
SEPRAN

SEPRA ANALYSIS

INTRODUCTION

GUUS SEGAL

Handleiding SEPRAN voor de practica op de TUD

September 1999

Ingenieursbureau SEPRA
Park Nabij 3
2267 AX Leidschendam
The Netherlands
Tel. 31 - 70 3871624

Fax. 31 - 70 3871943

Copyright c©1999 Ingenieursbureau SEPRA.

All Rights Reserved. No part of this publication may be repro-
duced, stored in a retrieval system or transmitted in any form or
by any means; electronic, electrostatic, magnetic tape, mechani-
cal, photocopying, recording or otherwise, without permission in
writing from the author.

PRAC Contents September 1998 1

Contents

1 Introduction

2 General remarks and definitions

2.1 Elements

2.2 Boundaries

2.3 Problem definition

2.4 Boundary conditions

2.4.1 Essential boundary conditions
2.4.2 Natural boundary conditions
2.4.3 Periodical boundary conditions

2.5 Some special definitions

3 The global structure of a SEPRAN-session

3.1 The preprocessing part of SEPRAN

3.2 The computational part of SEPRAN

3.3 The postprocessing part of SEPRAN

3.4 Displaying the SEPRAN plots

3.5 An overview of the simple SEPRAN commands

4 Mesh generation

4.1 General remarks

4.1.1 Definition of points, curves, surfaces and volumes
4.1.2 Generation of the curves
4.1.3 Generation of the surface
4.1.4 Coupling of the geometrical quantities with element groups

4.2 A simple example

4.3 Some remarks concerning the input files

4.4 Input for the mesh generator

4.4.1 Subroutine FUNCCV

5 The computational part of SEPRAN

5.1 Introduction

5.2 How to use program SEPCOMP

5.3 Programming considerations

5.4 Description of the input for program SEPCOMP

5.4.1 The main keyword PROBLEM
5.4.2 The main keyword MATRIX
5.4.3 The main keywords ESSENTIAL BOUNDARY CONDITIONS
5.4.4 The main keywords CREATE
5.4.5 The main keyword SOLVE
5.4.6 The main keywords NONLINEAR EQUATIONS
5.4.7 The main keyword OUTPUT
5.4.8 The main keyword DERIVATIVES
5.4.9 The main keyword INTEGRALS

2 Contents September 1998 PRAC

5.4.10 The main keyword BOUNDARY INTEGRAL
5.4.11 The main keyword STRUCTURE

5.5 Description of some function subroutines to be used together with program SEPCOMP

5.5.1 Function subroutine FUNCBC
5.5.2 Subroutine CFUNCB
5.5.3 Function subroutines FUNC and CFUNC

5.6 How to program your own element subroutines

5.6.1 Subroutine ELEMSUBR
5.6.2 Subroutine ELDERVSUBR
5.6.3 Function subroutine ELINTSUBR
5.6.4 Subroutine PRINTREALARRAY
5.6.5 Subroutine PRINTINTEGERARRAY
5.6.6 Subroutine PRINTMATRIX
5.6.7 Function subroutine FUNCSCAL

6 The postprocessing part of SEPRAN

6.1 Introduction

6.2 General input for program SEPPOST

6.3 Print commands for program SEPPOST

6.4 PLOT commands for program SEPPOST

6.5 Special commands for time-dependent problems with respect to program SEPPOST

7 Some examples of complete SEPRAN runs

7.1 A potential problem in a L-shaped region

7.2 A mathematical test example showing the use of boundary elements

7.3 An artificial complex example

7.4 A non-linear potential problem

index

PRAC Introduction December 1995 1.1

1 Introduction

The aim of this introductory manual is to make it possible for an inexperienced user to run simple
SEPRAN programs without the necessity of studying all the possibilities SEPRAN provides.
Chapter 2 gives some general remarks and definitions and should be read before studying the rest
of this manual. The global structure of a SEPRAN-session is described in Chapter 3. Chapter 4
gives an introduction to the mesh generation, the computational part is treated in Chapter 5 and
Chapter 6 is devoted to postprocessing. Finally Chapter 7 gives some examples of SEPRAN runs,
including input and output.

How to use this manual?

In order to get a quick start it is recommended to proceed as follows:

• Read chapters 2 and 3 globally to get familiar with the notations used.

• Read Chapter 4 until Section 4.4

• Next read Chapter 5 until Section 5.4

• Now proceed by considering the examples in Chapter 7. Try to understand these examples
by looking into previous chapters. The index may be used as a guide to find all is needed.

The complete set of SEPRAN manuals can be found in// http://ta.twi.tudelft.nl/sepran

1.2 Introduction December 1995 PRAC

PRAC Definitions October 1998 2.1

2 General remarks and definitions

In this chapter we introduce some concepts and definitions that will be used throughout this manual.
Consider the heat conduction problem as sketched in Figure 2.1 as an example.

I IIIII

Figure 2.1: Region of definition for heat conduction problem with 3 subregions

The region defined by Ω consists of 3 subregions with heat capacities c1, c2, and c3 respectively.
The boundary conditions are defined in Figure 2.2.

boundary 3: α(T − T0) + ∂T
∂n = 0

boundary 1: T = T0 boundary 2: ∂T
∂n = 0

Figure 2.2: Definition of boundary conditions for heat conduction problem

boundary 1: Temperature is equal to outer temperature: T0

boundary 2: No heat flow (isolated): ∂T
∂n = 0

boundary 3: Linearized radiation condition: α(T − T0) + ∂T
∂n = 0

The boundary condition of type T = T0 is a so-called essential boundary condition for this prob-
lem, the boundary conditions on boundaries 2 and 3 are natural boundary conditions. For each
problem in the manual Standard Problems it is described whether a boundary condition is essential
or natural. For a definition of these types of boundary conditions, the reader is referred to the
programmers guide.

2.1 Elements

One of the main items of the finite element method is the division into elements, which is called
the discretization of the area Ω. This discretization will generally be applied to each subregion
separately. See Figure 2.3.

Such a partition into elements is called the mesh, the partition of a subregion is called submesh.
An element division is made by a (sub)mesh generator. See Section 4.1.

The necessity of defining a subregion may be induced by the physical properties of the matter in
Ω, e.g. material properties, but subdivision might also be necessitated by approximation and/or
refinement requirements. The elements may be one, two or three dimensional. In SEPRAN various
types of elements may be used and connected. This has been sketched in Figure 2.3 where triangles
and quadrilaterals are connected.

2.2 Definitions October 1998 PRAC

Figure 2.3: Division into elements (mesh), with 3 submeshes

All elements in a submesh must have the same shape, for example they are all triangles, quadrilat-
erals or line elements. (Line elements are one-dimensional elements in R2 or R3).
Furthermore all elements of a submesh have the same number of nodal points, which fixes the
highest degree of approximation that can be performed with help of these elements. The (set of)
differential equations need not be specified at this stage. The design of the mesh is a matter of
geometry only, although the question of the necessity of local refinement is closely related to the
problem to be solved.

The elements in a submesh are represented by one element, the so-called standard element. Later
we shall see that a problem, a (set of) partial differential equations, can be described completely
on a standard element. We then use the terminology: standard problem.
The standard element is not an element of the mesh, but gives the structure of the group of elements
which is represented by it. For example, it defines the shape of the elements and the number of
nodal points. In Figure 2.4 some examples of standard elements are plotted.

Figure 2.4: Some examples of standard elements

Each standard element is provided with a sequence number. When there are NELGRP standard
elements, then the sequence numbers are IELGRP (IELGRP = 1 (1) NELGRP). Elements must
be created with increasing sequence number. Hence first all elements with sequence number 1, then
with sequence number 2 etc.

Elements in different submeshes may be represented by the same standard element. Consider the
heat conduction problem of Figure 2.1 and suppose that the package contains standard problems
defined on two different standard elements. The large system of equations (see Section 5.3) is built,
starting with sequence number IELGRP=1,2,...,NELGRP. Therefore another value of the heat ca-
pacity c can be submitted for every submesh. Note that the submeshes may be represented by the
same standard element, with different sequence numbers IELGRP=1,2,3..
When c1 = c3 the submeshes I and III may be created before submesh II, and then they are repre-
sented by a standard element with the same sequence number IELGRP=1.

PRAC Definitions October 1998 2.3

2.2 Boundaries

If we consider the boundaries in Figure 2.2, we see that the physical boundary, that is the boundary
of the region Ω, consists of 3 parts where different types of boundary conditions are given.
Consider the case in which the region of definition Ω is two-dimensional. In order to prescribe
boundary conditions or compute special quantities a subdivision of the boundaries may be necessary.
The physical boundary will be called outer boundary, it consists of one or more closed parts; each
part can be divided into smaller pieces.

For example the outer boundary in Figure 2.2 consists of one closed part, the outer boundary in
Figure 2.5 consists of 3 closed parts (I, II and III). The non-physical boundaries which have nothing
but points in common with the physical boundaries are called inner boundaries. The closed parts
of the outer boundaries start and end in the same point.
For three dimensional problems, see the programmers guide.
In plotting subroutines only the outer boundaries are used. Each boundary may be divided into
one or more sub-boundaries.

III
II

I

Figure 2.5: Region Ω containing 2 islands

I II
9

III

1

2 3

4

56
7

8

Figure 2.6: division into sub-boundaries

Boundaries are subdivided when the sub-boundaries are necessary for special reasons in the rest of
the program, for example for the specification of boundary conditions.

For example for the region in Figure 2.2 the sub-boundaries are given in Figure 2.6. There are 7
outer boundaries and 2 inner boundaries. For the boundary conditions it is only necessary to define
3 outer boundaries: 1 + 2, 3 + 4 and 5 + 6 + 7. Whether the user defines 7 outer boundaries and
2 inner boundaries, or 3 outer boundaries only, is a matter of his own decision. The outer and inner
boundaries are not necessary for the mesh generation.

Remark
In the case of a crack we define 2 outer boundaries with different boundary numbers. Although
in that case the coordinates may coincide, each boundary is provided with separate nodal point
numbers, except for the common node, at the tip of the crack. See Figure 2.9.

2.4 Definitions October 1998 PRAC

I

(i)

III

I

II

(ii)

III

(iii)

I

(iv)

Figure 2.7: Examples of regions consisting of 1 (i),(iv) 3 (ii) and 2 (iii) subregions

2.3 Problem definition

Once the mesh has been generated, the problem that has to be solved can be defined. The physical
or engineering problem consists of the set of partial differential equations (elasticity problem, flow
problem and so on), and the boundary conditions.
In SEPRAN a standard problem is the result of the polynomial approximation of the unknowns of
a special class of differential equations with respect to a standard element.
Each standard problem defined on a specific standard element is provided with a different problem
definition number. This problem definition number must be connected with a standard element of
the generated mesh, hence there are NELGRP problem definition numbers necessary.

The problem definition number completely defines the relation between the unknowns of the problem
and the influence of physical constants and properties of the material. For example the standard
problem defined by the number 800 means that the extended Convection-diffusion equation using
an approximation defined in all nodes of the element is used.

Type numbers 1 to 99 may be used by the programmer to introduce his own standard problems,
type numbers ≥ 100 are used for standard problems from the library of the package.

2.4 Boundary conditions

Boundary conditions can be of various type, depending on the equations to be solved. Boundary
conditions must be prescribed on points, curves or surfaces (in R3). It is only possible to create
boundary conditions on complete curves and surfaces. Thus it is necessary to define these curves
and surfaces adequately during the mesh generation. In this chapter we distinguish between the
following possibilities:

2.4.1 Essential boundary conditions

In general, essential boundary conditions are the easiest to understand. Boundary conditions are
called essential if they prescribe the value of some degrees of freedom. For example the boundary
condition T = T0 in Figure 2.2 is essential. So essential boundary conditions reduce the number of
unknowns.

PRAC Definitions October 1998 2.5

I

6 outer boundaries

III

I

II

5 outer boundaries
2 inner boundaries

III

8 outer boundaries
2 inner boundaries

I

4 outer boundaries
1 inner boundary

Figure 2.8: Examples of inner and outer boundaries each provided with a direction

- -

•

?6

1 4

2 3

- -

1

2 3

4

�
�
�
��

B
B

B
BB

� M

Figure 2.9: Treatment of a crack

2.4.2 Natural boundary conditions

Some boundary conditions give rise to surface (boundary) integrals to be evaluated. For example
the radiation condition in Figure 2.2 gives rise to these boundary integrals. Instead of prescribing
some degrees of freedom, the boundary conditions are ”hidden” into these surface integrals. Such
boundary conditions are called natural. In SEPRAN we have created so-called boundary elements
in order to be able to calculate these surface integrals.

Boundary elements are defined without affecting the mesh, i.e. they are not treated as line el-
ements. They are indicated by a standard boundary element sequence number, and a standard
boundary problem definition number. Compare with the standard element sequence number and
the standard problem definition number as defined in 2.3. Standard boundary elements are created
in in a natural sequence, with standard boundary sequence numbers from 1 to NUMNATBND,
with NUMNATBND the number of standard boundary element sequence numbers.

2.4.3 Periodical boundary conditions

In some problems periodical boundary conditions are prescribed on opposite boundaries. For ex-
ample in Figure 2.10, the boundaries I and III may have periodical boundary conditions. In that
case the corresponding degrees of freedom must be identified.

Therefore the user must introduce elements from boundary I to boundary III. These elements must
be created by the mesh generator (SEPMESH). See ”special purpose elements”, under the heading

2.6 Definitions October 1998 PRAC

.

.

.

..
.
.
.

. .

IIII

IV

II

Figure 2.10: Periodical boundary conditions on sides I and III.

MESHCONNECT. These elements must get the type number -1 in the input block ”PROBLEM”,
indicating that these elements have periodical boundary conditions. All degrees of freedom in nodal
points of boundary I are identified with the corresponding degrees of freedom on boundary III. For
the example of Figure 2.10 the elements created are sketched in Figure 2.11.

.

.

.

.

..
.

.

.

. IIII

IV

II

Figure 2.11: Elements to prescribe periodical boundary conditions on the sides I and II

2.5 Some special definitions

The following definitions are used throughout the SEPRAN-manuals:

Degrees of freedom: degrees of freedom refer to the unknowns. Sometimes the degrees of freedom
refer to all unknowns in the mesh, in other cases only the unknowns in a nodal point are
meant.

Prescribed degrees of freedom: Some boundary conditions explicitly prescribe the values of the
unknowns. For example the temperature given in a part of the boundary is such a prescribed
boundary condition. Boundary conditions of this type are called essential boundary condi-
tions. The corresponding unknowns are referred to as prescribed degrees of freedom. The
number of unknowns is reduced by these boundary values.

COMMAND: In the definition of the input for a number of subroutines the notion COMMAND is
used. With COMMAND a part of the input for a specific subroutine or a part of a program
is meant that is obligatory for that subroutine. DATA records on the other hand define only
values and options and are usually optional. A COMMAND is always started in a new record
in the input file.

PRAC Structure of a SEPRAN-session December 1995 3.1

3 The global structure of a SEPRAN-session

Except for complicated problems, the SEPRAN-session consists of three parts, which can be run
separately. The three parts are

• Preprocessing (creation of mesh)

• Computation (definition and solution of the problem)

• Postprocessing (output of the results: plots and prints)

The sequence of the session is always:

preprocessing followed by computation followed by postprocessing

In the sections 3.1, 3.2, and 3.3, the various stages are treated separately.

3.2 Structure of a SEPRAN-session December 1995 PRAC

PRAC Preprocessing October 1998 3.1.1

3.1 The preprocessing part of SEPRAN

The preprocessing part of SEPRAN consists of the creation of the mesh. In this manual only one
and two dimensional meshes are treated; for three dimensional regions the reader is referred to the
Users Manual.

The generation of the mesh is performed by the program SEPMESH. At this moment only a batch
version is available, which requires a file with data. This file must be created by the user for example
with a text editor. An interactive version of SEPMESH is under development.

Program SEPMESH creates output in two ways:

• SEPMESH writes to the standard output device (usually the display from which you start
the program, or a standard output file). This output consists of a copy of the input file, error
messages if the input is incorrect and some messages from sub mesh generators.

• If the input is error-free and a mesh has been generated, then this mesh is written to a file
named meshoutput.

Chapter 4 describes how a 2D-mesh may be generated, for a 3D-mesh the user is referred to the
Users Manual.

SEPMESH must be used as follows:

sepmesh inputfile

or

sepmesh inputfile > outputfile

The inputfile is the file created by the user using the text-editor. If no outputfile is specified all
information (including error messages) is written directly to the screen.
The output file may have any name except meshoutput and sepplot.∗ ∗ ∗, where ∗ is any number.

Example: sepmesh mesh.dat > mesh.out. (unix)

Remark: besides the file meshoutput sepmesh also creates files sepplot.001, sepplot.002, etc. which
contain plot information.

So sepmesh creates output in 3 ways:

• a file meshoutput containing the complete description of the mesh;

• files sepplot.001, sepplot.002, etc. containing information of the plots to be made;

• output written to the screen or the outputfile (for example mesh.out). This output contains
a hard copy of the input, error messages (if any) and some information about the mesh.

In Section 3.4 it is described how the plot information may be translated into a plot.

3.1.2 Preprocessing October 1998 PRAC

PRAC Computational part October 1998 3.2.1

3.2 The computational part of SEPRAN

In the computational part of SEPRAN first the mesh created by the preprocessing part is read, then
the type of problem is defined, the system of equations is built (including boundary conditions)
and finally the problem is solved. The result of this part is written to a file which can be used
at the output part. SEPRAN is developed to solve very complicated problems. However, in this
introduction only very simple standard problems are treated, which require only a minimum of
input.

For simple problems SEPRAN provides a standard program: SEPCOMP. If the problem to be
solved fits within the frame-work of SEPCOMP, there is no need to create a main program. In
that case it is sufficient to run SEPCOMP itself. The input required for SEPCOMP is described in
Chapter 5.

If the program SEPCOMP does not offer all the possibilities, that are needed for the solution of
a specific problem, it is necessary to write a main program. SEPRAN provides a large number of
subroutines in an increasing sequence of detail, which can be used to construct such a main program.
The main subroutines are treated in the SEPRAN users manual, for an extended description the
reader is referred to the programmers guide.

The computational part of a simple problem consists of the following components:

• In the starting part the mesh is read from the file created by SEPMESH, the definition of the
problem, and the type of solver is read.

• In the next phase the essential boundary conditions are read, i.e. the prescribed unknowns.

• In the third phase the coefficients (material properties) are read, the system of equations is
built and the problem is solved.

• Finally some derived quantities (like for example gradient, pressure, stream function) may be
computed, and the solution as well as these derived quantities are written to a file.

SEPCOMP must be used as follows:

sepcomp inputfile

or

sepcomp inputfile > outputfile

The inputfile is the file created by the user using the text-editor. If no outputfile is specified all
information (including error messages) is written directly to the screen.
Besides the user provided inputfile, sepcomp also needs the file meshoutput created by sepmesh.
The outputfile may have any name except meshoutput, sepcomp.inf, sepcomp.out and sepplot.∗∗∗,
where ∗ is any number.

Example: sepcomp comp.dat > comp.out.

Remark: sepcomp creates two files sepcomp.inf and sepcomp.out, which contain information for the
postprocessing.

So sepcomp creates output in 2 ways:

• two files sepcomp.inf and sepcomp.out containing the complete description of the solution
computed;

• output written to the screen or the outputfile (for example comp.out). This output contains
a hard copy of the input, error messages (if any) and some information about the problem
solved.

3.2.2 Computational part October 1998 PRAC

PRAC Postprocessing October 1998 3.3.1

3.3 The postprocessing part of SEPRAN

In the postprocessing part of SEPRAN, the mesh is read as well as the solution, as created by the
computational part. In this section the results are produced for the user in a more suitable form:
prints, plots, integrals etc. The postprocessing part is performed by the program SEPPOST. For a
description of its possibilities the reader is referred to Chapter 6.

SEPPOST is used in the same way as SEPMESH, i.e. the user creates an input file by the text-
editor and then runs SEPPOST.
SEPPOST is used as follows:

seppost inputfile

or

seppost inputfile > outputfile

The inputfile is the file created by the user using the text-editor. If no outputfile is specified all
information (including error messages) is written directly to the screen.
Besides the inputfile SEPPOST uses also the files created by SEPMESH (meshoutput) and the
SEPRAN computational program (sepcomp.inf and sepcomp.out).
SEPPOST does not produce plots directly but produces files named sepplot.001, sepplot.002, etc.
containing plot information. Since this name is the same as for SEPMESH the plot information of
SEPMESH is destroyed. To display the plot exactly the same procedure as for SEPMESH must be
used.

Example:

seppost post.dat > post.out

3.3.2 Postprocessing October 1998 PRAC

PRAC Display of SEPRAN plots September 1998 3.4.1

3.4 Display of SEPRAN plots

The SEPRAN mesh generation part or the postprocessing part may generate plot files named
sepplot.001, sepplot.002, sepplot.003, etc.

In SEPRAN there are two ways of displaying these plots: you can make a picture at the screen, or
you make a plot onto a laser printer or plotter.

To display the plot on the screen use the command:

sepview

or

sepview sepplot.xxx

where sepplot.xxx is the file to be plotted.
If sepview is used without file name, the file may be selected by the option file. Once a file is
selected all files with the same basename and extension .001, .002, ... may be viewed. The first file
is the file selected.
SEPVIEW has the following options:

Zooming in Press the left mouse button down and move the cursor upwards while pressing the
button. Release the mouse button if the created rectangle is large enough. The picture within
the rectangle will be drawn in the full window.

Zooming out Zooming out means displaying the previous window. Zooming out is done by moving
the cursor downwards while creating a rectangle.

Panning Panning is done by pushing and releasing the left mouse button on the same place in the
picture. The picture is panned towards the mouse position. How much the picture is panned
depends on the distance between the mouse button and the middle of the picture.

Hardcopy Pressing the ’Hardcopy’ button will show you a pull down menu with several possible
choices. Press ’Postscript’ to produce an encapsulated postscript file <sepplot.xxx> <nn>.eps
from the current view. <nn> is a sequence number. It will be increased each time a new file
is generated.
Once you have left sepview, you may print the files sepplot.001_01.eps ... on the laser
printer. The command to be used is:

laserps sepplot.001_01.eps

where the name sepplot.001_01.eps must be replaced by the one to be printed.

Play / Stop / Previous / Next At the upper right corner of the plot window, there are three
buttons, a left arrow, a right arrow and a push button labelled ’Play’ or ’Stop’.

The name of a SEPRAN plot file is of the form sepplot.xxx, where xxx is a number. This
number can be used to select a previous/next plot file of the same set with a higher/lower
number, using the right and left arrow. If there is no plot file with a higher/lower number,
the right/left arrow is disabled.
To show a set of plot files as an animation, you can use the ’Play’ button. As soon as
SEPVIEW has started playing, the label on the button is changed to ’Stop’ to stop the
animation. As soon as the last file in the set is shown, the animation is reversed.

3.4.2 Display of SEPRAN plots September 1998 PRAC

PRAC Overview of simple SEPRAN commands October 1998 3.5.1

3.5 An overview of the simple SEPRAN commands

In this section we give an overview of some of the available SEPRAN commands.

The following SEPRAN commands are available:

sepmesh (creates a SEPRAN mesh, see Section 3.1)

sepcomp (performs the computational part of SEPRAN, see Section 3.2)

seppost (performs the SEPRAN postprocessing, see Section 3.3)

sepview (Plot SEPRAN files under X, see Section 3.4)

seplink (Link a SEPRAN main program and subroutines with the SEPRAN libraries, see Section
5.2)

3.5.2 Overview of simple SEPRAN commands October 1998 PRAC

PRAC Mesh generation November 1999 4.1.1

4 Mesh generation

4.1 General remarks

Before reading this section the user should consult Section 2 for some definitions.

The generation of submeshes may be done by a standard submesh generator, by a user written
submesh generator or by input from the standard input file. In this manual only the first possibility
is treated, for the other cases see the Users Manual. Furthermore this manual is restricted to one-
and two-dimensional meshes only.

The definition of the elements is performed in two stages:

• in the first stage the user defines geometrical quantities as points, curves, surfaces and volumes,
and elements along these quantities,

• in the second stage elements created in the first stage are coupled to element groups. Only
those elements necessary for the solution of the finite element problem must be identified with
an element group.

4.1.1 Definition of points, curves, surfaces and volumes

For the generation of meshes we define the following quantities:

Points, Curves, Surfaces and Volumes

Points form the basis for all other components. The user must define the main points necessary for
the generation of curves. These points must be numbered sequentially from 1 onwards. After the
generation of the mesh they are connected to nodal point numbers. The corresponding nodal point
numbers are generally not equal to the point numbers defined by the user.

Curves form the one-dimensional quantities of the meshes. For example lines and arcs are curves.
The initial and end points of any curve must already have been defined as points. Curves have an
orientation, defined by the initial and end points, hence line C3 = (P3, P4) is different from line
C4 = (P4, P3).

Surfaces form the two-dimensional quantities of the mesh. The boundaries of the surfaces must
already have been defined as curves. The boundary of a surface must be closed in itself, the
internal part of the surface must be on the left-hand side of the curves. Hence the boundaries of a
surface must be created counter clockwise and may not intersect itself. Whenever in a description
of a surface a curve is needed in the opposite direction of which it was defined, then its number
must be preceded by a minus sign. (See Figure 4.1.1). For ”exotic” boundaries it may be wise to
divide the region considered in a number of less ”exotic” subregions since most of the SEPRAN
generators will give better results in such a situation and besides also require less computation time.

