 4-th layer (shale)

selm7 = s6, int_property 1 = 0 # 6-th layer (shale)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The corresponding problem input file is given by

# layerstr01.prb

#

# problem file for the straight layer problem

# Test without preconditioning

# See Manual Examples Section 3.1.6

#

# To run this file use:

# sepcomp layerstr01.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

set warn off ! suppress warnings

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

k_shale = 1e-7 # scaled permeability for shale

k_sand = 1 # scaled permeability for sandstone

vector_names

pressure

exact_pressure

variables
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error

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

elgrp1 = 800 # type number for Laplacian type equations

elgrp2 = 800

elgrp3 = 800

elgrp4 = 800

elgrp5 = 800

elgrp6 = 800

elgrp7 = 800

essbouncond # Define where essential boundary conditions are

# given (not the value)

curves0(c21) # The pressure on the upper surface is 1

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

storage_method = compact, symmetric # Symmetric compact storage,

# hence an iterative method is used

end

# Fill the non-zero values of the essential boundary conditions

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c21),value=1 # The pressure on the upper surface is 1

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

# See also standard problems Section 3.1

coefficients

elgrp1(nparm=20) # coefficients for second order equation

# Layer 1 (sandstone)

coef6 = k_sand # a11 = kappa

coef9 = coef6 # a22 = a11

elgrp2(nparm=20)

coef6 = k_sand # Layer 3 (sandstone)

coef9 = coef6 #

elgrp3(nparm=20)

coef6 = k_sand # Layer 5 (sandstone)

coef9 = coef6 #

elgrp4(nparm=20)

coef6 = k_sand # Layer 7 (sandstone)

coef9 = coef6 #

elgrp5(nparm=20)

coef6 = k_shale # Layer 2 (shale)

coef9 = coef6 #

elgrp6(nparm=20)
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coef6 = k_shale # Layer 4 (shale)

coef9 = coef6 #

elgrp7(nparm=20)

coef6 = k_shale # Layer 6 (shale)

coef9 = coef6 #

end

# Input for the linear solver

# See users manual, Section 3.2.8

solve

iteration_method = cg, preconditioning = none, accuracy = 1e-8//

print_level = 2, start=zero, max_iter = 10000

iseq_exact=exact_pressure

end

#

# Create vector with exact solution (p=1)

#

create vector # See users manual, Section 3.2.10

value = 1

end

# Define the steps that must be carried out by the main program and the

# sequence of these steps

structure # See users manual, Section 3.2.3

create_vector, exact_pressure

prescribe_boundary_conditions, pressure

solve_linear_system, pressure

error = norm_dif=3, vector1 = exact_pressure, vector2 = pressure

print error, text = ’difference ’

output

end

Mark that in the solve input block we have required an accuracy of 10( − 8). This may seem
overdone but will be clear after the explanation. Furthermore the option iseq_exact=1 is used
to compare the numerical solution with the true solution. In this way we can compute the true
error in each iteration step. The option max_iter = 10000 is just a large overestimate. SEPRAN
reduces this value to 10 times the number of unknowns.
Figure 3.1.6.2 shows the norm of the residual, the norm of the error and also the estimate of the
smallest eigenvalue as function of the number of iterations. In each layer 10 elements in the hori-
zontal and 5 elements in the vertical direction are used. From this figure the following remarkable
observations may be made.

1. The residual decreases monotonically between iterations 1 and 30. For the iterations between
31 and 1650 we have an erratic behaviour of the residual. After iterations 1650 again we have
a monotone decreasing of the residual.

2. If we require an accuracy of order 10−2, the process would stop after approximately 25 it-
erations, since then the residual divided by the estimate of the smallest eigenvalue is small
enough. Unfortunately the true error (‖x − xk‖2) is still large. The estimated error is not
sharp, because the estimate of the smallest eigenvalue is very inaccurate.
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Figure 3.1.6.2: Convergence behaviour of CG
without preconditioning
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Figure 3.1.6.3: Convergence behaviour of CG
with ILU preconditioning

3. In iterations 1-30 it looks as if the smallest eigenvalue is of order 10−2, whereas from iteration
31 it is clear that the smallest eigenvalue is of order 10−7.

So we see that the bad condition leads to a large number of iterations. Moreover, for practical
values of the error, the termination criterion is not reliable.

Repeating the same experiment using an ILU preconditioning (also called ICCG) gives a drastic
reduction of the number of iterations, but still the same conclusions as for the case without precon-
ditioning can be drawn. Figure 3.1.6.3 shows the convergence behaviour. Note that the horizontal
scales in Figures 3.1.6.2 and 3.1.6.3 are quite different. Although the number of iterations (48) is
small compared to the non-preconditioned algorithm (1650), still it is quite large compared to the
number of unknowns (385).
The mesh input file for the preconditioned case is identical to that of the non-preconditioned one.
In the problem file only the solve input block is different

solve, sequence_number = 1

iteration_method = cg, preconditioning = ilu, accuracy = 1e-8//

print_level = 2, start=zero, max_iter = 10000//

iseq_exact=exact_pressure

end

The graph of the residual in Figure 3.1.6.3, shows three bumps. This suggests that after the
preconditioning there are three small eigenvalues in the spectrum of the preconditioned matrix.
The reason why there are exactly three of such eigenvalues is explained in Vuik et al (1998). In
order to accelerate the convergence and moreover to make the termination criterion reliable we try
to approximate the corresponding eigenvectors and remove the contribution of these eigenvectors
by a projection algorithm. This method is called the deflated ICCG method.
An important aspect is of course, how to approximate the eigenvectors. In order to solve this
problem we solve Equation 3.1.6.1 for each of the shale layers separately with suitable boundary
conditions. The solution of these problems is relatively easy, since σ is constant in a shale layer and
the number of unknowns per layer is much smaller than in the original problem.
SEPRAN is only able to know how many small eigenvalues can be expected and how the approximate
eigenvectors must be computed if it knows which layers correspond to a large permeability and which
layers correspond to a small permeability. This can of course be verified by computing the value of
σ in each element, but that process is time consuming and does not fit in the present way of dealing
with the coefficients. To simplify the task it has been decided to provide each layer with exactly
one integer property. In the input file layerstr01.msh it has been demonstrated how this is done.
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Integer property 1 = 1 means a large permeability (sandstone) and integer property 1 = 0 means
a low permeability (shale).
In order to activate the computation of the approximate eigenvectors and use of the projection
method the solve input block is adapted as follows:

solve, sequence_number = 1

iteration_method = cg, preconditioning = ilu, accuracy = 1e-8//

print_level = 2, start=zero, max_iter = 10000//

iseq_exact=exact_pressure, proj_method = approximate_eigenvectors//

proj_accuracy=1d-2, proj_ignore = 1d-3

end

New in this case are the keywords proj_method, proj_accuracy and proj_accuracy.
proj_method = approximate_eigenvectors indicates that the projection method with approxi-
mate eigenvectors is used and since no keyword proj_keep is given, the eigenvectors are computed
in this program.
proj_accuracy=1d-2 defines how accurate the subproblem on the shale layer must be solved. An
accuracy of 10( − 2) is sufficient in most practical applications.
Finally proj_ignore = 1d-3 indicates that all elements in the projection vector that are smaller
than 10( − 3) will be neglected. This may save computing time and memory, although for this
particular problem there is no need to use it.
Numerical experiments have shown that the deflated ICCG method is approximately 30% more
expensive per iteration. But since the number of iterations reduces considerably and moreover
the termination criterion becomes reliable, this approach is a clear improvement compared to the
classical ICCG method. Figures 3.1.6.4 and 3.1.6.5 show the convergence behaviour of the deflated
method (noted as DICCG2) and the norm of the error for the ICCG and DICCG2 method.
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Now we have seen that the deflated ICCG method (the projection method) behaves well for the
straight layer problem we also apply it to an artificial curved example.
To the end the following mesh input file is used:

# layerarc01.msh

#

# mesh file for curved layer problem

# See Manual Examples Section 3.1.6

#

# To run this file use:

# sepmesh layerarc01.msh

#

# Creates the file meshoutput

set warn off ! suppress warnings

set time off ! suppress printing of time

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nelm1 = 10 # number of elements in horizontal direction

nelm2 = 5 # number of elements in vertical direction

reals

width = 1 # width of the region

height = 7 # height of the region

h1 = 1 # top of 1-th layer

h2 = 2 # top of 2-th layer

h3 = 3 # top of 3-th layer

h4 = 4 # top of 4-th layer

h5 = 5 # top of 5-th layer

h6 = 6 # top of 6-th layer

h7 = 7 # top of 7-th layer

hw = 0.5 # centre of circle defining bottom line

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 =(0,0) # point left under

p2 =( width,0) # point right under

p3 =(0, h1) # left top of 1-th layer

p4 =( width, h1) # right top of 1-th layer

p5 =(0, h2) # left top of 2-th layer

p6 =( width, h2) # right top of 2-th layer

p7 =(0, h3) # left top of 3-th layer

p8 =( width, h3) # right top of 3-th layer

p9 =(0, h4) # left top of 4-th layer

p10=( width, h4) # right top of 4-th layer

p11=(0, h5) # left top of 5-th layer
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p12=( width, h5) # right top of 5-th layer

p13=(0, h6) # left top of 6-th layer

p14=( width, h6) # right top of 6-th layer

p15=(0, h7) # left top of 7-th layer

p16=( width, h7) # right top of 7-th layer

p40 = ( hw,0) # mid point of bottom line

#

# curves

#

curves # See Users Manual Section 2.3

c1 =arc1(p1,p2,-p40,nelm= nelm1) # arc at bottom

c2 =line1(p1,p3,nelm= nelm2) # left-hand side of 1-th layer

c3 =translate c1(p3,p4) # right-hand side of 1-th layer

c4 =translate c2(p2,p4) # upper side of 1-th layer

c5 =line1(p3,p5,nelm= nelm2) # left-hand side of 2-th layer

c6 =translate c1(p5,p6) # upper side of 2-th layer

c7 =translate c5(p4,p6) # right-hand side of 1-th layer

c8 =line1(p5,p7,nelm= nelm2) # left-hand side of 3-th layer

c9 =translate c1(p7,p8) # upper side of 3-th layer

c10=translate c8(p6,p8) # right-hand side of 3-th layer

c11=line1(p7,p9,nelm= nelm2) # left-hand side of 4-th layer

c12=translate c1(p9,p10) # upper side of 4-th layer

c13=translate c11(p8,p10) # right-hand side of 4-th layer

c14=line1(p9,p11,nelm= nelm2) # left-hand side of 5-th layer

c15=translate c1(p11,p12) # upper side of 5-th layer

c16=translate c14(p10,p12) # right-hand side of 5-th layer

c17=line1(p11,p13,nelm= nelm2) # left-hand side of 6-th layer

c18=translate c1(p13,p14) # upper side of 6-th layer

c19=translate c17(p12,p14) # right-hand side of 6-th layer

c20=line1(p13,p15,nelm= nelm2) # left-hand side of 7-th layer

c21=translate c1(p15,p16) # upper side of 7-th layer

c22=translate c20(p14,p16) # right-hand side of 7-th layer

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle3(c1,c4,-c3,-c2) # 1-th layer

s2=rectangle3(c3,c7,-c6,-c5) # 2-th layer

s3=rectangle3(c6,c10,-c9,-c8) # 3-th layer

s4=rectangle3(c9,c13,-c12,-c11) # 4-th layer

s5=rectangle3(c12,c16,-c15,-c14) # 5-th layer

s6=rectangle3(c15,c19,-c18,-c17) # 6-th layer

s7=rectangle3(c18,c22,-c21,-c20) # 7-th layer

#

# Connect surfaces with element groups and provide them with one integer

# property

# Integer property 1 = 1 means normal permeability (sandstone)

# Integer property 1 = 0 means low permeability (shale)

#

meshsurf # See Users Manual Section 2.2

selm1 = s1, int_property 1 = 1 # 1-th layer (sandstone)

selm2 = s3, int_property 1 = 1 # 3-th layer (sandstone)

selm3 = s5, int_property 1 = 1 # 5-th layer (sandstone)

selm4 = s7, int_property 1 = 1 # 7-th layer (sandstone)

selm5 = s2, int_property 1 = 0 # 2-th layer (shale)
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selm6 = s4, int_property 1 = 0 # 4-th layer (shale)

selm7 = s6, int_property 1 = 0 # 6-th layer (shale)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The mesh is plotted in Figure 3.1.6.6 Numerical results for this mesh are comparable to the straight

 

Figure 3.1.6.6: Mesh used in the parallel arcs layered problem

layer problem and will not be repeated here.

Finally we shall show how the method behaves if approximate eigenvectors computed in one con-
figuration are used in the other one. To that end we start with a mesh consisting of straight layers
and compute the approximate eigenvectors. After that we transform the coordinates such that the
curved mesh arises. Instead of recomputing the approximate eigenvectors we reuse the eigenvectors
computed in the straight layer case. Although these new eigenvectors are not as accurate as the
ones directly computed on the curved mesh, the results are almost comparable. The space spanned
by the eigenvectors of the straight layer problem does not differ too much of the space spanned by
the eigenvectors of the curved mesh. So it is not necessary to know the approximate eigenvectors
to accurately, as long as the main behaviour of the eigenvectors is present.
If we create the mesh for the straight layer problem and compare it with the curved mesh then we
see an essential difference. In the straight layer problem all rectangles are subdivided into triangles
that all are directed in the same direction. In the curved case, however the triangles at the left-hand
side of the symmetry axis are directed in the opposite direction of that of the right-hand side. This
is because the mesh generator tries to avoid large angles. If we start with the straight layer mesh
and change the coordinates without precautions, all diagonals would be pointing in one direction.
The results is an error message that the ILU preconditioning does not exist. This is due to the fact
that the matrix is not longer diagonal dominant due to the large angles. This is typical for this
extreme case.
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In order to create diagonals pointing in the right direction we start with a curved mesh, where the
centre of the arc defining the bottom line is defined by

p40 = (hw,-1000) # centroid of bottom line

# In order to get a "straight line" the

# point is moved a large distance downwards

The rest of the input file is not changed. The result is an almost straight mesh since the radius
of the circles is approximately equal to 1000, but the diagonals of the triangles are pointed in the
right direction.

To change the coordinates of the mesh we use the option change_coordinates in the input block
defined by the keyword structure. This requires an extra input block and also a function subroutine
FUNCCOOR that defines the transformation from old to new coordinates. For that reason it is
necessary to supply a new main program layerarc02.f with the following contents:

program layerarc02

! --- Main program for straight/curved layer problem

! See Manual Examples Section 3.1.6

! To link this program use:

!

! seplink layerarc02

call sepcom ( 0 )

end

subroutine funccoor ( ichoice, ndim, coor, nodes, numnodes )

! --- This subroutine is used to change the coordinates

! The input coordinates are for the straight mesh

! The output coordinates are for the curved mesh

! The transformation is given by:

!

! x_curved = (1-cos(pi x_straight))/2

! y_curved = y_straight+sin(pi x_straight)/2

implicit none

integer ichoice, ndim, numnodes , nodes(numnodes)

integer i, nodenr

double precision coor(ndim,*)

include ’SPcommon/consta’

do i = 1, numnodes

nodenr = nodes(i)

coor(2,nodenr) = coor(2,nodenr)+0.5d0*sin(pi*coor(1,nodenr))

coor(1,nodenr) = 0.5d0*(1d0-cos(pi*coor(1,nodenr)))

end do

end

To link this program use the command seplink:

seplink layerarc02
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The corresponding input file is almost identical to the file layerstr03.prb, except for the following
parts:

# Input for the linear solver

# See users manual, Section 3.2.8

solve, sequence_number = 1

iteration_method = cg, preconditioning = ilu, accuracy = 1e-8//

print_level = 2, start=zero, max_iter = 10000//

iseq_exact=exact_pressure, proj_method = approximate_eigenvectors//

proj_accuracy=1d-2, proj_ignore = 1d-3, proj_keep = keep

end

solve, sequence_number = 2

iteration_method = cg, preconditioning = ilu, accuracy = 1e-8//

print_level = 2, start=zero, max_iter = 10000//

iseq_exact=exact_pressure, proj_method = approximate_eigenvectors//

proj_keep = old

end

# To transform the coordinates from the straight mesh to the curved mesh

# change_coordinates is used

#

# See users manual, Sections 3.2.3 and 2.2

#

change_coordinates, sequence_number = 1

all

end

# Define the steps that must be carried out by the main program and the

# sequence of these steps

# Vector 1 contains the exact solution

# Vector 2 contains the numerical solution of the straight mesh and later on

# of the curved mesh

structure # See users manual, Section 3.2.3

create_vector, exact_pressure

prescribe_boundary_conditions, pressure

solve_linear_system, pressure

error = norm_dif=3, vector1 = exact_pressure, vector2 = pressure

print error, text = ’difference ’

output

end

First the exact solution is created, then the problem is solved on the straight layer mesh and the
approximate eigenvectors are kept.
This is the option proj_keep = keep.
Next the coordinates are changed and the problem is solved again starting with the zero vector.
The previously computed projection vectors are reused. This is the option proj_keep = old.
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3.1.7 Stability of a salt layer formed by salty ground-water upflow

3.1.7.1 Outline of the problem

This problem has been studied by Gert-Jan Pieters (2000), for more mathematical background on
the problem we refer to his Master’s Thesis .

Upflowing salty ground-water in the subsurface evaporates completely at the surface. After through-
flow induced by evaporation, the salt remains behind at the surface (salt-lakes). This saline layer
is referred to as a diffusion layer which may grow up to a finite thickness. This finite thickness is
an equilibrium between upflowing salt in solution and downward diffusion. It is our aim to analyze
this natural process numerically.
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Figure 3.1.7.1: Geometry

Consider a bounded porous medium with a horizontal upper boundary (surface), see Figure 3.1.7.1.
For the case of a uniform upflow within the medium and through the boundary, we treat the problem
as one with one spatial dimension. However, for the case of a porous medium with non-homogeneous
and non-isotropic permeability the problem has to be treated as a two-dimensional problem. Van
Duijn et al (2000), Wooding (1960) found instabilities of the diffusion layer. These instabilities were
triggered by perturbation of either the initial condition (locally or globally) or by local perturbation
at all times. In this research the initial condition is globally perturbed (in this context globally
means the interior of the domain Ω, or Ω/∂Ω, see Figure 3.1.7.1). Wooding (1960) found instability
of the diffusion layer numerically and his observation were confirmed by experiments. Van Duijn et
al. (2000) analyzed these instabilities using semi-explicit expressions for an unbounded domain. In
the present work we are concerned with analysis of the stability of this diffusion layer with respect
to small perturbations of the initial condition of the saturation in the domain.

3.1.7.2 Equations for salt transport

We use the same equations as Van Duijn et al. (2000) and consider an isotropic, homogeneous
medium. Let the water density, fluid density far away from the surface, local fluid density and
maximum fluid density at the outflow boundary be denoted by ρ0, ρ, ρr and ρm [kg/m3] respectively.
Clearly ρ0 < ρr < ρm and ρr ≤ ρ ≤ ρm.
Assuming the porosity φ [-] to be constant, we have for the fluid mass-balance equation:

φ
∂ρ

∂t
+∇ · (ρq) = 0, (3.1.7.1)
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where q [m3/(m2s)] is the Darcy volume flow rate and t is time. We use bold-face characters to
indicate that quantities are vectors. For the mass-balance of salt one obtains

φ
∂(ρω)

∂t
+∇ · (ρωq− ρD∇ω) = 0, (3.1.7.2)

where ω is the mass fraction of salt (i.e. salt mass per unit fluid volume). The dispersivity is given
by D. The equation of state is taken as (see van Duijn et al (1993))

ρ = ρ0e
αω, (3.1.7.3)

where α is treated as a constant. The volume flow rate follows from Darcy’s Law:

µ

κ
q +∇(p− gρrz)− (ρ− ρr)gk = 0. (3.1.7.4)

Here p, g, κ, µ are pressure, gravity constant, permeability and fluid viscosity respectively. Combi-
nation of equations 3.1.7.1, 3.1.7.2 and 3.1.7.3 gives

φ
∂ρ

∂t
+ q · ∇ρ = D∆ρ. (3.1.7.5)

Here ∆ denotes the Laplacian operator. In order to simplify the subsequent analysis, we apply the
Boussinesq approximation. The approximation consists of setting constant all the properties of the
medium, except that the buoyancy term is retained in the Darcy equation. As a consequence the
equation of continuity reduces to ÷q = 0. The Boussinesq is valid provided that density changes
remain small in comparison to ρr.

3.1.7.3 Dimensionless equations

Introduce the saturation

S :=
ρ− ρr
ρm − ρr

, with 0 ≤ S ≤ 1, (3.1.7.6)

and define the dimensionless vector U proportional to volume flow rate:

U :=
µq

(ρm − ρr)gκ
, (3.1.7.7)

subsequently we replace t by a dimensionless time τ :=
tε2

φD
, where ε is the rate of through-flow by

evaporation through the surface. The Cartesian coordinates (x, y, z) are scaled to the thickness of
the equilibrium boundary layer, δ = D/ε. Finally we introduce the scale for the pressure p as

P :=
p− ρrgδz

(ρm − ρr)gδ
. (3.1.7.8)

The dimensionless equations become

(P1)


∇ ·U = 0,
U +∇P − Sk = 0,
∂S
∂τ + RaU · ∇S = ∆S.

Here the Rayleigh-number Ra is defined as Ra :=
(ρm − ρr)gκ

µε
. It is our aim to analyze stability of

the diffusion layer with respect to small perturbations of the initial saturation profile for different
Rayleigh numbers. Problem (P1) has boundary conditions and initial conditions

(IB1)



S(x, z, 0) = 0, (x, y) ∈ Ω,
S(x, 0, τ) = 1, τ > 0, 0 ≤ x ≤ L,
S(x,W, τ) = 0, τ > 0, 0 ≤ x ≤ L,
∂S

∂x

∣∣∣∣
x=0,L

= 0, τ > 0, 0 ≤ z ≤W,

U
∣∣
z=0,W

= −εk, τ > 0, 0 ≤ x ≤ L,
∂P

∂x

∣∣∣∣
x=0,L

= 0, τ > 0, 0 ≤ z ≤W.
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Since above conditions and P1 imply that the pressure is determined up to an integration constant,
we use the numerically superior stream-function formulation to solve the two-dimensional problem.

3.1.7.4 The stream function formulation

We introduce a ”vector potential” such that U = curl Ψ, which reassures that ÷U = 0, since we
always have ÷(curl Ψ) = 0. Furthermore, since U = (Ux, 0, Uz) and all differentiations with respect
to y vanish, i.e. ∂y = 0, we have Ψ = (0,Ψy, 0). We substitute U = curl Ψ into P1 and take
the curl of the third equation of P1 and keep in mind that curl (gradP ) = 0. Hirasaki & Hellums
(1968) prove that a vector potential Ψ exists and is solenoidal if the velocity field U is solenoidal,
i.e. ÷Ψ = 0. Keeping this in mind we obtain

(P2)


∂S

∂τ
+ Ra

(
−∂Ψy

∂z

∂S

∂x
+
∂Ψy

∂x

∂S

∂z

)
= ∆S,

∆Ψy =
∂S

∂x
.

Here ∆ denotes the Laplacian in the x and z co-ordinates. The initial and boundary conditions
change into

(IB2)



S(x, z, 0) = 0, (x, y) ∈ Ω,
S(x, 0, τ) = 1, τ > 0, 0 ≤ x ≤ L,
S(x,W, τ) = 0, τ > 0, 0 ≤ x ≤ L,
∂S

∂x

∣∣∣∣
x=0,L

= 0, τ > 0, 0 ≤ z ≤W,

Ψy

∣∣
z=0,W

= −εx, τ > 0, 0 ≤ x ≤ L,
Ψy(0, z, τ) = 0, τ > 0, 0 ≤ z ≤W,
Ψy(L, z, τ) = −εL, τ > 0, 0 ≤ z ≤W.

3.1.7.5 Stability

We analyze P2 and IB2 with respect to small perturbations of the initial saturations, i.e.

S̃ = S + εν, (3.1.7.9)

where S comes from (P2) and (IB2), S̃ is the perturbed saturation and ν = ν(x) is the perturbation
function. The magnitude of the perturbation is given by ε.
We are interested in the behaviour of the L2-norm of the gradient of the perturbed stream-function,
i.e.

∫
Ω

|∇(Ψy − Ψ̃y)|2, where Ψ̃y is the perturbed stream-function. We denote this integral as

||∇(Ψy − Ψ̃y)||L2(Ω). Since the unperturbed problem is one-dimensional, we have{
∆Ψy = 0, τ ≥ 0 (unperturbed),

∆Ψ̃y = ε∂ν∂x , τ = 0 (perturbed).

In the stable case it can be shown that ||∇(Ψy − Ψ̃y)||L2(Ω) ≤ ε2||ν||L2(Ω) for all τ ≥ 0. We qualify
the system stable for perturbations when

d

dτ
||∇(Ψy − Ψ̃y)||L2(Ω) < 0. (3.1.7.10)

It turns out that often
d

dt
|||∇(Ψy − Ψ̃y)|||L2(Ω) < 0 for some time 0 < τ < τ∗ and

d

dτ
|||∇(Ψy −

Ψ̃y)|||L2(Ω) > 0 when τ > τ∗. The routines developed in this problem keeps track of the L2-norm of

the gradient of the perturbed stream function, i.e. |||∇(Ψy − Ψ̃y)|||L2(Ω), and gives output in terms
of the stream-function, saturation and velocities.
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3.1.7.6 Examples

We show an example of a perturbation ν = sin ax, a = 0.25, ε = 0.001 and geometrical settings
L = 50, W = 5 and Ra = 5. Furthermore, we show the evaluation of |||∇(Ψy − Ψ̃y)|||L2(Ω) as
function of time. We see that this norm decreases monotonically and hence the small fluctuations
are damped. See Figures 3.1.7.2, 3.1.7.3, 3.1.7.4 and 3.1.7.5. As a counter example we show a
calculation with the same settings, except Ra = 35. Now we see that S contains fingers and
Ψy and U give rotations. The norm |||∇(Ψy − Ψ̃y)|||L2(Ω) decreases for some time and increases
subsequently, indicating its unstable behaviour with respect to small initial perturbations. See
Figures 3.1.7.6, 3.1.7.7, 3.1.7.8 and 3.1.7.9.

Future numerical analysis for this problem:

• further analysis of the instabilities

• different initial perturbation functions, e.g. random perturbations

• non-homogeneous and anisotropic media

3.1.7.7 SEPRAN files

To get the files into your local directory use

sepgetex salt_stable

The mesh, problem, postprocessing and Fortran code files are given below.
The mesh input file

* salt_stable.msh

*

* mesh for natural convection problem

*

constants

integers

nx = 200

nz = 20

reals

length = 50

depth = 5

end

mesh2d

points

p1=(0,0)

p2=( length,0)

p3=( length, depth)

p4=(0, depth)

curves

c1=line 1(p1,p2, nelm= nx,ratio=1, factor=1)

c2=line 1(p2,p3, nelm= nz,ratio=1, factor=1)

c3=line 1(p3,p4, nelm= nx,ratio=1, factor=1)

c4=line 1(p4,p1, nelm= nz,ratio=1, factor=1)

surfaces

s1=rectangle5(c1,c2,c3,c4)

meshsurf

selm1 = s1

plot (jmark=5, numsub=1)

end
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The main program and related subroutines:

! salt_stable.f

!

! This file contains additional subroutines

!

program salt_stable

implicit none

call sepcom ( 0 )

end

! ***********************************************

!

! functions for essential boundary conditions

!

! ***********************************************

function funcbc ( ichoice, x, y, z )

implicit none

double precision funcbc, x, y, z, R, getconst

integer ichoice

include ’SPcommon/ctimen’

R = getconst(’R’)

if ( ichoice==1 ) then

funcbc = -1 * (1/R) * (x)

end if

if ( ichoice==2) then

funcbc = -1 * (1/R) * (x)

end if

end

! ***********************************************

!

! perturbation of the initial saturation

!

! ***********************************************

function func ( ichoice, x, y, z )

implicit none

double precision func, x, y, z, R, Depth, Length, a, getconst

integer ichoice

include ’SPcommon/ctimen’

R = getconst(’R’)

Depth = getconst(’Depth’)

Length = getconst(’Length’)

a = getconst(’a’)

if (ichoice==1) then

if ( (y.lt.Depth).and.(y.gt.0)

+ .and.(x.gt.0).and.(x.lt.Length) ) then

func = 0.001 * sin(a * x)

else
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func = 0

end if

end if

end

subroutine compcons

implicit none

double precision R, R_inv, Length_div_R, Length, getconst

R = getconst(’R’)

Length = getconst(’Length’)

R_inv = 1/R

Length_div_R = Length/R

call putreal ( ’R_inv’, R_inv )

call putreal ( ’min_R_inv’, -R_inv )

call putreal ( ’Length_div_R’, Length_div_R )

call putreal ( ’min_Length_div_R’, -Length_div_R )

end

The input file for the computational program:

* salt_stable.prb

*

* For details, see the text above

*

constants

reals

R = 35

R_inv

min_R_inv

Length_div_R

min_Length_div_R

D = 1

Depth = 5

Length = 50

a = 0.25

vector_names

min_R_inv

delta_grad_Psi

q

S

dS_dx

min_dS_dx

Psi

Psi_x

Psi_z

R_Psi_x

R_Psi_z
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min_R_Psi_x

min_R_Psi_z

Psi_x_min_R_inv

norm_grad_Psi

variables

res_int

end

problem 1 # stream-function equation

types

elgrp1 = (type = 800)

essboundcond

curves(c1)

curves(c2)

curves(c3)

curves(c4)

problem 2 # saturation equation

types

elgrp1 = (type = 800)

essboundcond

curves(c1)

curves(c3)

end

*

* Computations structure

*

structure

# create vector -1/R

create_vector, sequence_number=2, min_R_inv

# create delta_grad_Psi (initial with ones at both degrees of freedom)

create_vector, sequence_number=6, delta_grad_Psi

# create q (initial with ones at both degrees of freedom)

create_vector, sequence_number=3, q

# create perturbed startvector S

create_vector, sequence_number=1, S

# prescribe Dirichlet conditions for the saturation S

prescribe_boundary_conditions, sequence_number=2, S

# compute dS/dx

derivatives, seq_deriv=3, dS_dx

# compute min_dS_dx

min_dS_dx = - dS_dx

# prescribe boundary conditions for Psi

prescribe_boundary_conditions, sequence_number=1, Psi
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# solve pressure Psi

solve_linear_system, seq_coef=1, problem=1, Psi

# compute Psi_x

derivatives, seq_deriv=1, Psi_x

# compute Psi_z

derivatives, seq_deriv=2, Psi_z

# compute R times Psi_x

R_Psi_x = R * Psi_x

# compute min_R_Psi_x

min_R_Psi_x = - R_Psi_x

# compute R times Psi_z

R_Psi_z = R * Psi_z

# compute min_R_Psi_z

min_R_Psi_z = - R_Psi_z

# compute velocity q

copy min_R_Psi_z q degfd2=1

copy R_Psi_x q degfd2=2

# compute Psi_x - 1/R

Psi_x_min_R_inv = Psi_x - min_R_inv

# compute delta_grad_Psi

copy Psi_x_min_R_inv delta_grad_Psi degfd2=1

copy Psi_z delta_grad_Psi degfd2=2

# compute norm_grad_Psi

norm_grad_Psi = inner_product delta_grad_Psi delta_grad_Psi

# compute L2 norm of the velocity difference

integral, seq_coef=3, seq_integral=1, res_int, norm_grad_Psi

print res_int, text=’ ’

# write the solutions for t=0 to a file

output

# start first time loop

start_time_loop

# compute time step

time_integration, S

# compute dS/dx

derivatives, seq_deriv=3, dS_dx

# compute min_dS_dx

min_dS_dx = - dS_dx

# prescribe the boundary conditions for Psi
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prescribe_boundary_conditions, sequence_number=1, Psi

# solve pressure Psi

solve_linear_system, seq_coef=1, problem=1, Psi

# compute Psi_x

derivatives, seq_deriv=1, Psi_x

# compute Psi_z

derivatives, seq_deriv=2, Psi_z

# compute R times Psi_x

R_Psi_x = R *Psi_x

# compute min_R_Psi_x

min_R_Psi_x = - R_Psi_x

# compute R times Psi_z

R_Psi_z = R *Psi_z

# compute min_R_Psi_z

min_R_Psi_z = - R_Psi_z

# compute velocity q

copy min_R_Psi_z q degfd2=1

copy R_Psi_x q degfd2=2

# compute Psi_x - 1/R

Psi_x_min_R_inv = Psi_x - min_R_inv

# compute delta_grad_Psi

copy Psi_x_min_R_inv delta_grad_Psi degfd2=1

copy Psi_z delta_grad_Psi degfd2=2

# compute norm_grad_Psi

norm_grad_Psi = inner_product delta_grad_Psi delta_grad_Psi

# compute L2 norm of the velocity difference

integral, seq_coef=3, seq_integral=1, res_int, norm_grad_Psi

print res_int, text=’ ’

# write solutions for each time step to a file

output

# end time loop

end_time_loop

end

*

* Define initial conditions for the saturation S

*

create vector, sequence_number=1, problem = 2

func = 1

end
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*

* Define min_R_inv

*

create vector, sequence_number = 2

type = vector of special structure v1

value = min_R_inv

end

*

* Define q (initial)

*

create vector, sequence_number = 3

type = vector of special structure v2

value = 1, degfd = 1

value = 1, degfd = 2

end

*

* Define delta_grad_Psi (initial)

*

create vector, sequence_number=6, problem=1

type = vector of special structure v2

value = 1, degfd = 1

value = 1, degfd = 2

end

*

* Essential boundary conditions for stream-function Psi

*

essential boundary conditions, sequence_number=1, problem=1

curves (c1), func = 1

curves (c4), value = 0

curves (c3), func = 2

curves (c2), value = min_Length_div_R

end

*

* Essential boundary conditions for saturation S

*

essential boundary conditions, sequence_number=2, problem=2

curves (c3), value = 0

curves (c1), value = 1

end

*

* Derivatives block, to compute Psi_x

*

derivatives, sequence_number=1, problem=1

icheld = 1, ix=1

seq_input_vector = Psi

end

*

* Derivatives block, to compute Psi_z
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*

derivatives, sequence_number=2, problem=1

icheld = 1, ix=2

seq_input_vector = Psi

end

*

* Derivatives block, to compute dS/dx

*

derivatives, sequence_number=3, problem=2

icheld = 1, ix=1

seq_input_vector = S

end

*

* Integral block, to compute the L_2_norm

*

integrals, sequence_number = 1

icheli = 2

end

*

* Definition of coefficients for the streamfunction

*

coefficients, sequence_number = 1, problem=1

elgrp1(nparm=20)

coef6 = 1

coef9 = coef6

coef16 = old_solution min_dS_dx

end

*

* Coefficients for the saturation equation

*

coefficients, sequence_number = 2, problem=2

elgrp1(nparm=20)

icoef2 = 1

coef6 = D

coef9 = coef6

coef17 = 1

coef12 = old_solution min_R_Psi_z

coef13 = old_solution R_Psi_x

end

*

* Coefficients for the area integration

*

coefficients, sequence_number = 3, problem=1

elgrp1(nparm=10)

coef4 = 1

end

*

* Definition of the time loop

*
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time_integration

method = euler_implicit

tinit = 0

tend = 5

tstep = 0.1

toutinit = 0

toutend = 5

toutstep = 0.1

seq_boundary_conditions = 2

seq_coefficients = 2

end

The seppost input file

* salt_stable.pst

*

*

* input for seppost

*

postprocessing

time = (0,5)

plot vector q

plot contour Psi

plot coloured contour S

end

end
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3.1.8 A comparison of some upwind schemes

In this section we consider a number of classical test schemes for upwind methods.
It concerns the following problems:

Convection skew to the mesh.

Rotating cone problem.

3.1.8.1 Convection skew to the mesh

In this example we consider a convection-diffusion problem, with zero source term. The diffusivity
was taken to be 10−6. The flow in the unit square is unidirectional and constant (||u|| = 1). At the
lower boundary of the square we have a Dirichlet boundary condition (c = 1). At the left-hand side
we have also a Dirichlet boundary condition (c = 1 for y ≤ 0.2 and c = 0 for y > 0.2). The angle
α of the flow is an input parameter, which in our example is equal to 45◦. At all other boundaries
the natural boundary condition ∂φ

∂n = 0 is imposed.
Figure 3.1.8.1 shows the configuration used The result is a discontinuous concentration over the
region. The exact solution is equal to 1 in the region starting with boundary condition 1 and
following the straight line with the angle of the flow.
In this section we shall compare the behaviour of standard Galerkin and some upwind schemes for
this problem. Both linear triangles and bi-linear quadrilaterals are used.
Quadratic elements do not behave so well for this kind of problems and it is advised always to
use linear elements. If the velocity is the result of a quadratic velocity computation, the option
linear_subelements will subdivide the quadratic elements into linear ones.
The exact solution satisfies 0 ≤ c ≤ 1 and a scheme is said to satisfy the maximum principle if the
numerical solution is also between 0 and 1.
If the result of a scheme does not satisfy the maximum principle we can always force this condition
by using the keyword limit_solution either in the linear solver or the nonlinear solver. Of course
this is brute force and also not accurate, but for some applications it is a must.

To get this example into your local directory use:

sepgetex conv_shockxx

with xx equal to 01 02 03 or 04.
These options correspond to the following cases:

01 Linear triangular elements

02 Linear triangular elements with limiting

03 Bi-linear quadrilaterals

04 Bi-linear quadrilaterals with limiting

To run these problems use:

sepmesh conv_shockxx.msh

sepview sepplot.001

seplink conv_shockxx

conv_shockxx < conv_shockxx.prb

seppost conv_shockxx.pst

sepview sepplot.001

The mesh input file for the linear triangle case is given by
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# conv_shock01.msh

#

# mesh file for testing of upwind schemes for 2d convection-diffusion

# linear triangular elements

# See manual standard problems, Section 3.1.8.1

# Shock problem

#

# To run this file use:

# sepmesh conv_shock01.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the square

length = 1 # length of the square

discontinuity = 0.2 # height of the discontinuity point on left-hand

# side

integers

n = 10 # number of elements in length direction

m1 = 2 # number of elements in width direction from below to

# point with discontinuity

m2 = 8 # number of elements in width direction from

# point with discontinuity to top

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=( length,0) # Right under point

p3=( length, width) # Right upper point

p4=(0, width) # Left upper point

p5=(0, discontinuity) # Discontinuity point

#

# curves

#

curves # See Users Manual Section 2.3

c1 = line (p1,p2,nelm= n) # lower boundary

c2 = translate c4 (p2,-p3) # right-hand side boundary

c3 = line (p3,p4,nelm= n) # upper boundary

c4 = curves(c11,c12) # left-hand boundary consisting of two parts

c11= line (p1,p5,nelm= m1) # lower part of left-hand boundary

c12= line (p5,p4,nelm= m2) # upper part of left-hand boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Linear triangles are used
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s1=rectangle3(c1,c2,c3,-c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Since the velocity is a function of the angle, we need a main program

program conv_shock01

! --- Main program for testing of upwind schemes for 2d convection-diffusion

! linear triangular elements

! See manual standard problems, Section 3.1.8.1

! Shock problem

call sepcom ( 0 )

end

! --- define velocity as function of the angle

function funccf ( ichoice, x, y, z )

implicit none

integer ichoice

double precision x, y, z, funccf, angle, getconst

! --- The constant pi is stored in common block consta

include ’SPcommon/consta’

! --- angle is defined as a constant

angle = getconst ( ’angle’ )

if ( ichoice==1 ) then

! --- ichoice = 1, u = cos(angle)

funccf = cos(angle/180d0*pi)

else if ( ichoice==2 ) then

! --- ichoice = 2, v = sin(angle)

funccf = sin(angle/180d0*pi)

else

! --- Other case, should never be possible

funccf = 0d0

end if

end
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The corresponding input file is

# conv_shock01.prb

#

# problem file for testing of upwind schemes for 2d convection-diffusion

# linear triangular elements

# See manual standard problems, Section 3.1.8.1

# Shock problem

#

# To run this file use:

# sepcomp conv_shock01.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1e-6 # diffusion parameter

angle = 45 # angle of velocity

vector_names

pot_galerkin

pot_first_order

pot_doubly

pot_dc1

pot_tri_max

pot_flip_flop

variables

iupwind

minimum

maximum

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Essential boundary conditions on lower boundary

curves(c4) # Essential boundary conditions on left-hand side

# boundary

end

# Define the essential boundary conditions

# See Users Manual Section 3.2.5
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essential boundary conditions

curves(c1) value = 1 # At C3 T=1,

curves(c11) value = 1 # At C11 T=1,

# at C12 we have T=0, which does not require input

end

# Define the coefficients for Convection-diffusion equation

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = iupwind # Type of upwind

coef6 = eps # a11 = eps

coef9 = coef 6 # a22 = eps

coef12 = func = 1 # u = cos(angle), see subroutine FUNCCF

coef13 = func = 2 # v = sin(angle), see subroutine FUNCCF

end

# Define the structure of the main program

# See Users Manual Section 3.2.3

structure

# First case: Galerkin solution

# Set essential boundary conditions

prescribe_boundary_conditions pot_galerkin, sequence_number = 1

# Compute the potential, by solving the linear equations

# Set the value of the upwind parameter

iupwind = 0

solve_linear_system, pot_galerkin, seq_solve = 1//

seq_coef = 1

# Print minimum and maximum of the solution

minimum = min_max pot_galerkin, scal_max = maximum

print ’Galerkin solution’

print minimum, maximum, text = ’minimum and maximum values’

# Second case: SUPG first-order solution

# Set essential boundary conditions

prescribe_boundary_conditions pot_first_order//

sequence_number = 1

# Compute the potential, by solving the linear equations

# Set the value of the upwind parameter

iupwind = 1

solve_linear_system, pot_first_order, seq_solve = 1//

seq_coef = 1

# Print minimum and maximum of the solution

minimum = min_max pot_first_order, scal_max = maximum

print ’SUPG first-order solution’

print minimum, maximum, text = ’minimum and maximum values’

# Third case: SUPG doubly assymptotic solution

# Set essential boundary conditions

prescribe_boundary_conditions pot_doubly, sequence_number = 1

# Compute the potential, by solving the linear equations

# Set the value of the upwind parameter

iupwind = 3
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solve_linear_system, pot_doubly, seq_solve = 1//

seq_coef = 1

# Print minimum and maximum of the solution

minimum = min_max pot_doubly, scal_max = maximum

print ’SUPG doubly assymptotic solution’

print minimum, maximum, text = ’minimum and maximum values’

# Fourth case: SUPG DC1 solution

# Set essential boundary conditions

prescribe_boundary_conditions pot_dc1, sequence_number = 1

# Compute the potential, by solving the non-linear equations

# Set the value of the upwind parameter

iupwind = 7

solve_nonlinear_system, pot_dc1, sequence_number = 1

# Print minimum and maximum of the solution

minimum = min_max pot_dc1, scal_max = maximum

print ’SUPG discontinuity capturing’

print minimum, maximum, text = ’minimum and maximum values’

# Fifth case: SUPG triangular elements with maximum principle

# Underelaxation is applied

# Set essential boundary conditions

prescribe_boundary_conditions pot_tri_max, sequence_number = 1

# Compute the potential, by solving the non-linear equations

# Set the value of the upwind parameter

# The iteration is started with the doubly assymptotic solution

iupwind = 3

solve_nonlinear_system, pot_tri_max, sequence_number = 2

# Print minimum and maximum of the solution

minimum = min_max pot_tri_max, scal_max = maximum

print ’SUPG triangular elements with maximum principle’

print minimum, maximum, text = ’minimum and maximum values’

# Sixth case: SUPG triangular elements with maximum principle

# suppress flip-flop

# Set essential boundary conditions

prescribe_boundary_conditions pot_flip_flop, sequence_number = 1

# Compute the potential, by solving the non-linear equations

# Set the value of the upwind parameter

# The iteration is started with the doubly assymptotic solution

iupwind = 3

solve_nonlinear_system, pot_flip_flop, sequence_number = 3

# Print minimum and maximum of the solution

minimum = min_max pot_flip_flop, scal_max = maximum

print ’SUPG triangular elements with maximum principle, no flip-flop’

print minimum, maximum, text = ’minimum and maximum values’

output

end

# input for non-linear solver

# Input for DC1

nonlinear_equations, sequence_number = 1 # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//

at_error return

equation 1

fill_coefficients 1
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end

# Input for SUPG triangular elements with maximum principle

nonlinear_equations, sequence_number = 2 # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-5,print_level=2, lin_solver=1//

at_error return, relaxation = 0.9

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

end

# Input for SUPG triangular elements with maximum principle

# Suppress flip-flop

nonlinear_equations, sequence_number = 3 # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//

at_error return

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

at_iteration 4, sequence_number 3

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number=1 # input for iteration 2

elgrp1

icoef2 = 9 # triangular elements with maximum principle

end

change coefficients, sequence_number=2 # input for iteration 3

elgrp1

icoef2 = 10 # initialize flip flop array

end

change coefficients, sequence_number=3 # input for iteration 4

elgrp1

icoef2 = 11 # update flip flop array

end

In order to check the behaviour of the method, we have compared the minimum and maximum
values of the solution. This is a measure for the appearance of wiggles.
Table 3.1.8.1 gives these minimum and maximum values for the methods used.

Table 3.1.8.1 Minimum and maximum values of the solution (triangles)
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Type of method minimum value maximum value
Galerkin -1.83421E-04 1.33327E+00
SUPG first-order -3.78362E-02 1.17226E+00
SUPG doubly asymptotic -3.78362E-02 1.17226E+00
SUPG discontinuity capturing -8.77571E-04 1.05377E+00
SUPG with maximum principle 0 1
SUPG with maximum principle suppressing flip-flop 0 1

In order to inspect the solution, the following input file for program SEPPOST may be used:

# conv_shock01.pst

# Input file for postprocessing of upwind schemes for 2d convection-diffusion

# linear triangular elements

# See manual standard problems, Section 3.1.8.1

# Shock problem

# To run this file use:

# seppost conv_shock01.pst > conv_shock01.post.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

define colour table (1, 6,7,8,9,10,11,12,13,14,15,20)

plot contour pot_galerkin # make a contour plot of the potential

3d plot pot_galerkin, angle = 135 # 3d plot of potential

plot coloured levels pot_galerkin//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

plot contour pot_first_order # make a contour plot of the potential

3d plot pot_first_order, angle = 135 # 3d plot of potential

plot coloured levels pot_first_order//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

plot contour pot_doubly # make a contour plot of the potential

3d plot pot_doubly, angle = 135 # 3d plot of potential

plot coloured levels pot_doubly//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

plot contour pot_dc1 # make a contour plot of the potential

3d plot pot_dc1, angle = 135 # 3d plot of potential

plot coloured levels pot_dc1//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

plot contour pot_tri_max # make a contour plot of the potential

3d plot pot_tri_max, angle = 135 # 3d plot of potential

plot coloured levels pot_tri_max//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

plot contour pot_flip_flop # make a contour plot of the potential

3d plot pot_flip_flop, angle = 135 # 3d plot of potential

plot coloured levels pot_flip_flop//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

end
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Figure 3.1.7.2: Coloured contour plot of the stable saturation S at τ = 5
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Figure 3.1.7.3: The L2-norm versus time
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Figure 3.1.7.4: The stream-function Ψy at τ = 5

Figure 3.1.7.5: The velocity field U at τ = 5
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Figure 3.1.7.6: Coloured contour plot of the stable saturation S at τ = 5
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Figure 3.1.7.7: The L2-norm versus time
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Figure 3.1.7.8: The stream-function Ψy at τ = 5

Figure 3.1.7.9: The velocity U at τ = 5
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Figure 3.1.8.1: Definition of region for skew convection
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Figures 3.1.8.2 to 3.1.8.5 show the three-dimensional representations for the solutions of the Galerkin
case, the SUPG case, SUPG with discontinuity capturing and SUPG satisfying the maximum
principle respectively.

Figure 3.1.8.2: Galerkin solution Figure 3.1.8.3: SUPG, first order

Figure 3.1.8.4: Discontinuity captur-
ing

Figure 3.1.8.5: SUPG, satisfying the
maximum principle
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Figures 3.1.8.6 to 3.1.8.9 show coloured contour levels for the same cases, where black defines the
region with values at most equal to 0, and yellow the values larger or equal to 1. All other colours
represent values between.
Mark that the yellow colour in the last picture is due to the plot subroutine; all values in the left
under corner triangle are exactly equal to 1.

Figure 3.1.8.6: Galerkin solution Figure 3.1.8.7: SUPG, first order

Figure 3.1.8.8: Discontinuity captur-
ing

Figure 3.1.8.9: SUPG, satisfying the
maximum principle
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Table 3.1.8.2 gives these minimum and maximum values for the methods used in case of bilinear
quadrilaterals.

Table 3.1.8.2 Minimum and maximum values of the solution (quadrilaterals)

Type of method minimum value maximum value
Galerkin -3.38159E-04 1.37479E+00
SUPG first-order -3.64150E-02 1.09637E+00
SUPG doubly asymptotic -3.64150E-02 1.09637E+00
SUPG discontinuity capturing 0 1.00003E+00

The result of the discontinuity capturing is reached after 6 iterations. Increasing the accuracy would
lead to a smaller maximum value and more iterations.
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3.1.8.2 Rotating cone problem

In this example we consider the so-called rotating cone problem. Consider the square Ω: (-0.5,-0.5)
× (0.5,0.5) drawn in Figure 3.1.8.10. From the centre to the mid point of the under boundary a

u

cutting line

-0.5 0 0.5

-0.5

0

0.5

Figure 3.1.8.10: Definition of region for rotating cone problem

cut C is defined. We assume that we have to solve the convection-diffusion equation:

−ε∆c+ u · c = 0

The parameter ε is chosen equal to 10−6, which means that we are nearly dealing with pure
convection equation. At the outer boundary we impose the Dirichlet boundary condition c = 0.
The velocity vector u is equal to (−y, x), which implies that the flow rotates around the centroid
counterclockwise. At the inflow side of the cut C the concentration c is given by a Gauss curve:
c = cos(2π(y + 0.25)). At the outflow part of the cut C no boundary condition is given, which
means that implicitly the boundary condition ∂c

∂n = 0 is imposed.
Due to the small amount of diffusion the Gauss curve should be rotated without any damping and
the value of c at the outflow part of the cut must be nearly identical to that at the inflow part.

To get this example into your local directory use:

sepgetex rotatxx

with xx equal to 01 02 03 or 04.
These options correspond to the following cases:

01 Linear triangular elements

02 Linear triangular elements with limiting

03 Bi-linear quadrilaterals

04 Bi-linear quadrilaterals with limiting

To run these problems use:

sepmesh rotatxx.msh

sepview sepplot.001

seplink rotatxx

rotatxx < rotatxx.prb

seppost rotatxx.pst

sepview sepplot.001
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The mesh input file for the linear triangle case is given by

# rotat01.msh

#

# mesh file for testing of upwind schemes for 2d convection-diffusion

# linear triangular elements

# See manual standard problems, Section 3.1.8.2

# Rotating cone problem

#

# To run this file use:

# sepmesh rotat01.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

xmin = -0.5 # minimum x-value

xmax = 0.5 # maximum x-value

ymin = -0.5 # minimum y-value

ymax = 0.5 # maximum y-value

integers

n = 10 # number of elements along one half of a side

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=( xmin, ymin) # Left under point

p2=( xmax, ymin) # Right under point

p3=( xmax, ymax) # Right upper point

p4=( xmin, ymax) # Left upper point

p5=(0,0) # centroid

p10=(0, ymin) # centre of lower side (left part)

p11=(0, ymin) # centre of lower side (right part)

p12=(0, ymax) # centre of upper side

#

# curves

#

curves # See Users Manual Section 2.3

c1 = line (p1,p10,nelm= n) # lower boundary (left part)

c2 = line (p10,p5,nelm= n) # cutting line (left part)

c3 = line (p5,p12,nelm= n) # artificial line from centroid to

# upper boundary

c11 = curves(c2,c3) # artificial line from lower boundary to

# upper boundary (left part)

c4 = translate c1 (p4,p12) # upper boundary (left part)

c5 = translate c11(p1,-p4) # left-hand boundary

# the minus sign is used to indicate the end

# point
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c6 = line (p11,p2,nelm= n) # lower boundary (right part)

c7 = translate c11(p2,-p3) # right-hand boundary

# the minus sign is used to indicate the end

# point

c8 = translate c6 (p12,p3) # upper boundary (right part)

c9 = line (p11,p5,nelm= n) # cutting line (right part)

c12 = curves(c9,c3) # artificial line from lower boundary to

# upper boundary (right part)

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Linear triangles are used

s1=rectangle3(c1,c11,-c4,-c5) # left-hand part

s2=rectangle3(c6,c7,-c8,-c12) # right-hand part

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Since the velocity and the boundary conditions are a function of the coordinates, we need a main
program.

program rotat01

! --- Main program for testing of upwind schemes for 2d convection-diffusion

! linear triangular elements

! See manual standard problems, Section 3.1.8.2

! Rotating cone problem

call sepcom ( 0 )

end

! --- define velocity as function of the co-ordinates

function funccf ( ichoice, x, y, z )

implicit none

integer ichoice

double precision x, y, z, funccf

if ( ichoice==1 ) then

! --- ichoice = 1, u = -y

funccf = -y

else if ( ichoice==2 ) then

! --- ichoice = 2, v = x

funccf = x

else
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! --- Other case, should never be possible

funccf = 0d0

end if

end

! --- define concentration as boundary condition on curve c2

function funcbc ( ichoice, x, y, z )

implicit none

integer ichoice

double precision x, y, z, funcbc

! --- The constant pi is stored in common block consta

include ’SPcommon/consta’

if ( ichoice==1 ) then

! --- ichoice = 1, c = cos(2pi (y+0.25))

funcbc = cos(2d0*pi*(y+0.25d0))

else

! --- Other case, should never be possible

funcbc = 0d0

end if

end

The corresponding input file is

# rotat01.prb

#

# problem file for testing of upwind schemes for 2d convection-diffusion

# linear triangular elements

# See manual standard problems, Section 3.1.8.2

# Rotating cone problem

#

# To run this file use:

# sepcomp rotat01.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants
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#

constants # See Users Manual Section 1.4

reals

eps = 1e-6 # diffusion parameter

vector_names

pot_galerkin

pot_first_order

pot_doubly

pot_dc1

pot_tri_max

pot_flip_flop

variables

iupwind

minimum

maximum

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Essential boundary conditions on left part

# of lower boundary

curves(c4 to c8) # Essential boundary conditions on all other

# outer boundaries

curves(c9) # Essential boundary conditions on right part

# of cutting line

end

# Define the essential boundary conditions

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c9) func = 1 # At C9 the concentration is a function

end

# Define the coefficients for Convection-diffusion equation

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = iupwind # Type of upwind

coef6 = eps # a11 = eps

coef9 = coef 6 # a22 = eps

coef12 = func = 1 # u = cos(angle), see subroutine FUNCCF

coef13 = func = 2 # v = sin(angle), see subroutine FUNCCF

end
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# Define the structure of the main program

# See Users Manual Section 3.2.3

structure

# First case: Galerkin solution

# Set essential boundary conditions

prescribe_boundary_conditions pot_galerkin, sequence_number = 1

# Compute the potential, by solving the linear equations

# Set the value of the upwind parameter

iupwind = 0

solve_linear_system, pot_galerkin, seq_solve = 1//

seq_coef = 1

# Print minimum and maximum of the solution

minimum = min_max pot_galerkin, scal_max = maximum

print ’Galerkin solution’

print minimum, maximum, text = ’minimum and maximum values’

# Second case: SUPG first-order solution

# Set essential boundary conditions

prescribe_boundary_conditions pot_first_order//

sequence_number = 1

# Compute the potential, by solving the linear equations

# Set the value of the upwind parameter

iupwind = 1

solve_linear_system, pot_first_order, seq_solve = 1//

seq_coef = 1

# Print minimum and maximum of the solution

minimum = min_max pot_first_order, scal_max = maximum

print ’SUPG first-order solution’

print minimum, maximum, text = ’minimum and maximum values’

# Third case: SUPG doubly assymptotic solution

# Set essential boundary conditions

prescribe_boundary_conditions pot_doubly, sequence_number = 1

# Compute the potential, by solving the linear equations

# Set the value of the upwind parameter

iupwind = 3

solve_linear_system, pot_doubly, seq_solve = 1//

seq_coef = 1

# Print minimum and maximum of the solution

minimum = min_max pot_doubly, scal_max = maximum

print ’SUPG doubly assymptotic solution’

print minimum, maximum, text = ’minimum and maximum values’

# Fourth case: SUPG DC1 solution

# Set essential boundary conditions

prescribe_boundary_conditions pot_dc1, sequence_number = 1

# Compute the potential, by solving the non-linear equations

# Set the value of the upwind parameter

iupwind = 7

solve_nonlinear_system, pot_dc1, sequence_number = 1

# Print minimum and maximum of the solution

minimum = min_max pot_dc1, scal_max = maximum

print ’SUPG discontinuity capturing’

print minimum, maximum, text = ’minimum and maximum values’

# Fifth case: SUPG triangular elements with maximum principle
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# Underelaxation is applied

# Set essential boundary conditions

prescribe_boundary_conditions pot_tri_max, sequence_number = 1

# Compute the potential, by solving the non-linear equations

# Set the value of the upwind parameter

# The iteration is started with the doubly assymptotic solution

iupwind = 3

solve_nonlinear_system, pot_tri_max, sequence_number = 2

# Print minimum and maximum of the solution

minimum = min_max pot_tri_max, scal_max = maximum

print ’SUPG triangular elements with maximum principle’

print minimum, maximum, text = ’minimum and maximum values’

# Sixth case: SUPG triangular elements with maximum principle

# suppress flip-flop

# Set essential boundary conditions

prescribe_boundary_conditions pot_flip_flop, sequence_number = 1

# Compute the potential, by solving the non-linear equations

# Set the value of the upwind parameter

# The iteration is started with the doubly assymptotic solution

iupwind = 3

solve_nonlinear_system, pot_flip_flop, sequence_number = 3

# Print minimum and maximum of the solution

minimum = min_max pot_flip_flop, scal_max = maximum

print ’SUPG triangular elements with maximum principle, no flip-flop’

print minimum, maximum, text = ’minimum and maximum values’

output

end

# input for non-linear solver

# Input for DC1

nonlinear_equations, sequence_number = 1 # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//

at_error return

equation 1

fill_coefficients 1

end

# Input for SUPG triangular elements with maximum principle

nonlinear_equations, sequence_number = 2 # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-5,print_level=2, lin_solver=1//

at_error return, relaxation = 0.9

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

end

# Input for SUPG triangular elements with maximum principle

# Suppress flip-flop

nonlinear_equations, sequence_number = 3 # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//

at_error return

equation 1
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fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

at_iteration 4, sequence_number 3

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number=1 # input for iteration 2

elgrp1

icoef2 = 9 # triangular elements with maximum principle

end

change coefficients, sequence_number=2 # input for iteration 3

elgrp1

icoef2 = 10 # initialize flip flop array

end

change coefficients, sequence_number=3 # input for iteration 4

elgrp1

icoef2 = 11 # update flip flop array

end

In order to check the behaviour of the method, we have compared the minimum and maximum
values of the solution. This is a measure for the appearance of wiggles.
Table 3.1.8.3 gives these minimum and maximum values for the methods used.

Table 3.1.8.3 Minimum and maximum values of the solution (triangles)

Type of method minimum value maximum value
Galerkin -6.64338E-02 1.06728E+00
SUPG first-order -1.35177E-02 1.00493E+00
SUPG doubly asymptotic -1.35177E-02 1.00493E+00
SUPG discontinuity capturing 0 1
SUPG with maximum principle 0 1
SUPG with maximum principle suppressing flip-flop 0 1

Both the method with discontinuity capturing and with the maximum principle get a divergence
message after 5 iterations. Carefully playing with underrelaxation may improve this behaviour but
it is hard to get real convergence. The flip-flop method behaves the best in this case, although the
final solution does not have a better quality.
In order to inspect the solution, the following input file for program SEPPOST may be used:

# rotat01.pst

# Input file for postprocessing of upwind schemes for 2d convection-diffusion

# linear triangular elements

# See manual standard problems, Section 3.1.8.2

# Rotating cone problem

# To run this file use:

# seppost rotat01.pst > rotat01.post.out

#

# Reads the files meshoutput and sepcomp.out

#
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postprocessing # See Users Manual Section 5.2

define colour table (1, 6,7,8,9,10,11,12,13,14,15,20)

plot contour pot_galerkin # make a contour plot of the potential

3d plot pot_galerkin, angle = 135 # 3d plot of potential

plot coloured levels pot_galerkin//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

plot contour pot_first_order # make a contour plot of the potential

3d plot pot_first_order, angle = 135 # 3d plot of potential

plot coloured levels pot_first_order//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

plot contour pot_doubly # make a contour plot of the potential

3d plot pot_doubly, angle = 135 # 3d plot of potential

plot coloured levels pot_doubly//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

plot contour pot_dc1 # make a contour plot of the potential

3d plot pot_dc1, angle = 135 # 3d plot of potential

plot coloured levels pot_dc1//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

plot contour pot_tri_max # make a contour plot of the potential

3d plot pot_tri_max, angle = 135 # 3d plot of potential

plot coloured levels pot_tri_max//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

plot contour pot_flip_flop # make a contour plot of the potential

3d plot pot_flip_flop, angle = 135 # 3d plot of potential

plot coloured levels pot_flip_flop//

minlevel = 0, maxlevel = 1, nlevel =12

# coloured level plot of the potential

end
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Figures 3.1.8.11 to 3.1.8.14 show the three-dimensional representations for the solutions of the
Galerkin case, the SUPG case, SUPG with discontinuity capturing and SUPG satisfying the max-
imum principle respectively. From these pictures it is clear that the non-linear methods do not

Figure 3.1.8.11: Galerkin solution Figure 3.1.8.12: SUPG, first order

Figure 3.1.8.13: Discontinuity captur-
ing

Figure 3.1.8.14: SUPG, satisfying the
maximum principle and flip-flop

have values below 0 and above 1, but that the value of the concentration at the cutting line at
outflow is considerably smaller than 1. So these methods suffer from crosswind diffusion.
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Figures 3.1.8.15 to 3.1.8.18 show coloured contour levels for the same cases, where black defines the
region with values at most equal to 0, and yellow the values larger or equal to 1. All other colours
represent values between.

Figure 3.1.8.15: Galerkin solution Figure 3.1.8.16: SUPG, first order

Figure 3.1.8.17: Discontinuity captur-
ing

Figure 3.1.8.18: SUPG, satisfying the
maximum principle and flip-flop
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Table 3.1.8.4 gives these minimum and maximum values for the methods used in case of bilinear
quadrilaterals.

Table 3.1.8.4 Minimum and maximum values of the solution (quadrilaterals)

Type of method minimum value maximum value
Galerkin -2.81864E-02 1.03667E+00
SUPG first-order -7.26277E-03 1.00024E+00
SUPG doubly asymptotic -7.26277E-03 1.00024E+00
SUPG discontinuity capturing 0 1

The result of the discontinuity capturing is reached after 6 iterations, in which case divergence is
discovered. However, the quality of the result is comparable with the triangular mesh.
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3.1.9 Some examples of the use of periodical boundary conditions

In this section we give a number of artificial examples, to show the various possibilities of the use
of periodical boundary conditions. It concerns the following possibilities

3.1.9.1 Standard periodical boundary conditions

3.1.9.2 Periodical boundary conditions with jump

3.1.9.3 Periodical boundary conditions with multiplication factor

3.1.9.1 Standard periodical boundary conditions

In order to get this example into your local directory use:

sepgetex testperiod06

To run this example use

sepmesh testperiod06.msh

view mesh by jsepview

seplink testperiod06

testperiod06 < testperiod06.prb

view results by jsepview

In this example we consider the following artificial problem.
Let Ω be the unit square ((0,1) × (0,1)).
Let T satisfy the standard Laplace equation, i.e −∆T = 0.
On the lower boundary (y = 0) and the upper boundary (y = 1), we prescribe the temperature T
by T (x, y) = sin(2πx) (Dirichlet boundary condition).
Furthermore on the left-hand and the right-hand side we assume periodical boundary conditions,
hence Tleft = Tright, and ∂T

∂x |left = ∂T
∂x |right.

The equation itself is standard, and so are the Dirichlet boundary conditions. The periodical
boundary conditions, however, require so-called connection elements, which identify unknowns on
left-hand side and right-hand side. This coupling of unknowns is actually carried out if elements of
type -1 are used.
The mesh file used in this case is:

# testperiod06.msh

#

# mesh file for 2d periodical boundary conditions problem

# See testperiod06.prb and the manual Examples Section 3.1.9

# for a description

#

# To run this file use:

# sepmesh testperiod06.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the region

length = 1 # length of the region
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integers

n = 40 # number of elements in length direction

m = 10 # number of elements in width direction

shape_cur = 1 # Linear elements along curves

shape_sur = 5 # Bi-linear quadrilaterals in surfaces

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=( length,0) # Right under point

p3=( length, width) # Right upper point

p4=(0, width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

c1=line shape_cur (p1,p2,nelm= n) # lower wall

c2=line shape_cur (p2,p3,nelm= m) # right-hand side

c3=line shape_cur (p3,p4,nelm= n) # upper wall

c4=line shape_cur (p4,p1,nelm= m) # left-hand side

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Since the boundary conditions depend on the coordinates, we need a main program to define the
function.

program testperiod06

implicit none

! --- File for 2d periodical boundary conditions problem

! See testperiod06.prb and the manual Examples Section 3.1.9

! for a description

call startsepcomp

end

! --- Function funcbc for the essential boundary conditions

function funcbc ( ichoice, x, y, z )

implicit none

integer ichoice
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double precision x, y, z, funcbc

include ’SPcommon/consta’ ! Contains the value of pi

if ( ichoice==1 ) then

! --- ichoice = 1, standard case

funcbc = sin(2d0*pi*x)

else

! --- ichoice # 1, error

call eropen(’funcbc’)

call errint(ichoice,1)

call errsub ( 1, 1, 0, 0)

call erclos(’funcbc’)

call instop

funcbc = 0d0

end if

end

The input file for the computational part is standard. The only special part is the definition of the
periodical boundary conditions.

# testperiod06.prb

#

# problem file for 2d periodical boundary conditions problem

# See manual Examples Section 3.1.9

#

# The problem to be solved consist of a square of size 1x1:

# S: (0,0) x (1,1)

#

# The equation to be solved is the standard Laplacian equation

# The boundary conditions at lower and upper wall are given by sin(2 pi x)

# On the left-hand and right-hand sides we have periodical boundary conditions,

# hence

# T_left = T_right

# dT/dx_left =d T/dx_right

#

# To run this file use:

# sepcomp testperiod06.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa = 1 # conductivity
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vector_names

Temperature

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Fixed under wall

curves(c3) # Fixed upper wall

periodical_boundary-conditions

curves(c2,-c4)

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

matrix_structure symmetric

# Compute the temperature

prescribe_boundary_conditions, vector = Temperature func=1, curves(c1)

prescribe_boundary_conditions, vector = Temperature func=1, curves(c3)

solve_linear_system, vector = Temperature

print Temperature

plot_colored_levels Temperature

output

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1

coef6 = kappa # 6: Heat conduction

coef9 = coef6 # 9: Heat conduction

end

end_of_sepran_input

Figure 3.1.9.1.1 shows the computed temperature.

3.1.9.2 Periodical boundary conditions with jump

The second example is almost identical to the first one, with the exception of the boundary con-
ditions. The Dirichlet boundary conditions in this case are T = x and in the periodical boundary
conditions we have a jump of size 1, hence Tright = Tleft + 1, and ∂T

∂x |right = ∂T
∂x |left.

In order to get this example into your local directory use:
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Figure 3.1.9.1: Coloured contour plot of Temperature

sepgetex testperiod07

To run this example use

sepmesh testperiod07.msh

view mesh by jsepview

seplink testperiod07

testperiod07 < testperiod07.prb

view results by jsepview

The mesh file in this case is identical to that in Subsection 3.1.9.1.1, except that in the connection
elements c2 and c4 are interchanged. The fortran file requires an extra function func to define the
exact solution. The problem file is a little bit different because of the jump and since the exact
solution is compared with the computed one. The error is printed. The error appears to be of the
order of the machine precision. Also the postprocessing file is the same as for the first example.
For completeness we give the problem file.

# testperiod07.prb

#

# problem file for 2d periodical boundary conditions problem

# See manual Examples Section 3.1.9

#

# The problem to be solved consist of a square of size 1x1:

# S: (0,0) x (1,1)

#

# The equation to be solved is the standard Laplacian equation

# The boundary conditions at lower and upper wall are given by x

# On the left-hand and right-hand sides we have periodical boundary conditions.

# Special in this case is that there is constant jump of size 1 between

# right-hand side and left-hand side, hence

# T_right = T_left + 1

# dT/dx_left =d T/dx_right

#

# One can verify that the exact solution is given by T = x

# To run this file use:

# sepcomp testperiod07.prb

#

# Reads the file meshoutput
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# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa = 1 # conductivity

vector_names

Temperature

T_exact

variables

error

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Fixed under wall

curves(c3) # Fixed upper wall

periodical_boundary-conditions

curves(c4,-c2) constant = 1

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Define the structure of the large matrix

matrix_structure symmetric

# Compute the Temperature

prescribe_boundary_conditions, Temperature func=1, curves(c1)

prescribe_boundary_conditions, Temperature func=1, curves(c3)

solve_linear_system, Temperature

# Create the exact solution

create_vector T_exact func=1

# Compute and print the error

error = norm_dif=3, vector1= Temperature, vector2= T_exact

print error

# Write the results to a file

output

plot_colored_levels Temperature

end

# Define the coefficients for the problems

# All parameters not mentioned are zero
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# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1

coef6 = kappa # 6: Heat conduction

coef9 = coef6 # 9: Heat conduction

end

end_of_sepran_input

3.1.9.3 Periodical boundary conditions with multiplication factor

exception of the boundary conditions and the right-hand side. The Dirichlet boundary conditions
in this case are T = 3 + 4x−x2 and in the periodical boundary conditions we have a multiplication
factor of size 2, hence
Tright = 2Tleft, and 2∂T∂x |right = ∂T

∂x |left.

Furthermore the source term in the Poisson equation is equal to 2, hence we solve −∆T = 2.

In order to get this example into your local directory use:

sepgetex testperiod09

To run this example use

sepmesh testperiod09.msh

view mesh by jsepview

seplink testperiod09

testperiod09 < testperiod09.prb

view results by jsepview

The mesh file in this case is identical to that in Subsection 3.1.9.2.2. The fortran file requires an
extra function func to define the exact solution. The problem file is a little bit different because of
the multiplication factor and the source term.

Mark that in this case the multiplication factor in the boundary condition in combination with the
requirement 2∂T∂x |right = ∂T

∂x |left make the boundary condition periodical.

The error appears to be of the order of the machine precision. Also the postprocessing file is the
same as for the first example. For completeness we give the problem file.

# testperiod09.prb

#

# problem file for 2d periodical boundary conditions problem

# See manual Examples Section 3.1.9

#

# The problem to be solved consist of a square of size 1x1:

# S: (0,0) x (1,1)

#

# The equation to be solved is the standard Poisson equation with rhs 2

# The boundary conditions at lower and upper wall are given by x

# On the left-hand and right-hand sides we have periodical boundary conditions.

# Special in this case is that there is multiplication factor of size 2 between

# right-hand side and left-hand side, hence

# T_right = 2 T_left

# Furthermore the derivatives are different

# dT/dx_left = 2 d T/dx_right



EX Periodical boundary conditions January 2013 3.1.9.8

#

# One can verify that the exact solution is given by T = 3+4x-x^2

# To run this file use:

# sepcomp testperiod09.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa = 1 # conductivity

vector_names

Temperature

T_exact

variables

error

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Fixed under wall

curves(c3) # Fixed upper wall

periodical_boundary-conditions

curves(c4,-c2) factor = 2

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Define structure of matrix

matrix_structure, symmetric

# Compute the Temperature

prescribe_boundary_conditions, Temperature, func=1, curves(c1,c3)

solve_linear_system, Temperature

# Create the exact solution

create_vector T_exact func=1

# Compute and print the error

error = norm_dif=3, vector1=Temperature, vector2=T_exact

print error

# Write the results to a file

output



EX Periodical boundary conditions January 2013 3.1.9.9

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1

coef6 = kappa # 6: Heat conduction

coef9 = coef6 # 9: Heat conduction

coef16 = 2 # 16: Source term

end

end_of_sepran_input
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3.1.10 Some examples of the use of periodical boundary conditions to
connect two regions

In this section we give a number of artificial examples, to show how periodical boundary conditions
can be used to connect two regions through boundary conditions.
It concerns the following possibilities

3.1.10.1 Standard periodical boundary conditions

3.1.10.2 Periodical boundary conditions with multiplication factor

3.1.10.1 Standard periodical boundary conditions

In order to get this example into your local directory use:

sepgetex testperiod03

To run this example use

sepmesh testperiod03.msh

view mesh by jsepview

seplink testperiod03

testperiod03 < testperiod03.prb

view results by jsepview

In this example we consider the following artificial problem.
Let Ω1 be the unit square ((0,1) × (0,1)) and Ω2 be the unit square ((1,1) × (2,1))
Let T satisfy the diffusion equation with different diffusion parameters κ in each region, i.e− div κ1∇T =
0 in Ω1 and − div κ2∇T = 0 in Ω2.
On the lower boundary (y = 0) and the upper boundary (y = 1), as well as the left-hand side of
Ω1 and the right-hand side of Ω2 we prescribe the temperature T by T (x, y) = sin(2πx) (Dirichlet
boundary condition).
Furthermore we assume that both regions which have separate boundaries for x = 1 are coupled
through coupling conditions. The number of coupling conditions must be the same as for periodical
boundary conditions. Since we are dealing with a second order equation with one unknown it is
necessary to prescribe exactly one condition on each boundary. This means that on the connecting
boundary we need two boundary conditions (one for each curve).
The boundary conditions we prescribe are continuity of T and that the flux that goes from Ω1 is
equal to the flux that enters Ω2 through the curves at x = 1.
So if the curves at x = 1 are defined as Cleft and Cright, actually the boundary condition is defined
as TCleft = TCright and κ1

∂T
∂x |Cleft = κ2

∂T
∂x |Cright. These are exactly the periodical boundary

conditions

The equation itself is standard, and so are the Dirichlet boundary conditions. The periodical bound-
ary conditions, however, require so-called connection elements, which identify unknowns on Cleft
and Cright. This coupling of unknowns is actually carried out if elements of type -1 are used.
The mesh file used in this case is:

# testperiod03.msh

#

# mesh file for 2d periodical boundary conditions problem

# See testperiod03.prb for a description

#

# To run this file use:

# sepmesh testperiod03.msh
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#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the region

length = 1 # length of the first subregion

length2 = 2 # length of the second subregion

integers

n = 20 # number of elements in length direction

m = 10 # number of elements in width direction

shape_cur = 1 # Linear elements along curves

shape_sur = 5 # Bi-linear quadrilaterals in surfaces

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

# subregion 1

p1=(0,0) # Left under point

p2=( length,0) # Right under point

p3=( length, width) # Right upper point

p4=(0, width) # Left upper point

# subregion 2

p11=( length,0) # Left under point

p12=( length2,0) # Right under point

p13=( length2, width) # Right upper point

p14=( length, width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# subregion 1

c1=line shape_cur (p1,p2,nelm= n) # lower wall

c2=line shape_cur (p2,p3,nelm= m) # right-hand side

c3=line shape_cur (p3,p4,nelm= n) # upper wall

c4=line shape_cur (p4,p1,nelm= m) # left-hand side

# subregion 2

c11=line shape_cur (p11,p12,nelm= n) # lower wall

c12=line shape_cur (p12,p13,nelm= m) # right-hand side

c13=line shape_cur (p13,p14,nelm= n) # upper wall

c14=line shape_cur (p14,p11,nelm= m) # left-hand side

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# subregion 1

s1=rectangle shape_sur (c1,c2,c3,c4)

# subregion 2
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s2=rectangle shape_sur (c11,c12,c13,c14)

# Coupling of surfaces to element groups

meshsurf

selm1 = s1

selm2 = s2

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Since the boundary conditions depend on the coordinates, we need a main program to define the
function.

program testperiod03

implicit none

! --- File for 2d periodical boundary conditions problem

! See testperiod03.prb and the manual Examples Section 3.1.10

! for a description

call startsepcomp

end

! --- Function funcbc for the essential boundary conditions

function funcbc ( ichoice, x, y, z )

implicit none

integer ichoice

double precision x, y, z, funcbc

include ’SPcommon/consta’ ! Contains the value of pi

if ( ichoice==1 ) then

! --- ichoice = 1, Omega_1

funcbc = sin(2d0*pi*x)

else if ( ichoice==3 ) then

! --- ichoice = 3, Omega_2

funcbc = sin(2d0*pi*x)

else

! --- ichoice # 1,3: error

call eropen(’funcbc’)

call errint(ichoice,1)

call errsub ( 1, 1, 0, 0)

call erclos(’funcbc’)

call instop

funcbc = 0d0
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end if

end

! --- Function func for the creation of the exact solution

function func ( ichoice, x, y, z )

implicit none

integer ichoice

double precision x, y, z, func, funcbc

func = funcbc ( ichoice, x, y, z )

end

The input file for the computational part is standard. The only special part is the formed by the
definition of the periodical boundary conditions.

# testperiod03.prb

#

# problem file for 2d periodical boundary conditions problem

# See manual Examples Section 3.1.10

#

# The problem to be solved consist of two squares of size 1x1:

# S1: (0,0) x (1,1)

# S2: (1,0) x (2,1)

#

# The squares are connected by connection elements

#

# In S1 the solution of the diffusion equation is: T = sin(2 pi x)

# In S2 the solution of the diffusion equation is: T = sin(2 pi x)

#

# The coefficients for the diffusion equation are different for both squares

#

# To run this file use:

# sepcomp testperiod03.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa_1 = 1 # conductivity in S1

kappa_2 = 2 # conductivity in S2

vector_names

Temperature

end

#

# Define the type of problem to be solved

#
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problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

elgrp2=800 # Type number for second order elliptic equation

# See Standard problems Section 3.

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Fixed under wall S1

curves(c3) # Fixed upper wall S1

curves(c4) # left-hand side S1

curves(c11) # Fixed under wall S2

curves(c13) # Fixed upper wall S2

curves(c12) # left-hand side S2

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

periodical_boundary_conditions

curves(c2,-c14)

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute the temperature

prescribe_boundary_conditions, Temperature &

degfd1, func=1, curves(c1 to c4)

prescribe_boundary_conditions, Temperature &

degfd1, func=3, curves(c11 to c14) # curve c14 has no effect

solve_linear_system, Temperature

print Temperature

plot_colored_levels Temperature

# Write the results to a file

output

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1

coef6 = kappa_1 # 6: Heat conduction

coef9 = coef6 # 9: Heat conduction

elgrp2

coef6 = kappa_2 # 6: Heat conduction

coef9 = coef6 # 9: Heat conduction

end

end_of_sepran_input

Figure 3.1.10.1.1 shows the computed temperature.
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Figure 3.1.10.1: Coloured contour plot of Temperature

3.1.10.2 Periodical boundary conditions with multiplication factor

The second example is almost identical to the first one, with the exception of the boundary condi-
tions. The Dirichlet boundary conditions in this case are T = y in Ω1 and T = 2y in Ω2. In the
periodical boundary conditions we have a multiplication factor of size 2, hence
Tright = 2Tleft, and 2κ2

∂T
∂x |right = κ1

∂T
∂x |left.

In order to get this example into your local directory use:

sepgetex testperiod02

To run this example use

sepmesh testperiod02.msh

view mesh by jsepview

seplink testperiod02

testperiod02 < testperiod02.prb

view results by jsepview

The mesh file in this case is identical to that in Subsection 3.1.10.1.1 The fortran file requires an
extra function func to define the exact solution. The problem file is a little bit different because of
the multiplication factor, the source term and the symmetry.

Mark that in this case the matrix is symmetrical due to the multiplication factor in the periodical
boundary condition in combination with the requirement 2κ2

∂T
∂x |right = κ1

∂T
∂x |left.

The error appears to be of the order of the machine precision. Also the postprocessing file is the
same as for the first example. For completeness we give the problem file.

# testperiod02.prb

#

# problem file for 2d periodical boundary conditions problem

# problem is stationary and linear

#

# The problem to be solved consist of two squares of size 1x1:

# S1: (0,0) x (1,1)

# S2: (1,0) x (2,1)

#
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# The squares are connected by connection elements

#

# In S1 the solution of the laplacian equation is: T = y

# In S2 the solution of the laplacian equation is: T = 2y

# Hence in the common interface we have a multiplication factor of 2 for T

#

# The coefficients for the diffusion equation are different for both squares

# In this case we use the symmetric solution method

#

# To run this file use:

# sepcomp testperiod02.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa_1 = 1 # conductivity in S1

kappa_2 = 2 # conductivity in S2

vector_names

Temperature

T_exact

variables

error

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for double laplacian equation

# See Standard problems Section 3.5

elgrp2=800 # Type number for double laplacian equation

# See Standard problems Section 3.5

# the multiplication factor 2

# may be used for connection elements only

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Fixed under wall

curves(c3) # Fixed side walls and instream boundary

curves(c4) # inflow

curves(c11) # Fixed under wall

curves(c13) # Fixed side walls and instream boundary

curves(c12) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

periodical_boundary-conditions

curves(c2,-c14) degfd1, constant = 0, factor = 2 # The jump is 0,
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# the multiplication factor 2

end

#

#

structure # See Users Manual Section 3.2.3

# Define structure of matrix

matrix_structure, symmetric

# Compute the Temperature (vector 1)

prescribe_boundary_conditions, Temperature, func=1, curves(c1 to c4)

# curve c2 has no effect

prescribe_boundary_conditions, Temperature, func=3, curves(c11 to c14)

# curve c14 has no effect

create_vector vector= T_exact degfd1, func=1, surface(s1)

create_vector vector= T_exact degfd1, func=3, surface(s2)

solve_linear_system, Temperature

error = norm_dif=3, vector1= Temperature, vector2= T_exact

plot_colored_levels Temperature

# Write the results to a file

output

print error

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1

coef6 = kappa_1 # 6: Heat conduction

coef9 = coef6 # 9: Heat conduction

elgrp2

coef6 = kappa_2 # 6: Heat conduction

coef9 = coef6 # 9: Heat conduction

end

end_of_sepran_input
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3.1.11 Experiments with the shifted Laplace operator to solve the real
Helmholtz equation

The Helmholtz equation is usually the result of putting solution of the form eikt into the wave
equation, where k is the wave number. A simple example a such a Helmholtz equation is given by

−∆φ− k2φ = f (3.1.11.1)

If k is large, the corresponding discretization matrix is indefinite. As a result, iterative linear solvers
do not converge, or converge very slowly.
A possibility to improve the convergence of such a solver is the use of a so-called shifted Laplace
preconditioner. This preconditioner is not based on the original equation (3.1.11.1), but on the
following shifted equation

−∆φ+ βk2φ = f, (3.1.11.2)

with β some non-negative parameter.
The corresponding matrix is positive definite and hence the construction of an ILU preconditioner
based on this matrix does not introduce any difficulties. It appears that this shifted Laplace ILU
preconditioner may improve the convergence of iterative methods considerably for a well chosen
value of β. Mark that β = −1 corresponds to a standard ILU preconditioner.
In this section we solve Equation (3.1.11.1) on the domain Ω = [0, 1]2 with boundary conditions
φ = 0 everywhere. The function f is chosen equal to −(k2 − 5π2)sin(πx)sin(2πy).

To get this example into your local directory use:

sepgetex helmholtz1x

with x equal to 1 or 2, where 1 refers to the classical method and 2 to the shifted Laplace precon-
ditioner. and to run it use:

sepmesh helmholtz1x.msh

seplink helmholtz1x

helmholtz1x < helmholtz1x.prb

The input file for the mesh is very simple:

# helmholtz11.msh

#

# mesh file for the example as described in Section 3.1.11 of

# the manual Examples

#

# To run this file use:

# sepmesh helmholtz11.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

n = 50

reals

width = 1 # width of the region

heigth = 1 # heigth of the region

end

#
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# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0)

p2=(width,0)

p3=(width,heigth)

p4=(0,heigth)

#

# curves

#

curves # See Users Manual Section 2.3

c1 = line (p1,p2,nelm=n)

c2 = line (p2,p3,nelm=n)

c3 = line (p3,p4,nelm=n)

c4 = line (p4,p1,nelm=n)

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = rect3 (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

It is clear that linear triangles are used. To compute the real error made by the iterative solver, we
first solve the equations by a direct solver (profile method) and afterwards by the iterative solver
and subtract both solutions to get the error. In case of helmholtz11 we use BICGSTAB as solver
with ILU preconditioner. The required accuracy is 10−4 and by setting the print level to 2, we are
able to follow the convergence of the iteration process.
The corresponding input file is:

# helmholtz11.prb

#

# problem file for the example as described in Section 3.1.11 of

# the manual Examples

# The Helmholtz equation is solved by a BiCgstab method with ILU preconditioner

#

# To run this file use:

# sepcomp helmholtz11.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

set warn off # suppress warnings

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals
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mu = 1 # permeability

k = 10 # wave number

beta = -k^2 # coefficient for the zeroth order term

vector_names

potential # solution of the iterative solver

potex # solution computed by the direct solver

diff # difference between potential and poted

variables

error # error made by the iterative solver

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 = (type=800) # Type number for Poisson equation

# See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves (c1 to c4) # whole boundary

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix, sequence_number = 1

storage_scheme = profile # storage scheme for the direct solver

end

matrix, sequence_number = 2

storage_scheme = compact # storage scheme for the iterative solver

end

#

# The coefficients for the differential equation

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

#

coefficients

elgrp1

coef 6 = mu # Constant permeability

coef 9 = coef 6 # Constant permeability

coef15 = beta # coefficient for the zeroth order term, defined

# by the wave number

coef16 = func=1 # the right-hand side is a function of space

end

#

# Linear solver

# See Users Manual, Section 3.2.8

#

solve, sequence_number = 1 ! use direct method

# no input required

end

solve, sequence_number = 2 ! use iterative method (bicgstab with ILU precon)
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iteration_method = cg, preconditioner = ilu, print_level = 2, eps = 1d-4

end

structure

# First we compute potex by a direct solver

prescribe_boundary_conditions potex ! no input required, since the value is 0

solve_linear_system potex ! computes potex

# next we compute potential by the iterative solver

# It is necessary to change the structure of the matrix

change_structure_of_matrix, seq_structure = 2

prescribe_boundary_conditions potential ! no input required

solve_linear_system potential, seq_solve = 2 ! computes potential

diff = potential - potex ! difference between both

error = norm=3, diff ! norm of difference

print error

end

end_of_sepran_input

Since the right-hand side is a function of x and y we need a function subroutine funccf and hence
a main program helmholtz11, given by:

program helmholtz11

! --- Standard main program

implicit none

integer, allocatable, dimension (:) :: ibuffr

integer pbuffr, error

parameter ( pbuffr=100000000)

allocate(ibuffr(pbuffr), stat = error)

if (error /= 0) then

! space for these arrays could not be allocated

print *, "error: (helmholtz11) could not allocate space."

stop

end if ! (error /= 0)

call sepcombf ( ibuffr, ibuffr, pbuffr )

end

! --- Function funccf is used to define the right-hand side

function funccf ( ichoice, x, y, z )

implicit none

integer ichoice

double precision x, y, z, funccf

include ’SPcommon/consta’

double precision k, getconst

k = getconst(’k’)

if ( ichoice==1 ) then

funccf = -(k**2-5*pi**2)*sin(pi*x)*sin(2d0*pi*y)

else
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call errchr(’funccf’,1)

call errsub ( 349, 0, 0, 1)

call instop

end if

end

For the shifted Laplace operator we can use the same mesh file and program. The problem files
changes only in the matrix input block and the solve input block. Below we give the changed input
blocks:

matrix, sequence_number = 2

storage_scheme = compact, shifted_laplace # storage scheme for the iterative solver

end

solve, sequence_number = 2 ! use iterative method (bicgstab with ILU precon)

iteration_method = cg, preconditioner = ilu, print_level = 2, eps = 1d-4 //

laplace_shift = 1

end

Table (3.1.11.1) shows the number of iterations required to solve Equation (3.1.11.2) by a standard
Bi-Cgstab method, and for the shifted preconditioner for a shift equal to zero and one equal to one.
The number of nodes is equal to n2, where n takes the values 50, 100 and 150. The wave number,
k, varies from 10 to 40. A dash in the column means that the iteration process does not converge.
From the table it is clear that the gain for the shifted Laplace preconditioner is large for the com-
bination large wave number and smaller number of elements. Increasing the number of nodes, or
decreasing the wave number increases the condition of the matrix and makes it more suitable for
standard iterative solvers.

Table 3.1.11.1 Number of iterations for several values of the shift

Bi-CGstab shift 0 shift 1
n 50 100 150 50 100 150 50 100 150
k 10 38 60 84 44 54 84 44 56 80

20 72 56 62 60 58 58 58 62 50
30 236 48 30 58 36 32 32 28 36
40 - 64 30 44 32 24 16 22 20
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3.2 Second order complex linear elliptic and parabolic equations with
one degree of freedom

In this section we treat the following examples of real elliptic and parabolic equations with one
degree of freedom.

3.2.1 An artificial mathematical example, just to show how to solve a complex elliptic equation.

3.2.2 Experiments with the shifted Laplace operator to solve the complex Helmholtz equation.

3.2.1 An artificial mathematical example

A simple model for wind generated movements in a harbor using a complex potential approach, is
given by the model equation:

∆φ+K2φ+ γikφ = 0 (3.2.1.1)

with

k2 = ω2

gh ,

ω = 2π
T ,

g the acceleration of gravity,

h the depth of the harbor,

γ the friction coefficient and

T the wave period.

It has been assumed that the depth of the harbor is uniform and that the wave period T is rather
large; T > 15 seconds.

To get this example into your local directory use:

sepgetex exam3-2-1

and to run it use:

sepmesh exam3-2-1.msh

seplink exam3-2-1

exam3-2-1 < exam3-2-1.prb

seppost exam3-2-1.pst

We consider a very simple model of a rectangular harbor: 0 ≤ x ≤ L, 0 ≤ y ≤ B.
Figure 3.2.1.1 shows a sketch of the harbor with corresponding definition of points and curves.

In this problem we shall use the following data:

L = 2000 m

B = 690 m

g = 9.81 m/s2

T = 112 s

ω = 0.056 s−1
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Figure 3.2.1.1: Harbor with fixed boundaries C1-C5, C7, C8 and open boundary C6

h = 15 m

For a unique solution of the problem it is necessary to give boundary conditions for all boundaries.
Suppose that the incoming waves have an angle of incidence of 270◦ to the entrance of the harbor
and assume that all closed boundaries of the harbor give total reflection, i.e. ∂φ

∂n = 0.

Assume that an essential boundary condition of the form φ = eik(xcos(α)+ysin(α) is given at the open
boundary, with α the angle of incidence, and (x, y) the Cartesian co-ordinates.

The region is subdivided into triangles by the submesh generator ”RECTANGLE”. As an example
linear triangles have been used.
SEPMESH needs an input file. An example of an input file for this region is given below:

******************************************************************************

*

* File: exam3-2-1.msh

*

* Contents: Mesh for the example 3-2-1 in the manual examples

*

******************************************************************************

*

mesh2d

points

p1 = ( -427.5 , 0 )

p2 = ( -41.5 , 0 )

p3 = ( 42.5 , 0 )

p4 = ( 1642.5 , 0 )

p5 = ( 1642.5 , 690 )

p6 = ( 41.5 , 690 )

p7 = ( -42.5 , 690 )

p8 = ( -427.5 , 690 )

curves

c1 = line1 ( p1, p2, nelm=2 )

c2 = line1 ( p2, p3, nelm=2 )

c3 = line1 ( p3, p4, nelm=6 )

c4 = line1 ( p4, p5, nelm=6 )

c5 = line1 ( p5, p6, nelm=6 )

c6 = line1 ( p6, p7, nelm=2 )

c7 = line1 ( p7, p8, nelm=2 )



EX Artificial mathematical example August 2008 3.2.1.3

c8 = line1 ( p8, p1, nelm=6 )

c9 = curves ( c1, c2, c3 )

c10= curves ( c5, c6, c7 )

surfaces

s1 = rectangle3 ( c9, c4, c10, c8 )

plot ( plotfm=10 )

end

Figure 3.2.1.2 shows the mesh generated by SEPMESH.

 

Figure 3.2.1.2: Plot of mesh generated by SEPMESH

The internal elements are defined by type number 150. Only the coefficients 1, 3 and 6 have to be
defined; 1 and 3 get the value 1, β is a function defined by the subroutine cfuncf.
The boundary conditions at side C6 are essential boundary conditions, the boundary conditions at
the other sides are natural boundary conditions requiring no boundary elements at all. Since in this
case it is necessary to define a function subroutine for the coefficient β and the essential boundary
condition, it is not possible to use the standard program SEPCOMP. We shall give here the simple
program based upon sepcomp and extended with the subroutines CFUNCF and CFUNCB.

First we give the program that is based upon SEPCOMP. The main program consists only of a call
to SEPCOM. The listing for this program is given by:

! ****************************************************************************

!

! File: exam3-2-1.f

!

! Contents: Main program for the test example described

! in the SEPRAN manual examples 3-2-1

! Waves in harbour

! Since a function subroutine is used for the solution,

! it is not possible to use sepcomp

!
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! Usage: Compile and link this program with the SEPRAN libraries

! seplink exam3-2-1

! Run this program with input: exam3-2-1.prb

!

! exam3-2-1 < exam3-2-1.prb > exam3-2-1.out

!

! version 1.0 date 17-06-94

!

! ****************************************************************************

!

program exam321

implicit none

double precision pi, omega, g, angle

common / hacons / pi, omega, g, angle

pi = 4*atan(1.0d0)

g = 9.81d0

angle = 270d0

omega = 0.056d0

call sepcom (0)

end

! --- subroutine cfuncb for the definition of the boundary conditions

subroutine cfuncb ( ichois, x, y, z, comval )

implicit none

complex * 16 comval

integer ichois

double precision x, y, z, depth, alpha, ak, arg

double precision pi, omega, g, angle

common / hacons / pi, omega, g, angle

! --- compute boundary condition in nodal point (x, y, z) :

! determine wave-number ak :

depth = 15.0d0

! angle of incoming wave :

alpha = (pi/180.0d0)*angle

ak = omega/sqrt(g*depth)

arg = ak*(x*cos(alpha)+y*sin(alpha))

! prescribed elevation :

comval = dcmplx ( cos(arg), sin(arg) )

end

! --- subroutine cfuncf for the definition of the coefficients

subroutine cfuncf ( ichois, x, y, z, comval )
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implicit none

complex * 16 comval

integer ichois

double precision x, y, z, gamma, depth, ak

double precision pi, omega, g, angle

common / hacons / pi, omega, g, angle

gamma = 0d0

depth = 15.0d0

ak = omega/sqrt(g*depth)

if ( ichois==1 ) then

comval = dcmplx ( -ak*ak, -gamma*ak/depth )

end if

end

This program needs an input file which is the same as for SEPCOMP. The following input file may
be used to solve the problem:

******************************************************************************

*

* File: exam3-2-1.prb

*

* Contents: Input for program exam3-2-1 described in section 3-2-1 in

* the manual examples

* Waves in harbour

* The standard sepcomp approach is used

*

******************************************************************************

*

constants

vector_names

complex_potential

amplitude_potential

phase_potential

end

* Problem definition

*

problem

types

elgrp1=(type=150)

essbouncond

curves (c6)

end

* Since special vectors are required at output, it is necessary to

* define the structure of the program

structure
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prescribe_boundary_conditions, complex_potential

solve_linear_system, seq_coef=1, seq_solve=1, complex_potential

amplitude_potential = modulus complex_potential

phase_potential = phase complex_potential

output

end

* Define essential boundary conditions

essential complex boundary conditions

func = 1 # Use subroutine cfuncb

end

* Definition of coefficients

complex coefficients

elgrp 1 ( nparm = 7 ) # Internal element has 7 coefficients

coef 1 = 1 # a11 = 1

coef 3 = coef 1 # a22 = a11

coef 6 = (func=1) # beta is function given by cfuncf

# All other coefficients are 0

end

* Definition of matrix structure

#complex symmetrical matrix, direct solution method

matrix

symmetric, complex

end

end_of_sepran_input

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. The following input file prints the computed
solution, makes a standard contour plot as well as a colored contour plot. In order to identify the
plot an extra text identification is submitted.

******************************************************************************

*

* File: exam3-2-1.pst

*

* Contents: Input for the postprocessing part of the example described

* in Section 3.2.1 of the manual examples

* Waves in harbour

*

* Usage: seppost exam3-2-1.pst > exam3-21.out

******************************************************************************

*

postprocessing

print amplitude_potential

print phase_potential

plot identification, text=’waves in harbour’, origin=(3,18)

define plot parameters = norotate

plot contour amplitude_potential, minlevel=-1, maxlevel=1, nlevel=11
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plot contour phase_potential, nlevel=12

3d plot complex_potential, degfd=1, angle=135, lindirec=3//

text = ’3D plot of elevation’

end

Figure 3.2.1.3 shows the contour plot of the magnitude made by program SEPPOST. This plot may
be visualized by the program SEPDISPLAY.
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Figure 3.2.1.3: Contour plot of magnitude generated by SEPPOST

Figures 3.2.1.4 and 3.2.1.5 show the contour plot of the phase and the three-dimensional plot of the
elevation respectively.
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Figure 3.2.1.4: Contour plot of phase

3.2.2 Experiments with the shifted Laplace operator to solve the com-
plex Helmholtz equation

The example treated here is exactly the same as the one in Section (3.1.11). The only difference is
that the complex Helmholtz equations are used, which means that the coefficients may be complex
and that the Laplace shift may be complex. In this case we use real coefficients for the complex
case but consider a complex shift.

To get this example into your local directory use:

sepgetex helmholtz2x

with x equal to 1 or 2, where 1 refers to the classical method and 2 to the shifted Laplace precon-
ditioner. and to run it use:

sepmesh helmholtz2x.msh

seplink helmholtz2x

helmholtz2x < helmholtz2x.prb

The input file for the mesh is exactly the same as in Section (3.1.11). The problem file differs only
slightly from the real case. Below we give the complete input.

# helmholtz21.prb

#

# problem file for the example as described in Section 3.2.2 of

# the manual Examples

# The Helmholtz equation is solved by a BiCgstab method with ILU preconditioner

#
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3D plot of elevation

waves in harbour

 

Figure 3.2.1.5: 3D plot of elevation

# To run this file use:

# sepcomp helmholtz21.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

set warn off # suppress warnings

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

mu = 1 # permeability

k = 10 # wave number

beta = -k^2 # coefficient for the zeroth order term

vector_names

potential # solution of the iterative solver

potex # solution computed by the direct solver

diff # difference between potential and poted

variables

error # error made by the iterative solver

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2
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types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 = (type=150) # Type number for complex Helmholtz equation

# See Standard problems Section 3.2

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves (c1 to c4) # whole boundary

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix, sequence_number = 1

storage_scheme = profile, complex # storage scheme for the direct solver

end

matrix, sequence_number = 2

storage_scheme = compact, complex # storage scheme for the iterative solver

end

#

# The coefficients for the differential equation

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

#

complex coefficients

elgrp1

coef 1 = mu # Constant permeability

coef 3 = coef 1 # Constant permeability

coef 6 = beta # wave number

coef 7 = func=1 # the right-hand side is a function of space

end

#

# Linear solver

# See Users Manual, Section 3.2.8

#

solve, sequence_number = 1 ! use direct method

# no input required

end

solve, sequence_number = 2 ! use iterative method (bicgstab with ILU precon)

iteration_method = cg, preconditioner = ilu, print_level = 2, eps = 1d-4

end

structure

# First we compute potex by a direct solver

prescribe_boundary_conditions potex ! no input required, since the value is 0

solve_linear_system potex ! computes potex

# next we compute potential by the iterative solver

# It is necessary to change the structure of the matrix

change_structure_of_matrix, seq_structure = 2

prescribe_boundary_conditions potential ! no input required

solve_linear_system potential, seq_solve = 2 ! computes potential
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diff = potential - potex ! difference between both

error = norm=3, diff ! norm of difference

print error

end

end_of_sepran_input

Since the right-hand side is a function of x and y we need a subroutine cfuncf and hence a main
program helmholtz21, given by:

program helmholtz21

! --- Standard main program

implicit none

integer, allocatable, dimension (:) :: ibuffr

integer pbuffr, error

parameter ( pbuffr=100000000)

allocate(ibuffr(pbuffr), stat = error)

if (error /= 0) then

! space for these arrays could not be allocated

print *, "error: (helmholtz21) could not allocate space."

stop

end if ! (error /= 0)

call sepcombf ( ibuffr, ibuffr, pbuffr )

end

! --- Subroutine cfuncf is used to define the right-hand side

subroutine cfuncf ( ichoice, x, y, z, comval )

implicit none

integer ichoice

double precision x, y, z

double complex comval

include ’SPcommon/consta’

double precision getconst, k

k = getconst(’k’)

if ( ichoice==1 ) then

comval = -(k**2-5*pi**2)*sin(pi*x)*sin(2d0*pi*y)

else

call errchr(’cfuncf’,1)

call errsub ( 349, 0, 0, 1)

call instop

end if

end

For the shifted Laplace operator we can use the same mesh file and program. The problem files
changes only in the matrix input block and the solve input block. Below we give the changed input
blocks:

matrix, sequence_number = 2

storage_scheme = compact, complex, shifted_laplace # iterative solver

end

! iteration with shifted Laplace preconditioner with shift = i
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solve, sequence_number = 2 ! use iterative method (bicgstab with ILU precon)

iteration_method = cg, preconditioner = ilu, print_level = 2, eps = 1d-4 //

laplace_shift = (0,1)

end

Table (3.2.2.1) shows the number of iterations required to solve Equation (3.1.11.2) by a standard
Bi-Cgstab method, and for the shifted preconditioner for shifts equal to 0, 1 and i respectively. The
results are almost the same as those in Table (3.1.11.1).

Table 3.2.2.1 Number of iterations for several values of the shift

Bi-CGstab shift 0 shift 1 shift i
n 50 100 150 50 100 150 50 100 150 50 100 150
k 10 59 60 84 40 56 84 42 52 86 60 56 84

20 76 52 56 62 46 48 56 48 42 66 56 58
30 222 48 32 62 34 30 28 34 26 92 48 38
40 - 60 26 44 32 24 16 22 20 42 68 22
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3.3 Non-linear equations

3.3.1 A special non-linear diffusion equation

This section is under preparation.
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3.3.2 The computation of the magnetic field in an alternator

Consider the alternator of Figure 3.3.2.1, consisting of an iron core (region 1) surrounded by vacuum.
In regions 2 and 3 a negative and a positive current respectively have been induced. Region 4 is
considered separately since this is the region of interest. The magnetic field intensity H and the

 
 

Figure 3.3.2.1: Definition of region for alternator

magnetic flux density B satisfy the following differential equations (Maxwell equations):

−∇×H = −J (3.3.2.1)

∇ ·B = 0 (3.3.2.2)

B = µ0µrH (3.3.2.3)

Both n ·B and n×H must be continuous over the boundaries.
The electric current density J in regions 2 and 3 are given by:

J2 = −108 A/m2 (3.3.2.4)

J3 = 108 A/m2 (3.3.2.5)

The relative permeability µr in vacuum equals 1. In the iron core we use the non-linear constitutive
relations given by Glowinski and Marrocco (1974):

µr =
1

νr(‖B‖)
νr(‖B‖) = α+ (1− α)

‖B‖8

‖B‖8 + β
(3.3.2.6)

In this example we use α = 3× 10−4 and β = 16× 103. Furthermore ν0 = 1
µ0

= 7.9577471× 105.

Since B is divergence free we can write it as a rotation of a vector potential A.

B = ∇×A, (3.3.2.7)

H =
1

µ0µr
∇×A. (3.3.2.8)

From Equation 3.3.2.1 it follows that

−∇× (
1

µ0µr
∇A) = −J. (3.3.2.9)
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Using the vector relation
∇×∇× φ = ∇(∇ · φ)−∇2φ, (3.3.2.10)

and the notion that ∇ ·A can be chosen zero, we find

−∇ · ( 1

µ0µr
∇A) = J. (3.3.2.11)

In 2D we have Ax = 0 and Ay = 0, hence

−∇(ν0νr∇Az) = Jz. (3.3.2.12)

At the outer boundary we may use either Az = 0 or ∂Az
∂n = 0. In this example we use the first option.

The continuity at the inner boundaries is automatically satisfied by the finite element method.

In order to get the example into your local directory use the command sepgetex:

sepgetex magnet

To run the example use the commands:

sepmesh magnet.msh

seplink magnet

magnet < magnet.prb

seppost magnet.pst

sepview sepplot.001

The region is subdivided into triangles by the submesh generators ”GENERAL” and ”RECTAN-
GLE”. As an example linear triangles have been used.
The definition of the curves has been plotted in Figure 3.3.2.2.
SEPMESH needs an input file. An example of an input file for this region is given below:

1 2

3

4

5

6

78910

1112 1314

15 16

17 18

1920 21

22
23 24

 
 

Figure 3.3.2.2: Definition of curves for alternator

# magnet.msh

#

# mesh file for 2d non-linear magnet problem

# See Manual Standard Elements Section 3.3.1

# and Examples manual, Section 3.3.2
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#

# To run this file use:

# sepmesh magnet.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

1: half_width = 0.2 # width of the right part of the outer region

2: length = 0.6 # length of the outer region

3: x_core = 0.007 # half_width of the iron core

4: x_current = 0.012 # at most right x co-ordinate of current region

5: y_core_low = 0.24 # lower y co-ordinate of the iron core

6: y_core_upp = 0.36 # upper y co-ordinate of the iron core left

7: y_current = 0.30 # upper y co-ordinate of current region

8: y_core_uppr = 0.37 # upper y co-ordinate of the iron core right

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

coarse(unit=0.01)

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0,3) # Lower point at axis

p2=( half_width,0,3) # Right under point

p3=( half_width, length,3) # Right upper point

p4=(- half_width, length,3) # Left upper point

p5=(- half_width,0,1) # Left under point

p6=(0, y_core_low,1) # lower point of core at axis

p7=( x_core, y_core_low,0.5) # lower right point of core

p8=( x_core, y_core_uppr,1) # upper right point of core

p9=( x_core, y_current,0.5) # upper left point of current region(R)

p10=( x_current, y_core_low,0.5) # lower right point of current region(R)

p11=( x_current, y_current,0.5) # upper right point of current region(R)

p12=(- x_core, y_core_upp,1) # upper left point of core

p13=(- x_core, y_current,0.5) # upper right point of current region(L)

p14=(- x_current, y_current,0.5) # upper left point of current region(L)

p15=(- x_current, y_core_low,0.5) # lower left point of current region(L)

p16=(- x_core, y_core_low,0.5) # lower left point of core

#

# curves

#

curves # See Users Manual Section 2.3

# Linear elements are used

c1 = cline (p1,p2) # Lower boundary right part

c2 = cline (p2,p3) # Right-hand side boundary

c3 = cline (p3,p4) # Upper boundary

c4 = cline (p4,p5) # Left-hand side boundary

c5 = cline (p5,p1) # Lower boundary left part

c6 = cline (p1,p6) # Lower part of axis
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c7 = cline (p6,p7) # Lower right part of iron core

c8 = curves (c11,c12) # Right-hand boundary of iron core

c9 = cline (p12,p8) # Upper boundary of iron core

c10= curves (c16,c17) # Left-hand boundary of iron core

c11= cline (p7,p9) # Left-hand boundary of current region(R)

c12= cline (p9,p8) # Upper part of right-hand boundary

# of iron core

c13= cline (p7,p10) # Lower part of current region(R)

c14= cline (p10,p11) # Right-hand boundary of current region (R)

c15= cline (p11,p9) # Upper boundary of current region (R)

c16= cline (p12,p13) # Upper part of left-hand boundary

# of iron core

c17= cline (p13,p16) # Right-hand boundary of current region(L)

c18= cline (p16,p15) # Lower part of current region(L)

c19= cline (p15,p14) # Left-hand boundary of current region (L)

c20= cline (p14,p13) # Upper boundary of current region (L)

c21= cline (p6,p16) # Lower left part of iron core

c22= curves(c1,c2,c3,c4,c5) # Outer boundary

c23= curves(c21,c18,c19,c20,-c16,c9,-c12,-c15,-c14,-c13,-c7)

c24= curves(-c21,c7)

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Linear triangles are used

s1=general3(c24,c8,-c9,c10) # iron core

s2=rectangle3(c13,c14,c15,-c11) # current region (R)

s3=rectangle3(c18,c19,c20,c17) # current region (L)

s4=general3(c22,c6,c23,-c6) # vacuum

#

# Connect elements groups to surfaces

#

meshsurf # See Users Manual Section 2.4

selm1 = s1

selm2 = s2

selm3 = s3

selm4 = s4

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Figure 3.3.2.3 shows the mesh generated by SEPMESH.

In order to solve this problem we need to use elements of type 800 for the vacuum and of type 803
for the iron core.
The non-linear problem is solved by a Newton linearization method. Unfortunately this method
does not converge for a current density of 108A/m2 For that reason we start with a current density
of 107A/m2 and gradually increase this value by steps of 2 × 107A/m2 until the final value has
been reached. Such a method, in which a significant parameter is changed gradually, is called a
continuation method.
The input for the continuation method can be found in the input block ”NONLINEAR EQUATIONS”.
The minimum number of iterations is set to 6, in order to ensure that the final value will be reached.
As start vector for the iteration the zero vector is used.
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Figure 3.3.2.3: Plot of mesh generated by SEPMESH

An important quantity to be computed is of course the magnetic flux density B, which is done by
computing the gradient of the potential. Another important issue is the magnitude of B. In order
to compute all these quantities it is necessary to introduce the input block ”STRUCTURE”, which
defines how the process develops.

• First the initial vector is created.

• Next the non-linear equation is solved and Az is stored in vector V1.

• Then B is computed as a derivative and stored in vector V2.

• Finally the magnitude ‖B‖ is computed and stored in vector V3.

• Although superfluous, the input block ”STRUCTURE” is closed by the output command,
which writes all three vectors.

Since we have to add the unction subroutine funcc2, in order to define µ and µ
B it is not possible to

use program SEPCOMP, but we have to write out main program magnet, which consists of three
statements only. The listing for this program is given by:

program magnet
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! main program for 2d non-linear magnet problem

! See Manual Standard Elements Section 3.3.1

! and Examples manual, Section 3.3.2

!

! To link this file use:

! seplink magnet

call sepcom(0)

end

! --- subroutine funcc2 is used to define nu and d nu / dB

! as function of the B computed before

subroutine funcc2 ( ichois, x, y, z, graphi, alpha, dalpha )

integer ichois

double precision x, y, z, graphi, alpha, dalpha

! The formula for nu(|b|) can be found in

! R. Glowinski and A. Marocco

! Analyse numerique du champ magnetique d’un alternateur par

! element finis et sur-relaxation ponctuelle non lineaire

! Computer Methods in applied mechanics and engineering 3 (1974), 55-85

double precision co1, co2, anu, fac, grap

co1 = 3d-4

co2 = 1.6d4

anu = 7.9577471d5

grap = abs(graphi)

fac = grap**8

alpha = anu*(co1+(1d0-co1)*fac/(fac+co2))

dalpha = 8d0*anu*(1d0-co1)*co2*(grap**7)/((fac+co2)*(fac+co2))

end

This program needs an input file which is the same as for SEPCOMP. The following input file may
be used to solve the problem:

# magnet.prb

#

# problem file for 2d non-linear magnet problem

# See Manual Standard Elements Section 3.3.1

# and Examples manual, Section 3.3.2

#

# To run this file use:

# magnet < magnet.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4
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reals

rho = 1 # density

eta = 0.01 # viscosity

vector_names

potential

magnetic_field_strength

magnitude_of_magnetic_field

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1,(type=803) # Type number for non-linear diffusion equation

# iron core

elgrp2,(type=800) # Type number for linear diffusion equation

elgrp3,(type=800)

elgrp4,(type=800)

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# Only velocities are prescribed, not the

# pressures

curves (c1 to c5) # The potential is prescribed on the outer

# boundary, curves c1 to c5

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_scheme = compact, symmetric # Symmetrical compact matrix

# So an iterative method will be applied

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary

# is required

structure # See Users Manual Section 3.2.3

# create the start vector for the non-linear iteration

create_vector, potential # make vector 0

# compute the potential by solving a system of non-linear equations

solve_nonlinear_system, potential

# compute the magnetic field strength by computing the gradient of the

# potential

derivatives, magnetic_field_strength

# compute the magnitude of the magnetic field strength

! compute_vector magnitude_of_magnetic_field//
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! length vector magnetic_field_strength

magnitude_of_magnetic_field = length vector magnetic_field_strength

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter=15, accuracy = 1d-4, miniter=6, print_level=2

equation 1

fill_coefficients = 1

change_coefficients

at_iteration 2, sequence_number = 1

at_iteration 3, sequence_number = 2

at_iteration 4, sequence_number = 3

at_iteration 5, sequence_number = 4

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1(nparm=20) # iron-core (type=803)

icoef5 = 2 # Picard iteration

elgrp2(nparm=20) # source with negative current

coef6 = 7.9577471d5 # nu = 1/(4d-7*pi)

coef9 = coef6

coef16= -2d7 # f at start = -2d7

elgrp3(nparm=20) # source with positive current

coef6 = 7.9577471d5 # nu = 1/(4d-7*pi)

coef9 = coef6

coef16= 2d7 # f at start = 2d7

elgrp4(nparm=20) # vacuum, no source

coef6 = 7.9577471d5 # nu = 1/(4d-7*pi)

coef9 = coef6

coef16= 0 # f=0

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number=1

elgrp2

coef16=-4d7 # f at second iteration is -4d7

elgrp3

coef16= 4d7 # f at second iteration is 4d7

end

change coefficients, sequence_number=2

elgrp2

coef16=-6d7 # f at third iteration is -6d7

elgrp3

coef16= 6d7 # f at third iteration is 6d7

end
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change coefficients, sequence_number=3

elgrp2

coef16=-8d7 # f at fourth iteration is -8d7

elgrp3

coef16= 8d7 # f at fourth iteration is 8d7

end

change coefficients, sequence_number=4

elgrp2

coef16=-1d8 # f at other iterations is -1d8

elgrp3

coef16= 1d8 # f at other iterations is 1d8

end

# input for linear solver

# See Users Manual Section 3.2.8

solve

iteration_method=cg,accuracy = 1d-5,print_level=0

end

# input for derivatives, i.e. computation of the magnetic field strength

# See Users Manual Section 3.2.11 and Standard Problems Section 3.1

derivatives

icheld = 2 # Compute gradient

element_groups = 4 # The magnetic field strength is only computed

# in the outer field

end

end_of_sepran_input

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. Mark that the numbering of vectors in SEPCOMP
and SEPPOST differ by one. hence now V1 is called V0 and so on.
The following input file plots the curves of the region, with and without curve numbers, plots the
mesh and a part of the mesh, plots the equi-potential lines with two different types of levels as well
as restricted to region 4 and finally plots the vector B and its magnitude in region 4.

# magnet.pst

#

# Input file for postprocessing for 2d non-linear magnet problem

# See Manual Standard Elements Section 3.3.1

# and Examples manual, Section 3.3.2

#

#

# To run this file use:

# seppost magnet.pst > magnet.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

# Plot the complete mesh

plot mesh
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# Plot a part of the mesh in the outer region

plot mesh, skip element groups(1,2,3), region=(-0.035,0.035,0.37,0.39)

# Make contour plots of the potential

plot contour potential

plot contour potential,minlevel=-0.02, maxlevel=0.02,nlevel=21

plot contour potential,minlevel=-0.0035, maxlevel=0.0035,nlevel=21//

region=(-0.035,0.035,0.37,0.39)

# Make a contour plot of the magnetic field strength

plot vector magnetic_field_strength, region=(-0.06,0.06,0.35,0.41)

# Make a contour plot of the magnitude of the magnetic field strength

plot contour magnitude_of_magnetic_field, region=(-0.06,0.06,0.35,0.41)

end

Figure 3.3.2.4 shows the contour plots made by program SEPPOST. Figure 3.3.2.5 shows the vector
plot and the contour plot of the magnitude of B in region 4. These plots may be visualized by the
program SEPDISPLAY or SEPVIEW.
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Figure 3.3.2.4: Contour plots generated by SEPPOST
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3.3.3 The solution of Hamilton-Jacobi-Bellman equation

In this section we consider special Hamilton-Jacobi-Bellman differential equation:

−ε∆c+ | ∂c
∂x
|+ | ∂c

∂y
| = 1 (3.3.3.1)

This is a typical non-linear equation due to the modulus of the convective terms. Equation 3.3.3.1
is solved on the square (-1,-1) × (1,1) and provided with the Dirichlet boundary condition c = 0 at
the complete boundary.
Since the equation is non-linear an iteration procedure to solve it is necessary. We start for example
by the solution of the Poisson equation (no convective terms) and use this solution in the next
iteration to compute the sign of the derivatives. This procedure is repeated until convergence is
reached.
For small values of ε it is known that the first derivatives of the solution is discontinuous in the
neighbourhood of the lines x = y and x = −y. For that reason the mesh is adapted to these lines.
The following input file may be used to generate the mesh by program sepmesh:

* modconv2.msh

mesh2d

coarse(unit=0.03)

points

p1=(-1,-1)

p2=(1,-1)

p3=(1,1)

p4=(-1,1)

p5=(0,0)

curves

c1=cline1(p1,p2)

c2=cline1(p2,p3)

c3=cline1(p3,p4)

c4=cline1(p4,p1)

c5=cline1(p1,p5)

c6=cline1(p2,p5)

c7=cline1(p3,p5)

c8=cline1(p4,p5)

surfaces

s1=general3(c1,c6,-c5)

s2=general3(c2,c7,-c6)

s3=general3(c3,c8,-c7)

s4=general3(c4,c5,-c8)

plot

end

Figure 3.3.3.1 shows the mesh generated by SEPMESH.

In order to solve this problem we need to use elements of type 800. We start with the solution of
the Poisson equation, without convective terms. Next we proceed with the special equation, which
requires that the integer coefficient 5 is set equal to 2.
The system of linear equations that arises in each step of the non-linear iteration process is solved
by an iterative solver (CGSTAB) using the solution of the previous iteration as a start.
Experiments showed that for convergence it was necessary to solve these equations rather accurate
(ε = 10−4) and for small values of ε it was necessary to use upwinding in order to get convergence
and an accurate solution.
The following input file may be used to solve the problem by program sepcomp in the case ε = 10−3:

* modconv2.prb
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constants

vector_names

solution

end

problem

types

elgrp1=(type=800) # Use standard type 800

essbouncond

curves(c1,c4) # essential boundary conditions on each side

end

matrix

storage_method = compact # compact storage for iterative solution

end

coefficients, sequence_number=1

elgrp1(nparm=20) # Poisson equation (first step)

coef6 = 0.001 # eps

coef9 = coef 6 # eps

coef16= 1 # f

end

change coefficients, sequence_number=1

elgrp1(nparm=20) # Special equation (next steps)

icoef2 = 3 # upwind

icoef5 = 2 # absolute values of convective terms

end

create vector

end

nonlinear_equations

global_options, accuracy=1d-2, print_level=2, maxiter=10//

at_error = return, lin_solver=1

equation 1

fill_coefficients = 1 # start with Poisson

change_coefficients

at_iteration 2, sequence_number=1 # resume with special equation

end

solve, sequence_number=1

iteration_method=cg, accuracy=1d-4, start=old_solution, print_level=1

end

end_of_sepran_input

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. Mark that the numbering of vectors in SEPCOMP
and SEPPOST differ by one. hence now V1 is called V0 and so on.
The following input file makes a 3D plot of the solution as well as a contour plot.

* modconv2.pst

postprocessing

3d plot solution

plot contour solution

end

Figure 3.3.3.2 shows the 3D plot made by program SEPPOST and Figure 3.3.3.3 shows the contour
plot.
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3.3.4 An example of non-linear convection

In this section we consider a mathematical example of non-linear convection as treated in Section
3.1. The example is strongly related to the example of Section 3.3.3.

−ε∆c+ (
∂c

∂x
)2 + (

∂c

∂y
)2 = 1 (3.3.4.1)

This is a typical non-linear equation due to the quadratic convective terms. Equation 3.3.4.1 is
solved on the square (-1,-1) × (1,1) and provided with the Dirichlet boundary condition c = 0 at
the complete boundary.
Since the equation is non-linear an iteration procedure to solve it is necessary. We start for example
by the solution of the Poisson equation (no convective terms) and use this solution in the next
iteration to compute the sign of the derivatives. This procedure is repeated until convergence is
reached.
For small values of ε it is known that the first derivatives of the solution is discontinuous in the
neighbourhood of the lines x = y and x = −y. For that reason the mesh is adapted to these lines.
The following input file may be used to generate the mesh by program sepmesh:

* convnon2.msh

mesh2d

coarse(unit=0.10)

points

p1=(-1,-1)

p2=(1,-1)

p3=(1,1)

p4=(-1,1)

p5=(0,0)

curves

c1=cline1(p1,p2)

c2=cline1(p2,p3)

c3=cline1(p3,p4)

c4=cline1(p4,p1)

c5=cline1(p1,p5)

c6=cline1(p2,p5)

c7=cline1(p3,p5)

c8=cline1(p4,p5)

surfaces

s1=general3(c1,c6,-c5)

s2=general3(c2,c7,-c6)

s3=general3(c3,c8,-c7)

s4=general3(c4,c5,-c8)

plot

end

Mark that this mesh is identical to the one in Section 3.3.3, however, with a large coarseness and
hence less elements.

In order to solve this problem we need to use elements of type 800. We start with the solution of
the Poisson equation, without convective terms. Next we proceed with the non-linear convection,
which requires that the integer coefficient 5 is set equal to 3.
This problem requires a user written subroutine FUNCC2 in which the function of the gradient
must be evaluated as well as its partial derivatives with respect to the gradient of the solution.
Hence we get:

g(x) = (
∂c

∂x
)2 + (

∂c

∂y
)2 (3.3.4.2)
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(
∂g

∂∇c
) = 2

( ∂c
∂x
∂c
∂y

)
(3.3.4.3)

The system of linear equations that arises in each step of the non-linear iteration process is solved
by an iterative solver (CGSTAB) using the solution of the previous iteration as a start.
Experiments showed that for convergence it was necessary to solve these equations rather accurate
(ε = 10−4) and for small values of ε it was necessary to use upwinding in order to get convergence
and an accurate solution.
Since a user written subroutine is provided, it is also necessary to create your main program. This
program consists only of a call to subroutine sepcom.

program convnon2

call sepcom ( 0 )

end

subroutine funcc2 ( ichoice, x, y, z, gradc, g, dgdgrad )

implicit none

integer ichoice

double precision x, y, z, gradc(*), g, dgdgrad(*)

g = gradc(1)**2 + gradc(2)**2

dgdgrad(1) = 2d0*gradc(1)

dgdgrad(2) = 2d0*gradc(2)

end

The following input program may be used to solve the problem The corresponding input file in the
case ε = 10−3 is:

* convnon2.prb

problem

types

elgrp1=(type=800) # Use standard type 800

essbouncond

curves(c1,c4) # essential boundary conditions on each side

end

matrix

method=6 # compact storage for iterative solution

end

coefficients, sequence_number=1

elgrp1(nparm=20) # Poisson equation (first step)

coef6 = 0.001 # eps

coef9 = coef 6 # eps

coef16= 1 # f

end

change coefficients, sequence_number=1

elgrp1(nparm=20) # Special equation (next steps)

icoef2 = 3 # upwind

icoef5 = 3 # Nonlinear convective terms with newton

end

create vector

end

nonlinear_equations

global_options, accuracy=1d-2, print_level=2, maxiter=20//

at_error = return, lin_solver=1, criterion = relative

equation 1
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fill_coefficients = 1 # start with Poisson

change_coefficients

at_iteration 2, sequence_number=1 # resume with special equation

end

solve, sequence_number=1

iteration_method=cg, accuracy=1d-4, start=old_solution, print_level=2

end

end_of_sepran_input

In order to run this program we have to link it by seplink and than run it.
Hence:

seplink convnon2

convnon2 < convnon2.prb > convnon2.out

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. Mark that the numbering of vectors in SEPCOMP
and SEPPOST differ by one. hence now V1 is called V0 and so on.
The following input file makes a 3D plot of the solution as well as a contour plot.

* convnon2.pst

postprocessing

name v0 = solution

3d plot v0

plot contour v0

end

Figure 3.3.4.1 shows the 3D plot made by program SEPPOST and Figure 3.3.4.2 shows the contour
plot.
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3.3.5 An example of compressible potential flow

In this section we consider a compressible flow through a nozzle as sketched in Figure 3.3.5.1.
In order to get this example in your local directory use the command

sepgetex nozzle

To run the example use the following commands:

seplink nozzlemesh

nozzlemesh < nozzle.msh

view mesh

seplink nozzle

nozzle < nozzle.prb

seppost nozzle.pst

view results

If we assume that the flow is stationary, frictionless and isentropic, then the flow can be considered
as a potential flow.

Let u be the velocity of the fluid, p the pressure and ρ the density.
Define the potential ϕ such that u = ∇ϕ.
From the continuity equation it follows that

−div(ρ∇ϕ) = 0 (3.3.5.1)

In case of an incompressible flow the density ρ is constant. For a compressible flow the density
depends on the equation of state. For a ideal gas the following relation can be derived of the
various equations.

ρ = ρ0(1− γ − 1

γ + 1

1

C2
∗
‖∇ϕ‖2)

1
γ−1

with γ the ratio of specific heats (γ = 1.4 in air),
ρ0 the density for U∞ (the velocity at x =∞),
C∗ the velocity of sound.
With ‖∇ϕ‖2 we mean the Euclidean norm:

‖∇ϕ‖2 = (
∂ϕ

∂x
)2 + (

∂ϕ

∂y
)2

Boundary conditions with respect to the problem:

We assume that the wall of the nozzle is impermeable, hence u · n = 0

We assume that at the inflow and outflow the flow is one-dimensional with size U∞, hence:

u|x=−L = u|x=L = (
U∞
0

)

Because of the symmetry it is sufficient to consider only the top half of the nozzle.
The curve that defines the top wall of the nozzle can be approximated by the following formula:

−10 ≤ x ≤ −5 y(x) = 1

−5 < x < 5 y(x) = 1− αe(−βx2)

5 ≤ x ≤ 10 y(x) = 1

Program sepmesh may be used to create a mesh for this problem. Since the upper wall is given
by a function we need a user written function funccv. Therefore program sepmesh is replaced by a
program nozzlemesh that contains the subroutine funccv:
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program nozzlemesh

! --- Main program to create the mesh for the nozzle in example 3.3.5

! of the Examples Manual

! This main program is necessary in order to provide a function funccv

! which defines the parameter curve

call sepmsh ( 0 )

end

subroutine funccv ( icurve, t, x, y, z )

! --- Function subroutine to define the upper wall in the nozzle of

! example 3.3.5 of the Examples Manual

! The curve is defined as follows:

! x < -5: y(x) = 1

! -5 <= x <= 5: y(x) = 1- alpha exp(-beta x^2)

! x > 5: y(x) = 1

implicit none

integer icurve

double precision t, x, y, z

double precision alpha, beta

double precision getconst

! --- alpha and beta are provided as real constants in the input file

! x is equal to the parameter t

alpha = getconst(’alpha’)

beta = getconst(’beta’)

x = t

if ( abs(t)>5 ) then

y = 1d0

else

y = 1d0 - alpha*exp(-beta*x**2)

end if

end

This program requires input form the input file:

# nozzle.msh

#

# mesh file for 2d nozzle problem

# See Examples Manual Section 3.3.5

#

# To run this file use:

# sepmesh nozzle.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals
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half_width = 1 # width of the upper half of the channel

half_length = 10 # half the length of the channel

alpha = 0.7 # parameter defining the nozzle

# the half width at the smallest part is

# 1-alpha

beta = 0.4 # parameter defining the nozzle

integers

n = 50 # number of elements in length direction

m = 6 # number of elements in width direction

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=( -half_length,0) # Left under point

p2=( half_length,0) # Right under point

p3=( half_length, half_width) # Right upper point

p4=( -half_length, half_width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Linear elements are used

c1=line (p1,p2,nelm= n) # symmetry axis

c2=line (p2,p3,nelm= m) # outflow boundary

c3=param (p3,p4,nelm= n,init= half_length,end=- half_length)

# upper wall is defined by a parameter

# function, with t=x

c4=line (p4,p1,nelm= m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Linear triangles are used

s1=rectangle3(c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Figure 3.3.5.2 shows the mesh created by nozzlemesh.
Equation 3.3.5.1 is non-linear because ρ depends on the potential ϕ and therefore this equation

can be considered as a special case of Equation (3.3.1.1) in the manual STANDARD PROBLEMS.
This implies that the user must provide a function subroutine funcc2, which defines ρ and ∂ρ

∂ϕ as
function of ϕ. See Section 3.3.1.
This subroutine is used in the following file nozzle.f

program nozzle

! --- Main program to solve the non-linear potential problem in the nozzle
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! example 3.3.5 of the manual Examples

! This main program is necessary in order to provide a function funcc2

! which defines the dependence of the density on the gradient of the

! potential phi

call sepcom ( 0 )

end

subroutine funcc2 ( ichoice, x, y, z, gradc, g, dgdgrad )

! --- Function subroutine to define the density in the non-linear potential

! problem in the nozzle as function of the gradient of the potential

! In case of Newton also the derivative with respect to

! the norm of the gradient is defined

! example 3.3.5 of the manual Standard Problems

! The density for the compressible potential flow is defined by

!

! rho = rho_0 c2 ^ 1/(gamma-1)

! with

! c2 = 1 - (gamma-1)/(gamma+1) (1/C*)^2 ||grad phi||^2

!

! The derivative d rho / d ||grad phi|| by

!

! d rho / d ||grad phi|| = rho_0/(gamma-1) c2^(1/(gamma-1)-1) *

! (-2 (gamma-1)/(gamma+1) (1/C*)^2 ||grad phi|| )

implicit none

integer ichoice

double precision x, y, z, gradc, g, dgdgrad

double precision rho_0, cstar, gamma, gmin1, gplus1, c, c1, c2

double precision getconst

! --- rho_0, gamma and C* are provided as real constants in the input file

rho_0 = getconst(’rho_0’)

gamma = getconst(’gamma’)

cstar = getconst(’Cstar’)

gmin1 = gamma-1d0

gplus1 = gamma+1d0

c = gmin1/gplus1

c1 = c/cstar**2

c2 = 1d0-c1*gradc**2

! --- The function rho is stored in g

g = rho_0*c2**(1d0/gmin1)

if ( ichoice==2 ) then

! --- ichoice = 2, Newton linearization;

! also d rho / d ||grad phi|| is required

dgdgrad = rho_0/gmin1*c2**(1d0/gmin1-1d0)*(-2d0*c1*gradc)
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end if

end

The corresponding input file is given by

# nozzle.prb

#

# problem file for 2d nozzle problem

# non-linear potential flow problem

# See Examples Manual Section 3.3.5

#

# To run this file use:

# sepcomp nozzle.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

rho_0 = 1.2 # density where u = U_inf

gamma = 1.4 # specific heat ratio (air)

Cstar = 340 # Velocity of sound

u_infinity = 50 # Velocity at infinity U_inf

m_infinity = 60 # Momentum at infinity rho_0 U_inf

vector_names

potential # unknown phi

velocity # derived quantity u = grad phi

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=803 # Type number for non-linear diffusion equation

# See Standard problems Section 3.1

# Define the type of natural boundary conditions

natbouncond

bngrp1 = type=801 # Boundary group 1, standard natural boundary

# condition for diffusion equation

bngrp2 = type=801 # Boundary group 2, standard natural boundary

# condition for diffusion equation

bounelements # Defines where natural boundary conditions

# are given

belm1 = curves(c2) # On curve 2: boundary group 1

belm2 = curves(c4) # On curve 4: boundary group 2

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved
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# This is necessary because the integral of the pressure over the boundary

# is required

#

structure # See Users Manual Section 3.2.3

# Create start vector for the potential

create_vector potential

# Compute the potential, by solving the non-linear equations

solve_nonlinear_system, potential

# Compute the velocity as gradient of the potential

derivatives,velocity

# Write the results to sepcomp.out

output

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_scheme=compact, symmetric # Symmetrical compact matrix

# So an iterative method will be applied

end

# Create start vector

# See Users Manual Section 3.2.5

create

# The start vector is set equal to zero, so no extra information is required

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.3

coefficients

elgrp1 ( nparm=20 ) # The coefficients for the non-linear diffusion

# equation are defined by 20 parameters

icoef5 = 1 # 5: Type of linearization (1=Picard)

bngrp1 ( nparm=15) # The natural boundary condition requires

# 15 parameters

coef7 = m_infinity # On c2 we have alpha d phi / d n = m_inf

bngrp2 ( nparm=15)

coef7 = - m_infinity # On c4 we have alpha d phi / d n = - m_inf

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7
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change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter=20, accuracy=1d-4,print_level=2, lin_solver=1//

at_error return

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 1

end

# compute velocity

# See Users Manual, Section 3.2.11

derivatives

icheld=2 # icheld=2, velocity in nodes

# See Standard problems Section 3.1

end

# input for the linear solver

# See Users Manual, Section 3.2.8

solve

iteration_method = cg, accuracy=1d-2//

termination_crit = rel_residual, start=old_solution//

print_level=0

end

end_of_sepran_input

In order to view the computed potential and the corresponding velocity program seppost may be
used with the following input:

# nozzle.pst

# Input file for postprocessing for 2d nozzle problem

# non-linear potential flow problem

# See Examples Manual Section 3.3.5

#

#

# To run this file use:

# seppost nozzle.pst > nozzle.out

#
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# Reads the files meshoutput, sepcomp.inf and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

# Plot the results

# See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity

plot contour potential # Contour plot of pressure

plot coloured contour potential

end

Figure 3.3.5.3 shows the computed velocities, and Figures 3.3.5.4 and 3.3.5.5 the contourlines and
colored contour levels of the potential
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3.4 δ-type source terms

This section is under preparation
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3.5 Second order real linear elliptic and parabolic equations with two
degrees of freedom

3.5.1 Falling film absorption with a large heat effect in one-dimensional
film flow

Falling film absorption accompanied by a large heat effect is encountered in absorption heat pumps
or cooling machines and in some industrial applications like the absorption of ammonia or hy-
drochloric acid as well as in strongly exothermic reactions like detergent making by sulfonation of
organic alkylates (Yih, 1986). Figure 3.5.1.1 gives the geometry of the absorber. On one side of
the plate a solution of substance 1 in substance 2 flows down as a thin laminar film. At the liquid-
vapour interface the vapour (substance 1) is absorbed and then transported into the bulk of the
film. The heat of absorption is released at the interface and transported through the film and the
wall to the cooling medium. The cooling medium flows on the other side of the plate parallel to the
film (cocurrent or countercurrent flow), or in a direction perpendicular to the plane of illustration
(cross-flow).
In case of a steady state, constant properties, a film thickness and velocity that are not influenced
by the vapour absorption, and only diffusion of heat and mass perpendicular to the wall and con-
vection along the wall, the absorption in the liquid film is described by the following dimensionless
convection diffusion equations (van der Wekken and Wassenaar, 1988).

U
∂γ

∂Gz
= Le

∂2γ

∂Y 2
(3.5.1.1)

U
∂θ

∂Gz
=

∂2θ

∂Y 2
(3.5.1.2)

Here U denotes the velocity along the wall, normalized on the average velocity,
Gz is the co-ordinate along the wall, normalized on a characteristic length for heat transfer (Graetz
number),
Y is the co-ordinate perpendicular to the wall, normalized on the film thickness,
γ is the normalized mass fraction of the volatile component,
θ is the normalized temperature, and
Le is the Lewis number, the ratio between mass and heat diffusivity.
A two-dimensional version of this problem is considered in van der Wekken et al. (1988).

The mixture enters the absorber at Gz = 0 at uniform temperature and mass fraction, the wall
Y = 1 is impermeable for mass, but there is a cooling condition for heat (Bi → ∞: isothermal
wall, Bi = 0: adiabatic wall). At the interface Y = 0 there is thermodynamic equilibrium between
vapour and liquid, and the heat released is proportional to the absorbed mass (Equation 3.5.1.4).
In dimensionless form the boundary conditions transform to:

Gz = 0; 0 ≤ Y ≤ 1 : θ = 0, γ = 0 (3.5.1.3)

Gz > 0;Y = 1 : θ + γ = 1,
∂θ

∂Y
= Λ

∂γ

∂Y
(3.5.1.4)

Gz > 0;Y = 0 :
∂γ

∂Y
= 0,

∂θ

∂Y
= Bi(θ − θc) (3.5.1.5)

Here Λ is the dimensionless heat of absorption, Bi is the Biot number, the ratio of heat transfer
in the film to that to the cooling medium, θc is the dimensionless cooling medium temperature. A
version of this problem with co- or countercurrent flow cooling is elaborated in Wassenaar (1994).

The boundary conditions 3.5.1.4 at the phase change surface Y = 1 are similar to the conditions at
x = s(t) in the solidification problem in Section 6.1. The difference is that in the above case there
are two components in the densest phase. The Gibbs phase rule then dictates that there is still one
thermodynamic degree of freedom, so that if the pressure p is fixed, the temperature is not fixed,
but still depends on the mass fraction, a relation that is linearized in 3.5.1.4.
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The region is subdivided into triangles by the submesh generator ”RECTANGLE”. As an example
linear triangles have been used.
SEPMESH needs an input file. An example of an input file for this region is given below:

# absorb.msh

#

# mesh for absorber

#

# P5 c4 P4

# *----------<---------*

# c5 ^ ^ c3

# P6* *P3

# | S1 |

# c6 ^ ^ c2

# | |

# *---------->---------*

# P1 c1 P2

#

#

mesh2d

points

p1=(0,0)

p2=(1000,0)

p3=(1000,0.9)

p4=(1000,1.0)

p5=(0,1.0)

p6=(0,0.9)

curves

c1=line1(p1,p2,nelm=60,ratio=2,factor=1.17707)

c2=line1(p2,p3,nelm=15)

c3=line1(p3,p4,nelm=15,ratio=3,factor=40)

c4=translate c1(p5,p4)

c5=translate c3(p6,p5)

c6=translate c2(p1,p6)

c7=curves(c2,c3)

c8=curves(c6,c5)

surfaces

s1=rectangle3(c1,c7,-c4,-c8)

plot

end

In order to solve the problem program SEPCOMP is used. The differential equation as well as most
of the boundary conditions are standard and do not need any special explanation. The boundary
conditions at the side Gz > 0;Y = 1, however, are special since they contain linear combinations
of γ and θ. In order to be able to deal with these boundary conditions it is necessary to use local
transformations.
Let us define the vectors T and T̃ by:

T =

(
θ
γ

)
, T̃ =

(
θ

θ + γ

)
=

(
1 0
1 1

)
T (3.5.1.6)

In order to satisfy the boundary condition θ+ γ = 1 at the boundary Gz > 0;Y = 1, we transform
the unknowns at that boundary from T to T̃ using the transformation given in Equation 3.5.1.6.
After this transformation the second unknown at the boundary is prescribed (essential boundary
condition) and has value 1.
The transformation is defined in the input of program SEPCOMP in the input block PROBLEM
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under the keyword localtransform. The transformation matrix is defined in matrixr.
In order to satisfy the other boundary condition at Gz > 0;Y = 1, we follow the method in van
der Wekken et al (1988). This method requires some knowledge of weak formulations.
One can easily verify that the weak formulation corresponding to the equations 3.5.1.1 and 3.5.1.2
under the boundary conditions 3.5.1.3 to 3.5.1.5 is given by:∫

Ω

∂δT

∂Y
·
(

1 0
0 Le

)
∂

∂Y
T +U

∂T

∂Gz
· δTdΩ−

∫
Γvapour

∂δT

∂Y
·
(

1 0
0 Le

)
∂

∂Y
TnY dΓ = 0 (3.5.1.7)

where Γvapour is the interface between vapour and mixture with the special boundary condition
and δT is the test function to be used in the weak formulation. In order to satisfy the boundary
condition ∂θ

∂Y = Λ ∂Γ
∂Y we transform the test function such that the boundary integral vanishes under

the boundary condition 3.5.1.4.
If we introduce δT̃ by the transformation

δT̃ =

(
δθ̃
δγ̃

)
=

(
−1 0
Λ
Le 1

)
T̃ (3.5.1.8)

we see that the boundary integral can be written as∫
Γvapour

∂δT̃

∂Y
·
(
−1 Λ

Le
0 1

)(
1 0
0 Le

)
∂

∂Y
TnY dΓ (3.5.1.9)

The first row in 3.5.1.9 vanishes because of boundary condition 3.5.1.4 the second row vanishes
because the second unknown is prescribed after transformation. So the test function must be
transformed by equation 3.5.1.8. In the input of program SEPCOMP this is done by matrixv.
Since the transformation of unknowns and test functions is different we need a non-symmetric
transformation in this case.

First we give the program that is based upon SEPCOMP. The main program consists only of a call
to SEPCOM. The listing for this program is given by:

program absorber

call sepcom(0)

end

function funccf ( ifunc, x, y, z )

implicit none

double precision funccf, x, y, z

integer ifunc

if ( ifunc==1 ) then

! --- ifunc = 1, compute u, with respect to teta

funccf = 1.5*(2*y-y**2)

else

! --- ifunc = 2, compute u, with respect to gamma

funccf = 1.5*(2*y-y**2)

end if

end

This program needs an input file which is the same as for SEPCOMP. The following input file may
be used to solve the problem:
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# absorb.prb

#

constants

reals

LE = 2e-3 # LE =D/a

# Lewis number

LAMBDA = 1e-2 # LAmBDA =-Le*dH/Cp/A/(1-W0)

# dim.less heat of absorption

Bi = 5 # BI =Ac*delta/lambda

# Biot number cooling/film

TETAC = -0.2 # TETAC =(Tc-T0)/(Te-T0)

TETAC_BI = tetac*bi # TETAC_BI = TETAC*BI

Lam_Le = lambda/le # LAMBDA/LE

vector_names

theta

end

*

* problem definition

*

problem

types

elgrp1=(type=805)

natboundcond

bngrp1=(type=806)

bounelements

belm1=curves(shape=1,c1)

essbouncond

degfd1,degfd2=curves0(c8)

degfd2=curves200(c4)

* Transformation of the unknowns T and w at the interface

localtransform

degfd1,degfd2=curves200(c4),transformation=non_symmetric//

matrixr=(1,0,-1,1), matrixv=(-1,0, Lam_Le,1)

END

essential boundary conditions

degfd2, curves200 (c4), value = 1

end

coefficients

elgr1 ( nparm=45 )

coef 6 = 0 # diffusion in x-dir (teta equation)

coef 9 = 1 # diffusion in y-dir

coef12 = func=1 # velocity in x-dir

coef13 = 0 # velocity in y-dir

coef21 = 0 # diffusion in x-dir (gamma equation)

coef24 = LE # diffusion in y-dir

coef27 = func=2 # velocity in x-dir

coef28 = 0 # velocity in y-dir

bngrp1 ( nparm=25 )

coef 6 = BI # sigma=bi (teta equation)

coef 7 = TETAC_BI # h = tetac bi

end
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structure

prescribe_boundary_conditions

solve_linear_system

end

end_of_sepran_input

Once the solution has been computed, it may be printed and plotted by the postprocessing program
SEPPOST. SEPPOST also requires an input file. The following input file prints the computed
solution, makes a standard contour plot as well as a coloured contour plot. In order to identify the
plot an extra text identification is submitted.

# absorb.pst

#

post processing

# Define names of vectors

# Print both vectors completely

print theta

# PLot the results

plot contour theta, degfd=1

plot contour theta, degfd=2

plot coloured contour theta, degfd=1

plot coloured contour theta, degfd=2

end

Figure 3.5.1.2 shows the computed isotherms.
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3.5.2 An artificial example of the use of periodical boundary conditions
to connect two regions

In this section we an artificial example, to show how periodical boundary conditions can be used
to connect two regions through boundary conditions. The main difference with the examples in
Section 3.1.10 is that we have two unknowns per point and each of these unknowns has different
connection boundary conditions.
In order to get this example into your local directory use:

sepgetex testperiod04

To run this example use

sepmesh testperiod04.msh

view mesh by jsepview

seplink testperiod04

testperiod04 < testperiod04.prb

view results by jsepview

In this example we consider the following artificial problem.
Let Ω1 be the unit square ((0,1) × (0,1)) and Ω2 be the unit square ((1,1) × (2,1))
Let each component of the vector T defined by

T =

(
T1

T2

)
(3.5.2.1)

satisfy the diffusion equation with different diffusion parameters κ in each region, i.e − div κ1∇Ti =
0 in Ω1 and − div κ2∇Ti = 0 in Ω2 (i = 1, 2).
On the lower boundary (y = 0) and the upper boundary (y = 1), as well as the left-hand side
of Ω1 and the right-hand side of Ω2 we prescribe the temperature components Ti by T1(x, y) =
y, T2(x, y) = x in Ω1 and T1(x, y) = 2y, T2(x, y) = 0.5x+0.5 in Ω2 (Dirichlet boundary condition).
Furthermore we assume that both regions which have separate boundaries for x = 1 are coupled
through coupling conditions. Since in this case we have two unknowns per point the number of
coupling conditions must be twice that used in Section 3.1.10
The coupling boundary conditions we prescribe are for T1 that the value in the left-hand side of Ω2

is twice the value in the right-hand side of Ω1, and that the fluxes on both sides are equal.
For T2 we assume continuity of the temperature as well as the flux.
So if the curves at x = 1 are defined as Cleft and Cright, actually the boundary condition is defined
as T1Cleft = 2T1Cright and κ1

∂T1

∂x |Cleft = κ2
∂T1

∂x |Cright.

T2Cleft = T2Cright and κ1
∂T2

∂x |Cleft = κ2
∂T2

∂x |Cright. This means that we have a periodical bound-

ary conditions for T2 and a periodical boundary condition with a multiplication factor 2 for T1.
One easily verifies that if κ1 = 1 and κ2 = 2, the exact solution is given by T1 = y in Ω1, T1 = 2y
in Ω2, and T2 = x in Ω1, Tx = 0.5 + 0.5x in Ω2

The equation itself is standard, and so are the Dirichlet boundary conditions. The periodical bound-
ary conditions, however, require so-called connection elements, which identify unknowns on Cleft
and Cright.
The mesh file used in this case is:

# testperiod04.msh

#

# mesh file for 2d periodical boundary conditions problem

# See testperiod04.prb for a description

#

# To run this file use:

# sepmesh testperiod04.msh
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#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the region

length = 1 # length of the first subregion

length2 = 2 # length of the second subregion

integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

shape_cur = 1 # Linear elements along curves

shape_sur = 5 # Bi-linear quadrilaterals in surfaces

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

# subregion 1

p1=(0,0) # Left under point

p2=( length,0) # Right under point

p3=( length, width) # Right upper point

p4=(0, width) # Left upper point

# subregion 2

p11=( length,0) # Left under point

p12=( length2,0) # Right under point

p13=( length2, width) # Right upper point

p14=( length, width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# subregion 1

c1=line shape_cur (p1,p2,nelm= n) # lower wall

c2=line shape_cur (p2,p3,nelm= m) # right-hand side

c3=line shape_cur (p3,p4,nelm= n) # upper wall

c4=line shape_cur (p4,p1,nelm= m) # left-hand side

# subregion 2

c11=line shape_cur (p11,p12,nelm= n) # lower wall

c12=line shape_cur (p12,p13,nelm= m) # right-hand side

c13=line shape_cur (p13,p14,nelm= n) # upper wall

c14=line shape_cur (p14,p11,nelm= m) # left-hand side

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# subregion 1

s1=rectangle shape_sur (c1,c2,c3,c4)

# subregion 2
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s2=rectangle shape_sur (c11,c12,c13,c14)

# Coupling of surfaces to element groups

meshsurf

selm1 = s1

selm2 = s2

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Since the boundary conditions depend on the coordinates, we need a main program to define the
function.

program testperiod04

implicit none

! --- File for 2d periodical boundary conditions problem

! See testperiod04.prb and the manual Examples Section 3.5.2

! for a description

call startsepcomp

end

! --- Function funcbc for the essential boundary conditions

function funcbc ( ichoice, x, y, z )

implicit none

integer ichoice

double precision x, y, z, funcbc

if ( ichoice==1 ) then

funcbc = y

else if ( ichoice==2 ) then

funcbc = x

else if ( ichoice==3 ) then

funcbc = 2d0*y

else if ( ichoice==4 ) then

funcbc = 0.5d0*x+0.5d0

else

! --- ichoice <1 or > 4: error

call eropen(’funcbc’)

call errint(ichoice,1)

call errsub ( 1, 1, 0, 0)

call erclos(’funcbc’)

call instop

funcbc = 0d0

end if

end
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! --- Function func for the creation of the exact solution

function func ( ichoice, x, y, z )

implicit none

integer ichoice

double precision x, y, z, func, funcbc

func = funcbc ( ichoice, x, y, z )

end

The input file for the computational part is standard. The only special part is the formed by the
elements of type -1 defining the periodical boundary conditions.

# testperiod04.prb

#

# problem file for 2d periodical boundary conditions problem

# See manual Examples Section 3.5.2

#

# The problem to be solved consist of two squares of size 1x1:

# S1: (0,0) x (1,1)

# S2: (1,0) x (2,1)

#

# The squares are connected by connection elements

#

# In S1 the solution of the double diffusion equation is: u = ( y, x )

# In S2 the solution of the double diffusion equation is: u = (2y, 0.5x+0.5 )

# Hence in the common interface we have continuity of v and a multiplication

# factor of 2 for T

#

# The coefficients for the diffusion equation are different for both squares

#

# To run this file use:

# sepcomp testperiod04.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa_1 = 1 # conductivity in S1

kappa_2 = 2 # conductivity in S2

vector_names

Temperature

T_exact

variables

error

end

#

# Define the type of problem to be solved

#
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problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=805 # Type number for double laplacian equation

# See Standard problems Section 3.5

elgrp2=805 # Type number for double laplacian equation

# See Standard problems Section 3.5

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Fixed under wall S1

curves(c3) # Fixed upper wall S1

curves(c4) # left-hand side S1

curves(c11) # Fixed under wall S2

curves(c13) # Fixed upper wall S2

curves(c12) # left-hand side S2

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

periodical_boundary-conditions

curves(c2,-c14) degfd1, constant=0, factor=2

# T_1, multiplication factor 2

curves(c2,-c14) degfd2, constant=0, factor=1

# T_2, multiplication factor 1

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute the temperature

prescribe_boundary_conditions, Temperature &

degfd1, func=1, curves(c1 to c4) # curve c2 has no effect

prescribe_boundary_conditions, Temperature &

degfd2, func=2, curves(c1 to c4) # curve c2 has no effect

prescribe_boundary_conditions, Temperature &

degfd1, func=3, curves(c11 to c14) # curve c14 has no effect

prescribe_boundary_conditions, Temperature &

degfd2, func=4, curves(c11 to c14) # curve c14 has no effect

solve_linear_system, Temperature

# Compute and print the error

create_vector T_exact degfd1, func=1, surface(s1)

create_vector T_exact degfd2, func=2, surface(s1)

create_vector T_exact degfd1, func=3, surface(s2)

create_vector T_exact degfd2, func=4, surface(s2)

error = norm_dif=3, vector1=Temperature, vector2=T_exact

plot_colored_levels Temperature, degfd = 1, text = ’T_1’

plot_colored_levels Temperature, degfd = 2, text = ’T_2’

# Write the results to a file

output

print error

end

# Define the coefficients for the problems

# All parameters not mentioned are zero
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# See Users Manual Section 3.2.6 and Standard problems Section 3.5

coefficients

elgrp1

# Omega_1

coef6 = kappa_1 # 6: Heat conduction equation 1

coef9 = coef6 # 9: Heat conduction equation 1

coef21 = kappa_1 # 21: Heat conduction equation 2

coef24 = coef6 # 24: Heat conduction equation 2

elgrp2

# Omega_2

coef6 = kappa_2 # 6: Heat conduction equation 1

coef9 = coef6 # 9: Heat conduction equation 1

coef21 = kappa_2 # 21: Heat conduction equation 2

coef24 = coef6 # 24: Heat conduction equation 2

end

end_of_sepran_input



EX Extended second order elliptic eqns ( 2 unknowns) August 2006 3.6.1

3.6 Extended second order real linear elliptic and parabolic equations
with two degrees of freedom

In this section we treat some examples corresponding to Section 3.6 of the manual Standard Prob-
lems. At this moment the following examples are available:

1D biharmonic equation (3.6.1)This concerns an artificial test problem.
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Vector plot of magnetic flux density B       
 

1

2

3

4

5

6

7

8

9
10

11

LEVELS

 1       0.000

 2       0.014

 3       0.029

 4       0.043

 5       0.057

 6       0.072

 7       0.086

 8       0.100

 9       0.114

10       0.129

11       0.143

Contour levels of magnitude of B                
 

Figure 3.3.2.5: Vector plot of B and contour plot of ‖B‖
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Figure 3.3.3.1: Plot of mesh generated by SEPMESH
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3D plot of  oplossing                    
 

Figure 3.3.3.2: 3D-plot of solution
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Figure 3.3.3.3: Contour plot of solution
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3D plot of  solution                     
 

Figure 3.3.4.1: 3D-plot of solution
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Figure 3.3.4.2: Contour plot of solution
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x = L

B

x = -L x = 0

Figure 3.3.5.1: Nozzle

Figure 3.3.5.2: Mesh for nozzle

Figure 3.3.5.3: Velocity vectors nozzle
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Figure 3.3.5.4: Potential contours in nozzle

Figure 3.3.5.5: Colored potential levels in nozzle
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Figure 3.5.1.1: Schematic representation of the cooled vertical wall film absorber

1234
567 8 9 10

LEVELS

 1       -.002

 2        .118

 3        .238

 4        .359

 5        .479

 6        .599

 7        .719

 8        .839

 9        .960

10       1.080

11       1.200

Contour levels of  theta                        
 

Figure 3.5.1.2: isotherms in the cooled vertical wall film absorber
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3.6.1 Example of 1d biharmonic equation, solved as a coupled system of
second order equations

As an example of the use of two coupled second order equations, we consider the solution of a 1d
biharmonic equation. It concerns an artificial mathematical example.

To get this example into your local directory use:

sepgetex testbiharmonisch1d1

and to run it use:

sepmesh testbiharmonisch1d1.msh

sepcomp testbiharmonisch1d1.prb

Consider the 1d biharmonic equation:
∂4u

∂x4
= f (3.6.1.1)

with boundary conditions:

uand
∂2u

∂x2
given (3.6.1.2)

Due to the special boundary conditions, this equation can be written as

−∂
2u

∂x2
= v (3.6.1.3)

−∂
2v

∂x2
= f (3.6.1.4)

(3.6.1.5)

or in the form used by the manual Standard Problems:

−∂
2u

∂x2
− v = 0 (3.6.1.6)

−∂
2v

∂x2
= f (3.6.1.7)

(3.6.1.8)

We solve this problem on the region [0,1] with the following boundary conditions:

1. u(0) = 1, u(1) = 1, v(0) = 0, v(0) = 0, exact solution: u = 1, v = 0

2. u(0) = 0, u(1) = 1, v(0) = −2, v(0) = −2, exact solution: u = x2, v = −2

3. u(0) = 0, u(1) = 1, v(0) = 0, v(0) = −12, exact solution: u = x4, v = −12x2

The first two problems are solved exactly and the third one has a small error.

The mesh file for this problem is given by

# testbiharmonisch1d1.msh

#

# mesh file for 1d biharmonic equation

# See Examples Manual Section 3.6.1

#

# To run this file use:

# sepmesh testbiharmonisch1d1.msh

#
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# Creates the file meshoutput

#

#

#

# Define some general constants

#

constants

integers

n = 10

reals

L = 1

end

# Create mesh

mesh1d

points

p1 = 0

p2 = L

curves

c1 = line1 ( p1, p2, nelm = n )

end

and the problem file by

# testbiharmonisch1d1.prb

#

# problem file for 1d biharmonic equation

# See Examples Manual Section 3.6.1

#

# To run this file use:

# sepcomp testbiharmonisch1d1.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa = 1 # diffusion parameter

vector_names

potential

end

#

# Define the type of problem to be solved

#

problem, sequence_number = 1 # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=808 # Type number for second order elliptic equation

# See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)
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# See Users Manual Section 3.2.2

points ( p1, p2) # Essential boundary conditions on all boundaries

end

# Define the essential boundary conditions

# See Users Manual Section 3.2.5

# First problem u = 1

essential boundary conditions, sequence_number = 1

points p1, degfd1, value = 1

points p2, degfd1, value = 1

end

# Second problem u = x^2, v=-2

essential boundary conditions, sequence_number = 2

points p1, degfd1, value = 0

points p1, degfd2, value = -2

points p2, degfd1, value = 1

points p2, degfd2, value = -2

end

# Third problem u = x^4, v=-12x^2

essential boundary conditions, sequence_number = 3

points p1, degfd1, value = 0

points p1, degfd2, value = 0

points p2, degfd1, value = 1

points p2, degfd2, value = -12

end

# Define the coefficients for Laplacian equation

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrp1 ( nparm=65 ) # The coefficients are defined by 65 parameters

coef6 = kappa # a11 = kappa

coef21 = 1 # a22 = 1

coef45 = -1 # beta_21

end

coefficients, sequence_number = 2

elgrp1 ( nparm=65 ) # The coefficients are defined by 65 parameters

coef6 = kappa # a11 = kappa

coef21 = 1 # a22 = 1

coef31 = 24 # f2 = 24

coef45 = -1 # beta_21

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3
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# Compute the solution of the first problem (u=1, v=0)

# First prescribe the essential boundary conditions

# The sequence number refers to the sequence number used in the

# essential boundary conditions block

# Since only one input block is present this information is superfluous

prescribe_boundary_conditions, potential, sequence_number = 1

# Next solve the system of equations

# The sequence number seq_coef refers to the sequence number of the

# input block coefficients and

# the sequence number seq_solve refers to the sequence number of the

# input block solve

solve_linear_system, potential, seq_coef = 1

print potential

# Compute the solution of the second problem (u=x^2, v=-2)

prescribe_boundary_conditions, potential, sequence_number = 2

solve_linear_system, potential, seq_coef = 1

print potential

# Compute the solution of the third problem (u=x^4, v=-12x^2)

prescribe_boundary_conditions, potential, sequence_number = 3

solve_linear_system, potential, seq_coef = 2

print potential

# Write the results to a file

# Since no extra information is used, we have omitted an input block

output

end
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3.7 Second order wave equations

At this moment we have only one example:

3.8 An artificial example of the solution of a 2d wave equation
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3.8 An artificial example of the solution of a 2d wave equation

Consider the wave equation
∂2u

∂t2
−∆u = f (3.8.0.9)

with f = −cos(t)(x+ 3y).
This equation must be solved on a unit square with initial conditions

u(t = 0) = cos(t)(x+ 3y)
∂u

∂t
(t = 0) = 0 (3.8.0.10)

and boundary conditions
u = cos(t)(x+ 3y) (3.8.0.11)

on the whole boundary.
One easily verifies that the exact solution of this problem is given by u = cos(t)(x+ 3y)
To get this example in you local directory use:

sepgetex examwave1

And to run it use

sepmesh examwave1.msh

seplink examwave1

examwave1 < examwave1.prb

seppost examwave1.pst

A version in which we use the exact solution and the error of the numerical solution is computed is
also available under the name:

examwave2

This version can be copied and run in exactly the same way as examwave1.
In order to solve this problem we apply the standard finite element discretization with elements of
type 800 as described in the manual Standard Problems Section 3.1.
The time discretization we apply is the central difference scheme, that is a special method for second
order time derivatives.
The mesh for this problem is standard. The input file is

# examwave1.msh

#

# mesh file for 2d artificial wave problem

# See Manual Examples Section 3.7.1

#

# To run this file use:

# sepmesh examwave1.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the region

length = 1 # length of the region

integers
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shape_cur = 1 # Type of elements along curves

# linear elements

shape_sur = 3 # Type of elements in surface

# Linear triangles

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

coarse(unit=0.1) # unit length

#

# user points, provided with local coarseness

#

points # See Users Manual Section 2.2

p1=(0,0,1)

p2=( width,0,1)

p3=( width, length,1)

p4=(0, length,1)

#

# curves

#

curves # See Users Manual Section 2.3

c1=cline shape_cur (p1,p2)

c2=cline shape_cur (p2,p3)

c3=cline shape_cur (p3,p4)

c4=cline shape_cur (p4,p1)

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=general shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

In order to define the initial conditions, boundary conditions and right-hand side, we need function
subroutines. These are given in the following fortran file:

program examwave1

call sepcom(0)

end

! --- function func for the initial condition

function func ( ichoice, x, y, z )

implicit none

double precision func, x, y, z

integer ichoice

double precision t, tout, tstep, tend, t0, rtimdu

integer iflag, icons, itimdu

common /ctimen/ t, tout, tstep, tend, t0, rtimdu(5), iflag,

+ icons, itimdu(8)
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func = cos(t) * ( x + 3d0 * y )

end

! --- function funccf for the right-hand side:

function funccf ( ichoice, x, y, z )

implicit none

double precision funccf, x, y, z

integer ichoice

double precision t, tout, tstep, tend, t0, rtimdu

integer iflag, icons, itimdu

common /ctimen/ t, tout, tstep, tend, t0, rtimdu(5), iflag,

+ icons, itimdu(8)

funccf = -cos(t) * ( x + 3d0 * y )

end

! --- function funcbc for essential boundary conditions

function funcbc ( ichoice, x, y, z )

implicit none

double precision funcbc, x, y, z

integer ichoice

double precision t, tout, tstep, tend, t0, rtimdu

integer iflag, icons, itimdu

common /ctimen/ t, tout, tstep, tend, t0, rtimdu(5), iflag,

+ icons, itimdu(8)

funcbc = cos(t) * ( x + 3d0 * y )

end

In the input file for this program we need to define two vectors: the function u and its time
derivative, which is stored in un. The input file is given by

# examwave1.prb

#

# problem file for 2d artificial wave problem

# See Manual Examples Section 3.7.1

#

# To run this file use:

# sepcomp examwave1.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#
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constants # See Users Manual Section 1.4

reals

t0 = 0 # initial time

t1 = 1 # end time

dt = 0.05 # time step

tout0 = t0 # first time for output to sepcomp.out

tout1 = t1 # last time for output to sepcomp.out

dtout = 2*dt # time step for output to sepcomp.out

vector_names

u ! Contains solution

un ! Contains solution at prior time level

! At the start it contains the time-derivative at t = t0

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 = 800 # General second order equation

# See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1 to c4) # all outer boundaries are prescribed

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_method = compact, symmetric

# Symmetric matrix, stored as compact matrix

end

# Create initial conditions

# See Users Manual Section 3.2.5

create vector 1

func = 1 ! u at t=0 (function)

create vector 2

value = 0 ! du/dt at t=0 (derivative)

end

#

# Essential boundary conditions

#

essential boundary conditions

curves(c1 to c4),(func=1) # Boundary contions are only necessary for u

# They depend on time and place, hence a

# function is used

end
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# Define the coefficients for the wave equation

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1(nparm=20)

coef6 = 1 # a11 = 1 (laplace)

coef9 = coef 6 # a22 = 1

coef16 = func = 1 # f is a function

coef17 = 1 # rho = 1

end

# Define input for the time integration

time_integration

method = central_differences ! standard method for second order

! time derivatives

tinit = t0 ! initial time

tend = t1 ! end time

tstep = dt ! time step

toutinit = tout0 ! initial time for output

toutend = tout1 ! end time for output

toutstep = dtout ! time step for output

seq_coefficients = 1 ! defines which coefficients must

! be used

diagonal_mass_matrix ! The mass matrix is diagonal

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

structure

# Fill initial condition in u and derivative at t=0 in un

create_vector u

# Integrate the equation for t0 to tend

solve_time_dependent_problem, u

end

end_of_sepran_input

Finally we can plot the solution using the following input file for seppost.

# examwave1.pst

# Input file for postprocessing for 2d artificial wave problem

# See Manual Examples Section 3.7.1

#

#

# To run this file use:

# seppost examwave1.pst > examwave1.out

#

# Reads the files meshoutput and sepcomp.out

#

#

postprocessing # See Users Manual Section 5.2

time = (0,1)
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print u

plot contour u

time history plot point(.5,.5) u

end
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4 Elements for lubrication theory

4.1 The Reynolds equation

4.1.1 Oil lubricated radial sliding bearing (Reynolds equation)

Consider an oil lubricated radial bearing with eccentricity e. In Figure 4.1.1.1 the cross-section
of the bearing has been sketched. The oil film thickness is small and therefore the Navier-Stokes
equations describing the flow may be approximated by the Reynolds equation for the pressure. See
4.1.
In order to get this example into your local directory use:

sepgetex bearing

φ

x

y

P Px

Py

e

Figure 4.1.1.1: Cross-section of the oil lubricated radial sliding bearing

The computational region is mapped onto a rectangle, where the computational x-co-ordinate is
equal to the parameter along the surface of the bearing in φ-direction (0 ≤ x ≤ πD, D diameter of
the bearing). The computational y-co-ordinate is equal to the z-co-ordinate of the bearing. Since
the solution is symmetric with respect to the plane z = L/2, only one half of the bearing is com-
puted.
The thickness of the film is described by the function h.
The following parameters are used in the computation:

h(φ) = 8.2× 10−5(1− e cos(φ)) m
D = 0.05 m
2e
D = 0.4
µ = 0.04 Ns/m2

ht = 0 m/s
k = 0 m3/Ns
p0 = 0 N/m2

u1 = 2.04 m/s u2 = 0 m/s

The mesh is generated by the mesh generator SEPMESH and consists of a rectangle with sides C1
to C4. The midpoints of the lower and upper sides are used to define a larger coarseness than for
the end points. For the mesh we refer to the file bearing.msh.
The following boundary conditions are used:

Lower boundary C1: no flow ( h
3

12µ
∂p
∂n −

h
2 u · n = 0)
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Upper boundary C3 of the bearing: boundary pressure p = 0

Curves C24 respectively C4: Since these boundaries coincide with φ = 0 respectively φ = 2π we
need periodical boundary conditions to couple both boundaries.

If the Reynolds equation is solved by the preceding parameters, we get negative pressures (cavita-
tion). In order to prevent the negative pressures we the need the extra constraint:

p ≥ 0

Important physical parameters are the load f = (fx, fy)T and the attitude angle φ = arctan(
fy
fx

),

with fx =
∫
Ω

−p cos(φ)dΩ, and fy =
∫
Ω

−p sin(φ)dΩ. Both parameters are computed in the

subroutine LOAD.

Solution procedure

In order to satisfy the constraint p ≥ 0,we have the option to apply either the linear solver us-
ing constrained overrelaxation or Kumars mass conservation method. In this section we solve the
problem in three different ways, all giving the same results:

1. Solving the standard Reynolds equation described in the manual ”Standard Problems” Section
4.1, using constrained overrelaxation.

2. Solving the Reynolds equation as a special case of the second order elliptic equation described
in the manual ”Standard Problems” Section 3.1, using constrained overrelaxation.

3. Solving the standard Reynolds equation described in the manual ”Standard Problems” Section
4.1, using Kumars mass conservation method.
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Standard Reynolds equation using constrained overrelaxation

As starting value the solution of the Reynolds equation without constraint is used.

The region is subdivided into triangles by the submesh generator ”RECTANGLE”. As an example
linear triangles have been used.
The input file for sepmesh can be found in the directory $SPHOME/sourceexam/bearing The input
file for sepcomp is given by:

# bearing.prb

#

# problem file for Oil lubricated radial sliding bearing

#

# To run this file use:

# sepcomp bearing.prb

#

# Uses the file meshoutput

#

# Define some general constants

#

constants

reals

mu = 0.04 ! viscosity

u1 = 2.04 ! velocity in x-direction

diam = 0.05 ! diameter

deltar = 8.2e-5 ! delta_r

eps = 0.4 ! eccentricity

end

* Problem definition

problem

reynolds # Reynolds equation

periodical_boundary_conditions

curves (c2,c4)

essential_boundary_conditions # Positions where essential boundary

curves(c3) # conditions are given

end

* Structure of the program

structure

# First part: without the effect of cavitation

matrix_structure compact, symmetric ! an iterative method is used

vector pressure = 0 ! create and clear pressure vector

phi = x_coor*2/diam ! phi is a vector depending on x

layer_thickness = deltar*(1-eps*cos(phi)) ! h is a vector depending on phi

viscosity = mu

u_velocity = u1
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solve_linear_system pressure ! The standard preconditioned CG method

! is applied

# Compute load and attitude angle

fx = integral ( -pressure*cos(phi) ) ! / -p cos(phi) d Omega

fy = integral ( -pressure*sin(phi) ) ! / -p sin(phi) d Omega

ftot = sqrt(fx**2+fy**2)

angle = atan(fy/fx)

print_text ’No effect of cavitation’

print fx , text = ’ horizontal component of load’

print fy , text = ’ vertical component of load ’

print ftot, text = ’ modulus of load ’

print angle , text = ’ attitude angle ’

# Prints and plots

plot_contour pressure

plot_coloured_levels pressure

# Second part: with the effect of cavitation

press_pos = pressure

matrix_structure row_compact ! use overrelaxation

sol_minimum = 0 ! constraint: p>=0

solve_linear_system, press_pos

# Compute load and attitude angle

fx = integral ( -press_pos*cos(phi) ) ! / -p cos(phi) d Omega

fy = integral ( -press_pos*sin(phi) ) ! / -p sin(phi) d Omega

ftot = sqrt(fx**2+fy**2)

angle = atan(fy/fx)

print ’With effect of cavitation’

print fx , text = ’ horizontal component of load’

print fy , text = ’ vertical component of load ’

print ftot, text = ’ modulus of load ’

print angle , text = ’ attitude angle ’

# Prints and plots

plot_contour press_pos

plot_coloured_levels press_pos

no_output

end

This program needs an input file which is the same as for SEPCOMP. Since the solution procedure
is more complex than the standard solution of linear problems, the structure of the program must
also be defined in the input file.

The structure of the program consists of the following steps:
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• The linear problem is solved without constraints. The system of equations is solved by a
preconditioned CG algorithm. As a consequence the structure of the matrix is defined by
method = 5.
The result of the computation is stored in pressure.

• The load and the attitude angle are computed and printed

• The linear problem is solved with constraints. At this moment only overrelaxation with
constraints is available. Since this method requires a structure defined by method = 9, the
structure of the matrix must be recomputed. The result of the computation is stored in
press_pos, the result stored in pressure is used as starting vector and hence must be copied
in the second vector first.

• The new load and the attitude angle are computed and printed

• Both vectors computed are plotted.

Figure 4.1.1.2 shows the contour plots for the first approximation, Figure 4.1.1.3 for the final
solution. Both plots may be visualized by the program SEPVIEW.
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Figure 4.1.1.2: Isobars generated by SEPCOMP with cavity not taking into account
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Figure 4.1.1.3: Isobars generated by SEPCOMP with cavity taking into account
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4.1.2 Oil lubricated radial sliding bearing solved by general elliptic equa-
tion

Instead of using the standard Reynolds element, the same results can be achieved by using the
standard element for second order elliptic equations.
The mesh file is identical to the one in Section 4.1 but the problem file is a little bit different.
In order to get this example into your local directory use:

sepgetex bearing_elliptic

To solve the Reynolds equation we consider the general elliptic equation from the manual Standard
Problems Section (3.1).
The translation into the elliptic equation is as follows:
The diffusion is equal to h3/(12µ).
The γ vector is equal to (-uh/2,0).
All other terms in the general elliptic equation are zero. We shall not print the input file bearing_elliptic.prb
below but consider only the differences with the file bearing.prb.
First of all the type number reynolds is replaced by general_elliptic_equation.
Further more the filling of coefficients changes to

phi = x_coor*2/diam ! phi is a vector depending on x

h = deltar*(1-eps*cos(phi)) ! h is a vector depending on phi

diffusion = h**3/(12*mu)

x_gamma = -u1*h/2

The rest of the file is identical to the file bearing.prb.
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4.1.3 Oil lubricated radial sliding bearing using Kumars algorithm

To get the corresponding files into your directory use

sepgetex bearingmasscons

The mesh file is exactly the same as in Section 4.1.
The the problem file differs a little bit as can be seen below

#

# File: bearingmasscons.prb

#

# Contents: Input for program bearingmasscons described in section 4-1-3

# the manual examples

# Oil lubricated radial sliding bearing

# Kumars mass conservation scheme is used

#

#

#

# To run this file use:

# sepcomp bearingmasscons.prb

#

# Reads the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

maxiter = 10 # maximum number of iterations

reals

mu = 0.04 # viscosity

u1 = 2.04 # velocity

diam = 0.05 # diameter of bearing

deltar = 8.2d-5 # maximum height of film

eps = 0.4 # eccentricity

p_cavity = 0 # cavitation pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

reynolds # Reynolds equation

periodical_boundary_conditions

curves (c2,c4)

essential_boundary_conditions # Positions where essential boundary

curves(c3) # conditions are given

cavitation 1 # Pressure is prescribed in cavitation region

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3
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matrix_structure compact, symmetric ! an iterative method is used

# Compute the potential

# First prescribe the essential boundary conditions

vector pressure = 0 ! create and clear pressure vector

phi = x_coor*2/diam ! phi is a vector depending on x

layer_thickness = deltar*(1-eps*cos(phi)) ! h is a vector depending on phi

viscosity = mu

u_velocity = u1

# Next compute pressure by Kumars algorithm

solve_bearing

# Compute load and attitude angle

fx = integral ( -pressure*cos(phi) ) ! / -p cos(phi) d Omega

fy = integral ( -pressure*sin(phi) ) ! / -p sin(phi) d Omega

ftot = sqrt(fx**2+fy**2)

angle = atan(fy/fx)

print fx , text = ’ horizontal component of load’

print fy , text = ’ vertical component of load ’

print ftot, text = ’ modulus of load ’

print angle , text = ’ attitude angle ’

# Prints and plots

plot_contour pressure

plot_coloured_levels pressure

no_output

end
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4.1.4 Compressible slider bearing

In this example we consider the one-dimensional slider bearing. This example is a good choice to
verify the validity of the finite element method, since the exact solution for this problem can be
found in Harrison (1913).
In Figure 4.1.4.1 the cross-section of the bearing has been sketched. The film thickness is small and
therefore the Navier-Stokes equations describing the flow may be approximated by the Reynolds
equation for the pressure. See 4.1. As lubricant air is used, which means that the compressible
version of the Reynolds equation must be solved.

In order to get this example into your local directory use:

sepgetex bearing1

2

B

h1

u

h

Figure 4.1.4.1: Cross-section of the air lubricated one-dimensional sliding bearing

Since it is known that the pressure has a steep gradient near the minimum height of the film, the
mesh is refined in the last part of the region. Figure 4.1.4.2 shows the mesh used in the computa-
tion. This mesh has been created by program SEPMESH using the following input.

# bearing1.msh

#

# mesh file for Air lubricated radial sliding bearing

#

# To run this file use:

# sepmesh bearing1.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants

integers

n = 20 ! number of elements for first and last part

reals

mid = 0.7 ! split of first and second part

length = 1 ! length of bearing

end

#

# Define the mesh

#
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mesh1d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=0

p3=mid

p2=length

curves

c1=line (p1,p3,nelm=n)

c2=line (p3,p2,nelm=n)

plot, nodes = 1

end

 

Figure 4.1.4.2: Mesh for one-dimensional slider bearing

The test example described in Harrison is dimensionless, but in SEPRAN we have to define values
for the physical parameters. In order to get exactly the same dimensionless parameter as Harrison,
the following choices have been made:

B = 1
h = 0.3− 0.2x, i.e. h1 = 0.3 and h2 = 0.1
µ = 0.0166666
ht = 0
k = 0
p0 = 0
u1 = 1

The atmospheric pressure pa is normalized to 1, hence the computed pressure indicates the ratio
p
pa . Mark that for the compressible bearing the pressure must always be positive, since otherwise
the non-linear algorithm fails.

The compressible Reynolds equations are non-linear, so a non-linear solver must be used. Such a
solver always requires a starting value. In this particular example the solution of the incompressible
bearing defines a nice starting value. If we compute the solution of this bearing first, we have also
the opportunity to compare the pressures computed by the incompressible and the compressible
Reynolds equations.

Since the solution procedure is more complex than the standard solution of linear or non-linear
problems, the structure of the program must also be defined in the input file.

The structure of the program consists of the following steps:
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• The linear problem is solved. The solution is stored in vector 1. A direct method is used for
this one-dimensional problem.

• The solution is copied from vector 1 to vector 2. In this way both vector 1 and vector 2 can
be plotted.

• The non-linear problem is solved, where the copied vector is used as starting value. The
equations are linearized by a newton linearization. This example took only 2 iterations to
converge to the final solution.

• Both vectors computed are written to the output file sepcomp.out for post-processing pur-
poses.

The following input file may be used to solve the problem:

# bearing1.prb

#

# problem file for Air lubricated radial sliding bearing

#

# To run this file use:

# sepcomp bearing1.prb

#

# Uses the file meshoutput

#

# Define some general constants

#

constants

reals

viscosity = 0.0166666

velocity = 1

end

* Problem definition

problem

types

Reynolds

essbouncond

points(p1 to p2)

end

* Structure of the program

structure

# Define layer_thickness h

h = 0.3-0.2*x_coor

layer_thickness = h

# First solve incompressible (linear) system
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prescribe_boundary_conditions press_incp = 1

solve_linear_system press_incp

# Next compressible (non-linear) system

# Use incompressible pressure as start

press_comp = press_incp

type_of_bearing = ’compressible’

solve_nonlinear_system press_comp, print_level=1

print press_incp

print press_comp

plot_function press_incp, press_comp

no_output

end

Figure 4.1.4.3 shows the pressure plot made by program SEPCOMP.
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Figure 4.1.4.3: Pressures generated by SEPCOMP. blue incompressible, red compressible
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4.1.5 A hydrostatic thrust bearing

Consider an externally pressurized, water lubricated, circular thrust bearing sliding on a track (see
Figure 4.1.5.1). The pressure in the thin water film between the bearing and the track can be

Figure 4.1.5.1: Thrust bearing

described using the Reynolds equation. The water is fed by a pump through a resistor into the
central recess of the bearing (see Figure 4.1.5.2). We want to calculate the load capacity and the

Figure 4.1.5.2: Film geometry

flow of this bearing given certain operating conditions. The parameters used in the computation
are given in table 4.1.5.1.

Bearing diameter D 0.740 m
Water film height h 0.1 10−3 m

Recess diameter DR 0.530 m
Recess height hR 5.0 10−3 m

Water viscosity µ 0.001 Ns/m2

Bearing velocity u1 0.25 m/s
Supply resistor γ 0.6 10−6 m4/N1/2s

Supply pressure pS 15.0 105 N/m2

Table 4.1.5.1: Parameters

To get this example into your local directory give the command:

sepgetex hydrostat_thrust



EX hydrostatic thrust bearing February 2017 4.1.5.2

1 23 4

 

Figure 4.1.5.3: Definition of curves

The mesh is generated by the mesh generator SEPMESH. Figure 4.1.5.3 shows the curves in the
mesh. The input file for the mesh generator is given below:
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# hydrostat_thrust.msh

#

# Circular Thrust Bearing, 1 recess

#

# Contents: Mesh file for hydrostatic thrust bearing

# See Manual Standard Elements Section 4.1.5

#

# Author: R.A.J. van Ostayen

# Date: 21-11-97

#

#

# To run this file use:

# sepmesh hydrostat_thrust.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

Rb = 0.370 # Radius of the thrust bearing

Rr = 0.100 # Radius of the bearing recess

Cc = 1.0 # Coarse value (centre)

Cb = 1.0 # Coarse value (bearing)

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

coarse (unit = 0.04) # The unit length = 0.04

# Coarseness is applied

#

# user points

#

points # See Users Manual Section 2.2

p1 = ( 0.0, 0.0, Cc) # Centre of the bearing

p2 = ( -Rb, 0.0, Cb ) # At most left point of bearing

p3 = ( -Rr, 0.0, Cb ) # At most left point of bearing recess

#

# curves

#

curves # See Users Manual Section 2.3

c1 = carc ( p3, p3, p1 ) # Boundary of bearing recess

c2 = carc ( p2, p2, p1 ) # Boundary of bearing

c3 = cline ( p2, p3) # Help line to connect bearing and bearing

# recess ( not necessary if triangle is used)

c4 = cline ( p3, p1) # Connection line between bearing recess

# and centre point. This is necessary since

# the centre point must be a nodal point

#
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# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = general 3 ( c1, c4, -c4 ) # Bearing recess

s2 = general 3 ( c2, c3, -c1, -c3 ) # Bearing minus bearing recess

# Connect surfaces to element groups

meshsurf

selm1 = s1 # Bearing recess

selm2 = s2 # Bearing minus bearing recess

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Figure 4.1.5.3 shows the mesh generated by SEPMESH. The following boundary conditions are
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Figure 4.1.5.4: Thrust bearing

used:

• Outer edge: Curves C1, C2, C3 and C4:
Essential boundary condition: pressure p = 0.
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• Center point: Point P1:
Natural boundary condition: inertial (= non-linear) supply resistor q = γ

√
pS − pR

The calculation is performed by the program SEPCOMP. Due to the non-linear supply resistor an
iterative procedure is used. The flow through the bearing can be calculated using 4 methods:

• Summing the reaction forces on the outer edge of the bearing (Curves C1 to C4).

• Summing the surface flow (icheld=22) on the outer edge.

• Integrating the flow vector (icheld=23) normal to the outer edge.

• Calculating the flow through the supply resistor using the calculated pressure fall across the
resistor.

In the input file for the calculation a number of bearing properties are calculated: the load, the
flow and the friction forces on the bottom and top surfaces. The input file is given below:

# hydrostat_thrust.prb

#

# Circular Thrust Bearing, 1 recess

#

# Contents: Problem file for hydrostatic thrust bearing

# See Manual Standard Elements Section 4.1.3

#

# Problem is stationary and non-linear

#

# Author: R.A.J. van Ostayen

# Date: 21-11-97

#

# To run this file use:

# sepcomp hydrostat_thrust.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

Hf = 0.1e-3 # film height [m]

Hr = 5e-3 # recess height [m]

vH2O = 0.001 # viscosity water [Ns/m2]

U = 0.25 # velocity [m/s]

Ps = 15e5 # supply pressure [N/m2]

G = 0.6e-6 # resistor value (non-linear)

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2
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reynolds

bounelements # Defines where the natural boundary conditions

# are present

belm 1 = points (p1) # The resistor is only present in the center

essbouncond # Define where essential boundary conditions are

# given (not the value)

curves (c2) # Outer boundary of bearing

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because some special integrals and derivatives are computed

#

structure

matrix_structure, storage_scheme = compact, symmetric, reaction_force

# initialize solution vector

create_vector pressure, surfaces (s1), value = 10e5

# The pressure in the recess is set to 10^6

# Coefficients for the Reynolds equation

u_velocity = U

viscosity = vH2O # viscosity of water

restriction = ’non_linear’ # type of restriction relation

capillary_restriction = G # capillary restriction coefficient gamma

oil_supply_pressure = Ps # Water supply pressure

# Compute the pressure by solving a non-linear system

# Non-linearity due to resistor

solve_nonlinear_system pressure, reaction_force = flow_through_surface &

maxiter = 50, accuracy = 1d-4, criterion = relative, print_level = 2

# Compute flow in film (vector)

inplane_force = derivatives ( pressure, icheld = 23 )

# Compute traction on bottom surface

bottom_surface_traction = derivatives ( pressure, icheld = 24 )

# Compute traction on top surface

top_surface_traction = derivatives ( pressure, icheld = 25 )

# calculate load, flow and friction

load = integral ( pressure )

flow = boundary_sum (flow_through_surface, curves (c2) )

x_friction_bottom = integral ( bottom_surface_traction, degfd 1 )

y_friction_bottom = integral ( bottom_surface_traction, degfd 2 )
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x_friction_top = integral ( top_surface_traction, degfd 1 )

y_friction_top = integral ( top_surface_traction, degfd 2 )

# Print the load, flow and friction

print load, text = ’ Load [N]: ’

print flow, text = ’ Flow [m3/s]: ’

print x_friction_bottom, text = ’Friction force (x, bottom) [N]: ’

print y_friction_bottom, text = ’Friction force (y, bottom) [N]: ’

print x_friction_top, text = ’ Friction force (x, top) [N]: ’

print y_friction_top, text = ’ Friction force (y, top) [N]: ’

plot_contour pressure

plot_3D pressure

plot_contour flow_through_surface

plot_contour inplane_force

plot_vector bottom_surface_traction

plot_vector top_surface_traction

no_output

end

# coefficients for Reynolds equation

# Only those that depend on the element groups

coefficients

elgrp 1 # coefficients for the bearing recess

layer_thickness = Hr # height of the recess

elgrp 2 # coefficients for the rest of the bearing

layer_thickness = Hf # film height

end

end_of_sepran_input

A contour plot of the calculated pressure is shown in Figure 4.1.5.5. The pressure along a centerline
of the bearing is shown in Figure 4.1.5.6.
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Figure 4.1.5.5: Pressure iso-lines

4.2 Coupled elasticity-flow interaction for a bearing (Reynolds equation
coupled with mechanical elements)

4.2.1 Example: the elasto-hydrodynamic lubrication of an oil pumping
ring seal

Consider the pumping ring and scraper as given in Figure 4.2.1.1. The pump forms a part of the
Philips Stirling engine (See van Heyningen and Kassels 1987). The geometry of the pumping ring
is given in Figure 4.2.1.2 For the computations the axi-symmetric model given in Figure 4.2.1.1 has
been used.

For the generation of the mesh and the boundary conditions we define 6 user points, 6 curves and
one surface. See Figure 4.2.1.2 for an definition.

The problem to be computed is time-dependent. In S1 the axi-symmetric elasticity equations must
be satisfied. See 5.1. A linear triangular element with type number 250 is used. At curve C6
the elasticity-Reynolds element is used, since the pressure satisfies the Reynolds equations (time-
dependent). Furthermore the following boundary conditions must be satisfied:

C1: Tr = 0, Tz = 6× 106 N/m2

C2: Tr = − 11× 106 N/m2, Tz = 0
C3, C5: Tr = 0, Tz = 0
C4: displacement u = 0
P6: p = 0
P1: p = 6× 106 N/m2

At t = 0 a velocity U = 0 is assumed. The initial condition is found by solving the non-linear
stationary equations by the Newton iteration. As starting value for the iteration we use a zero
displacement u = 0 and a linear varying pressure.

The following parameters are used in the computation:
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Figure 4.1.5.6: Pressure along a centerline

Seal length L = 8 mm
Rod diameter D = 12 mm
Seal thickness d = 1 mm
Clearance h0 = 8 µm
Oil viscosity η = 0.0278 Ns/m2

Young’s modulus E = 5.27× 1010 N/m2

Poisson’s ratio ν = 0.44

In the program all quantities are given in µN and µm, because of the small film thickness.

For t ¿ 0, the problem becomes time-dependent with a velocity U given by:

U = ûsin(ωt) m/s

with ω = 151.8 rad/s and û = 3.492 m/s.

During the time-dependent part, the pressure may become negative (cavitation). Since nega-
tive pressures are not physical a so-called ”Reynolds” boundary condition is realized by the non-
negativity constraint:

p ≤ 0

This constraint is imposed in the program by using subroutine OVERCS (overrelaxation with con-
straint; see Programmers Guide 6.10.1). To increase the convergence speed, some experiments have
been performed with various values of λ and the overrelaxation factor ω. These experiments showed
that for this problem λ = 0.99 and ω = 1.6 might be a good choice. However, the solution time for
the overrelaxation process is large compared to that of subroutine SOLVE (LU-decomposition). So
an improvement of this part of the program might be possible.

As time discretization the modified Crank-Nicolson scheme is used (θ = 1
2 ), combined with a

Newton linearization.

Remark
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p = 0 bar

ROD DIAMETER    12.800

12.016 1

Figure 4.2.1.1: Axisymmetric model used for the calculation
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Figure 4.2.1.2: Definition of user points, curves and surface

Since the number of degrees of freedom at curve C6 (3) is unequal to the number of degrees of
freedom at the internal elements (2), line elements must be introduced at curves C6 and C1. At
curve C2, both line elements and boundary elements may be used. In the program line elements
have been chosen, but the results with boundary elements are exactly the same.

To get this example in your local directory type:

sepgetex pump

To run it perform the following steps:

sepmesh pump.msh

view mesh

seplink pump

pump < pump.prb

seppost pump.pst

The mesh is generated by the mesh generator SEPMESH.
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The region is subdivided into triangles by the submesh generator ”RECTANGLE”. As an example
linear triangles have been used.
SEPMESH needs an input file. An example of an input file for this region is given below:

******************************************************************************

*

* File: pump.msh

*

* Contents: Input for mesh generation part of example described in

* Section 4.2.1 in the manual standard problems

* Elastohydrodynamic lubrication of an oil pumping ring seal

* Submesh generator RECTANGLE is used

******************************************************************************

*

mesh2d

points

p1=(6.008d3,0d0)

p2=(7.008d3,0d0)

p3=(7.008d3,1.5d3)

p4=(7.008d3,8d3)

p5=(6.008d3,8d3)

p6=(6.008d3,3.5d3)

curves

c1=line1(p1,p2,nelm=2)

c2=line1(p2,p3,nelm=3)

c3=line1(p3,p4,nelm=13)

c4=line1(p4,p5,nelm=2)

c5=line1(p5,p6,nelm=9)

c6=line1(p6,p1,nelm=7)

surfaces

s1=rectangle3(n=2,m=16,c1,c2,c3,c4,c5,c6)

meshline

*

* introduction of line elements

*

* line elements are necessary because the number of degrees of freedom

* at curve c6 (3) differs from that in the internal elements (2)

* The line elements at c2 may be replaced by boundary elements, the other

* ones, however are necessary

*

lelm1=(shape=1,c6)

lelm2=(shape=1,c1)

lelm3=(shape=1,c2)

meshsurf

*

* Only one surface element

*

selm4=(s1)

plot

end

Mark that the unit used in this mesh is µm instead of m.

Figure 4.2.1.3 shows the mesh generated by SEPMESH.

The internal elements are defined by type number 325. Only the coefficients 6, 7 and 11 have to be
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Figure 4.2.1.3: Plot of mesh generated by SEPMESH

defined; all others are zero.
The boundary conditions at sides C5 and C6 are essential boundary conditions, the boundary
conditions at sides C2 and C3 are natural boundary conditions requiring no boundary elements at
all.

In this particular example, where the problem is time-dependent the complete program is defined.
Hence in this case SEPCOMP is not used.
The listing for this program is given by:

! **********************************************************************

!

! * Solution of the elastohydrodynamic lubrication of an oil pumping

! * ring seal by SEPRAN

! *

! * Time-dependent problem

! *

! * At t=0 the non-linear stationary equations are solved by a Newton

! * iteration

! * For t>0 a modified Crank-Nicolson scheme is used.

! * The non-negative pressure condition is imposed by subroutine OVERCS

! *

! *

! * Programmers: Kees Kassels and Guus Segal

! * version 2.0 date 05-12-93

! *

! **********************************************************************

!

program pump

! **********************************************************************

!

! DECLARATIONS

integer lnmesh, lnprob

parameter ( lnmesh=100, lnprob = 500 )

integer kmesh(lnmesh), kprob(lnprob), intmat(5), isol(5),

+ islold(5), iinstr(3), iincrt(1), iinsol(4), istep, nstep,

+ iinvec(2), jmetod, istop, iinout(1)

double precision pi, omeg, rinvec(3)

! **********************************************************************

!

! COMMON BOCKS

include ’SPcommon/ctimen’

! **********************************************************************

!
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! --- start sepran

kmesh = 0

kprob = 0

kmesh(1) = lnmesh

kprob(1) = lnprob

iinstr(1) = 2

iinstr(2) = 1

call sepstn ( kmesh, kprob, intmat, iinstr )

! --- create start vector

t0 = 0d0

t = t0

iincrt(1) = 0

call creatn ( iincrt, kmesh, kprob, isol )

! --- non-linear iteration to find solution at t = 0

iinsol(1) = 0

call nlnprb ( kmesh, kprob, intmat, isol, iinsol )

iinout(1) = 0

call outsol ( kmesh, kprob, isol, iinout, t )

! --- Compute time-dependent solution with non-constant velocity

! Set time parameters ( two strokes will be computed )

omeg = 151.84d0

pi = 4d0*atan(1d0)

tend = 4d0*pi/omeg

nstep = 80

theta = 0.5d0

tstep = (tend-t0)/nstep

! --- define type of matrix for subroutine OVERCS (jmetod=9)

jmetod = 9

call commat ( jmetod, kmesh, kprob, intmat )

! --- Time iteration by Crank-Nicolson (theta=.5)

! nstep time steps are carried out

do istep = 1, nstep

! --- Copy old solution in islold

call copyvc ( isol, islold )

! --- Compute u(t n+1/2)

t = t+0.5d0*tstep

iinsol(1) = 4

iinsol(2) = 0

iinsol(3) = 2
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iinsol(4) = 2

call linprb ( kmesh, kprob, intmat, isol, iinsol )

! --- u(n+1) := 2 u(n+1/2) - u(n)

iinvec(1) = 2

iinvec(2) = 39

rinvec(1) = 2d0

rinvec(2) = -1d0

rinvec(3) = 0d0

call manvec ( iinvec, rinvec, isol, islold, isol, kmesh,

+ kprob )

t = t+0.5d0*tstep

! --- Output of the solution at 10, 20, 30, ... ,nstep steps

if ( mod(istep,10).eq.0 ) call outsol ( kmesh, kprob, isol,

+ iinout, t )

end do

! --- Stop SEPRAN

istop=0

call finish ( istop )

end

! --- funccf for the computation of the velocity as function of time

function funccf ( ichois, r, z, dummy )

double precision funccf, r, z, dummy

integer ichois

include ’SPcommon/ctimen’

funccf = 3.492d6 * sin ( 151.84d0 * t )

end

! --- function func, for the computation of the starting pressure

function func ( ichois, r, z, dummy )

double precision func, r, z, dummy

integer ichois

func=max(0d0,6d0*(3.5d3-z)/3.5d3)

end

The following input file may be used to solve the problem:

******************************************************************************

*

* File: pump.prb

*

* Contents: Input for computational part of example described in

* Section 4.2.1 in the manual standard problems
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* Elastohydrodynamic lubrication of an oil pumping ring seal

* SEPMESH must have been run before with input: pump.msh

* Program puump must have been linked by seplink

* Usage: pump < pump.prb > pump.out

******************************************************************************

constants

vector_names

disp_pressure

end

*

* problem definition

*

problem

*

* type numbers to be used are:

* curve c5: 302 (elasto-hydrodynamic Reynolds element)

* curve c1: 251 (non-zero load for axisymmetric stress analysis)

* curve c2: 251 (non-zero load for axisymmetric stress analysis)

* surface s1: 250 (axisymmetric stress analysis)

types

elgrp1,(type=302)

elgrp2,(type=251)

elgrp3,(type=251)

elgrp4,(type=250)

*

* essential boundary conditions

* The pressure is prescribed in user points p1 and p6

* The displacement is given at curve c4

*

essbouncond

degfd3=points(p1)

degfd3=points(p6)

degfd1,degfd2=curves (c4)

end

* Structure of matrix

matrix

end

* Creation of start vector (displacement zero)

create

degfd3, func = 1 # pressure given by func

user point (p1), degfd3, value = 6 # prescribed boundary condition

end

* Input for non-linear solver

nonlinear_equations

global_options, maxiter = 10, accuracy=1d-3, lin_solver=1

equation 1

fill_coefficients = 1
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end

* Coefficients for non-linear start

coefficients, sequence_number = 1

elgrp 1 (nparm=6) # Elastic Reynolds element

coef 1 = 12d3 # Diameter of rod

coef 2 = 0.0278d-6 # Dynamic viscosity

coef 3 = 0 # Constant k

coef 4 = 0 # Reference pressure

coef 5 = 0 # Velocity

icoef 6 = 2 # Stationary, Newton linearization

elgrp 2 (nparm=25) # External boundary load

icoef 2 = 2 # Axisymmetric stress

coef 6 = 0 # Tr

coef 7 = 6 # Tz

elgrp 3 (nparm=25) # External boundary load

icoef 2 = 2 # Axisymmetric stress

coef 6 = -11 # Tr

coef 7 = 0 # Tz

elgrp 4 (nparm=45) # Elasticity element

icoef 2 = 2 # Axisymmetric stress

coef 6 = 5.27d4 # E

coef 7 = 0.44 # nu

end

solve, sequence_number = 1 # Direct solver for non-linear problem

end

* Input for linear time-dependent problem

coefficients, sequence_number = 2

elgrp 1 (nparm=6) # Elastic Reynolds element

coef 1 = 12d3 # Diameter of rod

coef 2 = 0.0278d-6 # Dynamic viscosity

coef 3 = 0 # Constant k

coef 4 = 0 # Reference pressure

coef 5 = func=1 # Velocity

icoef 6 = 4 # Instationary, Newton linearization

elgrp 2 (nparm=25) # External boundary load

icoef 2 = 2 # Axisymmetric stress

coef 6 = 0 # Tr

coef 7 = 6 # Tz

elgrp 3 (nparm=25) # External boundary load

icoef 2 = 2 # Axisymmetric stress

coef 6 = -11 # Tr

coef 7 = 0 # Tz

elgrp 4 (nparm=45) # Elasticity element

icoef 2 = 2 # Axisymmetric stress

coef 6 = 5.27d4 # E

coef 7 = 0.44 # nu

end

solve, sequence_number = 2 # Iterative solver for linear problem
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iteration_method = overrelaxation, accuracy = 1d-2, maxiter = 10000//

niter1 = -2, lambda=.99, omega=1.6, minimum = 0, start=old_solution//

degfd = 3

end

end_of_sepran_input
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4.3 Decoupled elasticity-flow interaction for a bearing (Reynolds equa-
tion coupled with mechanical elements)

4.3.1 An example of a combined Reynolds-elasticity problem: A hydro-
static thrust bearing on an elastic track

In Section 4.1.5 we calculated the pressure distribution in the lubrication film of a water lubricated,
circular thrust bearing sliding on a track. Now, we will examine the same bearing sliding on an
elastic track (see Figure 4.3.1.1). The pressure in the lubrication film and the deformation of the
track are mutually dependent: The track will deform due to the hydrostatic pressure in the water
film, the hydrostatic pressure is dependent on the local film height which is a function of the track
deformation. The calculation consists of the iterative solution to 2 sub-problems and the relation

Figure 4.3.1.1: Thrust bearing on an elastic track

between both sub-problems:

• Solution of the Reynolds equation in the lubrication film

• Solution of the elasticity equations in the track

• Calculation of the film height using the track deformation

The solution to the Reynolds equation for this example is similar to the one in Section 4.1.5. Instead
of a constant film height a new vector is created with the film height calculated using the following
equation:

hi = hC − (zi + uzi)

where hi is the film height in node i, hC is the height of the bearing surface above the plane z = 0,
zi is the z-co-ordinate of node i and uzi is the displacement in the z-direction of node i. In order to
calculate this vector, use is being made of a create vector block with a call to the user subroutine
funcvect (see program). Because of to the non-linear supply resistor, the Reynolds equation is
solved using an iterative procedure.

The solution to the elasticity equations in the track is performed using the standard elasticity
elements (element type 250). The boundary conditions to this problem are:

• Displacement = 0 on the bottom surface of the track.