Volumes form the three-dimensional quantities of the mesh. They are not defined in this manual.
For three-dimensional problems the user is referred to the Users Manual.

All points, curves, surfaces and volumes must be numbered sequentially, each starting with number
one. The outer and inner boundaries as defined in 2.2 must consist of points (in R1), points and
curves (in R2), and points, curves and surfaces (in R3).

The submeshes as defined in 2 must coincide with curves (in R1), surfaces and sometimes curves
(in R2), or with volumes and sometimes curves and surfaces (in R3).

Anywhere in the manuals where curves, points and surfaces are mentioned, the curves,

4.1.2 Mesh generation November 1999 PRAC

points and surfaces generated by the mesh generator are meant. Nodal points of the
mesh must be coupled with these points, curves and surfaces.

Examples

Consider the regions in Figure 2.7 and 2.8. In Figure 4.1.1 the points, curves and surfaces for these
regions are defined. Points are indicated by Pk (k=1 ,2 ,,,), curves by Cl (l=1 ,2 ,,,) and surfaces by
Sm (m=1 ,2 ,,,). The corresponding commands are POINTS, CURVES and SURFACES. Remark:

When the user wants to create double points on a line (for example for a crack), he has to introduce
two curves with the same end points on this line. For example the outer boundaries 2 and 3 in
Figure 2.9 must be created as 2 different curves.

PRAC Mesh generation November 1999 4.1.3

• • •

• • •

P1 P2 P3

C1 C2
C6 C3S1

C5 C4
P6 P5 P4

- -

? 6

� �

C1 = (P1,P2) C2 = (P2,P3)
C3 = (P3,P4) C4 = (P4,P5)
C5 = (P5,P6) C6 = (P6,P1)
S1:(C1,C2,C3,C4,C5,C6)

Outer boundaries: C1, C2, C3, C4, C5, C6

P1 P2

C1
S3C9 C2
C7 C3

P7 P3 P4

S2 S1C6 C4

P6 C5 P5

@
@

@
@@

• •

• • •

• •

-

� -

? 6

�

?R 6

C1 = (P1,P2) C2 = (P2,P3)
C3 = (P3,P4) C4 = (P4,P5)
C5 = (P5,P6) C6 = (P6,P3)
C7 = (P3,P7) C8 = (P6,P7)
C9 = (P7,P1)
S1:(C3,C4,C5,C6)
S2:(-C7,-C6,C8)
S3:(C1,C2,C7,C9)

Outer boundaries: C1, C2, C3, C4, C5, C8, C9
Inner boundaries: C6, C7

��
��

P1 P2 P3

C1 C2
S1 C9 S2

P10
C6 C8 C3P9

P7
C7

P8C10

P6 P5 P4
C5 C4

- -

6

? 6

� �
?

• ••

• ••

•

•
• •

C1 = (P1,P2) C2 = (P2,P3)
C3 = (P3,P4) C4 = (P4,P5)
C5 = (P5,P6) C6 = (P6,P1)
C7 = (P8,P7,P10) C8 = (P10,P9,P8)
C9 = (P2,P10) C10 = (P5,P8)
S1:(C1,C9,C8,-C10,C5,C6)
S2:(C2,C3,C4,C10,C7,-C9)

Outer boundaries part 1: C1, C2, C3, C4, C5, C6
Outer boundaries part 2: C7,C8
Inner boundaries: C9, C10

��
��

P1 P2 P3C1 C2

C8 P8 C7

C5 P9 P7 C3C6
P6 S1

P5 P4C4

• •

• •

•

•

•
• •

- -

? 6

�

6

C1 = (P1,P2) C2 = (P2,P3)
C3 = (P3,P4) C4 = (P4,P5)
C5 = (P5,P1) C6 = (P6,P9,P8)
C7 = (P8,P7,P6) C8 = (P2,P8)
S1:(C8,-C6,-C7,-C8,C2,C3,C4,C5,C1)

Outer boundaries part 1: C1, C2, C3, C4, C5
Outer boundaries part 2: -C6, -C7
Inner boundaries: C8

Figure 4.1.1: Points, Curves and Surfaces

4.1.4 Mesh generation November 1999 PRAC

shape number shape name

1 • •
1 2

line element
with 2 points

2 • ••
1 2 3

line element
with 3 points

3 •

•

•

•
1

3

2
...................................

..................................
...................................

...................................
..................................

..
..

..
.......................................

..
..

.
triangle
with 3 points

4
•

••

•

•

•

1
2

3

4

5

6

..
..................

........

........

........

........

........
........
.........
.........
.........
.........
.........
.........
..........
..........
..........
..........
...........
...........
...........
....

..........
..........

..........
..........
..........

..........
..........
..........

..........
..........

..........
..........

..........
..........

..........
...

isoparametric
triangle
with 6 points

5

�
�
�
�
�
�

D
D
D
D
D
D

• •

• •

quadrilateral
with 4 points

6

•••

•

•
• •

••

1 2 3

4

567

8

.........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
..........
..............

...................
.........................

...
...

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
....

isoparametric
quadrilateral
with 9 points

Table 4.1.1: Standard elements for mesh generation

PRAC Mesh generation November 1999 4.1.5

4.1.2 Generation of curves

First the user must define the points, secondly the curves and finally the surfaces.
For the definition of the curves the user may specify the number of nodal points on a curve as
well as the distribution of these points. Another possibility is to define an approximate length
of the elements in the end points of the curves. Elements in between are defined such that the
mesh size increases or decreases monotone and smoothly from one end to the other. When the
user wants to utilize this possibility he must give the command COARSE, and give a unit length
(UNIT). Furthermore each user point must be provided with a so-called coarseness (c). Then
the approximate length of the elements in the surroundings of these points is equal to c× UNIT,
depending on the type of function that is used for the creation of the curve.
For the definition of the curves the following FUNCTIONS are available:

LINE < element type >: generates a straight line from point Pi to Pj.

ARC < element type >: generates an arc from point Pi to Pj; the centroid Pc must be given.

USER < element type >: the user gives all coordinates of the nodal points on the line.

CLINE < element type >: generates a straight line from point Pi to Pj, where the elements are
defined with the concept of coarsenesses.

CARC < element type >: generates an arc from point Pi to Pj; the centroid Pc must be given.
The elements are defined with the concept of coarsenesses.

CURVES : generates a curve consisting of the subsequent curves Ck, Cl, Cm.

PARAM The user defines a curve by a function subroutine FUNCCV (4.4.1) using a parameter
representation.

CPARAM The user defines a curve by a function subroutine FUNCCV (4.4.1) using a parameter
representation. The division of elements is based on the concept of coarseness.

For other functions the reader is referred to the Users Manual. < element type > is an integer
which defines the type of elements along the curves to be created.

The FUNCTIONS LINE, ARC, USER, SPLINE, CLINE, CARC, CURVES, PARAM and CPARAM
have the following shape:

C1 = LINE <element_type> (P1, P2, NELM = n, RATIO = r, FACTOR = f)
C2 = ARC <element_type> (P1, P2, Pc, NELM = n, RATIO = r, FACTOR = f)
C3 = USER <element_type> (P1, P2, P3, . . . , Pn)
C4 = CLINE<element_type> (P1, P2, NODD = o)
C5 = CARC <element_type> (P1, P2, Pc, NODD = o)
C6 = CURVES (Ck, Cl, Cm, . .)
C7 = PARAM <element_type> (P1, P2, NELM=n [,INIT=t_0] [,END=t_1] //

[, RATIO=r, FACTOR=f])
C8i = CPARAM <element_type> (P1, P2 [,NODD=o [,INIT=t_0] [,END=t_1])

with n the number of elements in the curve.

The distribution of the nodal points is given by the parameters RATIO and FACTOR:

r=0: equidistant mesh size (default)
r=1: the last element is f times the first element
r=2: each consecutive element is f times the preceding element

The value of o defines whether the number of end points of the elements on the curve is free, odd
or even. Possibilities:

4.1.6 Mesh generation November 1999 PRAC

o=0,1 free
o=2 number of end points odd
o=3 number of end points even

< element type >= 1 means linear elements, consisting of 2 points (Default value)
< element type >= 2 means quadratic elements, consisting of 3 points, with the second point in
the centre of the first and the last one.
INIT = t0 and END = t1, define the range of the parameter t. The default values are: t0 = 0 and
t1 = 1

PRAC Mesh generation November 1999 4.1.7

4.1.3 Generation of surfaces

Each surface must coincide with a submesh (in two-dimensional problems). For generation of nodal
points and elements in the surface a number of so-called surface generators are available. Of these
surface generators only two are treated in this manual. For the other ones the user is referred to
the Users Manual.

The surface generators described in this manual are GENERAL and QUADRILATERAL.

GENERAL has the following characteristics:

1. A fine division of nodal points on a part of the boundary causes a fine mesh in the neighbour-
hood of this boundary; a coarse division, a coarse mesh.

2. The mesh generator can not generate elements when a sudden refinement of the nodal points
of the boundary is present. Hence when the user wants to create elements on a long small pipe
(see Figure 4.1.2) GENERAL can not be used, or the user must transform his coordinates such
that the length/width ratio is not too large. For that type of meshes use QUADRILATERAL.

3. If the boundary is too random (Christmas tree), a subdivision into submeshes may be neces-
sary.

4. When quadrilateral elements are generated by GENERAL it is necessary that the number of
nodal points on the boundary of the surface is even in the case of linear elements, and the
number of vertices of elements on the boundary is even in the case of quadratic elements. The
user must take care of this demand.

••
••
••
••
•

• • • • • • • • • • • • •

• • • • • • • • • • • • •

••
••
••
••
•

� -

?

6
h = 1

L = 10

Figure 4.1.2: Example of a region that can not be subdivided by GENERAL

For some examples of meshes created by GENERAL see Figure 4.1.3

QUADRILATERAL has the following characteristics:

1. The submesh generator QUADRILATERAL creates a mesh for regions that can be mapped
onto a rectangle. Besides that, the region must be topological equivalent to a rectangle.
Topological equivalent to a rectangle means that a mapping onto a rectangle must be possible.
The sides of the region may be curved, but the curvature may not be so extreme that there
is no resemblance with a rectangle.

2. QUADRILATERAL expects exactly four curves, each one representing one ”side” of the
transformed ”rectangle”. If some of these sides consist of subcurves the user must combine
these curves into one curve using the option CURVES (of curves).

3. When quadrilaterals are required the number of points on the four curves together has to be
even. The user has to take care of this himself.

4. QUADRILATERAL has no problem with oblong elements.

For some examples of meshes created by QUADRILATERAL see Figure 4.1.4.

The functions GENERAL and QUADRILATERAL have the following shape:

4.1.8 Mesh generation November 1999 PRAC

Figure 4.1.3: Example of meshes that can be created by GENERAL

PRAC Mesh generation November 1999 4.1.9

Figure 4.1.4: Example of meshes that can be created by QUADRILATERAL

4.1.10 Mesh generation November 1999 PRAC

S1 = GENERAL <element_type> (C1, C2, C3, C4 . . .)
S2 = QUADRILATERAL <element_type> (C1, C2, C3, C4)

< element type > is an integer which defines the type of elements in the surfaces to be created. In
Table 4.1.1 a survey of the available standard elements for mesh generators is given. The element
types 3 to 6 can be generated by GENERAL and QUADRILATERAL. In the manual Standard
Problems it is described which type of elements are available for a specific problem.

4.1.4 Coupling of geometrical quantities with element groups

The points, curves and surfaces as defined in 4.1.1 to 4.1.3 are necessary to generate elements.
However, not all of them may be necessary for the finite element problem. Those elements that are
necessary must be identified with a standard element by means of an element group number (see
2.1).
The coupling of the geometrical elements with the standard elements is done using the commands
MESHLINES and MESHSURFACES defining the one and two dimensional elements respectively.
These commands must be followed by function cards of the type:

LELM i = (SHAPE = j, C1 ,C2)
or

SELM i = (S1, S2)
with LELM corresponding to the line elements and SELM corresponding to the surface elements.
i is the element group number.

For line elements the shape number for the generation of the elements must be given. This number
gives the number of nodal points in an element minus one, hence j = 1: linear element, j =
2: quadratic etc. This number does not have to be identical to the shape number in the curve
generation. The line elements are created on the curves C1 to C2, in that sequence.

The shape number of the surface elements is the same as the number corresponding to the surface
elements S1 to S2, and hence must not be given in the function.

PRAC A simple example September 1999 4.2.1

4.2 A simple example

Before we describe the input for the mesh generator in detail we shall first give an example to show
how a simple mesh may be created.
To that end we consider a rectangular region as sketched in Figure 4.2.1. The user points and

P C P

C

P
CP

C S

1 1 2

2

3

34

4 1

Figure 4.2.1: Example of a region to be divided in elements

curves are indicated in the region. Suppose that the height is 1 and the width is also 1.
In order to create a mesh by SEPRAN we first have to make an input file by a text editor. Suppose
this input file is called square.msh.
In order to create the mesh we have to call the program sepmesh in the following way:

sepmesh square.msh

If the input file is incorrect, sepmesh produces error messages, which are self-explaining. Sometimes,
however, the number of errors is so large that more than one screen is needed. In that case it might
be wise to redirect the file to an output file, for example:

sepmesh square.msh > square.out

Never use the name meshoutput for this output file.
The output file may be inspected by a text editor.
Then sepmesh creates a mesh and puts information in a file called meshoutput. Depending on
the contents of the file square.msh a series of files sepplot.001, sepplot.002 ... may be created
which contain plots related to the mesh. These plots may be viewed by one of the SEPRAN display
programs like sepview. See Section 3.4.
The input file square.msh may for example look like:

#
square.msh
#
Example file for the SEPRAN introduction, Section 4.2
#
Define some constants for the mesh, See introduction, Section 4.3
#
constants

reals
height = 1 # height of the square

4.2.2 A simple example September 1999 PRAC

width = 1 # width of the square
integers

nelm_hor = 10 # number of elements in horizontal direction
nelm_vert = 10 # number of elements in vertical direction

end
#
Actual definition of the mesh
#
mesh2d

Definition of the coordinates the user points

points
p1=(0,0)
p2=($width,0)
p3=($width,$height)
p4=(0,$height)

Definition of the curves

curves
c1=line(p1,p2,nelm=$nelm_hor)
c2=line(p2,p3,nelm=$nelm_vert)
c3=line(p3,p4,nelm=$nelm_hor)
c4=line(p4,p1,nelm=$nelm_vert)

Definition of the surface

surfaces
s1=general3(c1,c2,c3,c4)

Plot the mesh

plot
end

Explanation:

• In the part constants ... end, some general constants with respect to the mesh are defined.
In this case, the width and the height of the mesh and the number of elements in horizontal
and vertical direction. In this way it is easy to change these numbers later on.

• The part mesh2d ... end is meant for the actual mesh generation.
First all user points are defined, next the curves as straight lines with linear elements (line1),
begin point, and point and number of elements.
After that, the surface is defined using the submesh generator general with triangular elements
(general3), and corresponding curves and finally a plot command is given.
The dollar-sign before the constants in the mesh definition, indicate that the values as defined
in the constants part must be used.
Everything after the hash symbol is treated as comment.

PRAC the input file September 1999 4.3.1

4.3 Some remarks concerning the input files

In the previous section we have seen an example of a simple input file. In the next section we shall
treat a part of the input for the mesh generator. But before doing so we consider some general
rules that are valid for all SEPRAN input files that are defined in the SEPRAN manuals, unless
otherwise stated.
First of all it must be noted that the input file is not a FORTRAN file, hence rules that apply for
FORTRAN files are not generally applicable to the SEPRAN input files. In fact each input file is
interpreted, character for character.
The following rules are generally applicable for the input files:

• At most 80 characters in each line of the input file are read, all characters that are present
after column 80 are neglected.

• If an input line requires more than 80 columns continuation of this line may be defined by
putting the characters // after the last text on a line, but of course within the columns 1 to
80. This means that the line is continued on the next line.
For example the next three lines are considered as one line:

c4 = line1 (p1, p2,//
nelm = $nelm_hor //
ratio = 3, factor = 0.5)

• You may put comment in the input file in two ways:

1. By putting a * in column 1. The whole line is treated as comment.
2. By putting a hash (#) in the text. All characters behind the hash are treated as comment.

• SEPRAN does not distinguish between capitals and lower case, except in character strings.

• Numbers must satisfy the standard FORTRAN rules. However, they may not contain spaces.
Examples are 1 1.0 1d0 1.0d0 1e0 1.0e0 0.01 .01 -0.01

• Spaces and end of lines are treated as separation symbols. Also special characters as , = : ;
may be used as separator.

• It is not possible to use special characters like + - * to define an expression in the input file.
Hence an expression like 3*4 is not recognized and must be replaced by 12.

• The input file may start with a part CONSTANTS to define some general constants. This part
has the following layout:

CONSTANTS
INTEGERS

1: name = value
3: name

name = value
REALS

1: name = value
3: name = value

name = value
VARIABLES

1: name = value
3: name = value

name
VECTOR_NAMES

1: name
2: name

END

4.3.2 the input file September 1999 PRAC

These records have the following meaning

CONSTANTS (mandatory). This keyword indicates that constants will be defined.
If this keyword is not present as first keyword in the file it is not possible to define
constants. This keyword may be followed by the subkeywords (always on a new line):

INTEGERS This keyword indicates that some integer constants will be defined.
It must be followed by the integers to be defined.
The layout of the integers is:

name_of_constant value

name of constant defines the name of the constant. The name must start with a letter
and may consist of letters, digits and underscore signs only. All other signs are treated
as separation sign, including the blank space. The name of the constant may be used in
the rest of the input file as reference to the constant. This reference must be preceded
by the $-sign, to indicate that it is a reference and not a keyword.

value must be a number according to standard FORTRAN rules. Spaces in the number
are treated as separation character. If value is given the constant gets an initial value.

REALS This keyword indicates that some real constants will be defined.
It must be followed by the reals to be defined according to exactly the same rules as for
the integers. Names of reals must be different from the names of the integers.

VARIABLES This keyword indicates that some variables will be defined.
It must be followed by the variables to be defined according to exactly the same rules as
for the integers.
The difference between a variable and a real or integer constant is the following:
Constants that are used in the input file will be interpreted at the moment they are read.
Then the value of the constant is substituted instead of the name of the constant. The
reference to the constant must always be $-sign immediately followed by the name of the
constant (no spaces allowed). Hence if the constant changes later on this has no effect
anymore.
Since all input is read at the start of the input, this means that there is hardly any
possibility to change the constant.

On the other hand variables are connected to the scalars as defined in the input file.
See Section 5.4.11. A reference to a variable must be preceded by a %-sign immediately
followed by the name of the scalar.
Scalars are evaluated at the moment they are used and may be recomputed during the
execution of the program. Hence they allow a larger flexibility to manipulate. Internally
this means that the value of the variable is not substituted during reading, but that a
reference to the variable is made.
At this moment variables can only be used in combination with the keyword STRUC-
TURE as defined in Section 5.4.11.

VECTOR NAMES This part makes only sense for the computational part and for the
postprocessing. It offers the possiblity to give an output vector a specific name. This
name may be used instead of a vector number, in order to increase readability. The
reference to vectors defined in this block must be preceded by a %-sign. The input in
this block is number followed by name, each on a new line. The solution vector is always
coupled to sequence number 1. In the output block other sequence numbers may be
used.
If a name is defined in the input block for sepcomp, this name is also known in the
postprocessing program seppost.

END (mandatory), defines the end of the ”CONSTANT” block.

The block CONSTANTS must always be read as first block.

PRAC Input for the mesh generator September 1998 4.4.1

4.4 Input for the mesh generator

The input for the mesh generator must be opened with MESH1D, MESH2D or MESH3D, depend-
ing on whether the problem is one-, two- or three-dimensional, and must be closed with END.

The records must be given in the order as specified.
An option is indicated like this [option].

MESHnD (mandatory)
opens the input for SEPMESH, and defines the dimension of the space NDIM. (NDIM = n).

COARSE (UNIT=u) (optional)
defines that coarseness is used, u defines the unit length. Default value: 1.

POINTS (mandatory)
defines the points. Must be followed by records of the type:

P1 = (x_1 , y_1 , z_1, c)
P2 = (x_2 , y_2 , z_2, c)

.

.

.
Pi = (x_i , y_i , z_i, c)

with i the point number and x i, y i and z i the co-ordinates of point i. For one-dimensional
problems only xi is required, etc. Default values for the co-ordinates: 0.

c must only be used when the COARSE has been read. It defines the coarseness of the
elements in the neighbourhood of the point Pi; default value: 1.
Elements sides that contain user point Pi as nodal point, get a local length of approximately
cu, where u is the unit defined in the COARSE record.

CURVES (mandatory)
defines the curve. Must be followed by records of the type:

C1 = LINE 1 (P1, P2, NELM=4)
C2 = ARC 2 (P1, P2, P3, NELM = 3, RATIO = 1, FACTOR = .3)

etc.
with Ci the curve number.
The names LINE1, LINE2, ARC1, ARC2, USER1 and USER2 are names that may not be
removed. The following possibilities are available:

Ci = LINE <element_type> (P1, P2, NELM=n [, RATIO=r, FACTOR=f])
Ci = ARC <element_type> (P1, P2, P3, NELM=n [, RATIO=r, FACTOR=f])
Ci = USER <element_type> (P1, P2, P3, . . . , Pn)
Ci = CLINE <element_type> (P1, P2 [,NODD=o])
Ci = CARC <element_type> (P1, P2, P3 [,NODD=o])
Ci = CURVES (Ck, Cl, Cm, . . .)

with LINE, ARC, USER, CLINE, CARC and CURVES as defined in 4.1.2.
NELM=n gives the number of elements that must be created along the curve (linear or
quadratic depending on the value of < element type >).
If < element type > is omitted, linear elements are created.

4.4.2 Input for the mesh generator September 1998 PRAC

RATIO=r indicates the options for distribution of the nodal points. Possibilities:

r=0: equidistant grid size (default)

r=1: the last cell is f times the first one.

r=2: each next cell is f times the preceding one.

FACTOR=f the factor to be used when r=1 or r=2. Default: f=1.

When LINE is used, a line is generated from point P1 to point P2, for example P3, P6 or P7,
P1.

When ARC is used an arc is generated from point P1 to P2 with centre P3. When P3 is given
the arc is created counter clockwise, when -P3 is given it is created clockwise.

When USER1 is used, the curve is defined by the points P1, P2, P3, . . ., Pn in that sequence,
when USER2 is used the curve is defined by the same points, but also the midpoints are
generated exactly in the middle of the lines (P1, P2), (P2, P3), . . . , (Pn-1 , Pn).

When CLINE is used, a line is generated from P1 to P2, where the coarseness as given in the
points P1 and P2 is used to define the elements. The value of o indicates whether the number
of end points of the elements is free, odd or even.
Possibilities:

o=0,1: free

o=2 : number of end points odd

o=3 : number of end points even

Default value: o=0.

When CARC is used, an arc is generated from point P1 to P2 with centre P3, where the
coarseness as given in the points P1 and P2 is used to define the elements. For the value of
o, see CLINE. When P3 is given the arc is created counter clockwise, when -P3 is given it is
created clockwise.

When CURVES is used a curve is defined by the subsequent curves Ck, Cl, Cm, All these
curves must have the same shape number. When the sign of the curve number is positive,
the positive direction is used, otherwise (negative sign), the reversed direction of the curve is
used. The numbers k, l, and m must be smaller than i.

SURFACES (optional)
defines the surfaces. Must be followed by records of the type:

S1 = GENERAL 3 (C1, C2, C3, C4, . . .)
S2 = GENERAL 5 (-C5, C6, -C9, C5, . . .)
S3 = QUADRILATERAL 3 (C4, -C6, C8, C2)

etc.
with Si the surface number.
The names GENERAL and QUADRILATERAL are names that may not be removed. The
value of < element type > gives the shape number of the elements to be created, see Table
4.1.1 (3 ≤< element type >≤ 6). Possibilities:

3 Linear triangle with 3 points

4 Isoparametric triangle with 6 points

5 Quadrilateral with 4 points

6 Isoparametric quadrilateral with 9 points

PRAC Input for the mesh generator September 1998 4.4.3

If the user wants to define several element groups, for example since he uses different values
of a specific coefficient for different parts of the region, he has to use the options MESHLINE
and/or MESHSURF. If the mesh contains elements of different shapes, for example line el-
ements and surface elements, or triangles and quadrilaterals it is also obliged to introduce
element groups and hence use the options MESHLINE and/or MESHSURF.

MESHLINE (optional)
defines the one-dimensional elements, or line elements in R2 and R3. Must be followed by
records of the type:

LELM1 = (SHAPE = 1, C2, C4)
LELM2 = (SHAPE = 2 ,C1)
LELMi = (SHAPE = j, C6)

with i the element group number. Standard elements must be generated with increasing
element group number, first all line elements, then all surface elements, and finally the volume
elements.
SHAPE = j defines the shape number of the standard element. See 4.1.4
C1,C2 : line elements are generated along the curves C1 to C2, when C2 is not given only
curve C1 is used.