• Distributed load = -pressure on the Reynolds part of the top surface.
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Although the elasticity equation is linear and could be solved using a direct solver, the iterative
solution to the combined Reynolds-elasticity problem suggests an iterative approach to the solution
of the elasticity equation also.
The solution is assumed to be converged when the change in the calculated film height becomes
relatively small.
The parameters for this calculation are presented in table 4.3.1.1. To get this example in your local

Track length L 1.5 m
Track width W 1.0 m
Track height H 0.07 m

Young’s modulus track E 2.0 108 N/m2

Poisson’s constant track v 0.3 −
Bearing diameter D 0.740 m
Waterfilm height h 0.1 10−3 m
Recess diameter DR 0.530 m

Recess height hR 5.0 10−3 m
Water viscosity µ 0.001 Ns/m2

Bearing velocity u1 0.25 m/s
Supply resistor γ 0.6 10−6 m4/N1/2s

Supply pressure pS 15.0 105 N/m2

Table 4.3.1.1: Parameters

directory type:

sepgetex bearing4

The mesh for this calculation is shown in Figure 4.3.1.2. The pressure along a centerline of the
bearing is shown in Figure 4.3.1.3, the displacement along the centerline of the track is shown in
Figure 4.3.1.4. The input file for the mesh program (sepmesh) is given here:

#

# Circular Thrust Bearing, 1 recess on a track

#

# Contents: Mesh file for example 4.3.1

#

# Author: R.A.J. van Ostayen

# Date: 23-11-97

#

constants

reals

L2 = 0.750 # Half track length

W2 = 0.500 # Half track width

H = -0.070 # Track height

Rb = 0.370 # Radius of the thrust bearing

Rr = 0.100 # Radius of the bearing recess

Cc = 1.0 # Coarse value (centre)

Cb = 1.0 # Coarse value (bearing)

Ce = 2.0 # Coarse value (track edge)

integers

nz = 2 # number of elements

end

mesh3D

coarse (unit = 0.05)
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 Figure 4.3.1.2: Mesh for the thrust bearing on an elastic track

points

p1 = ( 0.0, 0.0, 0.0, Cc)

p2 = ( Rb, 0.0, 0.0, Cb)

p3 = ( 0.0, Rb, 0.0, Cb)

p4 = (- Rb, 0.0, 0.0, Cb)

p5 = ( 0.0,- Rb, 0.0, Cb)

p6 = ( Rr, 0.0, 0.0, Cb)

p7 = ( 0.0, Rr, 0.0, Cb)

p8 = (- Rr, 0.0, 0.0, Cb)

p9 = ( 0.0,- Rr, 0.0, Cb)

p10 = ( L2, W2, 0.0, Ce)

p11 = (- L2, W2, 0.0, Ce)

p12 = (- L2,- W2, 0.0, Ce)

p13 = ( L2,- W2, 0.0, Ce)

p14 = ( 0.0, W2, 0.0, Cb)

p15 = (- L2, 0.0, 0.0, Ce)

p16 = ( 0.0,- W2, 0.0, Cb)

p17 = ( L2, 0.0, 0.0, Ce)

p18 = ( 0.0, 0.0, H, Cc)
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Figure 4.3.1.3: Pressure along a centerline of the bearing

p19 = ( Rb, 0.0, H, Cb)

p20 = ( 0.0, Rb, H, Cb)

p21 = (- Rb, 0.0, H, Cb)

p22 = ( 0.0,- Rb, H, Cb)

p23 = ( Rr, 0.0, H, Cb)

p24 = ( 0.0, Rr, H, Cb)

p25 = (- Rr, 0.0, H, Cb)

p26 = ( 0.0,- Rr, H, Cb)

p27 = ( L2, W2, H, Ce)

p28 = (- L2, W2, H, Ce)

p29 = (- L2,- W2, H, Ce)

p30 = ( L2,- W2, H, Ce)

p31 = ( 0.0, W2, H, Cb)

p32 = (- L2, 0.0, H, Ce)

p33 = ( 0.0,- W2, H, Cb)

p34 = ( L2, 0.0, H, Ce)

curves

c1 = carc 1 ( p2 , p3 , p1)

c2 = carc 1 ( p3 , p4 , p1)
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Figure 4.3.1.4: Displacement along the centerline of the track

c3 = carc 1 ( p4 , p5 , p1)

c4 = carc 1 ( p5 , p2 , p1)

c5 = carc 1 ( p6 , p7 , p1)

c6 = carc 1 ( p7 , p8 , p1)

c7 = carc 1 ( p8 , p9 , p1)

c8 = carc 1 ( p9 , p6 , p1)

c9 = cline 1 ( p1 , p6)

c10 = cline 1 ( p1 , p7)

c11 = cline 1 ( p1 , p8)

c12 = cline 1 ( p1 , p9)

c13 = cline 1 ( p6 , p2)

c14 = cline 1 ( p7 , p3)

c15 = cline 1 ( p8 , p4)

c16 = cline 1 ( p9 , p5)

c17 = cline 1 ( p2 , p17)

c18 = cline 1 ( p3 , p14)

c19 = cline 1 ( p4 , p15)

c20 = cline 1 ( p5 , p16)
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c21 = cline 1 ( p10, p14)

c22 = cline 1 ( p14, p11)

c23 = cline 1 ( p11, p15)

c24 = cline 1 ( p15, p12)

c25 = cline 1 ( p12, p16)

c26 = cline 1 ( p16, p13)

c27 = cline 1 ( p13, p17)

c28 = cline 1 ( p17, p10)

c29 = translate c1 ( p19, p20)

c30 = translate c2 ( p20, p21)

c31 = translate c3 ( p21, p22)

c32 = translate c4 ( p22, p19)

c33 = translate c5 ( p23, p24)

c34 = translate c6 ( p24, p25)

c35 = translate c7 ( p25, p26)

c36 = translate c8 ( p26, p23)

c37 = translate c9 ( p18, p23)

c38 = translate c10 ( p18, p24)

c39 = translate c11 ( p18, p25)

c40 = translate c12 ( p18, p26)

c41 = translate c13 ( p23, p19)

c42 = translate c14 ( p24, p20)

c43 = translate c15 ( p25, p21)

c44 = translate c16 ( p26, p22)

c45 = translate c17 ( p19, p34)

c46 = translate c18 ( p20, p31)

c47 = translate c19 ( p21, p32)

c48 = translate c20 ( p22, p33)

c49 = translate c21 ( p27, p31)

c50 = translate c22 ( p31, p28)

c51 = translate c23 ( p28, p32)

c52 = translate c24 ( p32, p29)

c53 = translate c25 ( p29, p33)

c54 = translate c26 ( p33, p30)

c55 = translate c27 ( p30, p34)

c56 = translate c28 ( p34, p27)

c57 = curves ( c21, c22, c23, c24, c25, c26, c27, c28)

c58 = curves ( c49, c50, c51, c52, c53, c54, c55, c56)

c59 = line 1 ( p10, p27, nelm = nz)

c60 = curves (-c15,-c11, c9 , c13)

c61 = curves (-c19,-c15,-c11, c9 , c13, c17)

surfaces

s1 = general 3 ( c13, c1,-c14,-c5 )

s2 = rotate s1 ( c14, c2,-c15,-c6 )

s3 = rotate s1 ( c15, c3,-c16,-c7 )

s4 = rotate s1 ( c16, c4,-c13,-c8 )
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s5 = general 3 ( c9 , c5,-c10)

s6 = rotate s5 ( c10, c6,-c11)

s7 = rotate s5 ( c11, c7,-c12)

s8 = rotate s5 ( c12, c8,-c9 )

s9 = general 3 ( c21,-c18,-c1 , c17, c28)

s10 = similar s9 (-c22,-c18, c2 , c19,-c23)

s11 = rotate s9 ( c25,-c20,-c3 , c19, c24)

s12 = similar s9 (-c26,-c20, c4 , c17,-c27)

s13 = translate s1 ( c41, c29,-c42,-c33)

s14 = translate s2 ( c42, c30,-c43,-c34)

s15 = translate s3 ( c43, c31,-c44,-c35)

s16 = translate s4 ( c44, c32,-c41,-c36)

s17 = translate s5 ( c37, c33,-c38)

s18 = translate s6 ( c38, c34,-c39)

s19 = translate s7 ( c39, c35,-c40)

s20 = translate s8 ( c40, c36,-c37)

s21 = translate s9 ( c49,-c46,-c29, c45, c56)

s22 = translate s10 (-c50,-c46, c30, c47,-c51)

s23 = translate s11 ( c53,-c48,-c31, c47, c52)

s24 = translate s12 (-c54,-c48, c32, c45,-c55)

s25 = surfaces ( s1 , s2 , s3 , s4 , //

s5 , s6 , s7 , s8 , //

s9 ,-s10, s11, -12)

s26 = surfaces ( s13, s14, s15, s16, //

s17, s18, s19, s20, //

s21,-s22, s23,-s24)

s27 = pipesurface 3 ( c57, c58, c59)

volumes

v1 = pipe 11 ( s25, s26, s27)

meshsurf

selm1 = s1, s4

selm2 = s5, s8

meshvolume

velm3 = v1

plot, eyepoint = (-2.0, -4.0, 4.0)

end

The input file for the calculation program is given here followed by the source of the program
(needed because of the call to funcvect).

#

# Circular Thrust Bearing, 1 recess on a track

#

# Contents: Problemfile for example 4.3.1

#

# Author: R.A.J. van Ostayen

# Date: 23-11-97

#

constants

reals
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Hf = 0.1d-3 # film height [m]

Hr = 5.0d-3 # recess height [m]

vH2O = 0.001 # viscosity water [Ns/m2]

U = 0.25 # velocity [m/s]

Ps = 15.0d5 # supply pressure [N/m2]

G = 0.6d-6 # resistor value (non-linear)

EPE = 2.0d8 # Young’s modulus [N/m2]

vPE = 0.3 # -

# Definition of vectors and scalars

vector_names

pressure

displacement

film_height

surf_height ! height of bearing surface relative to z = 0

scalars

max_film_height = -1

max_rel_error = 1e-2

act_rel_error = 1e8

old_max ! store previous value of max_film_height

end

# Reynolds equation (lubrication problem)

problem 1

types

elgrp 1 = (type = 325)

elgrp 2 = (type = 325)

elgrp 3 = (type = 0)

natbouncond

bngrp 1 = (type = 304)

bounelements

belm 1 = points (p6, p7, p8, p9)

essbouncond

degfd 1 = curves (c1 to c4)

# elasticity equation

problem 2

types

elgrp 1 = (type = 0)

elgrp 2 = (type = 0)

elgrp 3 = (type = 250)

natbouncond

bngrp 1 = (type = 251)

bounelements

belm 1 = surfaces (s1 to s8)

essbouncond

degfd 1 = degfd 2 = degfd 3 = surfaces (s26)

end

structure

# initialize vectors

create_vector pressure, problem = 1, surfaces (s5 to s8), value = 10e5

create_vector displacement, problem = 2, value = 0
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create_vector surf_height, problem = 1, value = Hf

# while no convergence (actual relative error > max. rel. error)

while (act_rel_error>max_rel_error ) do

old_max = max_film_height ! store present max film height

# calculate film height and max. film height, at thos moment via input block

create_vector film_height, problem = 1, sequence_number = 1

max_film_height, norm = 3, film_height

act_rel_error = abs(1-max_film_height/old_max)

print max_film_height, text = ’Max filmheight [m]: ’

print max_rel_error, text = ’ Conv. criterion: ’

print act_rel_error, text = ’ Conv. number: ’

# solve Reynolds equation

solve_nonlinear_system pressure, problem = 1, maxiter = 50//

accuracy = 1e-4, print_level = 0, criterion = relative

# solve elasticity equations

solve_linear_system displacement, seq_coef = 2, problem = 2

end_while

print max_film_height, text = ’Max filmheight [m]: ’

print max_rel_error, text = ’ Conv. criterion: ’

print act_rel_error, text = ’ Conv. number: ’

output

end

# matrix (iterative method)

matrix

storage_scheme = compact, symmetric, problem = 1

storage_scheme = compact, symmetric, problem = 2

end

# calculate film height

create vector, sequence_number = 1

value = Hf

surfaces (s1 to s8), old_vector = 100//

seq_vectors = (displacement, surf_height)

end

# coefficients for Reynolds equation

coefficients, sequence_number = 1, problem = 1

elgrp 1 (nparm = 20)

icoef 1 = 0

icoef 5 = 1

coef 6 = old_solution film_height

coef 7 = vH2O
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coef 11 = U

coef 12 = 0

coef 19 = 0

coef 20 = 0

elgrp 2 (nparm = 20)

icoef 1 = 0

icoef 5 = 1

coef 6 = Hr

coef 7 = vH2O

coef 11 = U

coef 12 = 0

coef 19 = 0

coef 20 = 0

bngrp 1 (nparm = 3)

icoef 1 = 1

coef 2 = G

coef 3 = Ps

end

# coefficients for elasticity equation

coefficients, sequence_number = 2, problem = 2

elgrp 3 (nparm = 45)

icoef 2 = 0

coef 6 = EPE

coef 7 = vPE

bngrp 1 (nparm = 25)

icoef 1 = 2

icoef 2 = 0

coef 8 = old solution pressure, coef = -1

end

# input for linear solver (Reynolds equation)

solve, sequence_number = 1

iteration_method = cg, accuracy = 1e-2, start = old_solution, print_level = 0

end

end_of_sepran_input

! ***************************************************************

! *

! * COMPPROGRAM: THRUST BEARING ON ELASTIC TRACK

! * usage: comp < in.prb

! *

! ***************************************************************

!

program ctbtrk

call sepcom(0)

end

subroutine funcvect( ichoice, ndim, coor, numnodes, uold,

+ nuold, result, nphys)

implicit none

integer ichoice, ndim, numnodes, nuold, nphys

double precision coor(ndim,numnodes),
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+ uold(numnodes,nphys,nuold), result(numnodes,*)

! coor(1/2/3, *) = node co-ordinates

! uold(*, 1/2/3, 1) = displacement vector (ex, ey, ez)

! uold(*, 1, 2) = contact plane height

integer i

double precision z_coor, z_disp, h_contact

if (ichoice .eq. 100) then

do i = 1, numnodes

z_coor = coor(3,i)

z_disp = uold(i,3,1)

h_contact = uold(i,1,2)

result(i,1) = h_contact - (z_coor + z_disp)

end do

end if

end

The input file for the post-processing program is given here:

#

# Circular Thrust Bearing, 1 recess on elastic track

#

# Contents: Post-processing file for example 4.3.1

#

# Author: R.A.J. van Ostayen

# Date: 23-11-97

#

postprocessing

plot identification, text = ’1 recess bearing’, origin = (3,18)

open plot

plot boundary function pressure, curves (c60), //

arc_scales = (-0.37, 0.37), //

scales = (-0.5, 0.5, 0.0, 7.0d5), steps = (10, 7)

close plot

open plot

plot boundary function displacement, degfd 3, curves (c61), //

arc_scales = (-0.75, 0.75), //

scales = (-0.75, 0.75, -2.0d-4, 0.0d0), steps = (10, 11)

close plot

open plot

plot boundary function film_height, curves (c60), //

arc_scales = (-0.37, 0.37)

close plot

end
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5 Mechanical elements

5.1 Linear elastic problems

5.1.1 The hole-in-plate problem (example of plane stress)

Consider the plate in Figure 5.1.1.1
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Figure 5.1.1.1: The hole-in-plate problem

For symmetry reasons it is sufficient to discretize only one quarter of the plate. The problem is
solved by bilinear quadrilateral elements. For the generation of the mesh we define the 6 user points,
and 5 curves. The definition of user points and curves is given in Figure 5.1.1.2.

P1 P2

P

5

3

P4

P
5

P6

C1

C2

C3

C4

C

Figure 5.1.1.2: Definition of user points and curves

This example is nearly identical to the one described in the SEPRAN INTRODUCTION Section 7.2.
As an example we use quadrilaterals instead of triangles. Consequence is that the mesh generation
is somewhat more sensitive to the spacing and therefore a more uniform spacing is used. In order
to check the mesh the option CHECK MESH is used.

The material is supposed to be orthotropic (IGPROB=3).
The following parameters are used:

Young’s modulus: E1 = 107 N/m2, E2 = 107 N/m2

Poisson’s ratio: ν2 = 0.25
Plate thickness is 0.01m.

The boundary loads f1 and f2 are given by:

f1 = − 104 N/m2 f2 = 0 N/m2

Essential boundary conditions:
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symmetry axis: C1: v = 0 C4: u = 0

The mesh is created by SEPMESH with the following input file:

******************************************************************************

*

* File: plathol1.msh

*

* Contents: Input for mesh generation part of the example as described

* in the SEPRAN STANDARD PROBLEMS Section 5.1.1

*

* Usage: In UNIX: sepmesh plathol1.msh

* Usage: In DOS: sepmesh plathol1.msh

*

******************************************************************************

*

*

*

* mesh for hole in plate problem

*

mesh2d

* unit length is 1 cm

coarse(unit=0.01)

* definition of user points with corresponding coarseness:

points

p1=(0, 0, 1)

p2=(0.04, 0, 1)

p3=(0.5, 0, 2)

p4=(0.5, 0.2, 2)

p5=(0, 0.2, 1)

p6=(0, 0.04, 1)

* curves defining the surfaces:

curves

c1=cline1(p2,p3,nodd=3)

c2=cline1(p3,p4,nodd=3)

c3=cline1(p4,p5,nodd=3)

c4=cline1(p5,p6,nodd=3)

c5=carc1(p6,p2, -p1,nodd=2)

* the surface is created by general:

* bilinear quadrilaterals

surfaces

s1=general5(c1,c2,c3,c4,c5)

* plot:

* the submesh is skipped

* numbers are not plotted

plot(jmark=5,numsub=1)

* Check the mesh:
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check_level = 2

end

Figure 5.1.1.3 shows the mesh created by SEPMESH.

 

Figure 5.1.1.3: Mesh plot of hole-in-plate region

Once the mesh has been generated, sepcomp may be run to compute the displacement. For the
linear elasticity problem element type 250 may be used, see Section 5.1. Type 250 requires 45
coefficients, however, it is sufficient to give only the non-zero values.

******************************************************************************

*

* File: plathol4.prb

*

* Contents: Input for computational part of the example as described

* in the SEPRAN manual STANDARD PROBLEMS Section 3.1.1

* Model used: IGPROB=3, i.e. orthotropic material

*

* Usage: sepmesh should have been run with input: plathole.msh

* In UNIX: sepcomp plathol4.prb > plathol4.out

* In DOS: sepcomp plathol4.prb

*

******************************************************************************

*

*

*

* problem definition

*

problem

* only one type is used (250: Linear elastic element)

types

elgrp1, (type=250)

* for the boundary loads natural boundary condition elements are necessary

* type number: 251 linear line element
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* Different element groups are used for the curves c2 and c3

natbouncond

bngrp1, (type=251)

bngrp2, (type=251)

bounelements

belm1 = curves (shape=1, c2)

belm2 = curves (shape=1, c3)

* essential boundary conditions:

* the curves c1 and c4 are symmetry axis, hence the normal displacements

* must be suppressed

essbouncond

degfd2 = curves0(c1)

degfd1 = curves0(c4)

end

* Define type of matrix

matrix

method = 1

end

* Define coefficients

coefficients

elgrp1 (nparm=45)

icoef 2 = 3 # IGPROB=3 (orthotropic material)

coef 6 = ( value = 1d7 ) # E_1

coef 7 = ( value = 1d7 ) # E_2

coef 8 = ( value = 0.3 ) # nu_1

coef 9 = ( value = 0.3 ) # nu_2

coef 10 = ( value = 0.384615384d7 ) # G_2

coef 27 = ( value = 0.01 ) # h

bngrp1 (nparm=25)

coef 6 = ( value = -1d4 ) # T_x

coef 9 = ( value = 0.01 ) # h

bngrp2 (nparm=25)

coef 6 = ( value = 0d0 ) # T_x

coef 9 = ( value = 0.01 ) # h

end

* The matrix is positive definite

solve

positive definite

end

output

v1 = icheld = 6

v2 = icheld = 7

end

end_of_sepran_input

Program seppost allows us to print and plot the solution. It requires input from the standard input
file.
If, for example, we want to print the displacements and the stresses, make a vector plot of the
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displacements, make a contour plot of the three non-zero components of the stress tensor as well as
coloured contour plots, plus some prints at the boundaries then the following input file may be used:

******************************************************************************

*

* File: plathole.pst

*

* Contents: Input for post processing part of the example as described

* in the manual Standard Problems Section 5.1.1

*

* Usage: sepmesh should have been run with input: plathol1.msh

* sepcomp should have been run with input: plathol4.prb

* In UNIX: seppost plathole.pst

*

******************************************************************************

*

*

postprocessing

name v0 = displacement

name v1 = stresses

print v0

plot identification, text=’ Test example "hole in plate" ’, origin = (15,18)

open plot

plot vector v0

plot text, text = ’Displacements vectors’, origin = (0.15,-0.04)

close plot

print v1

open plot

plot contour v1, degfd=1,smoothing factor = 1

plot text, text = ’Contours of xx-component of stress’//

origin = (0.15,-0.04)

close plot

open plot

plot contour v1, degfd=2,smoothing factor = 1

plot text, text = ’Contours of yy-component of stress’//

origin = (0.15,-0.04)

close plot

open plot

plot contour v1, degfd=4,smoothing factor = 1

plot text, text = ’Contours of xy-component of stress’//

origin = (0.15,-0.04)

close plot

open plot

plot coloured contour v1, degfd=1

plot text, text = ’Contours of xx-component of stress’//

origin = (0.15,-0.04)

close plot

open plot

plot coloured contour v1, degfd=2

plot text, text = ’Contours of yy-component of stress’//

origin = (0.15,-0.04)

close plot

open plot

plot coloured contour v1, degfd=4
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plot text, text = ’Contours of xy-component of stress’//

origin = (0.15,-0.04)

close plot

print boundary function v0, curves(c1,c2,c3)

print boundary function v1, curves(c2,c3,c4,c5)

print boundary function v1, curves(c2), degfd=1

print boundary function v1, curves(c3), degfd=2

print boundary function v1, curves(c4), degfd=3

end

Figure 5.1.1.4 shows the required vector plot, Figures 5.1.1.5 - 5.1.1.7 the contour plots of the
stresses. The coloured plots are not shown in this manual.

Vector plot of  displacement                 

 Test example "hole in plate" 

Displacements vectors

 

Figure 5.1.1.4: Vector plot of displacements in hole-in-plate problem
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Figure 5.1.1.5: Contour plot of σxx in hole-in-plate problem
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Figure 5.1.1.6: Contour plot of σyy in hole-in-plate problem

5.1.2 A simple normal load example

In this example we consider some variations on the tube as sketched in Figure 5.1.2.1

In the first two examples the outer boundary of the tube has displacement zero, whereas at the
inner circle a normal load of 105N is given. The thickness of the pipe is equal to 1 m. This example
shows how a normal load could be treated in combination with the stress elements of this chapter.
Since the outer side of the tubes has zero displacement, this is an example of plane strain (IG-
PROB=1). If the outer side could move freely, it would have been a plane stress (IGPROB=0)
example. This is the case in the last two examples.
To get these examples into your local directory use:

sepgetex normload$

$ refers to the sequence number of the example. The available sequence numbers are 1 to 4.
To run such an example carry out the following commands:

sepmesh normload1.msh

view mesh

sepcomp normload1.prb

seppost normload1.pst

view results

viewing may be done by: sepdisplay, xsepask or xsepplot, like

xsepplot sepplot.001

xsepplot sepplot.002 ....

sepview sepplot.001 (provided you have os-motif)

output may be redirected to a file by:

command > file..

normload1 must be replaced by normload2, 3 or 4 depending on the example.
The mesh is generated by program SEPMESH using bilinear quadrilateral elements. The input file
for SEPMESH for the first two examples is:



EX Simple normal load example August 1998 5.1.2.2

1

2

3

3

3

3

3

4

4

5

67

8
8

9

LEVELS

 1  -1.010E+03

 2  -5.035E+02

 3   3.438E+00

 4   5.103E+02

 5   1.017E+03

 6   1.524E+03

 7   2.031E+03

 8   2.538E+03

 9   3.045E+03

10   3.552E+03

11   4.059E+03

Contour levels of  stresses                     

 Test example "hole in plate" 

Contours of xy-component of stress

 

Figure 5.1.1.7: Contour plot of τxy in hole-in-plate problem

Figure 5.1.2.1: Hollow tube with internal load

# normload1.msh

#

# mesh for normal load example

# See Manual Standard Elements Section 5.1.2

# and examples manual Section 5.1.2

#

# To run this file use:

# sepmesh normload1.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nelw = 5 # number of elements in wall-thickness

nelc = 40 # number of elements in circumference direction

reals

ri = 2 # inner radius

ro = 3 # outer radius

end
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#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = (0,0) # centre of circles

p2 = ( ri,0) # point at inner circle

p3 = ( ro,0) # point at outer circle

#

# curves

#

curves # See Users Manual Section 2.3

c1 = arc1(p2,p2,p1,nelm= nelc) # inner circle

c2 = arc1(p3,p3,p1,nelm= nelc) # outer circle

c3 = line1(p2,p3,nelm= nelw) # connection line, only necessary to

# define a closed region

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = rectangle 5 ( c1,c3,-c2,-c3 ) # number of elements at opposite

# sides is constant

# See Users Manual Section 2.4.2

plot # make a plot of all parts

# and also of the final mesh

# See Users Manual Section 2.2

end

Figure 5.1.2.2 shows the mesh created by SEPMESH.

 

Figure 5.1.2.2: Mesh plot of normal load example
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Once the mesh has been generated, sepcomp may be run to compute the displacement. For the
linear elasticity problem element type 250 may be used, see Section 5.1. Type 250 requires 45
coefficients, however, it is sufficient to give only the non-zero values.
The physical parameters used are:
Young’s modulus: E = 107 N/m2

Poisson’s ratio: ν = 0.3
Plate thickness is 1m.

In order to prescribe the normal load we may choose between local transformations in combination
with ILOAD=1, or no transformation and ILOAD=4. Both give exactly the same results. We give
the input files in both cases:

# normload1.prb

# Problem definition for normal load example

# See Manual Standard Elements Section 5.1.2

# and examples manual Section 5.1.2

#

# To run this file use:

# sepcomp normload1.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

# Example with local transform

#

constants

vector_names

displacement

end

# Define the type of problem to be solved

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 (type=250) # Linear elastic element

# See Manual Standard Elements Section 5.1

natboundcond # Define type of natural boundary conditions (loads)

# See Users Manual Section 3.2.2

bngrp1 (type=251) # Given load for linear elastic element

# See Manual Standard Elements Section 5.1

bounelements # Define where the natural boundary conditions

# are given. See Users Manual Section 3.2.2

belm1=curves(c1) # Load at inner circle c1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c2) # Displacement is prescribed on outer circle

localtransform # Define local transformation

# See Users Manual Section 3.2.2

curves(c1) # The first unknown on curve 1 is in the normal

# direction, the second one in the tangential

# direction

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4
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symmetric # The matrix is symmetrical and stored as profile

# matrix, hence a direct solver is applied

end

# Define the coefficients for the problem

coefficients # See Users Manual Section 3.2.6

elgrp1 (nparm=45) # The number of coefficients for type 250 is 45

# See Manual Standard Elements Section 5.1

icoef2 = 1 # Plane strain

coef 6 = 1d7 # Youngs modulus E

coef 7 = 0.3 # Poisson ratio nu

bngrp1 (nparm=25) # The number of coefficients for type 251 is 25

# See Manual Standard Elements Section 5.1

icoef1 = 1 # ILOAD = 1, load in co-ordinate direction

icoef2 = 1 # Plane strain

coef 6 = -1d5 # Load in the first co-ordinate direction

# Due to the local transformation, this is

# the normal direction

end

# The following input parts are not explicitly given:

#

# essential boundary conditions, See Users Manual Section 3.2.5

# Reason, the given displacement is 0

# solve, See Users Manual Section 3.2.8

# Reason, the default solver is used

# output, See Users Manual Section 3.2.13

# Reason, the default output is written

end_of_sepran_input

# normload2.prb

# Problem definition for normal load example

# See Manual Standard Elements Section 5.1.2

# and examples manual Section 5.1.2

#

# To run this file use:

# sepcomp normload2.prb

#

# Reads the file meshoutput

# Creates the files sepcomp.inf and sepcomp.out

#

# Example with ILOAD=4

constants

vector_names

displacement

end

#

# Define the type of problem to be solved

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2
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elgrp1 (type=250) # Linear elastic element

# See Manual Standard Elements Section 5.1

natboundcond # Define type of natural boundary conditions (loads)

# See Users Manual Section 3.2.2

bngrp1 (type=251) # Given load for linear elastic element

# See Manual Standard Elements Section 5.1

bounelements # Define where the natural boundary conditions

# are given. See Users Manual Section 3.2.2

belm1=curves(c1) # Load at inner circle c1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c2) # Displacement is prescribed on outer circle

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

symmetric # Symmetrical profile matrix

# matrix, hence a direct solver is applied

end

# Define the coefficients for the problem

coefficients # See Users Manual Section 3.2.6

elgrp1 (nparm=45) # The number of coefficients for type 250 is 45

# See Manual Standard Elements Section 5.1

icoef2 = 1 # Plane strain

coef 6 = 1d7 # Youngs modulus E

coef 7 = 0.3 # Poisson ratio nu

bngrp1 (nparm=25) # The number of coefficients for type 251 is 25

# See Manual Standard Elements Section 5.1

icoef1 = 4 # ILOAD = 4, load in normal direction

icoef2 = 1 # Plane strain

coef 6 = -1d5 # Load in the normal direction

end

# The following input parts are not explicitly given:

#

# essential boundary conditions, See Users Manual Section 3.2.5

# Reason, the given displacement is 0

# solve, See Users Manual Section 3.2.8

# Reason, the default solver is used

# output, See Users Manual Section 3.2.13

# Reason, the default output is written

end_of_sepran_input

Program seppost allows us to print and plot the solution. It requires input from the standard input
file.
A very simple example is given in the following file:

# normload1.pst

# Input file for postprocessing for normal load example

# See Manual Standard Elements Section 5.1.2

# and examples manual Section 5.1.2
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#

# To run this file use:

# seppost normload1.pst > normload1.out

#

# Reads the files meshoutput, sepcomp.inf and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

print displacement # Print the complete displacement

# See Users Manual Section 5.3

print displacement, curves=c1 # Print the displacement along the inner

# circle

# See Users Manual Section 5.3

plot vector displacement # Make a vector plot of the displacement

# See Users Manual Section 5.4

end

In the third example we use only a quarter of the region and make use of the symmetry of the solu-
tion. Only the part in the first quadrant is used. Furthermore we do not prescribe the displacement
on the outer circle. As a consequence we use plain stress instead of plane strain.
The mesh input file is given by:

# normload3.msh

#

# mesh for normal load example

# In this case only a quarter of the region is used

# See Manual Standard Elements Section 5.1.2

# and examples manual Section 5.1.2

#

# To run this file use:

# sepmesh normload3.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nelw = 5 # number of elements in wall-thickness

nelc = 10 # number of elements in circumference direction

reals

ri = 2 # inner radius

ro = 3 # outer radius

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = (0,0) # centre of circles

pd2 = ( ri,0) # point at inner circle (at 0 degrees)

# coordinates are given in radius and angle

pd3 = ( ri,90) # point at inner circle (at 90 degrees)
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pd4 = ( ro,90) # point at outer circle (at 90 degrees)

pd5 = ( ro,0) # point at outer circle (at 0 degrees)

#

# curves

#

curves # See Users Manual Section 2.3

c1 = arc1(p2,p3,p1,nelm= nelc) # inner circle

c2 = line1(p3,p4,nelm= nelw) # line at 90 degrees

c3 = arc1(p4,p5,-p1,nelm= nelc) # outer circle

c4 = line1(p5,p2,nelm= nelw) # line at 0 degrees

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = rectangle 5 ( c1,c2,c3,c4 ) # number of elements at opposite

# sides is constant

# See Users Manual Section 2.4.2

plot # make a plot of all parts

# and also of the final mesh

# See Users Manual Section 2.2

end

The corresponding problem input file becomes:

# normload3.prb

# Problem definition for normal load example

# In this case only a quarter of the region is used

# See Manual Standard Elements Section 5.1.2

# and examples manual Section 5.1.2

#

# To run this file use:

# sepcomp normload3.prb

#

# Reads the file meshoutput

# Creates the files sepcomp.inf and sepcomp.out

#

# Example with ILOAD=4 and free outer circle

constants

vector_names

displacement

end

#

# Define the type of problem to be solved

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 (type=250) # Linear elastic element

# See Manual Standard Elements Section 5.1

natboundcond # Define type of natural boundary conditions (loads)

# See Users Manual Section 3.2.2

bngrp1 (type=251) # Given load for linear elastic element

# See Manual Standard Elements Section 5.1

bounelements # Define where the natural boundary conditions

# are given. See Users Manual Section 3.2.2

belm1=curves(c1) # Load at inner circle c1
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essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1 = curves(c2) # x-displacement is prescribed on line at 90 degrees

degfd2 = curves(c4) # y-displacement is prescribed on line at 0 degrees

# The last two are symmetry conditions

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

symmetric # The matrix is symmetrical and stored as profile

# matrix, hence a direct solver is applied

end

# Define the coefficients for the problem

coefficients # See Users Manual Section 3.2.6

elgrp1 (nparm=45) # The number of coefficients for type 250 is 45

# See Manual Standard Elements Section 5.1

icoef2 = 0 # Plane stress

coef 6 = 1d7 # Youngs modulus E

coef 7 = 0.3 # Poisson ratio nu

bngrp1 (nparm=25) # The number of coefficients for type 251 is 25

# See Manual Standard Elements Section 5.1

icoef1 = 4 # ILOAD = 4, load in normal direction

icoef2 = 0 # Plane stress

coef 6 = -1d5 # Load in the normal direction

end

# The following input parts are not explicitly given:

#

# essential boundary conditions, See Users Manual Section 3.2.5

# Reason, the given displacement is 0

# solve, See Users Manual Section 3.2.8

# Reason, the default solver is used

# output, See Users Manual Section 3.2.13

# Reason, the default output is written

end_of_sepran_input

Finally we extend the third example to R3. To that end the mesh is extended in the third direction.
The mesh input file in this case is given by:

# normload4.msh

#

# mesh for normal load example

# 3D example

# See Manual Standard Elements Section 5.1.2

# and examples manual Section 5.1.2

#

# To run this file use:

# sepmesh normload4.msh

#

# Creates the file meshoutput

#
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# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nelw = 5 # number of elements in wall-thickness

nelc = 5 # number of elements in circumference direction

nelz = 5 # number of elements in z direction

reals

ri = 2 # inner radius

ro = 3 # outer radius

height = 3 # outer radius

end

#

# Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = (0,0,0) # centre of circles

pd2 = ( ri,0,0) # point at inner circle (at 0 degrees)

# coordinates are given in radius and angle

pd3 = ( ri,90,0) # point at inner circle (at 90 degrees)

pd4 = ( ro,90,0) # point at outer circle (at 90 degrees)

pd5 = ( ro,0,0) # point at outer circle (at 0 degrees)

p6 = ( ri,0, height) # point above p2

p9 = (0,0,0) # The points p7-p9 are generated by translate

#

# curves

#

curves # See Users Manual Section 2.3

c1 = arc1(p2,p3,p1,nelm= nelc) # inner circle

c2 = line1(p3,p4,nelm= nelw) # line at 90 degrees

c3 = arc1(p4,p5,-p1,nelm= nelc) # outer circle

c4 = line1(p5,p2,nelm= nelw) # line at 0 degrees

c5 = translate c1 (p6,p7) # inner circle on upper surface

c6 = translate c2 (p7,p8) # line at 90 degrees on upper surface

c7 = translate c3 (p8,p9) # outer circle on upper surface

c8 = translate c4 (p9,p6) # line at 0 degrees on upper surface

c9 = line1 (p2,p6,nelm= nelz) # generating curve for pipe surface

c10= translate c9 (p3,p7) # generating curve for pipe surface

c11= translate c9 (p4,p8) # generating curve for pipe surface

c12= translate c9 (p5,p9) # generating curve for pipe surface

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = rectangle 5 ( c1,c2,c3,c4 ) # lower surface

# See Users Manual Section 2.4.2

s2 = translate s1 ( c5,c6,c7,c8) # upper surface

# See Users Manual Section 2.4

s3 = pipesurface 5 ( c1,c5,c9,c10) # pipe surface along inner curves

# See Users Manual Section 2.4.5

s4 = pipesurface 5 ( c2,c6,c10,c11) # pipe surface along curves at 90 deg
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s5 = pipesurface 5 ( c3,c7,c11,c12) # pipe surface along outer curves

s6 = pipesurface 5 ( c4,c8,c12,c9) # pipe surface along curves at 0 deg

s7 = ordered surfaces ( s3, s4, s5, s6 ) # Complete pipe surface

# Necessary for pipe

# See Users Manual Section 2.4

#

# volumes

#

volumes # See Users Manual Section 2.5

v1 = pipe 13 ( s1, s2, s7 ) # Complete region

# See Users Manual Section 2.5.2

plot(eyepoint(0,-10,10) # make a plot of all parts

# and also of the final mesh

# See Users Manual Section 2.2

# Only with the eye point the complete mesh is drawn

end

The mesh is shown in Figure 5.1.2.3

 

Figure 5.1.2.3: Mesh plot of 3D normal load example

In this case it is necessary to prescribe the z-displacement in at least one point. To make things
simple the z-displacement in the upper surface is made equal to zero. The corresponding problem
input file is:

# normload4.prb

# Problem definition for normal load example

# In this case only a quarter of the region is used

# See Manual Standard Elements Section 5.1.2

# and examples manual Section 5.1.2

#

# To run this file use:

# sepcomp normload4.prb

#

# Reads the file meshoutput
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# Creates the files sepcomp.inf and sepcomp.out

#

# Example with ILOAD=4 and free outer circle

constants

vector_names

displacement

end

#

# Define the type of problem to be solved

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 (type=250) # Linear elastic element

# See Manual Standard Elements Section 5.1

natboundcond # Define type of natural boundary conditions (loads)

# See Users Manual Section 3.2.2

bngrp1 (type=251) # Given load for linear elastic element

# See Manual Standard Elements Section 5.1

bounelements # Define where the natural boundary conditions

# are given. See Users Manual Section 3.2.2

belm1=surfaces(s3) # Load at inner circle s3

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1 = surfaces(s4) # x-displacement is prescribed on line at 90 degrees

degfd2 = surfaces(s6) # y-displacement is prescribed on line at 0 degrees

degfd3 = surfaces(s2) # z-displacement is prescribed on upper surface

# The last three are symmetry conditions

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

symmetric # The matrix is symmetrical and stored as profile

# matrix, hence a direct solver is applied

end

# Define the coefficients for the problem

coefficients # See Users Manual Section 3.2.6

elgrp1 (nparm=45) # The number of coefficients for type 250 is 45

# See Manual Standard Elements Section 5.1

icoef2 = 0 # Linear Elasticity (3D)

coef 6 = 1d7 # Youngs modulus E

coef 7 = 0.3 # Poisson ratio nu

bngrp1 (nparm=25) # The number of coefficients for type 251 is 25

# See Manual Standard Elements Section 5.1

icoef1 = 4 # ILOAD = 4, load in normal direction

icoef2 = 0 # Linear Elasticity (3D)

coef 6 = -1d5 # Load in the normal direction

end

# The following input parts are not explicitly given:

#

# essential boundary conditions, See Users Manual Section 3.2.5
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# Reason, the given displacement is 0

# solve, See Users Manual Section 3.2.8

# Reason, the default solver is used

# output, See Users Manual Section 3.2.13

# Reason, the default output is written

end_of_sepran_input



EX linear beam response January 2008 5.1.3.1

5.1.3 Time-dependent linear beam response

In this example a simple clamped beam is excited by a time-dependent distributed load (Figure
5.1.3.1), and then released. The beam is clamped in the right-hand side, and the load is applied on
top of the beam.
To get this example into your local directory use:

sepgetex beamresponse

To run such the example carry out the following commands:

sepmesh beamresponse.msh

view mesh

seplink beamresponse

beamresponse < beamresponse.prb

seppost beamresponse.pst

view results

In Figure 5.1.3.2 the corresponding finite element mesh with linear triangular elements is displayed.
For the description of the material of the beam, a linear constitutive law is used in combination
with linear geometric assumptions (element type 250). For the time integration the Newmark time
integration method is used, with β = 0.25 and γ = 0.5. For detailed information about solid time
integration, see the Sepran Theory Manual Section 5.6. The beam is loaded by a distributed load
f(t) that is equal to:

f(t) = 10t for 0 ≤ t ≤ 2.5

f(t) = 0 for t > 2.5

Due to this load, the beam is going to oscillate. The deformation in x and y direction of the
upper left point of the beam is plotted in Figure 5.1.3.3. Because linear geometric assumptions are
used, the response is only accurate for small displacements. For large displacements the updated
Lagrange formulation of the solid is recommended (element types 200-202).

f(t)

Figure 5.1.3.1: Clamped beam loading

 

Figure 5.1.3.2: Simple beam mesh
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Figure 5.1.3.3: Response of the beam

The input file for SEPMESH is given by:

# beamresponse.msh

#

# mesh file for time-dependent linear beam response

# See Manual Standard Elements Section 5.1.3

# and Examples Manual Section 5.1.3

# Author: Martijn Booij 2007

#

# To run this file use:

# sepmesh beamresponse.msh

#

# Creates the file meshoutput

#

# Define some general constants

constants

integers

n = 40 # number of elements in horizontal direction

m = 4 # number of elements in vertical direction

shape_cur = 1 # shape of elements along curves

# linear elements

shape_sur = 3 # shape of elements in surface

# linear triangles

reals

length = 10 # length of the beam
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height = 1 # height of the beam

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,height) # Right upper point

p4=(0,height) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

c1=line shape_cur (p1,p2,nelm=n) # lower boundary

c2=line shape_cur (p2,p3,nelm=m) # right-hand side boundary

c3=line shape_cur (p3,p4,nelm=n) # upper

c4=line shape_cur (p4,p1,nelm=m) # left-hand side boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Since the load is a function of time we need to supply a function subroutine FUNCCF to define the
function. The following program defines this function.

program beamresponse

! --- Main program for time-dependent linear beam response

! The main program is standard and consists of 1 statement only

! See Examples Manual, Section 5.1.3

call sepcom ( 0 )

end

! --- Function subroutine funccf to define the time-dependent load

! See SEPRAN introduction 5.5.3

double precision function funccf ( ichoice, x, y, z )

implicit none

! --- declaration of input parameters

integer ichoice
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double precision x, y, z

! --- include common ctimen, which contains the time t

include ’SPcommon/ctimen’

if ( ichoice==1 ) then

! --- ichoice = 1, define load

if ( t<=2.500001d0) then

! --- t <= 2.5, load is equal to 10t

funccf = 10*t

else

! --- t > 0, no load

funccf = 0

end if ! ( t<=2.5)

else

! --- ichoice > 1, not defined

print *, ’wrong value of ichoice ’, ichoice, ’ in funccf’

stop

end if ! ( ichoice==1 )

end

The input file for the computational part reads:

# beamresponse.prb

#

# problem file for time-dependent linear beam response

# See Manual Standard Elements Section 5.1.3

# and Examples Manual Section 5.1.3

# Author: Martijn Booij 2007

#

# To run this file use:

# sepcomp beamresponse.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4
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integers

num_int = 3 # Numerical integration rule

reals

t0 = 0 # Start time

t1 = 10 # End time

dt = 0.001 # Timestep

tstep = 0.05 # step for output

rho = 50 # density

E = 1e6 # E modulus

nu = 0.4 # Poisson ratio

vector_names

u # Solution: displacement

v # Derivative of solution: velocity

a # Derivative velocity: acceleration

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 = 250 # Type number for linear elasticity

# See Standard problems Section 5.1

natbouncond # Define natural boundary conditions (prescribed load)

bngrp1 = 251 # Type number for prescribed load

bounelements # Define where natural boundary conditions

# are given

belm1 = curves(c3) # boundary elements along top boundary

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c4) # Clamped along left-hand side boundary

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

symmetric # symmetrical profile matrix

# hence a direct solver is used

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.1

coefficients

# internal elements

elgrp1 (nparm = 45) # The coefficients are defined by 45 parameters
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icoef2 = 0 # 2d plain strain

icoef3 = num_int # type numerical integration

coef6 = E # E modulus

coef7 = nu # Poisson ratio

coef43 = rho # Density

# boundary elements

bngrp1 (nparm=25)

icoef1 = 2 # ILOAD

icoef2 = 0 # IGPROB

icoef3 = num_int # type numerical integration

coef6 = 0 # Load in x-direction (0)

coef7 = (func= 1) # Load in y-direction is time dependent

# Is defined by funccf with ichoice = 1

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary since we need to define initial velocity and displacement

structure

create_vector u # Set initial displacement to 0

create_vector v # Set initial velocity to 0

# Solve the time-dependent equations

solve_time_dependent_problem, vector = u

end

# Definition of the time integration scheme

# See Users Manual Section 3.2.15

time_integration

method = newmark # The second order time-derivative is integrated

# by the Newmark scheme

tinit = t0 # Initial time

tend = t1 # End time

tstep = dt # Time step

toutinit = t0 # Initial time for output to sepcomp.out

toutend = t1 # End time for output to sepcomp.out

toutstep = tstep # Time step for output to sepcomp.out

print_level = 2 # Produce some extra output during integration

beta = 0.25 # Parameter beta for Newmark scheme (default value)

gamma = 0.5 # Parameter gamma for Newmark scheme (default value)

end

# input for linear solver
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# See Users Manual Section 3.2.8

solve

positive_definite # the matrices are positive definite

end

end_of_sepran_input

Finally the following input file for seppost may be used.

# beamresponse.pst

#

# postprocessing file for time-dependent linear beam response

# See Manual Standard Elements Section 5.1.3

# and Examples Manual Section 5.1.3

# Author: Martijn Booij 2007

#

# To run this file use:

# seppost beamresponse.pst

#

# Reads the files meshoutput and sepcomp.out

postprocessing

# Plot time history of both displacements in right-upper point

time history (0,10), plot point (10,1), u, degfd 1

time history (0,10), plot point (10,1), u, degfd 2

# Print time history of both displacements in right-upper point

time history (0,10), print point (10,1), u, degfd 1

time history (0,10), print point (10,1), u, degfd 2

end
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5.2 Linear incompressible or nearly incompressible elastic problems

This Chapter is under preparation.
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5.3 Nonlinear solid computation

Non-linear solid mechanics problems can be solved either by a Total Lagrange approach or an
updated Lagrange approach. In SEPRAN elements for both types of equations are available.
Section (5.3.1) treats elements using the Total Lagrange approach.
Elements using the updated Lagrange approach are treated in Section (5.3.2).



EX Total Lagrange approach January 2005 5.3.1.1

5.3.1 Nonlinear solid computation using a Total Lagrange approach

In this section we treat examples of the total Lagrange approach.
At this moment the following examples are available:

leafspring (5.3.1.1) Computes the displacement of a leafspring.
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5.3.1.1 The leafspring example

Consider a leafspring as pictured in Figure 5.3.1.1.1. Point 1 is fixed, point 3 can only slide in
x direction. The loading is applied at point 2. The loading can be a prescribed displacement
(essential boundary condition) or a prescribed force (natural boundary condition). The front of the
spring will be fixed (no translation in y direction), while the back can move freely. For the material
of the spring we choose steel (E = 10MPa, ν = 0.3), and the material will behave Hookean for
small strains. This material behavior must be programmed in routine FNMATERI. Although the
material is isotropic, this example is extended with a local direction in order to demonstrate the
usage of FNLOCDIR. In this case it is used to compute strains and stresses in local directions. (For
computation of the actual displacements, these local directions are irrelevant).
In this particular example it is not necessary to program the subroutine FNMATERI yourself since
the standard (default) subroutine already provides the possibility of using Hookean material. In
fact if you leave FNMATERI you will notice no difference.

To get this example into your local directory use:

sepgetex leafspring

and to run it use:

sepmesh leafspring.msh

seplink leafspring

leafspring leafspring.prb

In this example you will see that the displacements are large, but the strains are small. So, a linear
material model is allowed.

y

x

z

1

2

3

Figure 5.3.1.1.1: leafspring problem

The mesh for the leafspring example may be generated by program sepmesh. Sepmesh requires an
input file, for example the file leafspring.msh (5.3.1.1)

Figure 5.3.1.1.2 shows the mesh generated by program sepmesh.

To compute the displacements, program leafspring may be used. This program consists of a simple
call to subroutine sepcom only. The reason that this program is used is that the material subroutines
FNMATERI and FNLOCDIR must be provided. Otherwise it would be sufficient to call program
sepcomp. (5.3.1.1)

In this example we show two different input files, one with respect to prescribed displacements
(leafspring.prb) and one with respect to prescribed forces (leafspring1.prb). In both cases
the computed displacements are of the order 0.1 which is relatively big compared to the strains,
which are less than 0.01. (5.3.1.1)
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Figure 5.3.1.1.2: Mesh as generated with the mesh input

Mesh file

# leafspring.msh

#

# mesh input file for leafspring example

#

# example for nonlinear solid mechanics.

# - large displacements

# - small strains (linear material model)

# - Total Lagrange approach

#

#

# See Examples Manual Section 5.3.1.1

#

# To create the mesh run:

#

# sepmesh leafspring.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nelx = 5 # number of elements in length of spring

nelx2= 2*nelx # 2 nelx

nely = 2 # number of elements in y-direction

nelz = 2 # number of elements in z-direction

reals

lof = 0.6 # length of leafspring

rct = 0.8 # radius center

rds = 1.0 # leafspring radius

axp = 0.2 # axis position

wd = 0.05 # leaf width

wh = 0.02 # leaf heigth

axmh = axp-wh # axp - wh

end

#
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# Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = ( 0, 0, rct )

p2 = ( -lof, 0, 0 )

p3 = ( 0, 0, -axp )

p4 = ( lof, 0, 0.0 )

p5 = ( -lof, 0, wh )

p6 = ( 0, 0,-axmh )

p7 = ( lof, 0, wh )

p8 = ( -lof, wd, 0 )

p9 = ( 0, wd, -axp )

p10 =( lof, wd, 0 )

p11 = ( -lof, wd, wh )

p12 = ( 0, wd,-axmh )

p13 = ( lof, wd, wh )

#

# curves

#

curves # See Users Manual Section 2.3

c1 = arc1( p2, p3, p1, nelm= nelx )

c2 = arc1( p3, p4, p1, nelm= nelx )

c3 = curves ( c1, c2 )

c4 = translate c3 ( p5, p6, p7 )

c5 = line1 ( p5, p2, nelm= nely )

c6 = line1 ( p4, p7, nelm= nely )

c7 = translate c3 ( p8, p9, p10 )

c8 = translate c3 ( p11, p12, p13 )

c9 = line1 (p11, p8, nelm= nely )

c10= line1 (p10, p13, nelm= nely )

c11= line1 (p2, p8, nelm= nelz )

c12= line1 (p4, p10, nelm= nelz )

c13= line1 (p5, p11, nelm= nelz )

c14= line1 (p7, p13, nelm= nelz )

c15= line1 (p3, p6, nelm= nely)

#

# surface

#

surfaces # See Users Manual Section 2.4

s1 = rectangle5( c3, c6, -c4, c5 )

s2 = rectangle5( c7, c10,-c8, c9 )

s3 = coons5(c3, c12,-c7,-c11 )

s4 = coons5(c4, c14,-c8,-c13)
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s5 = rectangle5( c11,-c9,-c13,c5)

s6 = rectangle5( c12,c10,-c14,-c6)

#

# volume

#

volumes # See Users Manual Section 2.5

v1 = brick13( s3, s1, s6, s2, s5, s4 )

plot # make a plot of the mesh

# See Users Manual Section 2.2

end
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Program

program leafspring

! program file for leafspring example

! See Examples Manual Section 5.3.1.1

call sepcom( 0 )

end

subroutine fnmateri ( ichoice, s, se, eps, detf, matpar, makese )

! ======================================================================

!

!

!

! DESCRIPTION

!

! MATERI : routine for ELM250. Material behaviour in nonlinear case

!

! Compute 2nd-Piola-Kirchoff stress from given Green-Lagrange

! strains. The determinant of the deformation gradient, can be

! used in this relationship

!

! EXAMPLE MATERIAL

! linear elastic material model (isotropic hooke)

! the large displacement/rotation are taken into account

! in the Green-Lagrange strain, which is small.

!

! **********************************************************************

!

! KEYWORDS

!

! elasticity

! nonlinear

! **********************************************************************

!

! INPUT / OUTPUT PARAMETERS

!

logical makese

double precision s(6), eps(6), detf, matpar(10),

+ se(6,6)

integer ichoice

! detf i determinant of deformation gradient

! eps i Green-Lagrange strains

! eps(i) : i: components (symmetric!);

! ichoice i material model number ( icoef 4 )

! 0 : hookean

! coef6 = E

! coef7 = nu

! makese i se must be computed (true) or not (false)

! matpar i material parameters (User defines!) for every

! integration point

! nip i number of data points

! s o 2nd-PK-stresses: You only have to store symmetric

! components!

! s(j) : j: component (1=11, 2=22, 3=33,
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! 4=12, 5=23, 6=31)

! se o tangential matrix.

! se(i,j) : i,j components (symmetric!)

! **********************************************************************

!

! COMMON BLOCKS

!

! **********************************************************************

!

! LOCAL PARAMETERS

integer i, j

double precision a0, a1, a2, a3, E, nu

! **********************************************************************

!

! SUBROUTINES CALLED

!

! **********************************************************************

!

! I/O

!

! **********************************************************************

!

! ERROR MESSAGES

!

! **********************************************************************

!

! PSEUDO CODE

!

! **********************************************************************

!

! DATA STATEMENTS

!

! ======================================================================

!

! --- material parameters

E = matpar(1)

nu = matpar(2)

a0 = E / ( 1d0 + nu )

a1 = a0 * ( 1d0 - nu ) /( 1d0 - 2d0*nu)

a2 = a0 * nu /( 1d0 - 2d0*nu)

a3 = a0 / 2d0

! --- clear se and s

do i = 1, 6

s(i) = 0d0

do j = 1, 6

se(i,j) = 0d0

end do

end do

do i=1,3
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se(i,i) = a1

se(i+3,i+3) = a3

end do

se(1,2) = a2

se(2,1) = a2

se(2,3) = a2

se(3,2) = a2

se(1,3) = a2

se(3,1) = a2

do i=1,3

do j=1,3

s(i) = s(i) + se(i,j)*eps(j)

end do

s(i+3) = se(i+3,i+3)*eps(i+3)

end do

do i = 1, 3

se(i,i) = a1

se(i+3,i+3) = a3*0.5d0

end do

end

subroutine fnlocdir ( pos, dir, ielgrp )

! --- example for usage of fnlocdir

implicit none

double precision pos(3), dir(3,3)

integer ielgrp

double precision rct, x, y, z, len

rct = 0.8d0

x = pos(1)

y = pos(2)

z = pos(3) + rct

len = sqrt( z*z + x*x )

! --- local x-vector

dir(1,1) = z/len

dir(2,1) = 0d0

dir(3,1) = -x/len

! --- local y-vector (unchanged)

dir(1,2) = 0d0

dir(2,2) = 1d0

dir(3,2) = 0d0

! --- local z-vector
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dir(1,3) = -dir(3,1)

dir(2,3) = 0d0

dir(3,3) = dir(1,1)

end
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Problem definition file

# leafspring.prb

#

# problem input file for leafspring example

# See Examples Manual Section 5.3.1.1

#

# example for nonlinear solid mechanics.

# - large displacements

# - small strains (linear material model)

# - Total Lagrange approach

#

# To run this file use:

# seplink leafspring

# leafspring leafspring.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

vector_names

incr_displacement # the incremental displacement in each step

tot_displacement # contains the total displacement

strain # contains the strain

stress # contains the stress

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

# solves the velocity (momentum equations: predictor)

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1, (type=250) # element type for solid material

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# suppressed displacements and prescribed displ.

degfd3 = points (p3,p9)

degfd1 = curves (c11)

degfd3 = curves (c11)

degfd3 = curves (c12)

degfd2 = surfaces (s1)

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix
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symmetric # Symmetrical profile matrix

# So a direct solver is applied

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure

# First initialize both vectors

create_vector, tot_displacement

prescribe_boundary_conditions, incr_displacement

# Solve system of equations

solve_nonlinear_system, incr_displacement

print tot_displacement, text=’displacement’

# Compute stresses and strains

derivatives, seq_deriv=1, strain

print strain

derivatives, seq_deriv=2, stress

print stress

# The vectors are written to the file sepcomp.out

# The vector incr_displacement is skipped

output, vector = tot_displacement

end

#

# essential boundary conditions:

#

essential boundary conditions

points (p3,p9), degfd3 = (value=0.10)

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients

elgrp1 (nparm=45)

icoef 2 = 10

coef 6 = ( value = 1d7 )

coef 7 = ( value = 0.3 )

end

#

# Information concerning the non-linear problem

#

nonlinear_equations

global_options, maxiter=25, accuracy=1d-4, print_level=2//

iteration_method = incremental_newton//

seqtotal_vector= tot_displacement

equation 1

fill_coefficients = 1

end

#
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# Information about the derivatives to be computed

#

derivatives

icheld=7

seq_input_vector = tot_displacement

end

derivatives, sequence_number=2

icheld=6

seq_input_vector = tot_displacement

end

end_of_sepran_input
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5.3.2 Nonlinear solid computation using an updated Lagrange approach

In this section we treat examples of the updated Lagrange approach.
At this moment the following examples are available:

beam2d (5.3.2.1) Bending of a beam (2D)

block2d (5.3.2.2) Deformation with volume change of a block (2D)

artery2d (5.3.2.3) Arterial wall with internal pressure (2D)

block3d (5.3.2.4) Uni-axial tension test (3D)

artery3d (5.3.2.5) Arterial wall with internal pressure (3D)
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5.3.2.1 Bending of a beam (2D)

In this example the deformation of a 2D solid beam is demonstrated. Both rotations and strains are
large. The material behavior is described by a hyper elastic incompressible Neo-Hookean material
law as described in the manual Standard Problems Section 5.3.2 (element type 202). The elements
chosen for the mesh are 9-noded quadratic quadrilaterals (shape=6). The beam is fixed at the
bottom edge by applying homogeneous dirichlet boundary conditions. Along the left edge a normal
force is applied. Since this problem is geometrically non-linear the force is increased gradually
and each force-increment a new equilibrium is computed using a Newton-Raphson iterative loop.
Note that the normal direction of the force also varies depending on the deformation of the beam
during each iteration step. The mesh for this problem with the corresponding boundary conditions
is shown in figure 5.3.2.1.1 on the left. On the right in this figure the deformation of the beam at
increasing force is shown going from A-E.

To get this example into your local directory use:

sepgetex beam2d

and to run it use:

sepmesh beam2d.msh

sepcomp beam2d.prb

x

y

Fn
A

B

C

D

E

Figure 5.3.2.1.1: Mesh with boundary conditions (left) and corresponding deformations for different
values of the normal force (right)

In this problem the displacements are large (geometrically non-linear deformation) and therefore
the updated Lagrange approach is used.

The method works as follows:
A pseudo time integration is applied, in which the time is only used to increase the applied pressure.
In this example we use 10 time steps and the pressure is increased from 0 to 4, by making it equal
to 10t.
In each pseudo time step, we have to solve a non-linear iteration procedure.
In this method we need the following displacement vectors:

un The total displacement

u The displacement per time step.
This one is used to increment the total displacement.



EX Bending of beam May 2008 5.3.2.1.2

δu the incremental displacement vector per iteration.
This one is used to increment the displacement per time step.

The method can be explained in the following algorithm

Create the mesh
Set t0, ∆t and tend
un := 0
t := t0; end time loop := false
while not end time loop do

t := t+ ∆t Clear u
while not converged do

Clear δu
Build matrix and right-hand side based on u and un
Solve system of equations to get new δu
u := u + δu

end while
un := un + u
end time loop := t ≤ tend

end while

The element assumes that u and un are the first 2 vectors in the list of vectors.

In order to construct the applied pressure as function of the time, we introduce two scalars incr
and force.
incr is used to count the number of time steps performed and
force is used to store the value of −0.1 t.
In the next pages the mesh file and the problem input file are given
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Mesh file

# beam2d.msh

#

# mesh input file for a 2D beam with a 1:20 ratio

# geometrically non-linear deformation of a beam.

# Bending of a beam by applying an external force in normal direction

#

# The updated Lagrange approach is used

# This includes a pseudo time loop, with non-linear iteration per step

# The pressure is increased during the time stepping

#

# See Manual Standard Elements Section 5.3.2

# and examples manual Section 5.3.2.1

#

# To create the mesh run:

#

# sepmesh beam2d.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nelemx = 2 # number of elements over width of beam

nelemy = 20 # number of elements over height of beam

lin=2 # ishape => quadratic line elements

surf=6 # ishape => quadratic quadrilaterals

reals

xx1 = 0 # origin

xx2 = .5 # width of beam

yy1 = 0 # origin

yy2 = 10 # height of beam

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = ( xx1, yy1) # left bottom point

p2 = ( xx2, yy1) # right bottom point

p3 = ( xx2, yy2) # right upper point

p4 = ( xx1, yy2) # left upper point

#

# curves

#

curves # See Users Manual Section 2.3
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c1 = line lin(p1,p2,nelm= nelemx) # bottom curve

c2 = line lin(p2,p3,nelm= nelemy) # right curve

c3 = line lin(p3,p4,nelm= nelemx) # upper curve

c4 = line lin(p4,p1,nelm= nelemy) # left curve

#

# surface

#

surfaces # See Users Manual Section 2.4

s1 = rectangle surf( c1, c2, c3, c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end
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Problem definition file

# beam2d.prb

#

# geometrically non-linear deformation of a 2D plain-strain artery.

# A pressure is applied at the inner arterial wall.

#

# The updated Lagrange approach is used

# This includes a pseudo time loop, with non-linear iteration per step

# The pressure is increased during the time stepping

#

# See Manual Standard Elements Section 5.3.2

# and examples manual Section 5.3.2.1

#

# To run this file use:

# sepcomp beam2d.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

# Suppress superfluous output

set warn off

set output none

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nincr = 400 # number of increments

reals

tstart = 0 # start of artificial time algorithm

tend = 4 # end of artificial time algorithm

dt = tend/ nincr # artificial time step defined by tend/nincr

variables

incr = 0 # counter for increments (used for printing only)

force = 0 # is used to define pressure at inner wall

vector_names

# The following vectors are used for the computation of the displacement

# Mark that the vectors u and un must always be given

# as first and second vector

u # Displacement vector per pseudo time step

un # Total displacement vector

stress # stress

strain # strain

pressure # pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2
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# solves the velocity (momentum equations: predictor)

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 = 202 # element type for solid material

# updated Lagrange approach

# Taylor-Hood elements (continuous pressure)

natbouncond # Definition of type numbers for natural

# boundary conditions

bngrp1 = 210 # boundary group used to apply internal pressure

bounelements # Definition of boundary elements

belm1 = curves(c4) # curve at which force is applied

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1,degfd2 = curves(c1) # fix bottom curve of beam

renumber levels (1,2),(3) # renumbering of unknowns per level

# first displacements, then pressures

# in this way zero pivots are avoided

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients

# internal elements

elgrp1 (nparm = 45) # The coefficients are defined by 45 parameters

icoef2 = 0 # type of stress-strain relation

# 0 - 2D plane strain

icoef3 = 0 # type of numerical integration

# 0 - default value

icoef4 = 2 # constitutive law

# 2 - incompressible Neo-Hookean

icoef5 = 0 # user flags

# iusrvc = 0 - user vector is not filled

coef7 = 1 # Take into account the linearization of

# the Jacobian

coef10 = 1d4

# Mooney-Rivlin: material parameter c0

# boundary elements

bngrp1 (nparm = 25) # The coefficients are defined by 25 parameters

icoef1= 2 # 2 - local coor system with linearization

# for boundary conditions

icoef3=1 # Integration rule (1=Newton Cotes)

coef6= force # force in normal direction as a function (p=0.1 t)

end
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#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure

### Create total displacement vector and set to 0

create_vector, un

### Start incremental (pseudo-time) loop

start_time_loop

### Clear solution vector (Displacement vector per pseudo time step)

create_vector, u

time_integration # Adjust the time parameters

# No actual action

incr = incr+1 # Raise increment counter

# t = incr*dt

force = -10*incr*dt # Compute force as function of t

### Print time and increment number

print_time

print incr, text = ’increment’

### Solve system of non-linear equations to get new increment vector

solve_nonlinear_system, u

### Compute stress, strain and pressure vectors

# This must be done before updating the mesh and un

derivatives, seq_deriv = 1, stress

derivatives, seq_deriv = 2, strain

derivatives, seq_deriv = 3, pressure

### Deform mesh using the displacement vector

deform_mesh, u

### Update total solution vector

un = un + u

### End time loop

end_time_loop

end

# Definition of (pseudo) time integration

# See Users Manual Section 3.2.15

time_integration

method = stationary # no action, just adjusting time parameters

tinit = tstart # start time

tend = tend # end time

tstep = dt # time step
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end

# Definition of iteration for non linear equations

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter = 50, miniter = 1, accuracy = 1d-3//

criterion = relative, print_level = 2, at_error= return //

iteration_method = newton

equations 1

fill_coefficients = 1

end

# Compute stress tensor

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives

icheld = 6 # compute stress

seq_input_vector = u # use the total displacement as input vector

end

# Compute stress tensor

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 2

icheld = 8 # compute strain

seq_input_vector = u # use the total displacement as input vector

end

# Compute pressure

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 3

icheld = 7 # compute pressure

seq_input_vector = u # use the total displacement as input vector

end
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5.3.2.2 Deformation with volume change of a block (2D)

In this example the deformation and volumetric change of a 2D block are presented. A hyper-elastic
compressible Neo-Hookean material model is used to describe the material behavior as described in
the manual Standard Problems Section 5.3.2 (element type 200). The mesh for this block consists
of 7-noded quadratic triangles (shape=7)(figure 5.3.2.2.1 on the left). The bottom and the left side
of the block are fixed in y and x-direction, respectively. At the top and right side the force in y
and x-direction is applied, respectively. This force is enforced incrementally and is a function of
the coordinates. The resulting deformations of the block with the red lines denoting the original
shape, are shown in figure 5.3.2.2.1 on the right.

To get this example into your local directory use:

sepgetex block2d

and to run it use:

sepmesh block2d.msh

seplink block2d

block2d < block2d.prb

Fx

Fy

Figure 5.3.2.2.1: Mesh with boundary conditions (left) and corresponding deformations with red
line denoting the original form (right)

In this problem the displacements are large (geometrically non-linear deformation) and therefore
the updated Lagrange approach is used.

Exactly the same method as in Section 5.3.2.1 is used.
The pressure at the boundary depends on space and so we need a function subroutine FUNCCF
and consequently a main program.

The files are given at the following pages
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Mesh file

# block2d.msh

#

# mesh input file for a 2D block with a 1:1 ratio

# geometrically non-linear deformation of a (2D plain-strain) block.

# The compressible material is stretched from two sides resulting in

# a volume increase

#

# The updated Lagrange approach is used

# This includes a pseudo time loop, with non-linear iteration per step

# The pressure is increased during the time stepping

#

# See Manual Standard Elements Section 5.3.2.2

# and examples manual Section 5.3.2.2

#

# To create the mesh run:

#

# sepmesh block2d.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nelemx = 10 # number of elements in x-direction

nelemy = 10 # number of elements in y-direction

lin=2 # ishape => quadratic line element

surf=7 # ishape => extended quadratic triangular element

reals

xx1 = 0

xx2 = 1 # width of block

yy1 = 0

yy2 = 1 # height of block

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = ( xx1, yy1) # left bottom point

p2 = ( xx2, yy1) # right bottom point

p3 = ( xx2, yy2) # right upper point

p4 = ( xx1, yy2) # left upper point

#

# curves

#
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curves # See Users Manual Section 2.3

c1 = line lin(p1,p2,nelm= nelemx) # bottom curve

c2 = line lin(p2,p3,nelm= nelemy) # right curve

c3 = line lin(p3,p4,nelm= nelemx) # upper curve

c4 = line lin(p4,p1,nelm= nelemy) # left curve

#

# surface

#

surfaces # See Users Manual Section 2.4

s1 = rectangle surf( c1, c2, c3, c4) # total surface

plot # make a plot of the mesh

# See Users Manual Section 2.2

end



EX Deformation of block May 2008 5.3.2.2.4

Program

program block2d

! main program for

! geometrically non-linear deformation of a (2D plain-strain) block.

! The compressible material is stretched from two sides resulting in

! a volume increase

!

! The updated Lagrange approach is used

! This includes a pseudo time loop, with non-linear iteration per step

! The pressure is increased during the time stepping

!

! See Manual Standard Elements Section 5.3.2

! and examples manual Section 5.3.2.2

call sepcom ( 0 )

end

double precision function funccf ( ichoice, x, y, z )

implicit none

include ’SPcommon/ctimen’

integer ichoice;

double precision x, y, z, c1, c2

c1= 2d1

c2= 2d1

if ( ichoice==1 ) then

funccf = c1*y*t

else if ( ichoice==2 ) then

funccf = c2*x*t

end if

end
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Problem definition file

# block2d.prb

#

# geometrically non-linear deformation of a (2D plain-strain) block.

# The compressible material is stretched from two sides resulting in

# a volume increase

#

# The updated Lagrange approach is used

# This includes a pseudo time loop, with non-linear iteration per step

# The pressure is increased during the time stepping

#

# See Manual Standard Elements Section 5.3.2

# and examples manual Section 5.3.2.2

#

# To run this file use:

# seplink block2d

# block2d < block2d.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

# Suppress superfluous output

set warn off

set output none

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nincr = 20 # number of increments

reals

tstart = 0 # start of artificial time algorithm

tend = 1 # end of artificial time algorithm

dt = tend/ nincr # artificial time step defined by tend/nincr

variables

incr = 0 # counter for increments (used for printing only)

vector_names

# The following vectors are used for the computation of the displacement

# Mark that the vectors u and un must always be given

# as first and second vector

u # Displacement vector per pseudo time step

un # Total displacement vector

stress # stress

strain # strain

pressure # pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2
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# solves the velocity (momentum equations: predictor)

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 = 200 # element type for solid material

# updated Lagrange approach

# Compressible material

natbouncond # Definition of type numbers for natural

# boundary conditions

bngrp1 = 210 # boundary group to apply force

bngrp2 = 210 # boundary group to apply force

bounelements # Definition of boundary elements

belm1 = curves(c2) # apply force on right side

belm2 = curves(c3) # apply force on upper side

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1 = curves(c4) # fix left side in x-direction

degfd2 = curves(c1) # fix bottom side in y-direction

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_method = compact # Non-symmetrical compact matrix

# So an iterative solver is applied

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients

# internal elements

elgrp1 (nparm = 45) # The coefficients are defined by 45 parameters

icoef2 = 0 # type of stress-strain relation

# 0 - 2D plane strain

icoef3 = 0 # type of numerical integration

# 0 - default value

icoef4 = 1 # constitutive law

# 1 - compressible Neo-Hookean

icoef5 = 0 # user flags

# iusrvc = 0 - user vector is not filled

coef7 = 1 # Take into account the linearization of

# the Jacobian

coef10 = 40 # shear modulus

coef11 = 40 # bulk modulus

# coefficients concerning the first boundary group

bngrp1 (nparm = 25)

icoef1= 0 # 0 - global coordinate system for boundary conditions

icoef3=1 # Integration rule (1=Newton Cotes)
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coef6= func=1 # force in global x-direction as a function (see block2d.f)

coef7= 0d0 # force in global y-direction

# coefficients concerning the second boundary group

bngrp2 (nparm = 25)

icoef1= 0 # 0 - global coordinate system for boundary conditions

icoef3=1 # Integration rule (1=Newton Cotes)

coef6= 0d0 # force in global x-direction

coef7= func=2 # force in global y-direction as a function (see block2d.f)

end

structure

### Create total displacement vector and set to 0

create_vector, un

### Start incremental (pseudo-time) loop

start_time_loop

### Clear solution vector (Displacement vector per pseudo time step)

create_vector, u

time_integration # Adjust the time parameters

# No actual action

incr = incr+1 # Raise increment counter

# t = incr*dt

### Print time and increment number

print_time

print incr, text = ’increment’

### Solve system of non-linear equations to get new increment vector

solve_nonlinear_system, u

### Compute stress, strain and pressure vectors

# This must be done before updating the mesh and un

derivatives, seq_deriv = 1, stress

derivatives, seq_deriv = 2, strain

derivatives, seq_deriv = 3, pressure

### Deform mesh using the displacement vector

deform_mesh, u

### Update total solution vector

un = un + u

### End time loop

end_time_loop

end

# Definition of (pseudo) time integration
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# See Users Manual Section 3.2.15

time_integration

method = stationary # no action, just adjusting time parameters

tinit = tstart # start time

tend = tend # end time

tstep = dt # time step

end

# Definition of iteration for non linear equations

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter = 50, miniter = 1, accuracy = 1d-3//

criterion = relative, print_level = 2, at_error= return //

iteration_method = newton

equations 1

fill_coefficients = 1

end

# Compute stress tensor

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives

icheld = 6 # compute stress

seq_input_vector = u # use the total displacement as input vector

end

# Compute stress tensor

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 2

icheld = 8 # compute strain

seq_input_vector = u # use the total displacement as input vector

end

# Compute pressure

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 3

icheld = 7 # compute pressure

seq_input_vector = u # use the total displacement as input vector

end

# Information for linear solver

# See Users Manual Section 3.2.8

solve

iterative_method = BICGSTAB, preconditioner = ilu

end
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5.3.2.3 Arterial wall with internal pressure (2D)

In this problem an 2D arterial wall is considered that deforms by an internal pressure. A hyper-
elastic incompressible Neo-Hookean material law describes the material behavior (element type
201). The mesh is subdivided into 9-noded quadratic quadrilaterals (shape=6). The boundary
conditions corresponding to this problem are shown together with the mesh in Figure 5.3.2.3.1 on
the left. An internal pressure is applied at the inner wall and the displacements at some of the
radial curves are prescribed to fix the mesh in space. On the right side of Figure 5.3.2.3.1 the
deformation of the mesh is shown with the corresponding pressure contour bands.

To get this example into your local directory use:

sepgetex artery2d

and to run it use:

sepmesh artery2d.msh

sepcomp artery2d.prb

Pressure

dx=0

dx=0

dy=0
dy=0

Figure 5.3.2.3.1: Mesh with boundary conditions (left) and deformations with pressure contour-
bands (right)

The mesh is created by splitting the region into four parts. This is not necessary but makes the
prescription of boundary conditions more easy.
The method used to solve the problem is exactly identical to the one in Section 5.3.2.1. The only
difference is that the force is equal to -0.1t and that the time increases form 0 to 1, with steps 0.1.

On the next pages the input files can be found.
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Mesh file

# artery2d.msh

#

# mesh input file for

# geometrically non-linear deformation of a 2D plain-strain artery.

# A pressure is applied at the inner arterial wall.

#

# The region is enclosed by two concentric circles

#

# The updated Lagrange approach is used

# This includes a pseudo time loop, with non-linear iteration per step

# The pressure is increased during the time stepping

#

# See Examples Manual Section 5.3.2.3

#

# To create the mesh run:

#

# sepmesh artery2d.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nelmarc = 20 # number of elements in 1/4 circumferential

nelmw = 10 # number of elements in artery wall thickness

line = 2 # quadratic line elements

surf = 6 # quadratic quadrilaterals

inner_circ = 20 # sequence number of inner circle

outer_circ = 21 # sequence number of outer circle

reals

inner_radius = 12.5 # Radius of inner circle

outer_radius = 14.5 # Radius of outer circle

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

# Centre

p1 = (0,0)

# Inner circle: subdivided into 4 parts because of boundary conditions

p2 = ( inner_radius,0)

p3 = (0, inner_radius)

p4 = (- inner_radius,0)

p5 = (0,- inner_radius)

# Outer circle: subdivided into 4 parts because of boundary conditions
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p6 = ( outer_radius,0)

p7 = (0, outer_radius)

p8 = (- outer_radius,0)

p9 = (0,- outer_radius)

#

# curves

#

curves # See Users Manual Section 2.3

# inner circle, consists of 4 arcs

c1 = arc line (p2,p3,p1,nelm = nelmarc)

c2 = arc line (p3,p4,p1,nelm = nelmarc)

c3 = arc line (p4,p5,p1,nelm = nelmarc)

c4 = arc line (p5,p2,p1,nelm = nelmarc)

c inner_circ = curves (c1,c2,c3,c4)

# outer circle, consists of 4 arcs

c5 = arc line(p6,p7,p1,nelm = nelmarc)

c6 = arc line(p7,p8,p1,nelm = nelmarc)

c7 = arc line(p8,p9,p1,nelm = nelmarc)

c8 = arc line(p9,p6,p1,nelm = nelmarc)

c outer_circ = curves (c5,c6,c7,c8)

# connection, used for boundary conditions

c9 = line line(p2,p6, nelm = nelmw)

c10 = line line(p3,p7,nelm = nelmw)

c11 = line line(p4,p8,nelm = nelmw)

c12 = line line(p5,p9,nelm = nelmw)

#

# surface

#

surfaces # See Users Manual Section 2.4

# Created from 4 parts

s1 = quadrilateral surf(c9,c5,-c10,-c1)

s2 = quadrilateral surf(c10,c6,-c11,-c2)

s3 = quadrilateral surf(c11,c7,-c12,-c3)

s4 = quadrilateral surf(c12,c8,-c9,-c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end
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Problem definition file

# artery2d.prb

#

# geometrically non-linear deformation of a 2D plain-strain artery.

# A pressure is applied at the inner arterial wall.

#

# The updated Lagrange approach is used

# This includes a pseudo time loop, with non-linear iteration per step

# The pressure is increased during the time stepping

#

# See Manual Standard Elements Section 5.3.2

# and examples manual Section 5.3.2.3

#

# To run this file use:

# sepcomp artery2d.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

# Suppress superfluous output

set warn off

set output none

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nincr = 10 # number of artificial time steps

inner_circ = 20 # sequence number of inner circle

reals

tstart = 0 # start of artificial time algorithm

tend = 1 # end of artificial time algorithm

dt = tend/ nincr # artificial time step defined by tend/nincr

variables

incr = 0 # counter for increments (used for printing only)

force = 0 # is used to define pressure at inner wall

vector_names

# The following vectors are used for the computation of the displacement

# Mark that the vectors u and un must always be given

# as first and second vector

u # Displacement vector per pseudo time step

un # Total displacement vector

# Output vectors

stress # stress

strain # strain

pressure # pressure

end

#

# Define the type of problem to be solved

#
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problem # See Users Manual Section 3.2.2

# solves the velocity (momentum equations: predictor)

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 = 201 # element type for solid material

# updated Lagrange approach

# Crouzeix-Raviart elements (discontinuous pressure)

natbouncond # Definition of type numbers for natural

# boundary conditions

bngrp1 = 210 # boundary group used to apply internal pressure

bounelements # Definition of boundary elements

belm1 = curves(c inner_circ) # apply pressure on inner boundary

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd2 = curves(c9) # fix right radial curve in y-direction

degfd2 = curves(c11) # fix left radial curve in y-direction

degfd1 = curves(c10) # fix upper radial curve in x-direction

degfd1 = curves(c12) # fix bottom radial curve in x-direction

renumber levels (1,2),(3,4,5) # renumbering of unknowns per level

# first displacements, then pressures

# in this way zero pivots are avoided

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients

# internal elements

elgrp1 (nparm = 45) # The coefficients are defined by 45 parameters

icoef2 = 0 # type of stress-strain relation

# 0 - 2D plane strain

icoef3 = 0 # type of numerical integration

# 0 - default value

icoef4 = 2 # constitutive law

# 2 - incompressible Neo-Hookean

icoef5 = 0 # user flags

# iusrvc = 0 - user vector is not filled

coef7 = 1 # Take into account the linearization of

# the Jacobian

coef10 = 1 # shear modulus

# boundary elements

bngrp1 (nparm = 25) # The coefficients are defined by 25 parameters

icoef1= 2 # 2 - local coor system with linearization

# for boundary conditions

icoef3=1 # Integration rule (1=Newton Cotes)

coef6= force # force in normal direction as a function (p=0.1 t)
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end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure

### Create total displacement vector and set to 0

create_vector, un

### Start incremental (pseudo-time) loop

start_time_loop

### Clear solution vector (Displacement vector per pseudo time step)

create_vector, u

time_integration # Adjust the time parameters

# No actual action

incr = incr+1 # Raise increment counter

# t = incr*dt

force = -0.1*incr*dt # Compute force as function of t

### Print time and increment number

print_time

print incr, text = ’increment’

### Solve system of non-linear equations to get new increment vector

solve_nonlinear_system, u

### Compute stress, strain and pressure vectors

# This must be done before updating the mesh and un

derivatives, seq_deriv = 1, stress

derivatives, seq_deriv = 2, strain

derivatives, seq_deriv = 3, pressure

### Deform mesh using the displacement vector

deform_mesh, u

### Update total solution vector

un = un + u

### End time loop

end_time_loop

end

# Definition of (pseudo) time integration

# See Users Manual Section 3.2.15

time_integration

method = stationary # no action, just adjusting time parameters
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tinit = tstart # start time

tend = tend # end time

tstep = dt # time step

end

# Definition of iteration for non linear equations

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter = 50, miniter = 1, accuracy = 1d-3//

criterion = relative, print_level = 2, at_error= return //

iteration_method = newton

equations 1

fill_coefficients = 1

end

# Compute stress tensor

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives

icheld = 6 # compute stress

seq_input_vector = u # use the total displacement as input vector

end

# Compute stress tensor

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 2

icheld = 8 # compute strain

seq_input_vector = u # use the total displacement as input vector

end

# Compute pressure

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 3

icheld = 7 # compute pressure

seq_input_vector = u # use the total displacement as input vector

end
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5.3.2.4 Uni-axial tension test (3D)

In this example a uni-axial tension test is simulated for a 3D solid block. The material is described
by an incompressible Neo-Hookean material law as described in the manual Standard Problems
Section 5.3.2 (element type 201).

To get this example into your local directory use:

sepgetex block3d

and to run it use:

sepmesh block3d.msh

seplink block3d

block3d < block3d.prb

27-noded quadratic hexahedrons (shape=14) are used for the mesh. The mesh is fixed at the bottom,
left and front surface (these surfaces fall within the x-y, y-z and x-z plane, respectively) in the z, x
and y-direction, respectively. This way, the block is free to have lateral contraction. At the back
surface the displacement is prescribed in several increments. The mesh with boundary conditions
are shown on the left in figure 5.3.2.4.1, while on the right in the same figure the deformation of
this mesh is shown with contour-bands of the y-displacements.

dy

x

z

y

Figure 5.3.2.4.1: Mesh and boundary conditions (left) and deformed block with y-displacement
contour-bands (right)

In the next pages the files can be found.
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Mesh file

# block3d.msh

#

# mesh input file for a 3D block of dimensions 1 x 1 x 1

# geometrically non-linear deformation of a 3D block

# A uniaxial tension test enforced by prescribing the displacement

# along one surface.

#

# The updated Lagrange approach is used

# This includes a pseudo time loop, with non-linear iteration per step

#

# See Manual Standard Elements Section 5.3.2

# and examples manual Section 5.3.2.4

#

# To create the mesh run:

#

# sepmesh block3d.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

n = 4 # number of elements in x-direction

m = 4 # number of elements in y-direction

l = 4 # number of elements in z-direction

lin = 2 # quadratic line elements

sur = 6 # bi-quadratic quadrilaterals

vol =14 # tri-quadratic hexahedrons

reals

xl = 1.0 # length of block in x-dir

yl = 1.0 # length of block in y-dir

zl = 1.0 # length of block in z-dir

end

#

# Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(- xl,- yl,- zl) # Left under point bottom surface

p2=( xl,- yl,- zl) # Right under point bottom surface

p3=( xl, yl,- zl) # Right upper point bottom surface

p4=(- xl, yl,- zl) # Left upper point bottom surface

p5=(- xl,- yl, zl) # Left under point top surface
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p6=( xl,- yl, zl) # Right under point top surface

p7=( xl, yl, zl) # Right upper point top surface

p8=(- xl, yl, zl) # Left upper point top surface

#

# curves

#

curves # See Users Manual Section 2.3

#curves of bottom surface

c1 = line lin ( p1,p2,nelm= n)

c2 = line lin ( p2,p3,nelm= m)

c3 = line lin ( p3,p4,nelm= n)

c4 = line lin ( p4,p1,nelm= m)

#curves of top surface

c5 = line lin ( p5,p6,nelm= n)

c6 = line lin ( p6,p7,nelm= m)

c7 = line lin ( p7,p8,nelm= n)

c8 = line lin ( p8,p5,nelm= m)

#curves determining the height of the block

c9 = line lin ( p1,p5,nelm= l)

c10 = line lin ( p2,p6,nelm= l)

c11 = line lin ( p3,p7,nelm= l)

c12 = line lin ( p4,p8,nelm= l)

#

# surface

#

surfaces # See Users Manual Section 2.4

s1 = rectangle sur (c1,c2,c3,c4) # bottom surface

s2 = rectangle sur (c1,c10,-c5,-c9 ) # front surface

s3 = rectangle sur (c2,c11,-c6,-c10) # right surface

s4 = rectangle sur (-c3,c11,c7,-c12) # back surface

s5 = rectangle sur (-c4,c12,c8,-c9 ) # left surface

s6 = rectangle sur (c5,c6,c7,c8) # top surface

#

# volume

#

volumes # See Users Manual Section 2.5

v1 = brick vol (s1,s2,s3,s4,s5,s6)

# Plot of mesh

plot, eyepoint = (50, 20, 20)

end
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Problem definition file

# block3d.prb

#

# geometrically non-linear deformation of a 3D block

# A uniaxial tension test enforced by prescribing the displacement

# along one surface.

#

# The updated Lagrange approach is used

# This includes a pseudo time loop, with non-linear iteration per step.

#

# See Manual Standard Elements Section 5.3.2

# and examples manual Section 5.3.2.4

#

# To run this file use:

# sepcomp block3d.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

# Suppress superfluous output

set warn off

set output none

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nincr = 10 # number of artificial time steps

reals

tstart = 0 # start of artificial time algorithm

tend = 0.5 # end of artificial time algorithm

dt = tend/ nincr # artificial time step defined by tend/nincr

variables

incr = 0 # counter for increments (used for printing only)

vector_names

# The following vectors are used for the computation of the displacement

# Mark that the vectors u and un must always be given

# as first and second vector

u # Displacement vector per pseudo time step

un # Total displacement vector

# Output vectors

stress # stress

strain # strain

pressure # pressure

end

problem # See Users Manual Section 3.2.2
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types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 = 201 # element type for solid material

# updated Lagrange approach

# Crouzeix-Raviart elements (discontinuous pressure)

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1 = surfaces(s5) #left surface

degfd2 = surfaces(s2) #front surface

degfd3 = surfaces(s1) #bottom surface

degfd2 = surfaces(s4) #back surface

### Crouzeix-Raviart (201)

renumber levels (1,2,3),(4,5,6,7) # renumbering of unknowns per level

# first displacements, then pressures

# in this way zero pivots are avoided

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_method = compact # Non-symmetrical compact matrix

# So an iterative solver is applied

end

# define essential boundary conditions

# no extra input since all are equal to zero

# See Users Manual Section 3.2.5

essential boundary conditions

surfaces(s4), degfd2, value = 0.1 # Displacing back surface in positive

# y-direction each increment

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients

# internal elements

elgrp1 (nparm = 45) # The coefficients are defined by 45 parameters

icoef2 = 0 # type of stress-strain relation

# 0 - full 3D

icoef3 = 0 # type of numerical integration

# 0 - default value

icoef4 = 2 # constitutive law

# 2 - incompressible Neo-Hookean

icoef5 = 0 # user flags, coef = iusrvec + 100*iusrflg

# iusrvc = 0 - user vector is not filled

coef10 = 3d3

# Mooney-Rivlin: material parameter c0
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end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure

### Create total displacement vector and set to 0

create_vector, un

### Start incremental (pseudo-time) loop

start_time_loop

### Clear solution vector (Displacement vector per pseudo time step)

create_vector, u

time_integration # Adjust the time parameters

# No actual action

# No actual action

incr = incr+1 # Raise increment counter

### Print time and increment number

print_time

print incr, text = ’increment’

### Solve system of non-linear equations to get new increment vector

solve_nonlinear_system, u

### Compute stress, strain and pressure vectors

# This must be done before updating the mesh and un

derivatives, seq_deriv = 1, stress

derivatives, seq_deriv = 2, strain

derivatives, seq_deriv = 3, pressure

### Deform mesh using the displacement vector

deform_mesh, u

### Update total solution vector

un = un + u

### End time loop

end_time_loop

end

# Definition of (pseudo) time integration

# See Users Manual Section 3.2.15

time_integration

method = stationary # no action, just adjusting time parameters

tinit = tstart # start time

tend = tend # end time

tstep = dt # time step
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end

# Definition of iteration for non linear equations

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter = 50, miniter = 1, accuracy = 1d-3//

criterion = relative, print_level = 2, at_error= return //

iteration_method = newton

equations 1

fill_coefficients = 1

end

# Compute stress tensor

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives

icheld = 6 # compute stress

seq_input_vector = u # use the total displacement as input vector

end

# Compute stress tensor

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 2

icheld = 8 # compute strain

seq_input_vector = u # use the total displacement as input vector

end

# Compute pressure

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 3

icheld = 7 # compute pressure

seq_input_vector = u # use the total displacement as input vector

end

# Information for linear solver

# See Users Manual Section 3.2.8

solve

iterative_method = BICGSTAB, preconditioner = ilu

end
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5.3.2.5 Arterial wall with internal pressure (3D)

This example treats the deformation of a 3D arterial wall by an internal pressure. The solid material
is described by a neo-Hookean incompressible material law as described in the manual Standard
Problems Section 5.3.2 (element type 202). 27-noded hexahedrons are used for the mesh (shape
14). Making use of symmetry, 1/4th of the arterial wall is meshed as shown at the left side of figure
5.3.2.5.1. The pressure is applied at the inner wall of the artery and is increased incrementally. The
geometry and pressure contour-bands after deformation are shown on the right of figure 5.3.2.5.1.

To get this example into your local directory use:

sepgetex artery3d

and to run it use:

sepmesh artery3d.msh

sepcomp artery3d.prb

Figure 5.3.2.5.1: Mesh (left) and corresponding deformations with pressure contour bands (right)

Exactly the same method as in Section 5.3.2.1 is applied.

In the next pages the files can be found.
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Mesh file

# artery3d.msh

#

# mesh input file for

# geometrically non-linear deformation of a 3D artery wall

# A pressure is applied at the inner arterial wall.

# Only 1/4-th of the region is used

#

# The updated Lagrange approach is used

# This includes a pseudo time loop, with non-linear iteration per step

# The pressure is increased during the time stepping

#

# See Examples Manual Section 5.3.2.5

#

# To create the mesh run:

#

# sepmesh artery3d.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

linetype = 2 # quadratic line elements

surftype = 6 # bi-quadratic quadrilaterals

voltype = 14 # tri-quadratic hexahedrons

n_r = 3 # number of elements over tube radius

n_len = 3 # number of elements along the tube length

n_arc = 3 # number of elements along the wall

reals

ri = 2.3 # inner radius

wt = 0.85 # wall thickness

len = 1.0 # length of the tube

mshfac = 2 # mesh factor

arc = (90/360)*2* pi # angle of 90 degrees, expressed in radians

# constants computed in COMPCONS:

r1 = ri+ wt # r1 = ri + wt (outer radius)

x3 = ri* cos( arc) # x-coordinate of end point

y3 = ri* sin( arc) # y-coordinate of end point

x4 = r1* cos( arc) # x-coordinate of end point

y4 = r1* sin( arc) # y-coordinate of end point

end

#

# Define the mesh

#

mesh3d # See Users Manual Section 2.2
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#

# user points

#

points # See Users Manual Section 2.2

p99 = ( 0, 0, 0) # Centre

p1 = ( ri, 0, 0)

p2 = ( r1, 0, 0)

p3 = ( x3, y3, 0)

p4 = ( x4, y4, 0)

p9 = ( ri, 0, len)

p10 = ( r1, 0, len)

p11 = ( x3, y3, len)

p12 = ( x4, y4, len)

#

# curves

#

curves # See Users Manual Section 2.3

c1 = line linetype (p1, p2, nelm = n_r, ratio = 1, factor = mshfac)

c2 = arc linetype(p1, p3, p99, nelm= n_arc)

c3 = line linetype(p3, p4, nelm = n_r, ratio = 1, factor = mshfac)

c4 = arc linetype(p4, p2, p99, nelm= n_arc)

# front to back connection

c5 = line linetype (p1, p9, nelm = n_len) #inner

c6 = line linetype (p2, p10, nelm = n_len) #outer

c7 = line linetype (p3, p11, nelm = n_len) #inner

c8 = line linetype (p4, p12, nelm = n_len) #outer

# translate into the back

c9 = translate c1 (p9, p10)

c10 = translate c2 (p9,p11) #inner

c11 = translate c3 (p11, p12)

c12 = translate c4 (p12,p10) #outer

#

# surface

#

surfaces # See Users Manual Section 2.4

s1 = quadrilateral surftype (-c1, c2, c3, c4, curvature = 2) #front

s2 = translate s1 (-c9, c10, c11, c12) #back

s3 = pipesurface surftype (c2, c10, c5, c7) #inner

s4 = pipesurface surftype (c4, c12, c8, c6) #outer

s5 = pipesurface surftype (-c1, -c9, c6, c5) #horz

s6 = pipesurface surftype (c3, c11, c7, c8) #vert

s7 = ordered surface (s5, s3, s6, s4)

#

# volume

#

volumes # See Users Manual Section 2.5

v1 = pipe voltype (s1, s2, s7)

# renumbering of nodes
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renumber best, levels

# Plot of mesh

plot, curve = 2, eyepoint = (50, 20, 20), rotate = 1

end
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Problem definition file

# artery3d.prb

#

# geometrically non-linear deformation of an arterial wall.

# Using symmetry, 1/4th of the wall is modeled.

# An internal pressure is applied at the inner arterial wall.

#

# The updated Lagrange approach is used

# This includes a pseudo time loop, with non-linear iteration per step.

# The axial length is constrained by fixing the begin and end surface.

# The pressure is increased during the time stepping

#

# See Manual Standard Elements Section 5.3.2

# and examples manual Section 5.3.2.5

#

# To run this file use:

# sepcomp artery3d.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

# Suppress superfluous output

set warn off

set output none

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

nincr = 10 # number of artificial time steps

reals

tstart = 0 # start of artificial time algorithm

tend = 1 # end of artificial time algorithm

dt = tend/ nincr # artificial time step defined by tend/nincr

variables

incr = 0 # counter for increments (used for printing only)

force = 0 # is used to define pressure at inner wall

vector_names

# The following vectors are used for the computation of the displacement

# Mark that the vectors u and un must always be given

# as first and second vector

u # Displacement vector per pseudo time step

un # Total displacement vector

# Output vectors

stress # stress

strain # strain

pressure # pressure

end
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problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 = (type = 202) # element type for solid material

# updated Lagrange approach

# Taylor-Hood elements (continuous pressure)

natbouncond # Definition of type numbers for natural

# boundary conditions

bngrp1 = 210 # boundary group used to apply internal pressure

bounelements # Definition of boundary elements

belm1 = surfaces (s3) # inner surface

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1 = surfaces(s6) # symmetry plane in y-z plane

degfd2 = surfaces(s5) # symmetry plane in x-z plane

degfd3 = surfaces(s1) # bottom

degfd3 = surfaces(s2) # top

renumber levels (1,2,3),(4) # renumbering of unknowns per level

# first displacements, then pressures

# in this way zero pivots are avoided

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_method = compact # Non-symmetrical compact matrix

# So an iterative solver is applied

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients

# internal elements

elgrp1 (nparm = 45) # The coefficients are defined by 45 parameters

icoef2 = 0 # type of stress-strain relation

# 0 - full 3D

icoef3 = 0 # type of numerical integration

# 0 - default value

icoef4 = 2 # constitutive law

# 2 - incompressible Neo-Hookean

icoef5 = 0 # user flags

# iusrvc = 0 - user vector is not filled

coef7 = 1 # Take into account the linearization of

# the Jacobian

coef10 = 1 # shear modulus
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# boundary elements

bngrp1 (nparm = 25) # The coefficients are defined by 25 parameters

icoef1= 2 # 2 - local coor system with linearization for

# boundary conditions

icoef3=1 # Integration rule (1=Newton Cotes)

coef6= force # force in normal direction as a function (p=0.1 t)

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure

### Create total displacement vector and set to 0

create_vector, un

### Start incremental (pseudo-time) loop

start_time_loop

### Clear solution vector (Displacement vector per pseudo time step)

create_vector, u

time_integration # Adjust the time parameters

# No actual action

# No actual action

incr = incr+1 # Raise increment counter

# t = incr*dt

force = 0.1*incr*dt # Compute force as function of t

### Print time and increment number

print_time

print incr, text = ’increment’

### Solve system of non-linear equations to get new increment vector

solve_nonlinear_system, u

### Compute stress, strain and pressure vectors

# This must be done before updating the mesh and un

derivatives, seq_deriv = 1, stress

derivatives, seq_deriv = 2, strain

derivatives, seq_deriv = 3, pressure

### Deform mesh

deform_mesh, u

### Update total solution vector

un = un + u

### End time loop

end_time_loop

end
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# Definition of (pseudo) time integration

# See Users Manual Section 3.2.15

time_integration

method = stationary # no action, just adjusting time parameters

tinit = tstart # start time

tend = tend # end time

tstep = dt # time step

end

# Definition of iteration for non linear equations

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter = 50, miniter = 1, accuracy = 1d-3//

criterion = relative, print_level = 2, at_error= return //

iteration_method = newton

equations 1

fill_coefficients = 1

end

# Compute stress tensor

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives

icheld = 6 # compute stress

seq_input_vector = u # use the total displacement as input vector

end

# Compute stress tensor

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 2

icheld = 8 # compute strain

seq_input_vector = u # use the total displacement as input vector

end

# Compute pressure

# See Users Manual Section 3.2.11 and Standard problems Section 5.3.2

derivatives, sequence_number = 3

icheld = 7 # compute pressure

seq_input_vector = u # use the total displacement as input vector

end

# Information for linear solver

# See Users Manual Section 3.2.8

solve

iterative_method = BICGSTAB, preconditioner = ilu

end
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5.4 (Thick) plate elements

5.4.1 Some analytical tests for the plate elements

In order to test the plate elements we compare the numerical solution with some simple examples
of which the analytical solution is known. It concerns the uniform load on three types of plates:

• A circular plate (radius 5)

• A rectangular plate (Size 10 × 20 )

• A square plate (Size 10)

Both case of a clamped plate and a plate of which the boundary is simply supported are investigated.
These examples can be found in Hughes (1987). Because of symmetry it is in all cases sufficient to
consider only one quarter of the region. In order to get these examples into your local directory use
the command sepgetex. The following files are available with sepgetex:

sepgetex circplatecl (Circular plate clamped)

sepgetex circplatess (Circular plate simply supported)

sepgetex rectplatecl (Rectangular plate clamped)

sepgetex rectplatess (Rectangular plate simply supported)

sepgetex squaplatecl (Square plate clamped)

sepgetex squaplatess (Square plate simply supported)

Comparison with the analytical results shows a good convergence behaviour when the mesh is
refined. Table 5.4.1.0.1 compares the analytical solution in the centre of the plate with the numerical
one for various mesh sizes. Mark that the results on the circular plate can not be compared with
those of Hughes, since the meshes are different.

Table 5.4.1.0.1 Accuracy of the plate elements

Type of plate number of elms analytical numerical
Circular 2x2 0.097656 0.0867866
Clamped 4x6 0.0939645

10x16 0.0964283
Circular 2x2 0.398137 0.344108
Simply 4x6 0.384165
supported 10x16 0.394718
Rectangular 2x2 0.260073 0.251341
Clamped 4x4 0.247073

8x8 0.251917
32x32 0.253550

Rectangular 2x2 1.016484 0.998857
Simply 4x4 1.00748
supported 8x8 1.01221

32x32 1.01508
Square 2x2 0.126374 0.121342
Clamped 4x4 0.125315

8x8 0.126414
32x32 0.126762

Square 2x2 0.406593 0.397278
Simply 4x4 0.404656
supported 8x8 0.406530

32x32 0.408408

Some of the corresponding input files are given below without extra text, except the comments that
can be found in the input files. First we consider circplatecl.msh
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# circplatecl.msh

# Test problem for the plate elements

# Circular plate, uniform load, clamped edge

# Only a quarter of the plate is computed

#

# See Manual Standard Elements Section 5.4.1

# and examples manual Section 5.4.1

#

# To run this file use:

# sepmesh circplatecl.msh

#

# Creates the file meshoutput

#

# Define some constants

#

constants # See Users Manual Section 1.4

integers

na = 4 # number of elements along the radius

nb = 6 # number of elements along the arc

reals

radius = 5 # Radius of circle

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = ( 0, 0) # Centre of circle

p2 = ( radius, 0) # At most left point

p3 = ( 0, radius) # At most upper point

#

# curves

#

curves # See Users Manual Section 2.3

c1 = line 1 (p1, p2, nelm = na) # straight horizontal line

c2 = arc 1 (p2, p3, p1, nelm = nb) # quarter of circle

c3 = line 1 (p3, p1, nelm = na) # straight vertical line

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = general 5 (c1, c2, c3)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The corresponding problem file circplatecl.prb is given by:
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# circplatecl.prb

#

# problem file for the plate elements

# Circular plate, uniform load, clamped edge

# Only a quarter of the plate is computed

#

# See Manual Standard Elements Section 5.4.1

# and examples manual Section 5.4.1

#

# To run this file use:

# sepcomp circplatecl.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

# Define some constants

#

constants # See Users Manual Section 1.4

reals

E = 10.92e5 # Young’s modulus

nu = 0.3 # Poisson’s ratio

h = 0.1 # thickness of the plate

load = 1 # distributed load in z-direction

vector_names

displacement

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

elgrp1 = (type = 255) # Type number for plate elements

essbouncond # Define where essential boundary conditions are

# given (not the value)

curves (c2) # clamped edge (w=0, theta = 0)

degfd2, curves (c1) # symmetry edge (Theta_1 = 0 )

degfd3, curves (c3) # symmetry edge (Theta_2 = 0 )

end

#

# Define the structure of the main program

#

structure # See Users Manual Section 3.2.3

prescribe_boundary_conditions displacement

solve_linear_system displacement

print displacement, points(p1) # print the solution in the centre of the plate

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

# See also standard problems Section 5.4

coefficients

elgrp1 (nparm = 45) # coefficients for plate elements
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icoef 2 = 0 # Isotropic material

coef 6 = E # Young’s modulus

coef 7 = nu # Poisson’s ratio

coef 27 = h # thickness of the plate

coef 28 = load # distributed load in z-direction

end

end_of_sepran_input

The file circplatess.msh is identical to circplatecl.msh and will not be repeated.
The corresponding file circplatess.prb differs a little bit from circplatecl.prb.
In fact only the part under the keyword problem, subkeyword essbouncond is different. This part
is printed only.

essbouncond # Define where essential boundary conditions are

# given (not the value)

degfd1, curves (c2) # simply supported edge (w=0)

degfd2, curves (c1) # symmetry edge (Theta_1 = 0 )

degfd3, curves (c3) # symmetry edge (Theta_2 = 0 )

end
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The file rectplatecl.msh is given below.

# rectplatecl.msh

# Test problem for the plate elements

# Rectangular plate (10x20), uniform load, clamped edge

# Only a quarter of the plate is computed

#

# See Manual Standard Elements Section 5.4.1

# and examples manual Section 5.4.1

#

# To run this file use:

# sepmesh rectplatecl.msh

#

# Creates the file meshoutput

#

# Define some constants

#

constants # See Users Manual Section 1.4

integers

ne = 8 # number of elements along a side

reals

L = 5 # Half length of plate

H = 10 # Half height of plate

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = ( 0, 0) # Point left under

p2 = ( L, 0) # Point right under

p3 = ( L, H) # Point left upper

p4 = ( 0, H) # Point right upper

#

# curves

#

curves # See Users Manual Section 2.3

c1 = line 1 (p1, p2, nelm = ne)

c2 = line 1 (p2, p3, nelm = ne)

c3 = line 1 (p3, p4, nelm = ne)

c4 = line 1 (p4, p1, nelm = ne)

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = rectangle 5 (c1, c2, c3, c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end
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The other files are not repeated here. If you want to investigate them, use the command sepgetex.
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5.5 Contact problems

In this Chapter we demonstrate a number of contact problems Presently the following examples are
available:

The Hertz problem (5.5.1) An infinitely long, elastic, half cylinder is pressed on a flat surface.

The Roll problem (5.5.2) A cylinder is pressed between two flat surfaces.

The Wheel problem (5.5.3) A tire fixed on a hub is pressed downwards on the ground.
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5.5.1 The Hertz problem

In this example we consider a very simple example of a contact problem. Consider an infinitely
long half cylinder that is pressed onto a flat surface. Since the cylinder is pressed downwards it
deforms and displacement is directed downwards. However, the flat surface prevents the cylinder
to move below the plane. To analyze this problem it is sufficient to consider only a slice of the half
cylinder, due to symmetry in the length direction.
To get this example into your local directory use:

sepgetex hertz

To run the problem use

seplink hertz

hertz < hertz.prb

seppost hertz.pst

The shape of the slice can be seen easily by the plot of the curves in Figure 5.5.1.1. The flat surface

1 2

34
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9 10

Figure 5.5.1.1: Definition of the curves in the slice

is represented by the plane z = 0. On the top of the half cylinder we prescribe a fixed displacement
downwards, which represents the downwards pressing. The cylinder is supposed to be linearly
elastic with Poisson’s ratio ν = 0.3. The elasticity modulus E is not important for this problem so
we take the value E = 1. The free parts of the cylinder are stress free. Since the cylinder is pressed
onto the flat surface, contact is made. On those places where we have contact the position of the
cylinder must be equal to z = 0. Since this is a contact problem it is essentially non-linear.
The following algorithm is applied to compute the contact surface:
In each step of the algorithm the contact surface is computed. The contact surface is defined as
the set of points with z coordinate less than or equal to 0. Hence all points that are on or below
the flat surface z = 0. Since the contact surface is not known a priori this surface may change in
each iteration. Not only is it possible that points are added to the contact surface also they may
be removed from the contact surface. This is the case if the reaction force in the contact surface
points is pointed upwards, i.e. the third component of the reaction force is positive.
Once the contact surface is computed the displacement of the z-component of these point is set
equal to −z. Hence the sum of the displacement and the original position of the surface is precisely
equal to 0. The linear elasticity problem is solved and the reaction force computed.
Next the contact distance is computed as the sum of the z-component of the original cylinder
and the z-component of the displacement. Hence a negative contact distance means that there is
contact. Also the contact force is computed, which is actually the third component of the reaction
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force.
This process is repeated until convergence is achieved.
In a scheme the contact algorithm can be written as

Create the mesh
Initialize all vectors
while not converged do

Compute the contact surface
Store the essential boundary conditions into the displacement vector
Solve the linear elasticity problem and compute the reaction force
Compute the contact distance and the contact force

end while

Due to the symmetry in length direction it is sufficient to take only one row of elements in that
direction. Since we expect that the displacement changes the most in the neighbourhood of the
contact surface, the region is refined in the neighbourhood of the plane z = 0. The following input
file may be used to solve the hertz problem. It contains both a description of the mesh and the
problem file.

# hertz.prb

#

# Hertz-problem:

# An infinitely long, elastic, half cylinder is pressed

# on a flat surface.

# A slice of this cylinder is analyzed.

# See Manual Examples Section 5.5.1

#

# To run this file use:

# seplink hertz

# hertz < hertz.prb

#

# Creates the files meshoutput and sepcomp.out

#

# Define some general constants

#

constants

vector_names # names of vectors to be used in the computation

displacement # displacement_vector

reaction_force # vector with reaction_forces

contact_distance # vector in which the contact distance is stored

contact_force # vector in which the contact force is stored

stress # stress tensor

strain # strain tensor

end

#

# Some information at the start of the program

#

start # See Users Manual Section 3.2.1

norotate # Plots may not be rotated

end

#

# First we define the mesh in the slice

#

mesh3d # See Users Manual Section 2.2

coarse (unit = 0.1) # define the unit length of elements

# In the contact region at the bottom the

# mesh is refined
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#

# user points

#

points # See Users Manual Section 2.2

p1 = ( 0.0, 0.0, 1.0, 1.00) # centre point at front side of top of

# cylinder

p2 = ( 1.0, 0.0, 1.0, 1.00) # right-hand side point at front side of top

# of cylinder

p3 = (-1.0, 0.0, 1.0, 1.00) # left-hand side point at front side of top

# of cylinder

p4 = ( 0.0, 0.0, 0.0, 0.25) # bottom point of front side of cylinder

p5 = ( 0.0, 0.1, 1.0, 1.00) # centre point at back side of top of

# cylinder

p6 = ( 1.0, 0.1, 1.0, 1.00) # right-hand side point at back side of top

# of cylinder

p7 = (-1.0, 0.1, 1.0, 1.00) # left-hand side point at back side of top

# of cylinder

p8 = ( 0.0, 0.1, 0.0, 0.25) # bottom point of back side of cylinder

#

# curves

#

curves # See Users Manual Section 2.3

c1 = cline 1 (p3, p1) # Line at front side of top of

# cylinder from left to centre

c2 = cline 1 (p1, p2) # Line at front side of top of

# cylinder from centre to right

c3 = carc 1 (p2, p4, p1) # Right-hand side part of curved part of

# front side of cylinder

c4 = carc 1 (p4, p3, p1) # Left-hand side part of curved part of

# front side of cylinder

c5 = curves (c1, c2) # Top of half cylinder (front side)

c6 = curves (c3, c4) # Curved part of half cylinder (back side)

c7 = translate c5 (p7, p5, p6) # Top of half cylinder (back side)

c8 = translate c6 (p6, p8, p7) # Curved part of half cylinder (front side)

c9 = line 1 (p3, p7, nelm = 1) # Line from front side to back side the

# left

c10 = line 1 (p2, p6, nelm = 1) # Line from front side to back side the

# right

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = general 5 (c5, c6) # front end of half cylinder

s2 = translate s1 (c7, c8) # back end of half cylinder

s3 = pipesurface 5 (c5, c7, c9, c10) # top of half cylinder

s4 = pipesurface 5 (c6, c8, c10, c9) # curved envelope of half cylinder

s5 = ordered surface ((s3,s4)) # total envelope of half cylinder

#

# volumes

#

volumes # See Users Manual Section 2.5

v1 = pipe 13 (s1, s2, s5) # Complete half cylinder

plot, eyepoint = (2.0, -3.0, 2.0) # make a plot of the mesh
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# See Users Manual Section 2.2

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp 1 = (type=250) # Type number for linear elasticity

# See Standard problems Section 5.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd 2, surfaces (s1) # No displacement in y-direction of front end

degfd 2, surfaces (s2) # No displacement in y-direction of back end

surfaces (s3) # Prescribed displacement in top of half

# cylinder

degfd 3, contact 1 # The z-displacement is -z in contact points

end

#

# Input for the contact algorithm

#

contact, sequence_number = 1 # See Users Manual Section 3.2.16

contact_surface = s4 # surface that makes contact

contact_distance = contact_distance # vector to be used to store the

# contact distance

contact_force = contact_force # vector to be used to store the

# contact force

contact_method = NEG_DISTANCE # defines when a point is supposed

# to make contact (in this case

# if the contact distance < 0)

contact_disable_method = CONTACT_FORCE # defines when a point is supposed

# to lose contact (in this case

# if the contact force < 0)

end

#

# Define non-zero essential boundary conditions

# See Users Manual Section 3.2.5

#

essential boundary conditions, sequence_number = 1

degfd 3, surfaces (s3), value = -0.2 # The displacement in z-direction of

# the top surface = -0.2

degfd 3, contact 1, func = 1 # In those points where we have contact

# the displacement is made equal to -z,

# so that the points are moved back to

# z = 0

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3
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write_mesh # First the mesh is written to the file meshoutput

# in order to be used for postprocessing

# Next create 4 vectors that are used during the analysis

# The displacement vector and the reaction force vector are set equal to 0

# They contain 3 degrees of freedom per point

create_vector, sequence_number = 1, displacement

create_vector, sequence_number = 1, reaction_force

# The vectors contact_distance and contact_force contain one degree of

# freedom per unknown and are also initialized to 0

create_vector, sequence_number = 2, contact_distance

create_vector, sequence_number = 2, contact_force

# In order to solve the (non-linear) contact problem we define a

# loop by start_loop ... end_loop

start_loop, sequence_number = 1

# Compute the contact surface using the input for the contact problem

compute_contact_surface, sequence_number = 1

# Store the essential boundary conditions in the displacement vector

# Since they depend on the contact surface they may change in each step

prescribe_boundary_conditions, sequence_number = 1, displacement

# Solve the displacement vector by the linear elasticity problem

# Compute the reaction force vector, necessary for the contact

# algorithm

solve_linear_system, //

seq_solve = 1, seq_coef = 1, displacement//

reaction_force = reaction_force

# Recompute the contact distance and the contact force

create_vector, sequence_number = 3, contact_distance

create_vector, sequence_number = 4, contact_force

end_loop

# Finally compute the stress and the strain tensors

derivatives, seq_deriv = 1, seq_coef = 1, stress

derivatives, seq_deriv = 2, seq_coef = 1, strain

output

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_scheme = compact, symmetric, reaction_force

# symmetrical matrix with compact storage

# hence an iterative linear solver is used

# reaction forces must be computed

end
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# Input for the loop in the structure block

# Defines how many iterations may be carried out at most

# and when the process is finished

# See Users Manual Section 3.2.3

loop_input, sequence_number = 1

maxiter = 50 # maximum number of iterations

miniter = 2 # minimum number of iterations

accuracy = 1d-4 # relative accuracy

criterion = relative

seq_vector = contact_distance # vector to be used to check the convergence

print_level = 2 # defines the amount of output

end

# Input for the linear solver

# See Users Manual Section 3.2.8

solve, sequence_number = 1

iteration_method = cg, //

start=old_solution, //

preconditioning=ilu, //

accuracy = 0.01

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.1

coefficients, sequence_number = 1

elgrp 1 (nparm=45) # The coefficients are defined by 45 parameters

icoef 2 = 0 # type of stress-strain relation

# 0: plane stress

coef 6 = 1.0 # Elasticity modulus

coef 7 = 0.3 # Poisson ratio

end

# Create start vectors

# See Users Manual Section 3.2.10

# First displacement and reaction force

# Type solution vector

create vector, sequence_number = 1

value = 0

end

# Next contact_distance and contact_force

# One degree of freedom per point

create vector, sequence_number = 2

type = vector of special structure v1

value = 0

end

# Create contact_distance during the iterations
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# The contact distance is defined as the sum of the z-displacement and

# the z coordinate

# The summation is carried out in subroutine funcvect

create vector, sequence_number = 3

type = vector of special structure v1

surfaces (s4), old_vector = contact_distance, seq_vectors = displacement

end

# Create contact_force during the iterations

# The contact force is equal to the third component of the reaction force

# The extraction is carried out in subroutine funcvect

create vector, sequence_number = 4

type = vector of special structure v1

surfaces (s4), old_vector = contact_force, seq_vectors = reaction_force

end

# compute stress

# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 1

icheld = 6

end

# compute strain

# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 2

icheld = 7

end

# write the results to the file sepcomp.out

# See Users Manual, Section 3.2.13

output

end

Figure 5.5.1.2 shows the mesh used in this problem This file requires a main program with subrou-
tines, since the boundary condition in the contact surface depends on space and in order to compute
the contact distance and contact force. Th main program used by us is:

program hertz

! --- Main program for the Hertz-problem:

! An infinitely long, elastic, half cylinder is pressed

! on a flat surface.

! A slice of this cylinder is analyzed.

! This main program is necessary because of the variable boundary

! conditions

implicit none

integer, allocatable, dimension (:) :: ibuffr

integer pbuffr, error

parameter ( pbuffr=25000000)



EX Hertz problem May 2008 5.5.1.8

Figure 5.5.1.2: Mesh created in the slice

allocate(ibuffr(pbuffr), stat = error)

if (error /= 0) then

! space for these arrays could not be allocated

print *, "error: (hertz) could not allocate space."

stop

end if ! (error /= 0)

call freebsub ( ibuffr, ibuffr, pbuffr )

end

! --- Function subroutine for the boundary conditions

function funcbc( ichoice, x, y, z)

implicit none

integer ichoice

double precision funcbc, x, y, z

if (ichoice==1) then

! --- ichoice = 1, boundary condition for the contact points

! The z-displacement is made equal to -z

! In this way points are moved back to z=0

funcbc = -z

end if

end

! --- Subroutine funcvect defines the contact distance and the

! contact force

subroutine funcvect ( ichoice, ndim, coor, numnodes,

+ uold, nuold, result, nphys )

implicit none
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integer ichoice, ndim, numnodes, nuold, nphys

double precision coor(ndim, numnodes),

+ uold( numnodes, nphys, nuold),

+ result( numnodes, *)

integer k

if ( ichoice==3 ) then

! --- ichoice = 3, contact distance = u_z + z

do k = 1, numnodes

result(k,1) = coor(3,k) + uold(k,3,1)

end do

else if ( ichoice==4 ) then

! --- ichoice = 4, contact force is third component of reaction force

do k = 1, numnodes

result(k,1) = uold(k,3,1)

end do

end if

end

Postprocessing may be performed for example by program seppost using the following input file:

# hertz.pst

#

# Input file for postprocessing for Hertz-problem:

# See Manual Examples Section 5.5.1

#

#

# To run this file use:

# seppost hertz.pst > hertz.out

#

# Reads the files meshoutput and sepcomp.out

#

#

postprocessing # See Users Manual Section 5.2

# Plot the results

# See Users Manual Section 5.4

plot identification, text = ’Hertz contact (cylinder)’, origin = (3,18)

plot boundary function displacement, degfd 3, curves (c6)

plot boundary function reaction_force, degfd 3, curves (c6)

plot boundary function contact_distance, curves (c6)

plot boundary function contact_force, curves (c6)

plot boundary function stress, degfd 3, curves (c6)

plot boundary function strain, degfd 3, curves (c6)

end
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The Hertz example can be made more efficient by changing the loop in the contact problem.
Instead of checking on the difference of the contact distance in two succeeding iterations, the
process is stopped as soon as the contact region is not changed anymore. This reduces the number
of iterations considerably.
The test is performed in a while loop, where common block ccontact is used to see if the contact
region is changed or not. This actual check is done in the user function userbool.
This updated example is called hertz2.
To get this example into your local directory use:

sepgetex hertz2

To run the problem use

seplink hertz2

hertz < hertz2.prb

seppost hertz2.pst

The files that are (slightly) different from the hertz example are the fortran file hertz.f and the
input file hertz2.prb.
These files are given below

program hertz2

! --- Main program for the Hertz-problem:

! An infinitely long, elastic, half cylinder is pressed

! on a flat surface.

! A slice of this cylinder is analyzed.

! This main program is necessary because of the variable boundary

! conditions

implicit none

integer, allocatable, dimension (:) :: ibuffr

integer pbuffr, error

parameter ( pbuffr=25000000)

allocate(ibuffr(pbuffr), stat = error)

if (error /= 0) then

! space for these arrays could not be allocated

print *, "error: (hertz2) could not allocate space."

stop

end if ! (error /= 0)

call freebsub ( ibuffr, ibuffr, pbuffr )

end

! --- Function subroutine for the boundary conditions

function funcbc( ichoice, x, y, z)

implicit none

integer ichoice

double precision funcbc, x, y, z

if (ichoice==1) then
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! --- ichoice = 1, boundary condition for the contact points

! The z-displacement is made equal to -z

! In this way points are moved back to z=0

funcbc = -z

end if

end

! --- Subroutine funcvect defines the contact distance and the

! contact force

subroutine funcvect ( ichoice, ndim, coor, numnodes,

+ uold, nuold, result, nphys )

implicit none

integer ichoice, ndim, numnodes, nuold, nphys

double precision coor(ndim, numnodes),

+ uold( numnodes, nphys, nuold),

+ result( numnodes, *)

integer k

if ( ichoice==3 ) then

! --- ichoice = 3, contact distance = u_z + z

do k = 1, numnodes

result(k,1) = coor(3,k) + uold(k,3,1)

end do

else if ( ichoice==4 ) then

! --- ichoice = 4, contact force is third component of reaction force

do k = 1, numnodes

result(k,1) = uold(k,3,1)

end do

end if

end

! --- Function user bool is used to set the boolean

! In this case the boolean is true if the contact region has been

! changed

function userbool( ichoice )

implicit none

logical userbool

integer ichoice

include ’SPcommon/ccontact’
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if ( ichoice==1 ) then

! --- ichoice = 1, the only possible value in this program

! set userbool equal to the value of contact_changed(1)

! This indicates if the contact region corresponding to the first

! (and in this case only) contact problem has been changed

userbool = contact_changed(1)

end if

end

# hertz2.prb

#

# Hertz-problem:

# An infinitely long, elastic, half cylinder is pressed

# on a flat surface.

# A slice of this cylinder is analyzed.

# See Manual Examples Section 5.5.1

#

# This example is completely identical to hertz

# The only difference is that the process is stopped as soon as the contact

# surface remains unchanged

#

# To run this file use:

# seplink hertz2

# hertz2 < hertz2.prb

#

# Creates the files meshoutput and sepcomp.out

#

# Define some general constants

#

constants

vector_names # names of vectors to be used in the computation

displacement # displacement_vector

reaction_force # vector with reaction_forces

contact_distance # vector in which the contact distance is stored

contact_force # vector in which the contact force is stored

stress # stress tensor

strain # strain tensor

end

#

# Some information at the start of the program

#

start # See Users Manual Section 3.2.1

norotate # Plots may not be rotated

end

#

# First we define the mesh in the slice

#

mesh3d # See Users Manual Section 2.2

coarse (unit = 0.1) # define the unit length of elements

# In the contact region at the bottom the

# mesh is refined
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#

# user points

#

points # See Users Manual Section 2.2

p1 = ( 0.0, 0.0, 1.0, 1.00) # centre point at front side of top of

# cylinder

p2 = ( 1.0, 0.0, 1.0, 1.00) # right-hand side point at front side of top

# of cylinder

p3 = (-1.0, 0.0, 1.0, 1.00) # left-hand side point at front side of top

# of cylinder

p4 = ( 0.0, 0.0, 0.0, 0.25) # bottom point of front side of cylinder

p5 = ( 0.0, 0.1, 1.0, 1.00) # centre point at back side of top of

# cylinder

p6 = ( 1.0, 0.1, 1.0, 1.00) # right-hand side point at back side of top

# of cylinder

p7 = (-1.0, 0.1, 1.0, 1.00) # left-hand side point at back side of top

# of cylinder

p8 = ( 0.0, 0.1, 0.0, 0.25) # bottom point of back side of cylinder

#

# curves

#

curves # See Users Manual Section 2.3

c1 = cline 1 (p3, p1) # Line at front side of top of

# cylinder from left to centre

c2 = cline 1 (p1, p2) # Line at front side of top of

# cylinder from centre to right

c3 = carc 1 (p2, p4, p1) # Right-hand side part of curved part of

# front side of cylinder

c4 = carc 1 (p4, p3, p1) # Left-hand side part of curved part of

# front side of cylinder

c5 = curves (c1, c2) # Top of half cylinder (front side)

c6 = curves (c3, c4) # Curved part of half cylinder (back side)

c7 = translate c5 (p7, p5, p6) # Top of half cylinder (back side)

c8 = translate c6 (p6, p8, p7) # Curved part of half cylinder (front side)

c9 = line 1 (p3, p7, nelm = 1) # Line from front side to back side the

# left

c10 = line 1 (p2, p6, nelm = 1) # Line from front side to back side the

# right

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = general 5 (c5, c6) # front end of half cylinder

s2 = translate s1 (c7, c8) # back end of half cylinder

s3 = pipesurface 5 (c5, c7, c9, c10) # top of half cylinder

s4 = pipesurface 5 (c6, c8, c10, c9) # curved envelope of half cylinder

s5 = ordered surface ((s3,s4)) # total envelope of half cylinder

#

# volumes

#

volumes # See Users Manual Section 2.5

v1 = pipe 13 (s1, s2, s5) # Complete half cylinder

plot, eyepoint = (2.0, -3.0, 2.0) # make a plot of the mesh
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# See Users Manual Section 2.2

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp 1 = (type=250) # Type number for linear elasticity

# See Standard problems Section 5.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd 2, surfaces (s1) # No displacement in y-direction of front end

degfd 2, surfaces (s2) # No displacement in y-direction of back end

surfaces (s3) # Prescribed displacement in top of half

# cylinder

degfd 3, contact 1 # The z-displacement is 0 in contact points

end

#

# Input for the contact algorithm

#

contact, sequence_number = 1 # See Users Manual Section 3.2.16

contact_surface = s4 # surface that makes contact

contact_distance = contact_distance # vector to be used to store the

# contact distance

contact_force = contact_force # vector to be used to store the

# contact force

contact_method = NEG_DISTANCE # defines when a point is supposed

# to make contact (in this case

# if the contact distance < 0)

contact_disable_method = CONTACT_FORCE # defines when a point is supposed

# to lose contact (in this case

# if the contact force < 0)

end

#

# Define non-zero essential boundary conditions

# See Users Manual Section 3.2.5

#

essential boundary conditions, sequence_number = 1

degfd 3, surfaces (s3), value = -0.2 # The displacement in z-direction of

# the top surface = -0.2

degfd 3, contact 1, func = 1 # In those points where we have contact

# the displacement is made equal to -z,

# so that the points are moved back to

# z = 0

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3
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write_mesh # First the mesh is written to the file meshoutput

# in order to be used for postprocessing

# Next create 4 vectors that are used during the analysis

# The displacement vector and the reaction force vector are set equal to 0

# They contain 3 degrees of freedom per point

create_vector, sequence_number = 1, displacement

create_vector, sequence_number = 1, reaction_force

# In order to solve the (non-linear) contact problem we define a

# loop by while ( boolean_expr(1)) ... end_while

# The loop is finished if the contact region does not change anymore

# The check iscarried out in subroutine userbool

while ( boolean_expr(1)) do

# Store the essential boundary conditions in the displacement vector

# Since they depend on the contact surface they may change in each step

prescribe_boundary_conditions, sequence_number = 1, vector = 1

solve_linear_system, //

seq_solve = 1, seq_coef = 1, vector = 1, reaction_force = reaction_force

# The vectors contact_distance and contact_force contain one degree of

# freedom per unknown

create_vector, sequence_number = 3, contact_distance

create_vector, sequence_number = 4, contact_force

# Compute the contact surface using the input for the contact problem

compute_contact_surface, sequence_number = 1

end_while

# Finally compute the stress and the strain tensors

derivatives, seq_deriv = 1, seq_coef = 1, stress

derivatives, seq_deriv = 2, seq_coef = 1, strain

output

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_scheme = compact, symmetric, reaction_force

# symmetrical matrix with compact storage

# hence an iterative linear solver is used

# reaction forces must be computed

end

# Input for the linear solver

# See Users Manual Section 3.2.8

solve, sequence_number = 1

iteration_method = cg, //
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start=old_solution, //

preconditioning=ilu, //

accuracy = 0.01

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.1

coefficients, sequence_number = 1

elgrp 1 (nparm=45) # The coefficients are defined by 45 parameters

icoef 2 = 0 # type of stress-strain relation

# 0: plane stress

coef 6 = 1.0 # Elasticity modulus

coef 7 = 0.3 # Poisson ratio

end

# Create start vectors

# See Users Manual Section 3.2.10

# First displacement and reaction force

# Type solution vector

create vector, sequence_number = 1

value = 0

end

# Next contact_distance and contact_force

# One degree of freedom per point

create vector, sequence_number = 2

type = vector of special structure v1

value = 0

end

# Create contact_distance during the iterations

# The contact distance is defined as the sum of the z-displacement and

# the z coordinate

# The summation is carried out in subroutine funcvect

create vector, sequence_number = 3

type = vector of special structure v1

surfaces (s4), old_vector = contact_distance, seq_vectors = displacement

end

# Create contact_force during the iterations

# The contact force is equal to the third component of the reaction force

# The extraction is carried out in subroutine funcvect

create vector, sequence_number = 4

type = vector of special structure v1

surfaces (s4), old_vector = contact_force, seq_vectors = reaction_force

end

# compute stress

# See Users Manual, Section 3.2.11 and Standard problems Section 5.1
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derivatives, sequence_number = 1

icheld = 6

end

# compute strain

# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 2

icheld = 7

end

# write the results to the file sepcomp.out

# See Users Manual, Section 3.2.13

output

end
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5.5.2 The Roll problem

This problem shows the use of multiple contact blocks. It is comparable to the Hertz example of
Section 5.5.1 in that a massive, elastic cylinder with a hole is compressed between two plane, rigid
surfaces. In this case contact occurs both on top and on the bottom of the cylinder. The treatment
of these contact areas is identical to that for the Hertz example.
To get this example into your local directory use:

sepgetex roll

To run the problem use

seplink roll

roll < roll.prb

seppost roll.pst

The outer radius of the cylinder (Ru) is equal to 1 and the inner radius (Ri is equal to 0.6. The
centre of the cylinder is taken at y = 0, z = 0. In the x-direction the cylinder is supposed to be
infinitely long so it is sufficient to take a slice (in this case of thickness 0.1) and to apply symmetry
conditions in the x-direction. Also symmetry allows us to use only one half of the cylinder. The
top contact surface is defined by z = Ru− dH and the bottom contact surface by z = −Ru. In our
example dH has the value 0.8, which means that the upper surface and as a consequence the top
of the roll is pushed down over a distance of 0.8.

The shape of the slice can be seen easily by the plot of the curves in Figure 5.5.2.1. In this case the
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Figure 5.5.2.1: Definition of the curves in the slice

contact distance at the bottom is equal to uz + z+Ru, and at the top equal to Ru−dH− (uz + z).
The mesh and problem file used in this case is:

# roll.prb

#

# roll-problem:

# An infinitely long, elastic, hollow cylinder is pressed

# between two flat surfaces.

# A slice of this cylinder is analyzed.

# See Manual Examples Section 5.5.2

#

# To run this file use:

# seplink roll
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# roll < roll.prb

#

# Creates the files meshoutput and sepcomp.out

#

# Define some general constants

#

constants

reals

Ru = 1.0 # Radius of outer cylinder

Ri = 0.6 # Radius of inner cylinder

L = 0.1 # Thickness of cylinder

dH = 0.8 # Downwards displacement of upper contact surface

vector_names # names of vectors to be used in the computation

displacement # displacement_vector

reaction_force # vector with reaction_forces

contact_distance # vector in which the contact distance is stored

contact_force # vector in which the contact force is stored

stress # stress tensor

strain # strain tensor

end

#

# Some information at the start of the program

#

start # See Users Manual Section 3.2.1

norotate # Plots may not be rotated

end

#

# First we define the mesh in the slice

#

mesh3d # See Users Manual Section 2.2

coarse (unit = 0.1) # define the unit length of elements

# In the contact region at the bottom and

# the top the mesh is refined

#

# user points

#

points # See Users Manual Section 2.2

# First points on front side ( x = 0 )

p1 = ( 0.0, 0.0, 0.0, 1.0) # centre point of top of cylinder

# Outer cylinder

p2 = ( 0.0, 0.0,- Ru, 0.2) # point at bottom of outer cylinder

p3 = ( 0.0, Ru, 0.0, 1.0) # point at right-hand side of outer cylinder

p4 = ( 0.0, 0.0, Ru, 0.2) # point at top of outer cylinder

# Inner cylinder

p5 = ( 0.0, 0.0,- Ri, 0.6) # point at bottom of inner cylinder

p6 = ( 0.0, Ri, 0.0, 1.0) # point at right-hand side of inner cylinder

p7 = ( 0.0, 0.0, Ri, 0.6) # point at top of inner cylinder

# Next points on back side ( x = -L )

p8 = ( - L, 0.0, 0.0, 1.0) # Point opposite to p1

# Outer cylinder

p9 = ( - L, 0.0,- Ru, 0.2) # Point opposite to p2

p10= ( - L, Ru, 0.0, 1.0) # Point opposite to p3

p11= ( - L, 0.0, Ru, 0.2) # Point opposite to p4

# Inner cylinder

p12= ( - L, 0.0,- Ri, 0.6) # Point opposite to p5
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p13= ( - L, Ri, 0.0, 1.0) # Point opposite to p6

p14= ( - L, 0.0, Ri, 0.6) # Point opposite to p7

#

# curves

#

curves # See Users Manual Section 2.3

# First curves on front side ( x = 0 )

# Outer cylinder

c1 = carc ( p2 , p3 , p1 , nodd=2) # lower part of circle

c2 = carc ( p3 , p4 , p1 , nodd=2) # upper part of circle

# Inner cylinder

c3 = carc ( p5 , p6 , p1 , nodd=2) # lower part of circle

c4 = carc ( p6 , p7 , p1 , nodd=2) # upper part of circle

# Connection lines between two circles

c5 = cline ( p5 , p2 , nodd=2)

c6 = cline ( p6 , p3 , nodd=2)

c7 = cline ( p7 , p4 , nodd=2)

# Next curves on back side ( x = -L )

# Outer cylinder

c8 = carc ( p9 , p10, p8 , nodd=2) # lower part of circle

c9 = carc ( p10, p11, p8 , nodd=2) # upper part of circle

# Inner cylinder

c10= carc ( p12, p13, p8 , nodd=2) # lower part of circle

c11= carc ( p13, p14, p8 , nodd=2) # upper part of circle

# Connection lines between two circles

c12= cline ( p12, p9 , nodd=2)

c13= cline ( p13, p10, nodd=2)

c14= cline ( p14, p11, nodd=2)

# Connection lines between front side and back side

# Outer cylinder

c15= line ( p2 , p9 , nelm=1)

c16= line ( p3 , p10, nelm=1)

c17= line ( p4 , p11, nelm=1)

# Inner cylinder

c18= line ( p5 , p12, nelm=1)

c19= line ( p6 , p13, nelm=1)

c20= line ( p7 , p14, nelm=1)

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# First surfaces on front side ( x = 0 )

s1 = general 5 ( c1 ,-c6 ,-c3 , c5 ) # lower part of circle

s2 = general 5 ( c2 ,-c7 ,-c4 , c6 ) # upper part of circle

# Next surfaces on back side ( x = -L )

s3 = general 5 ( c8 ,-c13,-c10, c12) # lower part of circle

s4 = general 5 ( c9 ,-c14,-c11, c13) # upper part of circle

# enveloping surfaces

s5 = pipesurface 5 ( c5 , c12, c18, c15)

s6 = pipesurface 5 ( c7 , c14, c20, c17)

s7 = pipesurface 5 ( c1 , c8 , c15, c16) # bottom contact surface

s8 = pipesurface 5 ( c2 , c9 , c16, c17) # top contact surface

s9 = pipesurface 5 ( c3 , c10, c18, c19)
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s10= pipesurface 5 ( c4 , c11, c19, c20)

# Reorganization into 3 surfaces

s11= surfaces ( s1 , s2 ) # front side

s12= surfaces ( s3 , s4 ) # back side

s13= ordered surfaces (( s7 , s8 ,-s6 ,-s10,-s9 , s5 )) #envelope

#

# volumes

#

volumes # See Users Manual Section 2.5

v1 = pipe 13 ( s11, s12, s13)

plot, eyepoint = (2.0, 0.5, 0.5) # make a plot of the mesh

# See Users Manual Section 2.2

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp 1 = (type=250) # Type number for linear elasticity

# See Standard problems Section 5.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd 1, surfaces (s3, s4) # No displacement in y-direction of front end

degfd 2, surfaces (s5, s6) # No displacement in y-direction of back end

degfd 3, contact 1 # The z-displacement in the bottom contact

# surface is prescribed

degfd 3, contact 2 # The z-displacement in the top contact

# surface is prescribed

end

#

# Input for the contact algorithm

#

contact, sequence_number = 1 # See Users Manual Section 3.2.16

contact_surface = s7 # contact at bottom contact surface

contact_distance = contact_distance # vector to be used to store the

# contact distance

contact_force = contact_force # vector to be used to store the

# contact force

contact_method = NEG_DISTANCE # defines when a point is supposed

# to make contact (in this case

# if the contact distance < 0)

contact_disable_method = CONTACT_FORCE # defines when a point is supposed

# to lose contact (in this case

# if the contact force < 0)

end

contact, sequence_number = 2

contact_surface = s8 # contact at top contact surface

contact_distance = contact_distance # vector to be used to store the

# contact distance

contact_force = contact_force # vector to be used to store the
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# contact force

contact_method = NEG_DISTANCE # defines when a point is supposed

# to make contact (in this case

# if the contact distance < 0)

contact_disable_method = CONTACT_FORCE # defines when a point is supposed

# to lose contact (in this case

# if the contact force < 0)

end

#

# Define non-zero essential boundary conditions

# See Users Manual Section 3.2.5

#

essential boundary conditions, sequence_number = 1

degfd 3, contact 1, func = 11 # In those points of the bottom contact surface

# where we have contact the displacement is

# made equal to -Ru-z, so that the points are

# moved back to z = -Ru

degfd 3, contact 2, func = 12 # In those points of the top contact surface

# where we have contact the displacement is

# made equal to Ru-dH-z, so that the points are

# moved back to z = Ru-dH

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3

write_mesh # First the mesh is written to the file meshoutput

# in order to be used for postprocessing

# Next create 4 vectors that are used during the analysis

# The displacement vector and the reaction force vector are set equal to 0

# They contain 3 degrees of freedom per point

create_vector, sequence_number = 1, displacement

create_vector, sequence_number = 1, reaction_force

# The vectors contact_distance and contact_force contain one degree of

# freedom per unknown and are also initialized to 0

create_vector, sequence_number = 2, contact_distance

create_vector, sequence_number = 2, contact_force

# In order to solve the (non-linear) contact problem we define a

# loop by start_loop ... end_loop

start_loop, sequence_number = 1

# Compute the contact surfaces using the input for the contact problem

# First the bottom contact surface

compute_contact_surface, sequence_number = 1

# Next the top contact surface

compute_contact_surface, sequence_number = 2

# Store the essential boundary conditions in the displacement vector
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# Since they depend on the contact surface they may change in each step

prescribe_boundary_conditions, sequence_number = 1, displacement

# Solve the displacement vector by the linear elasticity problem

# Compute the reaction force vector, necessary for the contact

# algorithm

solve_linear_system, //

seq_solve = 1, seq_coef = 1, displacement//

reaction_force = reaction_force

# Recompute the contact distance and the contact force

create_vector, sequence_number = 3, contact_distance

create_vector, sequence_number = 4, contact_force

end_loop

# Finally compute the stress and the strain tensors

derivatives, seq_deriv = 1, seq_coef = 1, stress

derivatives, seq_deriv = 2, seq_coef = 1, strain

output

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_scheme = compact, symmetric, reaction_force

# symmetrical matrix with compact storage

# hence an iterative linear solver is used

# reaction forces must be computed

end

# Input for the loop in the structure block

# Defines how many iterations may be carried out at most

# and when the process is finished

# See Users Manual Section 3.2.3

loop_input, sequence_number = 1

maxiter = 200 # maximum number of iterations

miniter = 2 # minimum number of iterations

accuracy = 1d-5 # relative accuracy

criterion = relative

seq_vector = displacement # vector to be used to check the convergence

end

# Input for the linear solver

# See Users Manual Section 3.2.8

solve, sequence_number = 1

iteration_method = cg, //

start=old_solution, //

preconditioning=ilu, //

accuracy = 0.01

end
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# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.1

coefficients, sequence_number = 1

elgrp 1 (nparm=45) # The coefficients are defined by 45 parameters

icoef 2 = 0 # type of stress-strain relation

# 0: plane stress

coef 6 = 1.0 # Elasticity modulus

coef 7 = 0.3 # Poisson ratio

end

# Create start vectors

# See Users Manual Section 3.2.10

# First displacement and reaction force

# Type solution vector

create vector, sequence_number = 1

value = 0

end

# Next contact_distance and contact_force

# One degree of freedom per point

create vector, sequence_number = 2

type = vector of special structure v1

value = 0

end

# Create contact_distance during the iterations

# The contact distance is defined as the sum of the z-displacement and

# the z coordinate

# The summation is carried out in subroutine funcvect

create vector, sequence_number = 3

type = vector of special structure displacement

surfaces (s7), old_vector = 31, seq_vectors = displacement

surfaces (s8), old_vector = 32, seq_vectors = displacement

end

# Create contact_force during the iterations

# The contact force is equal to the third component of the reaction force

# The extraction is carried out in subroutine funcvect

create vector, sequence_number = 4

type = vector of special structure displacement

surfaces (s7), old_vector = 41, seq_vectors = reaction_force

surfaces (s8), old_vector = 42, seq_vectors = reaction_force

end

# compute stress

# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 1

icheld = 6
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end

# compute strain

# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 2

icheld = 7

end

# write the results to the file sepcomp.out

# See Users Manual, Section 3.2.13

output

end

Figure 5.5.2.2 shows the mesh used in this problem This file requires a main program with subrou-

Figure 5.5.2.2: Mesh created in the slice

tines, since the boundary condition in the contact surface depends on space and in order to compute
the contact distance and contact force. The main program used by us is:

program roll

! --- Main program for the Roll-problem:

! An infinitely long, elastic, cylinder is pressed

! between two flat surfaces.

! A slice of this cylinder is analyzed.

! This main program is necessary because of the variable boundary

! conditions

implicit none

integer, allocatable, dimension (:) :: ibuffr

integer pbuffr, error

parameter ( pbuffr=25000000)

allocate(ibuffr(pbuffr), stat = error)

if (error /= 0) then

! space for these arrays could not be allocated

print *, "error: (roll) could not allocate space."
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stop

end if ! (error /= 0)

call freebsub ( ibuffr, ibuffr, pbuffr )

end

! --- Function subroutine for the boundary conditions

function funcbc( ichoice, x, y, z)

implicit none

integer ichoice

double precision funcbc, x, y, z

integer ifirst

double precision Ru, dH

double precision getconst

save Ru, dH

data ifirst /0/

if ( ifirst==0 ) then

! --- ifirst = 0, first call of funcbc

! Get the values of some constants

ifirst = 1

Ru = getconst ( ’Ru’ )

dH = getconst ( ’dH’ )

end if

if (ichoice==11) then

! --- ichoice = 11, bottom contact surface

! In order to restrict the solution to z = -Ru it is necessary

! to set the displacement equal to -Ru - z

funcbc = -Ru - z

else if (ichoice==12) then

! --- ichoice = 12, top contact surface

! In order to restrict the solution to z = Ru-dH it is necessary

! to set the displacement equal to Ru-dH - z

funcbc = Ru-dH - z

end if

end

! --- Subroutine funcvect defines the contact distance and the

! contact force

subroutine funcvect ( ichoice, ndim, coor, numnodes,
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+ uold, nuold, result, nphys )

implicit none

integer ichoice, ndim, numnodes, nuold, nphys

double precision coor(ndim, numnodes),

+ uold( numnodes, nphys, nuold),

+ result( numnodes, *)

integer k, ifirst

double precision Ru, dH

save Ru, dH

double precision getconst

data ifirst /0/

if ( ifirst==0 ) then

! --- ifirst = 0, first call of funcbc

! Get the values of some constants

ifirst = 1

Ru = getconst ( ’Ru’ )

dH = getconst ( ’dH’ )

end if

if (ichoice==31) then

! --- ichoice = 31, contact distance = u_z + z + Ru

do k = 1, numnodes

result(k,1) = (coor(3,k) + uold(k,3,1)) + Ru

end do

else if (ichoice==32) then

! --- ichoice = 32, contact distance = + Ru-dH- (u_z + z)

do k = 1, numnodes

result(k,1) = Ru-dH - (coor(3,k) + uold(k,3,1))

end do

else if (ichoice==41) then

! --- ichoice = 41, contact force is third component of reaction force

do k = 1, numnodes

result(k,1) = uold(k,3,1)

end do

else if (ichoice==42) then

! --- ichoice = 42, contact force is minus third component of reaction force

do k = 1, numnodes

result(k,1) = -uold(k,3,1)
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end do

end if

end

The post processing file is almost the same as in the Hertz problem (5.5.1)
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5.5.3 The Wheel problem

An elastic layer (the ”tire”) is fixed to a rigid cylinder (the ”hub”). This hub is compressed
downwards and the tire is pressed onto the ”road”. The contact area increases for increasing
load. The contact algorithm used here is identical to that for the Hertz example of Section 5.5.1.
Furthermore there is a large resemblance with the Roll problem of Section 5.5.2. In fact the
definition of the curves is the same and the only difference in the mesh is that since contact is made
on the lower boundary only, no refinement in the top is applied.
To get this example into your local directory use:

sepgetex wheel

To run the problem use

seplink wheel

wheel < wheel.prb

seppost wheel.pst

The load on the wheel is simulated by prescribing the z-displacement of the hub in downwards
direction. This is effectuated by prescribing the displacement in the inner cylinder.
The mesh and problem file used in this case is:

# wheel.prb

#

# wheel-problem:

# An elastic layer (the "tire") is fixed to a rigid cylinder (the "hub").

# This hub is compressed downwards and the tire is pressed onto the

# "road". The contact area increases for increasing load.

# See Manual Examples Section 5.5.3

#

# To run this file use:

# seplink wheel

# wheel < wheel.prb

#

# Creates the files meshoutput and sepcomp.out

#

# Define some general constants

#

constants

reals

Ru = 1.0 # Radius of outer cylinder

Ri = 0.6 # Radius of inner cylinder

L = 0.1 # Thickness of cylinder

dH = 0.3 # Downwards displacement of upper contact surface

vector_names # names of vectors to be used in the computation

displacement # displacement_vector

reaction_force # vector with reaction_forces

contact_distance # vector in which the contact distance is stored

contact_force # vector in which the contact force is stored

stress # stress tensor

strain # strain tensor

end

#

# Some information at the start of the program

#
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start # See Users Manual Section 3.2.1

norotate # Plots may not be rotated

end

#

# First we define the mesh in the slice

# The mesh is almost identical to the mesh in the roll problem

# except that refinement is only applied at the bottom

#

mesh3d # See Users Manual Section 2.2

coarse (unit = 0.1) # define the unit length of elements

# In the contact region at the bottom and

# the top the mesh is refined

#

# user points

#

points # See Users Manual Section 2.2

# First points on front side ( x = 0 )

p1 = ( 0.0, 0.0, 0.0, 1.0) # centre point of top of cylinder

# Outer cylinder

p2 = ( 0.0, 0.0,- Ru, 0.2) # point at bottom of outer cylinder

p3 = ( 0.0, Ru, 0.0, 1.0) # point at right-hand side of outer cylinder

p4 = ( 0.0, 0.0, Ru, 1.0) # point at top of outer cylinder

# Inner cylinder

p5 = ( 0.0, 0.0,- Ri, 0.6) # point at bottom of inner cylinder

p6 = ( 0.0, Ri, 0.0, 1.0) # point at right-hand side of inner cylinder

p7 = ( 0.0, 0.0, Ri, 1.0) # point at top of inner cylinder

# Next points on back side ( x = -L )

p8 = ( - L, 0.0, 0.0, 1.0) # Point opposite to p1

# Outer cylinder

p9 = ( - L, 0.0,- Ru, 0.2) # Point opposite to p2

p10= ( - L, Ru, 0.0, 1.0) # Point opposite to p3

p11= ( - L, 0.0, Ru, 1.0) # Point opposite to p4

# Inner cylinder

p12= ( - L, 0.0,- Ri, 0.6) # Point opposite to p5

p13= ( - L, Ri, 0.0, 1.0) # Point opposite to p6

p14= ( - L, 0.0, Ri, 1.0) # Point opposite to p7

#

# curves

#

curves # See Users Manual Section 2.3

# First curves on front side ( x = 0 )

# Outer cylinder

c1 = carc ( p2 , p3 , p1 , nodd=2) # lower part of circle

c2 = carc ( p3 , p4 , p1 , nodd=2) # upper part of circle

# Inner cylinder

c3 = carc ( p5 , p6 , p1 , nodd=2) # lower part of circle

c4 = carc ( p6 , p7 , p1 , nodd=2) # upper part of circle

# Connection lines between two circles

c5 = cline ( p5 , p2 , nodd=2)

c6 = cline ( p6 , p3 , nodd=2)

c7 = cline ( p7 , p4 , nodd=2)

# Next curves on back side ( x = -L )

# Outer cylinder

c8 = carc ( p9 , p10, p8 , nodd=2) # lower part of circle

c9 = carc ( p10, p11, p8 , nodd=2) # upper part of circle
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# Inner cylinder

c10= carc ( p12, p13, p8 , nodd=2) # lower part of circle

c11= carc ( p13, p14, p8 , nodd=2) # upper part of circle

# Connection lines between two circles

c12= cline ( p12, p9 , nodd=2)

c13= cline ( p13, p10, nodd=2)

c14= cline ( p14, p11, nodd=2)

# Connection lines between front side and back side

# Outer cylinder

c15= line ( p2 , p9 , nelm=1)

c16= line ( p3 , p10, nelm=1)

c17= line ( p4 , p11, nelm=1)

# Inner cylinder

c18= line ( p5 , p12, nelm=1)

c19= line ( p6 , p13, nelm=1)

c20= line ( p7 , p14, nelm=1)

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# First surfaces on front side ( x = 0 )

s1 = general 5 ( c1 ,-c6 ,-c3 , c5 ) # lower part of circle

s2 = general 5 ( c2 ,-c7 ,-c4 , c6 ) # upper part of circle

# Next surfaces on back side ( x = -L )

s3 = general 5 ( c8 ,-c13,-c10, c12) # lower part of circle

s4 = general 5 ( c9 ,-c14,-c11, c13) # upper part of circle

# enveloping surfaces

s5 = pipesurface 5 ( c5 , c12, c18, c15)

s6 = pipesurface 5 ( c7 , c14, c20, c17)

s7 = pipesurface 5 ( c1 , c8 , c15, c16) # contact surface

s8 = pipesurface 5 ( c2 , c9 , c16, c17) # top surface

s9 = pipesurface 5 ( c3 , c10, c18, c19)

s10= pipesurface 5 ( c4 , c11, c19, c20)

# Reorganization into 3 surfaces

s11= surfaces ( s1 , s2 ) # front side

s12= surfaces ( s3 , s4 ) # back side

s13= ordered surfaces (( s7 , s8 ,-s6 ,-s10,-s9 , s5 )) #envelope

#

# volumes

#

volumes # See Users Manual Section 2.5

v1 = pipe 13 ( s11, s12, s13)

plot, eyepoint = (2.0, 0.5, 0.5) # make a plot of the mesh

# See Users Manual Section 2.2

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2
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elgrp 1 = (type=250) # Type number for linear elasticity

# See Standard problems Section 5.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd 1, surfaces (s3, s4) # No displacement in y-direction of front end

degfd 2, surfaces (s5, s6) # No displacement in y-direction of back end

surfaces (s9, s10) # No displacement at inner side of the wheel

degfd 3, contact 1 # The z-displacement in the contact

# surface is prescribed

end

#

# Input for the contact algorithm

#

contact, sequence_number = 1 # See Users Manual Section 3.2.16

contact_surface = s7 # contact at contact surface

contact_distance = contact_distance # vector to be used to store the

# contact distance

contact_force = contact_force # vector to be used to store the

# contact force

contact_method = NEG_DISTANCE # defines when a point is supposed

# to make contact (in this case

# if the contact distance < 0)

contact_disable_method = CONTACT_FORCE # defines when a point is supposed

# to lose contact (in this case

# if the contact force < 0)

end

#

# Define non-zero essential boundary conditions

# See Users Manual Section 3.2.5

#

essential boundary conditions, sequence_number = 1

degfd 3, contact 1, func = 11 # In those points of the contact surface

# where we have contact the displacement is

# made equal to -Ru-z, so that the points are

# moved back to z = -Ru

degfd 3, surfaces (s9, s10), value = - dH # The load on the wheel is

# represented by a vertical (downwards)

# displacement of the inner side of the wheel

# 9the hub)

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3

write_mesh # First the mesh is written to the file meshoutput

# in order to be used for postprocessing

# Next create 4 vectors that are used during the analysis

# The displacement vector and the reaction force vector are set equal to 0

# They contain 3 degrees of freedom per point
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create_vector, sequence_number = 1, displacement

create_vector, sequence_number = 1, reaction_force

# The vectors contact_distance and contact_force contain one degree of

# freedom per unknown and are also initialized to 0

create_vector, sequence_number = 2, contact_distance

create_vector, sequence_number = 2, contact_force

# In order to solve the (non-linear) contact problem we define a

# loop by start_loop ... end_loop

start_loop, sequence_number = 1

# Compute the contact surfaces using the input for the contact problem

compute_contact_surface, sequence_number = 1

# Store the essential boundary conditions in the displacement vector

# Since they depend on the contact surface they may change in each step

prescribe_boundary_conditions, sequence_number = 1, displacement

# Solve the displacement vector by the linear elasticity problem

# Compute the reaction force vector, necessary for the contact

# algorithm

solve_linear_system, //

seq_solve = 1, seq_coef = 1, displacement//

reaction_force = reaction_force

# Recompute the contact distance and the contact force

create_vector, sequence_number = 3, contact_distance

create_vector, sequence_number = 4, contact_force

end_loop

# Finally compute the stress and the strain tensors

derivatives, seq_deriv = 1, seq_coef = 1, stress

derivatives, seq_deriv = 2, seq_coef = 1, strain

output

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_scheme = compact, symmetric, reaction_force

# symmetrical matrix with compact storage

# hence an iterative linear solver is used

# reaction forces must be computed

end

# Input for the loop in the structure block

# Defines how many iterations may be carried out at most

# and when the process is finished

# See Users Manual Section 3.2.3

loop_input, sequence_number = 1

maxiter = 200 # maximum number of iterations
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miniter = 2 # minimum number of iterations

accuracy = 1d-5 # relative accuracy

criterion = relative

seq_vector = displacement # vector to be used to check the convergence

end

# Input for the linear solver

# See Users Manual Section 3.2.8

solve, sequence_number = 1

iteration_method = cg, //

start=old_solution, //

preconditioning=ilu, //

accuracy = 0.01

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.1

coefficients, sequence_number = 1

elgrp 1 (nparm=45) # The coefficients are defined by 45 parameters

icoef 2 = 0 # type of stress-strain relation

# 0: plane stress

coef 6 = 1.0 # Elasticity modulus

coef 7 = 0.3 # Poisson ratio

end

# Create start vectors

# See Users Manual Section 3.2.10

# First displacement and reaction force

# Type solution vector

create vector, sequence_number = 1

value = 0

end

# Next contact_distance and contact_force

# One degree of freedom per point

create vector, sequence_number = 2

type = vector of special structure v1

value = 0

end

# Create contact_distance during the iterations

# The contact distance is defined as the sum of the z-displacement and

# the z coordinate

# The summation is carried out in subroutine funcvect

create vector, sequence_number = 3

type = vector of special structure displacement

surfaces (s7), old_vector = 31, seq_vectors = displacement

end
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# Create contact_force during the iterations

# The contact force is equal to the third component of the reaction force

# The extraction is carried out in subroutine funcvect

create vector, sequence_number = 4

type = vector of special structure displacement

surfaces (s7), old_vector = 41, seq_vectors = reaction_force

end

# compute stress

# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 1

icheld = 6

end

# compute strain

# See Users Manual, Section 3.2.11 and Standard problems Section 5.1

derivatives, sequence_number = 2

icheld = 7

end

# write the results to the file sepcomp.out

# See Users Manual, Section 3.2.13

output

end

The main program used by us is:

program wheel

! --- Main program for the Wheel-problem:

! An elastic layer (the "tire") is fixed to a rigid cylinder

! (the "hub").

! This hub is compressed downwards and the tire is pressed onto the

! "road". The contact area increases for increasing load.

! This main program is necessary because of the variable boundary

! conditions

implicit none

integer, allocatable, dimension (:) :: ibuffr

integer pbuffr, error

parameter ( pbuffr=25000000)

allocate(ibuffr(pbuffr), stat = error)

if (error /= 0) then

! space for these arrays could not be allocated

print *, "error: (wheel) could not allocate space."

stop

end if ! (error /= 0)

call freebsub ( ibuffr, ibuffr, pbuffr )

end
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! --- Function subroutine for the boundary conditions

function funcbc( ichoice, x, y, z)

implicit none

integer ichoice

double precision funcbc, x, y, z

integer ifirst

double precision Ru

double precision getconst

save Ru

data ifirst /0/

if ( ifirst==0 ) then

! --- ifirst = 0, first call of funcbc

! Get the values of some constants

ifirst = 1

Ru = getconst ( ’Ru’ )

end if

if (ichoice==11) then

! --- ichoice = 11, contact surface

! In order to restrict the solution to z = -Ru it is necessary

! to set the displacement equal to -Ru - z

funcbc = -Ru - z

end if

end

subroutine funcvect ( ichoice, ndim, coor, numnodes,

+ uold, nuold, result, nphys )

implicit none

integer ichoice, ndim, numnodes, nuold, nphys

double precision coor(ndim, numnodes),

+ uold( numnodes, nphys, nuold),

+ result( numnodes, *)

integer k, ifirst

double precision Ru

save Ru

double precision getconst

data ifirst /0/

if ( ifirst==0 ) then

! --- ifirst = 0, first call of funcbc
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! Get the values of some constants

ifirst = 1

Ru = getconst ( ’Ru’ )

end if

if (ichoice==31) then

! --- ichoice = 31, contact distance = u_z + z + Ru

do k = 1, numnodes

result(k,1) = (coor(3,k) + uold(k,3,1)) + Ru

end do

else if (ichoice==41) then

! --- ichoice = 41, contact force is third component of reaction force

do k = 1, numnodes

result(k,1) = uold(k,3,1)

end do

end if

end

The post processing file is almost the same as in the Hertz problem (5.5.1)
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6 Solidification problems

6.1 A fixed grid method: the enthalpy method

6.1.1 Enthalpy approach by non-linear over-relaxation

6.1.1.1 A classical semi-infinite half-space solidification problem

In this example we consider a classical Stefan problem for which an analytic solution is available,
Chun and Park (2000). In this example, which is essentially one dimensional, we consider a semi-
infinite half space. We start with a liquid with constant temperature. On the left-hand side a
constant temperature below the melting temperature is imposed. So the liquid starts freezing. We
solve this problem on a one-dimensional mesh and also as illustration on a two-dimensional one.
For the 1D case we consider two sets of parameters.
To get these examples into your local directory use:

sepgetex enthalpyxd_y

with x and y one-digit numbers.
and to run it use:

sepmesh enthalpyxd_y.msh

sepcomp enthalpyxd_y.prb

seppost enthalpyxd_y.pst

After the first and last step you may view the results using sepview.

The following values for x are available:

x = 1, 2

and for y:

y = 1 to 2

Not all combinations of x and y have been programmed yet.
x defines the dimension of the space and y the sequence number of the parameter set.
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1D Stefan problem with equal parameters for both phases

This is the most simple 1D case in which the parameters for liquid and solid phase are the same.
Following Chun and Park (2000) we use the following set:
ρ 1 kg/m3

κ 2 W/m ◦C
cp 2.5× 106 J/kg◦C
L 108 J/kg

The initial temperature is set to 2◦C, the melting temperature Tm = 0◦C.
On the left-hand side a Dirichlet boundary condition is given: T = −4◦C.
On the right-hand side, the region is cut at x = 10m, and since this is an infinite half space, the
solution may not change on that boundary. So the natural boundary condition κ∂T/∂n = 0 is used,
which implies that no action is required in the FEM formulation. The computation is carried out
for 30 days, with a step size ∆x of 0.1m.
The mesh is defined by the following mesh input file

# enthalpy1d_1.msh

#

# mesh file for 1d stefan problem with equal parameters in both phases

# The enthalpy method is applied

# Solution by over-relaxation

# See Manual Examples Section 6.1.1.1

#

# To run this file use:

# sepmesh enthalpy1d_1.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

length = 10 # length of the region in meters

integers

n = 100 # number of elements

lin = 1 # linear elements

end

#

# Define the mesh

#

mesh1d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = 0 # Left point

p2 = $length # Right point

#

# curves

#

curves # See Users Manual Section 2.3

# Linear elements are used

c1=line $lin (p1,p2,nelm=$n) # lower boundary

plot, nodes = 1 # make a plot of the mesh and plot all nodes

# See Users Manual Section 2.2
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end

For an explanation of the input file for sepcomp see the manual Standard Problems Section 6.1.1.

# enthalpy1d_1.prb

#

# problem file for 1d stefan problem with equal parameters in both phases

# The enthalpy method is applied

# Solution by over-relaxation

# See Manual Examples Section 6.1.1.1

#

# To run this file use:

# sepcomp enthalpy1d_1.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa = 2 # thermal conductivity (kg/m^3)

rho = 1 # density (kg/m^3)

t0 = 0 # initial time

hour = 3600 # number of seconds in an hour

day = {$hour*24} # number of seconds in a day

dt = {6*$hour} # time step (6h)

t_end = {30*$day} # end time (30 days)

kappa_s = $kappa # thermal conductivity (solid)

kappa_l = $kappa # thermal conductivity (liquid)

latent_heat = 1e8 # Latent heat (J/kg)

capacity_s = 2.5d6 # specific heat (solid) (J/kg degree C)

capacity_l = 2.5d6 # specific heat (liquid)

melt_temp = 0 # melting temperature (degree C)

vector_names

Temperature # temperature vector

Enthalpy # enthalpy vector

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

# Is also used to solve the heat equation

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

points p1 # left-hand side point

end
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#

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

#

matrix

method = 9 # compact matrix, stored per row

# necessary for overrelaxation

end

# Define the initial temperature

# See Users Manual Section 3.2.10

create vector

value = 2 # initial Temperature (degree C)

end

# Define the essential boundary conditions

# See Users Manual Section 3.2.5

essential boundary conditions

points, p1, value=-4 # boundary Temperature (degree C)

end

# Define the coefficients for heat equation

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1(nparm=20)

coef6 = 1 # kappa in Kirchoff Temperature,

# must be 1, see Standard Problems 6.2

coef17 = 1 # rho*c in enthalpy,

# must be 1, see Standard Problems 6.2

end

# Input for time integration

# See Users Manual Section 3.2.15

time_integration

method = euler_implicit # Integration by Euler implicit

tinit = $t0 # initial time

tend = $t_end # end time

tstep = $dt # time step

toutinit = $t0 # initial time for output

toutend = $t_end # end time for output

toutstep = $dt # time step for output

seq_coefficients = 1 # sequence number for coefficients (default)

seq_solution_method = 1 # sequence number for linear solver (default)

mass_matrix = constant # mass matrix is constant for each time

stiffness_matrix = constant # stiffness matrix is constant for each time

right_hand_side = zero # no source

end

# Input for enthalpy integration

# See Manual Standard Problems Section 6.1.1
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enthalpy_integration

seq_time_integration = 1 # refers to time integration input (default)

seq_boundary_conditions = 1 # refers to essential boundary conditions

# default

# All other parameters are given in the block

# constants

end

# Define which linear solver must be used and what accuracy is required

# Overrelaxation is used

# See Users Manual Section 3.2.8

solve

iteration_method = overrelaxation, omega = 1, max_iter = 1000//

niter1 = 5, niter2 = 10, print_level= 0 # omega must be reset each time

# step

# niter1 and niter2 are used to estimate a

# value for omega in each step

# These values do not have to be optimal

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

structure

# Fill initial condition for the temperature

create_vector, vector %Temperature

# Compute the initial enthalpy

compute_enthalpy

# Write both vectors to sepcomp.out

output, sequence_number=1

# Time loop

start_time_loop

# Raise time and compute new temperature and enthalpy

enthalpy_integration

# Write both vectors to sepcomp.out

output, sequence_number=1

end_time_loop

end

Finally the postprocessing file has the following contents

# enthalpy1d_1.pst

#

# Input file for postprocessing for 1d stefan problem with equal parameters

# in both phases

# The enthalpy method is applied

# Solution by over-relaxation

# See Manual Examples Section 6.1.1.1

#

# To run this file use:

# seppost enthalpy1d_1.pst > enthalpy1d_1.out

#
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# Reads the files meshoutput and sepcomp.out

#

# Define some general constants

#

constants

reals

day = {1/(3600*24)} # 1/ (number of seconds in a day)

end

#

postprocessing # See Users Manual Section 5.2

time = (0, 2592000, 10) # Do for each ten-th time step

plot function V%Temperature, one_picture//

texty =’Temperature’, noplot_legenda

plot function V%Enthalpy, one_picture, factor=1d-8//

texty =’Enthalpy (*1e8)’, noplot_legenda

# Plot the time history of enthalpy and temperature at = 0.3

# The time scale is made in days, so we have to divide the x scale

# by the number of seconds in a day

# The enthalpy is scaled by a factor of 10^-8

time history plot point (0.3) V%Enthalpy, xscale=$day, factor=1d-8//

textx = ’time (days)’, texty = ’Enthalpy at x=0.3 (*1e8)’, noplot_legenda

time history plot point (0.3) V%Temperature, xscale=$day//

textx = ’time (days)’, texty =’Temperature at x=0.3’, noplot_legenda

end

Figure 6.1.1.1 shows the temperature plotted each tenth step. In Figure 6.1.1.2 the enthalpy (scaled
by 10−8) is shown and Figures 6.1.1.3 and 6.1.1.4 contain the time history of the enthalpy and
temperature respectively at position x = 0.3.
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Figure 6.1.1.1: Temperature

0 2 4 6 8 10

-1.0

-0.7

-0.4

-0.1

0.2

0.5

0.8

1.1

1.4

1.7

2.0

x

E
nt

ha
lp

y 
(*

1e
8)

 

Figure 6.1.1.2: Enthalpy

The staircase shape of the temperature at x= 0.3 is inherent to the enthalpy method. It can only
be reduced by either using smaller space steps, or refining near the interface.
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Figure 6.1.1.3: Enthalpy at x=0.3
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Figure 6.1.1.4: Temperature at x=0.3



EX Solidification March 2005 6.1.1.8

6.1.1.2 1D Stefan problem with different parameters for both phases

This is the same example as in Section 6.1.1.1, however with different parameters in solid nd liquid
phase. The following set of parameters is used:
ρ = ρs = ρl 1 kg/m3

κs 2.22 W/m ◦C
κl 0.556 W/m ◦C
cps 1.762× 106 J/kg◦C
cpl 4.226× 106 J/kg◦C
L 3.38× 108 J/kg

The initial temperature is set to 10◦C, while the melting temperature is again set to be Tm = 0◦C.
The temperature at the left boundary is kept at −20◦C.
The time step used is ∆t = 2000s.
The mesh is exactly the same as in Section 6.1.1.1
The problem file now reads

# enthalpy1d_2.prb

#

# problem file for 1d stefan problem with different parameters in both phases

# The enthalpy method is applied

# See Manual Examples Section 6.1.1.2

#

# To run this file use:

# sepcomp enthalpy1d_2.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

rho = 1 # density (kg/m^3)

t0 = 0 # initial time

hour = 3600 # number of seconds in an hour

day = {24*$hour} # number of seconds in a day

dt = 2000 # time step (seconds)

t_end = {30*$day} # end time (30 days)

kappa_s = 2.22 # thermal conductivity (solid)

kappa_l = 0.556 # thermal conductivity (liquid)

latent_heat = 3.38e8 # Latent heat (J/kg)

capacity_s = 1.762e6 # specific heat (solid) (J/kg degree C)

capacity_l = 4.226e6 # specific heat (liquid)

melt_temp = 0 # melting temperature (degree C)

vector_names

Temperature # temperature vector

Enthalpy # enthalpy vector

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,
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# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

# Is also used to solve the heat equation

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

points p1 # left-hand side point

end

#

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

#

matrix

method = 9 # compact matrix, stored per row

# necessary for overrelaxation

end

# Define the initial temperature

# See Users Manual Section 3.2.10

create vector

value = 10 # initial Temperature (degree C)

end

# Define the essential boundary conditions

# See Users Manual Section 3.2.5

essential boundary conditions

points, p1, value=-20 # boundary Temperature (degree C)

end

# Define the coefficients for heat equation

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1(nparm=20)

coef6 = 1 # kappa in Kirchoff Temperature,

# must be 1, see Standard Problems 6.2

coef17 = 1 # rho*c in enthalpy,

# must be 1, see Standard Problems 6.2

end

# Input for time integration

# See Users Manual Section 3.2.15

time_integration

method = euler_implicit # Integration by Euler implicit

tinit = $t0 # initial time

tend = $t_end # end time

tstep = $dt # time step

toutinit = $t0 # initial time for output

toutend = $t_end # end time for output

toutstep = {10*$dt} # time step for output (once in 10 time steps)
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seq_coefficients = 1 # sequence number for coefficients (default)

seq_solution_method = 1 # sequence number for linear solver (default)

mass_matrix = constant # mass matrix is constant for each time

stiffness_matrix = constant # stiffness matrix is constant for each time

right_hand_side = zero # no source

end

# Input for enthalpy integration

# See Manual Standard Problems Section 6.1

enthalpy_integration

seq_time_integration = 1 # refers to time integration input (default)

seq_boundary_conditions = 1 # refers to essential boundary conditions

# default

# All other parameters are given in the block

# constants

end

# Define which linear solver must be used and what accuracy is required

# Overrelaxation is used

# See Users Manual Section 3.2.8

solve, sequence_number = 1

iteration_method = overrelaxation, omega = 1, max_iter = 1000//

niter1 = 5, niter2 = 10, print_level= 0 # omega must be reset each time

# step

# niter1 and niter2 are used to estimate a

# value for omega in each step

# These values do not have to be optimal

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

structure

# Fill initial condition for the temperature

create_vector, vector %Temperature

# Compute the initial enthalpy

compute_enthalpy

# Write both vectors to sepcomp.out

output, sequence_number=1

# Time loop

start_time_loop

# Raise time and compute new temperature and enthalpy

enthalpy_integration

# Write both vectors to sepcomp.out

output, sequence_number=1

end_time_loop

end

The postprocessing file is almost identical to the one given in Section 6.1.1.1 and will not be repeated
here. Figures 6.1.1.5 to 6.1.1.8 have the same meaning as Figures 6.1.1.1 to 6.1.1.4, but now for the
new parameters.
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Figure 6.1.1.5: Temperature
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Figure 6.1.1.6: Enthalpy
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Figure 6.1.1.7: Enthalpy at x=0.3
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Figure 6.1.1.8: Temperature at x=0.3
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6.1.1.3 2D Stefan problem with equal parameters for both phases

This example is completely identical to the one in Section 6.1.1.1. The only difference is that we
have a second dimension, but the solution is constant in y-direction.
The mesh is defined by the following mesh input file

# enthalpy2d_1.msh

#

# mesh file for 2d stefan problem with equal parameters in both phases

# The enthalpy method is applied

# See Manual Examples Section 6.1.1.3

#

# To run this file use:

# sepmesh enthalpy2d_1.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants

reals

length = 10 # length of the region

width = 1 # width of the region

integers

n = 100 # number of elements in height direction

m = 25 # number of elements in width direction

lin = 1 # linear elements

shape_sur = 3 # triangles

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0, 0) # Left bottom point

p2=($length, 0) # Right bottom point

p3=($length, $width) # Right upper point

p4=(0, $width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Linear elements are used

c1=line $lin (p1,p2,nelm=$n) # lower boundary

c2=line $lin (p2,p3,nelm=$m) # right boundary

c3=line $lin (p3,p4,nelm=$n) # top boundary

c4=line $lin (p4,p1,nelm=$m) # left boundary

surfaces

s1 = rectangle $shape_sur (c1, c2, c3, c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2
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end

The difference in problem file in Section 6.1.1.1 is very small and the reader is referred to the input
file in the directory sourceexam.
Finally the postprocessing file has the following contents

# enthalpy2d_1.pst

#

# Input file for postprocessing for 2d stefan problem with equal parameters

# in both phases

# The enthalpy method is applied

# See Manual Examples Section 6.1.1.3

#

# To run this file use:

# seppost enthalpy1d_1.pst > enthalpy1d_1.out

#

# Reads the files meshoutput and sepcomp.out

#

# Define some general constants

#

constants

reals

day = {1/(3600*24)} # 1/ (number of seconds in a day)

end

#

postprocessing # See Users Manual Section 5.2

time = (0, 2592000,10) # Do for each ten-th time step

plot contour V%Temperature

plot contour V%Enthalpy

time = 2.592e6

plot contour V%Temperature

plot intersection V%Temperature origin = (0, 0.5), angle = 0 //

texty = ’Temperature at y=0.5’, textx = ’x’, noplot_legenda

# Plot the time history of enthalpy and temperature at = (0.3,0.4)

# The time scale is made in days, so we have to divide the x scale

# by the number of seconds in a day

# The enthalpy is scaled by a factor of 10^-8

time history plot point (0.3,0.4) V%Enthalpy, xscale=$day, factor=1d-8//

textx = ’time (days)’, texty = ’Enthalpy at x=0.3 (*1e8)’, noplot_legenda

time history plot point (0.3,0.4) V%Temperature, xscale=$day//

textx = ’time (days)’, texty =’Temperature at x=0.3’, noplot_legenda

end

Pictures are comparable to that in Section 6.1.1.1.
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6.1.2 Enthalpy approach by quasi-Newton

6.1.2.1 A classical semi-infinite half-space solidification problem

We consider the same example as in Section 6.1.1.1. The only difference is that the problem is
solved by the quasi-Newton method of Nedjar, rather than the over-relaxation method.
To get these examples into your local directory use:

sepgetex enthalpyxd_y

with x and y one-digit numbers.
and to run it use:

sepmesh enthalpyxd_y.msh

sepcomp enthalpyxd_y.prb

seppost enthalpyxd_y.pst

In case the file enthalpyxd_y.f exists this must be replaced by:

sepmesh enthalpyxd_y.msh

seplink enthalpyxd_y

enthalpyxd_y < enthalpyxd_y.prb

seppost enthalpyxd_y.pst

After the first and last step you may view the results using sepview.

The following values for x are available:

x = 1, 2

and for y:

y = 3, 4, 5

Not all combinations of x and y have been programmed yet.
x defines the dimension of the space and y the sequence number of the parameter set.
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1D Stefan problem with equal parameters for both phases

This is the same example as in Section 6.1.1.1.
The mesh file is almost identical to the one in Section 6.1.1.1.
The reader is referred to the actual input file (enthalpy1d_3.xxx) to see the text.

Also the problem file looks very much the same as in Section 6.1.1.1. We show only different parts.

# enthalpy1d_3.prb

#

# problem file for 1d stefan problem with equal parameters in both phases

# The enthalpy method is applied

# Solution by quasi-newton

# See Manual Examples Section 6.1.2.1

#

# To run this file use:

# sepcomp enthalpy1d_3.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

......

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=810 # Type number for enthalpy equation

# solved by quasi-newton

# See Standard problems Section 6.1.2

# Is also used to solve the heat equation

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

points p1 # left-hand side point

end

#

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

#

matrix

method = 5 # compact symmetric matrix

end

# Define the initial temperature

# See Users Manual Section 3.2.10

create vector
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value = 2 # initial Temperature (degree C)

points, p1, value=-4 # boundary Temperature (degree C)

end

# Define the essential boundary conditions

# See Users Manual Section 3.2.5

essential boundary conditions

points, p1, value=-4 # boundary Temperature (degree C)

end

# Define the coefficients for heat equation

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1(nparm=25)

icoef3 = 3 # Type of numerical integration (2 point Gauss)

icoef5 = %Temperature # sequence number of temperature vector

coef6 = $kappa # thermal conductivity

coef17 = $rho # density

coef18 = $capacity_s # heat capacity in solid

coef19 = $capacity_l # heat capacity in fluid

coef20 = $latent_heat # latent heat

coef21 = $melt_temp # melting temperature

icoef22 = %Enthalpy # sequence number of enthalpy vector

end

# Input for time integration

# See Users Manual Section 3.2.15

time_integration

method = euler_implicit # Integration by Euler implicit

tinit = $t0 # initial time

tend = $t_end # end time

tstep = $dt # time step

toutinit = $t0 # initial time for output

toutend = $t_end # end time for output

toutstep = $dt # time step for output

seq_solution_method = 1 # sequence number for linear solver (default)

mass_matrix = constant # mass matrix is constant for each time

stiffness_matrix = constant # stiffness matrix is constant for each time

right_hand_side = zero # no source

abs_iteration_accuracy = 1d-5 # accuracy for non-linear iteration

max_iter = 1000 # maximum number of non-linear iterations

print_level = 2 # defines amount of output

non_linear_iteration # necessary to activate the non-linear

# iteration per time step

end

# Input for enthalpy integration

# See Manual Standard Problems Section 6.1.1

enthalpy_integration

seq_time_integration = 1 # refers to time integration input (default)
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solution_method = nedjar #

seq_coefficients = 1 # sequence number for coefficients (default)

seq_boundary_conditions = 1 # refers to essential boundary conditions

# default

# All other parameters are given in the block

# constants

end

# Define which linear solver must be used and what accuracy is required

# Conjugate gradients is used with a default preconditioner

# See Users Manual Section 3.2.8

solve

iteration_method = cg

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

structure

......

end

Also the postprocessing file is almost the same as in Section 6.1.1.1. The only difference is that
plotting of the enthalpy is not yet possible. Also the pictures do not show new results.
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6.1.2.2 1D Stefan problem with different parameters for both phases

This is the same example as in Section 6.1.1.2.
The mesh is exactly the same as in Section 6.1.1.1
The problem file is a combination of the ones in Sections 6.1.1.2 and 6.1.2.1. See the actual files
enthalpy1d_4.xxx for the details.
An essential difference is that because the heat conduction is a function of the temperature, we
need a function subroutine funcc3 to compute κ.
See the file enthalpy1d_4.f

The postprocessing file is almost identical to the one given in Section 6.1.1.2 and will not be repeated
here.
The pictures are a little bit different. They show some extra oscillations compared to the standard
method.
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Figure 6.1.2.1: Temperature
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Figure 6.1.2.2: Temperature at x=0.3
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6.1.2.3 2D Stefan problem with equal parameters for both phases

This example is completely identical to the one in Section 6.1.1.3. The only difference is that we
use the quasi newton method of Nedjar.
The mesh with name enthalpy2d_2.msh is almost identical to the mesh file in Section 6.1.1.3.
The problem file enthalpy2d_2.prb is a combination of the one in Section 6.1.1.3 and in Section
6.1.2.1 and also the postprocessing file enthalpy2d_2.pst is the same as in Section 6.1.1.3.
Pictures are comparable to that in Section 6.1.1.1.
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6.1.2.4 1D Stefan problem combined with a heat equation

In this example we consider the combination of a part where we have a melting front and a part of
the region where the standard heat equation must be solved. Usually this is of importance in case
of different materials but just to show how this works we use the same type of parameters in both
parts.
Mark that with the non-linear over-relaxation method the combination of enthalpy equation with
standard heat equation is not possible, so we have to use either this quasi newton method or the
Newton method treated in Section 6.2.
This example is completely artificial and is in fact identical to the one in Section 6.1.2.1. The only
difference is that we have extended the region with a part of the same length in which the heat
equation is solved.
To get the corresponding files use

sepgetex enthalpy1d_5

Below you can find the mesh and problem file without much comment.
The pictures are not very different from pictures shown before.
Mesh file:

# enthalpy1d_5.msh

#

# mesh file for 1d stefan problem with equal parameters in both phases

# The enthalpy method is applied and in a part of the region only the

# heat equation solved

# Solution by quasi-newton

# See Manual Examples Section 6.1.2.4

#

# To run this file use:

# sepmesh enthalpy1d_5.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

length = 1 # length of the region in meters

integers

n = 20 # number of elements in phase change part

m = 20 # number of elements in heat equation part

lin = 1 # linear elements

end

#

# Define the mesh

#

mesh1d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = 0 # Left-hand point

p2 = $length # Right-hand point of phase change region

p3 = {2*$length} # Right-hand point

#

# curves
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#

curves # See Users Manual Section 2.3

# Linear elements are used

c1=line $lin (p1,p2,nelm=$n) # phase change region

c2=line $lin (p2,p3,nelm=$m) # heat equation region

# Since we use two different types of elements, we also need two element groups

meshline

lelm1 = (shape=1,c1) # element group 1: phase change region

lelm2 = (shape=1,c2) # element group 2: heat equation region

plot, nodes = 1 # make a plot of the mesh and plot all nodes

# See Users Manual Section 2.2

end

And problem file:

# enthalpy1d_5.prb

#

# problem file for 1d stefan problem with equal parameters in both phases

# The enthalpy method is applied and in a part of the region only the

# heat equation solved

# Solution by quasi-newton

# See Manual Examples Section 6.1.2.4

#

# To run this file use:

# sepcomp enthalpy1d_5.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa = 2 # thermal conductivity (kg/m^3)

rho = 1 # density (kg/m^3)

t0 = 0 # initial time

hour = 3600 # number of seconds in an hour

day = {$hour*24} # number of seconds in a day

dt = {6*$hour} # time step (6h)

t_end = {100*$day} # end time (100 days)

kappa_s = $kappa # thermal conductivity (solid)

kappa_l = $kappa # thermal conductivity (liquid)

latent_heat = 1e8 # Latent heat (J/kg)

capacity_s = 2.5d6 # specific heat (solid) (J/kg degree C)

capacity_l = 2.5d6 # specific heat (liquid)

melt_temp = 0 # melting temperature (degree C)

vector_names

Temperature # temperature vector

Enthalpy # enthalpy vector

end
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#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=810 # Type number for enthalpy equation

# solved by quasi-newton

# See Standard problems Section 6.1.2

elgrp2=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

# Is used to solve the heat equation

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

points p1,p3 # Both end points

end

#

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

#

matrix

method = 5 # compact symmetric matrix

end

# Define the initial temperature

# See Users Manual Section 3.2.10

create vector

value = 1 # initial Temperature (degree C)

points, p1, value=-4 # boundary Temperature (degree C)

points, p3, value=-10 # boundary Temperature (degree C)

end

# Define the essential boundary conditions

# See Users Manual Section 3.2.5

essential boundary conditions

points, p1, value=-4 # boundary Temperature (degree C)

points, p3, value=-10 # boundary Temperature (degree C)

end

# Define the coefficients for enthalpy and heat equation

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1(nparm=25) # enthalpy equation

icoef3 = 3 # Type of numerical integration (2 point Gauss)

icoef5 = %Temperature # sequence number of temperature vector

coef6 = $kappa # thermal conductivity

coef17 = $rho # density

coef18 = $capacity_s # heat capacity in solid

coef19 = $capacity_l # heat capacity in fluid
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coef20 = $latent_heat # latent heat

coef21 = $melt_temp # melting temperature

icoef22 = %Enthalpy # sequence number of enthalpy vector

elgrp2(nparm=25) # heat equation

icoef3 = 3 # Type of numerical integration (2 point Gauss)

coef6 = $kappa # thermal conductivity

coef17 = {$rho*$capacity_s}# rho c_p

end

# Input for time integration

# See Users Manual Section 3.2.15

time_integration

method = euler_implicit # Integration by Euler implicit

tinit = $t0 # initial time

tend = $t_end # end time

tstep = $dt # time step

toutinit = $t0 # initial time for output

toutend = $t_end # end time for output

toutstep = $dt # time step for output

seq_solution_method = 1 # sequence number for linear solver (default)

mass_matrix = constant # mass matrix is constant for each time

stiffness_matrix = constant # stiffness matrix is constant for each time

right_hand_side = zero # no source

abs_iteration_accuracy = 1d-5 # accuracy for non-linear iteration

max_iter = 1000 # maximum number of non-linear iterations

print_level = 2 # defines amount of output

non_linear_iteration # necessary to activate the non-linear

end

# Input for enthalpy integration

# See Manual Standard Problems Section 6.1

enthalpy_integration

seq_time_integration = 1 # refers to time integration input (default)

solution_method = nedjar # Defines the Quasi-Newton approach of

# Nedjar

seq_coefficients = 1 # sequence number for coefficients (default)

seq_boundary_conditions = 1 # refers to essential boundary conditions

# default

# All other parameters are given in the block

# constants

end

# Define which linear solver must be used and what accuracy is required

# Overrelaxation is used

# See Users Manual Section 3.2.8

solve

iteration_method = cg

end

# Define the structure of the problem

# In this part it is described how the problem must be solved
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structure

# Fill initial condition for the temperature

create_vector, vector %Temperature

# Compute the initial enthalpy

compute_enthalpy

# Write both vectors to sepcomp.out

output, sequence_number=1

# Time loop

start_time_loop

# Raise time and compute new temperature and enthalpy

enthalpy_integration

# Write both vectors to sepcomp.out

output, sequence_number=1

end_time_loop

end
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6.1.2.5 2D Stefan problem combined with a heat equation

This example is the natural extension of the example treated in Section 6.1.2.4.
It concerns a rectangular region of PC material in a large rectangular region consisting of a dielectric.
Boundary conditions are only given at the outer boundary of the dielectric. This example shows
the behavior of the method for sharp corners. Without showing the pictures we can say that this
example shows that in this case a local refinement would lead to much smoother results.
In order to get this example into your directory use:

sepgetex enthalpy2d_3

The files will not be printed here.



EX Quasi-Newton May 2005 6.1.2.13

6.1.2.6 2D and 3D Stefan problems with source

These examples concern a region in which initially all material is in a liquid phase. The material
has initial temperature 0 (the melting temperature), except for a circle(2D) or sphere(3D), where
it varies linearly from 1 in the center to zero at the boundary of the circle. The boundary is kept
at a temperature of -2. Due to the boundary condition solidification takes place.
Two examples are available: enthalpy2d_4 (a square with a circular source) and enthalpy3d_1 (a
3D block with a spherical source).
To define the linear varying temperature within the source a user function is defined, hence a main
program is required.
In order to get these examples into your directory use:

sepgetex enthalpyxd_y

with xd y equal to 2d 4 or 3d 1.
To run the examples use:

sepmesh enthalpyxd_y.msh

view plots

seplink enthalpyxd_y

enthalpyxd_y < enthalpyxd_y.prb

seppost enthalpyxd_y.pst

The files will not be printed here.
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6.2 The Newton approach of Fachinotti et al.

This Section is under preparation.
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6.3 The heat capacity method

This Section is under preparation.
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7 Flow problems

7.1 The isothermal laminar flow of incompressible or slightly compress-
ible liquids

7.1.1 Stationary flow over a backward facing step

As an example of the use of the incompressible flow elements we consider the flow over a backward
facing step.
This flow is generally accepted as a benchmark problem used for the comparison of incompressible
codes. See Morgan et al for a complete description and results generated by a number of programs.
Consider the flow in the backward facing step as demonstrated in Figure 7.1.1.1.

l

L

h

H

Figure 7.1.1.1: Definition of region for backward facing step

The boundary is subdivided in curves as indicated in Figure 7.1.1.2.

1 2 3
4

567 8

Figure 7.1.1.2: Definition of curves for backward facing step

At the inflow boundary (C7) we assume a quadratic velocity profile with maximum velocity vmax =
1. The lower wall (C1, C2, C3) and the upper wall (C5 and C6) are fixed, hence a no-slip condition
must be prescribed. At the outflow boundary (C4) an outflow boundary condition must be given.
This may be for example parallel flow (ut = 0, σn = 0) or completely free flow (σt = 0, σn = 0).
Although mathematically incorrect this last boundary condition is the less restrictive and should
be used if the end of the outflow region is too close to the step.
Depending on the Reynolds number a recirculation zone arises at the bottom of the step. The
Reynolds number is defined as Re = umax

H−h
η , with

H the width of the outflow pipe.
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h the width of the inflow pipe.

l the length of the inflow pipe.

L the sum of the length of inflow and outflow pipe.

Since the flow in inlet and near the outlet is more or less a horizontal flow with a quadratic velocity
profile, whereas the flow in the neighborhood of the step shows a recirculation zone, the mesh is
refined in the vicinity of the step. In this example the following data are used:

H = 1

h = 0.5

l = 6

L = 19

Re = 50

To solve this problem we may use a number of solution techniques:

• Penalty method in combination with Crouzeix-Raviart type elements

• Direct (coupled) approach in combination with Crouzeix-Raviart type elements

• Direct (coupled) approach in combination with Taylor-Hood elements.

We shall consider each of these approaches separately.

7.1.1.1 Penalty function approach

The penalty function approach is by far the fastest approach as long as the problem is two-
dimensional and the number of elements is not too large. This method is restricted to Crouzeix-
Raviart elements only.
In Section 7.1.7 a number of possible elements that can be used is given, but hear we restrict our-
selves to quadratic triangles.
In order to get this example into your local directory use

sepgetex backwrd2

To run the example use

sepmesh backwrd2.msh

sepview sepplot.001

sepcomp backwrd2.prb

seppost backwrd2.pst > backwrd2.out

sepview sepplot.001

sepmesh requires input from the standard input file:
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# backwrd2.msh

#

# mesh file for backward facing step

# See Manual Examples Section 7.1.1

#

# To run this file use:

# sepmesh backwrd2.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

n_in = 5 # Number of elements in inlet (flow direction)

m_step = 5 # Number of elements in step

m_in = 5 # Number of elements in inlet (perpendicular to flow)

n_out = 20 # Number of elements in outlet (flow direction)

m_tot = m_in+m_step # m_in+m_step

shape_curve = 2 # quadratic elements along the lines

shape_surf = 4 # quadratic triangular elements in the surfaces

reals

h_wide = 1 # H

h_step = 0.5 # H-h

l_in = 6 # l

l_out = 19 # L

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = (0, h_step) # Lower point of inlet

p2 = ( l_in, h_step) # upper point of step

p3 = ( l_in,0) # Lower point of step

p4 = ( l_out,0) # Lower point of outlet

p5 = ( l_out, h_wide) # upper point of outlet

p6 = ( l_in, h_wide) # Point above step

p7 = (0, h_wide) # upper point of inlet

#

# curves

#

curves # See Users Manual Section 2.3

# Lower boundary of inlet part

c1 = line shape_curve (p1,p2,nelm = n_in,ratio=1,factor=0.4)

# step

c2 = line shape_curve (p2,p3,nelm = m_step)

# Lower boundary of channel

c3 = line shape_curve (p3,p4,nelm = n_out,ratio = 1,factor = 5 )

# Outlet

c4 = line shape_curve (p4,p5,nelm = m_tot)
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# right-hand side part of upper boundary

c5 = translate c3(p6,p5)

# left-hand side part of upper boundary

c6 = translate c1(p7,p6)

# inlet

c7 = line shape_curve (p7,p1,nelm = m_in)

# artificial line to define 2 surfaces

c8 = translate c7(p6,p2)

# left-hand side of channel

c9 = curves(c8,c2)

# The next curves are not important for the mesh generation,

# however, they are used to prescribe the boundary conditions in

# an easier way

c20 = curves(c1,c2,c3) # lower wall

c21 = curves(c4) # outflow boundary

c22 = curves(c6,c5) # upper wall

c23 = curves(c7) # inlet

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = rectangle shape_surf (c1,-c8,-c6,c7) # inlet part

s2 = rectangle shape_surf (c3,c4,-c5,c9) # channel

plot # Plot the mesh

end

The parameter refine_factor defines how many times the mesh must be refined. If this factor is
1 the standard mesh is used. Is the factor equal to 2, then the number of elements along each of
the elements is multiplied by 2, resulting in 4 times the original number of elements.
In order to compute the velocity and pressure program SEPCOMP may be used.
The iteration process is carried out by starting with the Stokes solution, followed by one Picard
iteration and followed by Newton iterations.
In this way we get the following input file:

# backwrd2.prb

#

# problem file for backward facing step

# penalty function approach

# problem is stationary and non-linear

# See Manual Examples Section 7.1.1

#

# To run this file use:

# sepcomp backwrd2.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

set warn off ! suppress warnings

#
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# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 1 # density

eta = 0.01 # viscosity

integers

lower_wall = 20 # curve number for lower wall

outflow = 21 # curve number for outflow boundary

upper_wall = 22 # curve number for upper wall

inflow = 23 # curve number for inflow boundary

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c lower_wall) # Fixed under wall (velocity given)

curves(c upper_wall) # Fixed upper wall (velocity given)

degfd2,curves(c outflow) # Outflow boundary (v-component 0)

curves(c inflow) # Inflow boundary (velocity given)

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

# Non-symmetrical profile matrix, So a direct method will be applied

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c inflow), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)
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# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, velocity

# Compute the velocity, i.e. solve non-linear problem

solve_nonlinear_system, velocity

# Compute the pressure

derivatives, pressure

# Write the results to a file

output



EX Flow over a backward facing step October 2008 7.1.1.7

end

# The pressure is computed as a derived quantity of the Navier-Stokes

# equation

# See Users Manual Section 3.2.11 and Standard Problems Section 7.1

derivatives, sequence_number = 1

icheld = 7 # means compute pressure

end

# write the velocity and the pressure to file

# See Users Manual Section 3.2.13

output

end

end_of_sepran_input

To run the program the following steps are performed:

sepcomp backwrd2.prb > backwrd.out

If the mesh is refined too much, the buffer length of sepcomp must be enlarged. The procedure to
do so is described in the Introduction Manual Section 3.2.
Finally some post-processing actions are carried out by program SEPPOST using the following
input file.

# backwrd2.pst

# Input file for postprocessing for backward facing step

# See Manual Examples Section 7.1.1

#

#

# To run this file use:

# seppost backwrd2.pst > backwrd2.out

#

# Reads the files meshoutput sepcomp.out

#

#

postprocessing # See Users Manual Section 5.2

# Plot the mesh

plot mesh

# Plot the results

# See Users Manual Section 5.4

plot identification = text = ’ 2D backward facing step ’,origin =(10,12)

plot vector velocity text=’velocity field Re=50’

plot contour pressure, nlevel = 20 text=’pressure contour Re=50’

3d plot pressure, nlevel=20

plot coloured levels pressure, nlevel=8

#

# compute the stream function
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# See Users Manual Section 5.2

# store in stream_function

compute stream function velocity

# Plot the stream function

# See Users Manual Section 5.4

plot contour stream_function, negpos_levels, text=’streamlines Re=50’

plot contour stream_function, region=(5.5, 10, 0, 1), negpos_levels//

text=’streamlines in the recirculation zone Re=50’

plot coloured levels stream_function, negpos_levels

# Some examples of the use of particle tracking

# first standard print and plot

plot track, velocity, pstart = (0,0.6, 0,0.7, 0,0.8, 0,0.9)//

nmark = 20, tmax = 200, print track

# next standard plot, print with interpolation and given step

plot track, velocity, pstart = (0,0.6, 0,0.7, 0,0.8, 0,0.9), nmark = 20//

tmax = 200, tstep_print = 1, values = (velocity, pressure)

# finally standard plot, print with interpolation without given step

plot track, velocity, pstart = (0,0.6, 0,0.7, 0,0.8, 0,0.9)//

nmark = 20, tmax = 200, values = (velocity)

# Print of the computed vectors

print vector velocity

print vector pressure

end

Figure 7.1.1.3 shows the velocity computed and Figure 7.1.1.4 the stream lines. The pressure is
shown in Figure 7.1.1.5. Finally Figure 7.1.1.6 shows the streamlines in the recirculation zone. The
mesh is too coarse in the neighborhood of the step to get smooth stream lines.

Figure 7.1.1.3: Velocities in backward facing step
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Figure 7.1.1.4: Isobars in backward facing step
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Figure 7.1.1.5: Streamlines in backward facing step

7.1.1.2 Coupled approach

The coupled approach does not need a penalty function parameter and is therefore in general more
reliable than the penalty function approach. Unfortunately the coupled approach requires also extra
unknowns, since pressure and velocity are solved in one large system of equations. Besides that it
is necessary to renumber the unknowns in order to avoid zero diagonal elements. In this example
we have combined the coupled approach with an iterative solver for the linear systems of equations.
In order to get this example into your local directory use

sepgetex backwrd2_it

To run the example use

sepmesh backwrd2_it.msh

sepview sepplot.001

sepcomp backwrd2_it.prb

seppost backwrd2_it.pst > backwrd2_it.out

sepview sepplot.001

The version without iterative linear solver is also available under the name backwrd2_cp. To get it
locally use

sepgetex backwrd2_cp
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Figure 7.1.1.6: Streamlines in recirculation zone

The mesh file in this case is identical to that of the penalty function approach, except that quadratic
triangles with 7 points instead of 6 are used.
The renumbering of the unknowns to avoid zero diagonal elements is done per level since that gives
a smaller local band width and in case of an iterative linear solver, usually also a better convergence.
To be sure that there is no possibility of zero diagonal elements in the matrix we have used a very
small penalty parameter ε = 10−10, which does not influence the solution at all, but puts elements
of order 10−10 on the main diagonal for the rows corresponding to the continuity equation.
The solution of the linear systems with iterative solvers poses extra complications. Due to the
stretching of the elements, we have a large aspect ratio (i.e. ratio of the length and width of
elements). The effect is that the linear solver has great difficulties to converge of does not converge
at all. In order to be able to apply the iterative solver, it was necessary to combine an ILU
preconditioner with extra fill in. This produces a larger matrix with many more ”non-zero” elements,
where we mean by ”non-zero” an element that is stored in the matrix. It may become non-zero
when the ILU preconditioning is applied. The only alternative is to decrease the aspect ratio. If
the aspect ratio is larger, even in this case no convergence could be reached.
Another problem is that the Newton linearization may produce smaller diagonal elements, which
also may influence the convergence dramatically. To that end we use a Picard type linearization in
each step of the non-linear iteration process.
Combining all these aspects results in the following input file for the program sepcomp.

# backwrd2_it.prb

#

# problem file for backward facing step

# direct (coupled) approach

# problem is stationary and non-linear

# An iterative linear solver is applied

# See Manual Examples Section 7.1.1

#

# To run this file use:

# sepcomp backwrd2_it.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

set warn off ! suppress warnings

#

# Define some general constants

#

constants # See Users Manual Section 1.4
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reals

eps = 1d-10 # penalty parameter for Navier-Stokes

# This parameter is used only to avoid

# zero diagonals

rho = 1 # density

eta = 0.01 # viscosity

integers

lower_wall = 20 # curve number for lower wall

outflow = 21 # curve number for outflow boundary

upper_wall = 22 # curve number for upper wall

inflow = 23 # curve number for inflow boundary

vector_names

velocity_pressure # velocity and pressure are stored in

# one solution vector

# The pressure is only available in the

# centroid

pressure # Pressure in the vertices

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=902 # Type number for Navier-Stokes, without swirl

# Coupled approach

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c lower_wall) # Fixed under wall (velocity given)

curves(c upper_wall) # Fixed upper wall (velocity given)

degfd2,curves(c outflow) # Outflow boundary (v-component 0)

curves(c inflow) # Inflow boundary (velocity given)

renumber levels (1,2),(3,4,5) # The unknowns are renumbered per level in

# order to ensure that first some velocities

# are eliminated before pressures are started

# In this way zero elements at the main

# diagonal are removed by elimination

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_scheme = compact, extra_fillin = 2 # Non-symmetrical compact matrix

# So an iterative linear solver will be applied

# For convergence of the iterative method we

# need extra fill in

end

# Create start vector and put the essential boundary conditions into this

# vector
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# See Users Manual Section 3.2.5

essential boundary conditions

curves(c inflow), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

# In case of an iterative linear solver it is

# necessary to use Picard instead of Newton

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter=10, accuracy=1d-2,print_level=2, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#
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structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, sequence_number=1, velocity_pressure

# Compute the velocity, i.e. solve non-linear problem

solve_nonlinear_system, velocity_pressure

# Compute the pressure

derivatives, pressure

# Write the results to a file

output

end

# The pressure is computed as a derived quantity of the Navier-Stokes

# equation

# See Users Manual Section 3.2.11 and Standard Problems Section 7.1

derivatives

icheld = 7 # means compute pressure

seq_input_vector = velocity_pressure

end

solve

iteration_method = bicgstab, accuracy = 1d-2, print_level = 2 //

start = old_solution, preconditioning = ilu

end

end_of_sepran_input

Results of the computation are almost the same as for the penalty function method and are not
repeated here. Of course the post processing file is the same as for the penalty function method.
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7.1.1.3 Coupled approach with Taylor-Hood elements

The usage of Taylor-Hood elements is almost the same as for the coupled approach. The only
difference is that now the pressure is defined in vertices of the elements. This gives a slight difference
in the problem file. Available are the quadratic Taylor-Hood triangles (backwrd2 th) and the linear
Taylor-Hood triangles, the so-called mini element (backwrd2 mini). To get these examples into
your local directory use

sepgetex backwrd2_xx

with xx either th or mini. As illustration we give here the quadratic problem file.