MESHSURF (optional)
defines the two-dimensional elements in R2 or surface elements in R3. Must be followed by
records of the type:

SELM i = (S1, S2)

with i the element group number. Standard elements must be generated with increasing
element group number, first all line elements, then all surface elements, and finally the volume
elements. Elements of the same element group must have exactly the same shape, i.e. they
must be all linear triangles or all bi-quadratic quadrilaterals and so on.

S1, S2: the elements generated on the surfaces S1, S1 + 1,. . ., S2 are appended to the mesh.
When S2 is not given only surface S1 is used.

Special purpose elements

MESHCONNECT (optional)
defines elements that connect user points or nodal points in curves or surfaces.
Also it is possible to connect elements at curves or surfaces. In this way higher dimensional
connection elements arise.

These elements are necessary for periodical boundary conditions, see Sections 2.4.3 and 5.4.1.
MESHCONNECT must be followed by records of the type:

CELMi = POINTS (P1, P2)
CELMi = CURVES (C1, C2)

with i the element group number. Standard elements must be generated with increasing
element group number, first all line, surface and volume elements, and then the connected
elements.

When CELMi = POINTS (P1 to P2) is defined, an element is created from user point P1 to
user point P2.
When CELMi = CURVES (C1 to C2) is defined, elements are defined from nodal points on
curve |C1| to nodal points on curve |C2|, or from elements at curve |C1| to elements on curve
|C2|. When C1 is positive the elements are created in forward direction starting from the first

4.4.4 Input for the mesh generator September 1998 PRAC

position, when C1 is negative the elements are created in reversed order. The same rules are
valid for C2.

These connection elements are treated as special elements, which also implies that they are
skipped in the postprocessing part.

Auxiliary commands

PLOT (optional)
indicates that the points, curves, the surfaces and the mesh must be plotted, each on a new
picture. This record may contain data. In that case it has the following shape:

PLOT (PLOTFM = l, YFACT = y)

with PLOTFM = l the length of the plot in centimeters. The default value is machine
dependent, usually 20 or 15 centimeters are used.
YFACT = y: Scale factor; all y-coordinates are multiplied by y before plotting the mesh. y 6=
1 should be used when the co-ordinates in x and y direction are of different scales, and hence
the picture becomes too small. Default value: 1.

END (mandatory)
End of the input for subroutine MESH.

Remark:

The input must be given in the sequence:
MESH card
POINTS
CURVES
SURFACES
VOLUMES
MESHLINE
MESHSURF
MESHCONNECT
PLOT
END

When MESHLINE nor MESHSURF are given, it is supposed that there is only one type of internal
element, with element group number 1. This element is a line element when no surfaces are defined.
Otherwise it is a surface element. Of course the shapes of elements in different submeshes must be
equal.

Example

Consider the region in Figure 4.4.1 Let the number of elements along each side be equal to 10, with
equidistant mesh sizes. Then the following input can be used:

mesh2d
points

p1=(0,0)
p2=(1,0)
p3=(1,1)
p4=(0,1)

curves

PRAC Input for the mesh generator September 1998 4.4.5

c1=line(p1,p2,nelm=10)
c2=line(p2,p3,nelm=10)
c3=line(p3,p4,nelm=10)
c4=line(p4,p1,nelm=10)

surfaces
s1 = general3(c1,c2,c3,c4)

plot
end

1

2

3

4

Figure 4.4.1: Example of a region to be divided in elements

An alternative possibility is:

mesh2d
coarse(unit=1)
points

p1=(0,0,0.1)
p2=(1,0,0.1)
p3=(1,1,0.1)
p4=(0,1,0.1)

curves
c1=cline(p1,p2)
c2=cline(p2,p3)
c3=cline(p3,p4)
c4=cline(p4,p1)

surfaces
s1 = general3(c1,c2,c3,c4)

plot
end

Figure 4.4.2 shows the result of the mesh generation. Figure 4.4.3 shows the result of the same
region with GENERAL replaced by QUADRILATERAL.

4.4.6 Input for the mesh generator September 1998 PRAC

Figure 4.4.2: The result of the mesh generation.

Figure 4.4.3: Result of the same region, with GENERAL replaced by QUADRILATERAL.

PRAC Subroutine FUNCCV November 1999 4.4.1.1

4.4.1 Subroutine FUNCCV

Description

Subroutine FUNCCV is used when curves must be generated using the PARAM or
CPARAM mechanism. With this subroutine the user may define a curve as function of
a parameter t. FUNCCV must be written by the user.

Heading

subroutine funccv (icurve, t, x, y, z)

Parameters

DOUBLE PRECISION T, X, Y, Z

INTEGER ICURVE

ICURVE Curve number. Subroutine MESH gives ICURVE the sequence number of
the curve to be generated.

T Parameter t for the definition of the curve. Program SEPMESH gives t values be-
tween t0 and t1.

X,Y,Z the user must give X, Y and Z the values of the co-ordinates as function of the
parameter t and the curve number ICURVE.

Input

Program SEPMESH gives ICURVE and T a value

Output

The user must fill the co-ordinates X, Y and Z.

Interface

Subroutine FUNCCV must be programmed as follows:

subroutine funccv (icurve, t, x, y, z)
implicit none
integer icurve
double precision t, x, y, z

.

.

. statements to give x,y and z a value as function

. of t and icurve

.
end

4.4.1.2 Subroutine FUNCCV November 1999 PRAC

PRAC Computational part September 1998 5.1.1

5 The computational part of SEPRAN

5.1 Introduction

The computational part of SEPRAN consists of the program SEPCOMP. In case of standard
applications it is sufficient to use SEPCOMP in exactly the same way as SEPMESH. Hence the
user creates an input file and he calls program sepcomp with this input file as input.
In the case that a functions subroutine has to be added for example to compute space dependent
boundary conditions, is is necessary to introduce a local program sepcomp.
This program sepcomp consists of three lines only and is treated in Section 5.2. For the lab at Delft
University it is obliged to program your own element and to add an element subroutine. So now it
is always necessary to add the main program SEPCOMP.
In Section 5.2 it is described how program SEPCOMP looks like and how you must compile, link
and run this program.
Section 5.3 recalls some things you have to look after when programming in FORTRAN.
The input for program SEPCOMP is treated in Section 5.4.
Section 5.5 deals with function subroutines that may be required in case of space or time-dependent
quantities.
Finally in Section 5.6 it is described how you must program your own element subroutine.

5.1.2 Computational part September 1998 PRAC

PRAC How to use program SEPCOMP September 1999 5.2.1

5.2 How to use program SEPCOMP

With SEPCOMP it is possible to solve relatively complex problems. However, in this introduction
we restrict ourselves to the simple case in which the user wants to solve one stationary linear problem
or one stationary non-linear problem. In a number of cases it is sufficient to run SEPCOMP as
described in Section 3.2. However, if the user wants to supply function subroutines, for example
to describe essential boundary conditions or to describe position dependent coefficients, it is not
possible to use SEPCOMP immediately. In that case the user must create a simple main program
consisting of 3 lines only and also provide the FORTRAN sources for the function subroutines.
For the ”numerical analysis lab” this is always necessary since a subroutine ELEMSUBR must be
provided.

The main program has the following structure:

program example
call sepcom (0)
end

Subroutine SEPCOM is in fact the body of program SEPCOMP. It has one parameter, which in
the standard case must be equal to 0. For the meaning of this parameter the reader is referred to
the programmers guide. The name of the program (in this case EXAMPLE) may be chosen freely.

If one or more function subroutines are provided the easiest way is to put these subroutines imme-
diately behind the main program. So in that case we get:

program example
call sepcom (0)
end

function func (...)
.
.
.

end

function funcbc (...)
.
.
.

end

subroutine elemsubr (...)
.
.
.

end

In this example the parameters and the body of the function subroutines have intentionally been
skipped, they are treated in the Sections 5.5 and 5.6.

The main program and the subroutines must be created by a text editor and put into a file. This
file must have the extension .f, for example

sepcomp.f

The user input must be stored in a separate file. In Section 5.3 some general remarks and recommen-
dations about the programming in FORTRAN are given. Inexperienced FORTRAN programmers

5.2.2 How to use program SEPCOMP September 1999 PRAC

are advised to read this section and follow the recommendation carefully. They may be of help to
avoid errors.

Once the file containing main program and subroutines has been created, this file must be trans-
lated (compiled) and the program must be linked with the SEPRAN libraries. Both actions may
be performed in one step by the command seplink:

seplink file

where file is the name of the file containing the program without the extension .f.
For example the command:

seplink sepcomp

compiles and links the file sepcomp.f.

In the first step of seplink the fortran code is checked and translated. Fortran error-messages appear
on the screen. If there are too much errors, it may be necessary to write these messages to a file
for later inspection.
This may be done by redirecting to an output file like:

seplink sepcomp >& outputfile

If one or more subroutines are missing seplink reacts with some machine-dependent message. For
example in unix, a common one is the message undefined symbol, followed by the name of the
subroutine(s) provided with an underscore at the end of the name. For example if you did provide
a function subroutine funcbc instead of funcbc you get the message

undefined symbol

funcbc_

The error message ”subroutines missing” usually results from an incorrectly spelled subroutine
name or from the omission to declare an array.

Error messages of the linking phase are written directly to the screen. If both compilation and
linking have been carried out successfully seplink produces a file with the name of the seplink pa-
rameter (that is without the extension .f). So seplink sepcomp produces a file sepcomp. To run
the program sepcomp in a unix environment you type:

sepcomp < inputfile > outputfile

or

sepcomp < inputfile

In outputfile the results of program example are written. These may be error messages of
SEPRAN or output written by the user. If outputfile is omitted all information is written to the
screen.

The main program uses the file meshoutput generated by sepmesh and produces two files sepcomp.inf

PRAC How to use program SEPCOMP September 1999 5.2.3

and sepcomp.out that will be used by seppost.

Remark: the outputfile may have any name except meshoutput, sepcomp.inf, sepcomp.out or
sepplot.∗ ∗ ∗.
To avoid unnecessary typing a body of program sepcomp with corresponding subroutine elemsubr
is available.
You can get this file (sepcomp.f) locally by giving the command:

sepgetpract sepcomp

If you use another name then sepcomp, the body is put into a file with that new name with suffix
.f. For example practicum creates a file practicum.f.
The file sepcomp.f can be edited using nedit, to get the correct program.

Remark:

The use of sepgetpract is very important: not only does it prevent unnecessary typing,
also the number of errors in your program may be largely reduced.

5.2.4 How to use program SEPCOMP September 1999 PRAC

PRAC Programming considerations September 1998 5.3.1

5.3 Programming considerations

SEPRAN consists of a set of FORTRAN subroutines that can be used in standard FORTRAN 77
programs. If you write your own subroutines or function subroutines, it is advised to follow the
next recommendations:

(i) In the main program and each subroutine it is advised to declare all variables explicitly. To
check the declarations put the next statement immediately after the program or subroutine
statement:

implicit none

Furthermore, all reals must be declared double precision, because SEPRAN computes only in
double precision in order to avoid loss of accuracy.

Real constants must be used in double precision mode, i.e. you should use 3.5d0 instead of
3.5.

In this manual all arrays or variables that are not explicitly declared satisfy the property
that they are integer if there first letter is a letter from the range I-N and a double precision
otherwise.

(ii) The following FORTRAN conventions are standard:

A C in column 1 means a comment line.
For other lines a symbol in column 6 means a continuation line, i.e. the statement of the
preceding line is continued on this line. All statements should start after column 6, column
72 is the last column to be used.

(iii) The input from the standard input file is organized in records. A record is a line. Records
must always be at most 80 positions long.
SEPRAN requires a special form of input.

For a description of the rules that apply see Section 4.3

Mark that you need two files for the computational program, the fortran file satisfying all standard
Fortran rules and the input file satisfying the SEPRAN rules.
The fortran file has the extension .f (usually it is called sepcomp.f).
The name of the input file is free, but a common extension is .prb.

List of frequently made errors

• The FORTRAN text starts before column 7 or ends behind column 72.

• The input file is put in the same file as the fortran file

• The quotient of two integers is computed, like 1/4. According to FORTRAN rules, the result
is an integer that is chopped, hence 1/4 = 0.

5.3.2 Programming considerations September 1998 PRAC

PRAC Input for SEPCOMP September 1998 5.4.1

5.4 Description of the input for program SEPCOMP

Before describing the input block, we consider a simple example.

A sample input file

Consider the square region as defined in Section 4.2. Suppose that we want to solve the Poisson
equation:

− ∆c = f (5.4.1)

with f a given function. In our example we choose f = 1. Let the boundary conditions be c = 1 on
curve C1 and ∂c

∂n = 0 on the rest of the boundary.
This problem is part of the general class of second order elliptic equations as described in the
manual Standard problems, Section 3.1. According to this manual the boundary condition ∂c

∂n = 0
is natural and does not need to be prescribed. It is satisfied automatically.
The Poisson equation corresponds to the general case with a11 = 1 and a22 = 1. It concerns the
sixth and ninth coefficient respectively. The source term is given by coefficient 16.
The matrix is symmetrical and positive definite.
The following input file may be used as input for program SEPCOMP:

#
square.prb
#
Example file for the SEPRAN introduction, Section 5.4
#
Define some constants for the problem, See introduction, Section 4.3
#
constants

reals
a11 = 1 # coefficient for the differential equation
a22 = 1 # coefficient for the differential equation
f = 1 # source term

end
#
Problem definition, it is described what type of problem it concerns
See introduction, Section 5.4.1
#
problem

types # Define the type of equations
elgrp1 = (type=800) # General second order elliptic equation

essboundcond # Define where essential boundary
conditions are given (not the value)

curves(c1) # essential boundary conditions on c1
end
#
Define the structure of the large matrix
See introduction, Section 5.4.2
#
matrix

method = 1 # The matrix is symmetrical
It is stored as a profile matrix hence
a direct solver is used

end
#
Define the values of the non-zero essential boundary conditions
See introduction, Section 5.4.3

5.4.2 Input for SEPCOMP September 1998 PRAC

#
essential boundary conditions

curves(c1), value=1 # u=1, along curve c1
end
#
Define the coefficients for the differential equation
See introduction, Section 5.4.4 and
manual Standard Problems Sections 3.1
#
coefficients

elgrp1 (nparm=20) # The element group has at most 20 coefficients
coef 6 = $a11 # coefficient a11 (Laplace)
coef 9 = $a22 # coefficient a22 (Laplace)
coef16 = $f # source term

end
#
Information for the linear solver
See introduction, Section 5.4.6
#
solve

positive definite # The matrix is positive definite
end
end_of_sepran_input

General rules

The input for program SEPCOMP is subdivided into a number of blocks. Some of these blocks
must be given in a fixed sequence; all others are free. Each block starts with a specific main keyword
and ends with the keyword END. Unless stated otherwise all commands in a block must be given
on a new line. It is advised to indent the input between main keyword and the keyword END to
make the block more visible. The same is advised for subblocks. The end of the input is indicated
by the physical end of file or by the keyword END OF SEPRAN INPUT. This last keyword may
be necessary if the user reads his own input in the standard SEPRAN input file.
SEPCOMP starts with reading all SEPRAN input before carrying out the necessary computations.
In this way input errors are checked immediately. The present version of SEPCOMP recognizes the
following blocks at least the following main keywords indicating the beginning of a block:

• PROBLEM

• MATRIX

• ESSENTIAL BOUNDARY CONDITIONS (3 keywords)

• CREATE

• SOLVE

• NONLINEAR EQUATIONS (2 keywords)

• DERIVATIVES

• INTEGRALS

• BOUNDARY INTEGRAL

• OUTPUT

• STRUCTURE

PRAC Input for SEPCOMP September 1998 5.4.3

Other keywords that may be interpreted are described in the SEPRAN users manual. The block
PROBLEM must be given as first block, it may only be preceded by the block START, which is
not treated in this manual. All other blocks may be given in any sequence. The information of a
block, however, must always be positioned between the main keyword and the keyword END. The
block PROBLEM is mandatory, all other blocks are optional.
If no input for a block is given default values are used.
The main blocks have the following meaning:

PROBLEM Defines the type of problem to be solved, i.e. the type of differential equation, the
type of boundary conditions, at which boundaries these boundary conditions are given etc.
PROBLEM only defines types not values. So in the part PROBLEM it is fixed at which
boundaries essential boundary conditions must be prescribed, but not what the values of
these boundary conditions are. See Section 5.4.1.

MATRIX Defines the type of storage to be used for the large matrix. In this part it is given
whether the large matrix is symmetrical, complex, etc. But also the user defines whether the
storage scheme corresponds to a direct method or a compact method. Implicitly this defines
the type of solver that will be used to solve the systems of linear equations. If a direct storage
is used, a profile solver will be called (direct method), if a compact storage is used, the linear
system is solved by an iterative method.
If the part MATRIX is skipped it is assumed that the matrix is real, non-symmetric and that
a direct method is used. See Section 5.4.2.

ESSENTIAL BOUNDARY CONDITIONS Defines the values of the essential boundary con-
ditions. It is only necessary to define the non-zero essential boundary conditions, all other
essential boundary conditions are made equal to zero automatically.
If the part ESSENTIAL BOUNDARY CONDITIONS is skipped all essential boundary con-
ditions are set equal to zero. See Section 5.4.3.

CREATE Can be used to define a vector, for example the start vector in case of a non-linear
problem. See Section 5.4.4.

SOLVE Gives information with respect to the linear solver to be used. For example in the case
of a direct method, it is possible to tell the solver that the matrix is positive definite. In the
case of an iterative solver, the user may give extra information about the type of linear solver
etc.
If the part SOLVE is skipped, the default values are used. This means that in the case of
a storage scheme corresponding to a direct solver, a profile method is used and it is not
assumed that the matrix is positive definite. In the case of an iterative solver this means that
the default iterative solver, with the default accuracy and the default set ups is used. See
Section 5.4.5.

NONLINEAR EQUATIONS Indicates that the partial differential equation to be solved is sta-
tionary and non-linear. In that case an iterative procedure is necessary to solve the non-linear
problem. In each step of the non-linear iteration a linear system of equations is solved. In
this part the user gives some information about the iteration process.
If the keywords NONLINEAR EQUATIONS are skipped it is assumed that the partial differ-
ential equation to be solved is linear and no iteration is carried out. See Section 5.4.6.

DERIVATIVES This keyword is used when a derived quantity of the solution must be computed,
for example the gradient of the solution.
This keyword is only activated in combination with a structure block. See Section 5.4.8.

INTEGRALS This keyword is used when an integral over the solution must be computed.
This keyword is only activated in combination with a structure block. See Section 5.4.9.

BOUNDARY INTEGRAL This keyword is used when an integral over (a part) the boundary
of the the solution must be computed.
This keyword is only activated in combination with a structure block. See Section 5.4.10.

5.4.4 Input for SEPCOMP September 1998 PRAC

OUTPUT Defines which output is written to the file sepcomp.out.
This output may be used in the post-processing part of SEPRAN.
If the keyword OUTPUT is skipped only the computed solution is written to the output file.
Otherwise it is also possible to compute derivatives or other derived quantities and to write
these to the file sepcomp.out See Section 5.4.7.

STRUCTURE This keyword is very special. In fact it defines which actions must be carried out
in the program and in which sequence. If a standard linear or non-linear problem must be
solved, there is no need to give the structure block. However, as soon as something extra is
required, like an integral of derivates that must be computed, or if some prints during the
computations must be made, it is necessary to supply this extra block. See Section 5.4.11.

PRAC Input for SEPCOMP September 1998 5.4.5

So a typical input for a linear stationary problem may look like:

problem
.
.
.

end
matrix
.
.
.

end
essential boundary conditions
.
.
.

end
solve
.
.
.

end

5.4.6 Input for SEPCOMP September 1998 PRAC

and a typical input for a nonlinear stationary problem:

problem
.
.
.

end
matrix
.
.
.

end
essential boundary conditions
.
.
.

end
solve
.
.
.

end
nonlinear equations
.
.
.

end

In the next subsections the input of each of the blocks is described.

PRAC PROBLEM October 1998 5.4.1.1

5.4.1 The main keyword PROBLEM

The block defined by the main keyword PROBLEM defines which problem is to be solved by pro-
gram SEPCOMP. For each element group defined in SEPMESH the user must indicate what type
of problem has to be solved. Problems are indicated by so-called type numbers.
SEPRAN also allows for the definition of your own elements. For that reason the group of element
numbers between 1 and 99 is strictly reserved for user defined elements, whereas type numbers
larger than 99 correspond to SEPRAN standard elements. Type numbers smaller than 1 have a
special meaning.
Type number -1 is used for periodical boundary conditions. See also Section 2.4.3. This type num-
ber may only be used for element s defined by MESHCONNECT as described in Section 4.4.

For the lab you have to use type numbers between 1 and 99 and eventually -1.
If type numbers between 1 and 99 are used the user must provide his own element subroutines as
described in Section 5.5. For each differential equation it is necessary to give boundary conditions.
SEPRAN distinguishes between so-called essential boundary conditions and natural boundary con-
ditions. An essential boundary condition is a boundary condition that prescribes unknowns at the
boundary explicitly, natural boundary conditions in general give some information about derivatives
or combinations of unknowns and derivatives at the boundary. Before using SEPRAN, the student
himself must decide which boundary conditions are natural.

Natural boundary conditions require extra elements, the so-called boundary elements. These ele-
ments may be defined in the part PROBLEM as boundary elements.

The block defined by the main keyword PROBLEM has the following structure:

PROBLEM
TYPES
data corresponding to TYPES

NATBOUNCOND
data corresponding to NATBOUNCOND

BOUNELEMENTS
data corresponding to BOUNELEMENTS

ESSBOUNDCOND
data corresponding to ESSBOUNDCOND

END

The keywords PROBLEM, END and TYPES are mandatory. All subkeywords may be given in
arbitrary order as long as they appear only once. The data corresponding to these subkeywords
must be given immediately after the keywords themselves.
If the keyword NATBOUNCOND is given then also the keyword BOUNELEMENTS must be
present.

Explanation of the subkeywords and description of the records (options are indicated between the
square brackets ”[” and ”]”):

PROBLEM (mandatory)
opens the input for this block.

TYPES (mandatory)
defines the problem definition numbers of the standard elements. Must be followed by records
of the type:

ELGRP 1 = (type = n1)
ELGRP 2 = (type = n2)
ELGRP i = (type = n3)

5.4.1.2 PROBLEM October 1998 PRAC

with i the element group number; exactly number of element groups (NELGRP) data records
are necessary. ni is the problem definition number of the ith element group.
The element group number refers to the element group number defined in the mesh generation
part. The number of element groups to be defined in this part TYPES must be exactly equal
to the number of element groups defined in the mesh generation.
The type number is used to define which type of problem must be solved. This type number
is available in the element subroutine, where it can be used to distinguish between different
element types. For the lab only type numbers between 1 and 99 may be used.
Type numbers less than 1 have a special meaning.
If the number of degrees of freedom per point is not equal to 1 then each record with ELGRP
must be followed by a record with

NUMDEGFD = n

where n is the number of degrees of freedom per point in that element. For almost all exercises
there is no need to give this statement.

NATBOUNCOND (optional)
indicates that standard boundary elements are used. Must be followed by data records of the
type:

BNGRP 1 = (type = n1)
BNGRP i = (type = ni)

with i the boundary element group number and ni is the boundary problem number of the
ith boundary element group.
The boundary element groups must be defined sequentially from 1. No boundary element
group numbers may be skipped. The largest boundary element group number defines the
number of boundary element groups (NUMNATBND).
Internally in the element subroutines the boundary groups get as element sequence number
NELGRP + IBNGRP, where IBNGRP is the boundary element group sequence number and
NELGRP is the number of element groups defined in the mesh generation.

BOUNELEMENTS (must only be used when NATBOUNCOND is used)
indicates that boundary elements are created. Must be followed by records of the following
type:

BELM1 = POINTS (P3, P6, P8, . . .)
BELM2 = CURVES (C1 to C2)
BELMi = CURVES (C5)

These records take care of the generation of boundary elements.
i is the boundary element group number; i may be used more than once. If boundary element
group numbers are not used, the number of elements for that group is equal to zero. The
boundary elements must be created with increasing boundary element group number. When
the boundary elements consist of points, the function POINTS must be used followed by the
numbers of the user defined points (see subroutine MESH). Only points that coincide with
nodal points may be used. At most 20 points are permitted in one record.
When the boundary elements consist of curve elements, the function CURVES must be used,
followed by the curve numbers.
C1 to C2: means that boundary elements are generated along the curves C1 to C2, when C2
is not given only curve C1 is used. When C2 is given, the curves C1 to C2 must be subsequent
curves with coinciding initial and end point, i.e. the end point of C1 must be equal to the
initial point of C1 + 1 etc.
The boundary elements must always be created counter-clockwise with respect to the inner
region. Hence the corresponding curves must also be generated counter-clockwise.

PRAC PROBLEM October 1998 5.4.1.3

The boundary elements must be created in the sequence: points, curves, surfaces. For surface
boundary elements (R3 only) the user is referred to the programmers guide.
For each boundary element group defined before it is necessary to create boundary elements.