# backwrd2_th.prb

#

# problem file for backward facing step

# direct (coupled) approach using Taylor-Hood elements

# problem is stationary and non-linear

# A direct linear solver is applied

# See Manual Examples Section 7.1.1

#

# To run this file use:

# sepcomp backwrd2_th.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

set warn off ! suppress warnings

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-10 # penalty parameter for Navier-Stokes

# This parameter is used only to avoid

# zero diagonals

rho = 1 # density

eta = 0.01 # viscosity

integers

lower_wall = 20 # curve number for lower wall

outflow = 21 # curve number for outflow boundary

upper_wall = 22 # curve number for upper wall

inflow = 23 # curve number for inflow boundary

vector_names

velocity_pressure # velocity and pressure are stored in

# one solution vector

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2
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elgrp1=903 # Type number for Navier-Stokes, without swirl

# Coupled approach

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1, degfd2, curves(c lower_wall) # Fixed under wall

# (velocity given, not the pressure)

degfd1, degfd2, curves(c upper_wall) # Fixed upper wall

# (velocity given, not the pressure)

degfd2,curves(c outflow) # Outflow boundary (v-component 0)

degfd1, degfd2, curves(c inflow) # Inflow boundary (velocity given)

renumber levels (1,2),(3) # The unknowns are renumbered per level in

# order to ensure that first some velocities

# are eliminated before pressures are started

# In this way zero elements at the main

# diagonal are removed by elimination

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

# Non-symmetrical profile matrix, So a direct method will be applied

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c inflow), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7
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change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter=10, accuracy=1d-2,print_level=2, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, velocity_pressure

# Compute the velocity, i.e. solve non-linear problem

solve_nonlinear_system, velocity_pressure

# Write the results to a file

output

end

end_of_sepran_input
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7.1.1.4 Time dependent approach with Taylor-Hood elements

Another way to solve the stationary equations is by solving it as the limit of a time-dependent
problem. So we start with a zero velocity (except for the boundary conditions) and solve the
instationary equations. As time proceeds the solution approaches the stationary solution.
This example is called backwrd2_thinst.
In order to get this example into your local directory use.

sepgetex backwrd2_thinst

To run the example use

sepmesh backwrd2_thinst.msh

sepview sepplot.001

sepcomp backwrd2_thinst.prb

seppost backwrd2_thinst.pst > backwrd2_thinst.out

sepview sepplot.001

Only the problem file differs essentially from the ones previously treated. This file is given by

# backwrd2_thinst.prb

#

# problem file for backward facing step

# direct (coupled) approach using Taylor-Hood elements

# problem is stationary and non-linear, but is solved instationary

#

# An iterative linear solver is applied

# See Manual Examples Section 7.1.1

#

# To run this file use:

# sepcomp backwrd2_thinst.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

set warn off ! suppress warnings

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-10 # penalty parameter for Navier-Stokes

# This parameter is used only to avoid

# zero diagonals

rho = 1 # density

eta = 0.01 # viscosity

t0 = 0 # initial time

dt = 0.1 # time step

tend = 5 # end time

tout0 = t0 # First time that a result is written

toutend = tend # End time for writing

toutstep = 5*dt # In each 5^th time step the result is written

integers
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outflow = 21 # curve number for outflow boundary

wall = 25 # curve number for walls

inflow = 23 # curve number for inflow boundary

vector_names

velocity_pressure # velocity and pressure are stored in

# one solution vector

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=903 # Type number for Navier-Stokes, without swirl

# Coupled approach

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1, degfd2, curves(c wall) # Fixed wall

# (velocity given, not the pressure)

degfd2,curves(c outflow) # Outflow boundary (v-component 0)

degfd1, degfd2, curves(c inflow) # Inflow boundary (velocity given)

renumber levels (1,2),(3) # The unknowns are renumbered per level in

# order to ensure that first some velocities

# are eliminated before pressures are started

# In this way zero elements at the main

# diagonal are removed by elimination

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_scheme = compact # Non-symmetrical compact matrix

# So an iterative linear solver will be applied

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c inflow), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero
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# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 1 # 5: Type of linearization (1=Picard)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Definition of time integration

# See Users Manual Section 3.2.15

time_integration

method = euler_implicit # Integration by the Euler implicit method

tinit = t0 # Initial time

tend = tend # End time

tstep = dt # Time step

toutinit = tout0 # First time that a result is written

toutend = toutend # End time for writing

toutstep = toutstep # time steps for writing

boundary_conditions = constant # The boundary conditions do not depend on

# time

seq_boundary_conditions = 1 # Sequence number for the input of the

# essential boundary conditions

seq_coefficients = 1 # Sequence number for the coefficients

seq_output = 1 # Sequence number for the output

mass_matrix = constant # Time-independent mass matrix

number_of_coupled_equations = 1 # There is only one equation

end

# input for the linear solver

# See Users Manual Section 3.2.8

solve

iteration_method = cg, preconditioner = ilu, print_level = 1

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, sequence_number=1, velocity_pressure

# Time loop

start_time_loop

# One time step to compute the velocity

time_integration, velocity_pressure
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output, sequence_number=1

end_time_loop

end

end_of_sepran_input
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7.1.2 Stationary isothermal non-Newtonian flow in a T-shaped region
using the penalty function method

In this example we consider the non-Newtonian flow in a channel in a t-configuration (Cartesian
co-ordinates). In fact this is the same example as in the Introduction Section 7.3, however with a
non-Newtonian model instead of the Newtonian model. The region of definition has the same shape
as in Figure 7.3.3 in the Introduction, however, with slightly different co-ordinates. The boundary
conditions are taken exactly the same as in the Introduction.
As viscosity model a power law model with ηn = 0.1 and n = 0.5 is used. The penalty parameter
ε is equal to 10−6.

The iteration process starts with the Stokes equation (MCONV=0), the second iteration is per-
formed by Picard iteration (MCONV=1), and the succeeding iterations by the Newton method
(MCONV=2).
To increase the convergence of the iteration process for the non-Newtonian iteration process it is
useful to take an overrelaxation parameter ω of the shape: ω = 1 + β (1 − n) with n the power
in the Power law model. Tanner et al (1975) have shown that β ≈ 0.4 gives satisfactory results.
Therefore in the program relaxation = 1.2 is used.

The mesh input file for this example is:

* tshapenn.msh

mesh2d

points

p1=(0,0)

p2=(3,0)

p3=(20,0)

p4=(20,3)

p5=(3,3)

p6=(3,20)

p7=(0,20)

p8=(0,3)

curves

*

* Fixed under wall: C1, C2

* Outstream boundary: C3

* Fixed side walls: C4, C5

* Instream boundary: C6

* Symmetry axis: C7, C8

*

* Straight lines with equidistant grid: C1, C3, C6, C8, C9, C10

* Straight lines with graded grid: C2, C4, C5

*

c1=line2(p1,p2,nelm=4)

c2=line2(p2,p3,nelm=8,ratio=1,factor=3)

c3=line2(p3,p4,nelm=4)

c4=line2(p4,p5,nelm=8,ratio=3,factor=3)

c5=line2(p5,p6,nelm=8,ratio=1,factor=3)

c6=line2(p6,p7,nelm=4)

c7=line2(p7,p8,nelm=8,ratio=3,factor=3)

c8=line2(p8,p1,nelm=4)

c9=line2(p8,p5,nelm=4)
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c10=line2(p2,p5,nelm=4)

surfaces

* The surfaces are generated by QUADRILATERAL in order to get a rectangular

* grid

s1=quadrilateral4(c1,c10,-c9,c8)

s2=quadrilateral4(c2,c3,c4,-c10)

s3=quadrilateral4(c5,c6,c7,c9)

* Plot the mesh:

plot

end

In order to compute the velocity and pressure program SEPCOMP may be used. The iteration
process is carried out by starting with the Stokes solution, followed by one Picard iteration and
followed by Newton iterations.
In this way we get the following input file:

* tshapenn.prb

set warn off ! suppress warnings

#

# Define some general constants

#

constants # See Users Manual Section 1.4

vector_names

velocity

pressure

end

problem

# Define type of elements

types

elgrp1=900 # Type number for Navier-Stokes, without swirl

# 6-point triangle

# Approximation 7-point extended triangle

# Penalty function method

# Define where essential boundary conditions are present

essbouncond

curves(c1,c2) # Fixed under wall

curves(c4,c6) # Fixed side walls and instream boundary

degfd1=curves(c7,c8) # Symmetry axis (only u-component)

end

* define type of matrix

matrix

# Non-symmetrical profile matrix, So a direct method will be applied

end

* Create start vector and put the essential boundary conditions into this
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* vector

essential boundary conditions

value = 0 # First set vector equal to zero

# Next fill all non-zero essential boundary conditions

curves(c6), degfd2, value = -1 # The v-component of the velocity at

# instream is -1

end

* Define coefficients for the first iteration

coefficients

elgrp1 ( nparm=20) # The coefficients are defined by 8 parameters

icoef2 = 2 # 2: type of constitutive equation (2=Power-law)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = 1d-6 # 6: Penalty function parameter eps

coef7 = 1 # 7: Density

# 8: angular velocity = 0

# 9: body force in x-direction = 0

#10: body force in y-direction = 0

coef12 = 0.1 #12: Value of etha_n (viscosity)

coef13 = 0.5 #13: Viscosity parameter n

end

* Define the coefficients for the next iterations

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 3: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 3: Type of linearization (2=Newton iteration)

end

* Define the parameters for the non-linear solver

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1//

relaxation=1.2

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

* Define output, and compute pressure

output

v1 = icheld=7 # pressure

end
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end_of_sepran_input
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Finally some post-processing actions are carried out by program SEPPOST using the following
input file.

* tshapenn.pst

post processing

* Print both vectors completely

print velocity

print pressure

* Compute stream funnction, store in stream_function, and name this vector

compute stream_function = stream function velocity

* PLot the results

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot contour stream_function # Contour plot of stream function

end

Figure 7.1.2 shows the velocity computed and Figure 7.1.2 the stream lines. The pressure is shown
in Figure 7.1.2.

Vector plot of  velocity                     
 

Figure 7.1.2.1: Vector plot of velocity in flow problem
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Figure 7.1.2.2: Isobars in flow problem

7.1.3 Stationary isothermal Newtonian flow in a T-shaped region using
the integrated solution method

In this example we consider the Newtonian flow in a channel in a t-configuration (cartesian co-
ordinates). In fact this is the same example as in the Section 7.1.2, however with a Newtonian
model instead of the Non-newtonian model. The region of definition has the same shape as in
Figure 7.3.3 in the Introduction, however, with slightly different co-ordinates. The boundary con-
ditions are taken exactly the same as in the Introduction.
The viscosity model is the standard Newtonian model.
Instead of the penalty function method the (direct) integrated solution method is used, which im-
plies that pressure and velocity are computed in a coupled way.
Furthermore the bi-linear quadrilateral elements with shape number 9 are used. In these elements
the velocities are defined in the vertices of the elements and the pressure is a constant per element.
The corresponding unknown is positioned in the centroid of the element.
This element does not satisfy the so-called Brezzi-Babus̆ka condition (Cuvelier et al, 1986). How-
ever, at the outflow we do not describe the normal velocity component and for this specific element
this means that the element is still admissible.
The iteration process starts with the Stokes equation (MCONV=0), the second iteration is per-
formed by Picard iteration (MCONV=1), and the succeeding iterations by the Newton method
(MCONV=2).

The mesh input file for this example is:

* tshapedr.msh

mesh2d

points

p1=(0,0)

p2=(1,0)

p3=(10,0)

p4=(10,1)

p5=(1,1)

p6=(1,10)

p7=(0,10)
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Figure 7.1.2.3: Stream line plot in flow problem

p8=(0,1)

curves

* Fixed under wall: C1, C2

* Outstream boundary: C3

* Fixed side walls: C4, C5

* Instream boundary: C6

* Symmetry axis: C7, C8

*

* Straight lines with equidistant grid: C1, C3, C6, C8, C9, C10

* Straight lines with graded grid: C2, C4, C5

*

c1=line2(p1,p2,nelm=8)

c2=line2(p2,p3,nelm=16,ratio=1,factor=3)

c3=line2(p3,p4,nelm=8)

c4=translate c2 (p5,p4)

c5=line2(p5,p6,nelm=16,ratio=1,factor=3)

c6=translate c1 (p7,p6)

c7=translate c5 (p8,p7)

c8=translate c3 (p1,p8)

c9=translate c1 (p8,p5)

c10=translate c3 (p2,p5)

surfaces

* The surfaces are generated by QUADRILATERAL in order to get a

* rectangular grid

s1=quadrilateral9(c1,c10,-c9,-c8)

s2=quadrilateral9(c2,c3,-c4,-c10)

s3=quadrilateral9(c5,-c6,-c7,c9)

* Plot the mesh:
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plot

renumber start = c3

end

Mark that in this example we have given an explicit start for the renumbering procedure. Experi-
ments have shown that starting at the small side (in this case the outflow) considerably decreases
the computation time.

In order to compute the velocity and pressure program SEPCOMP may be used. The iteration
process is carried out by starting with the Stokes solution, followed by one Picard iteration and
followed by Newton iterations.
Since the integrated solution method is applied, it is necessary to reorder the unknowns such that
it is guaranteed that the first unknowns are velocities and not pressures.
In combination with a direct solver this is only efficient if renumbering per level is applied.
In this way we get the following input file:

* tshapedr.prb

*

*

set warn off ! suppress warnings

#

# Define some general constants

#

constants # See Users Manual Section 1.4

vector_names

velocity

pressure

end

problem

# Define type of elements

types

elgrp1=902 # Type number for Navier-Stokes, without swirl

# Define where essential boundary conditions are present

essbouncond

curves(c1,c2) # Fixed under wall

curves(c4) # Fixed side wall

curves(c5) # Fixed side wall

curves(c6) # instream boundary

degfd1=curves(c7) # Symmetry axis (only u-component)

degfd1=curves(c8) # Symmetry axis (only u-component)

degfd2=curves(c3) # Outstream boundary (v-component given)

# All not prescribed boundary conditions satisy

# corresponding stress is zero, i.e.

# Tangential stress at C7, C8

# Normal stress at C3

renumber levels (1,2), 3 # For each level, first the velocities and then

# the pressure

end

* define type of matrix

matrix

# Non-symmetrical profile matrix, So a direct method will be applied

end
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* Create start vector and put the essential boundary conditions into this

* vector

essential boundary conditions

value = 0 # First set vector equal to zero

# Next fill all non-zero essential boundary conditions

curves(c6), degfd2, value = -1 # The v-component of the velocity at

# instream is -1

end

* Define coefficients for the first iteration

coefficients

elgrp1 ( nparm=20) # The coefficients are defined by 8 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef7 = 1 # 7: Density

# 8: angular velocity = 0

# 9: body force in x-direction = 0

#10: body force in y-direction = 0

coef12 = 0.01 #12: Value of etha (viscosity)

end

* Define the coefficients for the next iterations

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 3: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 3: Type of linearization (2=Newton iteration)

end

* Define the parameters for the non-linear solver

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=2, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

* Define output, and average the pressure

output

v1 = icheld=7 # averaged pressure

end

end_of_sepran_input
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Although the pressure is already computed in the integrated method, this pressure is discontinuous
over the elements. In order to be able to make contour plots the pressure is averaged and new
values in the vertices are computed.
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Finally some post-processing actions are carried out by program SEPPOST using the following
input file.

* tshapedr.pst

postprocessing

* Print both vectors completely

print velocity

print pressure

* Compute stream function, store in stream_function, and name this vector

compute stream_function = stream function velocity

* Plot the results

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot contour stream_function # Contour plot of stream function

end

Figure 7.1.3.1 shows the velocity computed and Figure 7.1.3.2 the isobars. The stream lines are
shown in Figure 7.1.3.3.

 

Figure 7.1.3.1: Vector plot of velocity in flow problem
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Figure 7.1.3.2: Isobars in flow problem

7.1.4 Stationary flow over a 3D backward facing step using the integrated
solution method

In this example we consider a three-dimensional example of a stationary flow. Since three-dimensional
problems are usually too large to be solved by a direct linear solver, this example is combined with
an iterative method. This automatically implies that we can not use the penalty function method,
since the matrix produced by the penalty function method is very ill-conditioned and no iterative
solver is able to converge. Hence the integrated approach is applied.

The example we consider is the natural extension of the 2D backward facing step shown in example
7.1.1. Figure 7.1.1.1 shows the cross-section of the region in the y is constant plane. From the
results in Section 7.1.1 it is clear that we may take a smaller inlet and outlet to get comparable
results in the vicinity of the step. In order to get this example into your local directory use

sepgetex backwrd3

To run the example use

sepmesh backwrd3.msh

sepview sepplot.001

seplink backwrd3

backwrd3 < backwrd3.prb

seppost backwrd3.pst > backwrd3.out

sepview sepplot.001

To create the mesh, we first have to define the points, curves, surfaces and volumes. Figure 7.1.4.1
shows the points, curves and surfaces of the front plane. The curves C5 and C6 are clustered to
a new curve C10 and the curves C1, C2 and C3 to a new curve C11. The surfaces S1 and S2 are
clustered to a surface S3.
The back plane S4 is just a translation of S3, where the curves are translated as follows:
C11: C12, C4: C13, C10: C14 and C7: C15.
The total volume is considered as a pipe. The front and back surfaces are considered as bottom
and top surface of this pipe respectively and the other 4 surfaces as parts of a pipe surface. These
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Figure 7.1.3.3: Stream line plot in flow problem
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Figure 7.1.4.1: Definition of front surface for 3D backward facing step

4 subsurfaces are sketched in Figure 7.1.4.2. In the y-direction we have a constant thickness of
1. Figure 7.1.4.3 shows a plot of all curves. At the inflow boundary (S5) we assume a quadratic
velocity profile with maximum velocity vmax = 1. The lower wall (S6) and the upper wall (S8) and
the side walls (S3 and S4) are fixed, hence a no-slip condition must be prescribed. At the outflow
boundary (S7), an outflow boundary condition must be given. For the same reason as in Example
7.1.1 we choose for a completely free flow.
Depending on the Reynolds number a recirculation zone arises at the bottom of the step. The
Reynolds number is defined as Re = umax

H−h
η , with

H the width of the outflow pipe.

h the width of the inflow pipe.

l the length of the inflow pipe.

L the sum of the length of inflow and outflow pipe.

Since the flow in inlet and near the outlet is more or less a horizontal flow with a quadratic velocity
profile, whereas the flow in the neighborhood of the step shows a recirculation zone, the mesh is
refined in the vicinity of the step. In this example the following data are used:

H = 1
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Figure 7.1.4.3: Definition of curves for 3D backward facing step

h = 0.5

l = 2

L = 20

Re = 50

The mesh is generated by program sepmesh. The elements used are quadratic hexahedrons with 27
points per element.
sepmesh requires input from the standard input file:

* backwrd3.msh

*

* Mesh for 3D backward facing step as defined in

* manual Standard Problems Section 7.1.4

constants

integers

n_in = 5 # Number of elements in inlet (flow direction)

m_step = 5 # Number of elements in step

m_in = 5 # Number of elements in inlet (perpendicular to flow)

n_out = 20 # Number of elements in outlet (flow direction)

m_tot = m_in+m_step # m_in+m_step

n_y = 5 # Number of elements in y-direction

reals
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h_wide = 1 # H

h_step = 0.5 # H-h

l_in = 2 # l

l_out =20 # L

y_min = 0 # ymin

y_max = 1 # ymax

end

mesh3d

points

p1 = (0, y_min, h_step)

p2 = ( l_in, y_min, h_step)

p3 = ( l_in, y_min,0)

p4 = ( l_out, y_min,0)

p5 = ( l_out, y_min, h_wide)

p6 = ( l_in, y_min, h_wide)

p7 = (0, y_min, h_wide)

p8 = (0, y_max, h_step)

p11= (0, y_max, h_wide)

curves

c1 = line2(p1,p2,nelm = n_in,ratio=1,factor=0.4)

c2 = line2(p2,p3,nelm = m_step)

c3 = line2(p3,p4,nelm = n_out,ratio = 1,factor = 5 )

c4 = line2(p4,p5,nelm = m_tot)

c5 = translate c3(p6,p5)

c6 = translate c1(p7,p6)

c7 = line2(p7,p1,nelm = m_in)

c8 = translate c7(p6,p2)

c9 = curves(c8,c2)

c10= curves(c6,c5)

c11= curves(c1,c2,c3)

c12= translate c11 (p8,-p9)

c13= translate c4 (p9,p10)

c14= translate c10 (p11,-p10)

c15= translate c7 (p11,p8)

c16= line2 (p1,p8,nelm= n_y)

c17= translate c16 (p4,p9)

c18= translate c16 (p7,p11)

c19= translate c16 (p5,p10)

surfaces

s1 = rectangle6(c1,-c8,-c6,c7)

s2 = rectangle6(c3,c4,-c5,c9)

s3 = surfaces(s1,s2)

s4 = translate s3 ( c12, c13,-c14, c15 )

s5 = pipesurface 6 ( c7 , c15, c18, c16 )

s6 = pipesurface 6 ( c11, c12, c16, c17 )

s7 = pipesurface 6 ( c4 , c13, c17, c19 )

s8 = pipesurface 6 (-c10,-c14, c19, c18 )

s9 = ordered surface ( s6,s7,s8,s5)

volumes

v1 = pipe14 ( s3, s4, s9 )

plot, eyepoint = (50,-10,5)

end

To create the mesh the following steps are performed:

sepmesh < backwrd3.msh



EX Flow over a backward facing step in R3 October 2008 7.1.4.5

sepview

Figure 7.1.4.4 shows the final mesh. In order to compute the velocity and pressure program SEP-

Figure 7.1.4.4: Mesh for 3D backward facing step
COMP may be used. Since the inflow velocity depends on the space, a function subroutine is
necessary for the essential boundary conditions. Furthermore for this 3D problem we need a larger
buffer. For that reason sepcomp is replaced by program backwrd3.f.

program backwrd3

integer nbuffr

parameter ( nbuffr = 25 000 000)

common ibuffr(nbuffr)

call sepcom ( nbuffr )

end

function funcbc ( ichois, x, y, z )

implicit none

integer ichois

double precision funcbc, x, y, z

funcbc = 64d0*(1d0-z)*(z-0.5d0)*y*(1d0-y)

end

The iteration process is carried out by starting with the Stokes solution, followed by only Picard
iterations. The reason is that Picard in combination with an iterative solver has a better convergence
behavior.
Since we are using an iterative solver we must take some precautions.

• The storage method of the large matrix must be set to 6, which means that a compact storage
for a non-symmetric matrix is applied.

• We have to use the integrated method, i.e. type 902 or 903.

• Due to the incompressibility condition it is necessary to renumber the unknowns such that first
the velocities and then the pressures per level are used. There are three velocity unknowns per
point and in the centroid of the element we have 4 pressure unknowns (pressure and gradient
of pressure). The velocity physical degrees of freedom have sequence numbers 1, 2 and 3, the
pressure physical degrees of freedom have sequence numbers 4, 5, 6 and 7. Hence we use:
renumber levels (1,2,3),(4,5,6,7) in the problem input.
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• The linear solver requires some extra input.
The preconditioner used is ILU which is the most robust one.
The linear solver is part of a non-linear iteration process, so that we can start with the solution
of the previous non-linear iteration.
In the linear solver, we are only improving the solution from the previous non-linear iteration
and so it suffices to use an accuracy of two extra digits, which means that we set the accuracy
equal to 10−2.

In this way we get the following input file:

******************************************************************

*

* File: backwrd3.prb

*

* Backward facing step in R^3

*

******************************************************************

constants

vector_names

velocity

pressure

end

problem

# Define type of elements

types

elgrp1=902 # Type number for Navier-Stokes, without swirl

# 7-point triangle

# Approximation 7-point extended triangle

# Direct method

# Define where essential boundary conditions are present

essbouncond

surfaces(s3,s4) # Fixed side walls

surfaces(s6) # Lower wall

surfaces(s8) # Upper wall

surfaces(s5) # Instream boundary

# Renumber such that per level the velocities are treated before the

# pressures

renumber levels (1,2,3),(4,5,6,7)

end

* define type of matrix

matrix

storage_scheme = compact # Non-symmetrical compact matrix

# So an iterative linear solver will be applied

end

* Create start vector and put the essential boundary conditions into this

* vector
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essential boundary conditions

surfaces(s5), degfd1, func = 1 # Quadratic inflow profile

end

* Define coefficients for the first iteration

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

coef7 = 1 # 2: Density

coef12 = 0.01 # 8: Value of etha (viscosity)

end

* Define the coefficients for the next iterations

change coefficients, sequence_number = 1 # Input for iterations 2, 3, ...

elgrp1

icoef5 = 1 # 3: Type of linearization (1=Picard iteration)

end

* Define the parameters for the non-linear solver

nonlinear_equations

global_options, maxiter=20, accuracy=1d-4,print_level=2, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

end

* Define the parameters for the linear solver

solve

iteration_method = cg, preconditioning = ilu, print_level=1 //

start=old_solution, accuracy = 1d-2

end

* Define output, and compute pressure

output

v1 = icheld=7

end

end_of_sepran_input

To run the program the following steps are performed:

seplink backwrd3

backwrd3 < backwrd3.prb > backwrd.out

Finally some post-processing actions are carried out by program SEPPOST using the following
input file.

******************************************************************************

*

* File: backwrd3.pst
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*

* Backward facing step in R^3

*

******************************************************************************

post processing

# The velocity in the symmetry plane is computed

# In order to get the components in the plane we need the option

# transformation=plane_oriented

compute velocity_in_symmetry_plane = intersection velocity, plane(y=0.5), //

numbunknowns=3 transformation=plane_oriented

# The pressure in the symmetry plane is computed

compute pressure_in_symmetry_plane = intersection pressure, plane(y=0.5)

# Velocity and pressure in the symmetry plane are plotted

plot vector velocity_in_symmetry_plane

plot contour pressure_in_symmetry_plane

end

Figure 7.1.4.5 shows the velocity and the pressure in the symmetry plane (y=0.5).
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Figure 7.1.4.5: Velocity and pressure in symmetry plane
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7.1.5 Time-dependent incompressible flow around a cylinder

In this example we consider vertex shedding behind a circular cylinder as treated by Frans van de
Vosse in his thesis (1987). To get this example in your local directory use the command:

sepgetex karman

To run the example use the commands:

sepmesh karman.msh

view the plots

sepcomp karman.prb

seppost karman.pst

view the plots

To demonstrate the behaviour of time integration methods, the vortex shedding behind a circular
cylinder with diameter D = 1 is simulated. The geometry is shown in Figure 7.1.5.1.
At inflow (curves C6 and C10) uniform Dirichlet inflow boundary conditions are used (u = 1, v =
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Figure 7.1.5.1: Geometry for vortex shedding problem

0), at outflow (C4 and C8) we assume uniform stress-free boundary conditions. These boundary
conditions have the smallest influence on the flow. At the two parallel outer boundaries (C5 and
C9) we assume the same given velocity as at the inflow. At the cylinder (curves C2 and C7) a
no-slip boundary condition is given.
To create the mesh program SEPMESH is used with the following input file may be used:

* karman.msh

#

# mesh for vortex shedding problem

#

constants

reals

left = -5

right = 17

t = 6
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r = 0.5

end

mesh2d

coarse(unit=1)

points

p9=(0,0) # centre of cylinder

p3=( r,0,0.3) # point at the right of the cylinder

p2=(-r,0,0.3) # point at the left of the cylinder

p1=( left,0,1)

p6=( left, t,1)

p8=( left,- t,1)

p4=( right,0,1.3)

p5=( right, t,1.5)

p7=( right,- t,1.5)

curves

c1 = cline2(p1,p2)

c2 = carc2(p2,p3,-p9)

c3 = cline2(p3,p4)

c4 = cline2(p4,p5)

c5 = cline2(p5,p6)

c6 = cline2(p6,p1)

c7 = carc2(p2,p3,p9)

c8 = rotate c4 (p4,p7)

c9 = translate c5 (p7,p8)

c10 = rotate c6 (p8,p1)

surfaces

s1 = general4 ( c1,c2,c3,c4,c5,c6 )

s2 = reflect s1 ( c1,c7,c3,c8,c9,c10 ) # creates a symmetrical mesh

plot

end

The mesh is made completely symmetrical with respect to lower and upper part. This is achieved
by the command reflect.
The density of the mesh is defined by the given coarseness. In the neighbourhood of the cylinder
the length of the elements is 0.3 times the unit length, this length is taken much larger at the points
far away from the cylinder. Figure 7.1.5.2 shows the mesh generated. The boundary conditions in
this case are simple. At the inflow and both parallel boundaries we use the uniform velocity.
At the outflow we use the least restrictive outflow boundary conditions, i.e. zero stress.
At the cylinder we use the no-slip condition.
If no precautions are taken both the Euler implicit and Crank Nicolson time integration reach a
steady state after about 30 time steps. Due to the symmetry of the mesh and boundary conditions,
the vortex shedding was not generated spontaneously. To trigger the vortex shedding, the initial
field has been disturbed by setting the velocity of the cylinder equal to 0.1 in y-direction. The
boundary conditions at the cylinder are kept at zero.
Following van de Vosse, 10 Euler Implicit steps were performed to damp this distortion and to avoid a
too important influence on the flow field. If the Euler implicit scheme is continued the solution again
converges to the steady state solution. However, the Crank-Nicolson scheme performs excellent and
shows the typical von Karmann vortices one expects. One may try to start with the Crank Nicolson
scheme immediately, but since this scheme has no damping properties, the transient will never be
damped.
In our example we follow van de Vosse and take the following time steps: 0 ≤ t ≤ 10, ∆t = 1
Euler Implicit, followed by Crank Nicolson with 10 ≤ t ≤ 60, ∆t = 1, 60 ≤ t ≤ 75, ∆t = 0.5 and
75 ≤ t ≤ 105, ∆t = 0.25. The results at time t = 30 to t = 105 with steps 1 are written to the files
sepcomp.inf and sepcomp.out for postprocessing purposes.

The corresponding input file is given by
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Figure 7.1.5.2: Mesh for vortex shedding problem

* karman.prb

* problem definition for vortex shedding problem

#

# Define some general constants

#

set warn off ! suppress warnings

constants # See Users Manual Section 1.4

vector_names

velocity

end

problem

types

elgrp1 = 900 # Standard Navier-Stokes

essbouncond

curves(c2) # part of the cylinder

curves(c5) # upper boundary

curves(c6) # inflow

curves(c7) # other part of the cylinder

curves(c9) # lower boundary

curves(c10) # inflow

end

*

* Definition of matrix structure

*

matrix

# Non-symmetrical profile matrix, So a direct method will be applied

end

*

* Define initial conditions

*

create vector
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degfd1 , (value = 1) # Start vector = (1,0)

degfd2 , (value = 0)

degfd2, curves(c2), value = 0.1 # At the cylinder we start with v = 0.1

degfd2, curves(c7), value = 0.1

end

*

* Essential boundary conditions

*

essential boundary conditions

curves(c5), degfd1=value=1 # upper boundary

curves(c6), degfd1=value=1 # inflow

curves(c9), degfd1=value=1 # lower boundary

curves(c10), degfd1=value=1 # inflow

curves(c2), value = 0 # cylinder

curves(c7), value = 0 # cylinder

end

*

* Definition of coefficients for the Navier-Stokes equation (t=0 only)

*

coefficients

elgrp1(nparm=20)

icoef5 = 2 # Newton linearization

coef6 = 1d-6 # penalty parameter eps

coef7 = 1 # rho

coef12= .01 # eta

end

*

* Define the time integration

*

time_integration, sequence_number = 1

method = theta

tinit = 0 # theta method (EI and CN)

tend = (10,60,75,105) # end times of intervals

tstep = (1,1,0.5,0.25) # time steps of intervals

theta=(1,0.5,0.5,0.5) # corresponding theta values

toutinit = 30 # start writing at t=30

toutend = 150

toutstep = 1

seq_boundary_conditions = 1

seq_coefficients = 1

seq_output = 1

mass_matrix = constant

end

In fact it is not necessary to start with Euler implicit and then proceed with Crank Nicolson. It
is also possible to use the generalized theta method or the fractional step method. These methods
are both accurate and have sufficient damping properties to damp the transient, without damping
the vortices. In fact if these method were used the vortex shedding had been reached at an earlier
time.

With program seppost it is possible to show the results of the computations. If all time steps are
shown a nice movie of the vortex shedding process is produced. However, for the manual we only
plot the results at time 30, 55, 80 and 105.
The corresponding input file is given by

* File: karman.pst
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* input for seppost

postprocessing

compute stream_function = stream function velocity

time = (0, 150, 25)

plot vector velocity, factor=.15

plot contour stream_function

plot coloured contour stream_function, nlevel=21, mincolour=51

time history (0,150) plot point(10,0) velocity, degfd=2

end

Figures 7.1.5.3 to 7.1.5.6 show the velocity vectors at these time levels. To show the vortices we

 

Figure 7.1.5.3: Vector plot of the ve-
locity at t=30

 

Figure 7.1.5.4: Vector plot of the ve-
locity at t=55

 

Figure 7.1.5.5: Vector plot of the ve-
locity at t=80

 

Figure 7.1.5.6: Vector plot of the ve-
locity at t=105

have computed the stream function. Mark that in this time-dependent case the stream lines are
not particle trajectories. However, stream lines give a nice insight in the vortex shedding process.
Figures 7.1.5.7 to 7.1.5.10 show the stream lines at these time levels.
Figures 7.1.5.11 to 7.1.5.14 show the coloured stream levels at these time levels. Finally in Figure
7.1.5.15 the velocity component in y-direction in point (0,10) is plotted as function of time. From
the fluctuations the Strouhal number can be detected. See van de Vosse for the details.
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Figure 7.1.5.7: Stream lines at t=30
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Figure 7.1.5.8: Stream lines at t=55
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Figure 7.1.5.9: Stream lines at t=80
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Figure 7.1.5.10: Stream lines at t=105

7.1.6 Free Surface Flow; co-flowing streams

In this example we consider the laminar flow out of two parallel channels that come together. See
Figure 7.1.6.1 for a definition of the geometry. The driving forces of the flow are pressure differences.
At the outflow (curves C3–C4) the pressure is assumed to be zero. At the inflow part of the channels,
the pressure levels are different; p = 2 at C7, and p = 1 at C8. The curve C9 is a solid wall that
divides the co-flowing streams. The curve C10 is the initial position of the streamline between the
two co-flowing streams. The position of this streamline must be determined during the calculations.
To get this example into your local directory use:

sepgetex coflow

and to run it use:

sepfree coflow.prb

seppost coflow.pst

The initial mesh has also been given in Figure 7.1.6.1.

The equations to be solved are the incompressible Navier-Stokes equations.
The boundary conditions can be formulated as:
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Figure 7.1.5.11: Stream levels at t=30

 

Figure 7.1.5.12: Stream levels at t=55

 

Figure 7.1.5.13: Stream levels at t=80

 

Figure 7.1.5.14: Stream levels at
t=105

• v = 0 at fixed walls: C1, C2, C9.

• Symmetry conditions (vn = 0, σt = 0) at C5–C6.

• Pressure level uniform at outflow (σn = −p = 0) at C3–C4, and fully-developed flow, i.e.
vt = 0. It is, however, essential that vt is not prescribed at the last point of C3 and the first
point of C4.

• Pressure level uniform at inflow (σn = −p = −2 at C7; σn = −p = −1 at C8), and fully-
developed flow i.e. vt = 0.

• The streamline C10 is not known, hence this is a so-called free boundary. In order to determine
the position of this streamline an extra boundary condition is necessary. The standard bound-
ary conditions is of course that the velocity is continuous, i.e. the velocity at the streamline
belongs to both regions. Furthermore, along a streamline we have vn = 0. This condition is
used to compute the free boundary C10 during the iterations.

It is not required to compute a boundary integral explicitly along a curve when is it zero everywhere.
This is the case when σn = 0, vt = 0 or the combination σt = 0, vn = 0. So a boundary integral is
needed only at C7 and C8.
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Figure 7.1.5.15: Velocity component in y-direction as function of time

The properties of the fluid have been chosen equal to each other, and ρ = 1, η = 1. This prevents
instabilities due to property differences. Extended quadratic triangles, in combination with the
penalty function method have been applied. For the internal elements type number 900 has been
used, the boundary integrals are computed by boundary elements of type number 910.

The unknown free boundary is adapted using the so-called film method of Caswell and
Viriyayuthakorn (1983). Starting from an initial guess the Navier-Stokes equations are solved using
the boundary conditions given above. At the common streamline only the trivial continuity bound-
ary conditions are applied. After each solution of the equations the free boundary is adapted to
the third boundary condition, until the difference between the computed velocity in two succeeding
iterations is small enough.

Program SEPFREE does the mesh generation, solves the problem, adapts the mesh, solves again,
until convergence has been reached.

The structure of the main program is defined by the user. To that end the block ”STRUCTURE”
is used. Three vectors are defined:

1. the velocity vector v

2. the pressure p

3. the stress tensor t

The structure of the program is as follows:

• First the initial mesh is generated and the problem description is read. This is the standard
start of program SEPFREE.

• Next the essential boundary conditions are prescribed at t = 0.

• Finally the free boundary problem is solved.
In the first step the linear Stokes equations are solved.
In all other iterations the convective terms are linearized by Picard. To that end the coeffi-
cients are changed before the free boundary loop.
It is not necessary to solve the non-linear equations in each step. In fact one iteration (i.e.
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Figure 7.1.6.1: Geometry definition for the co-flowing streams problem; initial mesh

solution of a linear system) is sufficient, since after each iteration the boundary is adapted.
Since this process is a Picard iteration itself, it makes no sense to use a Newton linearization
of the convective terms.

• Once the process has been converged, the pressure and the stress are computed and all vectors
are written to the files sepcomp.out and sepcomp.inf for post-processing purposes.

The following input file has been used:

*coflow.prb

constants

vector_names

velocity

pressure

stress

end

mesh2d

points

p1=(2,0)

p2=(2,1)

p3=(2,6)

p4=(1,6)

p5=(0,6)

p6=(0,1)

p7=(0,0)

p8=(1,0)

p9=(1,1)

curves

c1 =line2(p1,p2,nelm=4,ratio=2,factor=0.7)

c2 =line2(p2,p3,nelm=8,ratio=4,factor=0.8)

c3 =line2(p3,p4,nelm=4)

c4 =line2(p4,p5,nelm=4)

c5 =line2(p5,p6,nelm=8,ratio=2,factor=0.8)
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c6 =line2(p6,p7,nelm=4,ratio=4,factor=0.7)

c7 =line2(p7,p8,nelm=4)

c8 =line2(p8,p1,nelm=4)

c9 =line2(p8,p9,nelm=4,ratio=2,factor=0.7)

c10=line2(p9,p4,nelm=8,ratio=4,factor=0.8)

c11=line2(p2,p9,nelm=4,ratio=2,factor=0.7)

c12=line2(p9,p6,nelm=4,ratio=4,factor=0.7)

surfaces

s1=rectangle4(c1,c11,-c9,c8)

s2=rectangle4(c2,c3,-c10,-c11)

s3=rectangle4(c9,c12,c6,c7)

s4=rectangle4(c10,c4,c5,-c12)

plot(jmark=5, numsub=4,plotfm=15)

end

problem

types

elgrp1=(type=900)

natboundcond

bngrp1=(type=910)

bngrp2=(type=910)

bounelements

belm1=curves(shape=2,c8)

belm2=curves(shape=2,c7)

essbouncond

* symmetry

degfd1=curves (c5,c6)

* fixed wall

degfd1,degfd2=curves (c1,c2)

degfd1,degfd2=curves (c9)

* outlet

degfd1=curves200(c3)

degfd1=curves100(c4)

* inlet

degfd1=curves (c7,c8)

end

coefficients

elgrp1 (nparm=20)

icoef2 = 1 # Newtonian fluid

icoef5 = 0 # stokes

coef6 = 1d-8 # penalty parameter

coef7 = 1 # rho

coef12= 1 # etha

bngrp1 (nparm=15)

icoef1 = 1 # normal and tangential direction

coef6 = -1 # Pressure boundary condition

bngrp2 (nparm=15)

icoef1 = 1 # normal and tangential direction

coef6 = -2 # Pressure boundary condition

end
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change coefficients

elgrp1

icoef5 = 1 # Picard

end

adapt_boundary

curves=c10, adaptation_method=film_method, quadratic, exclude_begin = both

exclude_end = second

end

adapt_mesh

end

structure

prescribe_boundary_conditions, velocity

solve_linear_system

change_coefficients

start_stationary_free_boundary

solve_linear_system

end_stationary_free_boundary

derivatives, seq_deriv=1, pressure

derivatives, seq_deriv=2, stress

output

end

stationary_free_boundary

maxiter=20, miniter=3, print_level=2, accuracy=1d-6, criterion = relative

end

derivatives, sequence_number=1

icheld = 7 # pressure

end

derivatives, sequence_number=2

icheld = 6 # stress

end

end_of_sepran_input

It is essential that the velocity vt in the last point of C3, which is the same as the first point of C4,
is not prescribed as an essential boundary condition. The adaptation of the position of curve C10

is subjected to the following constraints:

• The first point of C10 has a fixed position.

• The last point of C10 has a fixed x2 co-ordinate.

The resulting mesh has been plotted in Figure 7.1.6.2.

The commands that are required for the program SEPPOST are given below:

*coflow.pst

post processing

* Print all three vectors completely

print velocity

print pressure

print stress
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Figure 7.1.6.2: Final mesh and velocity vectors

* Compute stream function, store in stress, and name this vector

compute stream_function = stream function velocity

* Plot the results

plot mesh

plot vector velocity # Vector plot of velocity

plot contour pressure (nlevel=25) # Contour plot of pressure

plot contour stream_function (nlevel=20) # Contour plot of stream function

end

The resulting velocity vectors have also been plotted in Figure 7.1.6.2. The pressure contour lines
(isobars) and the streamlines have been plotted in Figure 7.1.6.3.
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Figure 7.1.6.3: Isobars and streamlines

7.1.7 Convection in the earth mantle

Studying convection in planetary interiors requires a -costly- solution of the 3D Stokes and heat
equations in spherical geometry. A reduction in computational cost can be made by approximating
the sphere by a 2D cylinder geometry. For convection in the silicate mantle of Earth the geometry
shown in Figure 7.1.7.1a may be used. Gravity is directed towards the centre of the planet and the

g g

x

y

free slip

r

θ

free slip

a) b)
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P1

P5

C2

C1

Figure 7.1.7.1: Definition of region and boundary conditions

boundary conditions at top and bottom of the mantle are free-slip. The Stokes equations may be
solved in Cartesian coordinates, but this requires local transformations for the free-slip boundary
conditions. The reason is that we want to prescribe the normal component (un = 0) of the velocity,
but that the tangential component is free. This component is not in the direction of the co-ordinate
axis.
Since the solution is fixed upon an additive constant, it is necessary to prescribe the velocity in one
point.

To get this example into your local directory use:
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sepgetex earth

and to run it use:

sepmesh earth.msh

seplink earth

earth < earth.prb

seppost earth.pst

Below is a simple example that show how the mesh needs to be defined to make sure that the local
transformations work correctly.

The mesh can be defined by the five points and four curves shown (with orientation) in Fig-
ure 7.1.7.1b. For the local transformations the inner and outer boundary are defined as two separate
curves (C5 and C6), where the orientation of the inner curve is reversed, such that the normal to
the curve points away from the computational domain.

In the computational part the boundary conditions are prescribed on curves C5 and C6. The iso-
viscous, incompressible Stokes equations are solved using the penalty function method. The gravity
vector is directed to the centre of the cylinder and consequently the buoyancy forces are described
by two components:

f = −f
[
sin(θ)
cos(θ)

]
, (7.1.7.1)

where θ is the co-latitude. In the example below, the buoyancy forces are described by a simple
harmonic perturbation in θ. The applied buoyancy force leads to a pattern of eight convection cells,
symmetric around x=0 and y=0. The outer curves for the local transformation have been chosen
such that a counter clockwise direction is used. In this specific example this is not necessary.

The following input file may be used to define the mesh:

*earth.msh

mesh2d

coarse(unit=20)

points

p1=(0, -1.0, 0.005)

p2=(0, -0.5, 0.005)

p3=(0, 0.0, 0.005)

p4=(0, 0.5, 0.005)

p5=(0, 1.0,0.005)

curves

c1 = carc2(p1,p5,p3)

c2 = carc2(p5,p1,p3)

c3 = carc2(p2,p4,p3)

c4 = carc2(p4,p2,p3)

c5 = curves(c3,c4)

c6 = curves(c1,c2)

c7 = cline2(p1,p2)

surfaces

s1 =general4(c1,c2,c7,-c4,-c3,-c7)

plot

end

The mesh created can be found in Figure 7.1.7.2.

Since the right-hand side is a function of the co-ordinates, it is necessary to write a simple program
provided with the function subroutine FUNCCF. This program is given below:
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program earthconvection

call sepcom(0)

end

! *************************************************************

! FUNCCF

!

! Define buoyancy forces to drive flow in a cylindrical

! geometry. It is assumed that the gravity points to the

! center of the cylinder (as if to model a self-gravitating

! planet): g = - (sin(theta),cos(theta))

!

! The buoyancy forces specified below should lead to an 8-cell

! convection pattern, symmetrical around x=0.

! *************************************************************

function funccf(ifunc,x,y,z)

implicit none

integer ifunc

double precision funccf,x,y,z

double precision r,theta,sint,cost,asin,pi

parameter(pi=3.1415926d0)

! --- find polar coordinates for this point

r = sqrt(x*x+y*y)

theta = asin(y/r)

! --- sin(theta),cos(theta)

sint = x/r

cost = y/r

if ( ifunc.eq.1 ) then

funccf = cos((theta+pi/2d0)*4d0) * sint

else if ( ifunc.eq.2 ) then

funccf = cos((theta+pi/2d0)*4d0) * cost

end if

end

The corresponding input file is a standard function for program SEPCOMP. It has the following
shape:

*earth.prb

constants # See Users Manual Section 1.4

vector_names

velocity

end

problem

types

elgrp1=(type=900)

essboundcond

degfd2=points(p1)

degfd1=curves(c5)

degfd1=curves(c6)

localtransform
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degfd1,degfd2=curves(-c5)

degfd1,degfd2=curves(c6)

end

matrix

symmetric

end

coefficients

elgrp1 (nparm=20)

icoef2 = 1

coef6 = (value=1d-6)

coef7 = (value=1)

coef9 = (func=1)

coef10 = (func=2)

coef12 = (value=1)

end

solve

positive_definite

direct_solver = profile

end

The output of this program may be vizualised with program seppost in combination with sepview.
In the input file below we plot the velocity vector

*earth.pst

postprocessing

plot vector velocity

end

The velocity field is plotted in Figure 7.1.7.2.

  

Figure 7.1.7.2: Mesh and velocity vectors
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7.1.8 Application of all 2D elements to a simple channel flow

In this section we consider a simple channel flow (Cartesian co-ordinates) for low Reynolds numbers.
The exact solution is a quadratic velocity profile perpendicular to the flow direction and a linear
pressure field. The reason to solve this simple problem is that it shows how the various element
shapes and element types may be used to solve the same problem.
In order to get these examples into your local directory use the command

sepgetex channelxx

where xx is a 2 digit number. The following numbers are available:
number shape type description

11 4 900 extended quadratic triangle, penalty method
12 5 900 linear quadrilateral, penalty method
13 6 900 biquadratic quadrilateral, penalty method
21 6 902 biquadratic quadrilateral, integrated method
22 7 902 extended quadratic triangle, integrated method
23 9 902 bilinear quadrilateral, integrated method
31 7 901 extended quadratic triangle, integrated method (elimination)
41 3 903 linear triangle, Taylor Hood
42 4 903 quadratic triangle, Taylor Hood
43 6 903 biquadratic quadrilateral, Taylor Hood
44 10 903 extended linear triangle, Taylor Hood

Figure 7.1.8.1 shows the channel and the corresponding curves. In curve C4 we have a parabolic

C

C

C

C

1

2

3

4

Figure 7.1.8.1: Definition of region and boundary conditions

inflow profile. This means that the tangential velocity is 0 and the normal velocity component is
prescribed by a quadratic function.
The curves C1 and C3 denote fixed walls and at curve C2 we prescribe parallel outflow. In all our
examples we use a 8 × 8 linear or 8 × 8 quadratic subdivision in elements.

The exact solution is shown in Figures 7.1.8.2 (velocity vectors), 7.1.8.3 (isobars), 7.1.8.4 (colored
pressure levels), 7.1.8.5 (stream lines) and 7.1.8.6 (colored stream function levels).

We consider the input of the different methods separately.

Penalty function approach For these elements type number 900 must be used. A penalty func-
tion parameter must be chosen, which for scaled problems is usually of the order 10−6. The
quadratic velocity profile is prescribed with the option QUADRATIC, and since we take a
maximum velocity of 1, MAX does not have to be given.
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Figure 7.1.8.2: Vector plot of velocity field
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Figure 7.1.8.3: Isobars

To show how one can compute special quantities during the computation, a structure block
is provided. In this block not only the velocity is computed, but also the pressure and a
boundary integral of the pressure over the inflow curve C4 is computed and printed.
At this moment 3 different element shapes are available for the 2D case.

shape = 4 The input for program SEPMESH is given in the following input file (chan-
nel11.msh):

# channel11.msh

#

# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepmesh channel11.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel
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Figure 7.1.8.4: colored pressure levels

2
3

4 56 7 8
9
10

11

 

Figure 7.1.8.5: stream lines

length = 4 # length of the channel

integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

shape_cur = 2 # Type of elements along curves

# quadratic elements

shape_sur = 6 # Type of elements in surface

# Quadratic triangles

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#
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Figure 7.1.8.6: colored stream function levels

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The input file for SEPCOMP is given by the file channel11.prb:

# channel11.prb

#

# problem file for 2d channel problem

# penalty function approach

# problem is stationary and non-linear

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepcomp channel11.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals
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eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 1 # density

eta = 0.01 # viscosity

vector_names

velocity

pressure

variables

pressure_int

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Fixed under wall

curves(c3) # Fixed side walls and instream boundary

curves(c4) # inflow

degfd2=curves(c2) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary

# is required

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions velocity

solve_nonlinear_system velocity

# Compute the pressure

derivatives pressure

# Compute the integral of the pressure over curve c2 (outflow boundary)

boundary_integral,pressure, scalar1 = pressure_int

print pressure_int, text = ’integral of pressure over curve c2’

# Write the results to a file

output

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0
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end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

#

# Define information with respect to the boundary integral to be computed

# See Users Manual, Section 3.2.14

#

boundary_integral, sequence_number = 1

ichint = 1 # Standard integration

curves = c4 # integral over curve c4

end

# compute pressure

# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1
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end

end_of_sepran_input

The standard nonlinear algorithm, i.e. start with Stokes, do one step Picard and finally
use Newton is applied. However, for this particular problem the solution is reached in
two steps due to the fact that the convective terms do not play a role.
The solution with this element is of course exact up to an accuracy of the order of 10−6,
which is the penalty function parameter.
The postprocessing input file channel11.pst, which produces the pictures shown before
is defined by:

# channel11.pst

# Input file for postprocessing for channel problem

# See Manual Standard Elements Section 7.1.8

#

#

# To run this file use:

# seppost channel11.pst > channel11.out

#

# Reads the files meshoutput and sepcomp.out

#

#

postprocessing # See Users Manual Section 5.2

#

# compute the stream function

# See Users Manual Section 5.2

# store in stream_function

compute stream_function = stream function velocity

# Plot the results

# See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot coloured contour pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

end

shape = 5 In this case we use an element that does not satisfy the Brezzi Babuska condition.
However, still the results are reasonable, due to the fact that at outflow no velocity is
prescribed.
One can not expect exact results since the pressure approximation is only constant per
element and the velocity approximation is only linear.
The mesh input file channel12.msh is given by:

# channel12.msh

#

# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepmesh channel12.msh
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#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 8 # number of elements in length direction

m = 8 # number of elements in width direction

shape_cur = 1 # Type of elements along curves

# linear elements

shape_sur = 5 # Type of elements in surface

# Bilinear quadrilaterals

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The problem file and the postprocessing file are completely identical to the one used for
shape = 4.
The pictures for the velocity and the stream lines do not show any difference with the
exact solution. The isobars in Figure 7.1.8.7 however, show that the solution is not exact.

shape = 6 In this biquadratic case the solution is again nearly exact. The problem file and
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Figure 7.1.8.7: Isobars (shape=5)

the postprocessing file are completely identical to the one used for shape = 4.
The mesh input file channel13.msh is given by

# channel13.msh

#

# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepmesh channel13.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

shape_cur = 2 # Type of elements along curves

# quadratic elements

shape_sur = 6 # Type of elements in surface

# Bi-quadratic quadrilaterals

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point
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#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Integrated method In the integrated method, there is no need to prescribe a penalty parameter.
However, in this case we must be careful with respect to the solution method since the conti-
nuity equation does not contain the pressure. As a consequence the equations corresponding
to the pressure unknowns contain a zero at the main diagonal. Since the linear solver does not
apply a kind of pivoting it is necessary to order the unknowns such that the first rows of the
matrix correspond to velocity unknowns and that rows corresponding to pressure unknowns
follow these velocity rows. This can be achieved by the option renumber in the problem file.
However, if we start with all velocity unknowns and then all pressure unknowns the size of the
matrix is very large. For that reason the option renumber levels is used. If this option is used
it is best to take care of a good numbering of the nodes. It is best to start the renumbering
with the outflow boundary, since there only a part of the velocity unknowns are prescribed.
Furthermore for this problem the Cuthill-McKee numbering is preferred above the standard
renumbering. In order to force such a numbering we use the option

renumber, start = c2, Cuthill_McKee, always

in the mesh input files.
Next we consider the three shapes that are available for type number 902.

shape = 6 The mesh input file is given by:

# channel21.msh

#

# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepmesh channel21.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel
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integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

shape_cur = 2 # Type of elements along curves

# quadratic elements

shape_sur = 6 # Type of elements in surface

# Bi-quadratic quadrilaterals

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

renumber, start = c2, Cuthill_McKee, always

# Force a renumbering

# See Users Manual Section 2.2

end

The problem input file is given by:

# channel21.prb

#

# problem file for 2d channel problem

# integrated method

# problem is stationary and non-linear

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepcomp channel21.prb

#

# Reads the file meshoutput
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# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

rho = 1 # density

eta = 0.01 # viscosity

vector_names

velocity

pressure

variables

pressure_int

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=902 # Type number for Navier-Stokes, without swirl

# integrated approach

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Fixed under wall

curves(c3) # Fixed side walls and instream boundary

curves(c4) # inflow

degfd2=curves(c2) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

renumber levels (1,2),(3,4,5) # renumber the unknowns such that for each

# level first we have all velocities and then

# all pressures, thus avoiding zero pivots

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary

# is required

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity

solve_nonlinear_system, velocity

# Compute the pressure

derivatives, pressure

# Compute the integral of the pressure over curve c2 (outflow boundary)

boundary_integral, pressure, scalar1 = pressure_int

print pressure_int, text = ’integral of pressure over curve c2’

# Write the results to a file

output
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end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

#

# Define information with respect to the boundary integral to be computed

# See Users Manual, Section 3.2.14

#

boundary_integral, sequence_number = 1
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ichint = 1 # Standard integration

curves = c4 # integral over curve c4

end

# compute pressure

# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

end

end_of_sepran_input

The input file for the postprocessing is the same as for the penalty function approach.

shape = 7 The mesh input file is given by:

# channel22.msh

#

# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepmesh channel22.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

shape_cur = 2 # Type of elements along curves

# quadratic elements

shape_sur = 7 # Type of elements in surface

# Extended quadratic triangles

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#

# curves

#
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curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

renumber, start = c2, Cuthill_McKee, always

# Force a renumbering

# See Users Manual Section 2.2

end

The input files for SEPCOMP and SEPPOST are the same as for shape 6.

shape = 9 The mesh input file is given by:

# channel23.msh

#

# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepmesh channel23.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 8 # number of elements in length direction

m = 8 # number of elements in width direction

shape_cur = 1 # Type of elements along curves

# linear elements

shape_sur = 9 # Type of elements in surface

# Extended bi-linear quadrilaterals

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point
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p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

renumber, start = c2, Cuthill_McKee, always

# Force a renumbering

# See Users Manual Section 2.2

end

The corresponding problem input file is:

# channel23.prb

#

# problem file for 2d channel problem

# integrated method

# problem is stationary and non-linear

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepcomp channel23.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

rho = 1 # density

eta = 0.01 # viscosity

vector_names

velocity

pressure

variables

pressure_int

end

#
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# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=902 # Type number for Navier-Stokes, without swirl

# integrated approach

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Fixed under wall

curves(c3) # Fixed side walls and instream boundary

curves(c4) # inflow

degfd2=curves(c2) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

renumber levels (1,2),(3) # renumber the unknowns such that for each

# level first we have all velocities and then

# all pressures, thus avoiding zero pivots

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary

# is required

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity

solve_nonlinear_system, velocity

# Compute the pressure

derivatives, pressure

# Compute the integral of the pressure over curve c2 (outflow boundary)

boundary_integral, pressure scalar1 = pressure_int

print pressure_int, text = ’integral of pressure over curve c2’

# Write the results to a file

output

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1
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coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = 1d-12 # 6: Penalty parameter to prevent singular matrix

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

#

# Define information with respect to the boundary integral to be computed

# See Users Manual, Section 3.2.14

#

boundary_integral, sequence_number = 1

ichint = 1 # Standard integration

curves = c4 # integral over curve c4

end

# compute pressure

# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

end

end_of_sepran_input

You can see that in this case we have introduced a penalty function parameter. The
reason is that the matrix is singular if we set the penalty function parameter equal
to zero. This is caused by the fact that this element does not satisfy the BB condition.
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Adding a very small amount of penalty function, which means the diagonal of the matrix
corresponding to the pressure rows is updated by a small number, is sufficient to get rid
of this singularity.

Integrated method with elimination A special possibility is to use shape number 7 in combi-
nation with the elimination of the centroid velocity and the gradient of the pressure in the
element centers. In this case type number 901 must be used. Furthermore there is no differ-
ence with type number 902.
The mesh input file is given by:

# channel31.msh

#

# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepmesh channel31.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

shape_cur = 2 # Type of elements along curves

# quadratic elements

shape_sur = 7 # Type of elements in surface

# Extended quadratic triangles

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary
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#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

renumber, start = c2, Cuthill_McKee, always

# Force a renumbering

# See Users Manual Section 2.2

end

the problem input file is:

# channel31.prb

#

# problem file for 2d channel problem

# integrated method, centroid velocity and pressure gradient eliminated

# problem is stationary and non-linear

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepcomp channel31.prb

#

# Reads the file meshoutput

# Creates the files sepcomp.inf and sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

rho = 1 # density

eta = 0.01 # viscosity

vector_names

velocity

pressure

variables

pressure_int

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=901 # Type number for Navier-Stokes, without swirl

# integrated approach

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2
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curves(c1) # Fixed under wall

curves(c3) # Fixed side walls and instream boundary

curves(c4) # inflow

degfd2=curves(c2) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

renumber levels (1,2),(3) # renumber the unknowns such that for each

# level first we have all velocities and then

# all pressures, thus avoiding zero pivots

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary

# is required

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity

solve_nonlinear_system, velocity

# Compute the pressure

derivatives, pressure

# Compute the integral of the pressure over curve c2 (outflow boundary)

boundary_integral, pressure, scalar1 = pressure_int

print pressure_int, text = ’integral of pressure over curve c2’

# Write the results to a file

output

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7
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change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

#

# Define information with respect to the boundary integral to be computed

# See Users Manual, Section 3.2.14

#

boundary_integral, sequence_number = 1

ichint = 1 # Standard integration

curves = c4 # integral over curve c4

end

# compute pressure

# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

end

end_of_sepran_input

Taylor Hood elements Taylor Hood elements are characterized by the fact that the pressure is
not longer discontinuous but that a continuous approximation with unknowns in the vertices
is applied.
In this case type number 903 must be used.
At this moment 4 different shapes of elements are available.

shape = 3 This is the so-called mini element. Both the velocity and the pressure are ap-
proximated linearly. However, the velocity field consists of a linear part plus a bubble
function that is eliminated later on.
Since the pressure is available in the vertices, one could think of prescribing the pressure
at the outflow. However, mathematically speaking one should not prescribe the pressure
explicitly but use the normal stress instead. In fact prescribing the pressure does not
give essentially different results.
The mesh input file is given by

# channel41.msh

#
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# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepmesh channel41.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 8 # number of elements in length direction

m = 8 # number of elements in width direction

shape_cur = 1 # Type of elements along curves

# linear elements

shape_sur = 3 # Type of elements in surface

# Linear triangles (mini element)

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

renumber, start = c2, Cuthill_McKee, always

# Force a renumbering

# See Users Manual Section 2.2
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end

And the corresponding problem input file:

# channel41.prb

#

# problem file for 2d channel problem

# integrated method

# problem is stationary and non-linear

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepcomp channel41.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

rho = 1 # density

eta = 0.01 # viscosity

vector_names

velocity_pressure

variables

pressure_int

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=903 # Type number for Navier-Stokes, without swirl

# integrated approach, Taylor Hood approach

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# Only velocities are prescribed, not the

# pressures

degfd1,degfd2=curves(c1) # Fixed under wall

degfd1,degfd2=curves(c3) # Fixed side walls and instream boundary

degfd1,degfd2=curves(c4) # inflow

degfd2 =curves(c2) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary

# is required



EX Channel flow March 2009 7.1.8.25

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity_pressure

solve_nonlinear_system, velocity_pressure

# Compute the integral of the pressure over curve c2 (outflow boundary)

# Now the pressure is part of the solution vector

boundary_integral, velocity_pressure scalar1 = pressure_int

print pressure_int, text = ’integral of pressure over curve c2’

# Write the results to a file

output

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1
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equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

#

# Define information with respect to the boundary integral to be computed

# See Users Manual, Section 3.2.14

#

boundary_integral

ichint = 1 # Standard integration

curves = c4 # integral over curve c4

degree_of_freedom = 3 # The pressure is third degree of freedom

end

end_of_sepran_input

Note that in this case it is necessary to prescribe explicitly the degrees of freedom 1 and
2 at boundaries where the velocity is given, since the third degree of freedom corresponds
to the pressure. The pressure is not prescribed at the boundary. Since the pressure is
already available in the vertices, there is no need to write the pressure separately to the
output file. However, using the output option as in the case of the Crouzeix Raviart
elements is also allowed.
The corresponding postprocessing file is

# channel41.pst

# Input file for postprocessing for channel problem

# See Manual Standard Elements Section 7.1.8

#

#

# To run this file use:

# seppost channel41.pst > channel41.out

#

# Reads the files meshoutput and sepcomp.out

#

#

postprocessing # See Users Manual Section 5.2

#

# compute the stream function

# See Users Manual Section 5.2

# store in stream_function

compute stream_function = stream function velocity_pressure

# Plot the results

# See Users Manual Section 5.4

plot vector velocity_pressure # Vector plot of velocity

plot contour velocity_pressure, degfd=3 # Contour plot of pressure

plot coloured contour velocity_pressure, degfd=3

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

end

The quality of the solution in this case is less than that of the other elements. The
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velocity field looks al-right but the pressure contours (Figure 7.1.8.8) are definitely less
accurate. The only reason to use this element is that it has only a limited number of
unknowns and that it can be used easily in combination with iterative linear solvers.
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Figure 7.1.8.8: Isobars (mini element shape=3)

shape = 4 The quadratic element is of course exact.
The mesh input file is given by

# channel42.msh

#

# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepmesh channel42.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

shape_cur = 2 # Type of elements along curves

# quadratic elements

shape_sur = 4 # Type of elements in surface

# quadratic triangles

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point
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p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

renumber, start = c2, Cuthill_McKee, always

# Force a renumbering

# See Users Manual Section 2.2

end

The input files for SEPCOMP and SEPPOST are identical to the ones for the mini
element.

shape = 6 Also in this case we have an exact solution.
The mesh input file is given by:

# channel43.msh

#

# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepmesh channel43.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

shape_cur = 2 # Type of elements along curves

# quadratic elements

shape_sur = 6 # Type of elements in surface

# Bi-quadratic quadrilaterals

end

#
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# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

renumber, start = c2, Cuthill_McKee, always

# Force a renumbering

# See Users Manual Section 2.2

end

shape = 10 This element is equivalent to the mini element. The only difference is that the
mid point has not been eliminated.
The mesh input file is:

# channel44.msh

#

# mesh file for 2d channel problem

# See Manual Standard Elements Section 7.1.8

#

# To run this file use:

# sepmesh channel44.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 8 # number of elements in length direction
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m = 8 # number of elements in width direction

shape_cur = 1 # Type of elements along curves

# linear elements

shape_sur = 10 # Type of elements in surface

# Extended linear triangles

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

renumber, start = c2, Cuthill_McKee, always

# Force a renumbering

# See Users Manual Section 2.2

end
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7.1.9 Example of a periodic channel flow

In this section we consider a simple channel flow (Cartesian co-ordinates) for low Reynolds numbers.
This is the same problem as treated in Section 7.1.8. However, in this case we prescribe the mass
flux at the inflow boundary C4, see Figure 7.1.8.1 and we assume that velocity is periodical at sides
C2 and C4.
As a consequence the pressure at inflow and outflow will also be periodical, however, with an
unknown pressure difference. This difference is implicitly defined by the mass flux.
To solve this problem both the penalty function approach (elements of type 912) and the approach
with global unknowns (elements of type 913) is considered.
Just as in Section 7.1.8 there are a number of examples available.
In order to get these examples into your local directory use the command

sepgetex chanperx

where x is a 1 digit number. The following numbers are available:
number shape type description

1 4 900 extended quadratic triangle, penalty method, penalty approach
2 4 900 extended quadratic triangle, penalty method, global unknowns
3 7 902 extended quadratic triangle, integrated method, global unknowns
4 7 902 See 3, iterative linear solver
5 3 903 linear triangle, Taylor Hood, global unknowns
6 3 902 See 5, iterative linear solver
7 6 901 biquadratic quadrilateral, Taylor Hood, global unknowns
8 6 903 See 7, iterative linear solver

penalty function approach
In order to get this example into your local directory use the command

sepgetex chanper1

The mesh definition is nearly the same as in 7.1.8, except for two items. First of all we need to
define a line element along C4, that is used to define the mass flux. Next we need connection
elements to define the periodical boundary conditions.
The input file for SEPMESH (chanper.msh) has the following form:

# chanper1.msh

#

# mesh file for 2d channel problem

# periodical boundary conditions

# penalty function approach

# Mass flux given, treated with large line element and penalty approach

# Crouzeix-Raviart type elements

# See Manual Standard Elements Section 7.1.9

#

# To run this file use:

# sepmesh chanper1.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel
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integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

shape_cur = 2 # Type of elements along curves

# quadratic elements

shape_sur = 4 # Type of elements in surface

# quadratic triangles

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

meshline

lelm1 = (shape=-1,c4) # One large line element for the

# mass flux

meshsurf

selm2=s1 # Internal elements

meshconnect

celm3 = curves300(c2,-c4) # Connection elements for the

# periodical boundary conditions

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

To run program SEPCOMP we need an input file. Instead of the usual one element group as
in Section 7.1.8, we need 3 groups.

element group 1 corresponds to the line element and has type number 912. This defines
the mass flux.

element group 2 corresponds to the internal elements and has type number 900. This
defines the Navier-Stokes equations.
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element group 3 corresponds to the connection elements and has type number -1. This
defines the periodical boundary conditions.

Furthermore in the computation of the pressure it is necessary to skip over the periodical
boundary elements, since otherwise the pressure is also made periodical. This means that we
can not define the pressure in the input block OUTPUT but need a separate block DERIVA-
TIVES.
As a consequence a block STRUCTURE is necessary, since otherwise the derivatives block is
never used.

The input file for SEPCOMP looks like:

# chanper1.prb

#

# problem file for 2d channel problem

# periodical boundary conditions

# penalty function approach

# Mass flux given, treated with large line element and penalty approach

# Crouzeix-Raviart type elements

# problem is stationary and non-linear

# See Manual Standard Elements Section 7.1.9

#

# To run this file use:

# sepcomp chanper1.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

massflux = 0.66666667 # mass flux

penalflux = 1d6 # penalty parameter for mass flux

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 1 # density

eta = 0.01 # viscosity

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=912 # Type number for given mass flux

elgrp2=900 # Type number for Navier-Stokes, without swirl

elgrp3=-1 # periodic boundary conditions

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2
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curves(c1) # Fixed under wall

curves(c3) # Fixed upper wall

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary since the computation of the pressure requires some

# extra care

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity

solve_nonlinear_system, velocity

# Compute the pressure

derivatives, pressure

# Write the results to a file

output

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

coefficients

elgrp1 ( nparm=10 ) # The coefficients for the mass flux bc

# are defined by 10 parameters

icoef3 = 2 # 3: type of integration (2=quadratic)

icoef5 = 1 # 5: Degree of freedom (1=u)

coef6 = massflux # 6: Mass flux

coef7 = penalflux # 7: Penalty parameter

elgrp2 ( nparm=20 ) # The coefficients for Navier-Stokes are defined

# by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp2

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp2

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

nonlinear_equations # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1
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equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# The pressure is computed as a derived quantity of the Navier-Stokes

# equation

# See Users Manual Section 3.2.11

derivatives

icheld = 7

skip_element_groups = (3) # The pressure is not periodic and hence

# this group must be skipped

end

end_of_sepran_input

The postprocessing file is in this case exactly the same as for the standard channel flow
problem:

# chanper1.pst

# Input file for postprocessing for channel problem

# periodical boundary conditions

# penalty function approach

# Mass flux given, treated with large line element and penalty approach

# Crouzeix-Raviart type elements

# See Manual Standard Elements Section 7.1.9

#

#

# To run this file use:

# seppost chanper1.pst > chanper1.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

# compute the stream function

# See Users Manual Section 5.2

#

compute stream function velocity

# Plot the results

# See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity

plot contour pressure text=’isobars’ # Contour plot of pressure

plot coloured contour pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

end

The results produced are identical to the ones shown in Section 7.1.8 and will not be repeated.

global unknowns approach
In order to get this example into your local directory use the command
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sepgetex chanper2

In this case there is no need to introduce a large line element. Only the periodical boundary
conditions are needed and hence the connection elements. The mesh input file is for example

# chanper2.msh

#

# mesh file for 2d channel problem

# periodical boundary conditions

# Mass flux given, treated with global unknowns

# Crouzeix-Raviart type elements

# See Manual Standard Elements Section 7.1.9

#

# To run this file use:

# sepmesh chanper2.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

shape_cur = 2 # Type of elements along curves

# quadratic elements

shape_sur = 4 # Type of elements in surface

# quadratic triangles

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(length,0) # Right under point

p3=(length,width) # Right upper point

p4=(0,width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line shape_cur (p1,p2,nelm=n) # lower wall

c2=line shape_cur (p2,p3,nelm=m) # outflow boundary

c3=line shape_cur (p3,p4,nelm=n) # upper wall

c4=line shape_cur (p4,p1,nelm=m) # inflow boundary

#

# surfaces

#
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surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur (c1,c2,c3,c4)

meshsurf

selm1=s1 # Internal elements

meshconnect

celm2 = curves300(c2,-c4) # Connection elements for the

# periodical boundary conditions

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

In the problem definition we have to introduce one global unknown, representing the pressure
jump. This global unknown corresponds to the mass flux and is defined over the inflow
boundary c4.
So now we have two element groups and one global element group.

element group 1 corresponds to the internal elements and has type number 900. This
defines the Navier-Stokes equations.

element group 2 corresponds to the connection elements and has type number -1. This
defines the periodical boundary conditions.

global element group 1 corresponds to the curve c4 and has type number 913. This defines
the mass flux.

The rest of the input is more or less the same as for the penalty approach.
The input file for SEPCOMP is:

# chanper2.prb

#

# problem file for 2d channel problem

# periodical boundary conditions

# penalty function approach

# Mass flux given, treated with global unknowns

# Crouzeix-Raviart type elements

# problem is stationary and non-linear

# See Manual Standard Elements Section 7.1.9

#

# To run this file use:

# sepcomp chanper2.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

massflux = 0.66666667 # mass flux

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 1 # density

eta = 0.01 # viscosity

vector_names
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velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

elgrp2=-1 # periodic boundary conditions

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c1) # Fixed under wall

curves(c3) # Fixed upper wall

global_unknowns # define element group for global unknown

glgrp1=913 # Type number for given mass flux

global_elements

gelm1 = curves(c4) # mass flux is defined along inflow boundary

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary since the computation of the pressure requires some

# extra care

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity

solve_nonlinear_system, velocity

# Compute the pressure

derivatives, pressure

# Write the results to a file

output

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

coefficients

elgrp1 ( nparm=20 ) # The coefficients for Navier-Stokes are defined

# by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

glgrp1 ( nparm=10 ) # The coefficients for the mass flux bc

# are defined by 10 parameters

icoef5 = 1 # 5: Degree of freedom (1=u)

coef6 = massflux # 6: Mass flux

end
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# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

nonlinear_equations, sequence_number = 1 # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# The pressure is computed as a derived quantity of the Navier-Stokes

# equation

# See Users Manual Section 3.2.11

derivatives

icheld = 7

skip_element_groups = (2) # The pressure is not periodic and hence

# this group must be skipped

end

end_of_sepran_input

The post processing file is exactly the same as for the penalty approach and is not repeated
here.
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7.1.10 Flow between staggered pipes with anti-symmetric boundary con-
ditions

In this section we consider the flow between a number of pipes in a staggered arrangement. Due
to the staggering of the pipes it is sufficient to consider the dashed region in Figure 7.1.10.1. At
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2

Figure 7.1.10.1: Computational region in array of staggered pipes with anti-periodic boundary
conditions

the boundaries Γ2 and Γ4 symmetry boundary conditions are used, i.e. u · n = 0, σnt = 0 and
along the boundaries Γ1 and Γ3 we need anti-symmetrical boundary conditions. This means that
the velocity is anti-symmetric periodical and that the pressure has a pressure difference. In fact
the same method as in Section 7.1.9 is used, with the exception that points at sides Γ1 and Γ3 are
connected in crossed way. Hence points at the top of Γ1 are connected with points at the lower
part of Γ3 and vice versa.

The example we use is described in Segal et al (1994).
The radius of the pipes is 10.85 mm, the distance between the centroids of neighboring pipes is
45 mm both in horizontal as in vertical directions. The mean velocity V0 (from left to right) at
the inlet is 1.06 m/s, which implies that the flow rate Q is given by Q = 0.01235 m3/s. The
Reynolds number ReD is related to the diameter D of the pipes. The flow has been computed for
ReD = ρV0D

µ ≈ 362.

In order to get this example into your local directory use the command

sepgetex tube

The definition of the curves is given in Figure 7.1.10.2.
The input file for SEPMESH (tube.msh) has the following form:

*

* tube.msh

*

* mesh input for the staggered pipes example

*

mesh2d

coarse ( unit=0.001)

points

p1=(-0.01165,0)

p2=(0,0)
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Figure 7.1.10.2: Definition of curves for tube problem

p3=(0,0.01165)

p4=(-0.01085,0.0225)

p5=(-0.0225,0.0225)

p6=(-0.0225,0.01085)

p7=(-0.0225,0)

p8=(0,0.0225)

curves

c1=cline2(p1,p2)

c2=cline2(p2,p3)

c3=carc2(p3,p4,-p8)

c4=cline2(p4,p5)

c5=cline2(p5,p6)

c6=carc2(p6,p1,-p7)

surfaces

s1=general4(c1,c2,c3,c4,c5,c6)

meshline

lelm1 = (shape=-1,c5) # Line element for mass flux

meshsurf

selm2=s1 # Internal element

meshconnect

celm3 = curves0(c2,c5) # Connection elements for

# anti-symmetric periodical

# boundary conditions

plot

end

The mesh created including the connection elements is shown in Figure 7.1.10.3.
The input file for SEPCOMP is nearly the same as the one described in Section 7.1.10

* tube.prb

*

* input for computing program Navier-Stokes in staggered pipes with

* anti-symmetrical periodical boundary conditions

*

* Penalty function method

*

*
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Figure 7.1.10.3: Mesh for tube problem

#

# Define some general constants

#

constants # See Users Manual Section 1.4

vector_names

velocity

pressure

end

problem

* Define type of elements

types

elgrp1=912 # Type number for given mass flux

elgrp2=900 # Type number for Navier-Stokes, without swirl

elgrp3=-1 # periodic boundary conditions

* Define where essential boundary conditions are present

essbouncond

curves (c3) # Fixed upper tube

curves (c6) # Fixed lower tube

degfd2, curves (c4) # v=0 at c4, (symmetry)

degfd2, curves (c1) # v=0 at c1, (symmetry)

end

* Define structure of the program

* This is necessary since the compuation of the pressure requires some

* extra care

structure

* Compute the velocity

prescribe_bounday_conditions, velocity

solve_nonlinear_system, velocity

* Compute the pressure
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derivatives, pressure

output

end

* Input for subroutine FILCOF at the first iteration (iteration 0)

* At this moment the input for FILCOF is required for each iteration

* with a change in the input.

* In a forthcoming version it will not longer be necessary to repeat this

* input completely

coefficients

elgrp1 ( nparm=10 ) # The coefficients for the mass flux bc

#are defined by 10 parameters

icoef3 = 2 # 3: type of integration (2=quadratic)

icoef5 = 1 # 5: Degree of freedom (1=u)

coef6 = 0.01235 # 6: Mass flux

coef7 = 1d6 # 7: Penalty parameter

elgrp2 ( nparm=20 ) # The coefficients for Navier-Stokes are defined

# by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = 1d-6 # 6: Penalty function parameter eps

coef7 = 1 # 7: Density

coef12 = 0.000635 #12: Value of eta (viscosity)

end

* Define the coefficients for the next iterations

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp2

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp2

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

* Define the parameters for the non-linear solver

nonlinear_equations

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

* Define the computation of the pressure

derivatives

icheld = 7

skip_element_groups = (3) # The pressure is not periodic and hence
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# this group must be skipped

end

end_of_sepran_input

The postprocessing file is in this case exactly the same as for the standard channel flow problem:

*

* tube.pst

*

post processing

* Compute stream funnction, store in stream_function, and name this vector

compute stream_function = stream function velocity

* PLot the results

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot coloured contour pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

end

Figure 7.1.10.4 shows the computed isobars, Figure 7.1.10.5 a colored levels plot of the pressure,
Figure 7.1.10.6 the stream lines and, Figure 7.1.10.7 a colored levels plot of the stream function.
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Figure 7.1.10.4: Isobars for tube problem
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Figure 7.1.10.5: Colored pressure levels for tube problem
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Figure 7.1.10.6: Stream lines for tube problem

7.1.11 Example of flow in a tube

In this section we consider the flow in a tube for low Reynolds numbers. This problem has been
provided by Peter Dierickx of Gent University.
This problem is very similar to that in Sections 7.1.8 and 7.1.9, however instead of a channel we
consider a tube.
First we consider the problem as a 2d axi-symmetric flow, later on we solve it as a three-dimensional
problem. There are several ways to solve the problem, all of which must give more or less the same
result.
The region in which the problem must be solved is sketched in Figure 7.1.11.1. The water flows
from the lower face (S6) to the upper face (S7). Since the problem is axi-symmetric it can be solved
as an axi-symmetric flow and then it is sufficient to consider the region sketched in Figure 7.1.11.2
(r,z-plane).
The problem can be solved analytically resulting in a quadratic velocity profile. In this section we
try to solve the problem in 5 different ways:

• As an axi-symmetric problem by prescribing the inflow velocity.

• As an axi-symmetric problem by prescribing the mass flux in combination with the penalty
function approach.
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Figure 7.1.10.7: Colored stream function levels for tube problem

• As an axi-symmetric problem by prescribing the mass flux in combination with a global
unknown.

• As a 3d problem by prescribing the mass flux in combination with a global unknown.

• Again as a 3d problem by prescribing the mass flux in combination with a global unknown.
In this case however, we use local transformations.
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Figure 7.1.11.1: Definition of tube with generating surfaces
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Figure 7.1.11.2: Definition of cross-section of tube with generating curves
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7.1.11.1 Axi-symmetric with inflow velocity field

In order to get this example into your local directory use the command

sepgetex tubeax1

The region to be defined is sketched in Figure 7.1.11.2. The height of the tube is 40, the
radius is 20.
The input file for SEPMESH (tubeax1.msh) has the following form:

# tubeax1.msh

# stationary laminar Newtonian flow

# mesh file for axi-symmetric flow of water in a tube

#

# See Manual Examples Section 7.1.11

#

# To run this file use:

# sepmesh tubeax1.msh

#

# Creates the file meshoutput

#

# Define some rectangle constants

#

constants # See Users Manual Section 1.4

real

r = 20 # radius = 20

l = 40 # length = 40

integers

nel_len = 4 # number of elements in length direction

nel_rad = 3 # number of elements in radial direction

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = (0,0) # Left under point

p2 = ( r,0) # Right under point

p3 = ( r, l) # Right upper point

p4 = (0, l) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1 = line2(p1,p4,nelm= nel_len, ratio=1, factor=1) # symmetry axis

c2 = line2(p4,p3,nelm= nel_rad, ratio=1, factor=1) # outflow

c3 = line2(p3,p2,nelm= nel_len, ratio=1, factor=1) # fixed wall

c4 = line2(p2,p1,nelm= nel_rad, ratio=1, factor=1) # inflow

#

# surfaces

#

surfaces # See Users Manual Section 2.4
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# Quadratic quadrilaterals are used

s1 = rectangle6(c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The v-component of the inflow velocity is given by the function: v(r) = 20(1− r2

202 ). In order
to introduce this velocity it is necessary to define a function subroutine FUNCBC. For that
reason we need a main program tubeax1.f:

program tubeax1

! --- Main program for axi-symmetric flow of water in a tube

! Periodical boundary conditions

! To link this program use:

!

! seplink tubeax1

implicit none

call sepcom (0)

end

! --- Define the velocity at inflow (quadratic profile)

function funcbc ( ichois, x, y, z )

implicit none

integer ichois

double precision x, y, z, funcbc

if ( ichois==1 ) then

funcbc = 20d0 * ( 1d0 -x**2 / 20d0**2 )

end if

end

To run program tubeax1 we need an input file. In this special case it has been decided to
prescribe the normal stress (pressure) at the outflow boundary. Therefore boundary elements
of type 910 are used. The rest of the input is more or less standard.

The input file for tubeax1 looks like:

# tubeax1.prb

#

# problem file for the axi-symmetric flow of water in a tube

# stationary laminar Newtonian flow

# penalty function approach

# See Manual Examples Section 7.1.11

#

# To run this file use:

# sepcomp tubeax1.prb

#

# Reads the file meshoutput
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# Creates the files sepcomp.inf and sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 998.2d-6 # density [g/mm3]

eta = 1.002d-3 # viscosity [g/mm/s] [Pa.s]

p0 = 10 # pressure at outflow

vector_names

velocity

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

elgrp1 = 900 # type number for Navier-Stokes without swirl

natbouncond # Define type numbers for boundary elements

bngrp 1 = 910 # type number for given stress for Nav-Stokes

bounelements # Define where boundary elements are given

belm1 = curves (shape = 2, c2) # stress given at outflow boundary

essbouncond # Define where essential boundary conditions are

# given (not the value)

curves (c3) # fixed side wall

degfd1, curves (c1) # symmetry axis, u=0

curves (c4) # inflow, velocity given

degfd1, curves (c2) # fully developed flow (u=0)

end

# Fill the non-zero values of the essential boundary conditions

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd2, func = 1 # v is given by a function

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

# See also standard problems Section 7.1

coefficients

elgrp1 (nparm = 20) # coefficients for Navier-Stokes

icoef4 = 1 # axi-symmetric co-ordinates

icoef5 = 0 # stokes flow, neglecting convective terms v.v

coef6 = eps # penalty parameter

coef7 = rho # density

coef12 = eta # viscosity

bngrp1 (nparm = 15) # coefficients for the prescribed stress

icoef1 = 1 # prescribed stresses normal and tangential to boundary

icoef4 = 1 # axi-symmetric co-ordinates
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coef6 = p0 # normal stress = pressure

coef7 = 0 # tangential stress = 0 fully developed flow

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number=1 # input for iteration 2

elgrp1

icoef5 = 1 # Picard’s linearization

end

change coefficients, sequence_number=2 # input for iteration 3

elgrp1

icoef5 = 2 # Newton’s linearization

end

# input for non-linear solver

nonlinear_equations # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

end_of_sepran_input

The postprocessing file is in this case exactly the same as for the standard channel flow
problem:

# tubeax1.pst

# Input file for postprocessing for the axi-symmetric flow of water in a tube

# See Manual Examples Section 7.1.11

#

#

# To run this file use:

# seppost tubeax1.pst > tubeax1.out

#

# Reads the files meshoutput, sepcomp.inf and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

# compute the stream function

# See Users Manual Section 5.2

#

compute stream_function = stream function velocity

# Plot the results

# See Users Manual Section 5.4

open plot

plot vector velocity, factor = 0.10 # Vector plot of velocity

plot curves
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plot points

close plot

open plot

plot contour stream_function # Contour plot of stream function

plot curves

plot points

close plot

end

The velocity computed is quadratic and does not make sense to repeat the pictures.
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7.1.11.2 Axi-symmetric flow with given mass flux by penalty approach

In order to get this example into your local directory use the command

sepgetex tubeax2

In this case we need to introduce a large line element because of the combination of mass flux
and penalty function method. See Sections 7.1.1 and 7.1.9.
Furthermore it is necessary to prescribe periodical boundary conditions.
The mesh input file is for example

# tubeax2.msh

# stationary laminar Newtonian flow

# mesh file for axi-symmetric flow of water in a tube

# Periodical boundary conditions

# Given mass flow with unknown constant

#

# See Manual Examples Section 7.1.11

#

# To run this file use:

# sepmesh tubeax2.msh

#

# Creates the file meshoutput

#

# Define some rectangle constants

#

constants # See Users Manual Section 1.4

real

r = 20 # radius = 20

l = 40 # length = 40

integers

nel_len = 4 # number of elements in length direction

nel_rad = 3 # number of elements in radial direction

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = (0,0) # Left under point

p2 = ( r,0) # Right under point

p3 = ( r, l) # Right upper point

p4 = (0, l) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1 = line2(p1,p4,nelm= nel_len, ratio=1, factor=1) # symmetry axis

c2 = line2(p4,p3,nelm= nel_rad, ratio=1, factor=1) # outflow

c3 = line2(p3,p2,nelm= nel_len, ratio=1, factor=1) # fixed wall

c4 = line2(p2,p1,nelm= nel_rad, ratio=1, factor=1) # inflow

#
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# surfaces

#

surfaces # See Users Manual Section 2.4

# Quadratic quadrilaterals are used

s1 = rectangle6(c1,c2,c3,c4)

#

# Define element groups

#

meshsurf # surface elements for Navier-Stokes

selm1 = (s1)

meshconnect # connection elements for periodical boundary conditions

celm2 = curves0(c4,-c2)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The mass flux corresponding to the given velocity field in tubeax1 is equal to 2π
∫
C4

u · nrdr

= 4000 π. The input file for sepcomp is (see also Section 7.1.9):

# tubeax2.prb

#

# problem file for the axi-symmetric flow of water in a tube

# stationary laminar Newtonian flow

# penalty function approach

# Periodical boundary conditions

# Given mass flow with unknown constant

# See Manual Examples Section 7.1.11

#

# To run this file use:

# sepcomp tubeax2.prb

#

# Reads the file meshoutput

# Creates the files sepcomp.inf and sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 998.2d-6 # density [g/mm3]

eta = 1.002d-3 # viscosity [g/mm/s] [Pa.s]

massflux = 4000 * pi # The mass flux is equal to 4000 pi

vector_names

velocity

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,
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elgrp1 = 900 # type number for Navier-Stokes without swirl

elgrp2 = -1 # type number for periodical boundary conditions

essbouncond # Define where essential boundary conditions are

# given (not the value)

curves (c3) # fixed side wall

degfd1, curves (c1) # symmetry axis, u=0

global_unknowns # define element group for global unknown

glgrp1=913 # Type number for given mass flux

global_elements

gelm1 = curves(shape=2, c4) # mass flux is defined along inflow boundary

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

nosplit # Non-symmetrical profile matrix

# So a direct method will be applied

# The matrix may not be splitted

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

# See also standard problems Section 7.1

coefficients

elgrp1 (nparm = 20) # coefficients for Navier-Stokes

icoef4 = 1 # axi-symmetric co-ordinates

icoef5 = 0 # stokes flow, neglecting convective terms v.v

coef6 = eps # penalty parameter

coef7 = rho # density

coef12 = eta # viscosity

glgrp1 ( nparm=10 ) # The coefficients for the mass flux bc

# are defined by 10 parameters

icoef4 = 1 # axi-symmetric co-ordinates

icoef5 = 2 # 5: Degree of freedom (2=v)

coef6 = massflux # 6: Mass flux

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number=1 # input for iteration 2

elgrp1

icoef5 = 1 # Picard’s linearization

end

change coefficients, sequence_number=2 # input for iteration 3

elgrp1

icoef5 = 2 # Newton’s linearization

end

# input for non-linear solver

nonlinear_equations # See Users Manual Section 3.2.9
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global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

end_of_sepran_input

The post processing file is exactly the same as for the first approach and is not repeated here.
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7.1.11.3 Axi-symmetric flow with given mass flux by global unknown

In order to get this example into your local directory use the command

sepgetex tubeax3

In this case there is no need to introduce a large line element. See Sections 7.1.1 and 7.1.9.
Furthermore it is necessary to prescribe periodical boundary conditions.
The mesh input file is for example

# tubeax3.msh

# stationary laminar Newtonian flow

# mesh file for axi-symmetric flow of water in a tube

# Periodical boundary conditions

# Given mass flow with unknown constant

#

# See Manual Examples Section 7.1.11

#

# To run this file use:

# sepmesh tubeax2.msh

#

# Creates the file meshoutput

#

# Define some rectangle constants

#

constants # See Users Manual Section 1.4

real

r = 20 # radius = 20

l = 40 # length = 40

integers

nel_len = 4 # number of elements in length direction

nel_rad = 3 # number of elements in radial direction

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = (0,0) # Left under point

p2 = ( r,0) # Right under point

p3 = ( r, l) # Right upper point

p4 = (0, l) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1 = line2(p1,p4,nelm= nel_len, ratio=1, factor=1) # symmetry axis

c2 = line2(p4,p3,nelm= nel_rad, ratio=1, factor=1) # outflow

c3 = line2(p3,p2,nelm= nel_len, ratio=1, factor=1) # fixed wall

c4 = line2(p2,p1,nelm= nel_rad, ratio=1, factor=1) # inflow

#

# surfaces
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#

surfaces # See Users Manual Section 2.4

# Quadratic quadrilaterals are used

s1 = rectangle6(c1,c2,c3,c4)

#

# Define element groups

#

meshline # Large line element for mass flux

lelm1 = (shape=-1, c4)

meshsurf # surface elements for Navier-Stokes

selm2 = (s1)

meshconnect # connection elements for periodical boundary conditions

celm3 = curves0(c4,-c2)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The input file for sepcomp is given by

# tubeax3.prb

#

# problem file for the axi-symmetric flow of water in a tube

# stationary laminar Newtonian flow

# penalty function approach

# Periodical boundary conditions

# Given mass flow with unknown constant

# See Manual Examples Section 7.1.11

#

# To run this file use:

# sepcomp tubeax3.prb

#

# Reads the file meshoutput

# Creates the files sepcomp.inf and sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 998.2d-6 # density [g/mm3]

eta = 1.002d-3 # viscosity [g/mm/s] [Pa.s]

massflux = 4000 * pi # The mass flux is equal to 4000 pi

vector_names

velocity

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

elgrp1 = 912 # type number for mass flux
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elgrp2 = 900 # type number for Navier-Stokes without swirl

elgrp3 = -1 # type number for periodical boundary conditions

essbouncond # Define where essential boundary conditions are

# given (not the value)

curves (c3) # fixed side wall

degfd1, curves (c1) # symmetry axis, u=0

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

nosplit # Non-symmetrical profile matrix

# So a direct method will be applied

# The matrix may not be splitted

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

# See also standard problems Section 7.1

coefficients

elgrp2 (nparm = 20) # coefficients for Navier-Stokes

icoef4 = 1 # axi-symmetric co-ordinates

icoef5 = 0 # stokes flow, neglecting convective terms v.v

coef6 = eps # penalty parameter

coef7 = rho # density

coef12 = eta # viscosity

elgrp1 ( nparm=10 ) # The coefficients for the mass flux bc

# are defined by 10 parameters

icoef3 = 2

icoef4 = 1 # axi-symmetric co-ordinates

icoef5 = 2 # 5: Degree of freedom (2=v)

coef6 = massflux # 6: Mass flux

coef7 = 1d6

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number=1 # input for iteration 2

elgrp2

icoef5 = 1 # Picard’s linearization

end

change coefficients, sequence_number=2 # input for iteration 3

elgrp2

icoef5 = 2 # Newton’s linearization

end

# input for non-linear solver

nonlinear_equations # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1

equation 1
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fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

end_of_sepran_input

Again there is no need to repeat the input file for seppost.
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7.1.11.4 3D flow with given mass flux by global unknown

In order to get this example into your local directory use the command

sepgetex tube3d

This example is of course exactly the same as the previous, however, for demonstration pur-
poses we extended it to a real 3D problem. In the 3d case it is not longer possible to give the
mass flux in combination with a penalty approach, since one can not define a large surface
element. For that reason we need the option with the global unknown.
In the mesh input the lower circle is subdivided into five parts in order to get nicely shaped
quadrilaterals. Applying general immediately results in quadrilaterals that give bad approxi-
mations of the solution.
The rest of the input is very similar to that for the pipe in Section 2.5.2 of the Users Manual.
The mesh input file is for example

# tube3d.msh

# stationary laminar Newtonian flow

# mesh file for axi-symmetric flow of water in a tube

#

# See Manual Examples Section 7.1.11

#

# To run this file use:

# sepmesh tube3d.msh

#

# Creates the file meshoutput

#

# Define some rectangle constants

#

constants # See Users Manual Section 1.4

integers

nelmh = 3 # Number of elements along a quarter of a circle in

# the bottom surface

nelmv = 4 # Number of elements in the vertical direction

# (pipe surface)

reals

radius = 20 # Radius of a circle in the bottom surface

height = 40 # Height of the pipe

halfr = 10 # Half the radius of a circle in the bottom surface

end

#

# Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = (0,0,0) # centroid of circle in bottom surface

pd2 = ( radius,0,0) # points on circle

pd3 = ( radius,90,0) # pd means define in polar coordinates

pd4 = ( radius,180,0) # (r,phi,z), with phi in degrees

pd5 = ( radius,270,0)

p6 = ( radius,0, height) # point on upper surface above p2

pd12 = ( halfr,0,0) # In order to create nice quadrilaterals

pd13 = ( halfr,90,0) # an internal square is defined with
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pd14 = ( halfr,180,0) # end points half way the centroid and

pd15 = ( halfr,270,0) # points on the circle

#

# curves

#

curves # See Users Manual Section 2.3

c1 = arc2(p2,p3,p1,nelm= nelmh) # one quarter of circle in bottom

# surface

c2 = arc2(p3,p4,p1,nelm= nelmh) # a circle in 3D needs at least three

c3 = arc2(p4,p5,p1,nelm= nelmh) # sub arcs

c4 = arc2(p5,p2,p1,nelm= nelmh)

c5 = curves(c1,c2,c3,c4) # Complete circle

c6 = line2(p2,p6,nelm= nelmv) # straight line from p2 to p6

c7 = translate c5(p6,-p6) # Copy of circle in bottom surface

# to top surface

c10 = line2(p12,p13,nelm= nelmh) # straight line from p12 to p13

c11 = line2(p13,p14,nelm= nelmh) # straight line from p13 to p14

c12 = line2(p14,p15,nelm= nelmh) # straight line from p14 to p15

c13 = line2(p15,p12,nelm= nelmh) # straight line from p15 to p12

c14 = line2(p12,p2,nelm= nelmh) # straight line from p12 to p2

c15 = line2(p13,p3,nelm= nelmh) # straight line from p13 to p3

c16 = line2(p14,p4,nelm= nelmh) # straight line from p14 to p4

c17 = line2(p15,p5,nelm= nelmh) # straight line from p15 to p5

c18 = curves(c10,c11,c12,c13) # Complete square

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = rectangle6 (c10,c11,c12,c13 ) # subdivision of square

s2 = rectangle6 (c1,-c15,-c10,c14 ) # subdivision of parts between

s3 = rectangle6 (c2,-c16,-c11,c15 ) # circle and square

s4 = rectangle6 (c3,-c17,-c12,c16 ) #

s5 = rectangle6 (c4,-c14,-c13,c17 ) #

s6 = surfaces(s1,s2,s3,s4,s5) # Complete lower surface

s7 = translate s6 (c7) # upper surface

s8 = pipesurface6(c5,c7,c6) # pipe surface

#

# volumes

#

volumes # See Users Manual Section 2.5

v2 = pipe14(s6,s7,s8) # Complete pipe

#

# Define element groups

#

meshvolm # surface elements for Navier-Stokes

velm1 = (v2)

meshconnect # connection elements for periodical boundary conditions

celm2 = surfaces(s6,s7)

plot, eyepoint = (40, 30, 50) # make a plot of all parts

# and also of the final mesh

# See Users Manual Section 2.2

end

The input file for sepcomp is very similar to that of tubeax3:

# tube3d.prb
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#

# problem file for the axi-symmetric flow of water in a tube

# stationary laminar Newtonian flow

# penalty function approach

# Periodical boundary conditions

# Given mass flow with unknown constant

# See Manual Examples Section 7.1.11

#

# To run this file use:

# sepcomp tube3d.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 998.2d-6 # density [g/mm3]

eta = 1.002d-3 # viscosity [g/mm/s] [Pa.s]

massflux = 4000*pi # The mass flux is equal to 4000 pi

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

elgrp1 = 900 # type number for Navier-Stokes without swirl

elgrp2 = -1 # type number for periodical boundary conditions

essbouncond # Define where essential boundary conditions are

# given (not the value)

surfaces (s8) # fixed side wall

global_unknowns # define element group for global unknown

glgrp1=913 # Type number for given mass flux

global_elements

gelm1 = surfaces(s6) # mass flux is defined along inflow boundary

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

nosplit # Non-symmetrical profile matrix

# So a direct method will be applied

# The matrix may not be splitted

end

# Define the coefficients for the problems
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# See Users Manual Section 3.2.6

# See also standard problems Section 7.1

coefficients

elgrp1 (nparm = 20) # coefficients for Navier-Stokes

icoef5 = 0 # stokes flow, neglecting convective terms v.v

coef6 = eps # penalty parameter

coef7 = rho # density

coef12 = eta # viscosity

glgrp1 ( nparm=10 ) # The coefficients for the mass flux bc

# are defined by 10 parameters

icoef5 = 3 # 5: Degree of freedom (3=w)

coef6 = massflux # 6: Mass flux

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number=1 # input for iteration 2

elgrp1

icoef5 = 1 # Picard’s linearization

end

change coefficients, sequence_number=2 # input for iteration 3

elgrp1

icoef5 = 2 # Newton’s linearization

end

# input for non-linear solver

nonlinear_equations # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//

at_error return

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# Define the structure of the program

structure # See Users Manual Section 3.2.3

# essential boundary conditions

prescribe_boundary_conditions,velocity

# compute velocity

solve_nonlinear_system,velocity

# compute pressure

derivatives,pressure

output

end

# compute the pressure as a derivative

derivatives # See Users Manual Section 3.2.11
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seq_input_vector1=velocity

icheld = 7

end

end_of_sepran_input

To show the results of the computations it is necessary to consider cross-sections of the mesh.
In this case we consider some cross-sections for constant values of z. In these cross-sections
the contour of the w-velocity is plotted. The other two components are practically zero.

# tube3d.pst

# Input file for postprocessing for the axi-symmetric flow of water in a tube

# See Manual Examples Section 7.1.11

#

#

# To run this file use:

# seppost tube3d.pst > tube3d.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

# Compute cross-section with planes z = 0, 5, 10, 20 and 30

# See Users Manual Section 5.2

# Make a contour plot in these cross sections of the z-component

# See Users Manual Section 5.4

compute cross_0 = intersection velocity, numbunknowns=3, plane=(z=0)

plot contour cross_0, degfd=3

compute cross_5 = intersection velocity, numbunknowns=3, plane=(z=5)

plot contour cross_5, degfd=3

compute cross_10 = intersection velocity, numbunknowns=3, plane=(z=10)

plot contour cross_10, degfd=3

compute cross_20 = intersection velocity, numbunknowns=3, plane=(z=20)

plot contour cross_20, degfd=3

compute cross_40 = intersection velocity, numbunknowns=3, plane=(z=40)

plot contour cross_40, degfd=3

# Compute the pressure in the symmetry plane and make a coloured contour plot

compute press_sym = intersection pressure, plane(y=0)

plot coloured levels press_sym

end

The results show that the solution is constant in each cross-section.
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7.1.11.5 3D flow with given mass flux by global unknown and local transforms

In order to get this example into your local directory use the command

sepgetex tube3dlt

This example is completely identical to the previous one. The same mesh is used; the main
program and the post file are the same as before.
The only difference is that a local transformation is used, demonstrating the use of local
transformations in 3D. The local transformation is applied to upper and lower face. Due to
this option the first unknown in each of these surfaces is the normal component and the other
two are the tangential components.
Since we use periodical boundary conditions it is necessary that both normal components
point into the same direction and as a consequence it is necessary that one of the normals
points inwardly and one outwardly. Furthermore the direction of the first tangential vector
must be the same in both surfaces. To achieve this we prescribe the tangential vector by the
option tang=line(p2,p4). P2 and P4 are two points in the lower surface. Since the lower
surface is parallel to the upper surface and the tangential vector only defines a direction, it is
sufficient to use these two points even for the upper surface.
Due to the local transform and the fact that the mass flux is defined in the normal direction,
it is not longer necessary to prescribe icoef5. Instead the default value 1 (normal direction is
first direction) is used.
The problem input file corresponding to this case is:

# tube3dlt.prb

#

# problem file for the axi-symmetric flow of water in a tube

# stationary laminar Newtonian flow

# penalty function approach

# Periodical boundary conditions

# Given mass flow with unknown constant

# Local transformations are used

# See Manual Examples Section 7.1.11

#

# To run this file use:

# tube3dlt < tube3dlt.prb

#

# Reads the file meshoutput

# Creates the files sepcomp.inf and sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 998.2d-6 # density [g/mm3]

eta = 1.002d-3 # viscosity [g/mm/s] [Pa.s]

massflux = 4000 * pi # The mass flux is equal to 4000 pi

vector_names

velocity

end

#

# Define the type of problem to be solved

#
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problem # See Users Manual Section 3.2.2

types # Define types of elements,

elgrp1 = 900 # type number for Navier-Stokes without swirl

elgrp2 = -1 # type number for periodical boundary conditions

essbouncond # Define where essential boundary conditions are

# given (not the value)

surfaces (s8) # fixed side wall

localtransform # Define local transformations along surfaces

# S6 and S7

# The first unknown is the normal direction

# The first tangential direction (unknown 2)

# is defined by the "tang" keyword

# The boundary is not transformed, since there

# we have Dirichlet boundary conditions

surfaces(s6), tang=line(p2,p4), normal = inward, skip_boundary

# Along surface S6 the normal is directed

# inwardly

surfaces(s7), tang=line(p2,p4), normal = outward, skip_boundary

# Along surface S7 the normal is directed

# outwardly

global_unknowns # define element group for global unknown

glgrp1=913 # Type number for given mass flux

global_elements

gelm1 = surfaces(s6) # mass flux is defined along inflow boundary

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

nosplit # Non-symmetrical profile matrix

# So a direct method will be applied

# The matrix may not be splitted

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

# See also standard problems Section 7.1

coefficients

elgrp1 (nparm = 20) # coefficients for Navier-Stokes

icoef5 = 0 # stokes flow, neglecting convective terms v.v

coef6 = eps # penalty parameter

coef7 = rho # density

coef12 = eta # viscosity

glgrp1 ( nparm=10 ) # The coefficients for the mass flux bc

# are defined by 10 parameters

# 5: Degree of freedom (1=u_n)

# Since 1 is the default this parameter does not

# have to be prescribed.

coef6 = massflux # 6: Mass flux

end

# Define the coefficients for the next iterations
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# See Users Manual Section 3.2.7

change coefficients, sequence_number=1 # input for iteration 2

elgrp1

icoef5 = 1 # Picard’s linearization

end

change coefficients, sequence_number=2 # input for iteration 3

elgrp1

icoef5 = 2 # Newton’s linearization

end

# input for non-linear solver

nonlinear_equations # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//

at_error return

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

end_of_sepran_input
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7.1.11.6 3D flow with iterative solver

In order to get this example into your local directory use the command

sepgetex tube3dit

This example is completely identical to the example in 7.1.11.4. The same mesh is used; the
main program and the post file are the same as before.
The only difference is that an iterative solver is used.
The problem input file corresponding to this case is:

# tube3dit.prb

#

# problem file for the axi-symmetric flow of water in a tube

# stationary laminar Newtonian flow

# integrated approach, using iterative solver

# Periodical boundary conditions

# Given mass flow with unknown constant

# See Manual Examples Section 7.1.11.6

#

# To run this file use:

# sepcomp tube3dit.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 998.2d-6 # density [g/mm3]

eta = 1.002d-3 # viscosity [g/mm/s] [Pa.s]

massflux = 4000*pi # The mass flux is equal to 4000 pi

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

elgrp1 = 902 # type number for Navier-Stokes without swirl

elgrp2 = -1 # type number for periodical boundary conditions

essbouncond # Define where essential boundary conditions are

# given (not the value)

surfaces (s8) # fixed side wall

# degfd1,degfd2, surfaces (s6)# fully developed flow (u=0)

# degfd1,degfd2, surfaces (s8)# fully developed flow (u=0)

global_unknowns # define element group for global unknown

glgrp1=913 # Type number for given mass flux

global_elements
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gelm1 = surfaces(s6) # mass flux is defined along inflow boundary

renumber (1,2,3)(4,5,6,7)

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

storage_scheme = compact # Non-symmetrical compact matrix

# So an iterative method will be applied

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

# See also standard problems Section 7.1

coefficients

elgrp1 (nparm = 20) # coefficients for Navier-Stokes

icoef5 = 0 # stokes flow, neglecting convective terms v.v

coef6 = eps # penalty parameter

coef7 = rho # density

coef12 = eta # viscosity

glgrp1 ( nparm=10 ) # The coefficients for the mass flux bc

# are defined by 10 parameters

icoef5 = 3 # 5: Degree of freedom (3=w)

coef6 = massflux # 6: Mass flux

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number=1 # input for iteration 2

elgrp1

icoef5 = 1 # Picard’s linearization

end

# input for non-linear solver

nonlinear_equations # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//

at_error return

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

end

# Define the structure of the program

structure # See Users Manual Section 3.2.3

# essential boundary conditions

prescribe_boundary_conditions,velocity

# compute velocity

solve_nonlinear_system,velocity

# compute pressure
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derivatives,pressure

output

end

# compute the pressure as a derivative

derivatives # See Users Manual Section 3.2.11

seq_input_vector1=velocity

icheld = 7

end

# input for the linear solver

# See Users Manual Section 3.2.8

solve,sequence_number = 1

iteration_method=cg, accuracy=1d-2, preconditioning = ilu, print_level=2//

maxiter = 100, at_error resume

end

end_of_sepran_input
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7.1.11.7 3D flow using symmetry planes

In order to get this example into your local directory use the command

sepgetex parttube

To run this example use:

sepmesh parttube.msh

seplink parttube

parttube < parttube.prb

seppost parttube.pst

The mesh can be viewed immediately after the sepmesh command and the results of the com-
putation at the end.
This example is nearly the same as example in 7.1.11.4.
However, in this case we use only a part of the 3D region. In Figure 7.1.11.3 the boundary
curves are given. The lower surface (S1) is the inflow surface, the top surface (S2) the outflow

1
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Figure 7.1.11.3: Definition of part of tube with generating curves

surface. The tube surface (S4) has noslip boundary conditions.
The front surface S3 (y=0), is a symmetry plane. There is no flow perpendicular to this
surface.
Also the back surface S5 is a symmetry plane. Since this surface is not in the direction of
one of the coordinate axis it is necessary to define local transformations in order to make the
normal direction the first local coordinate.
The angle between S3 and S5 may be given in the input.
In this example we use tri-quadratic hexahedrons. As a consequence all surfaces must be sub-
divided in bi-quadratic quadrilaterals. However, the top and bottom surface are of triangular
shape, which makes the creation of quadrilaterals a harder task. To that end the bottom sur-
face is subdivided into two parts, which are subdivided by submesh generator RECTANGLE
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and QUADRILATERAL respectively. The result is shown in Figure 7.1.11.4. This idea is
copied from Dirk de Wachter of Ghent University. The mesh input file is

Figure 7.1.11.4: Subdivision of lower surface

# parttube.msh

# stationary laminar newtonian flow

# mesh file for axisymmetric flow of water in a tube

#

# See Manual Examples Section 7.1.11.7

#

# To run this file use program parttubemesh

# sepmesh parttube.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants

integers

nelmh = 4 # Number of elements along a part of a circle in

# the bottom surface

nelmv = 2 # Number of elements in the vertical direction

# (pipe surface)

nelmr = 2 # Number of elements in radial direction / 2

nelmh2 = nelmh/2 # nelmh / 2

reals

radius = 20 # Radius of a circle in the bottom surface

height = 40 # Height of the pipe

angle = 45 # angle of part of cylinder

half_angle = angle*0.5 # angle/2

half_radius = radius/2 # radius/2

rad_between = 0.75*radius # 3/4 radius

end

#

# Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2
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p1 = (0,0,0) # centroid of circle in bottom surface

pd2 = ( radius,0,0) # points on circle

pd3 = ( radius, angle,0) # pd means define in polar coordinates

# (r,phi,z), with phi in degrees

p4 = (0,0, height) # point on upper surface above p1

pd5 = ( radius,0, height) # point on upper surface above p2

pd6 = ( radius, angle, height) # point on upper surface above p3

p11 = ( half_radius,0,0) # point in the middle of p1,p2

pd12 = ( rad_between, half_angle,0) # special point to define extra

# quadrilateral

pd13 = ( half_radius, angle,0) # point in the middle of p1,p3

#

# curves

#

curves # See Users Manual Section 2.3

c1 = curves(c10, c11) # Line from p1 to p2, splitted into 2 parts

c10 = line2 ( p1, p11, nelm = nelmr )

c11 = line2 ( p11, p2, nelm = nelmr )

c2 = arc2(p2,p3,p1,nelm= nelmh) # circle part in bottom surface

c3 = curves(c12, c13) # Line from p3 to p1, splitted into 2 parts

c12 = line2 ( p3, p13, nelm = nelmr )

c13 = line2 ( p13, p1, nelm = nelmr )

c4 = translate c1 (p4,-p5) # Line in top surface

c5 = translate c2 (p5,p6) # Line in top surface

c6 = translate c3 (p6,-p4) # Line in top surface

c7 = line2 ( p1, p4, nelm = nelmv ) # generating line from bottom to top

c8 = line2 ( p2, p5, nelm = nelmv ) # generating line from bottom to top

c9 = line2 ( p3, p6, nelm = nelmv ) # generating line from bottom to top

c20 = curves(c21, c22) # Extra line from p11 to p13,

# splitted into 2 parts

c21 = line2 ( p11, p12, nelm = nelmh2 )

c22 = line2 ( p12, p13, nelm = nelmh2 )

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = surfaces(s11,s12) # bottom surface splitted into 2

# surfaces to make it simple to create

# quadrilaterals

s11 = quadrilateral6(c10,c21,c22,c13)

s12 = rectangle6(c11,c2,c12,-c20)

s2 = translate s1 (c4,c5,c6) # top surface

s3 = pipesurface6(c1,c4,c7,c8) # First pipe surface

s4 = pipesurface6(c2,c5,c8,c9) # Outer pipe surface

s5 = pipesurface6(c3,c6,c9,c7) # Last pipe surface

s6 = ordered surface(s3,s4,s5) # Complete pipe surface

#

# volumes

#

volumes # See Users Manual Section 2.5

v1=pipe14(s1,s2,s6)

#

# Define element groups

#

meshsurf # surface elements on top surface
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selm1 = s2

meshvolume # volume elements

velm2 = v1

plot, eyepoint=(40,30,50)

end

Figure 7.1.11.5 shows the final mesh.

In this example we have introduced an extra item. The pressure is given at the outflow so we

Figure 7.1.11.5: Hidden line plot of the final mesh

need a boundary element of type 910. However, since we must apply local transformations
on the back surface, these transformations are also applied to all curves corresponding to
that surface. To avoid that we might skip all the boundaries, using skip_boundary. This
is no problem for the symmetry curve, the curve at the lower surface, nor the curve at the
pipe surface. However, if we skip the top curve (C6), we are not able to apply the symmetry
condition anymore. Hence we need to include curve C6. Since C6 is also part of the upper
surface, this means that we have to apply local transformations to a part of the upper surface.
Here we enter a typical SEPRAN problem: local transformations are not applied to boundary
elements, but only to standard elements created in the mesh. Hence the surface elements
must already be created in the mesh part. For that reason we have two element groups in the
mesh input file.
The other problem in this example is that we want to prescribe the pressure. If we do not
prescribe it, the pressure will be of the order 10−3. Since the parameter ε in the penalty func-
tion method is related to the magnitude of the pressure, we have decided to use the integrated
approach. This avoids the problem of looking for a good choice for ε. Now we can prescribe
the pressure using boundary elements of type 910.
However, experiments show that the pressure can not be chosen with an arbitrary size. If
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we increase the pressure we see that with this coarse mesh, the result is good as long as the
pressure at outflow is at most of the order of 102. A value of 103 results in inaccurate com-
putations. This is an immediate result of the inaccuracy of the velocity which also influences
the accuracy of the pressure.

Since the inflow boundary conditions depend on the space coordinates, we need a function
subroutine FUNCBC, and hence a main program:

program parttube

! --- Main program for axi-symmetric flow of water in a tube

! To link this program use:

!

! seplink parttube

implicit none

call sepcom (0)

end

! --- Define the velocity at inflow (quadratic profile)

function funcbc ( ichois, x, y, z )

implicit none

integer ichois

double precision x, y, z, funcbc, radius, r

radius = 20d0

r = sqrt(x**2+y**2)

if ( ichois==1 ) then

funcbc = 20d0 * ( 1d0-r**2/radius**2)

end if

end

The problem input file corresponding to this case is:

# parttube.prb

#

# problem file for the axisymmetric flow of water in a tube

# stationary laminar newtonian flow

# penalty function approach

# See Manual Examples Section 7.1.11.7

#

# To run this file use:

# sepcomp parttube.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4
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reals

eps = 1d-10 # penalty parameter for Navier-Stokes

rho = 998.2d-6 # density [g/mm3]

eta = 1.002d-3 # viscosity [g/mm/s] [Pa.s]

Pres = -1d2 # Pressure at outflow

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

elgrp1 = 910 # type number for boundary element for

# Navier-Stokes without swirl

# Is used to define the outflow pressure

elgrp2 = 902 # type number for Navier-Stokes

essbouncond # Define where essential boundary conditions are

# given (not the value)

surfaces (s1) # inflow surface

surfaces (s4) # fixed wall (outer pipe)

degfd2, surfaces (s3) # symmetry face

degfd1, surfaces (s5) # symmetry face, normal component

localtransform # define where local transformations must be

# applied

surfaces(s5), transformation=standard,// # skewed surface

tang=line(p1,p3), normal=outward, include_curve(c6) # include upper curve

renumber levels (1,2,3)(4,5,6,7) # Renumbering is necessary to avoid zero

# diagonal elements

end

# Define the structure of the program

structure # See Users Manual Section 3.2.3

# essential boundary conditions

prescribe_boundary_conditions,velocity

# compute velocity

solve_nonlinear_system,velocity

# compute pressure

derivatives,pressure

output

end

# Fill the non-zero values of the essential boundary conditions

# See Users Manual Section 3.2.5

essential boundary conditions

surfaces(s1), degfd3, func = 1 # w is given by a function

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

# See also standard problems Section 7.1
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coefficients

elgrp1 (nparm = 15) # coefficients for the given pressure

coef8 = Pres # given pressure

elgrp2 (nparm = 20) # coefficients for Navier-Stokes

icoef3 = 1

icoef5 = 0 # stokes flow, neglecting convective terms v.v

coef6 = eps # penalty parameter

coef7 = rho # density

coef12 = eta # viscosity

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number=1 # input for iteration 2

elgrp1

icoef5 = 1 # Picard’s linearization

end

change coefficients, sequence_number=2 # input for iteration 3

elgrp1

icoef5 = 2 # Newton’s linearization

end

# input for non-linear solver

nonlinear_equations # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-3,print_level=2, lin_solver=1//

at_error return

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# compute the pressure as a derivative

derivatives # See Users Manual Section 3.2.11

seq_input_vector1=%velocity

skip_element_groups = 1 # skip the boundary element

icheld = 7

end

end_of_sepran_input

To perform post processing, the following input file may be used

# parttube.pst

# Input file for postprocessing for the axi-symmetric flow of water in a tube

# See Manual Examples Section 7.1.11.7

#

#

# To run this file use:

# seppost parttube.pst > parttube.out
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#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

# Plot the results

# See Users Manual Section 5.4

compute vel_0 = intersection velocity, plane(z=0), numbunknown=3//

transformation = cartesian

plot vector vel_0

plot coloured levels vel_0, degfd3

compute vel_1 = intersection velocity, plane(z=20), numbunknown=3//

transformation = cartesian

plot vector vel_1

plot coloured levels vel_1, degfd3

compute vel_2 = intersection velocity, plane(z=40), numbunknown=3//

transformation = cartesian

plot vector vel_2

plot coloured levels vel_2, degfd3

compute press_sym = intersection pressure, plane(x-2y=0)

plot coloured levels press_sym

end
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7.1.12 A selection of examples of flow problems

In this section we supply a number of examples of flow problems that do not add some extra
possibilities itself, but are nice to be used as starting point for computations. The corresponding
files itself are not printed in this manual. However, you can get them easily into your local directory
using the command sepgetex.
The following examples are available:

cross vel Incompressible non-newtonian channel flow in a cross section using velocity boundary
conditions.

cross pres Incompressible non-newtonian channel flow in a cross section using pressure boundary
conditions.

cylinderinst Incompressible time dependent flow of fluid cylinder in another fluid using surface
tension at the interface (2D Cartesian coordinates)

sphereinst Incompressible time dependent flow of fluid particle in another fluid using surface tension
at the interface (Axi-symmetric coordinates)

7.1.12.1 Example cross vel

This problem has been provided by Juan Luis Cormenzana Carpio of the university of Madrid.
In this problem we consider the non-Newtonian flow in a channel in a cross-configuration. In the
first part we prescribe parabolic velocity profiles in the inlets.
To get this example locally use the command:

sepgetex cross_vel

Figure 7.1.12.1 shows the computed velocity vectors Figure 7.1.12.2 shows the coloured pressure

Figure 7.1.12.1: Velocity vectors for example cross vel

levels. Figure 7.1.12.3 shows the stream lines of the computation.
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Figure 7.1.12.2: Coloured pressure levels for example cross vel
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Figure 7.1.12.3: Stream lines for example cross vel
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7.1.12.2 Example cross pres

This problem also provided by Juan Luis Cormenzana Carpio is exactly the same as the previous
one. The only difference is that the pressures computed in the previous example at the inlets are
used as pressure boundary conditions. So we get a minor difference in the pictures. Also in this
case the convergence behaviour of the non-linear iteration process is rather strange. The following
part of the output of sepcomp shows the convergence:

Information about the iteration process

Iteration Equation ||u(n)-u(n-1)|| conv. speed

1 1 3.33E-06 1.00E+00

2 1 1.69E-03 5.07E+02

3 1 3.63E-02 2.15E+01

4 1 1.37E-01 3.77E+00

5 1 1.81E-01 1.33E+00

6 1 1.31E-01 7.20E-01

7 1 6.79E-02 5.19E-01

8 1 3.02E-02 4.45E-01

9 1 1.26E-02 4.16E-01

10 1 5.08E-03 4.05E-01

11 1 2.03E-03 4.00E-01

12 1 8.09E-04 3.98E-01

13 1 3.22E-04 3.98E-01

14 1 1.28E-04 3.97E-01

15 1 5.08E-05 3.98E-01

Convergence has been reached after 15 steps

What we see is that in the first steps very little happens and it looks as if the process is ready after
one step. If we do not take precautions the program stops with the message that divergence has
been found after 3 or 4 steps since the difference between succeeding iterations increases.
To prevent this message it is necessary to do at least 5 iteration before checking the convergence.
In the input file this has been done by using

miniter = 10

To get this example locally use the command:

sepgetex cross_pres

Figure 7.1.12.4 shows the coloured pressure levels. Figure 7.1.12.5 shows the coloured stream
function levels.
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Figure 7.1.12.4: Coloured pressure levels for example cross pres

Figure 7.1.12.5: Coloured stream function levels for example cross pres
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7.1.12.3 Example cylinderinst

This problem we consider the flow of liquid cylinder in another fluid. The surrounding fluid has an
upwards velocity, simulating the falling of the cylinder into this fluid. The properties of both fluids
differ strongly with respect to viscosity and density. At the interface of both fluids we assume that
the surface tension is present in order to prevent the solution of the cylinder in the surrounding
fluid. The surface tension creates a pressure discontinuity at the interface.
In this example gravity force is introduced in order to make it possible that the cylinder falls
downwards. Since there is no balance between the upwards-directed velocity of the surrounding
fluid and the downwards-directed velocity of the cylinder no stationary state is reached.

To get this example locally use the command:

sepgetex cylinderinst

Figure 7.1.12.6 shows the configuration.

z

r

u=(0,1)

u_z=1

u_z = 1

O

Figure 7.1.12.6: Region of definition for cylinder falling down in surrounding fluid
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7.1.12.4 Example sphereinst

This problem we consider the flow of liquid particle in another fluid. The surrounding fluid has an
upwards velocity, simulating the falling of the particle into this fluid. The properties of both fluids
differ strongly with respect to viscosity and density. In fact this example is exactly the same as for
the instationary cylinder, with the exception that the flow is axi-symmetric instead of Cartesian.

To get this example locally use the command:

sepgetex sphereinst

Since the subroutine for the surface tension has only been implemented for Cartesian coordinates
it is necessary to translate the surface tension into a given normal stress.
This normal stress is defined by σn = γ( 1

R1
+ 1

R2
), and since for the sphere we have R1 = R2 is the

radius of the sphere, we can translate this into σ = −nγ( 2
R ).

Using (0,0) as centre of the sphere n can be written as n = ( x
R ,

y
R )

Because the stress depends on space a function subroutine FUNCCF is required and hence a main
program must be provided. This program looks like:

program sphereinst

call sepcom ( 0 )

end

! --- funccf is used to define the stress along the interface

! This stress is defined by the surface tension

! For 3D the surface tension is defined as

!

! sigma = - gamma ( 1/R_1 + 1/R_2 ) n

!

! with n the outward directed normal

!

! The outwards directed normal is defined as

!

! n = ( x/R, y/R )

!

! and for a sphere we have R_1 = R_2 = R

!

function funccf(ichoice,x,y,z)

implicit none

integer ichoice

double precision funccf,x,y,z

! --- get gamma and the radius from the input file

double precision radius, gamma, getconst

save radius, gamma

integer ifirst

data ifirst /0/

if ( ifirst==0 ) then

! --- ifirst = 0, first call

! get gamma and radius from input file

! Since they are saved, this has to be done only once

gamma = getconst ( ’gamma’ )

radius = getconst ( ’radius’ )
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ifirst = 1 ! make sure that this part is done only once

end if ! ( ifirst==0 )

if ( ichoice==1 ) then

! --- x-component of stress

funccf = -2d0*gamma*x/radius**2

else

! --- y-component of stress

funccf = -2d0*gamma*y/radius**2

end if

end
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7.1.13 Computation of Drag Coefficients of a Sphere

In this section we show how the drag coefficients of a sphere may be computed. This example
is inspired by the report of Tabata and Itakura (1995), who defined a kind of benchmark for the
computation of drag coefficients.

In order to get this example into your local directory use the command

sepgetex drag

Let G be a body in a velocity field. Let U be the representative velocity and ρ be the density of
the fluid. The drag coefficient of G is defined by:

CD =
D

1
2ρU

2A
, (7.1.13.1)

where D is the total force exerted on G by the fluid and A is the area of the cross section of G in
the direction U .
In this example we consider a sphere. It is sufficient to reduce the problem to a two-dimensional
axi-symmetric one, with a symmetry axis subdividing the sphere into two equal parts.
The uniform velocity is chosen from below and has been normalized to Uz = 1. Figure 7.1.13.1
shows the configuration. On the symmetry-axis we use the symmetry condition ur = 0, τrz = 0.

z

r

u=(0,1)

u_z=1

u_z = 1

O

Figure 7.1.13.1: Region of definition for flow around sphere

On the inflow boundary we impose the uniform velocity u = (0,1).
On the other boundaries we use uz = 1 and τzz = 0.
The area A is given by A = πR2, where R is the radius of the sphere.
The Reynolds number is defined as RE = ρLU

µ , with U the uniform velocity, L the diameter of the
sphere and µ the viscosity.
In the report of Tabata and Itakura tables are given of the drag coefficient for various values of the
Reynolds number. We have computed several of these values for Reynolds ranging from 10 to 200
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and found a very good agreement of at least 3 digits.
The mesh chosen is identical to that of Tabata and Itakura. Figure 7.1.13.2 shows the curves that
are used. In order to create the program sepmesh has been used with the following input file:

1

2

3

4

5

6

10

11 12

15

16

Figure 7.1.13.2: Curves defining the region around the sphere

# drag.msh

#

# Mesh for flow round a fixed sphere

# See Manual Examples Section 7.1.13

#

# This example is used to compute the drag coefficient of a sphere

# The mesh used is the one shown in:

# Masahisa Tabata and Kazuhiro Itakura

# Pecise Computation of Drag Coefficients of the sphere

# Department of Mathematics, Hiroshima University, Japan

#

# The problem is solved using axi-symmetric coordinates, which implies that

# the sphere reduces to a half circle in the (r,z)-plane

#

#

# Following Tabata, the region is dubdivided into 3 separate regions:

#

#

# -----------------------------

# | | |

# | | |

# | | |

# | | |

# | | |
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# | | |

# \ I | |

# \ | |

# / | ||| |

# / | |

# | | |

# | | |

# ------------------ |

# | | |

# | || | |

# | | |

# ------------------------------

#

# To create the mesh run:

#

# sepmesh sphere1.msh

#

#

# Creates the file meshoutput

#

# Define some general constants

#

constants

reals

radius = 0.5 # Radius of sphere

z1 = 14 # Height of the outer region below the

# Centre of the sphere

z2 = 6 # Height of the outer flow region above the

# centre of the sphere

rr = 14 # width of the outer flow region

fact = 1.2 # Each next element along symmetry axis has length

# of previous one times fact

integers

lin = 2 # Quadratic line elements

sur = 4 # Quadratic surface elements

n_hor = 4 # number of elements in horizontal direction of

# the square around the sphere

n_ver = 8 # number of elements in vertical direction of

# the square around the sphere

n_circ =16 # Number of elements along the sphere

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p 1=(0,0) # Center of sphere

p 2=(0,- radius) # lowest point of sphere

p 3=(0,- z1) # Point left under of outer region

p 4=( rr,- z1) # Point right under of outer region

p 6=( rr, z2) # Point right upper of outer region

p 7=(0, z2) # Point left upper of outer region
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p 8=(0, radius) # highest point of sphere

p10=(0,- z2) # under left point of inner square

p11=( z2,- z2) # under right point of inner square

p12=( z2, z2) # upper right point of inner square

p13=( z2,- z1) # extra point on lower boundary

p14=( rr,- z2) # extra point on right-hand side boundary

#

# curves

#

curves # See Users Manual Section 2.3

# First the region around the sphere

c1=line lin (p2,p10,nelm= n_circ,ratio=2,factor= fact)

# Lower part of symmetry axis in square

c2=line lin (p10,p11,nelm= n_hor)

# Lower boundary of square

c3=line lin (p11,p12,nelm= n_ver)

# right-hand-side boundary of square

c4=line lin (p12,p7,nelm= n_hor)

# Upper boundary of square

c5=line lin (p7,p8,nelm= n_circ,ratio=4,factor= fact)

# Upper part of symmetry axis in square

c6=arc lin (p8,p2,-p1,nelm= n_circ)

# face of sphere

c7 = curves(c2,c3,c4)

# Next the curves for the outer region

c10=line lin (p10,p3,nelm= n_hor)

# Lower part of symmetry axis in outer region

c11=line lin (p3,p13,nelm= n_hor)

# Left-hand part of lower boundary in outer region

c12=line lin (p13,p4,nelm= n_hor)

# Right-hand part of lower boundary in outer region

c13=line lin (p4,p14,nelm= n_hor)

# Lower part of right-hand boundary in outer region

c14=line lin (p14,p6,nelm= n_ver)

# Upper part of right-hand boundary in outer region

c15=line lin (p6,p12,nelm= n_hor)

# Upper boundary in outer region

c16=line lin (p11,p13,nelm= n_hor)

# Extra line in outer region

c17 = curves(c13,c14) # right-hand boundary in outer region

c18 = curves(-c3,c16) # left-hand boundary in outer region

c30 = curves(c11,c12) # inflow boundary

c31 = curves(c15,c4 ) # outflow boundary

c32 = curves(c1,c10) # lower part symmetry axis

#

# Define the surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle sur (c1,c7,c5,c6) # Square

s2=rectangle sur (c10,c11,-c16,-c2) # Lower part of outer region

s3=rectangle sur (c12,c17,c15,c18) # Right-hand part of outer region
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plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The reason to choose such a mesh is just to get exactly the same mesh as in the report. Figure
7.1.13.3 shows the mesh created. In order to compute the drag coefficient it is necessary to compute

 

Figure 7.1.13.3: mesh for flow around the sphere

the forces that are exerted on the sphere. The easiest way to do so is to use reaction forces. These
forces must be added in order to get the integral of the force, since the reaction forces already
consists of integrals.
The computation of the drag coefficient requires the evaluation of a coefficient that must be multi-
plied by the drag.

sepcomp requires input, which is given in the following part:

# drag.prb

#

# problem file for flow round a fixed sphere

# See Manual Examples Section 7.1.13

#

# This example is used to compute the drag coefficient of a sphere

# The mesh used is the one shown in:

# Masahisa Tabata and Kazuhiro Itakura

# Precise Computation of Drag Coefficients of the sphere

# Department of Mathematics, Hiroshima University, Japan

#

# The problem is solved using axi-symmetric coordinates, which implies that
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# the sphere reduces to a half circle in the (r,z)-plane

#

# The penalty function method is used to solve the Navier-Stokes equations

#

# Define some general constants

#

set warn off ! suppress warnings

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 1 # density in flow

eta = 0.1 # viscosity in flow (Re=10)

veloc = 1 # Uniform z-velocity of flow

radius = 0.5 # Radius of sphere (used to compute the drag

# coefficient)

integers

cur_sphere = 6 # sphere surface

cur_in = 30 # Inflow boundary

cur_out = 31 # Outflow boundary

cur_rhs = 17 # Right-hand-side boundary

cur_sym1 = 32 # symmetry axis lower part

cur_sym2 = 5 # symmetry axis upper part

vector_names

velocity

pressure

stress

reaction_force

variables

cD # Drag coefficient

D # First component of integrated reaction force

R2 # Second component of integrated reaction force

end

#

# Define the type of problem to be solved

#

problem #See Users Manual Section 3.2.2

types # Define type of elements

#See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# Define where essential boundary conditions are present

essbouncond

degfd1,degfd2,curves(c cur_sphere) # velocity on sphere surface

degfd1,curves(c cur_sym1) # Symmetry axis (u_r = 0)

degfd1,curves(c cur_sym2) # Symmetry axis (u_r = 0)

curves(c cur_in) # Inflow boundary, uniform flow

degfd1,curves(c cur_out) # Outflow boundary, u_r = 0

curves(c cur_rhs) # Right-hand-side boundary,

# uniform flow

end

# Define the structure of a large matrix
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matrix # See Users Manual Section 3.2.4

reaction_force # Non-symmetrical profile matrix

# So a direct method will be applied

# reaction forces are computed,

# these are used to compute the Drag coefficient

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Create start vector and put boundary conditions in this vector

create_vector, sequence_number=1, velocity

# Compute the velocity and the reaction force

solve_nonlinear_system,sequence_number=1, velocity//

reaction_force = %reaction_force

# Compute the pressure

derivatives, seq_deriv=1,seq_coef = 1, pressure

# Compute the stress tensor

derivatives,seq_deriv=2,seq_coef = 1, stress

# Since the reaction force already consists of terms evaluated as

# an integral it is sufficient to add all terms along the boundary

# The z-component produces the drag

boundary_integral, reaction_force, scalar1 = D, scalar2 = R2

print D, text = ’z-component integral of reaction_force’

# To get the Drag coefficient we must multiply by a factor.

# This is done in the main program in function subroutine funcscal

cD = -D / (0.5d0*radius^2*rho*veloc^2*pi)

print cD

# Prepare output for seppost

output

end

#

# Boundary integrals

#

boundary_integral # See users manual, Section 3.2.14

ichint = 8 # Summation of fz along the boundary

ichfun = 0 # f = 1 (default)

degree_of_freedom = 2 # Only the z-component is required

curves(c cur_sphere) # Boundary integral on sphere surface

end

# Create start vector and put the essential boundary conditions into this

# vector
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create vector # See Users Manual, Section 3.2.10

curves(c cur_in), degfd2, value = veloc # Uniform flow at instream

curves(c cur_rhs),degfd2, value = veloc # Uniform flow at right-hand-side

# the other values are zero

end

# Define coefficients for the problems

# See Users Manual Section 3.2.6

coefficients

elgrp1 (nparm=20) # The coefficients for Navier-Stokes are defined

# by 20 paramerets

# Definition for sphere

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef4 = 1 # 4: Axi-Symmetric co-ordinates

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density in fluid

# 8: angular velocity = 0

# 9: body force in x-direction = 0

#10: body force in y-direction = 0

coef12 = eta #12: Viscosity in fluid

end

# Define the coefficients for the next iterations

# See User Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 3: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 3: Type of linearization (2=Newton iteration)

end

# Define the parameters for the non-linear solver

nonlinear_equations # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-4,print_level=2, lin_solver=1//

at_error=return

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# The pressure is computed as a derived quantity of the Navier-Stokes

# equation

# See Users Manual Section 3.2.11
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derivatives, sequence_number = 1

icheld=7 # pressure

end

# The stress in the same way

derivatives, sequence_number = 2

icheld = 6 #stress

end

end_of_sepran_input
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7.1.14 Channel flow using the gravity force as driving force

In this section we consider a simple channel flow, where we explicitly prescribe the gravity force.

In order to get this example into your local directory use the command

sepgetex gravity

The example itself is trivial, it concerns a straight channel as the one in Figure 7.1.8.1. At the inflow
boundary we prescribe a uniform velocity and at the lower boundary we define free-slip boundary
conditions. At the upper boundary a stress-free boundary condition is given, and at the outflow
boundary the tangential stress is zero and the normal stress is given.
For this flow the velocity is uniform v = (1,0).
Special in this example is the we have besides the inflow, also the gravity as driving force. This
means that the pressure is not constant but depends on the height y: p = ρg(1− y).
As a consequence the normal stress at the outflow is not longer zero, since σnn = −p + ∂v

∂n = −p.
So we have to give the outflow boundary condition as a function.

The mesh file for this example is quite trivial

# gravity.msh

#

# mesh file for 2d free surface problem with gravity

# See Manual Examples Section 7.1.14

#

# To run this file use:

# sepmesh gravity.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

x_left = -4

x_right= 10

y_top = 1

y_bottom = 0

integers

n = 6 # number of elements in length direction

m = 4 # number of elements in width direction

lin = 2 # quadratic elements

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=( x_left, y_bottom) # Left under point

p2=( x_right, y_bottom) # Right under point

p3=( x_right, y_top) # Right upper point

p4=( x_left, y_top) # Left upper point

#
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# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line lin (p1,p2,nelm= n) # lower wall

c2=line lin (p2,p3,nelm= m) # outflow boundary

c3=line lin (p3,p4,nelm= n) # upper side (free surface)

c4=line lin (p4,p1,nelm= m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Quadratic triangles are used

s1=rectangle4(c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The main program used is

program gravity

implicit none

call sepcom ( 0 )

end

! --- Function funccf is used to define variable coefficients

! in this case it concerns the value of the pressure

! at the outflow boundary

! Mark that g has a negative sign

! The pressure is defined by rho g (1-y)

function funccf(ichois,x,y,z)

implicit none

integer ichois

double precision funccf,x,y,z

! --- use common cuscons to get the values of the real constants

! as defined in the "constants" input block

include ’SPcommon/comcons1’

include ’SPcommon/cuscons’

double precision rho, g

rho = rlcons(2)

g = rlcons(4)

funccf=rho*g*(1-y)

end

The corresponding input file for program cavity is:

# gravity.prb

#

# problem file for 2d free surface problem with gravity
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# penalty function approach

# problem is stationary and non-linear

# See Manual Examples Section 7.1.14

#

# To run this file use:

# sepcomp gravity.prb

#

# Reads the file meshoutput

# Creates the files sepcomp.inf and sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 1 # density

eta = 0.01 # viscosity

g = -5.4 # value of the gravity (negative sign!)

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

natbouncond # Define natural boundary conditions

bngrp1=910 # Type number for natuaral boundary conditions

bounelements # Define where natural boundary conditions

# are given

belm1 = curves c2 (shape=2) # boundary elements at outflow boundary

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd2=curves(c1) # under wall free slip

curves(c4) # inflow

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary

# is required

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity

solve_nonlinear_system, velocity
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print velocity

# Compute the pressure

derivatives, pressure

# Write the results to a file

output

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd1, value=1 # The u-component of the velocity at

# instream is constant

# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef10 = g #10: Value of f2 (mark this is -gravity)

coef12 = eta #12: Value of eta (viscosity)

bngrp1 ( nparm=15 ) # The coefficients for the boundary conditions

# are defined by 15 parameters

coef6 = func=1 # In this case we have sigma_xx = -p given

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1//

at_error return

equation 1
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fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# compute pressure

# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

end

end_of_sepran_input

Postprocessing may for example be applied using the input file:

# gravity.pst

# Input file for postprocessing for 2d free surface problem with gravity

# See Manual Examples Section 7.1.8

#

#

# To run this file use:

# seppost gravity.pst > gravity.out

#

# Reads the files meshoutput, sepcomp.inf and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

# Define the names of the solution vectors

# See Users Manual Section 5.2

#

#

# compute the stream function

# See Users Manual Section 5.2

# store in stream_function, and give vector a name

compute stream_function = stream function velocity

# Plot the results

# See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot coloured contour pressure # Coloured contour plot of pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function # Coloured contour plot of

# stream function

end
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7.1.15 A slipping fault in between two viscous fluids

This example is created by Jeroen van Hunen of the university of Utrecht, faculty of Earth Sciences.

To get this example locally use the command:

sepgetex slippingfault

To run the example use:

sepmesh slippingfault.msh

sepcomp slippingfault.prb

seppost slippingfault.pst

sepview sepplot.001

In this example we consider Stokes flow in the earth crust. In this example we have a horizontal
fault, which requires the special boundary condition defined by type 914.
In the transition from brittle to ductile deformation, a region exists, where relative displacement
is only partly realized by viscous shearing, i.e. internal deformation of the material. Another part
of the displacement is concentrated over faults, where two materials slip along each other. In this
example, we consider a slipping fault, surrounded by viscous material. Figure 7.1.15.1 shows the
curves that define the mesh. The aspect ratio of the box is 3. The fault is defined as a cut in the

1

2

3

4

56

7

Figure 7.1.15.1: curve numbers in mesh

mesh from x = 0 to x = 2. Boundaries 5 and 6 define the upper and lower boundary of the fault,
respectively.

The boundary conditions are:

• horizontal flows: v = 0 at C1 and v = 1 at C3

• pressure level uniform at in- and outflow boundaries C2, C4 and C7: σn = −p = 0

• On the fault, we use a discontinuous boundary condition, defined as a special type of mixed
boundary condition (see 7.1, type 5):

σt = Tt − Ct(vuppert − vlowert )
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We take Tt = 0. The boundary condition relates the shear stress σt and the velocity jump
over the fault ∆v = vuppert − vlowert linearly, using the relation coefficient Ct. The ’upper’ and
’lower’ boundary are relatively defined, referring to the both sides of the fault: C5 and C6, or
C6 and C5, respectively.

The Stokes equation is solved using the penalty function method and extended quadratic elements.
In order to apply the discontinuous boundary condition over the fault, quadratic meshconnect
elements are defined to connect both sides of the fault. For the internal elements, type number
900 is used, while on the mesh-connect elements, internal elements of number 914 are used. The
internal element of type number 914 requires the same coefficients as the boundary element of type
910, which are described in 7.1. Due to the discontinuous boundary condition, the stiffness matrix
becomes non-symmetrical.

The following input for sepmesh, sepcomp and seppost is used:

# slippingfault.msh

#

# mesh file for slipping fault in between two viscous fluids

# See Manual Standard Elements Section 7.1.15

#

# To run this file use:

# sepmesh slippingfault.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

x_left = 0 # value of x at the left of the box

x_right = 3 # value of x at the right of the box

x_fault = 2 # value of x at the end of the fault

y_low = 0 # value of y at the bottom of the box

y_top = 1 # value of y at the top of the box

y_fault = 0.5 # value of y at the fault

c_all = 1 # relative coarseness in the region

c_fault_begin = 0.5 # relative coarseness at the start of the fault

c_fault_end = 0.25 # relative coarseness at the end of the fault

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

coarse(UNIT=0.2) # coarseness with unit length

#

# user points

#

points # See Users Manual Section 2.2

p1 = ( x_left , y_low , c_all ) # lower-left point

p2 = ( x_right, y_low , c_all ) # lower-right point

p3 = ( x_right, y_top , c_all ) # upper-right point

p4 = ( x_left , y_top , c_all ) # upper-left point

p5 = ( x_left , y_fault, c_fault_begin ) # upper-left point of fault

p6 = ( x_fault, y_fault, c_fault_end ) # right point of fault

p7 = ( x_left , y_fault, c_fault_begin ) # lower-left point of fault
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#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=cline2(p1,p2) # lower boundary

c2=cline2(p2,p3) # right-hand boundary

c3=cline2(p3,p4) # upper boundary

c4=cline2(p4,p5) # upper part left-hand boundary

c5=cline2(p5,p6) # upper part fault

c6=cline2(p6,p7) # lower part fault

c7=cline2(p7,p1) # lower part left-hand boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Quadratic triangles are used

s1=general4(c1,c2,c3,c4,c5,c6,c7)

#

# Connect elements to element groups

#

meshsurf

selm1=(s1) # all elements in s1 belong to group 1

meshconnect # connection elements (group 2)

celm2=curves2(c5,-c6) # the elements op and below the fault are

# connected by connection elements

# This is necessary for the special boundary

# condition

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Figure 7.1.15.2 shows the mesh created by sepmesh.

Figure 7.1.15.2: Mesh
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# slippingfault.prb

#

# problem file slipping fault in between two viscous fluids

# penalty method

# problem is linear

# See Manual Standard Elements Section 7.1.15

#

# To run this file use:

# sepcomp slippingfault.prb

#

# Reads the file meshoutput

# Creates the files sepcomp.inf and sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eta = 1 # viscosity

rho = 1 # density

eps = 1d-6 # penalty parameter

vector_names

velocity

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=(type=900) # Type number for Navier-Stokes, without swirl

# penalty function approach

# See Standard problems Section 7.1

elgrp2=(type=914) # Type number for discontinuous boundary

# condition

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd2=curves100(c7) # inflow (lower part), skip start point

# vertical component given

degfd2=curves200(c4) # inflow (upper part), skip end point

# vertical component given

degfd1,degfd2=curves (c1) # bottom, full elcoity given

degfd1,degfd2=curves (c3) # top, full elcoity given

degfd2=curves (c5) # fault upper part, normal component given

degfd2=curves (c6) # fault lower part, normal component given

degfd2=curves (c2) # outflow

# vertical component given

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4
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matrix

# non-symmetrical profile matrix (default)

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# Since this is the default one, it may be skipped

#

structure # See Users Manual Section 3.2.3

prescribe_boundary_conditions, velocity

solve_linear_system, velocity

output

end

# Put the essential boundary conditions into the velocity vector

# vector

# See Users Manual Section 3.2.5

essential boundary conditions, sequence_number=1

curves (c1), degfd1=(value=0) # u = 0 at bottom

curves (c3), degfd1=(value=1) # u = q at top

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

elgrp2 ( nparm=15 ) # For the boundary condition 15 parameters are needed

coef9 = 1 # 9: c_x is defined as a constant

end

# input for linear solver

# See Users Manual Section 3.2.8

solve

direct_solver = profile

end

end_of_sepran_input

# slippingfault.pst

# Input file for postprocessing for

# slipping fault in between two viscous fluids

# See Manual Standard Elements Section 7.1.15

#

#

# To run this file use:
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# seppost slippingfault.pst > slippingfault.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

define plot parameters = norotate

plot contour velocity degfd=1, noplot_legenda, noplot_scales

plot intersection velocity degfd=1, origin=(0.5,0.0) angle=90 //

textx=’y’, texty=’velocity’, length=7, noaxis

end

Contour plots of the velocity field and vertical cross section at x = 0.5 of the horizontal velocity
field in figures 7.1.15.3 to 7.1.15.5.
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7.1.16 Application of some 2D and 3D elements to a simple Couette
flow

In this section we consider a very simple Couette flow (Cartesian co-ordinates) for low Reynolds
numbers. The exact solution is a linear velocity profile perpendicular to the flow direction and a
zero pressure field. The reason to solve this simple problem is that it is an easy test on correctness of
elements. In the next Section (7.1.17), it is shown how this example can be extended with friction.
In order to get these examples into your local directory use the command

sepgetex couettexx

where xx is a 2 digit number. The following numbers are available:
number shape type description

11 4 900 extended quadratic triangle, penalty method
12 5 900 linear quadrilateral, penalty method
13 6 900 biquadratic quadrilateral, penalty method
21 6 902 biquadratic quadrilateral, integrated method
22 7 902 extended quadratic triangle, integrated method
23 9 902 bilinear quadrilateral, integrated method
31 7 901 extended quadratic triangle, integrated method (elimination)
41 3 903 linear triangle, Taylor Hood
42 4 903 quadratic triangle, Taylor Hood
43 6 903 biquadratic quadrilateral, Taylor Hood
44 10 903 extended linear triangle, Taylor Hood
51 14 900 extended triquadratic hexahedron, penalty method
81 11 903 linear tetrahedron, Taylor Hood

To run this example use:

sepmesh couettexx.msh

view mesh

sepcomp < couettexx.prb

seppost couettexx.pst

view results

Mark that the possibilities 5x to 8x are three-dimensional. In this case the flow is linear in the
z-direction and constant in the y-direction.

Figure 7.1.8.1 shows the channel and the corresponding curves.
The tangential velocity at the inlet and outlet are equal to zero, the normal velocity is not pre-
scribed. The normal stress at inlet and outlet is made equal to 0, so no extra information for the
normal components is necessary.
At the lower wall we have a zero velocity and at the upper wall the tangential velocity is 1 and the
normal velocity 0.
In all our examples we use a 8 × 8 linear or 8 × 8 quadratic subdivision in elements.

The exact solution is a zero v-velocity and a linearly varying u-velocity: u(x, y) = y. The corre-
sponding pressure is equal to 0. We consider the only give the input for the ”11” example, all other
ones are very similar. See also the channel problem in Section 7.1.8.

shape = 4 // The input for program SEPMESH is given in the following input file (couette11.msh):

# couette11.msh

#

# mesh file for 2d couette problem

# See Manual Standard Elements Section 7.1.16
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#

# To run this file use:

# sepmesh couette11.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

lin = 2 # quadratic elements

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=( length,0) # Right under point

p3=( length, width) # Right upper point

p4=(0, width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line lin (p1,p2,nelm= n) # lower wall

c2=line lin (p2,p3,nelm= m) # outflow boundary

c3=line lin (p3,p4,nelm= n) # upper wall

c4=line lin (p4,p1,nelm= m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Quadratic triangles are used

s1=rectangle4(c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The input file for SEPCOMP is given by the file couette11.prb:

# couette11.prb

#

# problem file for 2d couette problem

# penalty function approach
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# problem is stationary and non-linear

# See Manual Standard Elements Section 7.1.16

#

# To run this file use:

# sepcomp couette11.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 1 # density

eta = 0.01 # viscosity

v_top = 1 # velocity on top_wall

vector_names

velocity

pressure

stress

variables

pressure_int

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1,degfd2=curves(c1) # Fixed under wall

degfd1,degfd2=curves(c3) # Fixed upper wall

degfd2 =curves(c4) # inflow (v-component given)

degfd2 =curves(c2) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary

# is required

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity

solve_nonlinear_system, velocity

# Compute the pressure
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derivatives, seq_deriv=1, pressure

# Compute the stress

derivatives, seq_deriv=2, stress

# Compute the integral of the pressure over curve c2 (outflow boundary)

boundary_integral, pressure, pressure_int

print pressure_int, text = ’integral of pressure over curve c2’

# Write the results to a file

output

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c3), degfd1, value= v_top # The u-component of the velocity at

# the top wall is 1

# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1//

at_error return

equation 1
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fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

#

# Define information with respect to the boundary integral to be computed

# See Users Manual, Section 3.2.14

#

boundary_integral, sequence_number = 1

ichint = 1 # Standard integration

curves = c4 # integral over curve c4

end

# compute pressure and stress

# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

end

derivatives, sequence_number = 2

icheld=6 # icheld=6, stress in nodes

# See Standard problems Section 7.1

end

end_of_sepran_input

The standard nonlinear algorithm, i.e. start with Stokes, do one step Picard and finally use
Newton is applied. However, for this particular problem the solution is reached in two steps
due to the fact that the convective terms do not play a role.
The solution with this element is of course exact up to an accuracy of the order of 10−6, which
is the penalty function parameter.
The postprocessing input file couette11.pst, which produces the pictures shown before is
defined by:

# couette11.pst

# Input file for postprocessing for couette problem

# See Manual Standard Elements Section 7.1.16

#

#

# To run this file use:

# seppost couette11.pst > couette11.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

# compute the stream function

# See Users Manual Section 5.2

# store in stream_function

compute stream_function = stream function velocity

# Plot the results

# See Users Manual Section 5.4
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plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot coloured contour pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

# Print the results

# See Users Manual Section 5.3

print vector stress # Print of stress

end
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7.1.17 Application of some 2D and 3D elements to a simple Couette
flow with friction

In this section we consider also very simple Couette flow (Cartesian co-ordinates) for low Reynolds
numbers. The exact solution is a linear velocity profile perpendicular to the flow direction and a
zero pressure field. The difference with the example in Section (7.1.16), is that in this case the
velocity of upper and under surface are not prescribed to flow by means of a no-slip condition, but
that a friction boundary condition is used.
In one example (91) the friction coefficient at the bottom is made so large that in fact a no-
slip condition is simulated. In this example an iterative linear solver is used and to get a good
convergence the matrix must be scaled.
In order to get these examples into your local directory use the command

sepgetex couettefrictxx

where xx is a 2 digit number. The following numbers are available:
number shape type description

11 4 900 extended quadratic triangle, penalty method
12 5 900 linear quadrilateral, penalty method
13 6 900 biquadratic quadrilateral, penalty method
21 6 902 biquadratic quadrilateral, integrated method
22 7 902 extended quadratic triangle, integrated method
23 9 902 bilinear quadrilateral, integrated method
31 7 901 extended quadratic triangle, integrated method (elimination)
41 3 903 linear triangle, Taylor Hood
42 4 903 quadratic triangle, Taylor Hood
43 6 903 biquadratic quadrilateral, Taylor Hood
44 10 903 extended linear triangle, Taylor Hood
51 14 900 extended triquadratic hexahedron, penalty method
81 11 903 linear tetrahedron, Taylor Hood
91 11 903 linear tetrahedron, Taylor Hood, no-slip at bottom

To run this example use:

sepmesh couettefrictxx.msh

view mesh

seplink couettefrictxx

couettefrictxx < couettefrictxx.prb

seppost couettefrictxx.pst

view results

Mark that the possibilities 5x to 9x are three-dimensional. In this case the flow is linear in the
z-direction and constant in the y-direction.

Figure 7.1.8.1 shows the channel and the corresponding curves.
The tangential velocity at the inlet and outlet are equal to zero, the normal velocity is not prescribed.
The normal stress at inlet and outlet is made equal to 0, so no extra information for the normal
components is necessary.
The lower wall has a zero velocity and at the upper has velocity 1.
The friction is modeled by the boundary condition ctvt + σt = f · t, with t the tangential vector, ct
the friction coefficient and t the velocity of the surface.
This means that in R2 we use the natural boundary condition with ILOAD=0 and in R3 with
ILOAD=3.
In all our examples we use a 8 × 8 linear or 8 × 8 quadratic subdivision in elements.

The exact solution is a zero v-velocity and a linearly varying u-velocity: u(x, y) = 0.1 + 0.8y. The
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corresponding pressure is equal to 0.
The friction coefficient has value 8, in order to get this exact solution. We consider the only give the
input for the ”11” and ”91” example, all other ones are very similar. See also the channel problem
in Section 7.1.8.

Example 11: Pure friction The input for program SEPMESH is given in the following input
file (couettefrict11.msh):

# couettefrict11.msh

#

# mesh file for 2d couette problem with friction

# See Manual Standard Elements Section 7.1.17

#

# To run this file use:

# sepmesh couettefrict11.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

lin = 2 # quadratic elements

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=( length,0) # Right under point

p3=( length, width) # Right upper point

p4=(0, width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line lin (p1,p2,nelm= n) # lower wall

c2=line lin (p2,p3,nelm= m) # outflow boundary

c3=line lin (p3,p4,nelm= n) # upper wall

c4=line lin (p4,p1,nelm= m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Quadratic triangles are used

s1=rectangle4(c1,c2,c3,c4)
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plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The input file for SEPCOMP is given by the file couettefrict11.prb:

# couettefrict11.prb

#

# problem file for 2d couette problem with friction

# penalty function approach

# problem is stationary and non-linear

# See Manual Standard Elements Section 7.1.17

#

# To run this file use:

# sepcomp couettefrict11.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 1 # density

eta = 0.01 # viscosity

mu = 8 # Friction coefficient

v_bot_tang = 0 # Tangential velocity of lower wall

v_top_tang = -1 # Tangential velocity of upper wall

# Mark that the velocity is negative

# because the tangential vector = (-1,0)

# and the flow is to the right

c_upp = mu*eta # Friction coefficient at upper wall

# mu eta

c_low = c_upp # Friction coefficient at lower wall

# mu eta

sigma_upp = c_upp*v_top_tang # Friction coefficient times velocity

# at upper wall

sigma_low = c_upp*v_bot_tang # Friction coefficient time velocity

# at lower wall

vector_names

velocity

pressure

stress

variables

pressure_int

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2
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types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

natbouncond # Define the type numbers for the natural

# boundary conditions, i.e. the boundary

# conditions: c u_t + sigma_t = given

bngrp1 = 910 # Type number for Natural boundary condition

bngrp2 = 910

bounelements # Define where the natural boundary conditions

# must be applied

belm1 = curves(c1) # lower wall

belm2 = curves(c3) # upper wall

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1=curves(c1) # Lower wall: u_n = 0

degfd1=curves(c3) # Upper wall: u_n = 0

degfd2=curves 300 (c4) # inflow (v-component given)

# The initial and end point are excluded to

# avoid a conflict with the local transformations

degfd2=curves 300 (c2) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

local_transform # Local transformations to get the normal

# and tangential components as first resp. second

# unknown at the walls

curves c1 # standard transformation at lower wall

curves c3 # standard transformation at upper wall

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary

# is required

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity

solve_nonlinear_system, velocity

# Compute the pressure

derivatives, seq_deriv=1, pressure

# Compute the stress

derivatives, seq_deriv=2, stress

# Compute the integral of the pressure over curve c2 (outflow boundary)

boundary_integral, pressure, pressure_int

print pressure_int, text = ’integral of pressure over curve c2’

# Write the results to a file

output

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients
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elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

bngrp1 ( nparm=15 ) # The coefficients are defined by 15 parameters

# boundary elements at lower wall

coef7 = sigma_low # friction times wall velocity

coef10 = c_low # friction coefficient

bngrp2 ( nparm=15 ) # The coefficients are defined by 15 parameters

# boundary elements at upper wall

coef7 = sigma_upp # friction times wall velocity

coef10 = c_upp # friction coefficient

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1//

at_error return

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

#

# Define information with respect to the boundary integral to be computed

# See Users Manual, Section 3.2.14

#

boundary_integral, sequence_number = 1

ichint = 1 # Standard integration

curves = c4 # integral over curve c4

end

# compute pressure and stress

# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1

icheld=7 # icheld=7, pressure in nodes
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# See Standard problems Section 7.1

end

derivatives, sequence_number = 2

icheld=6 # icheld=6, stress in nodes

# See Standard problems Section 7.1

end

end_of_sepran_input

The standard nonlinear algorithm, i.e. start with Stokes, do one step Picard and finally use
Newton is applied. However, for this particular problem the solution is reached in two steps
due to the fact that the convective terms do not play a role.
The solution with this element is of course exact up to an accuracy of the order of 10−6, which
is the penalty function parameter.
The postprocessing input file couettefrict11.pst, which produces the pictures shown before is
defined by:

# couettefrict11.pst

# Input file for postprocessing for couette problem with friction

# See Manual Standard Elements Section 7.1.17

#

#

# To run this file use:

# seppost couettefrict11.pst > couettefrict11.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

# compute the stream function

# See Users Manual Section 5.2

# store in stream_function

compute stream_function = stream function velocity

# Plot the results

# See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot coloured contour pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

# Print the results

# See Users Manual Section 5.3

print vector stress # Print of stress

end

Example 91: Friction at upper face and almost slip at lower face This is the 3D equiva-
lent of the channel given above.
At the bottom we have a very large friction coefficient. Effectively this results in a (almost)
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no-slip condition.
The input for program SEPMESH is given in the following input file (couettefrict91.msh):

# couettefrict11.msh

#

# mesh file for 2d couette problem with friction

# See Manual Standard Elements Section 7.1.17

#

# To run this file use:

# sepmesh couettefrict11.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the channel

length = 4 # length of the channel

integers

n = 4 # number of elements in length direction

m = 4 # number of elements in width direction

lin = 2 # quadratic elements

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=( length,0) # Right under point

p3=( length, width) # Right upper point

p4=(0, width) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line lin (p1,p2,nelm= n) # lower wall

c2=line lin (p2,p3,nelm= m) # outflow boundary

c3=line lin (p3,p4,nelm= n) # upper wall

c4=line lin (p4,p1,nelm= m) # inflow boundary

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Quadratic triangles are used

s1=rectangle4(c1,c2,c3,c4)

plot # make a plot of the mesh

# See Users Manual Section 2.2
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end

The problem is solved by an iterative linear solver. Due to the large friction coefficient at the
bottom, we have large elements in the corresponding rows of the matrix and right-hand side.
If we apply the iterative solver in that case, the residual starts with a large value and after one
step is much smaller. If the standard accuracy and termination criterion is used, this means
that the iteration is stopped after one step, although the solution is far from accurate. In
order to avoid that problem, the matrix is scaled by a row scaling. The result is the absence
of large elements in matrix and right-hand side and a smooth convergence.
Since actually the non-linear iteration should be finished after two iterations, we have increased
the accuracy of the linear solver to 1d-5.
The input file for sepcomp is given below:

# couettefrict11.prb

#

# problem file for 2d couette problem with friction

# penalty function approach

# problem is stationary and non-linear

# See Manual Standard Elements Section 7.1.17

#

# To run this file use:

# sepcomp couettefrict11.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1d-6 # penalty parameter for Navier-Stokes

rho = 1 # density

eta = 0.01 # viscosity

mu = 8 # Friction coefficient

v_bot_tang = 0 # Tangential velocity of lower wall

v_top_tang = -1 # Tangential velocity of upper wall

# Mark that the velocity is negative

# because the tangential vector = (-1,0)

# and the flow is to the right

c_upp # Friction coefficient at upper wall

# mu eta

c_low # Friction coefficient at lower wall

# mu eta

sigma_upp # Friction coefficient times velocity

# at upper wall

sigma_low # Friction coefficient time velocity

# at lower wall

vector_names

velocity

pressure

stress

variables

pressure_int

end
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#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

natbouncond # Define the type numbers for the natural

# boundary conditions, i.e. the boundary

# conditions: c u_t + sigma_t = given

bngrp1 = 910 # Type number for Natural boundary condition

bngrp2 = 910

bounelements # Define where the natural boundary conditions

# must be applied

belm1 = curves(c1) # lower wall

belm2 = curves(c3) # upper wall

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1=curves(c1) # Lower wall: u_n = 0

degfd1=curves(c3) # Upper wall: u_n = 0

degfd2=curves 300 (c4) # inflow (v-component given)

# The initial and end point are excluded to

# avoid a conflict with the local transformations

degfd2=curves 300 (c2) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

local_transform # Local transformations to get the normal

# and tangential components as first resp. second

# unknown at the walls

curves c1 # standard transformation at lower wall

curves c3 # standard transformation at upper wall

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary

# is required

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity

solve_nonlinear_system, velocity

# Compute the pressure

derivatives, seq_deriv=1, pressure

# Compute the stress

derivatives, seq_deriv=2, stress

# Compute the integral of the pressure over curve c2 (outflow boundary)

boundary_integral, pressure, pressure_int

print pressure_int, text = ’integral of pressure over curve c2’

# Write the results to a file

output

end
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# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

bngrp1 ( nparm=15 ) # The coefficients are defined by 15 parameters

# boundary elements at lower wall

coef7 = sigma_low # friction times wall velocity

coef10 = c_low # friction coefficient

bngrp2 ( nparm=15 ) # The coefficients are defined by 15 parameters

# boundary elements at upper wall

coef7 = sigma_upp # friction times wall velocity

coef10 = c_upp # friction coefficient

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1//

at_error return

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

#

# Define information with respect to the boundary integral to be computed

# See Users Manual, Section 3.2.14

#

boundary_integral, sequence_number = 1

ichint = 1 # Standard integration

curves = c4 # integral over curve c4

end
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# compute pressure and stress

# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

end

derivatives, sequence_number = 2

icheld=6 # icheld=6, stress in nodes

# See Standard problems Section 7.1

end

end_of_sepran_input

And the input file for seppost:

# couettefrict11.pst

# Input file for postprocessing for couette problem with friction

# See Manual Standard Elements Section 7.1.17

#

#

# To run this file use:

# seppost couettefrict11.pst > couettefrict11.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

# compute the stream function

# See Users Manual Section 5.2

# store in stream_function

compute stream_function = stream function velocity

# Plot the results

# See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot coloured contour pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

# Print the results

# See Users Manual Section 5.3

print vector stress # Print of stress

end
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7.1.18 Some examples of how to apply pressure-correction

In this section we show the use of the pressure-correction method to solve the time-dependent
Navier-Stokes equations.
The following examples are available

channelintsthpc42 (7.1.18.1) Solves the channel flow using the Navier-Stokes equations and
pressure-correction. A direct symmetric linear solver is used, and quadratic Taylor-Hood
elements.

backwrd2 thpc (7.1.18.2) Solves the 2d backward facing step using pressure correction and an
iterative solver for the linear equations
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7.1.18.1 Channel flow, solved by Navier-Stokes, direct solver

In order to get this example into your local directory use the command

sepgetex channelinsthpc42

To run this example use:

sepmesh channelinsthpc42.msh

view mesh

sepcomp channelinsthpc42.prb

seppost channelinsthpc42.pst

view results

The example is a simple 2d channel flow, with velocity from left to right. The upper and lower
boundaries are fixed walls and at the outlet we assume parallel flow. The velocity at the inlet is
prescribed by a quadratic velocity profile. The problem is time-dependent. At t = 0 we set the
velocity u equal to zero, except for the inflow boundary and the pressure p also to zero. After the
computations, the solution must have been converged to the stationary solution. Since the initial
condition is not divergence-free, we may expect a transient and this is exactly what happens. In
the special case of a channel flow, the convective terms of the stationary solution vanish due to the
simple quadratic velocity field in x-direction and zero velocity in y-direction. For that reason we
may solve this problem without convection and all matrices will be symmetrical positive definite.
However, running Navier-Stokes is only a small change in the input, as you can see below the input
for sepcomp.
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The input for program SEPMESH is given in the following input file (channelinstpc42.msh):

# channelinsthpc42.msh

#

#

# Instationary flow in channel (2D case)

# Taylor-Hood elements are used

# pressure correction method

#

# See Manual Standard Elements Section 7.1.10

# See Manual Examples Section 7.1.18

#

# Quadratic triangles

#

# To create the mesh run:

#

# sepmesh channelinsthpc42.msh

#

#

# Creates the file meshoutput

#

# Define some general constants

#

constants

reals

length = 4 # length of channel

height = 1 # Height of channel

# centre of the cylinder

integers

lin = 2 # Quadratic line elements

sur = 4 # Quadratic triangles

n_hor = 4 # number of elements along the outer boundary

# horizontal direction

n_ver = 4 # number of elements along the outer boundary

# vertical direction

inflow = 4 # curve number of inflow boundary

outlet = 2 # curve number of outlet boundary

wall = 5 # curve number of wall

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = (0,0) # Left-under point

p2 = (length,0) # Right-under point

p3 = (length,height) # Right-upper point

p4 = (0,height) # Left-upper point

#

# curves

#

curves # See Users Manual Section 2.3
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c1=line lin (p1,p2,nelm=n_hor) # Lower boundary

c outlet=line lin (p2,p3,nelm=n_ver) # Outflow boundary

c3=line lin (p3,p4,nelm=n_hor) # Upper boundary

c inflow=line lin (p4,p1,nelm=n_ver) # Inflow boundary

c wall = curves (c1, c3) # wall

#

# surface

#

surfaces # See Users Manual Section 2.4

s1=rectangle sur (c1,c2,c3,c4) # outer region

plot # make a plot of the mesh

# See Users Manual Section 2.2

end
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The input file for SEPCOMP is given by the file channelinsthpc42.prb:

# channelinsthpc42.prb

#

#

# Instationary flow in channel (2D case)

# Taylor-Hood elements are used

# pressure correction method

#

# See Manual Standard Elements Section 7.1.10

# See Manual Examples Section 7.1.18

#

# Quadratic triangles

#

# To run this file use:

# sepcomp channelinsthpc42.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

inflow = 4 # curve number of inflow boundary

outlet = 2 # curve number of outlet boundary

wall = 5 # curve number of wall

reals

rho = 1 # density

eta = 0.01 # viscosity

t0 = 0 # initial time

dt = 0.1 # time step

t1 = 5 # end time

tout0 = t0 # First time that a result is written

toutend = t1 # End time for writing

toutstep = 5*dt # In each 5^th time step the result is written

umax = 1 # maximum velocity at inflow

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

# In this case we have 2 problems, 1 for the velocity

# and one for the pressure.

# Both are solved subsequently

#

problem 1 # See Users Manual Section 3.2.2

# solves the velocity (momentum equations: predictor)

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=905 # Type number for Navier-Stokes, without swirl
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# pressure correction method

# Taylor-Hood elements

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# Only velocities are prescribed, not the

# pressures

degfd1,degfd2=curves(c wall) # Fixed wall

degfd1,degfd2=curves(c inflow) # inflow

degfd2 =curves(c outlet) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

problem 2 # See Users Manual Section 3.2.2

# solves the pressure equation

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=906 # Type number for pressure equation used in

# case of Navier-Stokes, pressure correction

# Taylor Hood approach

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# The pressure is prescribed at the outlet

# In other boundaries we have dp/dn = 0

curves(c outlet) # Outlet boundary (p=0)

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

symmetric, problem = 1 # Symmetrical profile matrix for velocity

symmetric, problem = 2 # symmetrical profile matrix for pressure

# So a direct method will be applied

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions # velocity only

curves(c inflow), degfd1, quadratic, max = umax # The u-component of the

# velocity at instream is quadratic

# The rest of the vector is 0

end

# Create pressure vector and set equal to 0

create vector, problem = 2

end
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# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: 0: Stokes, 1: Picard

icoef6 = pressure # 6: iseqpress

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Input for definition of pressure correction

# In this case only defaults are used

# See Users Manual Section 3.2.15

pressure_correction

end

# Definition of time integration

# See Users Manual Section 3.2.22

time_integration

method = euler_implicit # Integration by the Euler implicit method

tinit = t0 # Initial time

tend = t1 # End time

tstep = dt # Time step

toutinit = tout0 # First time that a result is written

toutend = toutend # End time for writing

toutstep = toutstep # time steps for writing

boundary_conditions = constant # The boundary conditions do not depend on

# time

seq_boundary_conditions = 1 # Sequence number for the input of the

# essential boundary conditions

mass_matrix = constant # Time-independent mass matrix

end

# Description of how the Navier-Stokes equations are solved

# See Users Manual, Section 3.2.22

navier_stokes

method = pressure_correction # solve by pressure correction

seq_pressure_correction = 1 # sequence number of pressure correction

# input

end

# Input for the linear solver

# See Users Manual Section 3.2.8

solve

positive_definite

end



EX Pressure-correction October 2008 7.1.18.8

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, sequence_number=1, vector=velocity

create_vector, sequence_number=1, vector=pressure

# Time loop

start_time_loop

# One time step to compute the velocity and the pressure,

# using pressure correction

navier_stokes

output

end_time_loop

end

end_of_sepran_input
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In this case also convection substepping is allowed.
To get the corresponding files into your directory use:

sepgetex channelinstcspc42

The corresponding problem file reads

# channelinstcspc42.prb

#

#

# Instationary flow in channel (2D case)

# Taylor-Hood elements are used

# pressure correction method and convection substepping

#

# See Manual Standard Elements Section 7.1.10

# See Manual Examples Section 7.1.18

#

# Quadratic triangles

#

# To run this file use:

# sepcomp channelinstcspc42.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

inflow = 4 # curve number of inflow boundary

outlet = 2 # curve number of outlet boundary

wall = 5 # curve number of wall

mstep = 1 # Number of convection substeps

reals

rho = 1 # density

eta = 0.01 # viscosity

t0 = 0 # initial time

dt = 0.1 # time step

t1 = 5 # end time

tout0 = t0 # First time that a result is written

toutend = t1 # End time for writing

toutstep = 5*dt # In each 5^th time step the result is written

umax = 1 # maximum velocity at inflow

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

# In this case we have 2 problems, 1 for the velocity

# and one for the pressure.

# Both are solved subsequently

#
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problem 1 # See Users Manual Section 3.2.2

# solves the velocity (momentum equations: predictor)

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=905 # Type number for Navier-Stokes, without swirl

# pressure correction method

# Taylor-Hood elements

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# Only velocities are prescribed, not the

# pressures

degfd1,degfd2=curves(c wall) # Fixed wall

degfd1,degfd2=curves(c inflow) # inflow

degfd2 =curves(c outlet) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

problem 2 # See Users Manual Section 3.2.2

# solves the pressure equation

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=906 # Type number for pressure equation used in

# case of Navier-Stokes, pressure correction

# Taylor Hood approach

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# The pressure is prescribed at the outlet

# In other boundaries we have dp/dn = 0

curves(c outlet) # Outlet boundary (p=0)

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

symmetric, problem = 1 # Symmetrical profile matrix for velocity

symmetric, problem = 2 # symmetrical profile matrix for pressure

# So a direct method will be applied

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions # velocity only

curves(c inflow), degfd1, quadratic, max = umax # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0
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end

# Create pressure vector and set equal to 0

create vector, problem = 2

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients, sequence_number = 1 # Stokes

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: 0: Stokes, 1: Picard

icoef6 = pressure # 6: iseqpress

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

coefficients, sequence_number = 2, problem = 1 # Convection step

# The problem number is required, because it differs from the sequence number

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 2 # 5: 2: Newton, necessary to define u^n grad u^n

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Input for definition of pressure correction

# In this case only defaults are used

# See Users Manual Section 3.2.15

pressure_correction

convection_treatment = substeps # Use convection substepping

number_of_substeps = mstep # number of substeps

seq_vel_coefficients = 1 # sequence number of velocity

# coefficients input

seq_conv_coefficients = 2 # sequence number of convection

# coefficients input

seq_time_integration = 1 # sequence number of time integration

end

# Definition of time integration

# See Users Manual Section 3.2.22

time_integration

method = euler_implicit # Integration by the Euler implicit method

tinit = t0 # Initial time

tend = t1 # End time

tstep = dt # Time step

toutinit = tout0 # First time that a result is written

toutend = toutend # End time for writing

toutstep = toutstep # time steps for writing
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boundary_conditions = constant # The boundary conditions do not depend on

# time

seq_boundary_conditions = 1 # Sequence number for the input of the

# essential boundary conditions

mass_matrix = constant # Time-independent mass matrix

end

# Description of how the Navier-Stokes equations are solved

# See Users Manual, Section 3.2.22

navier_stokes

method = pressure_correction # solve by pressure correction

seq_pressure_correction = 1 # sequence number of pressure correction

# input

end

# Input for the linear solver

# See Users Manual Section 3.2.8

solve

positive_definite

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, sequence_number=1, vector=velocity

create_vector, sequence_number=1, vector=pressure

# Time loop

start_time_loop

# One time step to compute the velocity and the pressure,

# using pressure correction

navier_stokes

output

end_time_loop

end

end_of_sepran_input
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The postprocessing input file channelinsthpc42.pst is defined by:

# channelinsthpc42.pst

#

# Instationary flow in channel (2D case)

# Taylor-Hood elements are used

# pressure correction method

#

# See Manual Standard Elements Section 7.1.10

# See Manual Examples Section 7.1.18

#

# Quadratic triangles

#

#

# To run this file use:

# seppost channelinsthpc42.pst > channelinsthpc42.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

#

# compute the stream function

# See Users Manual Section 5.2

# store in stream_function

compute stream_function = stream function velocity

# Plot the results

# See Users Manual Section 5.4

time = (0, 10)

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot coloured contour pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

end
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7.1.18.2 2d Backward facing step, solved by Navier-Stokes, iterative solver

In order to get this example into your local directory use the command

sepgetex backwrd2_thpc

To run this example use:

sepmesh backwrd2_thpc.msh

view mesh

sepcomp backwrd2_thpc.prb

seppost backwrd2_thpc.pst

view results

The example is the standard backward facing step as described in Section (7.1.1). The only dif-
ference with the examples in (7.1.1) is that the system of equations is solved in a time-dependent
way by pressure correction. Quadratic Taylor-Hood elements with linear pressure are used (type
number 905 for the momentum equations and 906 for the pressure equation).
Compared to Section (7.1.1) only the problem file is essentially different and will be given here. All
other files can be found in the sourceexam directory.



EX Pressure-correction October 2008 7.1.18.15

# backwrd2_thpc.prb

#

# problem file for backward facing step

# pressure-correction approach using Taylor-Hood elements

# problem is stationary and non-linear, but is solved instationary

#

# An iterative linear solver is applied

# See Manual Examples Section 7.1.18

#

# To run this file use:

# sepcomp backwrd2_thpc.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

set warn off ! suppress warnings

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

rho = 1 # density

eta = 0.01 # viscosity

t0 = 0 # initial time

dt = 0.1 # time step

tend = 5 # end time

tout0 = t0 # First time that a result is written

toutend = tend # End time for writing

toutstep = 5*dt # In each 5^th time step the result is written

integers

outlet = 21 # curve number for outlet boundary

wall = 25 # curve number for walls

inflow = 23 # curve number for inflow boundary

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=905 # Type number for Navier-Stokes, without swirl

# pressure correction method

# Taylor-Hood elements

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# Only velocities are prescribed, not the

# pressures

degfd1,degfd2=curves(c wall) # Fixed wall
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degfd1,degfd2=curves(c inflow) # inflow

degfd2 =curves(c outlet) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

problem 2 # See Users Manual Section 3.2.2

# solves the pressure equation

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=906 # Type number for pressure equation used in

# case of Navier-Stokes, pressure correction

# Taylor Hood approach

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# The pressure is prescribed at the outlet

# In other boundaries we have dp/dn = 0

curves(c outlet) # Outlet boundary (p=0)

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_scheme = compact, problem = 1 # Non-symmetrical compact matrix for velocity

storage_scheme = compact, symmetric, problem = 2 # symmetrical compact matrix for pressure

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c inflow), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Create pressure vector and set equal to 0

create vector, problem = 2

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)
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icoef5 = 1 # 5: 0: Stokes, 1: Picard

icoef6 = pressure # 6: iseqpress

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Input for definition of pressure correction

# In this case only defaults are used

# See Users Manual Section 3.2.15

pressure_correction

seq_vel_solver = 1

seq_press_solver = 2

end

# Definition of time integration

# See Users Manual Section 3.2.15

time_integration

method = euler_implicit # Integration by the Euler implicit method

tinit = t0 # Initial time

tend = tend # End time

tstep = dt # Time step

toutinit = tout0 # First time that a result is written

toutend = toutend # End time for writing

toutstep = toutstep # time steps for writing

boundary_conditions = constant # The boundary conditions do not depend on

# time

seq_boundary_conditions = 1 # Sequence number for the input of the

# essential boundary conditions

mass_matrix = constant # Time-independent mass matrix

end

# Description of how the Navier-Stokes equations are solved

# See Users Manual, Section 3.2.22

navier_stokes

method = pressure_correction # solve by pressure correction

seq_pressure_correction = 1 # sequence number of pressure correction

# input

end

# input for the linear solver (for both problems)

# See Users Manual Section 3.2.8

solve, sequence_number = 1

iteration_method = cg, preconditioner = ilu, print_level = 1

end

solve, sequence_number = 2

iteration_method = cg, preconditioner = ilu, accuracy = 1d-5, print_level = 1

end

#
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# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, velocity

create_vector, pressure

# Time loop

start_time_loop

# One time step to compute the velocity and the pressure,

# using pressure correction

navier_stokes

output

end_time_loop

end

end_of_sepran_input
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7.1.19 Some examples of time dependent channel flow

In this section we show how the stationary channel flow can be solved as the limit of a time-
dependent problem.
This Section show how the time-dependent Navier-Stokes equations can be solved in various ways.
The problem itself is the simple channel flow described in Section (7.1.8). The only difference is
that we add a time-derivative and start with a zero velocity, zero pressure at t = 0.
In the limit, for t large enough, the solution converges to steady state. Since the initial conditions
do not match the boundary conditions we have an example of a transient.
The following examples are available

channelinstcrxx (7.1.19.1) Solves the time-dependent channel flow by the standard time integra-
tion and Crouzeix-Raviart elements (discontinuous pressure).

channelinstthxx (7.1.19.2) Solves the time-dependent channel flow by the standard time integra-
tion and Taylor-Hood elements (continuous pressure).

channelinstcsxx (7.1.19.3) Solves the time-dependent channel flow by the standard time integra-
tion and convection substepping.

channelinsthpc42 (7.1.18.1) Solves the channel flow using the Navier-Stokes equations and pressure-
correction. A direct symmetric linear solver is used, and quadratic Taylor-Hood elements.
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7.1.19.1 Time-dependent channel flow, Crouzeix-Raviart elements

In order to get this example into your local directory use the command

sepgetex channelinstcrxx

The following values for xx are available:

xx = 11 Quadratic triangles, with static condensation, type 900

xx = 12 Bi-linear quadrilaterals, type 900

xx = 13 Bi-quadratic quadrilaterals, with static condensation, type 900

xx = 21 Quadratic triangles, type 902

xx = 22 Bi-linear quadrilaterals, type 902

xx = 23 Bi-quadratic quadrilaterals, type 902

xx = 31 Quadratic triangles, with static condensation, type 901

The examples with type 900 use the penalty function formulation, the examples with type 901 and
902 the integrated approach.

To run this example use:

sepmesh channelinstcrxx.msh

view mesh

sepcomp channelinstcrxx.prb

seppost channelinstcrxx.pst

view results

The example is standard so no further explanation has to be given.
Only the problem file and a postprocessing file are given.

Note that the pressure computed in the three examples 11, 13 and 31 with static condensation is
inaccurate. However, in the limit the pressure is correct.
The pressure in the other examples is also correct during the time-steps.
The examples with the integrated method require renumbering of the unknowns, preferably per
level, in order to avoid singular matrices.
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The input for program SEPCOMP is given in the following input file (channelinstcr11.prb):

# channelinstcr11.prb

#

#

# Instationary flow in channel (2D case)

# Crouzeix-Raviart elements are used

# Penalty function method

#

# See Manual Standard Problems Section 7.1.10

# Manual exams 7.1.19

#

# Quadratic triangles with static condensation

#

# To run this file use:

# sepcomp channelinstcr11.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

inflow = 4 # curve number of inflow boundary

outlet = 2 # curve number of outlet boundary

wall = 5 # curve number of wall

reals

eps = 1e-6 # penalty parameter for Navier-Stokes

rho = 1 # density

eta = 0.01 # viscosity

t0 = 0 # initial time

dt = 0.1 # time step

t1 = 5 # end time

tout0 = t0 # First time that a result is written

toutend = t1 # End time for writing

toutstep = 5*dt # In each 5^th time step the result is written

umax = 1 # maximum velocity at inflow

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# Penalty function approach

# Crouzeix-Raviart elements

# See Standard problems Section 7.1
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essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# Only velocities are prescribed, not the

# pressures

degfd1,degfd2=curves(c wall) # Fixed wall

degfd1,degfd2=curves(c inflow) # inflow

degfd2 =curves(c outlet) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c inflow), degfd1, quadratic, max = umax # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 1 # 5: 1: Picard

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Definition of time integration

# See Users Manual Section 3.2.15

time_integration

method = euler_implicit # Integration by the Euler implicit method

tinit = t0 # Initial time

tend = t1 # End time

tstep = dt # Time step

toutinit = tout0 # First time that a result is written

toutend = toutend # End time for writing

toutstep = toutstep # time steps for writing

boundary_conditions = constant # The boundary conditions do not depend on

# time

seq_boundary_conditions = 1 # Sequence number for the input of the

# essential boundary conditions

seq_coefficients = 1 # Sequence number for the coefficients

mass_matrix = constant # Time-independent mass matrix

number_of_coupled_equations = 1 # There is only one equation
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end

# Description of how the Navier-Stokes equations are solved

# See Users Manual, Section 3.2.22

navier_stokes

method = standard # standard method

seq_velocity = velocity # sequence number of velocity vector

end

# compute pressure

# See Users Manual, Section 3.2.11

derivatives

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, sequence_number=1, vector=velocity

# Time loop

start_time_loop

# One time step to compute the velocity

time_integration, sequence_number = 1, velocity

# Compute the pressure from the velocity

derivatives, pressure

output

end_time_loop

end

end_of_sepran_input
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The input for program SEPPOST is given in the following input file (channelinstcr11.pst):

# channelinstcr11.pst

#

# Instationary flow in channel (2D case)

# Crouzeix-Raviart elements are used

# Penalty function method

#

# See Manual Standard Problems Section 7.1.10

# Manual Examples Section 7.1.19

#

# Quadratic triangles with static condensation

#

#

# To run this file use:

# seppost channelinstcr11.pst > channelinstcr11.out

#

# Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

#

# compute the stream function

# See Users Manual Section 5.2

# store in stream_function

compute stream_function = stream function velocity

# Plot the results

# See Users Manual Section 5.4

time = (0, 10)

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot coloured contour pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

end
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7.1.19.2 Time-dependent channel flow, Taylor-Hood elements

In order to get this example into your local directory use the command

sepgetex channelinstthxx

The following values for xx are available:

xx = 41 Linear elements, with static condensation, (mini-element)

xx = 42 Quadratic triangles

xx = 43 Bi-quadratic quadrilaterals

xx = 44 Linear elemens with extra point, no static condensation

All examples use type 903 and the integrated approach. Except for the mini element they all require
renumbering of the unknowns, preferably per level, in order to avoid singular matrices.
In case of the mini element usually the convergence of the linear solver is better if no renumbering
is applied.

To run this example use:

sepmesh channelinstthxx.msh

view mesh

sepcomp channelinstthxx.prb

seppost channelinstthxx.pst

view results

The example is standard so no further explanation has to be given.
Only the problem file and a postprocessing file are given.

Note that the pressure computed in examples 11 with static condensation is inaccurate. However,
in the limit the pressure is correct.
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The input for program SEPCOMP is given in the following input file (channelinstth41.prb):

# channelinsthh41.prb

#

#

# Instationary flow in channel (2D case)

# Taylor-Hood elements are used

# integrated method

#

# See Manual Standard Problems Section 7.1.10

# Manual examples Section 7.1.19

#

# Linear triangles

#

# To run this file use:

# sepcomp channelinsthh41.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

inflow = 4 # curve number of inflow boundary

outlet = 2 # curve number of outlet boundary

wall = 5 # curve number of wall

reals

rho = 1 # density

eta = 0.01 # viscosity

t0 = 0 # initial time

dt = 0.1 # time step

t1 = 5 # end time

tout0 = t0 # First time that a result is written

toutend = t1 # End time for writing

toutstep = 5*dt # In each 5^th time step the result is written

umax = 1 # maximum velocity at inflow

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=903 # Type number for Navier-Stokes, without swirl

# Integrated approach

# Taylor-Hood elements

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are
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# given (not the value)

# See Users Manual Section 3.2.2

# Only velocities are prescribed, not the

# pressures

degfd1,degfd2=curves(c wall) # Fixed wall

degfd1,degfd2=curves(c inflow) # inflow

degfd2 =curves(c outlet) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c inflow), degfd1, quadratic, max = umax # The u-component of the

# velocity at instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 1 # 5: 1: Picard

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Definition of time integration

# See Users Manual Section 3.2.15

time_integration

method = euler_implicit # Integration by the Euler implicit method

tinit = t0 # Initial time

tend = t1 # End time

tstep = dt # Time step

toutinit = tout0 # First time that a result is written

toutend = toutend # End time for writing

toutstep = toutstep # time steps for writing

boundary_conditions = constant # The boundary conditions do not depend on

# time

seq_boundary_conditions = 1 # Sequence number for the input of the

# essential boundary conditions

seq_coefficients = 1 # Sequence number for the coefficients

mass_matrix = constant # Time-independent mass matrix

number_of_coupled_equations = 1 # There is only one equation

end
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# Description of how the Navier-Stokes equations are solved

# See Users Manual, Section 3.2.22

navier_stokes

method = standard # standard method

seq_velocity = velocity # sequence number of velocity vector

end

# compute pressure

# See Users Manual, Section 3.2.11

derivatives

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, sequence_number=1, vector=velocity

# Time loop

start_time_loop

# One time step to compute the velocity

navier_stokes

# Compute the pressure from the velocity

derivatives, pressure

output

end_time_loop

end

end_of_sepran_input
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7.1.19.3 Time-dependent channel flow, convection substepping

In order to get this example into your local directory use the command

sepgetex channelinstcs

The following values for xx are available:

xx = 42 Quadratic triangles, Taylor Hood

The examples are identical to the ones in Section (7.1.19.1) and (7.1.19.2). However, now convection
substepping is applied.
At this moment the results are less accurate than the standard approach.

To run this example use:

sepmesh channelinstxx.msh

view mesh

sepcomp channelinstxx.prb

seppost channelinstxx.pst

view results

The example is standard so no further explanation has to be given.
Only the problem file is given.
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The input for program SEPCOMP is given in the following input file (channelinstcs42.prb):

# channelinstcs42.prb

#

#

# Instationary flow in channel (2D case)

# Taylor-Hood elements are used

# integrated method, convection substepping

#

# See Manual Standard Problems Section 7.1.10

# Manual Examples Section 7.1.19

#

# Quadratic triangles

#

# To run this file use:

# sepcomp channelinstcs42.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

inflow = 4 # curve number of inflow boundary

outlet = 2 # curve number of outlet boundary

wall = 5 # curve number of wall

msteps = 2 # number of substeps for

# convective substepping

reals

rho = 1 # density

eta = 0.01 # viscosity

t0 = 0 # initial time

dt = 0.1 # time step

t1 = 5 # end time

tout0 = t0 # First time that a result is written

toutend = t1 # End time for writing

toutstep = 5*dt # In each 5^th time step the result is written

umax = 1 # maximum velocity at inflow

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=903 # Type number for Navier-Stokes, without swirl

# Integrated approach

# Taylor-Hood elements
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# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# Only velocities are prescribed, not the

# pressures

degfd1,degfd2=curves(c wall) # Fixed wall

degfd1,degfd2=curves(c inflow) # inflow

degfd2 =curves(c outlet) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

renumber levels (1,2), (3)

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c inflow), degfd1, quadratic, max = umax # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

# The first problem is the Stokes Problem, the second one

# convection only

coefficients, sequence_number = 1 # Stokes

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: 0: Stokes

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

coefficients, sequence_number = 2 # Convection step

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 2 # 5: 2: Newton, necessary to define u^n grad u^n

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Definition of time integration

# See Users Manual Section 3.2.15

time_integration

method = euler_implicit # Integration by the Euler implicit method

tinit = t0 # Initial time

tend = t1 # End time
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tstep = dt # Time step

toutinit = tout0 # First time that a result is written

toutend = toutend # End time for writing

toutstep = toutstep # time steps for writing

boundary_conditions = constant # The boundary conditions do not depend on

# time

seq_boundary_conditions = 1 # Sequence number for the input of the

# essential boundary conditions

seq_coefficients = 1 # Sequence number for the coefficients

# (Stokes part)

# Convection part one higher

mass_matrix = constant # Time-independent mass matrix

number_of_coupled_equations = 1 # There is only one equation

end

# Description of how the Navier-Stokes equations are solved

# See Users Manual, Section 3.2.22

navier_stokes

method = convection_substepping # convective equations explicit

number_of_substeps = msteps # number of substeps

seq_time_integration = 1 # sequence number time integration input

seq_velocity = velocity # sequence number of velocity vector

end

# compute pressure

# See Users Manual, Section 3.2.11

derivatives

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, sequence_number=1, vector=velocity

# Time loop

start_time_loop

# One time step to compute the velocity and pressure

navier_stokes

# Compute the pressure from the velocity

derivatives, pressure

output

end_time_loop
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end

end_of_sepran_input
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7.1.20 Some examples of the use of the simple method

In this section we show the use of the simple method to solve the stationary Navier-Stokes equations.
The following examples are available

(7.1.20.1) Solves the channel flow using the Stokes equations. Quadratic Taylor-Hood elements
and the linear system is solved by standard SIMPLE (simple-gcr).

(7.1.20.2) Solves the 2d backward facing step using the Navier-Stokes equations. The non-linear
iteration is done by Newton and the linear systems are solved by SIMPLE (simple-gcr).
Quadratic Crouzeix-Raviart elements are applied.
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7.1.20.1 Channel flow, solved by Stokes, SIMPLE solver

In order to get this example into your local directory use the command

sepgetex channelsimth41

To run this example use:

sepmesh channelsimth41.msh

view mesh

sepcomp channelsimth41.prb

The example is identical to the one in Section (7.1.8). Since the convective terms have no influence in
this case only the linear Stokes equations are used. Taylor-Hood elements are used, with quadratic
velocity and linear pressure.
The problem is standard. The only difference with the examples in Section (7.1.8) is that the linear
problem is solved with the SIMPLE-GCR method. The sub-equations for velocity and pressure are
solved by Conjugate gradients and an ILU preconditioner. The input for the mesh generator is not
shown in this section.
No input file for the postprocessor is available, since the solution is trivial.
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The input file for SEPCOMP is given by the file channelsimth41.prb:

# channelsimth41.prb

#

# problem file for 2d channel problem solved by simple iteration

# Taylor Hood quadratic elements (linear pressure)

#

# See Manual Standard Elements Section 7.1.20

#

# To run this file use:

# sepcomp channelsimth41.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

rho = 1 # density

eta = 0.01 # viscosity

vector_names

velocity

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=903 # Type number for Navier-Stokes, without swirl

# integrated approach

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1, degfd2,curves(c1) # Fixed under wall

degfd1, degfd2,curves(c3) # Fixed side walls and instream boundary

degfd1, degfd2,curves(c4) # inflow

degfd2=curves(c2) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

reorder plast # renumber the unknowns such that first we

# have all velocities and then all pressures

# Necessary for simple

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because the integral of the pressure over the boundary

# is required

#

structure # See Users Manual Section 3.2.3
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# Compute the velocity

prescribe_boundary_conditions, velocity

solve_linear_system, velocity

# Write the results to a file

output

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

storage_scheme = simple, symmetric, incompressibility_sym

# The simple method is applied (iterative method)

# Momentum matrix is symmetrical

# G = D^T, i.e. gradient matrix is transpose of

# divergence matrix

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Input for the linear solver

# Simple is applied, i.e. the overall method is GCR simple

# Each of the sub-equations is solved by Conjugate Gradients,

# with an ILU pre-conditioner

solve

iteration_method = simple_gcr, preconditioning = ilu, print_level = 2//

start = old_solution, accuracy = 1d-3

sub_equation 1

iteration_method = cg, preconditioning = ilu, print_level = 0, eps = 0.1

sub_equation 2

iteration_method = cg, preconditioning = ilu, print_level = 0, eps = 0.1

end
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end_of_sepran_input
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7.1.20.2 2d Backward facing step, solved by Navier-Stokes, SIMPLE solver

In order to get this example into your local directory use the command

sepgetex backwrdsim

To run this example use:

sepmesh backwrdsim.msh

view mesh

sepcomp backwrdsim.prb

seppost backwrdsim.pst

view results

The example is the standard backward facing step as described in Section (7.1.1). The only differ-
ence with the examples in (7.1.1) is that the system of equations is solved by the SIMPLE-GCR
method. Crouzeix-Raviart elements with extended quadratic velocity and discontinuous linear pres-
sure are used (type number 902).
Compared to Section (7.1.1) only the problem file is essentially different and will be given here. All
other files can be found in the sourceexam directory.
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# backwrdsim.prb

#

# problem file for backward facing step solved by simple iteration

# Crouzeix-Raviart quadratic elements (linear pressure)

#

# See Manual Standard Elements Section 7.1.20

#

# To run this file use:

# sepcomp backwrdsim.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

set warn off ! suppress warnings

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

rho = 1 # density

eta = 0.01 # viscosity

eps - 0 # compressibility

integers

lower_wall = 20 # curve number for lower wall

outflow = 21 # curve number for outflow boundary

upper_wall = 22 # curve number for upper wall

inflow = 23 # curve number for inflow boundary

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=902 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c lower_wall) # Fixed under wall (velocity given)

curves(c upper_wall) # Fixed upper wall (velocity given)

degfd2,curves(c outflow) # Outflow boundary (v-component 0)

curves(c inflow) # Inflow boundary (velocity given)

reorder plast # renumber the unknowns such that first we

# have all velocities and then all pressures

# Necessary for simple

end

# Define the structure of the large matrix
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# See Users Manual Section 3.2.4

matrix

storage_scheme = simple # The simple method is applied (iterative method)

# Momentum matrix is not symmetrical

# G = D^T, i.e. gradient matrix is transpose of

# divergence matrix

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c inflow), degfd1, quadratic # The u-component of the velocity at

# instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter=8, accuracy=1d-3,print_level=2, lin_solver=1 //

at_error return

equation 1

fill_coefficients 1

change_coefficients
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at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# Input for the linear solver

# Simple is applied, i.e. the overall method is GCR simple

# Each of the sub-equations is solved by Conjugate Gradients,

# with an ILU pre-conditioner

solve

iteration_method = simple_gcr, preconditioning = ilu, print_level = 1//

start = old_solution, accuracy = 1d-3

sub_equation 1

iteration_method = cg, preconditioning = ilu, print_level = 0, eps = 0.1

sub_equation 2

iteration_method = cg, preconditioning = ilu, print_level = 0, eps = 0.1

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, velocity

# Compute the velocity, i.e. solve non-linear problem

solve_nonlinear_system, velocity

# Compute the pressure

derivatives, pressure

# Write the results to a file

output

end

# The pressure is computed as a derived quantity of the Navier-Stokes

# equation

# See Users Manual Section 3.2.11 and Standard Problems Section 7.1

derivatives, sequence_number = 1

icheld = 7 # means compute pressure

end

end_of_sepran_input
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7.1.21 Computation of shear stress in flow with constriction

We consider the flow in a constriction as described in Effect of constriction height on flow separation
in a two-dimensional channel, by G.C. Layek and C. Midya, Communications in non-linear Science
and Numerical Simulation 12, 2007, pp. 745-759. It concerns a straight channel with a restriction of
cosine form as shown in Figure 7.1.21.1. At inflow we have a quadratic inflow profile with maximum
velocity umax, the horizontal walls are no-slip and the out flow is parallel to the walls. In fact the
flow is symmetrical and one could restrict one selves to one half of the region.
The example itself is more or less standard. The different thing with other examples is that it shows
how the shear stress along the walls can be computed.
In order to get these examples into your local directory use the command

sepgetex constriction

To run this example use:

seplink constrictionmesh

constrictionmesh < constriction.msh

view mesh

sepcomp constriction.prb

seppost constriction.pst

view results

Since the boundary of the mesh is defined by a function, we need to add a function subroutine
funccv and therefore main program constrictionmesh is used. The contents of the the files con-
strictionmesh.f and constriction.msh are self explaining and will not be repeated here.

Also the first part of the problem file constriction.prb is standard. New in this example is the
computation of the shear stress. This is done in the structure block, where we first compute the
stress tensor t, i.e. without the contribution of the pressure. The stress tensor always consists of
6 components per point. To get the stress vector along the boundary, the stress tensor must be
multiplied by the normal vector. This is done in the statement

normal_stress = stress_vector stress, curves = (c wall1, c wall2),

where wall1 and wall2 are the curve numbers of both the walls. In order to get the components
perpendicular to the wall (normal stress σnn) and tangential to the wall (shear stress σnt) we have
to multiply the stress vector by the normal. This is done by

normal_stress = transform_to_normaldir normal_stress//

curves = (c wall1, c wall2).

The first component refers to the normal stress the second one to the shear stress. In order to
subtract the pressure from the normal stress, we have to store the normal stress in a vector with
one degree of freedom per point. The following statements take care of this and do the subtraction

sigma_nn = extract normal_stress, degfd1

sigma_nn = sigma_nn - pressure ! subtract the pressure

The Navier-Stokes equations are solved by the penalty function method (type 900) with bi-quadratic
quadrilaterals.
The input file for SEPCOMP is given by the file constriction.prb:

# constriction.prb

#

#
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# Example file for problem described in the paper:

#

# Effect of constriction height on flow separation in a two-dimensional

# channel, by G.C. Layek and C. Midya, Communications in non-linear Science

# and Numerical Simulation 12, 2007, pp. 745-759

#

# Crouzeix-Raviart elements are used

# Penalty function method

#

# See Manual Standard Problems Section 7.1.10

# Manual exams 7.1.21

#

# Quadratic quadrilaterals with static condensation

#

# To run this file use:

# sepcomp constriction.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

inflow = 4 # curve number of inflow boundary

outlet = 2 # curve number of outlet boundary

wall1 = 1 # curve number of lower wall

wall2 = 3 # curve number of upper wall

reals

re = 600 # Reynolds number

eps = 1e-6 # penalty parameter for Navier-Stokes

rho = 1 # density

umax = 0.25 # inflow velocity

eta = 1/re # viscosity

vector_names

velocity # velocity vector

pressure # pressure

stress # stress tensor in whole domain

normal_stress # stress vector along walls

sigma_nn # normal component of stress vector

# including contribution of pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# Penalty function approach

# Crouzeix-Raviart elements

# See Standard problems Section 7.1
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essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# Only velocities are prescribed, not the

# pressures

degfd1,degfd2=curves(c wall1) # Fixed wall

degfd1,degfd2=curves(c wall2) # Fixed wall

degfd1,degfd2=curves(c inflow) # inflow

degfd2 =curves(c outlet) # Outstream boundary (v-component given)

# All not prescribed boundary conditions

# satisfy corresponding stress is zero

end

# Information about the matrix storage

# See Users Manual Section 3.2.4

matrix

storage_scheme = profile

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c inflow), degfd1, quadratic, max = umax # The u-component of the

# velocity at instream is quadratic

# The rest of the vector is 0

end

# Define the coefficients for the problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 1 # 5: 1: Picard

coef6 = eps # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# input for non-linear solver
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# See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter=10, accuracy=1d-4,print_level=2, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# compute pressure

# See Users Manual, Section 3.2.11

derivatives, sequence_number = 1

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

end

# compute stress

# See Users Manual, Section 3.2.11

derivatives, sequence_number = 2

icheld=6 # icheld=6, stress in nodes

# See Standard problems Section 7.1

end

#

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# Compute start vector for the flow by filling boundary conditions

prescribe_boundary_conditions, vector=velocity

# Compute the velocity, i.e. solve non-linear problem

solve_nonlinear_system, velocity

# Compute the pressure from the velocity

derivatives, pressure

# Compute the stress tensor from the velocity

derivatives, stress

# Compute the stress vector along the walls from the stress

normal_stress = stress_vector stress, curves = (c wall1, c wall2)

# Transform the stress vector into normal and tangential components

# i.e. normal stress and shear stress

normal_stress = transform_to_normaldir normal_stress//

curves = (c wall1, c wall2)

# Put the normal component into sigma_nn
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sigma_nn = extract normal_stress, degfd1

sigma_nn = sigma_nn - pressure ! subtract the pressure

output

end

end_of_sepran_input

The other files can be found by sepgetex.