ESSBOUNCOND (optional)
indicates that essential boundary conditions will be prescribed. In this part it is described in
which positions we have essential boundary conditions and which unknowns are prescribed.
However, the values of these boundary conditions are not yet given. They are described
by either the separate command ESSENTIAL BOUNDARY CONDITIONS or by CREATE
VECTOR. Both do not belong to the part PROBLEM. If, however, a degree of freedom is
not identified as essential boundary condition in this part of the input, it will never become
an essential boundary condition and values defined in other parts of the input given to these
unknowns will never be recognized as essential boundary conditions.
This record must be followed by records of the type:

DEGFD1, DEGFD3 = POINTS (P1, P5, P8)
DEGFD2 = POINTS (P2, P3)
DEGFD1, DEGFD2, DEGFD3 = CURVES (C1 to C5)

These records must be given in the sequence POINTS, CURVES, SURFACES.
DEGFDj indicates that the jth degree of freedom will be prescribed (the value of these degrees
of freedom are filled by the block ESSENTIAL BOUNDARY CONDITIONS).

Hence DEGFD1, DEGFD3 indicates that the first and third degree of freedom in the corre-
sponding nodal points are prescribed. At most 20 degrees of freedom are permitted in one
record. When DEGFDj = is omitted all degrees of freedom are supposed to be prescribed in
the corresponding nodal points.

When the essential boundary conditions are given in user defined points, the function POINTS
must be used followed by the numbers of the user defined points (see 3.1.2). Only points that
coincide with nodal points may be used. At most 20 points are permitted in one record.
When essential boundary conditions are given on curves the function CURVES must be used
followed by the curve numbers C1 to C5 indicating that essential boundary conditions of this
type are defined on the curves C1 to C5, or C1 only when C5 is omitted. When C5 is given,
the curves C1 to C5 must be subsequent curves with coinciding initial and end point, i.e. the
end point of C1 must be equal to the initial point of C1 + 1 etc.

END (mandatory)

5.4.1.4 PROBLEM October 1998 PRAC

PRAC MATRIX October 1998 5.4.2.1

5.4.2 The main keyword MATRIX

The block defined by the main keyword MATRIX defines the structure of the large matrix and
hence implicitly the linear solver to be used. SEPRAN distinguishes between symmetric and non-
symmetric, real and complex matrices. Furthermore storage schemes for direct methods differ from
the storage scheme for iterative solvers.
Whether the large matrix is symmetrical or not depends on the type of problem to be solved. In the
manual STANDARD PROBLEMS for each problem it is given whether the matrix is symmetrical
or not. This is also the case for real and complex matrices. Each symmetrical matrix may of course
be stored as a non-symmetrical matrix, however, the storage needed doubles in general and also the
computation time may increase. A real matrix may in general not be stored as a complex matrix.
The choice between a direct linear solver and an iterative linear solver is not so easy to make. In
general a direct solver is the most robust and most simple to use. However, for large problems
in R2 and smaller problems in R3 iterative solvers use much less memory and often also less
computation time. However, for some problems iterative solvers converge very slowly or even
diverge. Unfortunately no hard criterion can be formulated when one method is preferred above
the other one. An important remark is that in the case of time-dependent problems and sometimes
also stationary non-linear problems in general a good initial estimate of the solution is available.
In combination with a not too strict termination criterion this makes the iterative solvers more
favourable.

The block defined by the main keyword MATRIX has the following structure (options are indicated
between the square brackets ”[” and ”]”):

MATRIX (mandatory)
indicates that information of the structure of the large matrix will be given.

METHOD = i (mandatory), gives information of the structure of the large matrix. Depending
on the value of i the system of equations is solved by a direct solution method (Gaussian
elimination) or by an iterative method.
Possible values for i are for example:

1-4 The matrix is stored as a so-called profile matrix, which implies that a direct solution
method is used.

1 The matrix is real symmetric.
2 The matrix is real (in general not symmetric).
3 The matrix is complex symmetric.
4 The matrix is complex (in general not symmetric).

5-8 The matrix is stored as a so-called compact matrix, which means that an iterative solution
method is used.

5 The matrix is real symmetric.
6 The matrix is real (in general not symmetric).
7 The matrix is complex symmetric.
8 The matrix is complex (in general not symmetric).

Other values of i are not treated in this manual.

END (mandatory)
end of the input of the block MATRIX.

Remark: if the block corresponding to MATRIX is skipped METHOD = 2 is assumed.

5.4.2.2 MATRIX October 1998 PRAC

PRAC ESSENTIAL BOUNDARY CONDITIONS December 1995 5.4.3.1

5.4.3 The main keywords ESSENTIAL BOUNDARY CONDITIONS

The block defined by the main keywords ESSENTIAL BOUNDARY CONDITIONS defines whether
the solution vector is real or complex and also defines the values of the essential boundary condi-
tions. At which boundaries essential boundary conditions are given has already been described in
the part PROBLEM. In fact all essential boundary conditions that are not explicitly given in this
part are set equal to zero.

The block defined by the main keywords ESSENTIAL BOUNDARY CONDITIONS has the follow-
ing structure (options are indicated between the square brackets ”[” and ”]”):

ESSENTIAL [COMPLEX] BOUNDARY CONDITIONS (mandatory)
opens the input for PRESDF.

The option COMPLEX indicates that the solution vector is a complex vector.

Must be followed by records defining the essential boundary conditions. Only the non-zero
essential boundary conditions must be specified in this part. If all essential boundary condi-
tions are zero, no extra records are necessary.

Essential boundary conditions in user points and curves may be defined as follows:

POINTS (P1, P5, P8), DEGFD1 = (VALUE = 1.5)
POINTS (P1), DEGFD2 = (FUNC = 3)
CURVES (C1 to C5), DEGFD1 = (VALUE = 3D0)

POINTS (Pi, Pj, Pk) means that essential boundary conditions are prescribed in the
user points Pi, Pj and Pk. The brackets (and) surrounding Pi, Pj and Pk may not
be omitted, even if only one user point is given.

CURVES i (C1 to C5) indicates that essential boundary conditions are prescribed on
the curves C1 to C5, or only C1 if C5 is omitted. If C5 is given, the curves C1 to C5
must be subsequent curves with coinciding initial and end point, i.e. the end point of
C1 must be equal to the initial point of C1+1 etc.
The brackets surrounding C1, C5 may not be removed.

DEGFDi = means that the ith degree of freedom is prescribed by this record. If omitted,
the first degree of freedom is prescribed.

VALUE = 1.5 indicates that the degrees of freedom defined in this data record get the
value 1.5.

FUNC = 3 indicates that the degrees of freedom defined in this record are given by a
function depending on the co-ordinates. In that case the user must submit a function
subroutine FUNCBC as described in 5.5.1. The value following the equals sign corre-
sponds to the parameter IFUNC in FUNCBC, hence in this example IFUNC in the call
of FUNCBC is equal to 3.

The brackets surrounding VALUE = .. or FUNC = .. are essential.
For other values of interest the reader is referred to the Programmers Guide.

END (mandatory)
end of the block ESSENTIAL BOUNDARY CONDITIONS.

Remark: For complex vectors a complex value may be denoted by VALUE=(a,b), with a and
b two reals. The brackets are mandatory in this case! VALUE=a defines a real boundary

5.4.3.2 ESSENTIAL BOUNDARY CONDITIONS December 1995 PRAC

condition.

For complex vectors FUNC=k refers to a subroutine CFUNCB instead of FUNCBC. See 5.5.2
for a definition of CFUNCB.

Remark: if the block corresponding to ESSENTIAL BOUNDARY CONDITIONS is skipped it is as-
sumed that all essential boundary conditions have the value 0 and moreover that the solution vector
is real. So in case of a complex problem always the part ESSENTIAL BOUNDARY CONDITIONS
must be given.

PRAC CREATE October 1998 5.4.4.1

5.4.4 The main keyword CREATE

The block defined by the main keyword CREATE is used to create a SEPRAN vector, which
may be a solution vector or a vector of special structure. If this block is available it is always
read and interpreted. However, the actual creation of the vector takes only place if the option
CREATE VECTOR is used in the input block ”STRUCTURE”.

The block defined by the main keyword CREATE has the following structure (options are indicated
between the square brackets ”[” and ”]”):

CREATE [COMPLEX] VECTOR [,SEQUENCE_NUMBER = s]
Records defining the output vector

END

The various options in the CREATE record have the following meaning:

CREATE VECTOR mandatory, means that a vector must be created.

COMPLEX indicates that the solution vector is a complex vector.

SEQUENCE NUMBER = s may be used to distinguish between various input blocks with
respect to the creation of vectors.

After the CREATE keyword, records defining the vector must be given. The vector is created by
applying the definitions sequentially, so for example first a vector may be set to a constant, then
the curves may be changed into other values and finally the user points may be changed. The
sequence of the commands defines the sequence in which the vector is filled. This sequence may
be essential for the final value in a specific node. The records defining the computation have the
following shape:

[functional description] [degrees of freedom] [location part] in arbitrary order.

The functional description may be of one of the following shapes:

VALUE = alpha
VALUE = (alpha , beta)
FUNC[TION] = k

with

VALUE = α sets the required degrees of freedom equal to the constant value α. If the vector is
complex, also a complex value may be given like (α, β). In that case (α, 0) and α are identical.

FUNCTION = k defines the degrees of freedom as a function of the co-ordinates. In the case of
a real vector the function is defined by the function subroutine FUNC:

function FUNC (k, X, Y, Z)

see Section 5.5.3.
In the case of a complex vector the function is defined by the function subroutine CFUNC:

function CFUNC (k, X, Y, Z)

see Section 5.5.3. If the functional description is omitted, the default: VALUE=0 is assumed.

The degrees of freedom part may have one of the following structures:

5.4.4.2 CREATE October 1998 PRAC

DEGFD2
DEGFD3, DEGFD1, DEGFD6

which indicates that in the nodes to be created only physical unknown 2 or the physical unknowns
1, 2 and 6 are filled.
If this part is omitted all degrees of freedom in the nodes to be created are filled.

The location part may have one of the following structures:

POINTS (Pk, Pl, . . . , Pm)
USER POINTS (Pk to Pl)
CURVES (Cj [to Cm])

These records have the following meaning:

POINTS (Pi1, Pi2, ...) defines all user points between the brackets.

CURVES [l] (Cj [to Cm]) defines only the part of the vector in the curves Cj to Cm (or Cj if Cm

is omitted).
The curves Cj to Cm must be subsequent curves!

USER POINTS (Pl1 [to Pl2]) defines the part of the vector in the user points Pl1 to Pl2 (or
Pl1 if Pl2 is omitted).

If this part is omitted, all nodes are used.

Typical examples are:

VALUE=3
FUNC=6
VALUE=(2,0.5)

DEGFD1, VALUE=5
FUNC=6, DEGFD1, DEGFD3

POINTS (P1, P2, P6), DEGFD2, FUNC=5
POINTS (P1), FUNC=3, DEGFD1
USER POINTS (P3 to P6)
DEGFD3, USER POINTS (P3 to P7), VALUE=0.5
FUNC=2, DEGFD2, DEGFD6, CURVES 3 (C1 to C3)

Remarks:

• If no data records are given after the CREATE command, the complete vector is set equal to
zero.
However, as soon as at least one data record defining the vector or a part of it is given, the
vector is not initialized. That means that degrees of freedom that are not defined in the data
records are not changed or initialized. The user is responsible for the correct filling of the
vector.

• The vector is filled in the order given in the input file. Hence, the statements

VALUE=0
DEGFD2 = (FUNC=3)

set first the vector equal to zero and then replace the second component by the function

PRAC CREATE October 1998 5.4.4.3

defined by FUNC=3.
On the other hand the statements

DEGFD2=(FUNC=3)
VALUE=0

have as final effect that the vector is set equal to zero. In this case the first command is
useless and only consumes computing time.

A typical input block ”CREATE” might be:

CREATE sequence_number = 2
value = 0
degfd1 = func = 3
curves (c1 to c3), degfd2 = func = 4
curves (c2 to c3), degfd3 = func = 7

END

5.4.4.4 CREATE October 1998 PRAC

PRAC SOLVE September 1999 5.4.5.1

5.4.5 The main keyword SOLVE

The block defined by the main keyword SOLVE gives information with respect to the linear solver
to be used. Even in a non-linear problem a series of linear problems is solved, and hence this block
makes also sense in that case.
The type of linear solver to be used (direct or iterative) has already been defined in the block
MATRIX. In this part some extra information for the solver may be defined.

The block defined by the main keyword SOLVE has the following structure (options are indicated
between the square brackets ”[” and ”]”):

solve
positive_definite
iteration_method = iter_method [,options]

end

The sequence of the subkeywords is arbitrary.

POSITIVE DEFINITE indicates that the matrix to be solved is not only symmetrical, but also
positive definite. This is only used in case of a direct solver. This command may not only
improve the computation time, it also offers an extra check on the correctness of the input.
This keyword must only be used if a direct solver is applied, i.e. METHOD in the input block
MATRIX is between 1 and 4.

ITERATION METHOD defines the type of iteration method to be used as well as the options
to be applied. If the structure of the matrix as defined in the block MATRIX ... END by
METHOD =, has got a value between 1 and 4, the input about the iteration method is
neglected, since then always a direct solver will be used.
iter method may take one of the following values

cg
cgs
gmres

In symmetrical problems (METHOD=5) always the conjugate gradient method is used. If
the matrix is non-symmetrical (METHOD=6) the method is defined by iter method.
If CG is given the bi-cgstab method of Sonneveld and van der Vorst is used. CGS activates
the conjugate gradients squared method of Sonneveld and GMRES the so-called GMRES
method.

The options following iter method may be given in any sequence. They must be given in
the same record. If it is not possible to give all options within 80 columns it is necessary to
proceed on the next line. In that case the first line must be closed with the continuation mark
// i.e slash immediately followed by another slash. This process may be used recursively.

The following options are available:

preconditioning = prec
max_iter = m
accuracy = eps
print_level = p

PRECONDITIONING defines the type of preconditioner to be used. The following values
for prec are available:

none no preconditioner is used

5.4.5.2 SOLVE September 1999 PRAC

diagonal diagonal scaling of the matrix is used as preconditioner
ilu the preconditioner is a so-called incomplete LU decomposition
eisenstat incomplete LU decomposition where only the diagonal is changed

efficient implementation of Eisenstat
Gauss Seidel preconditioning with a Gauss Seidel iteration
mod eisenstat modified incomplete LU decomposition according to Axelson efficient

implementation of Eisenstat

The default value is eisenstat.

MAX ITER restricts the maximum number of iterations to m. If the number of iterations
exceeds this maximum an error message is given and the program is halted.
The default value for m is the number of unknowns, but usually the process should be
finished much earlier.

ACCURACY defines when the iteration process is terminated. If the absolute error is less
than ε the iteration is stopped. The default value is ε = 10−3

PRAC NONLINEAR EQUATIONS September 1999 5.4.6.1

5.4.6 The main keyword NONLINEAR EQUATIONS

The block defined by the main keyword NONLINEAR EQUATIONS indicates that a non-linear
stationary problem has to be solved. In this block information concerning the iteration process
must be defined.

The block defined by the main keywords NONLINEAR EQUATIONS has the following structure
(options are indicated between the square brackets ”[” and ”]”):

NONLINEAR_EQUATIONS (optional): opens the input for the non-linear solver.
GLOBAL_OPTIONS, options (optional)

END (mandatory)

The sequence of the subkeywords, subsubkeywords and subsubsubkeywords is arbitrary. However,
subsubkeywords corresponding to a subkeyword must all be grouped under the subkeyword and so
on. All sub, subsub and subsubsub keywords given above must start at a new line in the input file.

The subkeyword GLOBAL OPTIONS define some global choices with respect to the linear solver.
The options itself should be put on the same line as the keyword GLOBAL OPTIONS. If this line
exceeds position 80, continuation at the next line is necessary. This is activated by closing the line
by // (before column 81) and putting the rest of the information on the next line. This process
may be indefinitely repeated. The following options are available:

maxiter = m (Default 20)
miniter = m (Default 2)
accuracy = eps (Default 1d-3)
print_level = p (Default 0)
iteration_method = m (Default standard)
at_error = e (Default stop)

Meaning of the various options:

maxiter = m defines the maximum number of iterations that may be performed. If the number
of iterations reaches this maximum value and the accuracy has not been reached, an error
message is given and the program is terminated.

miniter = m defines the minimum number of iterations that have to be carried out.

accuracy = ε defines the accuracy at which the iteration terminates, provided the minimum num-
ber of iterations has been performed. Accuracy has been reached if the difference between
two succeeding iterations is less than ε.

print level = p gives the user the opportunity to indicate the amount of output information he
wants from the iteration process. p may take the values 0, 1 or 2. The amount of output
increases for increasing value of p.

iteration method = m defines the type of non-linear iteration method that is applied. Possible
values for m are:

standard
newton

standard means that a standard iteration method is applied: The process starts with a given
start vector u0 containing the boundary conditions. In each iteration Skuk+1 = fk is
solved, where the solution vector uk+1 also contains the given boundary conditions. The
matrix Sk and the right-hand-side vector fk may vary in each iteration step.

5.4.6.2 NONLINEAR EQUATIONS September 1999 PRAC

newton corresponds to the standard Newton (Raphson) method. This process is as follows:

start: given start vector u0

While not converged
Solve correction Sk δu = fk

Correct uk+1 = uk + δu

The correction in each step must satisfy homogeneous essential boundary conditions,
since otherwise the essential boundary conditions are changed in the correction step.

at error = e defines which action should be taken if the iteration process terminates because no
convergence could be found. Possible values are:

stop
return

If stop is used the iteration process is stopped if no convergence is found, otherwise (return)
means that control is given back to the main program and the result of the last iteration is
used as solution.
This option is very suitable to check what happens during the iteration. Suppose that the
iteration does not converge and you do not have any idea what causes it.
A possible way to check what happens is to start with maxiter = 1 in combination with
at_error = return.
After that you can check the solution at the first iteration using seppost. In this way some
possible errors, like incorrect boundary conditions may be detected.
Once this step is correct you may for example proceed with with maxiter = 2 in combina-
tion with at_error = return, and check the solution again with seppost. This gives you the
opportunity to check your iteration process.

PRAC OUTPUT October 1998 5.4.7.1

5.4.7 The main keyword OUTPUT

The block defined by the main keyword OUTPUT defines which output must be written to the file
sepcomp.out for post-processing purposes. If omitted only the solution is written, otherwise the
user may define which derived quantities must be computed and written to sepcomp.out.

The block defined by the main keyword OUTPUT has the following structure (options are indicated
between the square brackets ”[” and ”]”):

OUTPUT (optional): opens the input for the output part.

If more than one vector is created in the computational part, for example if a vector is created
separately or if derivatives are computed and stored in a vector a data record of the shape

write n solutions

may be used which indicates that n vectors are written to the file sepcomp.out to be used by
SEPPOST. This can only be used in combination with the STRUCTURE block.
The block must be closed with the keyword:

END (mandatory): end of the input of this block

If only one vector is to be written, this block may be skipped.

5.4.7.2 OUTPUT October 1998 PRAC

PRAC DERIVATIVES September 1999 5.4.8.1

5.4.8 The main keyword DERIVATIVES

The block defined by the main keyword DERIVATIVES gives information with respect to the
derived quantities (usually derivatives) to be computed. If this block is available it is always read
and interpreted. However, the actual computation of derivatives takes only place if the option
DERIVATIVES is used in the input block ”STRUCTURE”.

The block defined by the main keyword DERIVATIVES has the following structure (options are
indicated between the square brackets ”[” and ”]”):

derivatives [,sequence_number = s]
icheld = k
seq_input_vector = %name

end

The keywords DERIVATIVES and END are mandatory even when there is no subkeyword.

Meaning of the keywords:

DERIVATIVES ,SEQUENCE NUMBER = s opens the input for the computation of derived
quantities.
The sequence number s may be used to distinguish between various input blocks with respect
to the derivatives.

ICHELD = k defines the type of derived quantity to be computed. This parameter is passed
undisturbed to the element subroutine ELDERVSUBR see Section 5.6.2. This parameter
may be used to distinguish between several possibilities.
The default value for ICHELD is 1.

SEQ INPUT VECTOR = %name defines from which input vector the derivatives must be
computed.
The parameter %name refers to the vector with name name.

END defines the end of the input block

The sequence of the subkeywords is arbitrary.

The output vector is supposed to have the same number of degrees of freedom per point as the
solution vector (usually 1).

5.4.8.2 DERIVATIVES September 1999 PRAC

PRAC INTEGRALS October 1998 5.4.9.1

5.4.9 The main keyword INTEGRALS

The block defined by the main keyword INTEGRALS gives information with respect to the integrals
to be computed. If this block is available it is always read and interpreted. However, the actual
computation of integrals takes only place if the option INTEGRALS is used in the input block
”STRUCTURE”.

The block defined by the main keyword INTEGRALS has the following structure (options are
indicated between the square brackets ”[” and ”]”):

integrals [,sequence_number = s]
icheli = i

end

The keywords INTEGRALS and END are mandatory even when there is no subkeyword.

Meaning of the keywords:

INTEGRALS ,SEQUENCE NUMBER = s opens the input for the computation of integrals.
The sequence number s may be used to distinguish between various input blocks with respect
to the integrals.

ICHELI = k defines the type of integral to be computed. This parameter is passed undisturbed
to the element subroutine ELINTSUBR see Section 5.6.3. This parameter may be used to
distinguish between several possibilities.
The default value for ICHELI is 1.

END defines the end of the input block

5.4.9.2 INTEGRALS October 1998 PRAC

PRAC BOUNDARY INTEGRAL September 1999 5.4.10.1

5.4.10 The main keyword BOUNDARY INTEGRAL

The block defined by the main keyword BOUNDARY INTEGRAL gives information with respect
to the boundary integrals to be computed. If this block is available it is always read and in-
terpreted. However, the actual computation of integrals takes only place if the option BOUND-
ARY INTEGRAL is used in the input block ”STRUCTURE”.

The block defined by the main keyword BOUNDARY INTEGRAL has the following structure
(options are indicated between the square brackets ”[” and ”]”):

boundary_integral [,sequence_number = s]
ichint = i
ichfun = j
irule = k
curves (c1, c2, c3, ...)
degree_of_freedom = d

end

The keywords BOUNDARY INTEGRAL and END are mandatory even when there is no subkey-
word.

Meaning of the keywords:

BOUNDARY INTEGRAL , SEQUENCE NUMBER = s opens the input for the computation
of boundary integrals.
The sequence number s may be used to distinguish between various input blocks with respect
to the boundary integrals.

ICHINT = i defines the type of boundary integral to be computed. The following values for
ICHINT are available:

1.
∫

∂Ω

fuds, where u denotes the solution defined by the input vector (VECTOR %name in

the input block STRUCTURE) and f a function defined by ICHFUN.

2.
∫

∂Ω

fu ·nds, where u denotes the solution defined by the input vector (VECTOR i in the

input block STRUCTURE) and n the normal defined at the boundary. If is supposed
that the solution can be considered as a vector, which means that there are at least
NDIM (dimension of space) degrees of freedom per point to be integrated.

3.
∫

∂Ω

fu · tds, where t defines the tangential vector.

The default value for ICHINT is 1.

ICHFUN = j defines how the function f must be computed. The following values for ICHFUN
are permitted:

0 The function f is identical to 1.

>0 The function f must be computed by a function subroutine FUNC or CFUNC as described
in the SEPRAN introduction Section 5.5.3. If the solution vector is complex CFUNC
is used otherwise FUNC should be used. The value of ICHFUN is used as parameter
ICHOIS in the input of the function subroutines.
At this moment ICHFUN>0 is only permitted in combination with ICHINT=1.

The default value for ICHFUN = 1.

5.4.10.2 BOUNDARY INTEGRAL September 1999 PRAC

IRULE = k defines the type of numerical integration rule to be applied. The following values of
IRULE are available:

1. Trapezoid rule (Integration based upon two points)

2. Trapezoid rule with axi-symmetric co-ordinates, i.e. ds = 2πrds′.
3. Simpson rule (Integration based upon three points)

4. Simpson rule with axi-symmetric co-ordinates, i.e. ds = 2πrds′.
The default value for IRULE = 1.

CURVES (C1, C2, C3, ...) defines over which curves the integral must be computed. If a curve
must be integrated in reversed direction, the curve number must be provided with a minus
sign. Of course this possibility makes only sense for ICHINT > 1.

DEGREE OF FREEDOM = d defines which unknown in each point from the solution vector
(VECTOR %name) is used.
When u is a vector (ICHINT>1), the degrees of freedom u1, u2 and u3 in each nodal point
are supposed to be the degrees of freedom d, d + 1 and d + 2 respectively.

END defines the end of the input block

PRAC STRUCTURE November 1999 5.4.11.1

5.4.11 The main keyword STRUCTURE

The block defined by the main keyword STRUCTURE defines which actions should be performed
by program SEPCOMP. In fact this block defines the complete structure of the main program.

STRUCTURE should only be used if the standard options for the solution of a linear problem or
non-linear problem do not suffice. In the block STRUCTURE it is precisely described which vectors
and scalars are created, how they are created and in which sequence. STRUCTURE contains a
number of commands which internally refer to separate subroutines. Each of these subroutines
requires input. The input for these specific subroutines is defined in separate input blocks. Each of
these blocks may be provided with a local sequence number.
The commands in STRUCTURE may refer to these sequence numbers. The block defined by the
main keyword STRUCTURE starts with the command STRUCTURE at a separate record and
ends with the keyword END on another separate record. In between commands may be given in
any sequence and on separate records. However, the commands itself are carried out in exactly the
sequence as given in this block. This means that the user himself is responsible for the correctness
of the sequence of the commands. The only check that is performed is that vectors and scalars that
are used as input have already been filled before.