Figure 7.1.21.2 shows the shear stress along the lower wall.
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7.2 The temperature dependent laminar flow of incompressible liquids
(Boussinesq approximation)

7.2.1 Laminar Newtonian free convection flow by the penalty function
method (coupled approach)

In this example we consider a free convection problem described by a Newtonian viscosity model.
To get this example in your local directory use the command:

sepgetex bousscop

To run the example use the commands:

sepmesh bousscop.msh

view the plots

sepcompexe bousscop.prb

seppost bousscop.pst

view the plots

Consider a square container with different temperatures at left and right walls. The upper and
lower walls are supposed to be isolated. Due to the temperature difference and the acceleration due
to gravity, a circulating flow arises. The velocity at the boundaries is equal to zero (fixed walls).
Figure 7.2.1.1 shows the region of definition as well as the curves and points defining the geometry.

This problem is a well known bench mark problem for free convection flows, see for example de
Vahl Davis (1982).

The following boundary conditions are imposed:

All walls (C4 to C7): no-slip conditions (v = 0)
Lower (C4) and upper (C6) wall: isolated (∂T∂n )
Left wall (C7): T = 1
Right wall (C5): T = 0

The parameters used in this problem are: η = 1
ρ = 1
ε = 10−8

ω = 0
cp = 1 T0 = T1 = 0
f = 0, fT = 0
Rayleigh number (Ra) = 103

Prandtl number (Pr) = 0.71
hence: β = Ra

9.81Pr , κ = 1
Pr

The (coarse) mesh is generated by program SEPMESH using the following input file:

# bousscop.msh

#

# mesh file for 2d Boussinesq problem

# coupled approach

# See Manual Standard Elements Section 7.2.1

#

# To run this file use:

# sepmesh bousscop.msh

#

# Creates the file meshoutput
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#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

step1 = 0.2 # Defines boundary layer at left-hand side

step2 = 0.8 # Defines boundary layer at right-hand side

x0 = 0 # x-coordinate left-hand wall

x1 = 1 # x-coordinate right-hand wall

y0 = 0 # y-coordinate lower wall

y1 = 1 # y-coordinate upper wall

integers

nelm_layer = 3 # Number of elements in boundary layer

nelm_width = 5 # Number of elements in vertical direction

nelm_centr = 3 # Number of elements in horizontal direction

# between boundary layers

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=( x0, y0) # Left under point

p2=( x1, y0) # Right under point

p3=( x1, y1) # Right upper point

p4=( x0, y1) # Left upper point

p5=( step1, y0) # Lower point left boundary layer

p6=( step2, y0) # Lower point right boundary layer

#

# curves

#

curves # See Users Manual Section 2.3

# Quadratic elements are used

c1=line2(p1,p5,nelm= nelm_layer,ratio=3,factor=0.8) # curve in lower wall

# left boundary layer

c2=line2(p5,p6,nelm= nelm_centr) # curve in lower wall

# central part

c3=line2(p6,p2,nelm= nelm_layer,ratio=1,factor=0.8) # curve in lower wall

# right boundary layer

c4=curves(c1,c2,c3) # lower boundary

c5=line2(p2,p3,nelm= nelm_width) # left-hand wall

c6=translate c4(p4,-p3) # upper wall

c7=translate c5(p1,p4) # right-hand wall

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Quadratic triangles are used

s1=quadrilateral4(c4,c5,-c6,-c7) # See Users Manual Section 2.4.3

plot # make a plot of the mesh

# See Users Manual Section 2.2

end
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The iteration process is carried out by starting with the Stokes solution, followed by one Picard
iteration and followed by Newton iterations. The corresponding input file for program sepcomp is:

# bousscop.prb

set warn off

#

# problem file for 2d Boussinesq problem

# decoupled approach

# problem is stationary and non-linear

# The velocity and temperature are solved in a coupled way

# See Manual Exams Section 7.2.1

#

# To run this file use:

# bousscop < bousscop.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps_penal = 1e-8 # penalty parameter

rho = 1 # density

eta = 1 # viscosity

g = 9.81 # acceleration of gravity

Pr = 0.71 # Prandtl number

Ra = 1e3 # Rayleigh number

cp = 1 # Heat capacity at constant temperature

kappa = 1/Pr # Thermal conductivity kappa = 1/Pr

beta = Ra/(g*Pr) # volume expansion coefficient beta = Ra/(g Pr)

integers

veloc = 1 # sequence number velocity vector

temp = 2 # sequence number concentration vector

vector_names

velocity

pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 (type=420) # Boussinesq by penalty function formulation

# See Manual Standard Elements Section 7.2

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c5,c7) # Velocity and temperature prescribed

degfd1,degfd2=curves(c4, c6) # Velocity prescribed

end
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# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

storage_scheme = profile

# The matrix is non-symmetrical and stored as profile matrix,

# hence a direct solver is applied

end

# Definition of the boundary conditions

essential boundary conditions # See Users Manual Section 3.2.5

curves (c7), degfd3=(value=1) # All boundary conditions are zero, except

# the temperature at wall c7

end

# input for non-linear solver

nonlinear_equations, sequence_number = 1 # See Users Manual Section 3.2.9

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

coefficients, sequence_number=1 # First iteration

# See Manual Standard problems Section 7.1

elgrp1

coef 1: value= eps_penal # penalty function parameter

# The pressure is of order 1000

coef 2: value= rho # density of fluid

icoef3 = 0 # type of linearization of convective terms

# (0 = no convective terms, stokes flow)

# 4: angular velocity of rotating system

coef 5: value= beta # volume expansion coefficient

# 6: reference temperature

coef 7: value= cp # 7: heat capacity at constant pressure

coef 8: value= kappa # 8: thermal conductivity (1/Prandtl)

# 9: body force in x-direction

#10: body force in y-direction

#11: heat source per unit mass

icoef12 = 1 # type of constitutive equation

# (1=eta constant)

coef 13: value= eta # eta

# 14: ct

# 15: reference temperature T1

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7
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change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef3 = 1 # type of linearization of convective terms

# (1 = Picard)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef3 = 2 # type of linearization of convective terms

# (2 = newton)

end

# The computed results are written

# See Users Manual Section 3.2.13

output

v1 = icheld=1 # pressure

end

end_of_sepran_input

Finally some post-processing actions are carried out by program SEPPOST using the following
input file.

# bousscop.pst

# Input file for postprocessing for Boussinesq example

# Coupled approach

# See Manual Standard Elements Section 7.2.1

#

# To run this file use:

# seppost bousscop.pst > bousscop.out

#

# Reads the files meshoutput, sepcomp.inf and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

#

# print the vectors

# See Users Manual Section 5.3

#

print velocity

print pressure

#

# compute the stream function

# See Users Manual Section 5.2

#

compute stream function velocity

#

# plot the mesh

# See Users Manual Section 5.4

#

plot mesh

#

# plot velocity vectors
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# See Users Manual Section 5.4

#

plot vector velocity, text = ’vector plot of velocity’

#

# plot contour lines for the pressure, the stream function and

# the temperature

# See Users Manual Section 5.4

#

plot contour pressure, text = ’ isobars’

plot contour stream_function

plot contour velocity, degfd=3, text = ’ isotherms’

end

Figure 7.2.1.2 shows the mesh created by SEPMESH, Figure 7.2.1.3 the velocity vectors, Figure
7.2.1.4 the isobars, Figure 7.2.1.5 the stream lines and Figure 7.2.1.6 the isotherms.
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7.2.2 Laminar Newtonian free convection flow by the penalty function
method (decoupled approach)

This example is completely identical to the example treated in Section 7.2.1. However, instead of
elements of type 420 containing both the velocity and temperature as unknowns, the temperature
and velocity equations are solved separately.
To get this example in your local directory use the command:

sepgetex boussdec

To run the example use the commands:

sepmesh boussdec.msh

view the plots

seplink boussdec

boussdec < boussdec.prb

seppost boussdec.pst

view the plots

First a start vector is created with zero velocity and linear temperature (T = 1− x) and then the
velocity is solved using the standard Navier Stokes element of type 900 and the Boussinesq term
ρgβ(T − T0) with just generated temperature field as driving force. After that the temperature is
solved by the standard convection diffusion equation with type number 900 and the just computed
velocity in the convection terms. This process is repeated until convergence is achieved.
From the first step immediately Newton linearization is used.
Since the start vector depends on space it is necessary to use a function subroutine FUNC and
hence the user must supply his own main program.
The following program boussdec.f might be used.

program boussdec

! --- Main program for decoupled Boussinesq equations

! To link this program use:

!

! seplink boussdec

implicit none

call sepcom(0)

end

! --- Function subroutine func is used to create an initial temperature

function func ( ichois, x, y, z )

implicit none

integer ichois

double precision func, x, y, z

if ( ichois==1 ) then

! --- ichois = 1, the temperature is set equal to 1-x

func = 1 - x

end if

end



EX Natural convection (decoupled approach) April 2012 7.2.2.2

Because of the decoupled approach two problems have to be solved. Problem 1 corresponds to the
momentum equations and problem 2 to the convection-diffusion equation for the temperature.
The solution consists of two vectors, the velocity (V1) and the temperature (V2).
The structure of the main program is organized by the input block STRUCTURE.
The following input file might be used to solve this problem:

# boussdec.prb

set warn off

#

# problem file for 2d Boussinesq problem

# decoupled approach

# problem is stationary and non-linear

# The velocity and temperature are solved in a decoupled way

# See Manual Exams Section 7.2.2

#

# To run this file use:

# boussdec < boussdec.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

# General information:

#

# Problem 1 refers to the velocity problem

# Navier-Stokes, laminar, Newtonian, isothermal

# This is solved by quadratic elements

# Problem 2 refers to the temperature problem

# Convection-diffusion

# This is solved by quadratic elements

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps_penal = 1e-8 # penalty parameter

rho = 1 # density

eta = 1 # viscosity

g = 9.81 # acceleration of gravity

Pr = 0.71 # Prandtl number

Ra = 1e3 # Rayleigh number

cp = 1 # Heat capacity at constant temperature

kappa = 1/ Pr # Thermal conductivity kappa = 1/Pr

beta = Ra/( g* Pr) # volume expansion coefficient beta = Ra/(g Pr)

fy = g* beta # body force in y-direction fy = rho g beta T

integers

veloc = 1 # sequence number velocity vector

temp = 2 # sequence number concentration vector

vector_names

velocity

temperature

pressure

end

#

# Define the type of problem to be solved
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problem veloc # See Users Manual Section 3.2.2

# Defines velocity problem

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 (type=900) # Navier-Stokes by penalty function formulation

# See Manual Standard Elements Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c4 to c7) # All velocities are prescribed

problem temp # See Users Manual Section 3.2.2

# Defines temperature problem

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 (type=800) # Convection diffusion equation

# See Manual Standard Elements Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves (c5,c7) # is prescribed

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# create initial conditions, both for velocity and temperature

create_vector velocity, problem = veloc, value = 0

create_vector temperature, problem = temp, func = 1

# Solve system of nonlinear equations

solve_nonlinear_system, velocity

# Compute the pressure as derived quantity

pressure = derivatives ( velocity, seq_coef = veloc, icheld = 7 )

# Write the results to a file

output

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

storage_scheme=profile, problem= veloc

# The velocity matrix is non-symmetrical and

# stored as profile matrix,

# hence a direct solver is applied

storage_scheme=profile, problem= temp

# The temperature matrix is non-symmetrical

# and stored as profile matrix,

# hence a direct solver is applied

end

# input for non-linear solver

nonlinear_equations # See Users Manual Section 3.2.9

number_of_coupled_equations = 2 # The velocity and temperature
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# equation are solved as a set of two

# equations

global_options print_level=2 # Print information about the convergence

equation veloc # Velocity equation

fill_coefficients= veloc # Information about the coefficients

equation temp # Temperature equation

fill_coefficients= temp # Information about the coefficients

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

coefficients, sequence_number= veloc, problem = veloc

# First problem (Navier-Stokes)

# See Manual Standard problems Section 7.1

elgrp1

icoef2 = 1 # type of constitutive equation (1=eta constant)

icoef5 = 2 # type of linearization of convective terms

# (2 = newton linearization)

coef 6: value= eps_penal # penalty function parameter

# The pressure is of order 1000

coef 7: value= rho # density of fluid

coef10= old solution temperature//

coef= fy # body force in y-direction (fy T)

coef12: value= eta # eta

end

coefficients, sequence_number= temp, problem = temp

# Second problem (Convection-diffusion)

# See Manual Standard problems Section 3.1

elgrp1

coef6 = kappa # thermal conductivity

coef9 = coef 6 # thermal conductivity

coef12= old solution velocity//

degree of freedom 1 # u-velocity from Navier-Stokes

coef13= old solution velocity//

degree of freedom 2 # v-velocity from Navier-Stokes

end

In this case the input file for program SEPPOST must also be adapted, however, the resulting
pictures are exactly the same.

# boussdec.pst

# Input file for postprocessing for Boussinesq example

# Decoupled approach

# See Manual Standard Elements Section 7.2.2

#

# To run this file use:

# seppost boussdec.pst > boussdec.out

#

# Reads the files meshoutput, sepcomp.inf and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

#

# print the vectors
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# See Users Manual Section 5.3

#

print velocity

print temperature

print pressure

#

# compute the stream function

# See Users Manual Section 5.2

#

compute stream function velocity

#

# plot velocity vectors

# See Users Manual Section 5.4

#

plot vector velocity

#

# plot contour lines for the pressure, the stream function and

# the temperature

# See Users Manual Section 5.4

#

plot contour pressure

plot contour stream_function

plot contour temperature

end



EX Time-dependent natural convection November 2007 7.2.3.1

7.2.3 Time-dependent laminar Newtonian free convection flow by the
penalty function method

This example is identical to the example treated in Section 7.2.2 extended with a time-derivative.
To get this example in your local directory use the command:

sepgetex bousstim

To run the example use the commands:

sepmesh bousstim.msh

view the plots

seplink bousstim

bousstim < bousstim.prb

seppost bousstim.pst

view the plots

Since the problem is time-dependent we need an initial condition. At t = 0 we have the following
initial conditions:

u = 0 (7.2.3.1)

T = 1− x (7.2.3.2)

In each time step we first compute the velocity using the implicit Euler method and the Temperature
at the previous time level. After that the Temperature is solved by implicit Euler using the velocity
at the new time level. This approach is semi-implicit, since it is implicit per equation and uses
the last computed values. In order to make it fully implicit it would be necessary to iterate per
time-step. The present approach is known under the name Silechi.
Since the initial vector depends on space it is necessary to use a function subroutine FUNC and
hence the user must supply his own main program.
The following program bousstim.f might be used.

program bousstim

! --- Main program for time-dependent Boussinesq equations

! To link this program use:

!

! seplink bousstim

implicit none

call sepcom(0)

end

! --- Function subroutine func is used to create an initial temperature

function func ( ichois, x, y, z )

implicit none

integer ichois

double precision func, x, y, z

if ( ichois==1 ) then

! --- ichois = 1, the temperature is set equal to 1-x

func = 1 - x
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end if

end

Because of the decoupled approach two problems have to be solved. Problem 1 corresponds to the
momentum equations and problem 2 to the convection-diffusion equation for the temperature.
To show how derivative quantities can be solved in a time loop, also the pressure is computed in
each time-step.
The solution consists of three vectors, the velocity (V1), the temperature (V2) and the pressure
(V3).
The structure of the main program is organized by the input block STRUCTURE. However, in this
particular example it is possible to skip this structure block, since it corresponds completely to the
default block.
In this example all quantities are written at each time-level including t = 0. As a consequence the
pressure must be initialized at t = 0.
The following input file might be used to solve this problem:

# bousstim.prb

set warn off

#

# problem file for 2d time-dependent Boussinesq problem

# problem is instationary and non-linear

# The velocity and temperature in each time step are solved in a decoupled way

# See Manual Exams Section 7.2.3

#

# To run this file use:

# bousstim < bousstim.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

# General information:

#

# Problem 1 refers to the velocity problem

# Navier-Stokes, laminar, Newtonian, isothermal

# This is solved by quadratic elements

# Problem 2 refers to the temperature problem

# Convection-diffusion

# This is solved by quadratic elements

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps_penal = 1e-8 # penalty parameter

rho = 1 # density

eta = 1 # viscosity

g = 9.81 # acceleration of gravity

Pr = 0.71 # Prandtl number

Ra = 1e3 # Rayleigh number

cp = 1 # Heat capacity at constant temperature

kappa = 1/Pr # Thermal conductivity kappa = 1/Pr

beta = Ra/(g*Pr) # volume expansion coefficient beta = Ra/(g Pr)

fy = g* beta # body force in y-direction fy = rho g beta T

rho_cp = rho*cp # rho * cp
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integers

veloc = 1 # sequence number velocity vector

temp = 2 # sequence number temperature vector

vector_names

velocity

temperature

pressure

end

#

# Define the type of problem to be solved

problem veloc # See Users Manual Section 3.2.2

# Defines velocity problem

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 (type=900) # Navier-Stokes by penalty function formulation

# See Manual Standard Elements Section 7.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves(c4 to c7) # All velocities are prescribed

problem temp # See Users Manual Section 3.2.2

# Defines temperature problem

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 (type=800) # Convection diffusion equation

# See Manual Standard Elements Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves (c5,c7) # is prescribed

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

#

structure # See Users Manual Section 3.2.3

# create initial conditions, both for velocity and temperature

create_vector velocity, problem veloc, value = 0

create_vector temperature, problem, temp, func = 1

# Solve time-dependent problem

solve_time_dependent_problem velocity, sequence_number=1

# Write the results to a file

output

end

# Define the structure of the large matrix

matrix # See Users Manual Section 3.2.4

storage_scheme=profile, problem= veloc

# The velocity matrix is non-symmetrical and

# stored as profile matrix,

# hence a direct solver is applied

storage_scheme=profile, problem= temp
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# The temperature matrix is non-symmetrical

# and stored as profile matrix,

# hence a direct solver is applied

end

# Define the coefficients for the problems

# See Users Manual Section 3.2.6

coefficients, sequence_number= veloc, problem = veloc

# First problem (Navier-Stokes)

# See Manual Standard problems Section 7.1

elgrp1

icoef2 = 1 # type of constitutive equation (1=eta constant)

icoef5 = 2 # type of linearization of convective terms

# (2 = newton linearization)

coef 6: value= eps_penal # penalty function parameter

# The pressure is of order 1000

coef 7: value= rho # density of fluid

coef10= old solution temperature//

coef= fy # body force in y-direction (fy T)

coef12: value= eta # eta

end

coefficients, sequence_number= temp, problem = temp

# Second problem (Convection-diffusion)

# See Manual Standard problems Section 3.1

elgrp1

coef6 = kappa # thermal conductivity

coef9 = coef 6 # thermal conductivity

coef12= old solution velocity//

degree of freedom 1 # u-velocity from Navier-Stokes

coef13= old solution velocity//

degree of freedom 2 # v-velocity from Navier-Stokes

coef17: value= rho_cp # rho cp

end

#

# Define the time integration

# See Users Manual Section 3.2.15

#

time_integration, sequence_number = 1

method = euler_implicit # euler implicit time integration

tinit = 0 # t_0

tend = 0.5 # end time

tstep = 0.05 # time step

toutinit = 0 # start writing at t=0

toutend = 0.5

toutstep = 0.05

boundary_conditions = initial_field

seq_coefficients = 1, 2

seq_output = 1

mass_matrix = constant

number_of_coupled_equations = 2

equation 1

derivatives, seq_deriv=1, problem= veloc, seq_coef= veloc//

vector= pressure

end
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# The pressure is computed as a derived quantity of the Navier-Stokes

# equation

# See Users Manual Section 3.2.11

derivatives, sequence_number = 1

icheld = 7 # Compute the pressure

# See Manual Standard problems Section 7.1

end

In this case the input file for program SEPPOST must also be adapted, however, the resulting
pictures are exactly the same.

# bousstim.pst

# Input file for postprocessing for time-dependent Boussinesq example

# See Manual Standard Elements Section 7.1.5

#

# To run this file use:

# seppost bousstim.pst > bousstim.out

#

# Reads the files meshoutput, sepcomp.inf and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

#

# compute the stream function

# See Users Manual Section 5.2

#

compute stream function velocity

#

# Define time loop for postprocessing

# See Users Manual Section 5.5

#

time = (0, 10)

# print vectors

# See Users Manual Section 5.3

#

print velocity

print pressure

print temperature

# plot velocity vectors

# See Users Manual Section 5.4

plot vector velocity, factor=.05

#

# plot contour lines of the pressure

# See Users Manual Section 5.4

#

plot contour temperature

plot coloured contour temperature, nlevel=21, mincolour=51

#

# plot contour lines of the stream function

# See Users Manual Section 5.4

#

plot contour stream_function

plot coloured contour stream_function, nlevel=21, mincolour=51
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#

# plot isotherms

# See Users Manual Section 5.4

#

plot contour pressure

plot coloured contour pressure

#

# end time loop

end
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7.3 Turbulent flow

7.3.1 The isothermal turbulent flow of incompressible liquids according
to Boussinesq’s hypothesis

This section is under preparation
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Figure 7.1.15.3: Contour plot and vertical cross section at x = 0.5 of the horizontal velocity field
for ct = 0. The fault friction is zero, which makes the fault free-slip. Beyond x = 2, the fault
disappears and the flow develops into a Couette flow.
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Figure 7.1.15.4: Contourplot and vertical cross section at x = 0.5 of the horizontal velocity field
for ct = 1. The fault friction is low. The relative displacement between top- and bottom boundary
is divided between internal deformation and slip over the fault.
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Figure 7.1.15.5: Contourplot and vertical cross section at x = 0.5 of the horizontal velocity field
ct = 1. The fault friction is high. The relative displacement over the fault is almost zero.

Figure 7.1.21.1: Channel with constriction
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Figure 7.1.21.2: Shear stress along lower wall
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Figure 7.2.1.1: Definition of region for free convection flow

 

Figure 7.2.1.2: Mesh for free convection flow
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vector plot of velocity
 

Figure 7.2.1.3: Velocities for free convection flow
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Figure 7.2.1.4: Isobars for free convection flow
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Figure 7.2.1.5: Stream lines for free convection flow
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Figure 7.2.1.6: Isotherms for free convection flow
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7.4 Methods to compute solid-fluid interaction

7.4.1 A very simple example of the fictitious domain method, a static
solid in a fluid

To show how the fictitious domain method works, we start with a very simple 2d example of a
non-moving solid in a fluid. Of course the method is meant for time-dependent problems, but this
example shows the behavior of the method.
To get this example into your local directory use:

sepgetex fict_domain01

and to run it use:

sepmesh fict_domain01.msh

sepcomp fict_domain01.prb

seppost fict_domain01.pst

After the first and last step you may view the results using sepview.

Consider the following case of a small solid in a fluid as sketched in Figure 7.4.1.1
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Figure 7.4.1.1: Sketch of region with obstacle

The solid is not moving and actually it may be considered as an obstacle, hence the velocity at the
boundary of the solid is zero.
Although we must define structural elements on the solid, these elements are not essential for the
computation. They just provide us a way to define the Lagrange multipliers.
On each boundary of the solid we put fictitious elements, except on the upper side, where we have a
closed wall with a no-slip boundary condition. As a consequence it is not allowed to put a fictitious
unknown on that boundary.
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We consider a uniform flow at the left-hand side and we expect the fluid to flow around the obstacle.
The input files for this problem are given by

# fict_domain01.msh

#

# Mesh for 2d fictitious domain example

# The problem considered here is that of a fixed small obstacle in the fluid

#

# Mark that the mesh consists of two separate parts

#

# See Manual Examples Section 7.4.1

#

# To run this file use:

# sepmesh fict_domain01.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

# Fluid mesh

x_left = 0 # Left-hand side x-coordinate of fluid domain

x_right = 3 # Right-hand side x-coordinate of fluid domain

y_low = 0 # Lower y-coordinate of fluid domain

y_top = 3 # Upper y-coordinate of fluid domain

# Structure mesh

x_left_obs = 1.4 # Left-hand side x-coordinate of obstacle

x_right_obs = 1.45 # Right-hand side x-coordinate of obstacle

y_low_obs = 1.5 # Lower y-coordinate of obstacle

integers

# Fluid mesh

nelm_hor = 10 # number of elements in horizontal direction

nelm_vert = 5 # number of elements in vertical direction

# Structure mesh

nelm_hor_obs = 2 # number of elements in horizontal direction

nelm_vert_obs = 5 # number of elements in vertical direction

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

# Fluid mesh

p1 = ( x_left, y_low) # Left under point

p2 = ( x_right, y_low) # Right under point

p3 = ( x_right, y_top) # Right upper point

p4 = ( x_left, y_top) # Left upper point

# Structure mesh

p11 = ( x_left_obs, y_low_obs) # Left under point

p12 = ( x_right_obs, y_low_obs) # Right under point



EX Fictitious domain method (2d-static) August 2008 7.4.1.3

p13 = ( x_right_obs, y_top) # Right upper point

p14 = ( x_left_obs, y_top) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

# In the fluid domain quadratic elements are used

# In the solid domain linear elements are used

# Fluid mesh

c1 = line2 ( p1, p2, nelm = nelm_hor ) # lower wall

c2 = line2 ( p2, p3, nelm = nelm_vert ) # outflow boundary

c3 = line2 ( p3, p4, nelm = nelm_hor ) # upper wall

c4 = line2 ( p4, p1, nelm = nelm_vert ) # inflow boundary

# Structure mesh

c11 = line ( p11, p12, nelm = nelm_hor_obs ) # lower part

c12 = line ( p12, p13, nelm = nelm_vert_obs ) # right-hand side

c14 = line ( p13, p14, nelm = nelm_hor_obs ) # upper part

c13 = line ( p14, p11, nelm = nelm_vert_obs ) # left-hand side

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Fluid mesh

s1 = rectangle6(c1,c2,c3,c4) # Bi-quadratic quadrilaterals

# Structure mesh

s2 = rectangle5(c11,c12,c14,c13) # Bi-linear quadrilaterals

#

# Connect surfaces with element groups

#

meshsurf # See Users Manual Section 2.2

# Fluid mesh

selm1=s1

# Structure mesh

selm2=s2

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

# fict_domain01.prb

#

# Problem file for 2d fictitious domain example

# The problem considered here is that of a fixed obstacle in the fluid

#

# See Manual Examples Section 7.4.1

#

# To run this file use:

# sepcomp fict_domain01.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#
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constants # See Users Manual Section 1.4

reals

rho = 1000 # density of fluid

eps_penal = 1e-6 # parameter eps for penalty function method

eta = 4e-3 # dynamic viscosity

E = 1e6 # Young’s modulus

nu = 0.45 # Poisson’s ratio

vector_names

velocity

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

# Fluid problem

elgrp1=900 # Type number for Navier-Stokes, without swirl

# Structure problem

elgrp2 = 250 # Type number for elasticity problem

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

# Structure problem

surfaces(s2) # no movement at all

# Fluid problem

curves(c4) # inlet

degfd2 = curves(c2) # outlet, only tangential velocity

curves(c1) # no-slip bottom wall

curves(c3) # no-slip top wall

fictitious_unknowns # Define type of elements to be used for

# ficititous domain method

fictgrp 1 = type = 921 # See Users Manual Section 3.2.2 and

# Standard Problems Section 7.4

fictitious_elements # Define where the ficitious elements are

# positioned and the corresponding structure

# and fluid elements

felm1 = curves = (c11 to c13), structure_group = 2, fluid_groups = 1//

multiplier_shape=1

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

degfd1 = curves(c4) value=1d-3 # The u-component of the velocity at
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# inflow is constant

# The rest of the vector is 0

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Sections 7.1, 5.1

coefficients, problem=1

# Fluid problem

elgrp1 ( nparm=20 ) # The coeffs are defined by 20 parameters

icoef1 = 0 # Theta-method for time integration

icoef2 = 1 # type of constitutive equation (1=Newton)

icoef5 = 0 # Type of linearization (0=Stokes flow)

coef6 = eps_penal # Penalty function parameter eps

coef7 = rho # Density

coef12 = eta #12: Value of eta (dynamic viscosity)

# Structure problem

elgrp2 ( nparm=45 ) # The coeffs are defined by 45 parameters

icoef2 = 0 # plane stress

coef6 = E # Young’s modulus (isotropic)

coef7 = nu # Poisson’s ratio (isotropic)

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This part is not necessary since what is used here is actually the default

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_bounday_conditions, velocity

solve_linear_system, velocity

# Write the results to a file

output

end

# fict_domain01.pst

# Input file for postprocessing for 2d fictitious domain example

# The problem considered here is that of a fixed obstacle in the fluid

#

# See Manual Examples Section 7.4.1

#

#

# To run this file use:

# seppost fict_domain01.pst > fict_domain01.out

#

# Reads the files meshoutput and sepcomp.out

#

#

# Define some general constants

#
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postprocessing # See Users Manual Section 5.2

# Plot the results

# See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity

end

Figure 7.4.1.2 shows the curve numbers used in this example and Figure 7.4.1.3 the corresponding
mesh.
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Figure 7.4.1.2: Curves for the solid in the fluid

Finally Figure 7.4.1.4 shows the computed velocity field.
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Figure 7.4.1.3: Mesh for the solid in the fluid

7.4.2 A simple Fluid domain deformation problem (weak coupling)

In this example we consider an elastic compressible solid, that deforms due to a time-dependent load
on a part of the surface. The displacement acts as force (boundary condition) for a fluid flowing
over the common interface. Due to the (large) displacement of the solid the region of the fluid is
also changed.
In this example we show a weak coupling, which means that the fluid does not influence the solid,
but the solid influences the fluid with boundary conditions and deformation of the domain.
To get this example into your local directory use:

sepgetex domain_def

and to run it use:

sepmesh domain_def.msh

seplink domain_def

domain_def < domain_def.prb

seppost domain_def.pst

After the first and last step you may view the results using sepview.

In this example, a fluid domain Ωf and a connecting solid domain Ωs with a common interface Γfs
are considered (see Figure 7.4.2.1). In the fluid domain, a horizontal parabolic velocity is prescribed
on the left boundary. The upper boundary is a wall and the left-hand boundary acts as outflow.
The clamped part of the interface can be considered as a no-slip boundary for the fluid.
The solid is clamped on its boundaries apart from the common interface Γfs. On this interface, a
time dependent force f = f(x, t) is exerted on the solid in normal direction. This force is chosen
as:

f(x, t) = 75 · (1

2
− 1

2
cos(

π

3
x− 2π

3
)) · sin(t) · (1

6
x− 1

3
) x ∈ Γfs. (7.4.2.1)
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Figure 7.4.1.4: Velocity field for the solid in the fluid problem

Due to this time-dependent force, the solid will deform, and therefore the connected fluid domain
will deform as well. In this way, the behavior of the fluid on a moving domain can be studied.
In this example we are dealing with large displacements, hence a non-linear elasticity model has to
be used. In this case the updated Lagrange method, (SP, Section 5.3.2), is used. A Newton method
is used to solve the problem in each time-step, but no time-derivatives are used. So we have a quasi
stationary problem in each time step.
The deformation of the internal fluid domain is calculated by a pseudo-solid problem. For this
problem, the domain is described as a simple, linear solid with prescribed deformation of the (real)
solid in the solid part. With the pseudo-solid problem, the deformation of the fluid elements as a
result from the deforming solid, can be calculated. Apart from the deformation of the solid, also
the solid velocity is prescribed to the fluid as boundary condition. For the fluid, the Arbitrary
Lagrangian Eulerian formulation, (ALE), is used. This means that the mesh is updated and the

mesh velocity is computed as xn+1−xn
∆t , where xn is the position vector at time tn. In the convective

term, the mesh velocity is subtracted from the Eulerian velocity in order to get the contribution
of the mesh deformation. In SEPRAN this contribution is taken into account by setting integer
coefficient 15 in the input for Navier-Stokes (See SP, Section 7.1.5).
The fluid problem is solved by Taylor-Hood elements.
The mesh file is given by

# domain_def.msh

#

# mesh file for 2d deformation of solid mesh

# See Manual Standard Elements Section 5.1.4

# Author: Martijn Booij 2007

#

# To run this file use:

# sepmesh domain_def.msh

#
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f

f(x,t)

!
s

fs"

!

Figure 7.4.2.1: Fluid and solid domain

# Creates the file meshoutput

#

# Define some general constants

constants

integers

n1 = 4 # Number of elements along clamped interface

n2 = 12 # Number of elements along free part of interface

m = 10 # Number of elements along y-direction for both

# solid and fluid domain

shape_cur = 2 # Type of elements along curves (quadratic)

shape_sur1 = 6 # Type of elements in solid domain

# (bi-quadratic quadrilaterals)

shape_sur2 = 4 # Type of elements in fluid domain

# (quadratic triangles)

reals

height_solid = 5 # Height of solid domain

height_fluid = 10 # Top of fluid domain

length = 10 # Length of domain

length_clamped = 2 # Length of clamped part

right_clamped = length-length_clamped # start of right-hand clamped part

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points
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#

points # See Users Manual Section 2.2

p1 = ( 0, height_solid) # Left upper point of solid domain

p2 = (length_clamped,height_solid) # End of left clamped part

p3 = (right_clamped, height_solid) # Start of left clamped part

p4 = ( length, height_solid) # Right upper point of solid domain

p5 = ( length, height_fluid) # Right upper point of fluid domain

p6 = ( 0, height_fluid) # Left upper point of fluid domain

p7 = ( 0, 0) # Left under point of solid domain

p8 = ( length, 0) # Right under point of solid domain

#

# curves

#

curves # See Users Manual Section 2.3

c1=line shape_cur (p1,p2,nelm=n1) # left-hand clamped part of interface

c2=line shape_cur (p2,p3,nelm=n2) # free part of interface

c3=line shape_cur (p3,p4,nelm=n1) # right-hand clamped part of interface

c4=line shape_cur (p4,p5,nelm=m) # right-hand side of fluid domain

c5=translate c7 ( p6, -p5 ) # upper part of fluid domain

c6=translate c4 ( p1, p6 ) # left-hand side of fluid domain

c7 = curves(c1, c2, c3) # interface

c8 = translate c7 ( p7,-p8 ) # lower part of solid domain

c9 = line shape_cur (p8,p4,nelm=m) # right-hand side of solid domain

c10 = translate c9 ( p7, p1 ) # left-hand side of solid domain

c11 = curves(c1,c3) # Clamped part of interface

c12 = curves(c8,c9,c10,c11) # Clamped part of solid

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle shape_sur1 (c8,c9,-c7,-c10) # solid domain

s2=rectangle shape_sur2 (c7,c4,-c5,-c6) # fluid domain

#

# Couple surfaces to element groups

#

meshsurf

selm1 = ( s1 ) # solid

selm2 = ( s2 ) # fluid

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Hence in the solid domain we use bi-quadratic quadrilaterals, whereas in the fluid domain quadratic
triangles are used.
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To do the computation we need a main program in which we define the time-dependent load in a
function subroutine FUNCCF and define the initial value for the x-component of the velocity in a
function subroutine FUNC. This results in the following main program:

program domain_def

call sepcom ( 0 )

end

! --- Function funccf is used to define the load as function of time

! See Introduction Manual, Section 5.5.3

double precision function funccf ( ichoice, x, y,z )

implicit none

integer ichoice;

double precision x, y, z

! --- Include common ctimen for time t

! and consta for pi

include ’SPcommon/ctimen’

include ’SPcommon/consta’

if ( ichoice== 1 ) then

! --- Load function

funccf = 75d0*(0.5d0-0.5d0*cos((x-2d0)*pi/3d0))*

+ sin(t)*(x-2d0)/6d0

end if ! ( ichoice== 1 )

end

! --- Function func to define the u-velocity at start

double precision function func ( ichoice, x, y, z )

implicit none

integer ichoice

double precision x, y,z

if ( ichoice==1 ) then

! --- Parabolic velocity profile

func = -0.08d0*(y-10d0)*(y-5d0)

end if ! ( ichoice==1 )

end



EX Fluid domain deformation (weak coupling) April 2008 7.4.2.6

The corresponding input file domain def.prb uses the following vectors:

u the displacement vector per time step (solid domain).
un the global displacement vector, with respect to the original solid domain.
velopres contains the velocity and pressure in the fluid domain.
meshdisp the mesh displacement.
fluidmeshvelo the mesh velocity in fluid domain.
coor old the coordinate vector xn in fluid domain.
coor new the coordinate vector xn+1 in fluid domain.

ll

In the program the following steps are performed.

Create the initial vectors for velocity and total displacement.
Copy coordinates in coor old.
for t = t0 step ∆t to t = t1 do

Set u equal to 0.
Set time parameters.
Solve the non-linear elastic equations to get u.
Compute mesh update by solving the pseudo solid problem with u as boundary condition.
Update mesh.
un := un + u
Copy coordinates in coor new.
Compute mesh velocity.
Compute new velocity and pressure by performing one time step. Use the mesh velocity as
boundary condition on the interface.
coor old := coor new.

end for

The corresponding input file is:

# domain_def.prb

#

# problem file for 2d deformation of solid mesh

# See Manual Standard Elements Section 5.1.4

# Author: Martijn Booij 2007

#

# To run this file use:

# sepcomp domain_def.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

integers

solid = 1 # problem number corresponding to solid

pseudo = 2 # problem number corresponding to pseudo solid problem

# for adapting the mesh

fluid = 3 # problem number corresponding to fluid

free = 2 # Curve number of free part of interface

clamped = 12 # Curve number of clamped part of solid

fixed = 11 # Curve number of fixed part of fluid

wall = 5 # Curve number of wall in fluid
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inflow = 6 # Curve number of inflow boundary of fluid

outflow = 4 # Curve number of outflow boundary of fluid

interface = 7 # Curve number of interface

reals

rho = 1 # density

eta = 1 # viscosity

eps = 1e-10 # penalty parameter

t0 = 0 # start time

t1 = 3.8 # end time

dt = 0.01 # time step

dt_print = 0.1 # time step for output

vector_names

u # Displacement vector per pseudo time step

un # Total displacement vector

velopres # fluid problem solution

meshdisp # mesh displacements

fluidmeshvelo # fluid mesh velocity

coor_old # coordinates before mesh update

coor_new # coordinates after mesh update

end

#

# Define the type of problems to be solved

# See Users Manual Section 3.2.2

#

problem solid # Problem definition corresponding to the solid

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1 = 200 # In the solid domain we use type 200

# Non-linear mechanical elements

# using the updated Lagrange approach

# See Manual Standard Problems Section 5.3.2

elgrp2 = 0 # No contribution in the fluid domain

natbouncond # Define types of boundary elements

bngrp1 = 210 # Element for prescribed load corresponding

# to type 200

bounelements # Define where the boundary elements are used

belm1 = curves (c free) # Prescribed load on free part of interface

essbouncond # Define where essential boundary conditions are

# given (not the value)

curves(c clamped) # All components are prescribed at clamped

# part of boundary

problem pseudo # Problem definition corresponding to the pseudo solid

# problem, which is used to update the mesh

types # Define types of elements,

elgrp1 = 250 # Linear elasticity problem in solid problem

elgrp2 = 250 # Linear elasticity problem in fluid problem

essbouncond # Define where essential boundary conditions are

# given (not the value)

surfaces(s1) # The displacement in the solid is given
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curves(c outflow) # No displacement at fluid outflow

curves(c inflow) # No displacement at fluid inflow

curves(c wall) # No displacement at fluid wall

problem fluid # Problem definition corresponding to the fluid

types # Define types of elements,

elgrp1 = 0 # No fluid in solid domain

elgrp2 = 903 # Taylor-Hood elements in fluid domain

# Navier-Stokes, integrated approach

essbouncond # Define where essential boundary conditions are

# given (not the value)

degfd1, degfd2 = curves(c interface) # Given velocity at interface

degfd2 = curves(c outflow) # Tangential velocity at outflow is 0

degfd1, degfd2 = curves(c wall) # Zero velocity at wall

degfd1, degfd2 = curves(c inflow) # Given velocity at inflow

renumber levels (1,2),(3) # Renumbering of unknowns is necessary to

# avoid zero pivots

# This is characteristic for Navier-Stokes

end

# Define the structure of the large matrices

# See Users Manual Section 3.2.4

# The solid and fluid are solved by iterative solvers, hence a

# compact storage is used. The matrices are unsymmetric

# The pseudo solid problem is symmetric and solved by a direct solver

# Hence storage scheme is profile

matrix

storage_scheme = compact, problem solid

storage_scheme = profile, symmetric, problem pseudo

storage_scheme = compact, problem fluid

end

# Definition of essential boundary conditions

# See Users Manual Section 3.2.5

# Solid problem

essential boundary conditions, sequence_number = solid, problem = solid

# zero bc, hence no input required

end

# Pseudo solid problem for mesh update

essential boundary conditions, sequence_number = pseudo , problem = pseudo

surfaces(s1) = vector = u ! The displacement in the solid part is given by u

end

# Fluid problem

# At the free surface we use the fluid mesh velocity as stored in

# fluidmeshvelo

# At inflow the x-component is a quadratic function with maximum value 0.5

essential boundary conditions, sequence_number = fluid , problem = fluid
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curves(c free), degfd1, degfd2,vector = fluidmeshvelo

curves(c inflow), degfd1, quadratic, max= 0.5

end

# Define the coefficients for the solid problem

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 5.3.2

coefficients, sequence_number = solid , problem = solid

# internal elements

elgrp1 (nparm = 45) # Type 200

icoef2 = 0 # stress strain relation 0 = 2d plain strain

icoef4 = 1 # 1 compressible elastic solid

coef10 = 50 # shear modulus

coef11 = 40 # bulk modulus

# boundary elements

bngrp1 (nparm=15) # Type 210

coef7=func=1 # force in global y-direction

end

# Define the coefficients for the pseudo solid problem

# to update the mesh

coefficients, sequence_number = pseudo , problem = pseudo

# fluid

elgrp1, (nparm = 45)

coef6 = 10 # Young’s modulus

coef7 = 0.3 # Poisson ratio;

# structure

elgrp2, (nparm = 45)

coef6 = 10 # Young’s modulus

coef7 = 0.3 # Poisson ratio

end

# Define the coefficients for the fluid problem

coefficients, sequence_number = fluid , problem = fluid

elgrp2 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef3 = 3 # 2: numerical integration rule (Gauss)

icoef5 = 1 # 5: Type of linearization (1=Picard)

coef6 = eps # 6: Penalty parameter

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

icoef15 = fluidmeshvelo # mesh velocity sequence number

end

# Define the structure of the program

# See Users Manual Section 3.2.3

structure

# Create start vectors for total displacement in solid domain un and
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# velocity and pressure in fluid domain velopres

create_vector, un, sequence_number = 1 # un = 0

create_vector, velopres, sequence_number = 2 # v_1 = parabolic, v_2 = 0

# write start vectors to file sepcomp.out

output

# Store coordinates in vector coor_old (only for fluid problem)

copy_coor coor_old, problem = fluid

# Solve time dependent problem

start_time_loop

# Create initial value for displacement vector per pseudo time step

create_vector, sequence_number = 1, u # u = 0, solid domain only

# Raise actual time, set time step and so on

# No action is performed

time_integration, sequence_number = solid

### Solve system of non-linear equations to get new increment vector

solve_nonlinear_system, vector = u

print_time

# Compute the mesh displacement by solving the pseudo solid problem

# Boundary conditions are given by the displacement u

prescribe_boundary_conditions, sequence_number = pseudo, meshdisp

solve_linear_system seq_coef = pseudo, meshdisp

# Use the computed mesh displacement to deform the mesh

deform_mesh, meshdisp

plot_mesh

# The total displacement is the sum of the original total displacement

# and the displacement vector per pseudo time step

un = un + u

plot_vector un, factor = 1

# Because the ALE formulation for the fluid is used, the velocity of

# the fluid domain nodes is computed from co-ordinates of present

# and previous co-ordinates

# We copy the present coordinates into coor_new, which is defined

# over the fluid domain only

# Next the mesh velocity in fluid domain is computed by

# (coor_new-coor_old)/dt
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# And finally the new coorinates are copied into coor_old

copy_coor, coor_new, problem = fluid

fluidmeshvelo = mesh_velocity(coor_new,coor_old)

coor_old = coor_new

# Compute the velocity by solving one step of the fluid problem

# Use the computed mesh velocity as boundary condition on the free

# part of the interface

time_integration, sequence_number = fluid, velopres

plot_vector velopres, factor = 0.3

plot_coloured_levels velopres, degfd 3

# Write all vectors to sepcomp.out

output

end_time_loop

end

# Define the time integration process

# In this case it is done in two separate input blocks

# See Users Manual Section 3.2.15

# First input block defines the initial time, time step and end time

# Both for computing and output

# It is also used to raise the actual time, but not to perform any action

# during the time step

time_integration, sequence_number = solid

method = stationary # The solid problem is stationary

tinit = t0 # initial time

tend = t1 # end time

tstep = dt # time step

print_level = 1

toutinit = t0 # initial time for output

toutend = t1 # end time for output

toutstep = dt_print # time step for output

end

# Time integration of fluid equation (Navier-Stokes)

time_integration, sequence_number = fluid

method = theta # theta method

theta = 1 # theta = 1, hence Euler implicit

reuse_time_parameters # The time parameters have been set

# in the first time integration block

non_linear_iteration # Perform a non linear iteration for

# each time step

print_level = 2 # Produce extra output

max_iter = 5 # Maximum number of iterations

seq_coefficients = fluid

seq_boundary_conditions = fluid
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seq_solution_method = fluid

end

# Definition of iteration for non linear equations (solid problem)

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = solid

number_of_couple_equations = 1 # necessary, since only one non-linear

# problem must be solved

global_options, maxiter = 50, miniter = 1, accuracy = 1d-4//

criterion = relative, print_level = 1, at_error= return //

iteration_method = newton

equations 1

fill_coefficients = solid

end

# Create displacement vector and set equal to 0

# See Users Manual Section 3.2.10

# No extra input required

create vector, sequence_number = 1 , problem = solid

end

# Initialize fluid problem solution vector

# The v-velocity is 0, the u veclocity is a quadrtic function of y

# Defined by a function subroutine func

create vector, sequence_number = 2 , problem = fluid

degfd1, func = 1

end

# Input for the linear solver

# Only for the fluid problem

# See Users Manual Section 3.2.8

solve, sequence_number = fluid

iteration_method = bicgstab, preconditioning = ilu, accuracy = eps,//

print_level = 0, termination_crit = rel_residual, start = old_solution

end
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Figures (7.4.2.2)-(7.4.2.5), show the mesh at t = 0.1, and t = 2, 3, 4 respectively.

Figure 7.4.2.2: Mesh at t=0.1 Figure 7.4.2.3: Mesh at t=1

Figure 7.4.2.4: Mesh at t=2 Figure 7.4.2.5: Mesh at t=3
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Figures (7.4.2.6)-(7.4.2.9), show the displacement of the solid nodes at t = 0.1, and t = 2, 3, 4
respectively.

Figure 7.4.2.6: Displacement of solid
nodes at t=0.1

Figure 7.4.2.7: Displacement of solid
nodes at t=1

Figure 7.4.2.8: Displacement of solid
nodes at t=2

Figure 7.4.2.9: Displacement of solid
nodes at t=3
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Figures (7.4.2.10)-(7.4.2.13), show the fluid velocity at t = 0.1, and t = 2, 3, 4 respectively.

Figure 7.4.2.10: Fluid velocity at
t=0.1

Figure 7.4.2.11: Fluid velocity at t=1

Figure 7.4.2.12: Fluid velocity at t=2 Figure 7.4.2.13: Fluid velocity at t=3
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Figures (7.4.2.14)-(7.4.2.17), show the pressure levels at t = 0.1, and t = 2, 3, 4 respectively.

Figure 7.4.2.14: Pressure level at
t=0.1

Figure 7.4.2.15: Pressure level at t=1

Figure 7.4.2.16: Pressure level at t=2 Figure 7.4.2.17: Pressure level at t=3
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In the post processing phase the displacement of the node at (0.5,0.5) is plotted.

# domain_def.pst

#

# post processing file for 2d deformation of solid mesh

# See Manual Standard Elements Section 5.1.4

# Author: Martijn Booij 2007

#

# To run this file use:

# seppost domain_def.pst

#

# Reads the file meshoutput and sepcomp.out

#

postprocessing

time history plot point ( 5, 5 ) un, degfd = 2

end

Figure 7.4.2.18 shows the computed displacement of this point.
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Figure 7.4.2.18: displace of node (0.5,0.5) in time
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7.5 Methods to compute fluid flow in the presence of an obstacle

7.5.1 A simple stationary obstacle in a two-dimensional fluid

In this section we show the various methods treated in Section 7.5 to compute the flow around a
stationary obstacle.
To get these examples into your local directory use:

sepgetex obstaclexx_y

with xx a two-digit number and y a one-digit number.
and to run it use:

sepmesh obstaclexx_y.msh

sepcomp obstaclexx_y.prb

seppost obstaclexx_y.pst

After the first and last step you may view the results using sepview.

The following values for xx are available:

xx = 01, 02, 03

and for y:

y = 1 to 4

Not all combinations of xx and y have been programmed yet.
xx has the following meaning:

01 The mesh is adapted to the obstacle. In this case the boundary of the obstacle is also boundary
of the fluid domain. Section 7.5.1.1.

02 A fixed mesh for the fluid is used independent on the obstacle. The velocities in all nodes of the
fluid mesh that are inside or on the obstacle are set to 0. This is the most primitive approach.
In fact the computational obstacle is smaller than the actual one. Section 7.5.1.2.

03 A fixed mesh for the fluid is used independent on the obstacle. The velocities in all nodes of
the fluid mesh that are inside or on the obstacle are set to 0, like in the case 02.
All intersections of the boundary of the obstacle and the fixed fluid mesh, are computed and
if an intersection point is not a nodal point of the fluid mesh we add the constraint that the
velocity in that point must be zero by use of Lagrangian multipliers. This is a kind of fictitious
domain approach. Section 7.5.1.3.

04 A fixed mesh for the fluid is used independent on the obstacle. The mesh is adapted by
computation of intersections with the obstacle. Elements that are intersected are subdivided
provided the intersection is not too close to the nodes. (approximately adapted grid method).
Elements in the new mesh are considered to be either inside or outside the obstacle, hence
the obstacle is in general approximated by another shape, which is close to the original one.
Section 7.5.1.4.

y has the following meaning:

1 The Taylor-Hood linear triangle (mini element) is used.

2 The Taylor-Hood quadratic triangle is used.
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Figure 7.5.1.1: Sketch of channel with rectangular obstacle

3 The Crouzeix-Raviart bilinear quadrilateral is used.

4 The Crouzeix-Raviart quadratic triangle is used.

The problem that we consider is that of a very simple rectangular obstacle in a channel as sketched
in Figure 7.5.1.1

The obstacle is not moving, hence the velocity at the boundary of the solid is zero.
At the left-hand side we have a quadratic velocity profile with maximum velocity 1. Top and bottom
of the channel are no-slip walls and at the right-hand side we have outflow.
The density ρ is chosen equal to 1 and the viscosity µ equal to 0.01.

Boundary conditions in this case are:

inflow: v1 quadratic, v2 = 0 (given velocity)
outflow: σnn = 0, σnt = 0 (stress free)
walls: v = 0 (noslip)
obstacle: v = 0 (noslip)

In the

following subsections we show the input and results of the various methods.
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7.5.1.1 Mesh adapted to the obstacle

In this case only the fluid region is covered with elements.
This method is of course the most accurate and may be used as a reference for all fixed mesh
methods.

The mesh is defined by the following mesh input file

# obstacle01_1.msh

#

# Mesh for 2d obstacle domain example

# The problem considered here is that of a fixed obstacle in a fluid

#

# In this example we compute the flow around the obstacle by adapting the

# mesh to the obstacle

# The solution can be used as reference for the other methods treated

# in this Section

#

# In this specific example we use Taylor-Hood linear triangles (mini element)

# See Manual Examples Section 7.5.1

#

# To run this file use:

# sepmesh obstacle01_1.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

# Fluid region

x_left = 0 # Left-hand side x-coordinate of fluid domain

x_right = 4 # Right-hand side x-coordinate of fluid domain

y_low = 0 # Lower y-coordinate of fluid domain

y_top = 1 # Upper y-coordinate of fluid domain

# obstacle

x_left_obs = 1 # Left-hand side x-coordinate of obstacle

x_right_obs = 2 # Right-hand side x-coordinate of obstacle

# at lower boundary

y_low_obs = 0.25 # Lower y-coordinate of obstacle

y_top_obs = 0.55 # Upper y-coordinate of obstacle

unit_length = 0.075 # Unit_length for coarseness

coarse_obst = 0.5 # Relative length for obstacle

integers

lin = 1 # Type of elements along lines (linear)

surf = 3 # Type of elements in surface (linear triangles)

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points, See Users Manual Section 2.2

#

coarse ( unit = unit_length ) # defines the length of the elements

#
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# user points

#

points # See Users Manual Section 2.2

# Fluid mesh

p1 = ( x_left, y_low) # Left under point

p2 = ( x_right, y_low) # Right under point

p3 = ( x_right, y_top) # Right upper point

p4 = ( x_left, y_top) # Left upper point

# Obstacle

p11 = ( x_left_obs, y_low_obs, coarse_obst) # Left under point

p12 = ( x_right_obs, y_low_obs, coarse_obst) # Right under point

p13 = ( x_right_obs, y_top_obs, coarse_obst) # Right upper point

p14 = ( x_left_obs, y_top_obs, coarse_obst) # Left upper point

# Extra point

p20 = ( x_left, y_low_obs) # extra point at left hand side

#

# curves

#

curves # See Users Manual Section 2.3

#

# Fluid mesh

c1 = cline lin ( p1, p2 ) # lower wall

c2 = cline lin ( p2, p3 ) # outflow boundary

c3 = cline lin ( p3, p4 ) # upper wall

c4 = curves(c5,c6) # inflow boundary

c5 = cline lin ( p4, p20 ) # upper part inflow boundary

c6 = cline lin ( p20, p1 ) # lower part inflow boundary

# Obstacle

c11 = cline lin ( p11, p12 ) # lower part

c12 = cline lin ( p12, p13 ) # right-hand side

c13 = cline lin ( p13, p14 ) # upper part

c14 = cline lin ( p14, p11 ) # left-hand side

c20 = curves(c11,c12,c13,c14) # Complete obstacle

# Line from extra point to obstacle

c10 = cline lin ( p20, p11 )

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Fluid mesh

s1 = general surf(c1,c2,c3,c5,c10,-c20,-c10,c6)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

Figure 7.5.1.2 shows the curve numbers used in this example and Figure 7.5.1.3 the corresponding
mesh.

The input file for sepcomp is more or less standard.
We show the one used for the mini element.

# obstacle01_1.prb

#

# Problem file for 2d obstacle domain example
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Figure 7.5.1.2: Curves for the obstacle in the fluid

Figure 7.5.1.3: Mesh for the obstacle in the fluid

# The problem considered here is that of a fixed obstacle in a fluid

#

# In this example we compute the flow around the obstacle by adapting the

# mesh to the obstacle

# The solution can be used as reference for the other methods treated

# in this Section

#

# In this specific example we use Taylor-Hood linear triangles (mini element)

# See Manual Examples Section 7.5.1

#

# To run this file use:

# sepcomp obstacle01_1.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#
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set warn off ! suppress warnings

constants # See Users Manual Section 1.4

reals

rho = 1 # density of fluid

eta = 0.01 # dynamic viscosity

vector_names

velocity_pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=903 # Type number for Navier-Stokes

# Taylor-Hood element

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1, degfd2 = curves(c1) # no-slip bottom wall

degfd1, degfd2 = curves(c3) # no-slip top wall

degfd1, degfd2 = curves(c4) # inlet

degfd1, degfd2 = curves(c20) # obstacle no-slip

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd1, quadratic, max=1 # The u-component of the velocity at

# inflow is parabolic

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=2, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Sections 7.1

coefficients, problem=1
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elgrp1 ( nparm=20 ) # The coeffs are defined by 20 parameters

icoef2 = 1 # type of constitutive equation (1=Newton)

icoef5 = 0 # Type of linearization (0=Stokes flow)

coef7 = rho # Density

coef12 = eta # Value of eta (dynamic viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is part is not necessary

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity_pressure

solve_nonlinear_system, velocity_pressure

# Write the results to a file

output

end

Post processing can be performed by the following

# obstacle01_1.pst

# Input file for postprocessing for 2d obstacle domain example

# The problem considered here is that of a fixed obstacle in a fluid

#

# In this example we compute the flow around the obstacle by adapting the

# mesh to the obstacle

# The solution can be used as reference for the other methods treated

# in this Section

#

# In this specific example we use Taylor-Hood linear triangles (mini element)

# See Manual Examples Section 7.5.1

#

#

# To run this file use:

# seppost obstacle01_1.pst > obstacle01_1.out

#

# Reads the files meshoutput and sepcomp.out

#
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postprocessing # See Users Manual Section 5.2

# Plot the mesh

plot mesh

#

# compute the stream function

# See Users Manual Section 5.2

# store in stream_function

compute stream function velocity_pressure

# Plot the results

# See Users Manual Section 5.4

plot vector velocity_pressure # Vector plot of velocity

plot contour velocity_pressure, degfd=3 # Contour plot of pressure

plot coloured contour velocity_pressure, degfd=3

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

end

Figure 7.5.1.4 shows the coloured isobars and Figure 7.5.1.5 the coloured stream function levels.

Figure 7.5.1.4: Coloured isobars
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Figure 7.5.1.5: Stream function levels
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7.5.1.2 Fixed mesh, primitive approach

In the primitive approach the start is a fixed mesh for the fluid, that is not adapted to the obstacle.
So in fact we have the same mesh as if we did not have an obstacle. Next all elements that are
completely inside the obstacle are marked and all nodes inside these elements get the velocity of
the obstacle (in this case 0). So what happens is, is that the obstacle is shrinked to the set of
elements in the fluid mesh, that are completely inside the obstacle. The obstacle gets smaller and
hence also its effect. This approach is very easy to apply, and if the mesh is sufficiently fine near
the boundary of the obstacle also not too inaccurate. In this case the mesh is much simpler than
in Section 7.5.1.1 Extra is the introduction of an obstacle in the mesh. The mesh is defined by the
following mesh input fileex-chap-7.5.1.1.

# obstacle02_1.msh

#

# Mesh for 2d obstacle domain example

# The problem considered here is that of a fixed obstacle in a fluid

#

# In this example we compute the flow around the obstacle with a fixed mesh

# The obstacle is defined as an obstacle and the internal velocities are

# set to 0 (primitive approach)

#

# In this specific example we use Taylor-Hood linear triangles (mini element)

# See Manual Examples Section 7.5.1

#

# To run this file use:

# sepmesh obstacle02_1.msh

#

# Creates the file meshoutput

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

# Fluid region

x_left = 0 # Left-hand side x-coordinate of fluid domain

x_right = 4 # Right-hand side x-coordinate of fluid domain

y_low = 0 # Lower y-coordinate of fluid domain

y_top = 1 # Upper y-coordinate of fluid domain

# obstacle

x_left_obs = 1 # Left-hand side x-coordinate of obstacle

x_right_obs = 2 # Right-hand side x-coordinate of obstacle

# at lower boundary

y_low_obs = 0.25 # Lower y-coordinate of obstacle

y_top_obs = 0.55 # Upper y-coordinate of obstacle

unit_length = 0.075 # Unit_length for coarseness

integers

lin = 1 # Type of elements along lines (linear)

surf = 3 # Type of elements in surface (linear triangles)

end

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points, See Users Manual Section 2.2

#



EX Fixed obstacle in fluid (2D) October 2008 7.5.1.11

coarse ( unit = unit_length ) # defines the length of the elements

#

# user points

#

points # See Users Manual Section 2.2

# Fluid mesh

p1 = ( x_left, y_low) # Left under point

p2 = ( x_right, y_low) # Right under point

p3 = ( x_right, y_top) # Right upper point

p4 = ( x_left, y_top) # Left upper point

# Obstacle

p11 = ( x_left_obs, y_low_obs) # Left under point

p12 = ( x_right_obs, y_low_obs) # Right under point

p13 = ( x_right_obs, y_top_obs) # Right upper point

p14 = ( x_left_obs, y_top_obs) # Left upper point

#

# curves

#

curves # See Users Manual Section 2.3

#

# Fluid mesh

c1 = cline lin ( p1, p2 ) # lower wall

c2 = cline lin ( p2, p3 ) # outflow boundary

c3 = translate c1 ( p4, p3 ) # upper wall

c4 = translate c2 ( p1, p4 ) # inflow boundary

# Obstacle

c11 = line ( p11, p12, nelm=1 ) # lower part

c12 = line ( p12, p13, nelm=1 ) # right-hand side

c13 = line ( p13, p14, nelm=1 ) # upper part

c14 = line ( p14, p11, nelm=1 ) # left-hand side

c20 = curves(c11,c12,c13,c14)

#

# surfaces

#

surfaces # See Users Manual Section 2.4

# Fluid mesh

s1 = rectangle surf(c1,c2,-c3,-c4)

#

# obstacles

#

obstacles # See Users Manual Section 2.1

cobs1 = c20

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The problem file has the following shape

# obstacle02_1.prb

#

# Problem file for 2d obstacle domain example

# The problem considered here is that of a fixed obstacle in a fluid

#
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# In this example we compute the flow around the obstacle with a fixed mesh

# The obstacle is defined as an obstacle and the internal velocities are

# set to 0 (primitive approach)

#

# In this specific example we use Taylor-Hood linear triangles (mini element)

# See Manual Examples Section 7.5.1

#

# To run this file use:

# sepcomp obstacle02_1.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

set warn off ! suppress warnings

constants # See Users Manual Section 1.4

reals

rho = 1 # density of fluid

eta = 0.01 # dynamic viscosity

vector_names

velocity_pressure

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=903 # Type number for Navier-Stokes

# Taylor-Hood element

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1, degfd2 = curves(c1) # no-slip bottom wall

degfd1, degfd2 = curves(c3) # no-slip top wall

degfd1, degfd2 = curves(c4) # inlet

degfd1, degfd2 = in_all_obstacle 1 # all velocities in the obstacle

# are set to zero

degfd3 = in_inner_obstacle 1 # all pressures corresponding to

# elements that are completely

# within the obstacle are set to

# zero, because these elements are skipped

skip_elements # skip some elements in order to avoid singular

# matrices, due to a pressure not coupled to

# free velocities

inner_obstacle 1 # All elements that are completely within the

# obstacle are skipped

# Mark that it is not allowed to set the pressure
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# inside the obstacle to zero, since that is

# not correct

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd1, quadratic, max=1 # The u-component of the velocity at

# inflow is parabolic

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=2, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Sections 7.1

coefficients, problem=1

elgrp1 ( nparm=20 ) # The coeffs are defined by 20 parameters

icoef2 = 1 # type of constitutive equation (1=Newton)

icoef5 = 0 # Type of linearization (0=Stokes flow)

coef7 = rho # Density

coef12 = eta #12: Value of eta (dynamic viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is part is not necessary
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#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity_pressure

solve_nonlinear_system, velocity_pressure

# Write the results to a file

output

end

Figure 7.5.1.6 shows the mesh and Figure 7.5.1.7 the velocity vectors.

Figure 7.5.1.6: Fixed mesh

Figure 7.5.1.7: Velocity vectors
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7.5.1.3 Fixed mesh, fictitious domain approach

The start of this approach is exactly the same as for the primitive approach. So we use a fixed fluid
mesh and the velocities for elements completely inside the obstacle are prescribed (0). However, in
order to make the obstacle larger, we consider all intersections of the obstacle with the fluid mesh.
Actually the velocities in the intersection points should also be zero, but this is only the case if such
an intersection points coincides with a nodal point. Now, however, we demand that the velocity in
that point is zero, provided the intersection point is not very close to a node in the obstacle. This
requirement is prescribed by means of a constraint and to satisfy this constraint it is necessary to
introduce Lagrangian multipliers. This is precisely the fictitious domain approach.
Of course we must avoid that these constraints are linearly dependent, so the Lagrangian multiplier
is defined on a limited number of edge elements, in such a way that a singular matrix is avoided.
Note that of we are dealing with linear elements, setting the velocity 0 in one node of an edge and
requiring that it is zero in an intermediate point, means actually that the velocity is zero along
the whole edge. So in this case the obstacle becomes too wide, and to prescribe as less as possible
velocities it is advised to use exclude_type = 1, in the creation of the ”edge”-elements for the
Lagrangian multipliers.

The mesh for this example is completely identical to the mesh in Section 7.5.1.2.

The problem file is given by

# obstacle03_1.prb

#

# Problem file for 2d obstacle domain example

# The problem considered here is that of a fixed obstacle in a fluid

#

# In this example we compute the flow around the obstacle with a fixed mesh

# The obstacle is defined as an obstacle and the internal velocities are

# set to 0

# Furthermore the velocity on the obstacle is set to zero using boundary

# elements of type 922 and the option cross_section_obstacle

# In this way the velocity condition on the boundary is treated as a constraint

#

# In this specific example we use Taylor-Hood linear triangles (mini element)

# See Manual Examples Section 7.5.1

#

# To run this file use:

# sepcomp obstacle03_1.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

set warn off ! suppress warnings

constants # See Users Manual Section 1.4

reals

rho = 1 # density of fluid

eta = 0.01 # dynamic viscosity

u_obst = 0 # u-velocity of obstacle

v_obst = 0 # v-velocity of obstacle

vector_names

velocity_pressure
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end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=903 # Type number for Navier-Stokes

# Taylor-Hood element

natbouncond # Natural boundary conditions

# In this case the natural boundary conditions

# are defined in order to introduce intersection

# elements between obstacle and fluid mesh

bngrp1 = 922 # Special type meant for the intersection element

# defines constraints and lagrangian multipliers

bounelements # Corresponding boundary elements

belm1 = cross_section_obstacle 1, exclude_type = 1

# Boundary elements are defined for the

# cross-section

# exclude_type defines which elements are excluded

# 1: Each point in the flow (outside the obstacle)

# may be connected to only one

# cross-section element

# 2: Each point in the region

# (including the obstacle)may be connected to

# only one cross-section element

# Default: 1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1, degfd2 = curves(c1) # no-slip bottom wall

degfd1, degfd2 = curves(c3) # no-slip top wall

degfd1, degfd2 = curves(c4) # inlet

in_inner_obstacle 1 # For points that are only in

# elements that are completely

# in the obstacle both pressure and

# velocity are given

degfd1, degfd2 = in_boun_obstacle 1 # For the other points in the

# obstacle only the velocity is

# prescribed

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd1, quadratic, max=1 # The u-component of the velocity at

# inflow is parabolic

end

# input for non-linear solver
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# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=2, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Sections 7.1

coefficients, problem=1

elgrp1 ( nparm=20 ) # The coeffs are defined by 20 parameters

icoef2 = 1 # type of constitutive equation (1=Newton)

icoef5 = 0 # Type of linearization (0=Stokes flow)

coef7 = rho # Density

coef12 = eta #12: Value of eta (dynamic viscosity)

bngrp1 ( nparm=10 ) # The coeffs are defined by 10 parameters

# Elements of type 922 require the velocity of the

# obstacle as input (coefficients 6 and 7)

coef6 = u_obst # u

coef7 = v_obst # v

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is part is not necessary

#

structure # See Users Manual Section 3.2.3

# Compute the velocity

prescribe_boundary_conditions, velocity_pressure

solve_nonlinear_system, velocity_pressure

# Write the results to a file

output

end
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Figure 7.5.1.8 shows the velocity vectors in this case.

 

Figure 7.5.1.8: Velocity vectors
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7.5.1.4 Fixed mesh, approximated adapted mesh approach

The start of this approach is same fixed fluid mesh as in Section 7.5.1.3. The same intersections
are created. However, in this case elements that are intersected by the obstacle, are subdivided
into subelements, provided the intersection is not too close to a node of the fixed mesh. If an
intersection point is within a distance ε times the edge length of a node, this node is considered to
be the new intersection point. The value of ε can be influenced by the user, but the default value
is 0.3. If an element is intersected it is subdivided such that the intersection points and original
nodes are connected such that new subelements arise in a natural way. These new subelements are
considered to be either inside the obstacle or outside. In this way the ”new” obstacle is formed by
the connection of all intersection points. Since some intersection points have been moved to nodal
points, this means that the new obstacle is some approximation of the original one.
Within the new obstacle we assume no flow (i.e. all elements are skipped). On the boundary of
this obstacle, the velocity is set to zero. So in fact the problem is then solved as in Section 7.5.1.1.

The mesh for this example is completely identical to the mesh in Section 7.5.1.2.

The problem file has the shape

# obstacle04_1.prb

#

# Problem file for 2d obstacle domain example

# The problem considered here is that of a fixed obstacle in a fluid

#

# In this example we compute the flow around the obstacle with a fixed mesh

# The obstacle is defined as an obstacle and the internal velocities are

# set to 0

# The fluid mesh is adapted to the obstacle by computing the intersections

# with the boundary of the obstacle (approximate adaptive method)

# On the boundary of this intersection the velocities are set to 0

#

# In this specific example we use Taylor-Hood linear triangles (mini element)

# See Manual Examples Section 7.5.1

#

# To run this file use:

# sepcomp obstacle04_1.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

set warn off ! suppress warnings

constants # See Users Manual Section 1.4

reals

rho = 1 # density of fluid

eta = 0.01 # dynamic viscosity

u_obst = 0 # u-velocity of obstacle

v_obst = 0 # v-velocity of obstacle

vector_names

velocity_pressure

end

debug_parameters

plotobstacles
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end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=903 # Type number for Navier-Stokes

# Taylor-Hood element

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd1, degfd2 = curves(c1) # no-slip bottom wall

degfd1, degfd2 = curves(c3) # no-slip top wall

degfd1, degfd2 = curves(c4) # inlet

in_inner_obstacle 1 # For points that are only in

# elements that are completely

# in the obstacle both pressure and

# velocity are given

degfd1, degfd2 = in_boun_obstacle 1 # For the other points in the

# obstacle only the velocity is

# prescribed

degfd1, degfd2 = on_boun_obstacle 1 # Points on the boundary get

# prescribed velocity

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions

curves(c4), degfd1, quadratic, max=1 # The u-component of the velocity at

# inflow is parabolic

end

# input for non-linear solver

# See Users Manual Section 3.2.9

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=2, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Sections 7.1

coefficients, problem=1
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elgrp1 ( nparm=20 ) # The coeffs are defined by 20 parameters

icoef2 = 1 # type of constitutive equation (1=Newton)

icoef5 = 0 # Type of linearization (0=Stokes flow)

coef7 = rho # Density

coef12 = eta #12: Value of eta (dynamic viscosity)

end

# Define the coefficients for the next iterations

# See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is part is not necessary

#

structure # See Users Manual Section 3.2.3

# Create the new temporary mesh by intersecting the obstacle with the fluid

# mesh. The computations are carried out on this new mesh

make_obstacle_mesh

# Compute the velocity

prescribe_boundary_conditions, velocity_pressure

solve_nonlinear_system, velocity_pressure

plot_vector velocity_pressure

plot_contour velocity_pressure, degfd=3

# Remove the temporary mesh and map the solution back

remove_obstacle_mesh

# Write the results to a file

output

end

Figure 7.5.1.9 is a plot of the mesh with boundary nodes of the new obstacle marked with a coloured
cross (orange inside, black boundary and red near the boundary). Elements inside the obstacle are
coloured.
Figure 7.5.1.10 shows the velocity vectors.
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Figure 7.5.1.9: Adapted mesh

Figure 7.5.1.10: Velocity vectors

7.6 Stationary free surface flows

7.6.1 A simple extrusion problem: die-swell

The extrusion of a viscous incompressible jet from a die into an inviscid fluid is of considerable
rheological importance. It is observed that far downstream the height of the extrudate is different
from that of the die. This phenomenon is known as die-swell or extrudate swell. See for example
Kruyt et al (1988). Here we assume that the jet is Newtonian and that the flow is steady and
two-dimensional. Figure 7.6.1.1 The equations to be solved are the standard incompressible Navier-
Stokes equations as described in Section 7.1 of the manual Standard Problems.
The boundary conditions on the fixed boundaries are as follows:

• symmetry axis: u2 = 0, σ12 = 0 (symmetry condition)

• wall of die, except point P: u = 0 (no slip condition)

• Point P (end of die), u2 = 0, σ12 = 0, hence we have a slip condition in that point.
Sometimes one also uses a no-slip condition in this point.

• inlet, u2 = 0, u1 prescribed by a quadratic velocity profile with maximum in symmetry axis
and 0 on the wall
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Figure 7.6.1.1: Geometry of the die-swell problem

• outlet, u2 = 0, σ11 = 0, i.e parallel outflow and pressure at outflow is 0.

On the intersection point of die and free surface we have prescribed the normal velocity only. So
in this specific point we allow slip. The reason is that mathematically speaking this is a singular
point. Allowing some slip makes the singularity less pronounced, which means that grid refinement
gives faster convergence.
From a physical point of view this is also a difficult point, since it is questionable if in the near
surroundings of this point the continuum theory may be applied.

On the free boundary we need three boundary conditions:

un = 0, σnt = 0 and σnn = γ
R ,

with γ the surface tension coefficient and 1
R the curvature of the free boundary. In other words

the tangential stress is zero, the normal velocity is zero (no flow through the free surface) and the
normal stress is prescribed by the surface tension and the zero pressure outside the fluid.

In this section we show the various methods treated in Section 7.6 of the manual Standard Problems
to solve the die-swell problem.
To get these examples into your local directory use:

sepgetex dieswellxy

with x and y two independent one-digit numbers.
and to run it use:

sepmesh dieswellxy.msh

sepfree dieswellxy.prb

seppost dieswellxy.pst

After the each step you may view the results using sepview.

The following values for x are available:

x = 1, 2, 3

The following values for y are available:

y = 1, 2, 3, 4
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The combinations 23 and 24 are not yet available.
Meaning of the various combinations:

x has the following meaning:

1 The free surface is adapted by one of the classical methods: the film method.

2 The free surface is adapted by the total linearization method.

3 The free surface is adapted by approximating the free boundary by a convection problem.

y has the following meaning:

1 A Cartesian coordinate system is assumed and in the end point of the die we have a slip
condition.

2 A Cartesian coordinate system is assumed and in the end point of the die we have a no-slip
condition.

3 An Axi-symmetric coordinate system is assumed and in the end point of the die we have a
slip condition.

4 An Axi-symmetric coordinate system is assumed and in the end point of the die we have a
no-slip condition.

Mark that we must apply sepfree instead of sepcomp, since the mesh is updated in each step.
In this example we have chosen to use one type of elements only (the extended quadratic Crouzeix-
Raviart element) in combination with the penalty function method. The change to other types of
elements or solution techniques for the incompressibility condition is very simple.
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7.6.1.1 Die swell problem solved by the film method

The solution method for all free surface problems is the globally speaking the same. We start with
an initial mesh, solve the Navier-Stokes equations and adapt the free surface as well as the mesh
repeatedly in order to satisfy all boundary conditions on the free surface

For the initial mesh we assume that the free surface is a straight horizontal line starting in the point
P.
The mesh used is defined by the following mesh input file.

# dieswell11.msh

#

# mesh file for die swell problem

# See Manual Examples Section 7.6.1

#

# To run this file use:

# sepmesh dieswell.msh

#

# Creates the file meshoutput

#

# Define some general constants, they are stored in dieswell11.constants

#

include ’dieswell11.constants’

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = ( xleft, ylow ) # Left-hand point on symmetry axis

p2 = ( xwallend, ylow ) # point on symmetry axis below end of die

p3 = ( xright, ylow ) # Right-hand point on symmetry axis

p4 = ( xleft, ytop ) # Left-hand point on die

p5 = ( xwallend, ytop ) # End point of die

p6 = ( xright, ytop ) # Right-hand point on free surface

p7 = ( xbetween, ylow ) # Point on the symmetry axis used to

# define where the elements towards the

# outflow may be enlarged

#

# curves

#

curves # See Users Manual Section 2.3

# Part of symmetry axis below the die:

c1 = line shape_cur ( p1, p2, nelm = nelmh_die )

# Rest of symmetry axis:

c2 = curves(c8,c9) # the line is splitted into 2 parts c8 and c9

# Outflow boundary:

c3 = translate c6 ( p3, p6 ) # translation of the inflow boundary

# Die wall:

c4 = translate c1 ( p4, p5 )

# Free surface:

c5 = translate c2 ( p5,-p6 )

# Inflow boundary

c6 = line shape_cur ( p1, p4, nelm = nelmv_die )
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# two parts of symmetry axis, below free surface

c8 = line shape_cur ( p2, p7, nelm = nelmh_out )

c9 = line shape_cur ( p7, p3, nelm = nelmh_far//

ratio = 1, factor = relax )

# symmetry axis

c10 = curves(c1,c2)

# free surface

c11 = curves(c4,c5)

# Definition of all physical curves for use in computational program

c inflow = curves(-c6) # inflow boundary (from symmetry to top)

c die = curves(c4) # fixed wall (die)

c free_surface = curves(c5) # free surface

c outflow = curves(c3) # outflow boundary

c symmetry = curves(c10) # symmetry axis

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = rectangle shape_sur (c10,c3,-c11,-c6)

plot # make a plot of the mesh

# See Users Manual Section 2.2

end

The mesh file uses an include file dieswell11.constants containing some constants that define
parameters used in the mesh file and in the problem file. This include file has the following contents

# dieswell11.constants

#

# include file for the dieswell problem corresponding to dieswell11.msh

# and dieswell11.prb

#

# Contains constants that are used in the mesh generation and or computation

#

constants

reals

# First parameters with respect to the mesh generation

xright = 20 # end x-coordinate of free surface

xleft = -3.5 # x-coordinate of inflow boundary

ylow = 0 # y-coordinate of symmetry axis

ytop = 1 # y-coordinate of die

xwallend = 0 # end x-coordinate of die

xbetween = 3.5 # Intermediate x-coordinate on

# free surface, used to define the subdivision

# of the free surface into elements

relax = 3 # factor to define the subdivision

# of the free surface into elements

# Next some physical constants

rho = 0.5 # density of the fluid

eta = 1 # viscosity of the fluid

gamma = 0.4 # surface tension
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integers

# Parameters to define the physical curves

inflow = 20 # curve number of inflow boundary

die = 21 # curve number of die wall

free_surface = 22 # curve number of free surface

outflow = 23 # curve number of outflow boundary

symmetry = 24 # curve number of symmetry axis

die_point = 5 # User point number of end point of die

fin_point = 6 # User point number of end point of free surface

# Parameters to define the mesh

shape_cur = 2 # quadratic elements along the curves

shape_sur = 4 # quadratic triangles in the region

irefine = 1 # Refinement parameter, is used as

# multiplication factor to define the number

# of elements along the various curves

nelmh_die = 8* irefine # Number of elements along the die

nelmv_die = 4* irefine # Number of elements along the inflow boundary

nelmh_far = 4* irefine # Number of elements on the first part of the

# free surface

nelmh_out = 8* irefine # Number of elements on the last part of the

# free surface

end

Figure 7.6.1.2 shows the curve numbers used in this example and Figure 7.6.1.3 the corresponding
mesh.

1
3

4 5
6

8 9

Figure 7.6.1.2: Curves for the die-swell problem

Figure 7.6.1.3: Mesh for the die-swell problem

To solve the free surface problem we start with a velocity vector u =

(
1
0

)
, except on the

boundaries where essential boundary conditions must be applied. In those boundaries we prescribe
the correct boundary conditions. So the solution does not satisfy the condition u · n = 0 on the
free boundary.
After that the free surface algorithm is started. The boundary is updated so that the zero normal
velocity boundary condition is approximated in a better way. This update is performed by applying
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the film method with relaxation factor 1. This process is repeated until convergence is achieved.
Finally the pressure is computed. Mark that in order to apply the film method it is necessary to
start in the point Q of the free boundary, since there we have a zero displacement.
In order to apply the surface tension on the free boundary it is necessary to define boundary
elements along the free surface. These boundary elements have type number 910, see the manual
Standard Problems Section 7.1. In the starting point of the free boundary (point P) there is a zero
displacement, so it is not necessary to prescribe the tangential direction in that point. However, in
the end point Q, the normal displacement is not prescribed and therefore it is necessary to prescribe
the tangential vector in that point. Since we assume that the outflow boundary is far enough we

expect a horizontal free surface and we prescribe the tangential vector by t =

(
0
1

)
. This is again

done by a boundary element of type 910, which in this case reduces to a point element.
Mark that if the surface tension is zero, there is no need to give the boundary elements and also no
need to give the tangential vector in the end point.
For simplicity we have only used the Picard linearization of the free boundary, but of course Newton
linearization might be applied as well.
After running sepfree the mesh has been changed, which means that to test another update method
it is necessary to rerun sepmesh.
The input file for program sepfree is given by

# dieswell11.prb

#

# problem file for die swell problem

# See Manual Examples Section 7.6.1

#

# This is a stationary free surface problem

# The velocity and pressure satisfy the non-linear Navier-Stokes equations

# The Navier-Stokes equation is solved by a penalty function formulation

# The free surface is updated in each step using the film method

#

# To run this file use:

# sepfree dieswell11.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

# Define some general constants, they are stored in dieswell11.constants

#

include ’dieswell11.constants’

#

# Some specific constants are defined in this file

#

constants # See Users Manual Section 1.4

reals

# Specific reals to be used for the computation

penal = 1d-6 # penalty parameter

# Names of vectors in the computation

vector_names

velocity # velocity vector
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pressure # pressure

end

#

# Some information at the start of the computation

#

start

norotate # prevent rotation of plots

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

natboundcond # Define the natural boundary conditions

# This is necessary to define the surface tension

bngrp1=(type=910) # Type number for natural boundary conditions

# for the Navier-Stokes

# See Standard problems Section 7.1

# In this case it concerns a line element for the

# surface tension

bngrp2=(type=910) # Type number for natural boundary conditions

# for the Navier-Stokes

# See Standard problems Section 7.1

# In this case it concerns a point element for the

# contact angle

bounelements # Define on which boundaries we have natural boundary

# conditions

# the surface tension is defined on the free surface

# the shape of the elements on the the curve is stored in shape_cur

belm1 = curves(shape= shape_cur,c free_surface)

# line elements along free surface

belm2 = points(p fin_point) # point element in end point

# this element is needed in order to

# prescribe the contact angle

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves 200 (c die) # Fixed wall (die)

# all point on the die have no-slip condition

# except the last point (start of the free

# surface )

degfd2, points(p die_point) # The normal velocity along the die is

# zero in the end point

curves(c inflow) # inflow, prescribed velocity

degfd2,curves(c symmetry) # symmetry axis, only the y-velocity is 0

degfd2,curves(c outflow) # parallel outflow

end
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# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3

# Create the start vector and fill the essential boundary conditions

create_vector velocity

# Free surface iteration

start_stationary_free_boundary

# In each step the velocity is updated by solving a linear problem

# The equation has been linearized by Picard

solve_linear_system

end_stationary_free_boundary

# Compute the pressure

derivatives, seq_deriv=1, pressure

# print the results

print velocity, curves = (c free_surface)

# Plot the velocity vector

plot_vector velocity

# Write results to sepcomp.out for postprocessing

output

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.10

create vector

# Set the u velocity everywhere equal to 1 and the v velocity to 0

degfd1, value = 1

degfd2, value = 0

# Set the u velocity on the die equal to 0

degfd1, curves = c die, value = 0

# The inflow velocity is a quadratic velocity profile for the x-component

# Due to symmetry, the maximum is on the symmetry axis

degfd1,curves(c inflow),half_quadratic, max=1.5

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1
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coefficients

# First the Navier-Stokes elements

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # Newtonian fluid

icoef5 = 1 # Picard linearization

coef6 = penal # penalty parameter

coef7 = rho # density rho

coef12= eta # viscosity eta

# Coefficients for the boundary elements

# First with respect to the line elements

# These are used for the surface tension

bngrp1 (nparm=15) # The coefficients for the natural boundary

# conditions are defined by 15 parameters

icoef1 = 2 # iload (2=surface tension)

coef6 = gamma # gamma (surface tension)

# Next with respect to the point element

# This is used to prescribe the contact angle

bngrp2 (nparm=15) # The coefficients for the natural boundary

# conditions are defined by 15 parameters

icoef1 = 2 # iload (2=surface tension)

coef6 = gamma # 6: surface tension gamma

coef7 = 1 # 7: first component of tangential vector in end

# point

coef8= 0 # 8: second component of tangential vector

end

# compute pressure

# See Users Manual, Section 3.2.11

derivatives

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

seq_input_vector 1 = velocity # the pressure is computed form the velocity

end

# Information for the free surface computation

# See Users Manual Section 3.4.5

stationary_free_boundary

maxiter = 20 # Maximum number of iterations

miniter = 8 # Minimum number of iterations

# This is used to prevent that the process stops

# to early with a divergence message

accuracy = 1d-3 # termination criterion

print_level = 2 # Amount of output regarding the iteration process

adapt_mesh = 1 # Defines the sequence number of the input block

# where it is described how the mesh must be adapted

at_error = return # If an error occurs a warning is issued, but the

# following statements are carried out

write_mesh # The final mesh is written to meshoutput

criterion = relative # Type of stopping criterion

end

# Information on how to adapt the mesh during the free surface iterations
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# See Users Manual Section 3.4.3

adapt_mesh

adapt_boundary = (1) # Defines the sequence number of the input block

# where it is described how the boundary

# must be adapted

plot_mesh # Plot the mesh in each iteration step

end

# Information on how to adapt the boundary during the free surface iterations

# See Users Manual Section 3.4.4

# In this case we apply the film method without relaxation, i.e. factor = 1

# The fact that we use quadratic elements is utilized

adapt_boundary

curves = (c free_surface) # The free surface curve is adapted

adaptation_method = film_method # The method to be used is the film

# method, see Users Manual 3.4.4

quadratic # quadratic line elements are used

plot_boundary # Plot the boundary in each iteration step

factor=1 # Multiplication factor (default)

end

end_of_sepran_input

The convergence of the free surface iteration process is very fast as can be seen in Table 7.6.1.1.

Table 7.6.1.1 Convergence of the free surface algorithm

Iteration || u(n) - u(n-1) ||
1 1.13E-02
2 1.12E-03
3 9.22E-05
4 3.38E-05
5 2.93E-06
6 9.61E-07
7 9.60E-08

Figures 7.6.1.4 and 7.6.1.5 show the final boundary and mesh. Intermediate pictures are almost the
same. Postprocessing can be performed using for example the following post processing file

# dieswell11.pst

# Input file for postprocessing for die swell problem

# See Manual Examples Section 7.6.1

#

#

# To run this file use:

# seppost dieswell11.pst > dieswell11.out

#

# Reads the files meshoutput and sepcomp.out

#

#

postprocessing # See Users Manual Section 5.2

#

# compute the stream function
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Figure 7.6.1.4: Boundary in the final iteration

Figure 7.6.1.5: Mesh in the final iteration

# See Users Manual Section 5.2

# store in stream_function

compute stream_function = stream function velocity

# Plot the results

# See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot coloured contour pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

end

Figure 7.6.1.6 shows the velocity vectors, Figure 7.6.1.7 the coloured pressure levels and Figure
7.6.1.8 the coloured stream function levels.
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Figure 7.6.1.6: Velocity vectors in final mesh

Figure 7.6.1.7: Pressure levels in final mesh

Figure 7.6.1.8: Stream function levels in final mesh
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7.6.1.2 Die swell problem solved by the total linearization method

As an alternative to the classical Picard iterations of subsection 7.6.1.1 we demonstrate the total
linearization method published in Kruyt et al (1988). This method does not only converge faster
than the film method, it has also a larger convergence range. The mesh file, the constants file and
the postprocessing file are completely identical to that of the film method. The only difference is
in the computational part.
Again we start with a given velocity vector, however in order to apply the total linearization method
it is also necessary to prescribe the initial pressure vector, since the pressure of the previous step is
used in each iteration. Surface tension is part of the boundary element 915 and just as for the film
method we have to prescribe the tangential vector in the end point of the free surface.
In this case the displacement of the free surface in y-direction is an unknown, which can be used in
immediately to update the free boundary in each step.
The problem file used is given below

# dieswell21.prb

#

# problem file for die swell problem

# See Manual Examples Section 7.6.1

#

# This is a stationary free surface problem

# The velocity and pressure satisfy the non-linear Navier-Stokes equations

# The Navier-Stokes equation is solved by a penalty function formulation

# The update of the free surface is done by the method described in

# N.P. Kruyt, C. Cuvelier, A. Segal, J. van der Zanden,

# A total linearization method for solving viscous free boundary flow

# problems by the finite element method,

# Int. J. for Num. Methods in Fluids, Vol. 8, pp. 351-363, 1988

# The Navier-Stokes equation is solved by the penalty function approach

#

# To run this file use:

# sepfree dieswell21.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

# Define some general constants, they are stored in dieswell21.constants

#

include ’dieswell21.constants’

#

# Some specific constants are defined in this file

#

constants # See Users Manual Section 1.4

reals

# Specific reals to be used for the computation

penal = 1d-6 # penalty parameter

# Names of vectors in the computation

vector_names

velocity # velocity vector

pressure # pressure
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end

#

# Some information at the start of the computation

#

start

norotate # prevent rotation of plots

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

natboundcond # Define type numbers for elements corresponding

# to natural boundary conditions

# These are used to define the displacement of

# the free surface

bngrp1=(type=915) # Type number for special element used in the

bngrp2=(type=915) # total linearization method

bounelements # Define the boundary elements for the total

# linearization method along the free surface

belm1 = curves(c free_surface) # line elements along free surface

belm2 = points(p fin_point) # point element in end point

# this element is needed in order to

# prescribe the contact angle

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves 200 (c die) # Fixed wall (die)

# all point on the die have no-slip condition

# except the last point (start of the free

# surface )

degfd2, points(p die_point) # The normal velocity along the die is

# zero in the end point

degfd3, points(p die_point) # The displacement of the free surface

# in the end point of the die is 0

# This is the third degree of freedom

# along the free surface

curves(c inflow) # inflow, prescribed velocity

degfd2,curves(c symmetry) # symmetry axis, only the y-velocity is 0

degfd2,curves(c outflow) # parallel outflow

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3

# Compute start vectors for the velocity and pressure

create_vector, velocity
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create_vector, sequence_number = 2, pressure

# Free surface iteration

start_stationary_free_boundary_loop

# first compute velocity, by solving system of linear equations

solve_linear_system, velocity

# next compute pressure as derived quantity

derivatives, seq_deriv = 1, pressure

end_stationary_free_boundary_loop

# print the results

print velocity, curves = (c free_surface)

# Write results to sepcomp.out for postprocessing

output

end

#

# Define coefficients for the problem to be solved

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

#

coefficients

# First the Navier-Stokes elements

elgrp 1 ( nparm = 20) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 2 # 5: Type of linearization (2=Newton)

coef6 = penal # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12= eta #12: Value of eta (viscosity)

# Coefficients for the boundary elements

# First with respect to the line elements

# These are used for the surface tension

bngrp 1 ( nparm = 10 ) # The coefficients are defined by 10 parameters

coef6 = rho # 6: density rho

coef7 = eta # 7: viscosity eta

coef8 = gamma # 8: surface tension gamma

coef9 = old_vector pressure # pressure in previous iteration

# Next with respect to the point element

# This is used to prescribe the contact angle

bngrp 2 ( nparm = 10 ) # The coefficients are defined by 10 parameters

coef8 = gamma # 8: surface tension gamma

coef9 = 1 # 9: first component of tangential vector in end

# point

coef10= 0 #10: second component of tangential vector

end

#

# Create start vector for velocity, including boundary conditions

# See Users Manual Section 3.2.10
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#

create vector

degfd1, value = 1 # First set the u component equal to 1

# Next set the inflow velocity

degfd1, curves ( c inflow ), half_quadratic, max=1.5

curves ( c die ), value = 0 # On the die we have a no=slip condition

end

#

# Create start vector for pressure

#

create vector, sequence_number = 2

type = vector of special structure 6

value = 0

end

#

# Definition of how to compute the derivatives (pressure)

#

derivatives

icheld = 27 # icheld=27, pressure in vertices

# See Standard problems Section 7.1/7.6

seq_input_vector = velocity # Defines the input vector (velocity)

end

#

# Information about free boundary problem, see Users Manual Section 3.4.5

#

stationary_free_boundary

maxiter = 10 # Maximum number of iterations

accuracy = 2d-4 # termination criterion

print_level = 2 # Amount of output regarding the iteration process

adapt_mesh = 1 # Defines the sequence number of the input block

# where it is described how the mesh must be adapted

at_error = return # If an error occurs a warning is issued, but the

# following statements are carried out

write_mesh # The final mesh is written to meshoutput

end

#

# Definition of how to adapt the mesh, see Users Manual Section 3.4.3

#

adapt_mesh

adapt_boundary = (1) # Defines the sequence number of the input block

# where it is described how the boundary

# must be adapted

plot_mesh # Plot the mesh in each iteration step

end

#

# Definition of how to adapt the boundary, see Users Manual Section 3.4.4

#

adapt_boundary

curves = (c free_surface) # The free surface curve is adapted

adaptation_method = standard # The method to be used is the standard

# method: xnew = xold + alpha n

# with alpha the third component of the

# solution vector on the free surface

quadratic # quadratic line elements are used

number = 3 # The third degree of freedom corresponds to
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# alpha

plot_boundary # Plot the boundary in each iteration step

end

end_of_sepran_input

Convergence results can be found in Table 7.6.1.2.

Table 7.6.1.2 Convergence of the total linearization method

Iteration || u(n) - u(n-1) ||
1 7.67E-02
2 1.26E-02
3 3.75E-03
4 3.85E-04
5 3.01E-05

Of course the pictures are almost identical as those of the film method.
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7.6.1.3 Die swell problem solved by approximating the free boundary by a convection
problem

For this solution method we have to solve two problems per iteration. First we solve the Navier-
Stokes equations and then a convection problem is solved to update the free boundary.
In each step we try to compute the stream line in Cartesian coordinates. in other words in each step
the displacement with respect to the original boundary is computed. This means that we have to
subtract the previous displacement in order to get the incremental displacement of the free boundary
with respect to the present free boundary. In other words the algorithm reads

Start with a straight horizontal line as initial free boundary. This defines the initial region.
k = 0
Initialize the velocity v0

Initialize the total displacement d0
tot = 0

while not converged do
k = k + 1
Solve the flow problem on the present region using all but one of the boundary conditions on
the free boundary. The result is the velocity vk

Solve the convection problem on the free boundary using vk in order to compute dk.
Compute the displacement with respect to the present boundary: ∂d = dk - dk−1

tot .
Adapt the boundary using ∂d.
Adapt the mesh by adapting the coordinates or if necessary by remeshing.
Compute the total displacement dktot = dk = dk−1

tot + ∂d
end while

The intermediate steps of computing the total displacement and the displacement with respect to
the present boundary are necessary since the program only updates the present boundary with a
given displacement.
The solution of the convection problem along the free boundary is of course a scalar representing
the new y-position of all points along the boundary. The x-position remains unchanged. This makes
it necessary to map the scalar first into a vector with 2 components before computing the new free
boundary. The problem in this case reads

# dieswell31.prb

#

# problem file for die swell problem

# See Manual Examples Section 7.6.1

#

# This is a stationary free surface problem

# The velocity and pressure satisfy the non-linear Navier-Stokes equations

# The Navier-Stokes equation is solved by a penalty function formulation

# The free surface is updated in each step by solving a convection-diffusion

# equation

#

# To run this file use:

# sepfree dieswell31.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

# Define some general constants, they are stored in dieswell31.constants

#

include ’dieswell31.constants’

#

# Some specific constants are defined in this file

#
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constants # See Users Manual Section 1.4

reals

# Specific reals to be used for the computation

penal = 1d-6 # penalty parameter

kappa = 1d-10 # smoothing parameter for convection problem

# Names of vectors in the computation

vector_names

velocity # velocity vector

pressure # pressure

y_displacement # Displacement of the mesh in y-direction along the

# free surface with respect to the present mesh

y_tot_displacement # Displacement of the mesh in y-direction along the

# free surface with respect to the initial mesh

displacement # Displacement vector consisting of displacement

# vector in y-direction along free surface

# extended by zeros

# Is used in the update of the mesh

end

#

# Some information at the start of the computation

#

start

norotate # prevent rotation of plots

end

#

# Define the type of problem to be solved

#

problem 1 # See Users Manual Section 3.2.2

# Problem 1 refers to the Navier-Stokes equations

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

natboundcond # Define the natural boundary conditions

# This is necessary to define the surface tension

bngrp1=(type=910) # Type number for natural boundary conditions

# for the Navier-Stokes

# See Standard problems Section 7.1

# In this case it concerns a line element for the

# surface tension

bngrp2=(type=910) # Type number for natural boundary conditions

# for the Navier-Stokes

# See Standard problems Section 7.1

# In this case it concerns a point element for the

# contact angle

bounelements # Define on which boundaries we have natural boundary

# conditions

# the surface tension is defined on the free surface
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# the shape of the elements on the the curve is stored in shape_cur

belm1 = curves(shape= shape_cur,c free_surface)

# line elements along free surface

belm2 = points(p fin_point) # point element in end point

# this element is needed in order to

# prescribe the contact angle

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

curves 200 (c die) # Fixed wall (die)

# all point on the die have no-slip condition

# except the last point (start of the free

# surface )

degfd2, points(p die_point) # The normal velocity along the die is

# zero in the end point

curves(c inflow) # inflow, prescribed velocity

degfd2,curves(c symmetry) # symmetry axis, only the y-velocity is 0

degfd2,curves(c outflow) # parallel outflow

problem 2 # refers to the solution of the convection problem

# along the free surface

types # Define types of elements,

elgrp1=(type=0) # Since the convection problem is only solved

# along the free boundary we use type number 0

# in the inner region

natboundcond # Define the natural boundary conditions

# In this case this actually the equation

bngrp1=(type=800) # Type number for the convection equation

# See Standard problems Section 3.1

bounelements # Define on which boundaries we have to solve

# convection problem

belm1=curves(shape=1,c free_surface) # Only on the free surface

# in this case we use linear elements

essbouncond # Define where essential boundary conditions are

# given

points = p die_point # The displacement at the first point of the

# free surface is 0

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3

# Create the start vector for the velocity and

# fill the essential boundary conditions

create_vector velocity

# Initialize the total displacement vector (0)

create_vector, sequence_number=2, y_tot_displacement
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# Free surface iteration

start_stationary_free_boundary_loop

# first compute velocity, by solving system of linear equations

solve_linear_system, velocity

# Next we compute the displacement of the free surface by solving a

# convection equation

# First the essential boundary condition is stored

prescribe_boundary_conditions, y_displacement

# Next the system of equations is solved, this results in the

# displacement with respect to the initial mesh

solve_linear_system, seq_coef = 2, y_displacement, problem = 2

# The displacement in the previous iterations must be subtracted

# from this displacement in order to get the displacement

# with respect to the present mesh

y_displacement = y_displacement- y_tot_displacement

# Map y_displacement into displacement vector in order to use

# this vector in the update of the free surface

# This is necessary since the update algorithm expects a velocity vector

# consisting of 2 components instead of 1

displacement = map y_displacement, type = 0, degfd = 2

# Finally the total displacement is updated

y_tot_displacement = y_displacement + y_tot_displacement

end_stationary_free_boundary_loop

# Compute the pressure

derivatives, seq_coef=1, seq_deriv=1, pressure

# print the results

print velocity, curves = (c free_surface)

# Write results to sepcomp.out for postprocessing

output

end

# The essential boundary condition for the convection equation is zero

# See Users Manual Section 3.2.5

essential boundary conditions, problem 2

value = 0

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.10

create vector, problem 1
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degfd1, value = 1 # First set the u component equal to 1

# Next set the inflow velocity

degfd1, curves ( c inflow ), half_quadratic, max=1.5

curves ( c die ), value = 0 # On the die we have a no=slip condition

end

# Initialize the total y-displacement vector

create vector, problem 2, sequence_number = 2

value = 0

end

# coefficients for velocity problem (Navier-Stokes)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

# First the Navier-Stokes elements

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # Newtonian fluid

icoef5 = 1 # Picard linearization

coef6 = penal # penalty parameter

coef7 = rho # density rho

coef12= eta # viscosity eta

# Coefficients for the boundary elements

# First with respect to the line elements

# These are used for the surface tension

bngrp1 (nparm=15) # The coefficients for the natural boundary

# conditions are defined by 15 parameters

icoef1 = 2 # iload (2=surface tension)

coef6 = gamma # gamma (surface tension)

# Next with respect to the point element

# This is used to prescribe the contact angle

bngrp2 (nparm=15) # The coefficients for the natural boundary

# conditions are defined by 15 parameters

icoef1 = 2 # iload (2=surface tension)

coef6 = gamma # 6: surface tension gamma

coef7 = 1 # 7: first component of tangential vector in end

# point

coef8= 0 # 8: second component of tangential vector

end

# coefficients for convection diffusion problem (displacement of boundary)

# See Users Manual Section 3.2.6 and Standard problems Section 3.1/7.6

coefficients, sequence_number = 2

bngrp1 (nparm=20)

icoef2 = 1 # first order upwind

icoef5 = 4 # transformation

coef6 = kappa # diffusion parameter, used for smoothing

coef12= old_vector velocity, degfd1 # velocity

coef16= old_vector velocity, degfd2 # right-hand side

end

# compute pressure
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# See Users Manual, Section 3.2.11

derivatives

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

seq_input_vector 1 = velocity # the pressure is computed form the velocity

end

#

# Information about free boundary problem, see Users Manual Section 3.4.5

#

stationary_free_boundary

maxiter = 10 # Maximum number of iterations

accuracy = 2d-4 # termination criterion

print_level = 2 # Amount of output regarding the iteration process

adapt_mesh = 1 # Defines the sequence number of the input block

# where it is described how the mesh must be adapted

at_error = return # If an error occurs a warning is issued, but the

# following statements are carried out

seq_vectors = displacement # Defines the "velocity" vector to be used

# when updating the boundary

write_mesh # The final mesh is written to meshoutput

end

#

# Definition of how to adapt the mesh, see Users Manual Section 3.4.3

#

adapt_mesh

adapt_boundary = 1 # Defines the sequence number of the input block

# where it is described how the boundary

# must be adapted

plot_mesh # Plot the mesh in each iteration step

end

#

# Definition of how to adapt the boundary, see Users Manual Section 3.4.4

#

adapt_boundary

curves = (c free_surface) # The free surface curve is adapted

adaptation_method = velocity # The method to be used is the standard

# method: xnew = xold + v

# where v is the velocity vector

quadratic # quadratic line elements are used

plot_boundary # Plot the boundary in each iteration step

end

end_of_sepran_input

Convergence results can be found in Table 7.6.1.3.

Table 7.6.1.3 Convergence of the convection approach

Iteration || u(n) - u(n-1) ||
1 1.47E-01
2 2.68E-02
3 3.67E-03
4 2.26E-04
5 1.44E-04
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Again the pictures are almost identical as those of the film method.
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7.6.2 Shape of a drop under the influence of surface tension

In this section we demonstrate the effect of surface tension. The example has been provided by
Frank Dammel of the Technical University of Darmstadt (Germany). A classical test example is
that of a drop in a fluid in rest. In this stationary case we start with a drop of arbitrary shape,
in this particular example a square. The only force in the flow is the surface tension acting on
the drop. Due to this surface tension the drop must take the shape of a circle and the flow must
be at rest. The pressure inside the drop must be constant with value equal to the surface tension
coefficient γ.
Due to symmetry it is sufficient to take only one quarter of the drop.

To get these examples into your local directory use:

sepgetex fs_drop_testxx

where xx may be either 11 (Cartesian case) or 12 (Axi-symmetric case), and to run it use:

sepmesh fs_drop_testxx.msh

sepfree fs_drop_testxx.prb

seppost fs_drop_testxx.pst

The initial mesh consists of a square. In order to prevent the necessity of remeshing during the
iterations the mesh consists of a fixed inner square and an outer part of which the shape is adapted
during each iteration. Figure 7.6.2.1 shows the subdivision of the regions and the definition of the
curves. The initial mesh may be created by the following input file

2

3

5 6

7

8 10

11

12

Figure 7.6.2.1: Definition of the curves in the surface tension test example

# fs_drop_test11.msh

#

# mesh file for testing the surface tension on a drop in a no-flow region

# See Manual Examples Section 7.6.2

#

# To run this file use:

# sepmesh fs_drop_test11.msh

#

# Creates the file meshoutput

#

# Define some general constants, they are stored in fs_drop_test11.constants

#
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include ’fs_drop_test11.constants’

#

# Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1 = (0,0) # Centre of drop

p2 = ( length,0) # end point of starting rectangle in x-dir

p3 = ( length, width) # right upper point of starting rectangle

p4 = (0, width) # end point of starting rectangle in y-dir

p5 = ( length/2 ,0) # middle point on lower boundary

p6 = (0, width/2 ) # middle point on left-hand side boundary

p7 = ( length/2 , width/2 ) # centre point of region

#

# curves

#

curves # See Users Manual Section 2.3

c1 = curves(c5,c6) # lower boundary of rectangle

# subdivided into 2 parts

c5 = line shape_cur ( p1,p5, nelm= n ) # left-hand side part

# of lower boundary

c6 = line shape_cur ( p5,p2, nelm= n ) # right-hand side part

# of lower boundary

c2 = line shape_cur ( p2,p3, nelm= m ) # right-hand side of rectangle

c3 = line shape_cur ( p3,p4, nelm= n ) # upper boundary of rectangle

c4 = curves(c7,c8) # right-hand side of rectangle

c7 = line shape_cur ( p4,p6, nelm= m ) # upper part of

# left-hand side of rectangle

c8 = line shape_cur ( p6,p1, nelm= m ) # lower part of

# left-hand side of rectangle

c10= line shape_cur ( p5,p7, nelm= n ) # right-hand side of inner

# rectangle

c11= line shape_cur ( p7,p6, nelm= m ) # upper side of inner

# rectangle

c12= line shape_cur ( p7,p3, nelm= m ) # line from centre to point

# at top and right-hand side

c free_surface = curves(c2,c3)

c symm_hor = curves(c1)

c symm_vert = curves(c4)

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = rectangle shape_sur (c5,c10,c11,c8) # inner rectangle

s2 = rectangle shape_sur (c6,c2,-c12,-c10) # right-hand side quad

s3 = rectangle shape_sur (c3,c7,-c11,c12) # upper quad

plot # make a plot of the mesh

# See Users Manual Section 2.2

end
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The mesh file uses an include file fs_drop_test11.constants containing some constants that define
parameters used in the mesh file and in the problem file. This include file has the following contents

# fs_drop_test11.constants

#

# include file for the fs_drop_test problem corresponding to fs_drop_test11.msh

# and fs_drop_test11.prb

#

# Contains constants that are used in the mesh generation and or computation

#

constants

reals

# First parameters with respect to the mesh generation

length = 1 # length of starting rectangle

width = 1 # width of starting rectangle

# Next some physical constants

rho = 1 # density of the fluid

eta = 1 # viscosity of the fluid

gamma = 0.1 # surface tension

integers

# Parameters to define the physical curves

free_surface = 20 # curve number of free surface

symm_hor = 21 # horizontal symmetry axis

symm_vert = 22 # vertical symmetry axis

# Parameters to define the mesh

shape_cur = 2 # quadratic elements along the curves

shape_sur = 4 # quadratic triangles in the region

n = 2 # Number of elements in x-direction

m = 2 # Number of elements in y-direction

jcart = 0 # Defines type of coordinate system

# 0 = Cartesian

# 1 = Axi-symmetric

end

Figure 7.6.2.2 shows the initial mesh. Since in this example there is no flow we have chosen to
solve the Stokes equations only. On the symmetry axis we have the standard symmetry boundary
conditions and on the free surface we impose the given surface tension as well as a zero shear stress.
In each iteration the boundary is updated using the computed normal velocity, so that in the end
the boundary condition u · n = 0 is satisfied. This method converges linearly and not very fast.
Approximately 25 iterations were necessary to reach the final shape.

# fs_drop_test11.prb

#

# problem file for testing the surface tension on a drop in a no-flow region

# See Manual Examples Section 7.6.2

#

# This is a stationary free surface problem

# The velocity and pressure satisfy the linear Stokes equations

# The Stokes equation is solved by a penalty function formulation
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Figure 7.6.2.2: Initial mesh for the surface tension test example

# The free surface is updated in each step using the normal_velocity

# computed in the previous iteration

#

# To run this file use:

# sepfree fs_drop_test11.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

# Define some general constants, they are stored in fs_drop_test11.constants

#

include ’fs_drop_test11.constants’

#

#

#

# Some specific constants are defined in this file

#

constants # See Users Manual Section 1.4

reals

# Specific reals to be used for the computation

penal = 1d-6 # penalty parameter

# Names of vectors in the computation

vector_names

velocity # velocity vector

pressure # pressure

end

#

# Some information at the start of the computation

#

start
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norotate # prevent rotation of plots

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

# See Standard problems Section 7.1

natboundcond # Define the natural boundary conditions

# This is necessary to define the surface tension

bngrp1=(type=910) # Type number for natural boundary conditions

# for the Navier-Stokes

# See Standard problems Section 7.1

# In this case it concerns a line element for the

# surface tension

bounelements # Define on which boundaries we have natural boundary

# conditions

# the surface tension is defined on the free surface

# the shape of the elements on the the curve is stored in shape_cur

belm1 = curves(shape= shape_cur,c free_surface)

# line elements along free surface

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

degfd2, curves(c symm_hor) # symmetry in horizontal direction (u_y=0)

degfd1, curves(c symm_vert) # symmetry in vertical direction (u_x=0)

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This is necessary because we have a free boundary problem

structure # See Users Manual Section 3.2.3

# Create the start vector and fill the essential boundary conditions

create_vector velocity

# Free surface iteration

start_stationary_free_boundary

# In each step the velocity is updated by solving a linear problem

solve_linear_system, velocity

end_stationary_free_boundary

# Compute the pressure

derivatives, pressure

# print the results

print velocity, curves = (c free_surface)
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# Plot the velocity vector

plot_vector, velocity

# Write results to sepcomp.out for postprocessing

output

end

# Define the coefficients for the problems

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

# First the Navier-Stokes elements

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

icoef2 = 1 # Newtonian fluid

icoef4 = jcart # Type of coordinate system

icoef5 = 1 # Picard linearization

coef6 = penal # penalty parameter

coef7 = rho # density rho

coef12= eta # viscosity eta

# Coefficients for the boundary elements

# First with respect to the line elements

# These are used for the surface tension

bngrp1 (nparm=15) # The coefficients for the natural boundary

# conditions are defined by 15 parameters

icoef1 = 2 # iload (2=surface tension)

icoef4 = jcart # Type of coordinate system

coef6 = gamma # gamma (surface tension)

# Next with respect to the point element

# This is used to prescribe the contact angle

end

# compute pressure

# See Users Manual, Section 3.2.11

derivatives

icheld=7 # icheld=7, pressure in nodes

# See Standard problems Section 7.1

seq_input_vector 1 = velocity # the pressure is computed form the velocity

end

# Information for the free surface computation

# See Users Manual Section 3.4.5

stationary_free_boundary, sequence_number = 1

maxiter = 50 # Maximum number of iterations

miniter = 1 # Minimum number of iterations

accuracy = 1d-4 # termination criterion

print_level = 2 # Amount of output regarding the iteration process

adapt_mesh = 1 # Defines the sequence number of the input block

# where it is described how the mesh must be adapted

at_error = return # If an error occurs a warning is issued, but the

# following statements are carried out
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write_mesh # The final mesh is written to meshoutput

criterion = absolute # Type of stopping criterion

# Since the velocity itself goes to zero,

# it is necessary to use an absolute criterion

end

# Information on how to adapt the mesh during the free surface iterations

# See Users Manual Section 3.4.3

adapt_mesh

adapt_boundary = (1) # Defines the sequence number of the input block

# where it is described how the boundary

# must be adapted

plot_mesh # Plot the mesh in each iteration step

end

# Information on how to adapt the boundary during the free surface iterations

# See Users Manual Section 3.4.4

# In this case we apply the film method without relaxation, i.e. factor = 1

# The fact that we use quadratic elements is utilized

adapt_boundary

curves = (c free_surface) # The free surface curve is adapted

adaptation_method = normal_velocity,

# the computed normal velocity is

# used, to estimate the new surface

# see Users Manual 3.4.4

quadratic # quadratic line elements are used

plot_boundary # Plot the boundary in each iteration step

factor=1 # Multiplication factor (default)

# The next two lines force the begin and

# end point to remain on the symmetry axis

exclude_begin=second # x2-coord. of first node remains unchanged

exclude_end=first # x1-coord. of last node remains unchanged

end

end_of_sepran_input

Figure 7.6.2.3 shows the boundary of the region during all the iterations and Figure 7.6.2.4 the final
mesh. The postprocessing file for this example is not special and is not repeated in this manual.
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Figure 7.6.2.3: Boundary during the iteration process

Figure 7.6.2.4: Final mesh for the surface tension test example

8 Second order elliptic and parabolic equations using spectral elements

8.1 Second order real linear elliptic and parabolic equations with one
degree of freedom

8.1.1 Example of a 1D convection-diffusion problem by spectral elements

In this section an artificial example of the solution of a convection-diffusion equation with inho-
mogeneous Dirichlet boundary conditions is considered. The purpose of this example is to show
how the spectral elements in this chapter may be used, and to compare some results of the spectral
element method with the finite element method. The filling of the coefficients is also handled in
this example.
Consider the following problem :

−∆c+ (u · ∇)c = f on [−1, 1]
c = g in x = −1, and x = 1,

(8.1.1.1)

where u = tan(x) and f = 2 sin(x). The exact solution is then given by c = sin(x).

To discretize the domain of this problem, we use two spectral elements of tenth order, see Fig-
ure 8.1.1.1
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Figure 8.1.1.1: Spectral element mesh consisting of two elements of tenth order

To create this mesh the following input is used :

*************************************************************************

*

* File: exam8-1-1a.msh

*

* Contents: Mesh for the example 8-1-1 in the manual standard problems

* Line (0,1)

* 2 spectral elements of tenth order

*

*************************************************************************

*

mesh1d

points

p1=0.0d0

p2= 1.0d1

curves

c1=line1(p1,p2,nelm=2)

intermediate points

sidepoints=9,subdivision=legendre,midpoints=filled

plot(jmark=3, numsub=1)

end

The internal spectral elements are defined by the type number 600. Only the coefficients 6, 12 and
16 are defined. Coefficient 6 gets the value 1, where coefficients 12 and 16 define the functions
u and f respectively. They are defined using the function subroutine FUNCCF
The boundary conditions at the points p1 and p2 are essential boundary conditions. The are
defined using the function subroutine FUNCBC. To compare the numerical solution with the exact
solution an additional function FUNC is defined which contains the exact solution. The following
main program is used

c ***********************************************************************

c

c File: exam8-1-1a.f

c

c Contents: Main program for the test example described

c in the SEPRAN manual standard problems 8-1-1
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c Artificial analytical example

c This program uses the most simple version

c Since a function subroutine is used for the solution,

c it is not possible to used sepcomp

c

c Usage: Compile and link this program with the SEPRAN libraries

c seplink exam8-1-1

c

c Run this program with input: exam8-1-1a.prb or

c exam8-1-1b.prb

c

c exam8-1-1 < exam8-1-1a.prb > exam8-1-1a.out or

c exam8-1-1 < exam8-1-1b.prb > exam8-1-1b.out

c

c version 1.0 date 24-07-96

c

c ***********************************************************************

c

program exam811

implicit none

call sepcom(0)

end

c --- function funcbc for the definition of boundary conditions

double precision function funcbc(ichois,x,y,z)

implicit none

integer ichois

double precision x,y,z

if (ichois.eq.1) funcbc = dsin(x)

end

c --- function func for the definition of exact solution

double precision function func(ichois,x,y,z)

implicit none

integer ichois,k,l

double precision x,y,z

c

if (ichois.eq.1) func = dsin(x)

end

c --- function funccf for the definition of the coefficients

double precision function funccf(ichois,x,y,z)

implicit none

integer ichois

double precision x,y,z

if (ichois.eq.1) funccf= dtan(x)

if (ichois.eq.2) funccf= 2*sin(x)

end
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The resulting part of the input file then reads

*************************************************************************

*

* File: exam8-1-1a.prb

*

* Contents: Input for program exam8-1-1 described in Section 8.1.1 in

* the manual standard problems

* Artificial analytical example

* The standard sepcomp approach is used

*

*************************************************************************

*

* Problem definition

problem

types

elgrp1 = ( type = 600)

essbouncond

degfd1=points(p1,p2)

end

essential boundary conditions

degfd1=points(p1,p2) func=1

end

coefficients

elgrp1(nparm=20)

coef6 = 1.0d0

coef12= (func=1)

coef16= (func=2)

end

Once the solution has been computed, it may be printed and plotted by the post processing program
SEPPOST. The input file requires be SEPPOST is given below :

*************************************************************************

*

* File: exam8-1-1.pst

*

* Contents: Input for the post processing part of the example described

* in Section 8.1.1 of the manual standard problems

* Artificial analytical example

*

* Usage: seppost exam8-1-1.pst > exam8-11.out

*

*************************************************************************

*

post processing

name v0 = solution

print v0

plot function v0

end
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Number of elements Order Degrees of freedom Error
1 10 11 6.12E-03
1 15 16 1.96E-06
1 20 21 2.75E-11
2 10 21 5.43E-06
2 15 31 7.82E-11
2 20 41 2.27E-14
10 1 11 2.12E-01
15 1 16 9.65E-02
20 1 21 5.22E-02
30 1 31 2.25E-02
40 1 41 1.12E-02
100 1 101 2.02E-03
500 1 501 8.96E-05
1000 1 1001 1.66E-05

Table 8.1.1.1: Comparison between high order spectral and low order finite elements

The input file prints and plots the computed solution. Figure 8.1.1.2 shows the plot made by the
program SEPPOST. This plot is visualized by the program SEPVIEW.

Figure 8.1.1.2: Spectral element solution of example 8-1-1

It is also possible to use element 800 to solve this problem. If the user wishes to do so, only the
mesh and in the input file should be changed (type = 600, should be set to type = 800). The
coefficients are the same. To demonstrate the spectral accuracy some examples are presented in
Table 8.1.1.1.
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8.1.4 Example of a 3D Helmholtz problem by spectral elements

In this section an artificial example of the solution of a Helmholtz equation with inhomogeneous
Dirichlet boundary conditions is considered. The purpose of this example is to show how the
spectral elements in this chapter may be used. The linear system of equations after discretization
is solved using a finite element preconditioned conjugate gradient method.
This example is available in three versions. To get these versions into your local directory use:

sepgetex exam8-1-4x

with x: nothing a or b

and to run it use:

sepmesh exam8-1-4x.msh

seplink exam8-1-4x

exam8-1-4x < exam8-1-4x.prb

Consider the following problem:

−∆c+ c = f on Ω = [−1, 1]x[−1, 1]x[0, 4]
c = g in ∂Ω

(8.1.4.1)

where f = 4 sin(x) sin(y) sin(z). The exact solution is then given by c = sin(x) sin(y) sin(z).

To discretize the domain of this problem, we use eight spectral elements of eighth order, see Fig-
ure 8.1.4.1

Figure 8.1.4.1: Finite element representation of a spectral element mesh consisting of eight elements
of eighth order

Version exam8-1-4 uses in principle program sepcomp, however since function subroutines must be
supplied the most simple main program is provided. The FEM preconditioner uses a direct solver,
i.e. the matrix is ”inverted” by an LU decomposition.
Version exam8-1-4a is almost identical to exam8-1-4. The only difference is that also the finite
element preconditioner is itself an iterative method. So the preconditioned system is solved approx-
imately.
In version exam8-1-4b a user written main program is used.

The mesh is created by program sepmesh with the following input:

# exam8-1-4.msh

#
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# mesh file for example 8.1.4, Helmholtz equation with a spectral element

# method (3D)

#

# To run this file use:

# sepmesh exam8-1-4.msh

#

# Creates the file meshoutput

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

x_low = -1 # lower value of x

x_upp = 1 # upper value of x

y_low = -1 # lower value of y

y_upp = 1 # upper value of y

z_low = 0 # lower value of z

z_upp = 4 # upper value of z

integers

n = 2 # number of elements in length direction

m = 2 # number of elements in width direction

l = 2 # number of elements in width direction

lin = 1 # linear line elements

sur = 5 # bi-linear quadrilaterals

vol =13 # tri-linear hexahedrons

nside = 5 # order of spectral elements

end

#

# Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

# user points

#

points # See Users Manual Section 2.2

p1=($x_low,$y_low,$z_low) # Left under point bottom surface

p2=($x_upp,$y_low,$z_low) # Right under point bottom surface

p3=($x_upp,$y_upp,$z_low) # Right upper point bottom surface

p4=($x_low,$y_upp,$z_low) # Left upper point bottom surface

p5=($x_low,$y_low,$z_upp) # Left under point top surface

p6=($x_upp,$y_low,$z_upp) # Right under point top surface

p7=($x_upp,$y_upp,$z_upp) # Right upper point top surface

p8=($x_low,$y_upp,$z_upp) # Left upper point top surface

#

# curves

#

curves # See Users Manual Section 2.3

c1 = line $lin ( p1,p2,nelm=$n ) # bottom surface

c2 = line $lin ( p2,p3,nelm=$m )

c3 = line $lin ( p3,p4,nelm=$n )

c4 = line $lin ( p4,p1,nelm=$m )

c5 = line $lin ( p5,p6,nelm=$n ) # top surface

c6 = line $lin ( p6,p7,nelm=$m )
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c7 = line $lin ( p7,p8,nelm=$n )

c8 = line $lin ( p8,p5,nelm=$m )

c9 = line $lin ( p2,p6,nelm=$l ) # lines from top to bottom

c10 = line $lin ( p3,p7,nelm=$l )

c11 = line $lin ( p4,p8,nelm=$l )

c12 = line $lin ( p1,p5,nelm=$l )

#

# surfaces

#

surfaces # See Users Manual Section 2.4

s1 = rectangle $sur (c1,c2,c3,c4) # bottom surface

s2 = rectangle $sur (c5,c6,c7,c8) # top surface

s3 = rectangle $sur (c1,c9,-c5,-c12) # front surface

s4 = rectangle $sur (c2,c10,-c6,-c9) # outflow surface

s5 = rectangle $sur (-c3,c10,c7,-c11) # back surface

s6 = rectangle $sur (-c4,c11,c8,-c12) # inflow surface

#

# volumes

#

volumes # See Users Manual Section 2.5

v1 = brick $vol (s1,s3,s4,s5,s6,s2)

#

# auxiliary statements

#

intermediate points # defines spectral elements

sidepoints=$nside,subdivision=legendre,midpoints=filled

plot, eyepoint=(3,3,5) # makes also 3d plot

norenumber # renumbering is not necessary in this ordered case

end

Versions a and b are exactly the same.
The internal spectral elements are defined by the type number 600. Only the coefficients 6, 9, 11,
15 and 16 are unequal to zero and hence must be given. Coefficient 6, 9, 11, and 15 get the value
1, whereas coefficient 16 defines the function f . This function is created by the function subroutine
FUNCCF.
At the outer surfaces s1 to s6 essential boundary conditions are prescribed. Since these boundary
conditions depend on space function subroutine FUNCBC is used to compute their values. To
compare the numerical solution with the exact solution an additional function FUNC is defined
which contains the exact solution.
The main program is given by:

c ***********************************************************************

c

c File: exam8-1-4.f

c

c Contents: Main program for the test example described

c in the SEPRAN manual standard problems 8-1-4

c Artificial analytical example

c This program uses the most simple version

c Since a function subroutine is used for the solution,

c it is not possible to used sepcomp

c

c Usage: Compile and link this program with the SEPRAN libraries
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c seplink exam8-1-4

c

c Run this program with input: exam8-1-4.prb

c

c exam8-1-4 < exam8-1-4.prb > exam8-1-4.out

c

c version 2.0 date 30-12-2003

c

c ***********************************************************************

c

c --- Main program (trivial)

program exam814

call sepcom(0)

end

c --- function FUNCBC for essential boundary conditions

double precision function funcbc(ichois,x,y,z)

implicit none

integer ichois

double precision x,y,z

funcbc = sin(x)*sin(y)*sin(z)

end

c --- function FUNC for exact solution

double precision function func(ichois,x,y,z)

implicit none

integer ichois

double precision x,y,z

func = sin(x)*sin(y)*sin(z)

end

c --- function FUNCCF for right-hand side

double precision function funccf(ichois,x,y,z)

implicit none

integer ichois

double precision x,y,z

funccf = 4.0d0*sin(x)*sin(y)*sin(z)

end

The corresponding input file reads

# exam8-1-4.prb

#

# problem file for program exam8-1-4

# Artificial analytical example of spectral elements

# See Manual Exams Section 8.1.4

#

# To run this file use:

# sepcomp exam8-1-4.prb
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#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

constants # See Users Manual Section 1.4

reals

alpha = 1 # diffusion parameter

beta = 1 # parameter for linear part

vector_names

potential # solution of spectral element problem

exact_solution # analytical solution

scalars

error # maximum norm of difference

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1,(type=600) # Type number for second order elliptic equation

# using spectral elements

# See Standard problems Section 8.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

outer_surfaces # The degrees of freedom at all outer surfaces

# are prescribed

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

method = 1, mesh = fem_mesh # the problem is solved by a finite

# element preconditioner

# A profile storage for the

# preconditioner is used, hence this

# preconditioning matrix is solved

# by an ILU decomposition (direct method)

end

# Create start vector and put the essential boundary conditions into this

# vector

# See Users Manual Section 3.2.5

essential boundary conditions, sequence_number = 1

outer_surfaces, (func=1) # The degrees of freedom at all outer surfaces

# are given by a function (subroutine FUNCBC)

end
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# Define the coefficients for the problems (first iteration)

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 8.1

coefficients, sequence_number = 1

elgrp1(nparm=20) # The coefficients are defined by 20 parameters

coef6 = $alpha # alpha_11

coef9 = coef6 # alpha_22

coef11= coef6 # alpha_33

coef15= $beta # beta

coef16= (func=1) # right-hand side is a function defined by

# subroutine FUNCCF

end

# Create exact solution for comparison

# See Users Manual Section 3.2.10

create vector, sequence_number = 1

func = 1 # exact solution is function defined by subroutine FUNC

end

# input for linear solver

# See Users Manual Section 3.2.8

solve

spectral accuracy = 1d-8, print_level = 2 # input for the spectral cg loop

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# See Users Manual Section 3.2.3

structure

# Create the exact solution

create_vector %exact_solution, sequence_number = 1

# fill essential boundary conditions into solution vector

prescribe_boundary_conditions, vector = %potential, sequence_number = 1

# Solve the spectral system by finite element preconditioning

solve_linear_system, vector = %potential, seq_coef = 1, seq_solve = 1//

fem_preconditioning

# Compare exact solution with numberical solution by subtracting

# and computing the max norm of the difference

# print the norm

compute_scalar %error, norm_dif = 3, vector 1 = %potential//

vector 2 = %exact_solution

print %error

end

end_of_sepran_input

Version a is almost identical. See the source that you can get by sepgetex.
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Version b, however, has a different main program.
In the main program we use a finite element mesh, i.e. a mesh consisting of trilinear finite elements
based upon the nodes of the original mesh, and a spectral mesh as defined by sepmesh. The finite
element mesh is created by subroutine femesh and is denoted by kmeshel. The original mesh is
called kmeshsp. First the problem is solved at the finite element mesh using a direct solver. The
solution is stored in array isolel. This solution is used as initial estimate for the final solution.
Next the right-hand side for the spectral problem is build, not the matrix. The boundary conditions
are extracted from array isolel.
The system of equations corresponding to the spectral mesh is not actually build. Instead an
iterative procedure is used, which requires the computation of the residual in each step. This
process is much faster and requires far less memory than building the complete spectral matrix.
Subroutine pcgrad is used for this iterative solution. The result is stored in array isol.
See the source that you can get by sepgetex. As output the programs reports the maximum norm
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Figure 8.1.4.2: Convergence of the finite element preconditioner; number of iterations versus the
log of the residual Su− f .

of the error:
Error = 4.7E-08

This problem can also be solved using the standard conjugate gradient solver (SOLVEL), with other
types of preconditioning. The main advantage of PCGRAD above SOLVEL (for spectral elements)
is that no stiffness matrix needs to be build. Each iteration step only a residual needs to be build
which can be done very efficiently for the spectral basis functions.
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9 Fourth order elliptic and parabolic equations

The following Sections are available:

9.1.1 Example of the solution of the Cahn-Hilliard equations.
This example shows how a fourth order problem can be solved by splitting it in two second
order equations.
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9.1 The Cahn-Hilliard equation

9.1.1 Example of the solution of the Cahn-Hilliard equation

In this section we consider the solution of the Cahn-Hilliard equation over a simple square domain
Ω = (0, 1)2. Further, the initial status of this simplified cell is chosen as a small sinusoidal pertur-
bation around 0.4. Further, we use f ′′(c) = c

1.3 + 1−c
0.8 − 4.6c(1 − c) and κ = 10−4. Homogeneous

natural boundary conditions apply at the boundary of Ω.
To get this example into your local directory use:

sepgetex cahn2d

and to run it use:

sepmesh cahn2d.msh

seplink cahn2d

cahn2d < cahn2d.prb

seppost cahn2d.pst

The time-dependent equations to be solved can be found in the manual Standard Problems, Section
9.1.6.
Since the second equation ∆c = u is time-independent, whereas the first equation is time-dependent,
we make it time-dependent by adding an extra term ρu

∂u
∂t . In order to make this term in the same

range as the error due to time-integration we choose ρu equal to ∆t2.
So the equations to be solved are:

∂c

∂t
−∇ · {M [f ′′(c)∇c− κ∇u]} = 0,

ρu
∂u
∂t −∆c+ u = 0

(9.1.1)

The diffusion coefficient f ′′(c) is taken at the previous time level, making the time-discretization
semi-implicit.
The main program contains the function subroutines for initial condition and diffusion coefficient:

program cahn2d

! --- Standard main program

integer, allocatable, dimension (:) :: ibuffr

integer pbuffr, error

parameter ( pbuffr=25000000)

allocate(ibuffr(pbuffr), stat = error)

if (error /= 0) then

! space for these arrays could not be allocated

print *, "error: (cahn2d) could not allocate space."

stop

end if ! (error /= 0)

call sepcombf ( ibuffr, ibuffr, pbuffr )

end

! --- Function func is used to define the initial condition of c

function func ( ichoice, x, y, z )

implicit none

double precision func, x, y, z

integer ichoice
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include ’SPcommon/consta’

func = 0.4 + 0.001*(sin(40*pi*x)+sin(40*pi*y))

end

! --- Function funcvect is used to define the diffusion term in the

! c equation, which is a function of c

subroutine funcvect ( ichoice, ndim, coor, numnodes, uold, nuold,

+ result, nphys )

implicit none

integer ichoice, ndim, numnodes, nuold, nphys, i

double precision coor(ndim,numnodes), uold(numnodes,nphys,nuold),

+ result(numnodes,*)

double precision c

if (ichoice == 1) then

! --- ichoice = 1: the diffusivity is given by f’’(c)

! f’’(c) = c/1.3 +(1-c)/0.8=4.6c(1-c)

do i = 1, numnodes

c = uold(i,1,1)

result(i,1) = c/1.3+(1-c)/0.8-4.6*c*(1-c)

end do

end if

end

The input file for this program cahn2d.prb is given by:

# cahn2d.prb

#

# problem file for 2d Cahn Hilliard Equation

# See Manual Examples Section 9.1.1

#

# To run this file use:

# sepcomp cahn2d.prb

#

# Reads the file meshoutput

# Creates the file sepcomp.out

#

#

#

# Define some general constants

#

set warn off ! suppress warnings

constants # See Users Manual Section 1.4

reals

kappa_eps = 0.0001 # diffusion parameter

rho = 1 # density times heat capacity

t0 = 0 # initial time
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t_end = 4 # end time

dt = 0.01 # time step

rho_u = dt^2 # artificial density for u equation

vector_names

volume_frac # volume fraction and lapacian of this vector

# First component c (volume fraction)

# Second component u (Laplacian)

func_dif # diffusivity for c in c equation

end

#

# Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=808 # Type number for two coupled second order

# elliptic equations

# See Standard problems Section 3.6

end

# Define how to create the vectors

# Initial condition of vector volume_frac

create vector, sequence_number = 1

degfd1, func = 1 ! c is function of x and y defined by

! 0.4 + 0.001*(sin(40 pi x)+sin(40 pi y))

degfd2, value = 0 ! u = Delta c

end

# diffusivity for c in c equation as function of volume_frac

create vector, sequence_number = 2

type = vector of special structure V1 # only one degree of freedom per point

old_vector = 1, seq_vectors = volume_frac # ichoice = 1 in funcvect

end

# Define the coefficients for Laplacian equation

# All parameters not mentioned are zero

# See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrp1 ( nparm=65 ) # The coefficients are defined by 65 parameters

# First equation

coef6 = old solution func_dif, degree of freedom 1

# diffusivity for u in u equation

coef9 = coef6 # diffusivity for u in u equation

coef17 = rho # rho for time dependence

coef36 = -kappa_eps # diffusivity for v in u equation

coef39 = coef36 # diffusivity for v in u equation
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# Second equation

coef30 = 1 # Betha^22 = 1 (-Delta c +u = 0 )

coef32 = rho_u # rho for time dependence

coef51 = 1 # diffusivity for u in v equation

coef54 = 1 # diffusivity for u in v equation

end

time_integration, sequence_number = 1

tinit = t0 # initial time

tend = t_end # end time

tstep = dt # time step

toutinit = t0 # initial time for output

toutend = t_end # end time for output

toutstep = dt # time step for output

method = euler_implicit # Time discretization algorithm

diagonal_mass_matrix # The mass matrix is lumped

mass_matrix = constant # and constant for both problems

end

# Define the structure of the problem

# In this part it is described how the problem must be solved

# This part is superfluous, but if you want to solve a more sophisticated

# problem this is a good start

#

structure # See Users Manual Section 3.2.3

# create initial vector (at t= 0)

create_vector volume_frac, sequence_number=1

start_time_loop

# create the vector func_dif as function of the volume fraction

# They are used as coefficients for the equation

create_vector func_dif, sequence_number = 2

# Perform one time step in the time integration

time_integration, sequence_number = 1, vector = volume_frac

# compute and plot bubbles defined by c >= 0.4

compute_bubble volume_frac, plot, threshold = 0.4

output

end_time_loop

# print the vectors

print volume_frac

print func_dif

end
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As extra option we have added the option to compute bubbles defined as the part where the volume
fraction exceeds the threshold value 0.4. See the Users Manual Section 3.2.3.4 for a description.
In Figure 9.1.1, the solution is plotted over the domain of computation at normalized times t = 0.1,
t = 0.25, t = 0.5, t = 1, t = 5 and t = 10. It can be seen in the Figures 9.1.1 that the solution
is smooth, but changes rapidly over the interface between adjacent phases. The interfacial width
is proportional to

√
κ. Further, the initial configuration is unstable since f ′′(0.5) < 0 and hence

perturbations start to grow and lipide droplets start to appear. Here, the particles even merged
more, hence the number of droplets decreases, however their total occupied area increases. The
number of particles per field of view is plotted as a function of time in Figure 9.1.2. The behavior
of the number of particles is determined by nucleation, merging and growth of larger droplets at
the expense of the dissolution of small-sized particles. In Figure 9.1.3, we show the particle area

fraction per field of view,
|Ωp|
|Ω| as a function of time. The number of droplets per area of view is

shown in Figure 9.1.2. It can be seen that in the initial stages nucleation takes place with a vast
increase of lipide area. After the nucleation phenomenon, growth, dissolution and merging takes
over, which makes the increase of area less pronounced. Changing parameters like mobility M ,
gradient energy κ and threshold concentration determines the rate of the process and the shape of
the curve. Furthermore, the equilibria are determined from the constants N1, N2 and ω.
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Figure 9.1.1: A contour plot of the solution c at dimensionless times t = 0.1 to t = 10. One could
identify the lipid droplets by the locations where the solution exceeds the value of c = 0.4.
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Figure 9.1.2: A plot of the number of lipide droplets per field of view as a function of time.
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Figure 9.1.3: A plot of a lipid area fraction per field of view as a function of time.
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10 Examples of the use of levelset methods

The following Sections are available:

10.1 Some examples of the dissolution of a small particle within a matrix phase.
The following examples are available.

10.1.1 1D example of the dissolution of a small particle using a moving grid method.

10.1.2 1D example of the dissolution of a small particle using a levelset method.

10.1.3 2D and 3d versions of the examples in Section 10.1.2
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10.1 The dissolution of a particle in a matrix phase

The theory and examples in this Section are based on the work of Etelvina Javierre Perez (2006)
and Dennis den Ouden (2012).
In this section we describe the dissolution of a particle within a matrix phase. The interface between
particle and matrix phase can have a non-smooth shape. The dissolution of the particle is assumed
to be influenced by concentration gradients of a single chemical element within the matrix phase
at the particle/matrix boundary and an interface reaction, resulting in a so-called mixed-mode
formulation. The mathematical formulation of the dissolution is described by a Stefan problem, in
which the location of the interface changes in time. At the interface two boundary conditions are
present, one which governs the mass balance at the interface and one that describes the reaction at
the interface. Within the matrix phase we assume that the standard diffusion equation applies to
the concentration of the considered chemical element.

The mathematical model

Our model is based on the original Stefan problem described by Joz̆ef Stefan in 1890, see Crank
(1984). Consider a diffusive phase ΩD(t) in which a precipitate ΩP (t) has nucleated at some point.
Here ΩD(t) and ΩP (t) are open domains. Let Γ(t) denote the interface between the two phases,
which represents the moving boundary in our model. Let the concentration cp within the precipitate
ΩP (t) be fixed and assume the concentration c(x, t) within the diffusive phase ΩD(t) to be described
by the standard diffusion equation

∂c

∂t
(x, t) = ∇ · (D(x, t)∇c(x, t)) , x ∈ ΩD(t), t > 0, (10.1.2)

where D is the diffusivity of the diffusing chemical element. At the outer boundary of ΩD, i.e.
∂ΩD(t)\Γ(t), we assume a no-flux condition, which results into an homogeneous Neumann boundary
condition. Furthermore, let Ω(t) be the open domain defined by

Ω(t) = (ΩD(t) ∪ ΩP (t)) \ Γ(t). (10.1.3)

At the precipitate/matrix interface Γ(t) three physical phenomena occur in sequence during disso-
lution:

1. Detachment of atoms from the lattice structure of the precipitate phase;

2. Crossing of atoms from within the precipitate into the matrix;

3. Long-range diffusion of atoms into the matrix.

These phenomena occur during growth in the reverse order. In both cases all phenomena put
restrictions on the speed at which the interface can move. Many models assume that the diffusive
phenomenon is rate-limiting and hence neglect the possible influence of the reaction at the interface
given by the first two phenomena. In Vermolen (2007) it has been shown for a plate-like precipitate
that the interface reaction can have a significant impact on the dissolution kinetics. Similar to the
model in Vermolen (2007) we model the flux of atoms Jr(x, t) across the interface by a first-order
reaction:

Jr(x, t) = K(x, t) (cs(x, t)− c(x, t)) , x ∈ Γ(t), t > 0. (10.1.4)

The flux at the interface within the diffusive phase ΩD(t) consists of two parts, the flux Jm(x, t)
due to movement of the interface itself.

Jm(x, t) = c(x, t)vn(x, t), x ∈ Γ(t), t > 0, (10.1.5)

and the diffusive flux Jd(x, t)

Jd(x, t) = D(x, t)
∂c

∂n
(x, t), x ∈ Γ(t), t > 0. (10.1.6)
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In these definitions K(x, t) is the interface-reaction speed, cs(x, t) the local equilibrium concentra-
tion and vn(x, t) denotes the speed of the interface in the outward normal direction n(x, t) from the
domain ΩD(t) at Γ(t). Combining (10.1.4), (10.1.5) and (10.1.6), we arrive at the flux boundary
condition

K(x, t) (cs(x, t)− c(x, t)) = D(x, t)
∂c

∂n
(x, t) + c(x, t)vn(x, t), x ∈ Γ(t), t > 0. (10.1.7)

As we have introduced a new unknown, the interface velocity vn(x, t), we must complete our
definition by another boundary condition on Γ(t). Using a mass balance on a growing/dissolving
precipitate, we arrive at the familiar Stefan condition

cpvn(x, t) = D
∂c

∂n
(x, t) + c(x, t)vn(x, t), x ∈ Γ(t), t > 0. (10.1.8)

By subtracting (10.1.8) from (10.1.7) we see that the interface velocity vn(x, t) is given by

vn(x, t) =
K(x, t)

cp
(cs(x, t)− c(x, t)) , x ∈ Γ(t), t > 0, (10.1.9)

Substituting the above result in either (10.1.7) or (10.1.8), yields that the normal diffusive flux at
the interface is given by

D(x, t)
∂c

∂n
(x, t) =

K(x, t)

cp
(cs(x, t)− c(x, t)) (cp − c(x, t)) , x ∈ Γ(t), t > 0. (10.1.10)

From (10.1.9) we see that the determination of the interface velocity does not involve computing
the normal diffusive fluxes at the interface, as opposed to the model used in for example Javierre
(2006). A drawback is the introduction of a nonlinear boundary condition on Γ(t) for the diffusion
problem, in contrast to the simpler Dirichlet condition

c(x, t) = cs(x, t), x ∈ Γ(t), t > 0, (10.1.11)

used in for example Javierre (2006). Inspection of (10.1.9) shows that if the value of K is large, we
will have fast dissolution/growth of the precipitate, indicating diffusion controlled kinetics, whereas
a lower value of K leads to slow dissolution/growth, indicating reaction-controlled kinetics.

We assume that the solubility of the considered element at the precipitate/matrix interface inside
the diffusive phase, cs(x, t), is known and modeled using the Gibbs-Thomson effect see Perez (2005)
and Porter and Easterling (1992).

cs(x, t) = c∞s (t)exp (ζκ(x, t)) , (10.1.12)

where c∞s (t) is the solubility of the considered element, ζ a positive physical factor and κ(x, t) the
sum of the principle curvatures of the interface Γ(t). The solubility c∞s (t) can be derived from
thermodynamic databases such as ThermoCalc, see Andersson et al (2002). The parameter ζ is
defined as

ζ =
γVm
RgT

, (10.1.13)

with γ the interface energy, Vm the molar volume of the precipitate, Rg the gas constant and T
the temperature. For a sphere the derivation of (10.1.12) can be found in Perez (2005), leading
to κ = 2/R where R is the radius of the sphere. By (10.1.12) the equilibrium concentration c∞s
increases for locally convex interfaces, which have positive curvature, and decreases for locally
concave interfaces, which have negative curvature. This amplification/dampening will cause the
precipitate to grow/dissolve to the configuration with the lowest overall surface tension, i.e. the
total energy of the system will be minimized.
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10.1.1 1D example of the dissolution of a small particle using a moving
grid method

In this section we solve the dissolution of a small particle in a matrix as described in Section 10.1.
We solve the diffusion Equation (10.1.2) in the domain ΩD. Since the domain is time dependent we
use a moving mesh method, which is simple in the one-dimensional case. At the outside boundary
we use the natural boundary condition D dc

dn = 0, which implies that no information has to be given.
At the interface we need two boundary conditions, one of which is needed for the evolution of the
interface.
We consider two cases:

dirichlet In this case we use the simple boundary conditions of Etelvina Javierre Perez (2006).
At the interface we assume a prescribed boundary condition c(x, t) = cs.
The interface velocity is defined by

vn =
Ddc

dn
(cp − cs) (10.1.1.1)

Neumann In this case the non-linear boundary conditions (10.1.9) and (10.1.10).
Hence:

vn =
K

cp
(cs − c). (10.1.1.2)

and the mixed boundary condition

Ddc

dn
+ vnc = vncp (10.1.1.3)

In our example we consider the region (0,1). The particle is positioned at the left-hand side in the
region (0,S), where S is the interface and the diffusive part is the domain (S,1). The concentration
in the particle is defined by Cpart and the initial concentration in ΩD is called C0. The equilibrium
concentration is given by Csol. The parameters in this example are chosen such that the particle
shrinks until an equilibrium is reached.
The time step we use depends on the velocity of the interface and is defined by ∆t = CFL h

vn
where h is the minimum step size in ΩD and CFL a Courant-Lewy-Friedrichs number. For explicit
time integration this number should be less than 1 to guarantee stability. Here we use an implicit
scheme, but the main reason for this choice is that the update of the interface never jumps over
an element. So the new interface is always either in the same element as the old interface or in a
direct neighboring element.
In the first 5 steps we multiply the time step by 0.1 to minimize the effect of the transient.
First we consider the case of mixed boundary conditions.
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10.1.1.1 Mixed boundary conditions

To get this example into your local directory use:

sepgetex partmovebnd1dneu

and to run it use:

sepmesh partmovebnd1dneu.msh

seplink partmovebnd1dneu

partmovebnd1dneu < partmovebnd1dneu.prb

seppost partmovebnd1dneu.pst

The mesh file is trivial:

* partmovebnd1dneu.msh

*

* Mesh for dissolution of particle (1D)

* Moving boundary method

* Mixed boundary condition at interface

*

* Run: sepmesh partmovebnd1dneu.msh

* Creates file meshoutput

*

constants

reals

S = 0.615 ! psotion of interface

integers

n = 40 ! number of nodes in particle

end

mesh1d

* definition of user points

points

p1= (S)

p2= (1)

* curves defining the surfaces:

curves

c1= line1(p1,p2,nelm=n)

end

The program partmovebnd1dneu is used to compute the update of the coordinates. The file part-
movebnd1dneu.prb is used to define the program and is given by

* partmovebnd1dneu.prb

*

* Problem file for dissolution of particle (1D)

* Moving boundary method

* Mixed boundary condition at interface

*

* Run: seplink partmovebnd1dneu
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* partmovebnd1dneu < partmovebnd1dneu.prb

* Creates files sepcomp.out and sepplot.xxx

* Uses file meshoutput

*

set warn off

constants

reals

D = 1 # Diffusion parameter

c0 = 0.3 # initial concentration in matrix

csol = 0.33 # concentration at interface

cpart = 0.45 # concentration in particle

k = 1000 # parameter in mixed boundary condition

CFL = 0.25 # CFL number to define time step

rho_cp = 1 # Parameter for time derivative

t0 = 0 # initial time

toutstep = 0.0000001 # Make sure that each tie step is printed

tend = 5 # end time

vector_names

concentration # concentration in matrix

displacement # displacement of nodes

mesh_vel # mesh velocity

variables

dt # time step

vn # velocity of interface

h # representative step size in space

dtinv # -1/dt

mass # amount of mass in domain

icount # counter for time steps

cboun # concentration at interface

xboun # position of interface

mass_orig # amount of mass at t=0

mass_loss # mass loss

Ddcdn # D dc/dn

sigma # parameter for natural boundary condition

g # parameter for rhs of natural boundary condition

end

problem

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

natbouncond # Natural boundary conditions

bngrp1 = 801 # Type number 801

bounelms # boundary element at interface

belm 1 = points p1

end

time_integration ! solve diffusion equation

tinit = t0 ! initial time

tend = tend ! end time

tstep = dt ! time step

toutinit = t0 ! initial time for output

toutend = tend ! end time for output

toutstep = toutstep ! time step for output

method = euler_implicit ! time integration method
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diagonal_mass_matrix ! mass matrix is diagonal

end

coefficients ! coefficients for diffusion equation

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

coef6 = D # a11 = D

coef12 = old_solution mesh_vel # u = mesh velocity

coef17 = rho_cp # rho cp

bngrp1 ( nparm=15 ) # The coefficients are defined by 15 parameters

coef6 = sigma # multiplication of c

coef7 = g # rhs

end

coefficients, sequence_number = 2 ! for integral

elgrp1 ( nparm=10 ) # The coefficients are defined by 20 parameters

coef4 = 1

end

! Define the steps to be performed by the program

structure

! we store the coordinate of p1 (interface) as function of time

time_history coor, points (p1)

! --- Initial concentration

create_vector concentration, value = c0 ! start concentration

! initial mass and some other quatities

mass = integral concentration ( icheli=2, seq_coef = 2)

xboun = extract coor (user_point = 1)

mass_orig = mass+ xboun*cpart

print mass_orig

print xboun

print ’icount mass xboun cboun vn dt’

! Time integration

icount = 0

start_time_loop

! compute time step

cboun = extract concentration (user_point = 1) ! c at interface

vn = k/cpart*(csol-cboun) ! velocity of interface

icount = icount+1

h = min_area ! smallest step size

dt = cfl*h/vn ! time step

if ( icount<5 ) then
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! --- icount < 5

! In the first 4 steps we reduce dt in order to deal with the

! discontinuity at the start

dt = dt*0.1

end_if

if ( time+dt>tend ) then

! --- icount > 1, check if t<tend else adapt dt

dt = tend-time

end_if

! Compute displacement of mesh (vn dt)

create_vector displacement, old_vector = 1

dtinv = -1/dt

mesh_vel = dtinv*displacement

! adapt coordinates

coor = coor + displacement

xboun = extract coor (user_point = 1)

! Carry out one time step

sigma =k/cpart*(cpart-cboun) ! compute sigma for natural bc

g = sigma*csol ! compute g for natural bc

time_integration concentration

! Compute some quantities for output

mass = integral concentration ( icheli=2, seq_coef = 2)

mass = mass+ xboun*cpart

print icount mass xboun cboun vn dt

output

end_time_loop

mass_loss = mass_orig-mass

print mass_loss

plot_time_history coor, colors = 10 !red

set output none

end

The problem part is standard for a diffusion equation with natural boundary conditions. The time
integration is carried out with an Euler implicit method with a diagonal mass matrix, which is the
most simple and stable choice. The part coefficients is standard as can be found in the manual
Standard Problems Section 3.1.
The structure part defines the way the program is carried out.
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Figure 10.1.1.1: Position of interface as function of time

It starts by defining that we want a time history of the interface node.
Next the initial concentration is set and some output quantities are defined.
In the time loop we compute the time step and compute the displacement of the coordinates in ΩD
by di = −vn∆tN−iN−1 , where N is the number of nodes in ΩD.
Since the coordinates of the nodes are changed we need a so-called mesh velocity defined by vi =

−x
n
i −x

n−1
i

∆t , where n defines the time level. The reason is that in the time integration method we

approximate dc
dt by cn−cn−1

∆t . But since cn and cn−1 are at different positions this is in fact the total

derivative Dc
Dt , which is equal to dc

dt + u dcdx , where u is minus the mesh velocity ui =
xni −x

n−1
i

∆t . So to

get dc
dt we actually need Dc

Dt − u
dc
dx , hence the minus sign. The mesh velocity is used as one of the

coefficients in the convection-diffusion equation.
The non-linear boundary conditions might require a non-linear iteration per time step, but since
the time step is small no iteration is necessary and we use the value of vn as computed from the
values at the previous time level.
Figure (10.1.1.1) shows the interface position as function of time.

The main program partmovebnd1dneu is only used to compute the displacement as function of the
interface displacement.

program partmovebnd1dneu

call sepcom ( 0 )

end

subroutine funcvect ( ichoice, ndim, coor, numnodes, uold, nuold,

+ result, nphys )

implicit none

integer ichoice, ndim, numnodes, nuold, nphys

double precision coor(ndim,numnodes), uold(numnodes,nphys,nuold),

+ result(numnodes,*)
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integer i

double precision vn, dt, fact

double precision getvar

select case (ichoice)

case(1)

! --- case 1, compute displacement

vn = getvar ( ’vn’ )

dt = getvar ( ’dt’ )

fact = vn*dt

do i = 1, numnodes

result(i,1) = -(numnodes-i)/(numnodes-1d0)*fact

end do ! i = 1, numnodes

case default

! --- Other values, not programmed

! Give error and stop

call errchr(’funcvect’,1)

call errsub ( 349, 0, 0, 1)

call instop

end select ! case (ichoice)

end
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10.1.1.2 Dirichlet boundary conditions

To get this example into your local directory use:

sepgetex partmovebnd1ddir

and to run it use:

sepmesh partmovebnd1ddir.msh

seplink partmovebnd1ddir

partmovebnd1ddir < partmovebnd1ddir.prb

seppost partmovebnd1ddir.pst

The case of Dirichlet boundary conditions is slightly different from the mixed case in the sense that
we need the derivative the derivative D dc

dn to compute the velocity of the interface. Since D dc
dn at

the interface is precisely the flux through the interface it is sufficient to compute the reaction force,
which requires an update of the matrix structure and some extra statements in the time integration
part.
At the start no reaction force is available so we compute it using derivatives.
The mesh file and main program are exactly the same as for the mixed boundary condition and
will not be repeated here. The plot of the interface is also very similar, so we just give the prb file:

* partmovebnd1ddir.prb

*

* Problem file for dissolution of particle (1D)

* Moving boundary method

* Dirichlet boundary condition at interface

*

* Run: seplink partmovebnd1ddir

* partmovebnd1ddir < partmovebnd1ddir.prb

* Creates files sepcomp.out and sepplot.xxx

* Uses file meshoutput

*

set warn off

constants

reals

D = 1 # Diffusion parameter

c0 = 0.3 # initial concentration in matrix

csol = 0.33 # concentration at interface

cpart = 0.45 # concentration in particle

CFL = 0.25 # CFL number to define time step

rho_cp = 1 # Parameter for time derivative

t0 = 0 # initial time

toutstep = 0.0000001 # Make sure that each tie step is printed

tend = 5 # end time

vector_names

concentration # concentration in matrix

displacement # displacement of nodes

mesh_vel # mesh velocity

reac # reaction_force

variables

dt # time step

vn # velocity of interface

h # representative step size in space
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dtinv # -1/dt

mass # amount of mass in domain

icount # counter for time steps

cboun # concentration at interface

xboun # position of interface

mass_orig # amount of mass at t=0

mass_loss # mass loss

Ddcdn # D dc/dn

end

problem

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

essbouncond # essential boundary condition at interface (p1)

points p1

end

time_integration ! solve diffusion equation

tinit = t0 ! initial time

tend = tend ! end time

tstep = dt ! time step

toutinit = t0 ! initial time for output

toutend = tend ! end time for output

toutstep = toutstep ! time step for output

method = euler_implicit ! time integration method

diagonal_mass_matrix ! mass matrix is diagonal

boundary_conditions = initial_field ! boundary conditions are stored in solution

equation 1

local_options

reaction_force = reac ! the reaction force is computed

end

coefficients ! coefficients for diffusion equation

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

coef6 = D # a11 = D

coef12 = old_solution mesh_vel # u = mesh velocity

coef17 = rho_cp # rho cp

end

coefficients, sequence_number = 2 ! to compute integral

elgrp1 ( nparm=10 ) # The coefficients are defined by 10 parameters

coef4 = 1

end

! Define the steps to be performed by the program

structure

! we store the coordinate of p1 (interface) as function of time

time_history coor, points (p1)

! --- First define the matrix structure

! Special i this case is the reaction forces that have to be computed
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matrix_structure, reaction_forces, storage_method = profile

! --- Initial concentration and mesh velocity

create_vector concentration, value = c0 ! start concentration

prescribe_boundary_conditions concentration, value = csol, points (p1)

create_vector mesh_vel, value = 0

! The initial reaction force is computed by derivatives

! because we have not solved an equation yet

reac = derivatives ( concentration, seq_coef = 1, type_output = reaction_force &

points (p1) )

! initial mass and some other quatities

mass = integral concentration ( icheli=2, seq_coef = 2)

xboun = extract coor (user_point = 1)

mass_orig = mass+ xboun*cpart

print mass_orig

print xboun

print ’icount mass xboun cboun vn dt’

! Time integration

icount = 0

start_time_loop

# compute time step

cboun = extract concentration (user_point = 1) ! here constant

Ddcdn = extract reac (user_point = 1) ! D dc/dn

vn = Ddcdn/(cpart-csol) ! velocity of interface

icount = icount+1

h = min_area ! smallest step size

dt = cfl*h/vn ! time step

if ( icount<5 ) then

! --- icount < 5

! In the first 4 steps we reduce dt in order to deal with the

! discontinuity at the start

dt = dt*0.1

end_if

if ( time+dt>tend ) then

! --- icount > 1, check if t<tend else adapt dt

dt = tend-time
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end_if

! Compute displacement of mesh (vn dt) and mesh velocity

create_vector displacement, old_vector = 1

dtinv = -1/dt

mesh_vel = dtinv*displacement

! adapt coordinates

coor = coor + displacement

! Carry out one time step

time_integration concentration

! Compute some quantities for output

xboun = extract coor (user_point = 1)

mass = integral concentration ( icheli=2, seq_coef = 2)

mass = mass+ xboun*cpart

print icount mass xboun cboun vn dt

output

end_time_loop

mass_loss = mass_orig-mass

print mass_loss

plot_time_history coor, colors = 10 !red

set output none

end
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10.1.2 1D example of the dissolution of a small particle using a levelset
method

This Section treats exactly the same example as in Section (10.1.1). The major difference is that we
do not longer use a moving grid method but use a fixed basis mesh in combination with a levelset
method. In this particular example there is no gain in using the levelset method but for more
complex problems especially in 2d and 3d the profits are large.
The levelset method is based on a fixed background grid. To define the position of the interface as
well to distinguish the part were we have a particle and where the matrix phase is, we introduce a
levelset function φ. φ is chosen such that φ = 0 at the interface, φ < 0 in the diffusive phase, and
φ > 0 in the particle. Furthermore φ must be a distance function (at least in the neighborhood of
the interface), which means that |φ| defines the distance to the interface.
The function φ implicitly defines the normal n on the interface by the relation:

n =
∇φ
||∇φ||

. (10.1.2.1)

The curvature κ can be computed by:

κ = −div
∇φ
||∇φ||

. (10.1.2.2)

These relations are especially important in 2d and 3d.
In this 1d example the function φ at start is given by the user. The interface velocity is defined in
the same way as in Section (10.1.1). This velocity defines the way we have to update φ in a time
step due to the movement of the interface. The standard approach is that the new φ is the solution
of the convection equation:

dφ

dt
+ w

dφ

dx
= 0 (10.1.2.3)

where w is an extended velocity field equal to the interface velocity vn at the interface. In 1d
w = vn is a trivial choice. In order that the relations (10.1.2.1) and (10.1.2.2) remain valid it is
necessary that φ is a signed distance function, at least in the neighborhood of the interface. This
can be achieved for example by solving Equation (3.2.3.4) in the users manual, but our experience
is that this is troublesome in complicated situations.
Therefore we compute the ”exact” distance for two neighboring rows of elements of the interface
provided | ||∇φ|| − 1 | > ε, where ε is some accuracy. This computation is carries out in an efficient
way by looking only for the interface in the neighborhood of points that must be updated.

Since φ = 0 defines the new interface we are able to adapt the mesh to the interface. We start
with the background mesh and investigate the intersection of the interface φ = 0 with this mesh.
Next we construct a new mesh using these intersections. If an intersection point is close to a node
the node is moved to the intersection point, otherwise the element that is intersected is split into
2 new elements. The definition of close is the parameter accuracy_obstacle which has a default
value 0.3. This means that a node is close to an intersection point if the distance is less than 0.3
× the element size. The advantage of this approach above the classical level set method is that
the interface is approximated more accurately and hence boundary conditions can be satisfied more
easily.
The algorithm that is applied can be written as:
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Create the mesh
Initialize φ and the concentration c; set t = 0
Compute a new levelset mesh based on φ and interpolate phi and c to this mesh.
while t < tend do

Compute ∇φ and vn
Compute w by extending vn over the domain
Compute ∆t
Update φ by solving one time step of Equations (10.1.2.3)
t := t+ ∆t
Map new φ and c to the background mesh
Compute a new levelset mesh from the background mesh based on φ and interpolate φ and c
to this mesh.
Compute the mesh velocity
Update c by solving one time step of the convection-diffusion equation
Make φ a distance function

end while

The mapping of φ and c to the background mesh makes the present levelset mesh superfluous. We
might remove the level set mesh but to compute the mesh velocity it is necessary to used the value
of φ at the previous level set mesh. So in fact we are dealing with 3 meshes:

• the background grid

• the present levelset mesh

• the previous levelset mesh

The background grid gets sequence number 1, the active levelset grid number 2 and the new levelset
grid number 3. by changing the sequence numbers we reuse the space needed by these grids.
The mesh velocity is defined in the same way as for the moving grid method in Section (10.1.1).
The reason that we have to use this velocity is the fact that nodal points in the level set mesh may
be moved with respect to the background grid.
Note that the construction of a levelset mesh is much cheaper than constructing a new mesh.

Again we distinguish between the mixed boundary conditions and the Dirichlet boundary conditions.
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10.1.2.1 Mixed boundary conditions

To get this example into your local directory use:

sepgetex partlevset1dneu

and to run it use:

sepmesh partlevset1dneu.msh

seplink partlevset1dneu

partlevset1dneu < partlevset1dneu.prb

The mesh file for the background grid is trivial:

* partlevset1dneu.msh

*

* Mesh for dissolution of particle (1D)

* Levelset method

* Mixed boundary condition at interface

*

* Run: sepmesh partlevset1dneu.msh

* Creates file meshoutput

*

constants

reals

L = 1 ! length of domain

integers

n = 80 ! number of nodes in particle

end

mesh1d

* definition of user points

points

p1= (0)

p2= (L)

* curves defining the surfaces:

curves

c1= line1(p1,p2,nelm=n)

end

Note that the number of elements is twice the number used in the moving mesh, because the whole
domain is used.
The prb file is given by

* partlevset1dneu.prb

*

* Problem file for dissolution of particle (1D)

* Levelset method

* Mixed boundary condition at interface

*

* Run: seplink partlevset1dneu

* partlevset1dneu < partlevset1dneu.prb



EX Dissolution of particle (1D levelset) October 2012 10.1.2.4

* Creates files sepcomp.out and sepplot.xxx

* Uses file meshoutput

*

set warn off ! suppress all warnings

# Define all constants

constants

reals

D = 1 # Diffusion parameter

c0 = 0.3 # initial concentration in matrix

csol = 0.33 # concentration at interface

cpart = 0.45 # concentration in particle

k = 1000 # parameter in mixed boundary condition

CFL = 0.25 # CFL number to define time step

rho_cp = 1 # Parameter for time derivative

t0 = 0 # initial time

toutstep = 0.0000001 # Make sure that each tie step is printed

tend = 5 # end time

S0 = 0.615 # Start value of interface

vector_names

concentration # concentration in matrix

displacement # displacement of nodes

mesh_vel # mesh velocity

phi # level set function

gradphi # gradient of phi

vn # velocity of interface extended over domain

normphi # ||gradphi||

ngradphi # gradphi / ||gradphi||

w # vn * ngradphi (pointwise)

phiold # value of phi at start of time step

variables

dt # time step

h # representative step size in space

mass # amount of mass in domain

icount # counter for time steps

cboun # concentration at interface

xboun # position of interface

mass_orig # amount of mass at t=0

mass_loss # mass loss

Ddcdn # D dc/dn

sigma # parameter for natural boundary condition

g # parameter for rhs of natural boundary condition

epsdist # Distance in which the accuracy of the distance

# function is checked

nodeb # node at zero level set

maxv # maximum velocity

vnboun # velocity of interface

end

general_constants

accuracy_obstacle = 0.0666666667

end

# Problem definitions
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problem # concentration

num_levelset = 1 # Number of level set functions

levelset 1, negative_part # only points with phi_1 < 0 are used

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

natbouncond # Natural boundary conditions

bngrp1 = 801 # Type number 801

bounelms # boundary element at interface

belm 1 = zero_levelset 1

problem 2 # phi

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

problem 1, storage_method = compact

problem 2, storage_method = compact

end

# Coefficients

coefficients, sequence_number = 1, problem = 1 ! coefficients for diffusion equation

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

coef6 = D # a11 = D

coef12 = old_solution mesh_vel # u = mesh velocity

coef17 = rho_cp # rho cp

bngrp1 ( nparm=15 ) # The coefficients are defined by 15 parameters

coef6 = sigma # multiplication of c

coef7 = g # rhs

end

coefficients, sequence_number = 2, problem = 2 # phi

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

coef12 = old_solution w, degree_of_freedom 1 # w_1 (velocity)

coef17 = 1 # rho cp

end

coefficients, sequence_number = 3, problem 1 ! for integral

elgrp1 ( nparm=10 ) # The coefficients are defined by 20 parameters

coef4 = 1

end

# Time integrations

time_integration, sequence_number = 1 ! solve diffusion equation

reuse_time_parameters ! the time parameters of phi are reused
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method = euler_implicit ! time integration method

diagonal_mass_matrix ! mass matrix is diagonal

seq_coefficients = 1 ! coefficients with seq number 1

end

time_integration, sequence_number = 2 ! integration of phi

tinit = t0 ! initial time

tend = tend ! end time

tstep = dt ! time step

toutinit = t0 ! initial time for output

toutend = tend ! end time for output

toutstep = toutstep ! time step for output

method = euler_implicit ! time integration method

diagonal_mass_matrix ! mass matrix is diagonal

seq_coefficients = 2 ! coefficients with seq number 2

end

! Define the steps to be performed by the program

structure

! we store the coordinate of the interface as function of time

time_history coor, zero_level_set 1

# Define ad-hoc level set function phi and c with initial condition

create_vector phi, func=1, problem = 2 # phi is a function

create_vector concentration, old_vector = 1, seq_vectors = phi

h = min_area ! smallest step size in original mesh

print h

# create a new mesh adapted to the zero levelset function

# This mesh is the standard mesh until a new levelset mesh is created

# The mesh gets sequence number 2

make_levelset_mesh, mesh_orig = 1, mesh_subdivide = 2//

levelset_vector = phi, interpolate (concentration)

# Set concentration at interface to c0

create_vector concentration, zero_levelset 1, value=c0

# Get some constants

nodeb = point ( zero_level_set 1) ! node at interface

mass = integral concentration ( icheli=2, seq_coef = 3, active_levelset 1)

xboun = extract coor (node = nodeb)

mass_orig = mass + xboun*cpart

print mass_orig

print xboun
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print ’icount mass xboun cboun vn dt’

# Time integration

icount = 0

start_time_loop

icount = icount+1

cboun = extract concentration (node = nodeb) ! concentration at interf

phiold = phi

# Compute the gradient of phi

gradphi = derivatives ( phi, icheld = 2 )

normphi = length ( gradphi ) ! || grad(phi) ||

ngradphi = gradphi/normphi ! grad(phi) / || grad(phi) ||

# compute normal velocity (vector)

# In the 1d case it is a constant, in 2d we need to solve an equation

vnboun = K/cpart*(csol-cboun)

create_vector vn, problem = 2, value = vnboun ! constant over domain

# The velocity field for the time-integration of the levelset function

# is defined by vn n, which is equal to vn grad(phi))

w = vn*ngradphi

! compute time step

maxv = inf_norm(w) ! maximum velocity

dt = cfl*h/maxv

if ( icount<5 ) then

! --- icount < 5

! In the first 4 steps we reduce dt in order to deal with the

! discontinuity at the start

dt = dt*0.1

end_if

if ( time+dt>tend ) then

! --- icount > 1, check if t<tend else adapt dt

dt = tend-time

end_if

# Solve one timestep of the convection equation to compute the new phi
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time_integration phi, sequence_number = 2

# Next phi and c are interpolated to the basis mesh and a new level mesh

# is created with sequence number 3

interpolate phi, mesh_in = 2, mesh_out = 1

interpolate concentration, mesh_in = 2, mesh_out = 1

# Make a new levelset mesh (3) based on phi

make_levelset_mesh, mesh_orig = 1, mesh_subdivide = 3//

levelset_vector = phi, no_interpolation

# Perform one step to compute the new concentration

# First the concentration is interpolated from mesh 1 to mesh 3

# The value at the boundary is set to cboun

interpolate concentration, mesh_in = 1, mesh_out = 3

# Next it is checked if the new mesh passed a node of the original mesh

# If so the concentration is copied from mesh 2

# The boundary value of the concentration is substituted

# Also the mesh velocity is computed

levelset_mesh_velocity time_step = dt

# Perform one time step to compute the new concentration on mesh number 3

nodeb = point ( zero_level_set 1)

xboun = extract coor (node = nodeb)

cboun = extract concentration (node = nodeb)

sigma =k/cpart*(cpart-cboun)

g = sigma*csol

time_integration concentration, sequence_number = 1

mass = integral concentration //

( icheli=2, seq_coef = 3, active_levelset 1)

mass = mass+ xboun*cpart

# Final step: make phi a distance function

print icount mass xboun cboun vnboun dt

interchange_mesh ( 2, 3 ) ! interchange meshes 2 and 3 so that

! we never have more than 3 meshes

output

# make phi a distance function

epsdist = 2.5*h

make_distance_function phi

end_time_loop

mass_loss = mass_orig-mass
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print mass_loss

plot_time_history coor, colors = 10 !red

set output none ! suppress superfluous output

end

end_of_sepran_input

The main program is used to compute the initial concentration and the initial function φ.

program partlevset1dneu

call sepcom(0)

end

subroutine funcvect ( ichoice, ndim, coor, numnodes, uold, nuold,

+ result, nphys )

implicit none

integer ichoice, ndim, numnodes, nuold, nphys

double precision coor(ndim,numnodes), uold(numnodes,nphys,nuold),

+ result(numnodes,*)

integer i

double precision Cpart, C0

double precision getconst, getvar

select case (ichoice)

case(1)

! --- case 1, compute initial concentration

Cpart = getconst (’Cpart’)

C0 = getconst (’C0’)

result(1:numnodes,1) = cpart

do i = 1, numnodes

if( uold(i,1,1)<=0d0 ) result(i,1) = c0

end do ! i = 1, numnodes

case default

! --- Other values, not programmed

! Give error and stop

call errchr(’funcvect’,1)

call errsub ( 349, 0, 0, 1)

call instop

end select ! case (ichoice)

end

function func ( ifunc, x, y, z )

implicit none

integer ifunc

double precision func, x, y, z
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double precision S0

double precision getconst

select case (ifunc)

case(1)

! --- case 1, compute initial phi

S0 = getconst (’S0’)

func = S0-x

case default

! --- Other values, not programmed

! Give error and stop

call errchr(’func’,1)

call errint ( ifunc, 1 )

call errsub ( 1930, 1, 0, 1 )

func = 0d0

call instop

end select ! case (ifunc)

end
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10.1.2.2 Dirichlet boundary conditions

To get this example into your local directory use:

sepgetex partlevset1ddir

and to run it use:

sepmesh partlevset1ddir.msh

seplink partlevset1ddir

partlevset1ddir < partlevset1ddir.prb

The mesh file and the fortran file are the same as for the mixed boundary conditions. The problem
file is given by:

* partlevset1ddir.prb

*

* Problem file for dissolution of particle (1D)

* Levelset method

* Dirichlet boundary condition at interface

*

* Run: seplink partlevset1ddir

* partlevset1ddir < partlevset1ddir.prb

* Creates files sepcomp.out and sepplot.xxx

* Uses file meshoutput

*

set warn off ! suppress all warnings

# Define all constants

constants

reals

D = 1 # Diffusion parameter

c0 = 0.3 # initial concentration in matrix

csol = 0.33 # concentration at interface

cpart = 0.45 # concentration in particle

k = 1000 # parameter in mixed boundary condition

CFL = 0.25 # CFL number to define time step

rho_cp = 1 # Parameter for time derivative

t0 = 0 # initial time

toutstep = 0.0000001 # Make sure that each tie step is printed

tend = 5 # end time

S0 = 0.615 # Start value of interface

vector_names

concentration # concentration in matrix

displacement # displacement of nodes

mesh_vel # mesh velocity

phi # level set function

gradphi # gradient of phi

vn # velocity of interface extended over domain

normphi # ||gradphi||

ngradphi # gradphi / ||gradphi||

w # vn * ngradphi (pointwise)

phiold # value of phi at start of time step
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reac # reaction_force

variables

dt # time step

h # representative step size in space

mass # amount of mass in domain

icount # counter for time steps

cboun # concentration at interface

xboun # position of interface

mass_orig # amount of mass at t=0

mass_loss # mass loss

Ddcdn # D dc/dn

epsdist # Distance in which the accuracy of the distance

# function is checked

nodeb # node at zero level set

maxv # maximum velocity

vnboun # velocity of interface

end

general_constants

accuracy_obstacle = 0.0666666667

end

# Problem definitions

problem # concentration

num_levelset = 1 # Number of level set functions

levelset 1, negative_part # only points with phi_1 < 0 are used

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

essbouncond # essential boundary condition at interface (p1)

zero_levelset 1

problem 2 # phi

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

end

# Define the structure of the large matrix

# See Users Manual Section 3.2.4

matrix

problem 1, storage_method = compact, reaction_force

problem 2, storage_method = compact

end

# Coefficients

coefficients, sequence_number = 1, problem = 1 ! coefficients for diffusion equation

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

coef6 = D # a11 = D

coef12 = old_solution mesh_vel # u = mesh velocity

coef17 = rho_cp # rho cp
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end

coefficients, sequence_number = 2, problem = 2 # phi

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

coef12 = old_solution w, degree_of_freedom 1 # w_1 (velocity)

coef17 = 1 # rho cp

end

coefficients, sequence_number = 3, problem 1 ! for integral

elgrp1 ( nparm=10 ) # The coefficients are defined by 20 parameters

coef4 = 1

end

# Time integrations

time_integration, sequence_number = 1 ! solve diffusion equation

reuse_time_parameters ! the time parameters of phi are reused

method = euler_implicit ! time integration method

diagonal_mass_matrix ! mass matrix is diagonal

seq_coefficients = 1 ! coefficients with seq number 1

boundary_conditions = initial_field ! boundary conditions are stored in

! solution

equation 1

local_options

reaction_force = reac ! the reaction force is computed

end

time_integration, sequence_number = 2 ! integration of phi

tinit = t0 ! initial time

tend = tend ! end time

tstep = dt ! time step

toutinit = t0 ! initial time for output

toutend = tend ! end time for output

toutstep = toutstep ! time step for output

method = euler_implicit ! time integration method

diagonal_mass_matrix ! mass matrix is diagonal

seq_coefficients = 2 ! coefficients with seq number 2

end

! Define the steps to be performed by the program

structure

! we store the coordinate of the interface as function of time

time_history coor, zero_levelset 1

# Define ad-hoc level set function phi and c with initial condition

create_vector phi, func=1, problem = 2 # phi is a function

create_vector concentration, old_vector = 1, seq_vectors = phi

h = min_area ! smallest step size in original mesh

print h
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# create a new mesh adapted to the zero levelset function

# This mesh is the standard mesh until remove levelset mesh is executed

make_levelset_mesh, mesh_orig = 1, mesh_subdivide = 2//

levelset_vector = phi, interpolate (concentration)

# Set concentration at interface to csol

# initilize mesh_vel

create_vector concentration, zero_levelset 1, value=csol

create_vector mesh_vel, value = 0

! The initial reaction force is computed by derivatives

! because we have not solved an equation yet

reac = derivatives ( concentration, seq_coef = 1, type_output = reaction_force &

zero_levelset 1 )

# Get some constants

nodeb = point ( zero_levelset 1) ! node at interface

mass = integral concentration ( icheli=2, seq_coef = 3, active_levelset 1)

xboun = extract coor (node = nodeb)

mass_orig = mass + xboun*cpart

print mass_orig

print xboun

print ’icount mass xboun cboun vn dt’

# Time integration

icount = 0

start_time_loop

icount = icount+1

cboun = extract concentration (node = nodeb) ! concentration at interf

phiold = phi

# Compute the gradient of phi

gradphi = derivatives ( phi, icheld = 2 )

normphi = length ( gradphi ) ! || grad(phi) ||

ngradphi = gradphi/normphi ! grad(phi) / || grad(phi) ||

# compute normal velocity (vector)

# In the 1d case it is a constant, in 2d we need to solve an equation

Ddcdn = extract reac (node = nodeb) ! D dc/dn

vnboun = Ddcdn/(cpart-csol) ! velocity of interface

create_vector vn, problem = 2, value = vnboun ! constant over domain
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# The velocity field for the time-integration of the levelset function

# is defined by vn n, which is equal to vn grad(phi))

w = vn*ngradphi

! compute time step

maxv = inf_norm(w) ! maximum velocity

dt = cfl*h/maxv

if ( icount<5 ) then

! --- icount < 5

! In the first 4 steps we reduce dt in order to deal with the

! discontinuity at the start

dt = dt*0.1

end_if

if ( time+dt>tend ) then

! --- icount > 1, check if t<tend else adapt dt

dt = tend-time

end_if

# Solve one timestep of the convection equation to compute the new phi

time_integration phi, sequence_number = 2

# Next phi and c are interpolated to the basis mesh and a new mesh

# is created

interpolate phi, mesh_in = 2, mesh_out = 1

interpolate concentration, mesh_in = 2, mesh_out = 1

# Make a new levelset mesh based on phi

make_levelset_mesh, mesh_orig = 1, mesh_subdivide = 3//

levelset_vector = phi, no_interpolation

# Perform one step to compute the new concentration

# First the concentration is interpolated from mesh 1 to mesh 3

# The value at the boundary is set to cboun

interpolate concentration, mesh_in = 1, mesh_out = 3

prescribe_boundary_conditions concentration, value = csol, zero_levelset 1

# Next it is checked if the new mesh passed a node of the original mesh

# If so the concentration is copied from mesh 2

# The boundary value of the concentration is substituted

# Also the mesh velocity is computed
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levelset_mesh_velocity time_step = dt

# Perform one time step to compute the new concentration

nodeb = point ( zero_levelset 1)

xboun = extract coor (node = nodeb)

cboun = extract concentration (node = nodeb)

time_integration concentration, sequence_number = 1

mass = integral concentration //

( icheli=2, seq_coef = 3, active_levelset 1)

mass = mass+ xboun*cpart

# Final step: make phi a distance function

print icount mass xboun cboun vnboun dt

interchange_mesh ( 2, 3 ) ! interchange meshes 2 and 3

output

# make phi a distance function

epsdist = 2.5*h

make_distance_function phi

end_time_loop

mass_loss = mass_orig-mass

print mass_loss

plot_time_history coor, colors = 10 !red

set output none

end

end_of_sepran_input
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10.1.3 2D and 3d versions of the examples in Section 10.1.2

This Section treats the 2d and 3d extensions of the examples in Section 10.1.2. This demonstrates
the sue of the level set method in 2d and 3d. At this moment the level set method may only be
applied to meshes consisting of linear triangles and tetrahedrons. The intersection of the interface
in this case is computed by computing the intersection of the edges of the elements. In the same
way as in 1d nodes are moved or elements are subdivided in subtriangles or subtetrahedrons based
on the edge intersections.

To get these example into your local directory use for the 2d mixed boundary case:

sepgetex partlevsetplane2d

and to run it use:

sepmesh partlevsetplane2d.msh

seplink partlevsetplane2d

partlevsetplane2d < partlevsetplane2d.prb

for the 2d Dirichlet case

sepgetex partlevsetplane2ddir

and to run it use:

sepmesh partlevsetplane2ddir.msh

seplink partlevsetplane2ddir

partlevsetplane2ddir < partlevsetplane2ddir.prb

For 3d just replace 2d by 3d.
The triangular mesh used is straight forward and will be repeated here.
The various constants used are stored in the files partlevsetplane2d.const and partlevsetplane2ddir.const.
The first file is given:

* partlevsetplane2d.const

*

* Constants file for dissolution of particle (2D) (plane)

* Levelset method

* Mixed boundary condition at interface

*

# Define all constants

constants

integers

mult = 1 # Multiplication factor for number of nodes

base = 16 # basis number of nodes

n = base*mult # number of nodes in x-direction

m = base*mult # number of nodes in y-direction

reals

L = 1 # Length of domain in x-direction

b = 1 # Width of domain in y-direction

D = 1 # Diffusion parameter

c0 = 0.3 # initial concentration in matrix

cpart = 0.45 # concentration in particle

kappa = 1000 # parameter in mixed boundary condition
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CFL = 0.25 # CFL number to define time step

S0 = 0.615 # Start value of interface

rho_cp = 1 # Parameter for time derivative

t0 = 0 # initial time

toutstep = 0.0000001 # Make sure that each tie step is printed

tend = 5 # end time

eps = 1e-5 # accuracy for linear solver

csol0 = 0.301 # initial value for csol

csolinf = 0.33 # final value for csol

xbounan = 0.51875 # analytical position of interface at t = infinity

end

The problem files very much resemble the 1d case except that now we need vectors in some cases
where constants were sufficient. The extension of the normal velocity from the interface is of
course arbitrary. We have chosen to use Laplace equation with as Dirichlet boundary condition the
computed normal velocity at the interface. Due to the fact that the choice has only little influence
on the computations it is sufficient to solve this Laplace equation with the standard accuracy of the
iterative linear solvers. In the Dirichlet case the reaction force, which is a flux has to be transformed
to nodal values by subdividing by a mass matrix along the interface.
The mean x-value of the interface is compared with the analytical solution in order to get an
estimate of the error. To prevent problems with the transient we let csol move gradually from c0
to its final value. This is not necessary but suppress wiggles during the computation. Here we will
only give the fortran file and the problem for the mixed boundary case.

* partlevsetplane2d.prb

*

* Problem file for dissolution of particle (2D) (plane)

* Levelset method

* Mixed boundary condition at interface

*

* Run: seplink partlevsetplane2d

* partlevsetplane2d < partlevsetplane2d.prb

* Creates files sepcomp.out and sepplot.xxx

* Uses file meshoutput

*

set warn off ! suppress all warnings

include ’partlevsetplane2d.const’ ! include the constants file

# Define vectors an scalars

constants

vector_names

concentration # concentration in matrix

mesh_vel # mesh velocity

phi # level set function

gradphi # gradient of phi

vn # velocity of interface extended over domain

normphi # ||gradphi||

ngradphi # gradphi / ||gradphi||

w # vn * ngradphi (pointwise)

phiold # value of phi at start of time step

sigma # variable parameter for mixed boundary cond.

g # parameter for rhs of mixed bc

variables
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dt # time step

h # representative step size in space

mass # amount of mass in domain

icount # counter for time steps

cboun # concentration at interface

xboun # position of interface

mass_orig # amount of mass at t=0

mass_loss # mass loss

maxv # maximum velocity

vnboun # mean velocity of interface

delta # smallest step size in original mesh

volrest # volume of particle

csol # equilibrium concentration at interface

xboun_err # relative error in boundary

epsdist # Distance in which the accuracy of the distance

# function is checked

stdev # standard deviation in boundary

end

general_constants

accuracy_obstacle = 0.3 ! defines when points are moved

end

# Problem definitions

problem # concentration

num_levelset = 1 # Number of level set functions

levelset 1, negative_part # only points with phi_1 < 0 are used

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

natbouncond # standard natural boundary conditions

bngrp1 = 801

bounelms

belm 1 = zero_levelset 1 # boundary elements at interface

problem 2 # phi

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

problem 3 # vn

num_levelset = 1 # Number of level set functions

levelset 1, all # all points are used

types # Define types of elements,

# See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

# See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

# given (not the value)

# See Users Manual Section 3.2.2

zero_levelset 1 # Essential boundary conditions on boundary of
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# level set

end

# Define the structure of the large matrix always iterative methods

# See Users Manual Section 3.2.4

matrix

problem 1, storage_method = compact ! concentration

problem 2, storage_method = compact ! phi

problem 3, storage_method = compact, symmetric ! vn

end

# Coefficients

coefficients, sequence_number = 1, problem = 1

! coefficients for convectrion diffusion equation for concentration

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

coef6 = D # a11 = D

coef9 = coef 6 # a11 = D

coef12 = old_solution mesh_vel, degfd1 # u = mesh velocity

coef13 = old_solution mesh_vel, degfd2 # v = mesh velocity

coef17 = rho_cp # rho cp

bngrp1 ( nparm=15 ) # The coefficients are defined by 15 parameters

coef6 = old_solution sigma # sigma

coef7 = old_solution g # g

end

coefficients, sequence_number = 2, problem = 2 # phi (convection)

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

coef12 = old_solution w, degree_of_freedom 1 # w_1 (velocity)

coef13 = old_solution w, degree_of_freedom 2 # w_2 (velocity)

coef17 = 1 # rho cp

end

coefficients, sequence_number = 3, problem = 3 ! coefficients for vn

elgrp1 ( nparm=20 ) # The coefficients are defined by 20 parameters

coef6 = 1 # a11 = D

coef9 = coef 6 # a11 = D

end

coefficients, sequence_number = 4, problem 1 ! for integral

elgrp1 ( nparm=10 ) # The coefficients are defined by 20 parameters

coef4 = 1

end

# Time integrations

time_integration, sequence_number = 1 ! solve diffusion equation

reuse_time_parameters ! the time parameters of phi are reused

method = euler_implicit ! time integration method

diagonal_mass_matrix ! mass matrix is diagonal

seq_coefficients = 1 ! coefficients with seq number 1

seq_solve = 1 ! define input for linear solver

end
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time_integration, sequence_number = 2 ! integration of phi

tinit = t0 ! initial time

tend = tend ! end time

tstep = dt ! time step

toutinit = t0 ! initial time for output

toutend = tend ! end time for output

toutstep = toutstep ! time step for output

method = euler_implicit ! time integration method

diagonal_mass_matrix ! mass matrix is diagonal

seq_coefficients = 2 ! coefficients with seq number 2

seq_solve = 2 ! define input for linear solver

end

# Define which linear solver must be used and what accuracy is required

solve, sequence_number = 1 ! concentration (must be accurate)

iteration_method = cg, accuracy = eps, print_level=0, preconditioning = ilu

end

solve, sequence_number = 2 ! phi and Laplace for vn, standard accuracy

iteration_method = cg, print_level=0, preconditioning = ilu

end

# Define structure of main program

structure

# Define ad-hoc level set function phi and c with zero values

create_vector phi, func=1, problem = 2 # phi is a function

create_vector concentration, old_vector = 1, seq_vectors = phi

delta = min_area ! smallest step size in original mesh

h = sqrt(2*delta) ! representative step size

print h

csol = csol0 ! initial value for csol

# create a new mesh adapted to the zero levelset function

# This mesh is the standard mesh until remove levelset mesh is executed

make_levelset_mesh, mesh_orig = 1, mesh_subdivide = 2//

levelset_vector = phi, interpolate (concentration)

# Set concentration at interface to c0

create_vector concentration, zero_levelset 1, value=c0

# Get some constants

xboun = mean_value x_coor, zero_levelset 1

cboun = mean_value concentration, zero_levelset 1

mass = integral concentration ( icheli=2, seq_coef = 4, active_levelset 1)

volrest = integral concentration ( icheli=7,non_active_levelset 1)
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mass_orig = mass + volrest*cpart

print ’icount mass xboun cboun vn dt’

print icount mass_orig xboun cboun maxv dt

# Time integration

icount = 0

start_time_loop

icount = icount+1

# The old value of phi is stored in phiold

# This value is used in levelset_mesh_velocity in order to correct

# the interpolation in case nodes of the mesh cross

# the old interface

phiold = phi

# Compute the gradient of phi

gradphi = derivatives ( phi, icheld = 2 )

normphi = length ( gradphi ) ! || grad(phi) ||

ngradphi = gradphi/normphi ! grad(phi) / || grad(phi) ||

# compute normal velocity (vector)

# This is done by solving a Laplace equation with Dirichlet boundary

# conditions at the interface

# There is no need to use a high accuracy

create_vector vn, old_vector = 2, seq_vectors = (concentration)//

zero_levelset 1, problem = 3 # vn at interface

solve_linear_system vn, seq_coef = 3, seq_solve=2 # solution of laplace equation

# The velocity field for the time-integration of the levelset function

# is defined by vn n, which is equal to vn grad(phi))

w = vn*ngradphi

maxv = inf_norm(w) ! maximum velocity

dt = cfl*h/maxv

if ( icount<n/2+1 ) then

! --- icount < 5

! In the first 4 steps we reduce dt in order to deal with the

! discontinuity at the start

dt = dt*0.1

end_if

if ( time+dt>tend ) then
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! --- icount > 1, check if t<tend else adapt dt

dt = tend-time

end_if

# Solve one timestep of the convection equation to compute the new phi

time_integration phi, sequence_number = 2

# Next phi and c are interpolated to the basis mesh and a new mesh

# is created

interpolate phi, mesh_in = 2, mesh_out = 1

interpolate concentration, mesh_in = 2, mesh_out = 1

make_levelset_mesh, mesh_orig = 1, mesh_subdivide = 3//

levelset_vector = phi, no_interpolation

xboun = mean_value x_coor, zero_levelset 1

# Perform one step to compute the new concentration

# First the concentration is interpolated from mesh 1 to mesh 3

# The value at the boundary is set to cboun

interpolate concentration, mesh_in = 1, mesh_out = 3

interpolate vn, mesh_in = 2, mesh_out = 3

# Next it is checked if the new mesh passed a node of the original mesh

# If so the concentration is copied from mesh 2

# The boundary value of the concentration is substituted

# Also the mesh velocity is computed

levelset_mesh_velocity time_step = dt

# Update csol

csol = csolinf

if ( time<0.1 ) then

csol = csol0+(csolinf-csol0)*time*10

end_if

# Compute the vectors that define the mixed boundary condition

create_vector sigma, old_vector = 3, seq_vectors = (concentration)//

zero_levelset 1 # sigma at interface

g = csol*sigma

# Perform one time step to compute the new concentration

# using a convection diffusion equation

# The linear solver requires a rather high accuracy

time_integration concentration, sequence_number = 1

cboun = mean_value concentration, zero_levelset 1



EX Dissolution of particle (2D levelset) October 2012 10.1.3.8

mass = integral concentration //

( icheli=2, seq_coef = 4, active_levelset 1)

volrest = integral concentration ( icheli=7,non_active_levelset 1)

mass = mass + volrest*cpart

stdev = standard_deviation x_coor, zero_levelset 1

# Final step: make phi a distance function

print icount mass xboun cboun maxv dt stdev

interchange_mesh ( 2, 3 ) ! interchange meshes 2 and 3

# make phi a distance function

epsdist = 2.5*h

make_distance_function phi

# To avoid an endless loop we stop if the number of time steps

# exceeds 1000

if ( icount>=1000 ) then

stop

end_if

end_time_loop

mass_loss = (mass_orig-mass)/mass_orig

print mass_loss

xboun_err = abs((xboun-xbounan)/xbounan)

print xboun_err

stdev = standard_deviation x_coor, zero_levelset 1

print stdev

set output none

end

end_of_sepran_input

program partlevsetplane2d

call sepcom ( 0 )

end

subroutine funcvect ( ichoice, ndim, coor, numnodes, uold, nuold,

+ result, nphys )

implicit none

integer ichoice, ndim, numnodes, nuold, nphys

double precision coor(ndim,numnodes), uold(numnodes,nphys,nuold),

+ result(numnodes,*)

integer i

double precision vn, dt, fact, Cpart, C0, csol, zeta, kappa

double precision getconst, getvar

select case (ichoice)

case(1)
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! --- case 1, compute concentration

Cpart = getconst (’Cpart’)

C0 = getconst (’C0’)

result(1:numnodes,1) = cpart

do i = 1, numnodes

if( uold(i,1,1)<=0d0 ) result(i,1) = c0

end do ! i = 1, numnodes

case(2)

! --- case 2, compute velocity vn

Cpart = getconst (’Cpart’)

kappa = getconst (’kappa’)

csol = getvar (’csol’)

result(:,1) = kappa/cpart*(csol-uold(:,1,1))

case(3)

! --- case 3, compute parameter sigma for natural bc

Cpart = getconst (’Cpart’)

kappa = getconst (’kappa’)

result(:,1) = kappa/cpart*(cpart-uold(:,1,1))

case default

! --- Other values, not programmed

! Give error and stop

call errchr(’funcvect’,1)

call errsub ( 349, 0, 0, 1)

call instop

end select ! case (ichoice)

end

function func ( ifunc, x, y, z )

implicit none

integer ifunc

double precision func, x, y, z

double precision S0

double precision getconst

select case (ifunc)

case(1)

! --- case 1
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S0 = getconst (’S0’)

func = S0-x

case default

! --- Other values, not programmed

! Give error and stop

call errchr(’func’,1)

call errint ( ifunc, 1 )

call errsub ( 1930, 1, 0, 1 )

func = 0d0

call instop

end select ! case (ifunc)

end

The 3d case very much resembles the 2d case.
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Braunschweig, 1984.

Ogden R.W. (1984) Non-linear elastic deformations, Mathematics and its applications. Ellis
Horwood Limited, 1984.

Ouden D den, F.J. Vermolen, L. Zhao, C. Vuik, J. Sietsma (2012) Application of the level-
set method to a diffusion and interface-reaction driven Stefan problem,

Peng S. H. and W. V. Chang. (1997) A compressible approach in finite element analysis of
rubber-elastic materials. , Computers & Structures, 62(3):573–593, 1997.

M. Perez (2005) Gibbs-Thomson effects in phase transformations, Scripta Materialia ,52, 709–712
(2005)

Pieters, G.J.M. (2000) Natural Convection Drive By Groundwater Flow in a Porous Medium,
Master thesis, Delft University of Technology, Faculty of Mathematics.

D.A. Porter & K.E. Easterling (1992) Phase Transformations in Metals and Alloys, 2nd edi-
tion, Chapmann & Hall, London (1992)

Rodi W. (1980) Turbulence models and their application in hydraulics, Delft, Int. Ass. for Hy-
draulic Res., 1980.



EX References March 2003 11.1.3.3

Segal Guus, Kees Vuik, Kees Kassels (1994) On the implementation of symmetric and anti-
symmetric periodic boundary conditions for incompressible flow, Int. J. for Num. Methods in
Fluids, Vol. 18, pp. 1153-1165, 1994
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Index

absolute value of convective term, 3.3.3
absorption, 3.5.1
alternator, 3.3.2
approximate eigenvector 3.1.6
Arterial wall 5.3.2.3, 5.3.2.5
axi-symmetric stress analysis, 5.1
backward facing step, 7.1.1
backward facing step (3D), 7.1.4
bearing (incompressible), 4.1.1
bearing (compressible), 4.1.4
bending of beam, 5.3.2.1
bending of plates, 5.4
biharmonic equation,, 3.6.1
Bingham liquid, 7.1, 7.2
boundary conditions
Boussinesq approximation, 7.2
Boussinesq equations, 7.2, 7.2.1, 7.2.2, 7.2.3
boussinesq’s hypothesis, 7.3.1
Carreau liquid, 7.1, 7.2
casson liquid, 7.1, 7.2
cavity 7.2.1, 7.2.2, 7.2.3
channel flow, 7.1.3, 7.1.7, 7.1.12
co-flowing streams, 7.1.6
complex, 3.2
compressible flow, 3.3.5
concentration, 3.1.2
concentrated load, 5.1, 5.1.1
connection of two regions, 3.1.10 conservation of mass, 7.1, 7.2
conservation of momentum, 7.1, 7.2
constitutive equations, 5.1, 5.4
contact, 5.5, 5.5.1, 5.5.2, 5.5.3
continuity equation, 7.1, 7.2
convection-diffusion equation, 3.1
cros pres 7.1.12
cros vel 7.1.12
Couette flow 7.1.16, 7.1.17
defect correction, 3.1.4
Deformation with volume change of a block, 5.3.2.2, 5.3.2.5
del Guidice approximation, 6.2
delta function, 3.4
discontinuity, 7.1, 7.1.15
discontinuity capturing, 3.1, 3.1.8
displacement, 5.1, 5.1.1, 5.1.2
dissolution, 10.1
distributed loading, 5.1, 5.1.1, 5.1.2
drag, 7.1.13
drag coefficient, 7.1.13
drop, 7.6.2
dynamic viscosity, 7.1, 7.2
elasticity-flow interaction, 4.2, 4.2.1
elasticity matrix, 5.1
elasto-hydrodynamic lubrication, 4.2
elliptic equations, 3
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enthalpy, 6.1, 6.1.1
equation of state, 3.3.5
equilibrium equations, 5.1
fictitious domain method, 7.4 7.4.1
film flow, 3.5.1
flow problem, 7
FNC000, 6.2
FNH000, 6.2
FNK000, 6.2
FNLOCDIR, 5.3, 5.3.1
FNMATERI, 5.3, 5.3.1
free-slip, 7.1
free surface, 10.1.1
free surface flow, 7.1.6
freezing front, 6.1, 6.2
friction, 7.1, 7.1.17
gravity, 7.1, 7.1.12, 7.1.14
ground water flow, 3.1, 3.1.7
Hamilton-Jacobi-Bellman equation, 3.3.3
harbor, 3.2.1
heat capacity, 6.2, 7.2
heat capacity matrix, 6.2
heat conduction matrix, 6.2
heat equation, 3.1, 3.1.3, 3.1.5
Helmholtz equation, 3.2
Hertz problem, 5.5, 5.5.1
hole-in-plate problem, 5.1.1
hydrostatic pressure, 7.1, 7.2
hydrostatic thrust bearing, 4.1.5
ideal gas, 3.3.5
ill conditioned 3.1.6
incompressibility condition, 7.1, 7.2, 7.3
incompressible material, 5, 5.2
instationary flow, 7.1
instream condition, 7.1, 7.2
isothermal laminar flow, 7.1.1, 7.1.2, 7.1.3
isothermal turbulent flow, 7.3.1
isothermal turbulent flow, 7.3.1
iterative 3.1.6
Karmann, 7.1.5
laminar non-isothermal flow, 7.2.1
large contrasts 3.1.6
layers 3.1.6
leafspring, 5.3.1, 5.3.1.1
lemmon approximation, 6.2
levelset, 10, 10.1, 10.1.2
local transformation 3.5.1, 5.1.2, 7.1.7, 7.1.11
lubrication, 4, 4.1, 4.1.1, 4.1.4
magnetic field, 3.3.2
mass flux, 7.1, 7.1.9, 7.1.11
maximum principle, 3.1, 3.1.8
mechanical elements, 5
membrane element, 5.1
mesh velocity, 10.1.1
mixing length model, 7.3.1
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momentum equations, 7.1, 7.2
Newmark, 5.1.3
Newtonian flow, 7.1.3
Newtonian fluid, 7.1, 7.2
non-linear convection, 3.1, 3.3.4
non-linear diffusion equation, 3.3, 3.3.1
non-linear solids, 5, 5.3
non-Newtonian flow, 7.1.4, 7.1.12
no-slip, 7.1
nozzle, 3.3.5
obstacle, 7.5, 7.5.1
oil film, 4.2
oil lubricated bearing, 4.1.1
outstream condition, 7.1, 7.2
parabolic equations, 3, 3.1
penalty function approach, 7.1, 7.2
periodical boundary conditions, 3.1.9, 3.1.10, 3.5.2, 7.1.9, 7.1.10
periodical boundary conditions with jump, 3.1.9, 3.1.10
periodical boundary conditions with multiplication factor, 3.1.9, 3.1.10, 3.5.2
permeability 3.1.6
plane strain, 5.1
plane stress, 5.1, 5.1.1, 5.1.2
plastico-viscous liquid, 7.1, 7.2
plate elements, 5.4, 5.4.1
Poisson equation, 3.1, 3.1.1
Poisson’s ratio, 5.1, 5.1.1
porous, 3.1.7
potential flow, 3.3.5
power law liquid, 7.1, 7.2
prandtl’s mixing length hypothesis, 7.3.1
projection method 3.1.6
pumping ring, 4.2.1
Rayleigh number, 3.1.7
reaction force, 7.1.13
restrictor, 4.1
Reynolds equation, 4.1, 4.1.1, 4.1.4
Reynolds stresses, 7.3.1
Roll problem, 5.5, 5.5.2
rotating cone, 3.1.8
rubber element, 5.2
salt-layer, 3.1.7
sandstone 3.1.6
second order elliptic equations, 3, 3.1, 3.2
second order parabolic equations, 3, 3.1, 3.2
shale 3.1.6
shock, 3.1.8
simple heat equation, 6.2
simple method, 7.1.20
slipping fault, 7.1.15
solid-fluid interaction, 7.4, 7.4.1
solidification, 6, 6.1
stability, 3.1.7
staggered pipes, 7.1.10
stationary flow, 7.1.1
strain displacement relations, 5.1, 5.4
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stream function, 3.1.7
surface tension, 7.1, 7.1.12, 7.6.1, 7.6.2
swirl, 7.1, 7.2
temperature dependent laminar flow, 7.2
temperature equation, 7.2
time dependent, 7.1.5, 7.1.12, 7.2.3
thermal conductivity, 6.2, 7.2
thick plates, 5.4
total stress tensor, 7.1, 7.2
tube flow 7.1.10, 7.1.11
turbulent flow, 7.3.1
Uni-axial tension test, 5.3.2.4
upwind, 3.1, 3.1.8
velocity, 7.1, 7.2
volume expansion coefficient, 7.2
vortex shedding, 7.1.5
waves, 3.2.1
Wheel problem, 5.5, 5.5.3
Young’s modulus, 5.1
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