STRUCTURE makes it possible to work with a number (100) of vectors (solutions and so on) as
well as a number (1000) of scalars.
Each of them has a sequence number.
However, to increase readability we shall not use the sequence numbers of the vectors and scalars,
but instead we use the names as defined in the input block CONSTANTS, subparts VARIABLES
and VECTOR NAMES. In the sequel the vector with name name will be denoted by V%name and
the scalar with name scalarname will be denoted by V%scalarname. The reference to a vector or
scalar must always be preceded by the % sign.

The block STRUCTURE consists of a series of commands that may be repeated. The following
types of commands may be used in the block STRUCTURE:
(options are indicated between the square brackets ”[” and ”]”):

STRUCTURE
PRESCRIBE_BOUNDARY_CONDITIONS [sequence_number = s] [vector = %name]
SOLVE_LINEAR_SYSTEM [seq_solve = s] [vector = %name]
SOLVE_NONLINEAR_SYSTEM [sequence_number = s] [vector = %name]
CREATE_VECTOR [sequence_number = s] [vector = %name]
DERIVATIVES [seq_deriv = s] [vector = %name]
INTEGRAL [seq_integral = i] [vector = %name] [scalar %scalarname]
BOUNDARY_INTEGRAL,[seq_boun_integral = i] [vector = %name] \\

[scalar1= %scalarname1] [scalar2= %scalarname2]
OUTPUT [sequence_number = s] [vector = %name]
COMPUTE_SCALAR %scalarname [options]
SCALAR j = value or (FUNC=k)
PRINT_scalar %scalarname [text=’some text’]
PRINT_VECTOR %name [options]
PRINT_TEXT, ’text between quotes’

END

Mark that the input file is case insensitive except for texts between quotes. Hence the use of capitals
in the previous part is only to emphasize the commands.

Commands may be repeated and given in any order. However, they are executed in exactly the
sequence given in the block which means that this sequence defines the complete program and
hence must be logical. So it is for example necessary to prescribe the boundary conditions first and
then to solve the system of linear equations, since otherwise the effect of the essential boundary
conditions to the solution is not present and the solution may be undefined.

5.4.11.2 STRUCTURE November 1999 PRAC

These commands have the following meaning:

STRUCTURE (mandatory) This keyword indicates the start of the input block STRUCTURE.
All records following it until the record END is found define the complete structure of the
program.

PRESCRIBE BOUNDARY CONDITIONS [sequence number = s] [vector = %name]
With this command the vector V%name is provided with essential boundary conditions as de-
scribed in the input block ”ESSENTIAL BOUNDARY CONDITIONS” with sequence number
s. If V%name already exists the values of V%name are changed, otherwise V%name is set equal
to zero before applying the essential boundary conditions.
If sequence number = s is omitted implicitly the next sequence number is assumed. Hence in
the first ”call” of prescribe boundary conditions sequence number 1 and so on.
The result of this operation is that the vector V%name has been filled or changed.

SOLVE LINEAR SYSTEM [seq solve = s] [vector = %name]
The command solve linear system performs actually two independent steps.
Firstly the matrix and right-hand-side vector is built. Finally the system of linear equations
is solved by the linear solver. Information about the solution process is read in the input
block ”SOLVE” with sequence number s as indicated by seq solve = s.
Before applying the command solve linear system it is necessary that the essential boundary
conditions have already been filled into the solution vector V%name. This may be done in
several ways:

• By applying the command prescribe boundary conditions to V%name

• By applying the command create vector to V%name

• By creating V%name through another operation like a previous solve.

V%name must be of the type solution vector.
The result of the total operation is that V%name has been filled with the solution of a linear
differential equation.

SOLVE NONLINEAR SYSTEM [sequence number = s] [vector = %name]
The command solve nonlinear system is comparable to the command
solve linear system. However, in this case a non-linear system of equations is solved by an
iteration process. In each step of the iteration process, systems of equations are built and a
system of linear equations is solved.
Before applying the command solve nonlinear system it is necessary that at least the essential
boundary conditions have already been filled into the solution vector V%name. Usually the
iteration process expects that a complete initial estimate has been filled in V%name. V%name
may be filled in the same way as described for the linear problems.
The result of this operation is that V%name has been filled with the solution of a non-linear
differential equation.

The various options have the following meaning:

sequence number = s refers to information about the coefficients for the differential equa-
tion and natural boundary conditions. This information is given in the input block
”NONLINEAR EQUATIONS” with sequence number s. This block also contains infor-
mation about the linear solver to be applied. If sequence number = s is omitted implicitly
the next one is assumed.

vector = %name refers to the vector that is computed by this command. If omitted the
first vector in the block VECTOR NAMES is used.

CREATE VECTOR [sequence number = s] [vector = %name]
The command create vector may be used to create the vector V%name explicitly. This vector
may be used as initial estimate for a non-linear problem, or to prescribe the essential boundary

PRAC STRUCTURE November 1999 5.4.11.3

conditions.
The definition of the vector to be created is given in the input block ”CREATE” with sequence
number s. If sequence number = s is omitted the next one is used.
If vector = %name is omitted the first vector is assumed.
The result of this operation is that a vector V%name has been created.

DERIVATIVES [seq deriv = s] [vector = %name]
The command derivatives may be used to create the vector V%name as derived quantity of
previously constructed vectors.

Input concerning the derived quantities to be computed is defined in the input block ”DERIVA-
TIVES” with sequence number s.
The result of this operation is that a vector V%name has been created.

INTEGRAL [seq integral = i] [vector = %name] [scalar %scalarname]
The command integral may be used to compute scalar S%scalarname as integral over vector
V%name. The result of this operation is that the scalar S%scalarname has got a value.

BOUNDARY INTEGRAL ,[seq boun integral = i], [vector=%name], [scalar1=%scalarname1],
[scalar2=%scalarname2]
The command boundary integral may be used to compute scalar %scalarname1 as an integral
of VECTOR %name over (a part of) the boundary. If vector = %name is omitted the first
vector is assumed
Input concerning the boundary integral to be computed is defined in the input block
”BOUNDARY INTEGRAL” with sequence number s. If s is omitted the next one is assumed.
If the integral to be computed is a vector then the second component is stored in SCALAR
%scalarname2. The result of this operation is that the scalar S%scalarname1 has got a value
and possibly the scalar S%scalarname2 too.

OUTPUT [sequence number = s] [vector = %name]
The vector V%name and, depending on the definition in the input block ”OUTPUT”, the next
vectors, are written to the file sepcomp.out for post-processing purposes.
Information about what output should be written must be stored in the input block ”OUT-
PUT” with sequence number s. If s is omitted the next one is assumed.

COMPUTE SCALAR %scalarname [options]
The command compute scalar %scalarname computes S%scalarname by manipulation of vec-
tors. Which vectors are manipulated and how is defined by the options. The following options
are available:

NORM = j, VECTOR %name [degfd k]
NORM_DIF = j, VECTOR1 = %name1, VECTOR2 = %name2 [degfd k]
AVERAGE VECTOR %name [degfd k]

These options have the following meaning:

NORM computes S%scalarname as norm of V%name. The value of j defines the type of
norm to be used. Possible values:

1. ‖ u ‖=
N∑

i=1

| ui |

2. ‖ u ‖=
(

N∑
i=1

u2
i

) 1
2

3. ‖ u ‖= max
1≤i≤N

| ui |

4. ‖ u ‖=

N∑
i=1

|ui|

N

5.4.11.4 STRUCTURE November 1999 PRAC

5. ‖ u ‖=
√

N∑
i=1

u2
i /N

If DEGFD k is given only the DEGFDth degree of freedom per point is taken into
account.

NORM DIF computes S%scalarname as norm of V%name1 - V%name2. The value of j
defines the type of norm to be used. The same values of j as for the option NORM are
available. If DEGFD k is given only the DEGFDth degree of freedom per point is taken
into account.

AVERAGE computes S%scalarname as the average value of the vector V%name. If DEGFD
k is given only the DEGFDth degree of freedom per point is taken into account.

SCALAR %scalarname = choice
The command SCALAR %scalarname sets S%scalarname equal to the value defined by choice.
The following possibilities for choice. are available:

value
(FUNC=k)
MIN (F1, F2, F3, ...)
MAX (F1, F2, F3, ...)

These options have the following meaning:

If a value is given explicitly, the scalar gets this value.

FUNC=k gives the scalar the value FUNCSCAL (k, SCALARS), which means that it may
be a function of the other scalars.
See Section 5.6.7 for a description of FUNCSCAL.

min or max (F1,F2,F3,...) means that the scalar gets the minimum respectively maximum
value of F1, F2, F3 and so on. F1, F2, F3, .. may be either numbers or of the shape Sj,
referring to scalar j. Of course scalar j must have been given a value before.

PRINT SCALAR %scalarname [text=’some text’]
The command PRINT SCALAR prints the value of S%scalarname to the output file. If text
is given it should be followed by some text between quotes. This text is used to identify the
scalar to be printed in the following way:

text = S%scalarname

where S%scalarname denotes the value of S%scalarname.

PRINT VECTOR %name [options]
The command PRINT VECTOR prints the value of V%name to the output file. The following
options are available:

text = ’t’
curves = c1, c2, cn, ...

These options have the following meaning:

text should be followed by some text between quotes. This text is used to identify the vector
to be printed.

curves followed by Ci, Cj, Ck, ... ensures that the printing of the solution is restricted to
the curves given in the list.

Remarks:

PRAC STRUCTURE November 1999 5.4.11.5

PRINT TEXT , ’text between quotes’
The command PRINT TEXT prints the text between the quotes to the output file.

END (mandatory) Indicates the end of the STRUCTURE block.

5.4.11.6 STRUCTURE November 1999 PRAC

If the block STRUCTURE is omitted SEPCOMP checks for the presence of the block NONLINEAR
EQUATIONS. If this block is available SEPCOMP reacts as if the block STRUCTURE is available
with the following contents:

structure
prescribe_boundary_conditions, sequence_number = 1
solve_nonlinear_system, sequence_number = 1
output, sequence_number = 1

end

Otherwise it is supposed that a linear system must be solved and the structure is:

structure
prescribe_boundary_conditions, sequence_number = 1
solve_linear_system, seq_solve = 1
output, sequence_number = 1

end

PRAC Function subroutines October 1998 5.5.1

5.5 Description of some function subroutines to be used together with
program SEPCOMP

The user may provide data to program SEPCOMP by the input file. However, if coefficients,
boundary conditions and so on depend on space, this is not a practical possibility. In those cases
it is much easier to give data directly in the form of a function. At this moment SEPRAN does
not allow the input of functions through the input file. For that reason the user must give space
dependent data by a so-called function subroutine.
In this section the user interface of some of these function subroutines is given. Which of the
subroutines is used depends on the input in the standard input file. In the specific parts it is
indicated which function subroutine is required for special data.

In 5.5.1 function subroutine FUNCBC is described for the definition of real essential boundary
conditions.
5.5.2 describes subroutine CFUNCB for complex essential boundary conditions.
5.5.3 deals with function subroutines FUNC and CFUNC, which are used to define complete real
or complex fields.

5.5.2 Function subroutines October 1998 PRAC

PRAC Function subroutine FUNCBC September 1999 5.5.1.1

5.5.1 Function subroutine FUNCBC

Description

With this function subroutine a function may be defined, for the creation of real bound-
ary conditions.
FUNCBC must be written by the user.

Heading

function funcbc (ifunc, x, y, z)

Parameters

DOUBLE PRECISION FUNCBC, X, Y, Z
INTEGER IFUNC
IFUNC Choice parameter. This parameter enables the user to distinguish between sev-

eral cases. IFUNC is defined by the user in the input part ESSENTIAL BOUND-
ARY CONDITIONS. Its value is equal to the parameter i in FUNC=i.

X,Y,Z X, y and z-coordinates of the nodal point. For each nodal point this subroutine
is called.

FUNCBC FUNCBC should get the computed value of the function in the nodal point.

Input

IFUNC, X, Y, and Z have been filled by SEPCOMP depending on the dimension of the
space.

Output

FUNCBC must have a value.

Example

Suppose for IFUNC = 1 the function f(x,y)=xy, and for IFUNC = 2 the function
f(x,y)=sin(x) is required.
Then FUNCBC can be programmed as follows:

function funcbc (ifunc, x, y, z)
implicit none
double precision funcbc, x, y, z
integer ifunc

c --- see the remarks in 2.5

if (ifunc .eq. 1) then

c --- ifunc = 1 f = x y

funcbc = x * y
else

c --- ifunc = 2 f = sin (x)

funcbc = sin(x)
endif
end

5.5.1.2 Function subroutine FUNCBC September 1999 PRAC

PRAC Subroutine CFUNCB September 1999 5.5.2.1

5.5.2 Subroutine CFUNCB

Description

With this subroutine the values of the boundary conditions may be defined, when com-
plex arithmetic is used.
CFUNCB must be written by the user.

Heading

subroutine cfuncb (ifunc, x, y, z, comval)

Parameters

DOUBLE PRECISION X, Y, Z

COMPLEX ∗16 COMVAL

INTEGER IFUNC

IFUNC Choice parameter. This parameter enables the user to distinguish between sev-
eral cases. IFUNC is defined by the user in the input part ESSENTIAL BOUND-
ARY CONDITIONS. Its value is equal to the parameter i in FUNC=i.

X,Y,Z X, y and z-coordinates of the nodal point. For each nodal point this subroutine
is called.

COMVAL Complex output parameter. COMVAL must be given a value by the user.

Input

ICHOIS, X, Y and Z have got a value depending on the dimension of the space.

Output

COMVAL must have been filled by the user.

Example

Suppose for IFUNC=1 the function f(x,y)=(x,y) is required. Then CFUNCB may be
programmed as follows:

subroutine cfuncb (ifunc, x, y, z, comval)
implicit none
integer ifunc
double precision x, y, z
complex *16 comval
if (ifunc .eq .1) then

comval = dcmplx (x, y)
else

.

.

.
endif
end

Remark

The FORTRAN intrinsic function DCMPLX combines two real variables into one com-
plex variable.

5.5.2.2 Subroutine CFUNCB September 1999 PRAC

PRAC Function subroutines FUNC and CFUNC September 1999 5.5.3.1

5.5.3 Function subroutines FUNC and CFUNC

Description

With these function subroutines a function may be defined.
FUNC and CFUNC must be written by the user. In the case of real vectors FUNC and
in the case of complex vectors CFUNC must be used.

Heading

function func (ifunc, x, y, z)

or

function cfunc (ifunc, x, y, z)

Parameters

DOUBLE PRECISION FUNC, X, Y, Z

INTEGER IFUNC

COMPLEX ∗ 16 CFUNC

IFUNC Choice parameter. This parameter enables the user to distinguish between
several cases. IFUNC has been given a value by program SEPCOMP.

X, Y, Z X, y and z-co-ordinates of the nodal point. For each nodal point this subrou-
tine is called.

FUNC should get the computed value of the function in the nodal point. (Real case
only)

CFUNC should get the computed value of the function in the nodal point. (Complex
case only)

Input

IFUNC, X, Y and Z have got a value depending on the dimension of the space.

Output

FUNC or CFUNC has got a value.

For an example of how to write FUNC or CFUNC see FUNCBC (5.5.1).

5.5.3.2 Function subroutines FUNC and CFUNC September 1999 PRAC

PRAC Element subroutines October 1998 5.6.1

5.6 How to program your own element subroutines

In the Numerical Analysis Lab the student must program his own elements. Of course most of the
exercises can be made with standard SEPRAN element subroutines using type numbers larger than
99. However, programming your own element is the main goal of the lab.
It is always necessary to program your own element subroutine ELEMSUBR, that is to be used
both in the case of a linear and of a non-linear problem. See Section 5.6.1 for a description.
If derived quantities like a first derivative must be computed it is also necessary to program an
element subroutine ELDERVSUBR. See Section 5.6.2 for a description.
If integrals must be computed it is necessary to program an element subroutine ELINTSUBR. See
Section 5.6.3 for a description.
The Sections 5.6.4, 5.6.5 and 5.6.6 describe some help subroutine to simplify the printing of arrays.
The general idea is the following:

If the large matrix is built a subroutine BUILD is called that makes a loop over all elements. For
each element the element subroutine ELEMSUBR is called. This subroutine is supposed to compute
the element matrix and element vector. BUILD then adds this element matrix and element vector
to the large matrix and vector in the right positions.
In the same way a loop over the element subroutines is performed for the integration and derivative
subroutines.

5.6.2 Element subroutines October 1998 PRAC

PRAC Subroutine ELEMSUBR October 1998 5.6.1.1

5.6.1 Subroutine ELEMSUBR

Description

Subroutine ELEMSUBR is called by a subroutine BUILD which builds the large matrix
and vector. This is used both for the linear problems as for non-linear problems.
This subroutine is only used for type numbers between 1 and 99, hence for the Numerical
Analysis Lab this subroutine is obliged.

Use the command sepgetpract to get the correct interface in your local directory. See
Section 5.2

The general structure of subroutine BUILD is as follows:

clear large matrix and large vector
For all element groups and all boundary element groups do

For all elements in the group do
call ELEMSUBR
add element matrix and element vector to large matrix and large vector

end_For
end_For

Heading

subroutine elemsubr (ndim, npelm, x, nunk_pel, elem_mat,
+ elem_vec, elem_mass, uold, itype)

Parameters

INTEGER NDIM, NPELM, NUNK PEL, ITYPE

DOUBLE PRECISION X(NPELM,NDIM), ELEM MAT(NUNK PEL,NUNK PEL),
ELEM VEC(NUNK PEL), ELEM MASS(NUNK PEL), UOLD(NUNK PEL)

NDIM (input parameter)
Defines the dimension of the space in which the problem is solved. For nearly all
problems in the lab ndim = 2.

NPELM (input parameter)
Defines the number of points in the element. So for a linear triangle NPELM = 3,
and for a linear boundary element NPELM = 2.

X (input array)
Double precision two-dimensional array of size NPELM × NDIM. X(i,1) contains
the x-coordinate of the ith node in the element and X(i,2) the y-coordinate of this
node.
Mark that it concerns the local numbering of the element, not the global node
numbers.

NUNK PEL (input parameter)
Defines the number of degrees of freedom in the element.
Usually this number is equal to NPELM, but for example, if the number of degrees
of freedom per point is 2, it is 2 × NPELM.

ELEM MAT (output array)
In this double precision two-dimensional array the student must store the element
matrix, in the following way:

ELEM MAT(i,j) = sij ; i,j = 1(1)NUNK PEL.
The degrees of freedom in an element are stored sequentially, first all degrees of
freedom corresponding to the first point, then to the second, etcetera.
The local sequence of the nodes is defined by Table 4.1.1.

5.6.1.2 Subroutine ELEMSUBR October 1998 PRAC

ELEM VEC (output array)
In this double precision array the student must store the element vector, in the
following way:

ELEM VEC(i) = fi ; i = 1(1)NUNK PEL.

ELEM MASS (output array)
In this double precision two-dimensional array the student must store the element
mass matrix, provided the mass matrix must be computed, in the following way:

ELEM MASS(i,j) = sij ; i,j = 1(1)NUNK PEL.
This matrix should only be filled if a mass matrix is required, for example for
time-dependent problems.

UOLD (input array)
In this array the old solution, as indicated by V1, is stored. This solution may con-
tain the boundary conditions only, if the array has been created by prescribe boundary conditions,
but also a starting vector if V1 has been created by create or even the previous
solution in an iteration process if nonlinear equations is used.
The sequence in which UOLD is filled is the same as used in X and ELEM MAT.
Hence first all degrees of freedom for the first local point, then for the second one
and so on.
This array is only used in case of non-linear problems.

ITYPE (input parameter)
This parameter defines the type number of the element. This type number has
been defined in the input block PROBLEM as part of the statements:

ELGRP i = (type = n3)
BNGRP 1 = (type = n1)

The student may utilize ITYPE to distinguish between different types of element
matrices, for example to distinguish between internal elements and boundary ele-
ments.

Input

Program SEPCOMP (subroutine BUILD) fills the arrays X and array UOLD before the
call of ELEMSUBR.
Also the parameters NDIM, NPELM, NUNK PEL and ITYPE have got a value.

Output

The student must fill the arrays ELEM MAT, ELEM VEC and in case of time-dependent
problems ELEM MASS.

Interface

Subroutine ELEMSUBR must be programmed as follows:

subroutine elemsubr (ndim, npelm, x, nunk_pel, elem_mat,
+ elem_vec, elem_mass, uold, itype)
implicit none
integer ndim, npelm, nunk_pel, itype
double precision x(npelm,ndim), elem_mat(nunk_pel,nunk_pel),

+ elem_vec(nunk_pel), elem_mass(nunk_pel),
+ uold(nunk_pel)

c --- declarations of local variables
c for example:

PRAC Subroutine ELEMSUBR October 1998 5.6.1.3

integer i, k

if (itype.eq.1) then

c --- statements to fill the arrays elem_mat and elem_vec

do k = 1, nunk_pel
do i = 1, nunk_pel

elem_mat(i,k) = "s(ik)"
end do
elem_vec(k) = "f(i)"

end do

else if (itype.eq.2) then

c --- the same type of statements for itype = 2, etcetera

end if
end

Remarks

• For problems in complex variables (like the Helmholtz equation) one may declare
ELEM MAT and ELEM VEC as complex *16 arrays, which means that they are
treated as double precision complex arrays.

• Almost all the errors that are made by students are in the subroutine ELEMSUBR.
Since debugging of Fortran programs goes beyond the goal of the lab, it is advised
to use print statements in the element subroutine to detect errors.
For example to print the value of a variable var use

print *, ’var = ’, var

To print the contents of a double precision array for example the element vector
the SEPRAN subroutine PRINTREALARRAY may be used, see Section 5.6.4, to
print the contents of an integer array: PRINTINTEGERARRAY, see Section 5.6.5.
To print the contents of the element matrix use PRINTMATRIX, see Section 5.6.6.

These subroutines may be for example used as follows:

subroutine elemsubr (ndim, npelm, x, nunk_pel, elem_mat,
+ elem_vec, elem_mass, uold, itype)
implicit none

.

.

.

.
call printrealarray (elem_vec, nunk_pel, ’element vector’)
call printmatrix (elem_mat, nunk_pel, ’element matrix’)
end

5.6.1.4 Subroutine ELEMSUBR October 1998 PRAC

PRAC Subroutine ELDERVSUBR October 1998 5.6.2.1

5.6.2 Subroutine ELDERVSUBR

Description

Subroutine ELDERVSUBR is called by a subroutine DERIV which builds a large vector
by averaging over adjacent elements.
This subroutine is only used for type numbers between 1 and 99. It is called if and only
if the option derivatives is used in the STRUCTURE block.
The general structure of subroutine DERIV is as follows:

clear large vector and weight vector
For all element groups do

For all elements in the group do
call ELDERVSUBR
add element vector and element weight vector to large vector

and weight vector
end_For

end_For
Divide large vector by weight vector (element wise)

Heading

subroutine eldervsubr (ndim, npelm, x, nunk_pel, elem_vec,
+ elem_weight, uold, itype, icheld)

Parameters

INTEGER NDIM, NPELM, NUNK PEL, ITYPE, ICHELD
DOUBLE PRECISION X(NPELM,NDIM), ELEM VEC(NUNK PEL),

ELEM WEIGHT(NUNK PEL), UOLD(NUNK PEL)
NDIM (input parameter)

Defines the dimension of the space in which the problem is solved. For nearly all
problems in the lab ndim = 2.

NPELM (input parameter)
Defines the number of points in the element. So for a linear triangle NPELM = 3,
and for a linear line element NPELM = 2.

X (input array)
Double precision two-dimensional array of size NPELM × NDIM. X(i,1) contains
the x-coordinate of the ith node in the element and X(i,2) the y-coordinate of this
node.
Mark that it concerns the local numbering of the element, not the global node
numbers.

NUNK PEL (input parameter)
Defines the number of degrees of freedom in the element.
Usually this number is equal to NPELM, but for example, if the number of degrees
of freedom per point is 2, it is 2 × NPELM.

ELEM VEC (output array)
In this double precision array the student must store the element vector, in the
following way:

ELEM VEC(i) = fi ; i = 1(1)NUNK PEL.
It concerns the derived quantity that must be computed.
The sequence that must be used in case of more unknowns per point, like for
example when computing the gradient, is:
First all unknowns in the first point of the element, followed by all unknowns in
the second point and so on.

5.6.2.2 Subroutine ELDERVSUBR October 1998 PRAC

ELEM WEIGHT (output array)
In this double precision array the student must store the element weight vector, in
the following way:

ELEM WEIGHT(i) = wi ; i = 1(1)NUNK PEL.
This weight vector is used for averaging purposes. See method.
The weight vector may for example consists of elements that are all equal to 1 or
elements that are all equal to the area of the element.
If you do not know what to choose, make ELEM WEIGHT completely equal to 1.

UOLD (input array)
In this array the solution from which the derived quantities must be computed, as
indicated by Vi, is stored.
The sequence in which UOLD is filled is the same as used in X and ELEM VEC.
Hence first all degrees of freedom for the first local point, then for the second one
and so on.
In UOLD the value in the vertices are stored.

ITYPE (input parameter)
This parameter defines the type number of the element. This type number has
been defined in the input block PROBLEM as part of the statements:

ELGRP i = (type = n3)
BNGRP 1 = (type = n1)

The student may utilize ITYPE to distinguish between different types of element
matrices, for example to distinguish between internal elements and boundary ele-
ments.

ICHELD (input parameter)
This is the input parameter defined in the input block DERIVATIVES. This pa-
rameter may be used to distinguish between possibilities.

Input

Program SEPCOMP (subroutine DERIV) fills the arrays X and array UOLD before the
call of ELDERVSUBR.
Also the parameters NDIM, NPELM, NUNK PEL, ITYPE and ICHELD have got a
value.

Output

The student must fill the arrays ELEM VEC and ELEM WEIGHT.

Interface

Subroutine ELDERVSUBR must be programmed as follows:

subroutine eldervsubr (ndim, npelm, x, nunk_pel, elem_vec,
+ elem_weight, uold, itype, icheld)
implicit none
integer ndim, npelm, nunk_pel, itype, icheld
double precision x(npelm,ndim), elem_vec(nunk_pel),

+ elem_weight(nunk_pel), uold(nunk_pel)

c --- declarations of local variables
c for example:

PRAC Subroutine ELDERVSUBR October 1998 5.6.2.3

integer i

if (itype.eq.1) then

c --- statements to fill the arrays elem_vec and elem_weight

do i = 1, nunk_pel
elem_vec(i) = "f(i)"
elem_weight(i) = 1

end do

else if (itype.eq.2) then

c --- the same type of statements for itype = 2, etcetera

end if
end

Method

The averaging procedure is as follows. Suppose that nodal point j is lying in K different
elements. Let the quantity q be given in nodal point j, with a different value in each
element. In order to compute an averaged value of q in j, weights wi (i = 1, 2, . . . , K
) for each element corresponding to nodal point j must be defined. The averaged value
of q in nodal point j is computed by the following formula:

q̄(xj) =

K∑
i=1

qi(xj) wi

K∑
i=1

wi

wi ≥ 0;
K∑

i=1

wi > 0 (5.6.2.1)

with
q̄(xj) the averaged value of q in nodal point j,
qi(xj) the value of q in nodal point j with respect to element i,
wi the weight corresponding to nodal point j with respect to element i.

Simple choices are for example:

wi = 1 or
wi = area of element i.

The adding process over the various elements is carried out by program SEPCOMP, it
is sufficient to compute the derived quantities and weights with respect to each nodal
element separately with the aid of subroutine ELDERVSUBR.

5.6.2.4 Subroutine ELDERVSUBR October 1998 PRAC

1

2

3

k

4

5
6

j

α

Figure 5.6.2.1: nodal point j in different elements

PRAC Subroutine ELINTSUBR December 1999 5.6.3.1

5.6.3 Function subroutine ELINTSUBR

Description

Function subroutine ELINTSUBR is called by a subroutine INTEGRAL which computes
the integral over a region by adding integrals over elements.
This subroutine is only used for type numbers between 1 and 99. It is called if and only
if the option integrals is used in the STRUCTURE block.
The general structure of subroutine INTEGRAL is as follows:

sum := 0
For all element groups do

For all elements in the group do
sum := sum + ELINTSUBR (...)

end_For
end_For

Heading

function elintsubr (ndim, npelm, x, nunk_pel,
+ uold, itype, icheli)

Parameters

INTEGER NDIM, NPELM, NUNK PEL, ITYPE, ICHELI

DOUBLE PRECISION X(NPELM,NDIM), ELINTSUBR, UOLD(NUNK PEL)

ELINTSUBR (output parameter)
The student must give elintsubr the value of the integral over the element to be
computed.

NDIM (input parameter)
Defines the dimension of the space in which the problem is solved. For nearly all
problems in the lab ndim = 2.

NPELM (input parameter)
Defines the number of points in the element. So for a linear triangle NPELM = 3,
and for a linear line element NPELM = 2.

X (input array)
Double precision two-dimensional array of size NPELM × NDIM. X(i,1) contains
the x-coordinate of the ith node in the element and X(i,2) the y-coordinate of this
node.
Mark that it concerns the local numbering of the element, not the global node
numbers.

NUNK PEL (input parameter)
Defines the number of degrees of freedom in the element.
Usually this number is equal to NPELM, but for example, if the number of degrees
of freedom per point is 2, it is 2 × NPELM.

UOLD (input array)
In this array the function to be integrated, as indicated by Vi, is stored.
The sequence in which UOLD is filled is the same as used in X. Hence first all
degrees of freedom for the first local point, then for the second one and so on.

ITYPE (input parameter)
This parameter defines the type number of the element. This type number has
been defined in the input block PROBLEM as part of the statements:

5.6.3.2 Subroutine ELINTSUBR December 1999 PRAC

ELGRP i = (type = n3)

The student may utilize ITYPE to distinguish between different types of element
matrices, for example to distinguish between internal elements and boundary ele-
ments.

ICHELI (input parameter)
This is the input parameter defined in the input block INTEGRAL. This parameter
may be used to distinguish between possibilities.

Input

Program SEPCOMP (subroutine INTEGRAL) fills the arrays X and array UOLD before
the call of ELINTSUBR.
Also the parameters NDIM, NPELM, NUNK PEL, ITYPE and ICHELI have got a
value.

Output

The student must give ELINTSUBR a value.

Interface

Function subroutine ELINTSUBR must be programmed as follows:

function elintsubr (ndim, npelm, x, nunk_pel,
+ uold, itype, icheli)
implicit none
integer ndim, npelm, nunk_pel, itype, icheli
double precision x(npelm,ndim), uold(nunk_pel), elintsubr

c --- declarations of local variables

if (itype.eq.1) then

c --- statements to compute the integral over the element

elintsubr = ..

else if (itype.eq.2) then

c --- the same type of statements for itype = 2, etcetera

end if
end

PRAC Subroutine PRINTREALARRAY September 1999 5.6.4.1

5.6.4 Subroutine PRINTREALARRAY

Description

Subroutine PRINTREALARRAY is a special subroutine that is meant to print double
precision arrays inside a user written element subroutine.

Heading

subroutine printrealarray (array, n, text)

Parameters

INTEGER N

DOUBLE PRECISION ARRAY(N)

CHARACTER ∗ (∗) TEXT

N (input parameter)
Defines the length of ARRAY.

ARRAY (input array)
Double precision array of size N to be printed.

TEXT (input parameter)
Text to be printed in the heading of the print.

Input

The parameters N and TEXT must have a value.
Array ARRAY must have been filled.

Output

The contents of array ARRAY are printed

5.6.4.2 Subroutine PRINTREALARRAY September 1999 PRAC

PRAC Subroutine PRINTINTEGERARRAY September 1999 5.6.5.1

5.6.5 Subroutine PRINTINTEGERARRAY

Description

Subroutine PRINTINTEGERARRAY is a special subroutine that is meant to print
integer arrays inside a user written element subroutine.

Heading

subroutine printintegerarray (iarray, n, text)

Parameters

INTEGER N, IARRAY(N)

CHARACTER ∗ (∗) TEXT

N (input parameter)
Defines the length of IARRAY.

IARRAY (input array)
Integer array of size N to be printed.

TEXT (input parameter)
Text to be printed in the heading of the print.

Input

The parameters N and TEXT must have a value.
Array IARRAY must have been filled.

Output

The contents of array ARRAY are printed

5.6.5.2 Subroutine PRINTINTEGERARRAY September 1999 PRAC

PRAC Subroutine PRINTMATRIX September 1999 5.6.6.1

5.6.6 Subroutine PRINTMATRIX

Description

Subroutine PRINTMATRIX is a special subroutine that is meant to print two-dimensional
double precision arrays inside a user written element subroutine.

Heading

subroutine printmatrix (array, n, text)

Parameters

INTEGER N

DOUBLE PRECISION ARRAY(N,N)

CHARACTER ∗ (∗) TEXT

N (input parameter)
Defines the length of ARRAY.

ARRAY (input array)
Two dimensional double precision array of size N × N to be printed.

TEXT (input parameter)
Text to be printed in the heading of the print.

Input

The parameters N and TEXT must have a value.
Array ARRAY must have been filled.

Output

The contents of array ARRAY are printed

5.6.6.2 Subroutine PRINTMATRIX September 1999 PRAC

PRAC Function subroutine FUNCSCAL November 1999 5.6.7.1

5.6.7 Function subroutine FUNCSCAL

Description

The function subroutine FUNCSCAL is a user written subroutine that must be provided
if the option SCALAR j, FUNC = k is used in the input block ”STRUCTURE”. It is
used to construct a scalar as function of previously computed scalars.

Heading

function funcscal (k, arscalars)

Parameters

DOUBLE PRECISION FUNCSCAL, ARSCALARS(∗)
INTEGER K

ARSCALARS In this array all scalars are stored that are defined in the part cre-
ated by the input block ”STRUCTURE”. The scalars are stored in the sequence
defined by the user, which means that S1 is stored in ARSCALARS(1), S2 in AR-
SCALARS(2) etcetera. The user must know himself which scalars are filled and
which not.

K This parameter may be used to distinguish between various cases. K is identical to
the parameter k given in FUNC = k. K has got a value by program SEPCOMP.

FUNCSCAL Result of the computation. The user must give FUNCSCAL a value as
function of the other scalars.

Input

K has been given a value by SEPCOMP.
Array ARSCALARS has been filled by program SEPCOMP, at least for those values
that have been explicitly computed by the user in the part STRUCTURE before the
call SCALAR j, FUNC = k.

Output

FUNCSCAL must have a value

Example Suppose that S3 must be created as function of S1 and S2 in the following
way:

S3 = sin(S1)cos(S2). (5.6.7.1)

In the input block ”STRUCTURE” the command

SCALAR 3, FUNC = 1 must be given and a function subroutine FUNCSCAL
of the following shape must be provided by the user:

5.6.7.2 Function subroutine FUNCSCAL November 1999 PRAC

FUNCTION FUNCSCAL (K, ARSCALARS)
IMPLICIT NONE
DOUBLE PRECISION FUNCSCAL ARSCALARS
INTEGER K

if (k.eq.1) then

c --- Compute the result for k = 1

funcscal = sin(arscalars(1)) * cos(arscalars(2))

else

c --- Other values of k

.

.

end if

END

PRAC Postprocessing December 1995 6.1.1

6 The postprocessing part of SEPRAN

6.1 Introduction

In the post processing part of SEPRAN, the output of the solution and derived quantities is produced
in a readable (visible) form. Integrals over quantities, integrals over boundaries etc. may be
computed and printed or plotted. The output generated may be produced in either print or plot
form. Print output is both written to the screen or to a file for later reproducing on a printer.

The post processing is performed by the main program SEPPOST. It requires two types of input.

First it uses some files produced by the mesh generation part (meshoutput) and the computational
part (sepcomp.out and sepcomp.inf).

Secondly it requires input from the standard input file. (An interactive version will be available in
due course).

The input of SEPPOST is described in the next paragraphs.

6.2 describes the general shape of the input, including the so-called compute commands, the define
commands and the reset commands,

6.3 treats the various print commands,

6.4 the plot commands and

6.5 is devoted to some special commands with respect to time-dependence.

6.1.2 Postprocessing December 1995 PRAC

PRAC input for program SEPPOST September 1999 6.2.1

6.2 General input for program SEPPOST

The input for the post processing part must be opened with the keyword POSTPROCESSING and
must be closed with the keyword END.

Structure of the input file:

postprocessing
print v%name
plot
compute v%name_1
define
reset
time =
time history

end

The actual post processing commands may be given in any order, with the restriction that vectors
V%name to be printed or plotted must have been defined before, for example by a compute state-
ment.
Vector names used in the computational program are also known in SEPPOST. Vector names that
are new, for example the ones used in a compute statement, must be defined in the block CON-
STANTS, subpart VECTOR NAMES.
One can consider this as a kind of declaration.

The PRINT commands are treated in 6.3, the PLOT commands in 6.4 and the TIME (HISTORY)
commands in 6.5.

DEFINE and RESET commands

The DEFINE and RESET commands are used to set or reset of some defaults for printing or plot-
ting. Their general syntax is:

define plot parameters =
define colour table =
reset plot parameters
reset colour table

With the define plot parameters statement, the user defines new defaults for the plot parameters.
These defaults remain valid until the user resets plot parameters with the reset command, or a new
define plot parameters is read. For a description of the plot parameters the user is referred to 6.4.
Remark: one of the plot parameters: region = (xmin, xmax, ymin, ymax) is also used for the
print commands. So if this parameter is also given in the define plot parameters, it affects the print
output.

The statement define colour table defines the colour numbers for coloured plots. See 6.4.

COMPUTE commands

The COMPUTE command is used to define a vector V%name 1 as function of an already available
vector V%name. Using the same name %name 1 in a new COMPUTE statement redefines vector
V%name 1.
The general syntax for the compute statements is:

6.2.2 input for program SEPPOST September 1999 PRAC

compute V%name_1 = stream function V%name [, start node =s]//
[, stream function value = f]

compute V%name_1 = velocity profile V%name [,degfd=k] origin=(O_x, O_y)]//
[,angle = a]

compute V%name_1 = intersection V%name [,degfd=k] origin=(O_x, O_y)]//
[,angle = a]

Meaning of these commands:

compute V%name 1 = stream function V%name means that vector V%name 1 must be computed
as stream function from the velocity vector V%name. V%name is supposed to be a vector
with the two x and y velocity components as first and second component in each nodal point.
If start node = s is given, the value of the stream function is set in nodal point s (default
s=1).
stream function value = f defines the value in the start node s (default f=0).

compute V%name 1 = velocity profile V%name defines vector V%name 1 as a function given by
one of the velocity components (degfd=k, default k=1) along the line with origin (Ox, Oy)
(default (0,0)) under an angle of a degrees (default a=0). This possibility is only permitted
for two-dimensional vector fields. The intersection of the line with the mesh is computed and
the solution is interpolated onto this line. If V%name is complex, V%name 1 is complex too.

Remark: at this moment the method is sensitive to round off, which means that if a line
coincides with the boundary of the mesh, only some parts or no part at all may be found in
the intersection. In that case it is recommended to shift the line over a small distance.

compute V%name 1 = intersection V%name defines vector V%name 1 as a function given by the
component k of the solution V%name along the line with origin (Ox, Oy) (default (0,0)) under
an angle of a degrees (default a=0). k is defined by degfd=k (default k=1). This possibility is
only available for functions defined on a two-dimensional mesh. Furthermore this possibility
is completely identical to the preceding one, including the remark given before.

Compute statements only define the vector V%name 1, which means that the actual computation
is performed only if necessary. At most 26 vectors are allowed in SEPPOST.

PRAC Print commands for SEPPOST September 1999 6.3.1

6.3 Print commands for program SEPPOST

The general input for the program SEPPOST is described in 6.2. This paragraph is devoted to the
available print commands.

At this moment only one print command is available. The syntax of the print commands is:
Options are indicated between the square brackets [and].

PRINT V%name [,sequence = (y)] [, region = (xmin, xmax, ymin, ymax)]

PRINT V%name = prints the complete vector, together with the corresponding nodal point
numbers and the co-ordinates.
If no sequence is given the co-ordinates are ordered in increasing x-sequence and for constant
x-value in increasing y-sequence.

sequence = (y) means first increasing y-sequence and then increasing x-sequence.

region = (xmin, xmax, ymin, ymax) indicates that only the the points with co-ordinates in the
range of xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax are printed or plotted. If ymin, ymax is
omitted, then the complete y-range is used.

The region to be printed may also be defined with the statement
DEFINE PLOT PARAMETERS region = (.) which affects both plots and prints.

6.3.2 Print commands for SEPPOST September 1999 PRAC

PRAC PLOT commands for SEPPOST September 1999 6.4.1

6.4 PLOT commands for program SEPPOST

The general input for the program SEPPOST is described in 6.2. This paragraph is devoted to the
available plot commands.

The syntax of the plot commands is:
Options are indicated between the square brackets [and].

PLOT CONTOUR V%name [,degfd = k] [plot parameters] [nlevel = n] //
[levels = (q1,q2, ...)] [minlevel = min] [maxlevel = max] //
[smoothing factor = s]

PLOT VECTOR V%name [degfd1 = k_1 ,degfd2 = k_2] [plot parameters]
PLOT COLOURED LEVELS V%name [degfd = k] [plot parameters]//

[nlevel = n] [levels = (q1,q2, ...)] [minlevel = min] [maxlevel = max]
PLOT FUNCTION V%name [,plot parameters]
PLOT VELOCITY PROFILE V%name [degfd=k] [plot parameters]//

[origin = (O_x , O_y)] [angle = a]
3D PLOT V%name [plot parameters] [lindirec=l] [nstep=n]
PLOT BOUNDARY FUNCTION V%name, curves (C1, C2, C3, C5, ... ,Cn) //

[plot parameters]

PLOT CONTOUR indicates that contour lines (lines with constant function value) are plotted
for the given function.
If degfd=k is given, then the kth degree of freedom in each node is used as definition of the
function, otherwise the first degree of freedom is used. When V%name is complex degfd =
2k-1 refers to the real part of the kth degree of freedom and degfd = 2k to the imaginary part
of this degree of freedom.
The user may define the number of contour levels either by prescribing nlevel = n or by giving
the contour levels explicitly through levels = (q1, q2, . . .). The default number of levels is 11.
Besides prescribing the contour levels explicitly, the minimum and/or maximum level may
also be given. If omitted, they are computed by the program.
The smoothing factor defines the kind of smoothing that must be applied to the contour lines.
s = 0 (default), means no smoothing, the contour lines are piecewise linear. s = 1, computes
a mean value between three succeeding values to filter some of the possible wiggles (Shuman
filtering). For s = 2, 3, 4 and 5 a smooth spline is used to plot the contour lines. The
higher the value of s, the smoother the spline. Although these pictures are much nicer for
publication, the actual plot is in no way better than that of the non-smooth contours. Values
larger than 5 are not permitted for s.

PLOT VECTOR V%name makes a vector plot of two of the degrees of freedom in each point.
These components may be defined by degfd1 = k1, degfd2 = k2 respectively. If omitted degfd1
= 1, and degfd2 = 2 is assumed. With respect to complex V%name, see PLOT CONTOUR.

PLOT COLOURED LEVELS V%name makes a coloured contour plot of the array V%name,
where the region between two levels is coloured.
If degfd=k is given, then the kth degree of freedom in each node is used as definition of the
function, otherwise the first degree of freedom is used. With respect to complex V%name,
see PLOT CONTOUR.
The user may define the number of contour levels either by prescribing nlevel = n or by giving
the contour levels explicitly through levels = (q1, q2, . . .). The default number of levels is 11.
Besides prescribing the contour levels explicitly, the minimum and/or maximum level may
also be given. If omitted, they are computed by the program.
The colours used for the plotting are the standard colours defined for your system. These
colours may be changed by the statement define colour table. See colour table.

PLOT FUNCTION V%name makes a plot of a one dimensional function. At this moment
only vectors defined by COMPUTE V%name = velocity profile or COMPUTE V%name =

6.4.2 PLOT commands for SEPPOST September 1999 PRAC

intersection, (See 6.2) may be plotted by this command. If the solution corresponds to a
one-dimensional mesh, the complete solution is plotted. If V%name is complex, degfd = 1
plots the real part and degfd = 2 the imaginary part.

PLOT VELOCITY PROFILE V%name 1 combines the commands COMPUTE V%name 1
= velocity profile V%name 1 as described in 6.2 and the command PLOT FUNCTION
V%name.

3D PLOT V%name makes a three-dimensional plot with hidden lines of a function defined on a
two-dimensional mesh. With the parameter LINDIREC the user indicates in which direction
the surface lines are drawn. Possibilities:

1 parallel to y-axis

2 parallel to x-axis
3 lines are drawn in both directions

5 A series of three pictures with the options 1, 2 and 3 is made

The default value for LINDIREC is 3. NSTEP=n indicates how many grid lines are used for
the 3D-plot. The number of lines in each direction is equal to (NSTEP + 1)×√

NPOINT ,
with NPOINT the number of points in the mesh. The number of grid lines may influence
the quality of the picture, however, the computing time increases considerably for increasing
values of NSTEP. The default value for n is 1. With respect to complex V%name, see PLOT
CONTOUR.

PLOT BOUNDARY FUNCTION V%name, CURVES (C1,. . ., Cn) may be used to plot
a function defined along the curves C1 to Cn, where it is necessary that the end point of the
ith curve, is identical to the initial point of the i + 1th curve. If negative curve numbers are
used, the corresponding curve is used in reversed direction.

Plot parameters

The following plot parameters may be used at the place formally indicated by [,plot parameters]:

region = (xmin, xmax, ymin, ymax)
length = l
yfact = y
symbol = s
textx = ‘ ... ’
texty = ‘ ... ’
rotate
norotate
scales = (x_under, x_upper, y_under, y_upper)
number format = (n_x, m_x, n_y, m_y)
steps = (stepx, stepy)
factor = f
pict i of n
angle = alpha

These options may be separated by commas.

region = (xmin, xmax, y min, y max) is used to define a cut of a two-dimensional region.

length = l gives the length of the plot in centimeters. Instead of length also plotfm may be used.
The default length is machine dependent but usual values are 20 cm or 15 cm.

yfact = y Scale factor; all y-coordinates are multiplied by y before plotting the mesh. y 6= 1
should be used when the co-ordinates in x and y direction are of different scales, and hence
the picture becomes too small. Default value: 1.

PRAC PLOT commands for SEPPOST September 1999 6.4.3

symbol = s defines the number of the symbol to be used for plotting a one-dimensional function
(installation dependent).

textx = ‘. . .’, texty = ‘. . . ’ define the texts to be plotted along the axes (default x and y). The
part between the quotes is used as text.

rotate means that the picture is rotated over an angle of 90◦.

norotate means that the picture is not rotated.
Default: depending on the size of the picture.

scales = (xunder , xupper , yunder, yupper) define the range of the scales along the axis of a one-
dimensional plot (See Figure 6.4.1). (Default: computed by the program).

x under x upper

y under

y upper

Figure 6.4.1: Definition of xunder etc.

number format = (nx, mx, ny, my) defines the number of digits of the numbers to be printed along
the axis, where nx, ny define the number of digits in front of the decimal point (zero means
floating format) and mx, my the number of digits behind the decimal point.
Default: if scales is given (0,2,0,2) otherwise computed by the program.

steps = (stepx, stepy) defines the number of steps to be used along the axis. (default: (10,10))

factor = f defines a multiplication factor. In the case of PLOT VECTOR it defines the multipli-
cation factor of each vector before plotting.
In the case of a function plot, the function is multiplied by f .
Default f=1 in the case of a function plot and automatically scaling in the case of a vector
plot. If factor = 0 (default value), this factor is automatically computed, otherwise the length
of each vector is multiplied by f before plotting. For the length of the vectors, the physical
units are used, where the unit length is made equal to the geometrical unit length as indicated
by the co-ordinates.

pict = i of n May be used in combination with the records PLOT FUNCTION, PLOT VE-
LOCITY PROFILE, or TIME HISTORY PLOT. If this statement is used, more than one
one-dimensional plot is made in one picture with axes. Statements of this type must be placed
consecutively, without other type of statements between. The number i must be given in in-
creasing order from 1 to n. n gives the number of curves to be plotted in one picture.

For example the syntax in the case of n = 3 should be:

6.4.4 PLOT commands for SEPPOST September 1999 PRAC

PLOT FUNCTION V%name_1, ... , pict 1 of 3
PLOT FUNCTION V%name_2, ... , pict 2 of 3
PLOT FUNCTION V%name_3, ... , pict 3 of 3

angle = α This parameter gives the angle under which the observer sees the plot.
0 ≤ α ≤ 360

The plot parameters defined in a plot record are only valid for that specific plot record. They
overwrite defaults locally. Parameters defined by the DEFINE plot parameters command are used
for all records.

Colour table

The numbers in the colour table define the colours to be used for the plotting. Which colours are
connected with these numbers depends on your local installation.
The default colour table is defined by the numbers 1, 2, 3,. . .
By the command DEFINE COLOUR TABLE = (C1, C2, C3, . . .) the user may connect new numbers
to the colours 1, 2, 3 etc.

PRAC time-dependent problems for SEPPOST September 1999 6.5.1

6.5 Special commands for time-dependent problems with respect to pro-
gram SEPPOST”

The general input for the program SEPPOST is described in 6.2. This paragraph is devoted to the
available time commands.

The syntax of the time commands is:
Options are indicated between the square brackets [and].

TIME = t0
TIME = (t0, t1)
TIME = (t0, t1, istep)
TIME HISTORY [(t0, t1)] print min V%name
TIME HISTORY [(t0, t1)] print max V%name
TIME HISTORY [(t0, t1)] print min abs (V%name)
TIME HISTORY [(t0, t1)] print max abs (V%name)
TIME HISTORY [(t0, t1)] print point(x,y,z) V%name [degfd=k]
TIME HISTORY [(t0, t1)] plot min V%name
TIME HISTORY [(t0, t1)] plot max V%name
TIME HISTORY [(t0, t1)] plot min abs (V%name)
TIME HISTORY [(t0, t1)] plot max abs (V%name)
TIME HISTORY [(t0, t1)] plot point(x,y,z) V%name [degfd=k]

TIME = (t0, t1, istep) is meant for time-dependent problems. All commands after this COM-
MAND are carried out for the actual times t0 to t1 with integer steps istep. If t0 and /or t1
do not coincide with times at which the solution is actually computed, the times closest to t0
and t1 are chosen. If t1 is omitted only t = t0 is used. istep gives the number of time steps
minus one between succeeding times (default 1).

TIME HISTORY (t0, t1) makes a time history of the quantity from time t0 to t1. If (t0, t1) is
omitted, the complete time interval is used.

plot / print min/max V%name plots or prints the minimum, maximum value of V%name
respectively, abs(V%name) does the same for the absolute value of V%name.

plot / print point (x,y,z) V%name makes a time history of the value of V%name in point
(x,y,z). At this moment the node closest to (x,y,z) is used instead of the point itself.

6.5.2 time-dependent problems for SEPPOST September 1999 PRAC

PRAC Potential problem September 1999 7.1.1

7 Some examples of complete SEPRAN runs

7.1 A potential problem in a L-shaped region

As an example we consider the solution of a potential problem in a L-shaped region, consisting
of two regions S1 and S2 with different permeability constants µ(S1) and µ(S2). At the upper
boundary C5 the potential is equal to 1, at the lower boundary C1 the potential is equal to 0. The
other outer boundaries may be considered as insulators. The fluxes at the intersection of the region
S1 to S2 must be continuous.
For a definition of the region as well as its corresponding geometrical quantities, see Figure 7.1.1

P1 C1 P2

C7 S1 C2

P7 C8 P4 C3 P3

-

6?

� �

? 6
C6 S2 C4

�

P6 C5 P5

• •

• ••

• •

Figure 7.1.1: Definition of the L-shaped region with corresponding geometrical quantities

The mathematical formulation of this problem may be described as follows:

The potential problem is defined by
− div µ 5 φ = 0

with
µ(S1) = 1, µ(S2) = 2.

The boundary conditions are given by:

φ(C1) = 0, φ(C5) = 1

µ ∂φ
∂n = 0 along the curves C2, C3, C4, C6 and C7.

The interface condition at boundary C8 is given by:

µ(S1) ∂φ
∂n (S1) = −µ(S2) ∂φ

∂n (S2)

n denotes the outward normal
The boundary condition µ ∂φ

∂n = 0 is a so-called natural boundary condition requiring no special
arrangements in the finite element method. The same is the case for the coupling condition at C8.
So in fact these boundary conditions are not given explicitly, but by not prescribing anything they
are satisfied automatically.

The easiest way to define the two values of µ in the regions S1 and S2 is to define two different

7.1.2 Potential problem September 1999 PRAC

element groups. So each element group is connected to a different value of the permeability.

The student must create 4 files in this particular case:

practicum7-1.msh
practicum7-1.f
practicum7-1.prb
practicum7-1.pst

The file practicum7-1.msh contains the mesh input.
The file practicum7-1.f contains the main program.
Use the command sepgetpract practicum7-1 to get a text file containing a part of the Fortran
file into your local directory.
The file practicum7-1.prb contains the input for the computational program.
The file practicum7-1.pst contains the input for SEPPOST.

For the creation of the mesh the definition of Figure 7.1.1 is followed exactly. For both surfaces the
surface generator general is used.

The commands to be carried out are:

sepmesh practicum7-1.msh
seplink practicum7-1
practicum7-1 < practicum7-1.prb
seppost practicum7-1.pst

Mark that the next command may only be carried out if you are sure that the previous one has
been finished successfully.

There is no need to retype these files yourself.
You can copy them into your local directory by the command:

sepgetex practicum7-1

The mesh is created by SEPMESH with the following input file:

**
*
* File: practicum7-1.msh
*
* Contents: Input for mesh generation part of the example as described
* in the SEPRAN Introduction 7.1
*
* Usage: sepmesh practicum7-1.msh
*
**
*
*
*
*
constants # Constants so that everything can be

changed easily
See Section 4.3

reals
x_left = 0 # x-coordinate of left-hand side
y_under = 0 # y-coordinate of lower side

PRAC Potential problem September 1999 7.1.3

x_right = 2 # x-coordinate of right-hand side
y_upper = 2 # y-coordinate of upper side
x_mid = 1 # x-coordinate of C4
y_mid = 1 # y-coordinate of C4

integers
nelmlow = 10 # Number of elements along lower side
nelmv_1 = 5 # Number of elements along C2 and C7
nelmv_2 = 10 # Number of elements along C4 and C6
nelmh_1 = 10 # Number of elements along C3
nelmupp = 5 # Number of elements along upper side
nelmmid = 10 # Number of elements along C8

end
mesh2d # two-dimensional problem

See Section 4.4
points # Define coordinates of user points

p1=($x_left ,$y_under)
p2=($x_right,$y_under)
p3=($x_right,$y_mid)
p4=($x_mid ,$y_mid)
p5=($x_mid ,$y_upper)
p6=($x_left ,$y_upper)
p7=($x_left ,$y_mid)

curves # Define all the curves
c1 = line(p1,p2,nelm=$nelmlow)
c2 = line(p2,p3,nelm=$nelmv_1)
c3 = line(p3,p4,nelm=$nelmh_1)
c4 = line(p4,p5,nelm=$nelmv_2)
c5 = line(p5,p6,nelm=$nelmupp)
c6 = line(p6,p7,nelm=$nelmv_2)
c7 = line(p7,p1,nelm=$nelmv_1)
c8 = line(p4,p7,nelm=$nelmmid)

surfaces # Define all the surfaces
s1 = general3 (c1,c2,c3,c8,c7)
s2 = general3 (-c8,c4,c5,c6)

meshsurf # Both surfaces get a separate element
group number

selm1 = s1
selm2 = s2

plot
end

Figure 7.1.2 shows the mesh created by SEPMESH.

Once the mesh has been generated, it is necessary to run the computational program. For the
numerical analysis lab it is obligatory to write your own element subroutine. Hence your own main
program is also required.
Following the Lecture notes Numerieke methoden voor partiele differentiaalvergelijkingen the ele-
ment matrix is defined by:

e11 = x2
2 − x3

2, e
21 = x3

2 − x1
2, e

31 = x1
2 − x2

2 (7.1.2)

e12 = x3
1 − x2

1, e
22 = x1

1 − x3
1, e

32 = x2
1 − x1

1 (7.1.3)

∆ = (x2
1 − x1

1)(x
3
2 − x2

2) − (x2
2 − x1

2)(x
3
1 − x2

1) (7.1.4)

∇φi =

(
ei1

∆
ei2

∆

)
(7.1.5)

7.1.4 Potential problem September 1999 PRAC

x

y

scalex: 7.500

scaley: 7.500

MESH

Figure 7.1.2: Mesh plot of L-shaped region

Sij = |∆|(µ∇φi · ∇φj) (7.1.6)

The following main program and element subroutine may be used for the solution of the potential
problem:

program practicum7_1

c --- Sample program for the example in the introduction Section 7.1

call sepcom (0)
end

c --- It is necessary to define your own element subroutine

subroutine elemsubr (ndim, npelm, x, nunk_pel, elem_mat,
+ elem_vec, elem_mass, uold, itype)

c ==
c
c programmer Guus Segal
c version 1.0 date 15-10-1998
c
c
c copyright (c) 1998-1998 "Ingenieursbureau SEPRA"
c permission to copy or distribute this software or documentation
c in hard copy or soft copy granted only by written license
c obtained from "Ingenieursbureau SEPRA".
c all rights reserved. no part of this publication may be reproduced,
c stored in a retrieval system (e.g., in memory, disk, or core)
c or be transmitted by any means, electronic, mechanical, photocopy,
c recording, or otherwise, without written permission from the
c publisher.
c **
c
c DESCRIPTION
c

PRAC Potential problem September 1999 7.1.5

c Special user element subroutine to be used by SEPRAN in the case of
c the Numerical Analysis Lab of Delft University of Technology
c **
c
c KEYWORDS
c
c matrix
c vector
c element
c **
c
c MODULES USED
c
c **
c
c COMMON BLOCKS
c
c **
c
c INPUT / OUTPUT PARAMETERS
c

implicit none
integer ndim, npelm, nunk_pel, itype
double precision x(npelm,ndim), elem_mat(nunk_pel,nunk_pel),

+ elem_vec(nunk_pel), elem_mass(nunk_pel),
+ uold(nunk_pel)

c elem_mass o In this two-dimensional array the student must store the
c element mass matrix, provided the mass matrix must be
c computed, in the following way:
c elem_mass(i,j) = s_{ij} ; i,j = 1(1)nunk_pel
c This matrix should only be filled if a mass matrix is
c required, for example for time-dependent problems.
c elem_mat o In this two-dimensional array the student must store the
c element matrix, in the following way:
c elem_mat(i,j) = s_{ij} ; i,j = 1(1)nunk_pel.
c The degrees of freedom in an element are stored
c sequentially, first all degrees of freedom corresponding
c to the first point, then to the second, etcetera.
c elem_vec o In this array the student must store the element vector,
c in the following way:
c elem_vec(i) = f_i; i = 1(1)nunk_pel
c It concerns the derived quantity that must be computed
c itype i Type number of element.
c This parameter is defined in the input block PROBLEM
c ndim i Dimension of the space.
c npelm i Number of points per element
c nunk_pel i number of degrees of freedom in the element
c uold i In this array the old solution, as indicated by V1,
c is stored. This solution may contain the boundary
c conditions only, if the array has been created by
c prescribe_boundary_conditions, but also a starting vector
c if V1 has been created by create or even the previous
c solution in an iteration process if nonlinear_equations
c is used.

7.1.6 Potential problem September 1999 PRAC

c x i Contains the coordinates of the nodes of the element using
c the local node numbering
c x(i,1) contains the x-coordinate of the i-th node in the
c element and x(i,2) the y-coordinate of this node
c **
c
c LOCAL PARAMETERS
c

double precision mu, e(3,2), delta, gradphi(3,2)
integer i, j

c delta Jacobian delta of the element
c e Contains the factors e^ij according to
c e(i,j) = e^ij, i=1,2,3; j=1,2
c gradphi Contains the gradient of the basis function phi_i according to
c gradphi(i,j) = dphi_i/dx_j, i=1,2,3; j=1,2
c i General loop variable
c j General loop variable
c mu Parameter mu in the differential equation
c **
c
c SUBROUTINES CALLED
c
c none
c **
c
c I/O
c
c none
c **
c
c ERROR MESSAGES
c
c none
c **
c
c PSEUDO CODE
c
c The element matrix, element right-hand side and if the problem so
c requires the element mass matrix are filled by the user, depending on
c the parameter itype
c
c The element matrix and element vector are defined in the Lecture Notes
c "Numerieke methoden voor partiele differentiaalvergelijkingen"
c See also the description in the manual for the formulas
c **
c
c DATA STATEMENTS
c
c ==
c

if (itype.eq.1) then

c --- Type = 1: mu = 1

PRAC Potential problem September 1999 7.1.7

mu = 1d0

else

c --- Type = 2: mu = 2

mu = 2d0

end if

c --- Compute the factors e_ij and delta as defined in the Lecture Notes
c (pages 97,98)

e(1,1) = x(2,2) - x(3,2)
e(2,1) = x(3,2) - x(1,2)
e(3,1) = x(1,2) - x(2,2)

e(1,2) = x(3,1) - x(2,1)
e(2,2) = x(1,1) - x(3,1)
e(3,2) = x(2,1) - x(1,1)

delta = e(3,1) * e(1,2) - e(3,2) * e(1,1)

c --- Compute the gradient of the basis functions as defined in the
c Lecture Notes

do j = 1, 2
do i = 1, 3

gradphi(i,j) = e(i,j) / delta
end do

end do

c --- Fill the element matrix as defined in the Lecture Notes

do j = 1, 3
do i = 1, 3

elem_mat(i,j) = mu * 0.5d0 * abs(delta) *
+ (gradphi(i,1)*gradphi(j,1) + gradphi(i,2)*gradphi(j,2))

end do
end do

c --- The element vector is zero

do i = 1, 3
elem_vec(i) = 0d0

end do

end

The corresponding input file is:

**
*
* File: practicum7-1.prb
*

7.1.8 Potential problem September 1999 PRAC

* Contents: Input for computational part of the example as described
* in the SEPRAN Introduction 7.1
*
* Usage: practicum7-1 < practicum7-1.prb
*
* It has been supposed that the following actions have been carried out
* with success:
*
* sepmesh practicum7-1.msh
* seplink practicum7-1
**
*
*
constants # See Section 4.3

vector_names
1: potential

end
*
* Problem definition, see Section 5.4.1
*
problem

types # Define type numbers per element group
elgrp1 = (type=1) # Element group 1: itype = 1
elgrp2 = (type=2) # Element group 1: itype = 2

essboundcond # Define where essential boundary
conditions are defined (not there
value)

curves(c1) # The potential on c1 is given
curves(c5) # The potential on c5 is given

end
*
* Define the structure of the large matrix and implicitly the type
* of linear solver, see Section 5.4.2
*
matrix

method = 1 # The matrix is symmetrical
A direct solver will be used

end
*
* Define non-zero essential boundary conditions, see Section 5.4.3
*
essential boundary conditions, sequence_number = 1

curves(c5), value=1 # On c5: phi = 1
On c1: phi = 0

end
*
* Information for the linear solver, see Section 5.4.5
*
solve, sequence_number = 1

positive definite # The matrix is positive definite
end
*
* Information for the output, see Section 5.4.7
*
output, sequence_number = 1 # These statements are superfluous

PRAC Potential problem September 1999 7.1.9

end
*
* Define the structure of the main program, see Section 5.4.11
* Since the structure used here is standard for linear problems, this
* part is superfluous
* Since there is only one vector the part vector = %potential may also
* be skipped
*
structure

prescribe_boundary_conditions, sequence_number = 1, vector = %potential
solve_linear_system, seq_solve = 1, vector = %potential
output, sequence_number = 1, vector = %potential

end
end_of_sepran_input

Program seppost allows us to print and plot the solution. It requires input from the standard input
file.
If, for example, we want to print the solution, make a standard contour plot and a coloured contour
plot then the following input file may be used:

**
*
* File: practicum7-1.pst
*
* Contents: Input for post processing part of the example as described
* in the SEPRAN Introduction 7.1
*
* Usage: seppost practicum7-1.pst
*
**
*
*
postprocessing # See Section 6.2

print v%potential # See Section 6.3
plot identification, text=’Example of potential problem’, origin=(3,18)
plot contour v%potential # See Section 6.4
plot coloured contour v%potential

end

Figure 7.1.3 shows the required contour plot and Figure 7.1.4 the blank and white representation
of the coloured contour plot.

7.1.10 Potential problem September 1999 PRAC

1

2

3

4

5

6

7

8

9

10

11

scalex: 7.500

scaley: 7.500

time t: 0.000

LEVELS

 1 0.000

 2 0.100

 3 0.200

 4 0.300

 5 0.400

 6 0.500

 7 0.600

 8 0.700

 9 0.800

10 0.900

11 1.000

Contour levels of potential

Example of potential problem

Figure 7.1.3: Contour plot of potential in L-shaped region

scalex: 7.500

scaley: 7.500

time t: 0.000

LEVELS

-1.000E-14

 5.000E-02

 1.000E-01

 1.500E-01

 2.000E-01

 2.500E-01

 3.000E-01

 3.500E-01

 4.000E-01

 4.500E-01

 5.000E-01

 5.500E-01

 6.000E-01

 6.500E-01

 7.000E-01

 7.500E-01

 8.000E-01

 8.500E-01

 9.000E-01

 9.500E-01

 1.000E+00

Contour levels of potential

Example of potential problem

Figure 7.1.4: Black and white representation of coloured contour plot of potential in L-shaped
region

PRAC Boundary elements September 1999 7.2.1

7.2 A mathematical test example showing the use of boundary elements

Consider the pure artificial problem:
∆φ = 0 x ∈ (0, 1) × (0, 1)
with boundary conditions:
φ = xy on curves c1, c2 and c4
∂φ
∂n = x on curve c3.
The region is shown in Figure 7.2.1 The student must create 4 files in this particular case:

C

C

C

C

1

2

3

4

Figure 7.2.1: Region corresponding to artificial test example

practicum7-2.msh
practicum7-2.f
practicum7-2.prb
practicum7-2.pst

The file practicum7-2.msh contains the mesh input.
The file practicum7-2.f contains the main program.
Use the command sepgetpract practicum7-2 to get a text file containing a part of the Fortran
file into your local directory.
The file practicum7-2.prb contains the input for the computational program.
The file practicum7-2.pst contains the input for SEPPOST.

For the creation of the mesh the definition of Figure 7.2.1 is followed exactly. The surface generator
quadrilateral is used.

The commands to be carried out are:

sepmesh practicum7-2.msh

7.2.2 Boundary elements September 1999 PRAC

seplink practicum7-2
practicum7-2 < practicum7-2.prb
seppost practicum7-2.pst

Mark that the next command may only be carried out if you are sure that the previous one has
been finished successfully.

In order to get these files into your local directory use the command:

sepgetex practicum7-2

The mesh is created by SEPMESH with the following input file:

**
*
* File: practicum7-2.msh
*
* Contents: Input for mesh generation part of the example as described
* in the SEPRAN Introduction 7.2
*
* Usage: sepmesh practicum7-2.msh
*
**
*
*
*
*
constants # Constants so that everything can be

changed easily
See Section 4.3

reals
x_left = 0 # x-coordinate of left-hand side
y_under = 0 # y-coordinate of lower side
x_right = 1 # x-coordinate of right-hand side
y_upper = 1 # y-coordinate of upper side

integers
nelmh = 10 # Number of elements in horizontal direction
nelmv = 10 # Number of elements in vertical direction

end
mesh2d # two-dimensional problem

See Section 4.4
points # Define coordinates of user points

p1=($x_left ,$y_under)
p2=($x_right,$y_under)
p3=($x_right,$y_upper)
p4=($x_left ,$y_upper)

curves # Define all the curves
c1 = line(p1,p2,nelm=$nelmh)
c2 = line(p2,p3,nelm=$nelmv)
c3 = line(p3,p4,nelm=$nelmh)
c4 = line(p4,p1,nelm=$nelmv)

surfaces # Define the surface
s1 = quadrilateral3 (c1,c2,c3,c4)

plot
end

PRAC Boundary elements September 1999 7.2.3

Once the mesh has been generated, it is necessary to run the computational program. For the
numerical analysis lab it is obligatory to write your own element subroutine. Hence your own main
program is also required.
The element matrix and element vector for the internal element are described in Section 7.1.
With respect to the boundary condition ∂φ

∂n = x a boundary element is needed.
The element matrix for this boundary element is zero and the element vector is given by

h

2

[
x1

x2

]
(7.2.7)

The following main program and element subroutine may be used for the solution of the potential
problem:

program practicum7_2

c --- Sample program for the example in the introduction Section 7.2

call sepcom (0)
end

c --- It is necessary to define your own element subroutine

subroutine elemsubr (ndim, npelm, x, nunk_pel, elem_mat,
+ elem_vec, elem_mass, uold, itype)

c ==
c
c programmer Guus Segal
c version 1.0 date 15-10-1998
c
c
c copyright (c) 1998-1998 "Ingenieursbureau SEPRA"
c permission to copy or distribute this software or documentation
c in hard copy or soft copy granted only by written license
c obtained from "Ingenieursbureau SEPRA".
c all rights reserved. no part of this publication may be reproduced,
c stored in a retrieval system (e.g., in memory, disk, or core)
c or be transmitted by any means, electronic, mechanical, photocopy,
c recording, or otherwise, without written permission from the
c publisher.
c **
c
c DESCRIPTION
c
c Special user element subroutine to be used by SEPRAN in the case of
c the Numerical Analysis Lab of Delft University of Technology
c **
c
c KEYWORDS
c
c matrix
c vector
c element
c **
c

7.2.4 Boundary elements September 1999 PRAC

c MODULES USED
c
c **
c
c COMMON BLOCKS
c
c **
c
c INPUT / OUTPUT PARAMETERS
c

implicit none
integer ndim, npelm, nunk_pel, itype
double precision x(npelm,ndim), elem_mat(nunk_pel,nunk_pel),

+ elem_vec(nunk_pel), elem_mass(nunk_pel),
+ uold(nunk_pel)

c elem_mass o In this two-dimensional array the student must store the
c element mass matrix, provided the mass matrix must be
c computed, in the following way:
c elem_mass(i,j) = s_{ij} ; i,j = 1(1)nunk_pel
c This matrix should only be filled if a mass matrix is
c required, for example for time-dependent problems.
c elem_mat o In this two-dimensional array the student must store the
c element matrix, in the following way:
c elem_mat(i,j) = s_{ij} ; i,j = 1(1)nunk_pel.
c The degrees of freedom in an element are stored
c sequentially, first all degrees of freedom corresponding
c to the first point, then to the second, etcetera.
c elem_vec o In this array the student must store the element vector,
c in the following way:
c elem_vec(i) = f_i; i = 1(1)nunk_pel
c It concerns the derived quantity that must be computed
c itype i Type number of element.
c This parameter is defined in the input block PROBLEM
c ndim i Dimension of the space.
c npelm i Number of points per element
c nunk_pel i number of degrees of freedom in the element
c uold i In this array the old solution, as indicated by V1,
c is stored. This solution may contain the boundary
c conditions only, if the array has been created by
c prescribe_boundary_conditions, but also a starting vector
c if V1 has been created by create or even the previous
c solution in an iteration process if nonlinear_equations
c is used.
c x i Contains the coordinates of the nodes of the element using
c the local node numbering
c x(i,1) contains the x-coordinate of the i-th node in the
c element and x(i,2) the y-coordinate of this node
c **
c
c LOCAL PARAMETERS
c

double precision e(3,2), delta, gradphi(3,2), h
integer i, j

PRAC Boundary elements September 1999 7.2.5

c delta Jacobian delta of the element
c e Contains the factors e^ij according to
c e(i,j) = e^ij, i=1,2,3; j=1,2
c gradphi Contains the gradient of the basis function phi_i according to
c gradphi(i,j) = dphi_i/dx_j, i=1,2,3; j=1,2
c h Length of a boundary element
c i General loop variable
c j General loop variable
c **
c
c SUBROUTINES CALLED
c
c none
c **
c
c I/O
c
c none
c **
c
c ERROR MESSAGES
c
c none
c **
c
c PSEUDO CODE
c
c The element matrix, element right-hand side and if the problem so
c requires the element mass matrix are filled by the user, depending on
c the parameter itype
c
c The element matrix and element vector are defined in the Lecture Notes
c "Numerieke methoden voor partiele differentiaalvergelijkingen"
c See also the description in the manual for the formulas
c **
c
c DATA STATEMENTS
c
c ==
c

if (itype.eq.1) then

c --- Type = 1: internal element
c Compute the factors e_ij and delta as defined in the Lecture Notes
c (pages 97,98)

e(1,1) = x(2,2) - x(3,2)
e(2,1) = x(3,2) - x(1,2)
e(3,1) = x(1,2) - x(2,2)

e(1,2) = x(3,1) - x(2,1)
e(2,2) = x(1,1) - x(3,1)
e(3,2) = x(2,1) - x(1,1)

delta = e(3,1) * e(1,2) - e(3,2) * e(1,1)

7.2.6 Boundary elements September 1999 PRAC

c --- Compute the gradient of the basis functions as defined in the
c Lecture Notes

do j = 1, 2
do i = 1, 3

gradphi(i,j) = e(i,j) / delta
end do

end do

c --- Fill the element matrix as defined in the Lecture Notes

do j = 1, 3
do i = 1, 3

elem_mat(i,j) = 0.5d0 * abs(delta) *
+ (gradphi(i,1)*gradphi(j,1)+gradphi(i,2)*gradphi(j,2))

end do
end do

c --- The element vector is zero

do i = 1, 3
elem_vec(i) = 0d0

end do

else

c --- Type = 2: boundary element
c Compute Jacobian h

h = sqrt ((x(2,1)-x(1,1))**2 + (x(2,2)-x(1,2))**2)

c --- The element matrix is zero

do j = 1, 2
do i = 1, 2

elem_mat(i,j) = 0d0
end do

end do

c --- Fill the element vector

do i = 1, 2
elem_vec(i) = h * 0.5d0 * x(i,1)

end do

end if

end

c --- Since the boundary conditions are space dependent, a extra function
c subroutine funcbc is necessary

function funcbc (ichoice, x, y, z)
implicit none

PRAC Boundary elements September 1999 7.2.7

integer ichoice
double precision x, y, z, funcbc
if (ichoice.eq.1) then

c --- ichoice = 1, phi = xy

funcbc = x * y

else

print *,’Error in funcbc. The value of ichoice is: ’, ichoice

end if

end

The corresponding input file is:

**
*
* File: practicum7-2.prb
*
* Contents: Input for computational part of the example as described
* in the SEPRAN Introduction 7.2
*
* Usage: practicum7-2 < practicum7-2.prb
*
* It has been supposed that the following actions have been carried out
* with success:
*
* sepmesh practicum7-2.msh
* seplink practicum7-2
**
*
*
constants # See Section 4.3

vector_names
1: potential

end
*
* Problem definition, see Section 5.4.1
*
problem

types # Define type numbers per element group
elgrp1 = (type=1) # Element group 1: itype = 1

natbouncond # Define types of natural boundary
conditions

bngrp1 = (type=2) # Boundary element group 1: itype = 2
bounelements # Define where natural boundary

conditions are present
belm1 = curves(c3) # Boundary element group 1 is

defined on c3
essboundcond # Define where essential boundary

conditions are defined (not there
value)

7.2.8 Boundary elements September 1999 PRAC

curves(c1 to c2) # The potential on c1 to c2 is given
curves(c4) # The potential on c4 is given

end
*
* Define the structure of the large matrix and implicitly the type
* of linear solver, see Section 5.4.2
*
matrix

method = 1 # The matrix is symmetrical
A direct solver will be used

end
*
* Define non-zero essential boundary conditions, see Section 5.4.3
*
essential boundary conditions

curves(c1 to c2), func=1 # On c1 to c2: phi = xy
curves(c4), func=1 # On c4: phi = xy

end
*
* Information for the linear solver, see Section 5.4.5
*
solve

positive definite # The matrix is positive definite
end
*
* Information for the output, see Section 5.4.7
*
output # These statements are superfluous
end
*
* Define the structure of the main program, see Section 5.4.11
* Since the structure used here is standard for linear problems, this
* part is superfluous
*
structure

prescribe_boundary_conditions, sequence_number = 1, vector = %potential
solve_linear_system, seq_solve = 1, vector = %potential
output, sequence_number = 1, vector = %potential

end
end_of_sepran_input

Program seppost allows us to print and plot the solution. It requires input from the standard input
file.
If, for example, we want to print the solution, make a standard contour plot and a coloured contour
plot then the following input file may be used:

**
*
* File: practicum7-2.pst
*
* Contents: Input for post processing part of the example as described
* in the SEPRAN Introduction 7.2
*
* Usage: seppost practicum7-2.pst

PRAC Boundary elements September 1999 7.2.9

*
**
*
*
postprocessing # See Section 6.2

print v%potential # See Section 6.3
plot identification, text=’Example of potential problem’, origin=(3,18)
plot contour v%potential # See Section 6.4
plot coloured contour v%potential

end

7.2.10 Boundary elements September 1999 PRAC

PRAC Complex example October 1998 7.3.1

7.3 An artificial complex example

In this section we demonstrate how complex problems may be solved by SEPRAN. To that end we
define the pure artificial problem:
∆φ = 0 x ∈ (0, 1) × (0, 1)
where φ is a complex quantity.
The boundary conditions for this problem are:
φ = (1, 0) on curves c1 and c2.
φ = (0.1) on curve c4.
∂φ
∂n = 0 on curve c3.
The region is shown in Figure 7.2.1 The student must create 4 files in this particular case:

practicum7-3.msh
practicum7-3.f
practicum7-3.prb
practicum7-3.pst

The file practicum7-3.msh contains the mesh input.
The file practicum7-3.f contains the main program.
Use the command sepgetpract practicum7-3 to get a text file containing a part of the Fortran
file into your local directory.
The file practicum7-3.prb contains the input for the computational program.
The file practicum7-3.pst contains the input for SEPPOST.

For the creation of the mesh the definition of Figure 7.2.1 is followed exactly. The surface generator
quadrilateral is used.

The commands to be carried out are:

sepmesh practicum7-3.msh
seplink practicum7-3
practicum7-3 < practicum7-3.prb
seppost practicum7-3.pst

Mark that the next command may only be carried out if you are sure that the previous one has
been finished successfully.

In order to get these files into your local directory use the command:

sepgetex practicum7-3

The mesh is created by SEPMESH with the following input file:

**
*
* File: practicum7-3.msh
*
* Contents: Input for mesh generation part of the example as described
* in the SEPRAN Introduction 7.3
*
* Usage: sepmesh practicum7-3.msh
*
**
*
*
*

7.3.2 Complex example October 1998 PRAC

*
constants # Constants so that everything can be

changed easily
See Section 4.3

reals
x_left = 0 # x-coordinate of left-hand side
y_under = 0 # y-coordinate of lower side
x_right = 1 # x-coordinate of right-hand side
y_upper = 1 # y-coordinate of upper side

integers
nelmh = 10 # Number of elements in horizontal direction
nelmv = 10 # Number of elements in vertical direction

end
mesh2d # two-dimensional problem

See Section 4.4
points # Define coordinates of user points

p1=($x_left ,$y_under)
p2=($x_right,$y_under)
p3=($x_right,$y_upper)
p4=($x_left ,$y_upper)

curves # Define all the curves
c1 = line(p1,p2,nelm=$nelmh)
c2 = line(p2,p3,nelm=$nelmv)
c3 = line(p3,p4,nelm=$nelmh)
c4 = line(p4,p1,nelm=$nelmv)

surfaces # Define the surface
s1 = quadrilateral3 (c1,c2,c3,c4)

plot
end

Once the mesh has been generated, it is necessary to run the computational program. For the
numerical analysis lab it is obligatory to write your own element subroutine. Hence your own main
program is also required.
The element matrix and element vector for the internal element are described in Section 7.1.
No boundary elements are needed in this case. The following main program and element subroutine
may be used for the solution of the potential problem:

program practicum7_3

c --- Sample program for the example in the introduction Section 7.3

call sepcom (0)
end

c --- It is necessary to define your own element subroutine

subroutine elemsubr (ndim, npelm, x, nunk_pel, elem_mat,
+ elem_vec, elem_mass, uold, itype)

c ==
c
c programmer Guus Segal
c version 1.0 date 15-10-1998
c
c
c copyright (c) 1998-1998 "Ingenieursbureau SEPRA"

PRAC Complex example October 1998 7.3.3

c permission to copy or distribute this software or documentation
c in hard copy or soft copy granted only by written license
c obtained from "Ingenieursbureau SEPRA".
c all rights reserved. no part of this publication may be reproduced,
c stored in a retrieval system (e.g., in memory, disk, or core)
c or be transmitted by any means, electronic, mechanical, photocopy,
c recording, or otherwise, without written permission from the
c publisher.
c **
c
c DESCRIPTION
c
c Special user element subroutine to be used by SEPRAN in the case of
c the Numerical Analysis Lab of Delft University of Technology
c **
c
c KEYWORDS
c
c matrix
c vector
c element
c **
c
c MODULES USED
c
c **
c
c COMMON BLOCKS
c
c **
c
c INPUT / OUTPUT PARAMETERS
c

implicit none
integer ndim, npelm, nunk_pel, itype
double precision x(npelm,ndim), elem_mass(nunk_pel)
complex * 16 elem_mat(nunk_pel,nunk_pel), elem_vec(nunk_pel),

+ uold(nunk_pel)

c elem_mass o In this two-dimensional array the student must store the
c element mass matrix, provided the mass matrix must be
c computed, in the following way:
c elem_mass(i,j) = s_{ij} ; i,j = 1(1)nunk_pel
c This matrix should only be filled if a mass matrix is
c required, for example for time-dependent problems.
c elem_mat o In this two-dimensional array the student must store the
c element matrix, in the following way:
c elem_mat(i,j) = s_{ij} ; i,j = 1(1)nunk_pel.
c The degrees of freedom in an element are stored
c sequentially, first all degrees of freedom corresponding
c to the first point, then to the second, etcetera.
c elem_vec o In this array the student must store the element vector,
c in the following way:
c elem_vec(i) = f_i; i = 1(1)nunk_pel
c It concerns the derived quantity that must be computed

7.3.4 Complex example October 1998 PRAC

c itype i Type number of element.
c This parameter is defined in the input block PROBLEM
c ndim i Dimension of the space.
c npelm i Number of points per element
c nunk_pel i number of degrees of freedom in the element
c uold i In this array the old solution, as indicated by V1,
c is stored. This solution may contain the boundary
c conditions only, if the array has been created by
c prescribe_boundary_conditions, but also a starting vector
c if V1 has been created by create or even the previous
c solution in an iteration process if nonlinear_equations
c is used.
c x i Contains the coordinates of the nodes of the element using
c the local node numbering
c x(i,1) contains the x-coordinate of the i-th node in the
c element and x(i,2) the y-coordinate of this node
c **
c
c LOCAL PARAMETERS
c

double precision e(3,2), delta, gradphi(3,2)
integer i, j

c delta Jacobian delta of the element
c e Contains the factors e^ij according to
c e(i,j) = e^ij, i=1,2,3; j=1,2
c gradphi Contains the gradient of the basis function phi_i according to
c gradphi(i,j) = dphi_i/dx_j, i=1,2,3; j=1,2
c i General loop variable
c j General loop variable
c **
c
c SUBROUTINES CALLED
c
c none
c **
c
c I/O
c
c none
c **
c
c ERROR MESSAGES
c
c none
c **
c
c PSEUDO CODE
c
c The element matrix, element right-hand side and if the problem so
c requires the element mass matrix are filled by the user, depending on
c the parameter itype
c
c The element matrix and element vector are defined in the Lecture Notes
c "Numerieke methoden voor partiele differentiaalvergelijkingen"

PRAC Complex example October 1998 7.3.5

c See also the description in the manual for the formulas
c **
c
c DATA STATEMENTS
c
c ==
c

if (itype.eq.1) then

c --- Type = 1: internal element
c Compute the factors e_ij and delta as defined in the Lecture Notes
c (pages 97,98)

e(1,1) = x(2,2) - x(3,2)
e(2,1) = x(3,2) - x(1,2)
e(3,1) = x(1,2) - x(2,2)

e(1,2) = x(3,1) - x(2,1)
e(2,2) = x(1,1) - x(3,1)
e(3,2) = x(2,1) - x(1,1)

delta = e(3,1) * e(1,2) - e(3,2) * e(1,1)

c --- Compute the gradient of the basis functions as defined in the
c Lecture Notes

do j = 1, 2
do i = 1, 3

gradphi(i,j) = e(i,j) / delta
end do

end do

c --- Fill the element matrix as defined in the Lecture Notes

do j = 1, 3
do i = 1, 3

elem_mat(i,j) = 0.5d0 * abs(delta) *
+ (gradphi(i,1)*gradphi(j,1)+gradphi(i,2)*gradphi(j,2))

end do
end do

c --- The element vector is zero

do i = 1, 3
elem_vec(i) = 0d0

end do

end if

end

The corresponding input file is:

**
*

7.3.6 Complex example October 1998 PRAC

* File: practicum7-3.prb
*
* Contents: Input for computational part of the example as described
* in the SEPRAN Introduction 7.3
*
* Usage: practicum7-3 < practicum7-3.prb
*
* It has been supposed that the following actions have been carried out
* with success:
*
* sepmesh practicum7-3.msh
* seplink practicum7-3
**
*
*
constants # See Section 4.3

vector_names
1: potential

end
*
* Problem definition, see Section 5.4.1
*
problem

types # Define type numbers per element group
elgrp1 = (type=1) # Element group 1: itype = 1

essboundcond # Define where essential boundary
conditions are defined (not there
value)

curves(c1 to c2) # The potential on c1 to c2 is given
curves(c4) # The potential on c4 is given

end
*
* Define the structure of the large matrix and implicitly the type
* of linear solver, see Section 5.4.2
*
matrix

method = 3 # The matrix is symmetrical complex
A direct solver will be used

end
*
* Define non-zero essential boundary conditions, see Section 5.4.3
*
essential complex boundary conditions

curves(c1 to c2), value=(1,0) # On c1 to c2: phi = (1,0)
curves(c4), value=(0,1) # On c4: phi = (0,1)

end
*
* Information for the linear solver, see Section 5.4.5
*
solve # These statements are superfluous
end
*
* Information for the output, see Section 5.4.7
*
output # These statements are superfluous

PRAC Complex example October 1998 7.3.7

end
*
* Define the structure of the main program, see Section 5.4.11
* Since the structure used here is standard for linear problems, this
* part is superfluous
*
structure

prescribe_boundary_conditions, sequence_number = 1, vector = %potential
solve_linear_system, seq_solve = 1, vector = %potential
output, sequence_number = 1, vector = %potential

end
end_of_sepran_input

Program seppost allows us to print and plot the solution. It requires input from the standard input
file.
If, for example, we want to print the solution, make a standard contour plot and a coloured contour
plot then the following input file may be used:

**
*
* File: practicum7-3.pst
*
* Contents: Input for post processing part of the example as described
* in the SEPRAN Introduction 7.3
*
* Usage: seppost practicum7-3.pst
*
**
*
*
postprocessing # See Section 6.2

print v%potential # See Section 6.3
plot identification, text=’Example of potential problem’, origin=(3,18)
plot contour v%potential # See Section 6.4
plot coloured contour v%potential

end

7.3.8 Complex example October 1998 PRAC

PRAC Non-linear Potential problem September 1999 7.4.1

7.4 A non-linear potential problem

As an example we consider the solution of a non-linear potential problem in a unit square. So
actually we are using the same region as in Section 7.2.

In this special case we want to solve the non-linear potential problem:

− div µ 5 φ = e−φ (7.4.8)

with φ = 0 on the whole boundary. Since the right-hand side depends on the solution we have to
apply a non-linear iteration.
The following Picard type iteration could be applied:

φ0 = 0
ε = 10−3

Diff = 1
k = 1
while Diff > ε do

Solve: − div µ 5 φk = e−φk−1

Diff = ||φk − φk−1||
k = k + 1

end while

This iteration itself is one of the standard options of SEPRAN and does not have to be pro-
grammed by the student. However, in each step of the iteration the linear partial differential
equation− div µ 5 φk = e−φk−1

must be solved. This equation requires the building of a matrix
and right-hand side and hence a corresponding element subroutine.
The element matrix in this case is of the same shape as in Section 7.1. The only difference is the
element vector, which is non zero, due to the presence of a non-vanishing right-hand side.
Following the Lecture notes Numerieke methoden voor partiele differentiaalvergelijkingen the ele-
ment vector is given by

fe
i =

|∆|
6

φk−1
i , (7.4.9)

provided a Newton Cotes integration rule is applied.

The student must create 4 files in this particular case:

practicum7-4.msh
practicum7-4.f
practicum7-4.prb
practicum7-4.pst

The file practicum7-4.msh contains the mesh input.
The file practicum7-4.f contains the main program.
Use the command sepgetpract practicum7-4 to get a text file containing a part of the Fortran
file into your local directory.
The file practicum7-4.prb contains the input for the computational program.
The file practicum7-4.pst contains the input for SEPPOST.

The commands to be carried out are:

sepmesh practicum7-4.msh
seplink practicum7-4
practicum7-4 < practicum7-4.prb
seppost practicum7-4.pst

Mark that the next command may only be carried out if you are sure that the previous one has
been finished successfully.

The mesh is created by SEPMESH with the following input file:

7.4.2 Non-linear Potential problem September 1999 PRAC

**
*
* File: practicum7-4.msh
*
* Contents: Input for mesh generation part of the example as described
* in the SEPRAN Introduction 7.4
*
* Usage: sepmesh practicum7-4.msh
*
**
*
*
*
*
constants # Constants so that everything can be

changed easily
See Section 4.3

reals
x_left = 0 # x-coordinate of left-hand side
y_under = 0 # y-coordinate of lower side
x_right = 1 # x-coordinate of right-hand side
y_upper = 1 # y-coordinate of upper side

integers
nelmh = 10 # Number of elements in horizontal direction
nelmv = 10 # Number of elements in vertical direction

end
mesh2d # two-dimensional problem

See Section 4.4
points # Define coordinates of user points

p1=($x_left ,$y_under)
p2=($x_right,$y_under)
p3=($x_right,$y_upper)
p4=($x_left ,$y_upper)

curves # Define all the curves
c1 = line(p1,p2,nelm=$nelmh)
c2 = line(p2,p3,nelm=$nelmv)
c3 = line(p3,p4,nelm=$nelmh)
c4 = line(p4,p1,nelm=$nelmv)

surfaces # Define the surface
s1 = quadrilateral3 (c1,c2,c3,c4)

plot
end

Once the mesh has been generated, it is necessary to run the computational program.
The following main program and element subroutine may be used for the solution of the non-linear
potential problem:

program practicum7_4

c --- Sample program for the example in the introduction Section 7.4

call sepcom (0)
end

c --- It is necessary to define your own element subroutine

PRAC Non-linear Potential problem September 1999 7.4.3

subroutine elemsubr (ndim, npelm, x, nunk_pel, elem_mat,
+ elem_vec, elem_mass, uold, itype)

c ==
c
c programmer Guus Segal
c version 1.0 date 15-10-1998
c
c
c copyright (c) 1998-1998 "Ingenieursbureau SEPRA"
c permission to copy or distribute this software or documentation
c in hard copy or soft copy granted only by written license
c obtained from "Ingenieursbureau SEPRA".
c all rights reserved. no part of this publication may be reproduced,
c stored in a retrieval system (e.g., in memory, disk, or core)
c or be transmitted by any means, electronic, mechanical, photocopy,
c recording, or otherwise, without written permission from the
c publisher.
c **
c
c DESCRIPTION
c
c Special user element subroutine to be used by SEPRAN in the case of
c the Numerical Analysis Lab of Delft University of Technology
c **
c
c KEYWORDS
c
c matrix
c vector
c element
c **
c
c MODULES USED
c
c **
c
c COMMON BLOCKS
c
c **
c
c INPUT / OUTPUT PARAMETERS
c

implicit none
integer ndim, npelm, nunk_pel, itype
double precision x(npelm,ndim), elem_mat(nunk_pel,nunk_pel),

+ elem_vec(nunk_pel), elem_mass(nunk_pel),
+ uold(nunk_pel)

c elem_mass o In this two-dimensional array the student must store the
c element mass matrix, provided the mass matrix must be
c computed, in the following way:
c elem_mass(i,j) = s_{ij} ; i,j = 1(1)nunk_pel
c This matrix should only be filled if a mass matrix is
c required, for example for time-dependent problems.

7.4.4 Non-linear Potential problem September 1999 PRAC

c elem_mat o In this two-dimensional array the student must store the
c element matrix, in the following way:
c elem_mat(i,j) = s_{ij} ; i,j = 1(1)nunk_pel.
c The degrees of freedom in an element are stored
c sequentially, first all degrees of freedom corresponding
c to the first point, then to the second, etcetera.
c elem_vec o In this array the student must store the element vector,
c in the following way:
c elem_vec(i) = f_i; i = 1(1)nunk_pel
c It concerns the derived quantity that must be computed
c itype i Type number of element.
c This parameter is defined in the input block PROBLEM
c ndim i Dimension of the space.
c npelm i Number of points per element
c nunk_pel i number of degrees of freedom in the element
c uold i In this array the old solution, as indicated by V1,
c is stored. This solution may contain the boundary
c conditions only, if the array has been created by
c prescribe_boundary_conditions, but also a starting vector
c if V1 has been created by create or even the previous
c solution in an iteration process if nonlinear_equations
c is used.
c x i Contains the coordinates of the nodes of the element using
c the local node numbering
c x(i,1) contains the x-coordinate of the i-th node in the
c element and x(i,2) the y-coordinate of this node
c **
c
c LOCAL PARAMETERS
c

double precision mu, e(3,2), delta, gradphi(3,2)
integer i, j

c delta Jacobian delta of the element
c e Contains the factors e^ij according to
c e(i,j) = e^ij, i=1,2,3; j=1,2
c gradphi Contains the gradient of the basis function phi_i according to
c gradphi(i,j) = dphi_i/dx_j, i=1,2,3; j=1,2
c i General loop variable
c j General loop variable
c mu Parameter mu in the differential equation
c **
c
c SUBROUTINES CALLED
c
c none
c **
c
c I/O
c
c none
c **
c
c ERROR MESSAGES
c

PRAC Non-linear Potential problem September 1999 7.4.5

c none
c **
c
c PSEUDO CODE
c
c The element matrix, element right-hand side and if the problem so
c requires the element mass matrix are filled by the user, depending on
c the parameter itype
c
c The element matrix and element vector are defined in the Lecture Notes
c "Numerieke methoden voor partiele differentiaalvergelijkingen"
c See also the description in the manual for the formulas
c **
c
c DATA STATEMENTS
c
c ==
c

if (itype.eq.1) then

c --- Type = 1: mu = 1

mu = 1d0

end if

c --- Compute the factors e_ij and delta as defined in the Lecture Notes
c (pages 97,98)

e(1,1) = x(2,2) - x(3,2)
e(2,1) = x(3,2) - x(1,2)
e(3,1) = x(1,2) - x(2,2)

e(1,2) = x(3,1) - x(2,1)
e(2,2) = x(1,1) - x(3,1)
e(3,2) = x(2,1) - x(1,1)

delta = e(3,1) * e(1,2) - e(3,2) * e(1,1)

c --- Compute the gradient of the basis functions as defined in the
c Lecture Notes

do j = 1, 2
do i = 1, 3

gradphi(i,j) = e(i,j) / delta
end do

end do

c --- Fill the element matrix as defined in the Lecture Notes

do j = 1, 3
do i = 1, 3

elem_mat(i,j) = mu * 0.5d0 * abs(delta) *
+ (gradphi(i,1)*gradphi(j,1) + gradphi(i,2)*gradphi(j,2))

end do

7.4.6 Non-linear Potential problem September 1999 PRAC

end do

c --- The element vector is defined by the previous solution

do i = 1, 3
elem_vec(i) = abs(delta)/6d0*exp(-uold(i))

end do

end

The corresponding input file is:

**
*
* File: practicum7-4.prb
*
* Contents: Input for computational part of the example as described
* in the SEPRAN Introduction 7.4
*
* Usage: practicum7-4 < practicum7-4.prb
*
* It has been supposed that the following actions have been carried out
* with success:
*
* sepmesh practicum7-4.msh
* seplink practicum7-4
**
*
*
constants # See Section 4.3

vector_names
1: potential

end
*
* Problem definition, see Section 5.4.1
*
problem

types # Define type numbers per element group
elgrp1 = (type=1) # Element group 1: itype = 1

essboundcond # Define where essential boundary
conditions are defined (not there
value)

curves(c1 to c4) # The potential is given on c1 ... c4
end
*
* Define the structure of the large matrix and implicitly the type
* of linear solver, see Section 5.4.2
*
matrix

method = 1 # The matrix is symmetrical
A direct solver will be used

end
*
* Define non-zero essential boundary conditions, see Section 5.4.3
*

PRAC Non-linear Potential problem September 1999 7.4.7

essential boundary conditions, sequence_number = 1
value=0 # The value on the boundary is 0

Since this is the default this statement is
superfluous

end
*
* Information for the linear solver, see Section 5.4.5
*
solve, sequence_number = 1

positive definite # The matrix is positive definite
end
*
* Information for the non-linear solver, see Section 5.4.6
*
nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1e-3, print_level=2 # global options
equation 1 # there is only one equation

local_options, iteration_method = standard # local option, since this
is the default, this is
superfluous

end
*
* Information for the output, see Section 5.4.7
*
output, sequence_number = 1 # These statements are superfluous
end
*
* Define the structure of the main program, see Section 5.4.11
* Since the structure used here is standard for linear problems, this
* part is superfluous
* Since there is only one vector the part vector = %potential may also
* be skipped
*
structure

prescribe_boundary_conditions, sequence_number = 1, vector = %potential
solve_nonlinear_system, sequence_number = 1, vector = %potential
output, sequence_number = 1, vector = %potential

end
end_of_sepran_input

Program seppost allows us to print and plot the solution. It requires input from the standard input
file.
If, for example, we want to print the solution, make a standard contour plot and a coloured contour
plot then the following input file may be used:

**
*
* File: practicum7-4.pst
*
* Contents: Input for post processing part of the example as described
* in the SEPRAN Introduction 7.4
*
* Usage: seppost practicum7-4.pst
*
**

7.4.8 Non-linear Potential problem September 1999 PRAC

*
*
postprocessing # See Section 6.2

print v%potential # See Section 6.3
plot identification, text=’Example of non-linear potential problem’//

origin=(3,18)
plot contour v%potential # See Section 6.4
plot coloured contour v%potential

end

PRAC Index September 1999 8.1

Index

3d plot 6.4
arc 4.1.2, 4.2, 4.4
boundary 2, 2.2
boundary conditions 2, 2.4
boundary element 2.4.2, 5.4.1
boundary integral 5.4, 5.4.10, 5.4.11
build 5.6, 5.6.1
carc 4.1.2, 4.2, 4.4
cfunc 5.5, 4.4
cfuncb 5.5, 5.5.2
cg 5.4.5
cgs 5.4.5
cline 4.1.2, 4.2, 4.4
coarse 4.2, 4.4
command 2.5
complex 5.4.2, 5.4.3, 5.4.4
computation 3, 3.2, 5.1
compute 6.2
conjugate gradients 5.4.5
constants 4.2,4.3
contour plot 6.4
create 5.4, 5.4.4, 5.4.11
curve 4.1.1, 4.1.2, 4.2, 4.4
data record 5.3
define 6.2
degree of freedom 2.5
derivatives 5.4, 5.4.8, 5.4.11
eldervsubr 5.6, 5.6.2
element 2.1
element group 2.1, 4.1.4
elem mass 5.6.1
elem mat 5.6.1
elem matrix 5.6.1
element subroutine 5.6
elemsubr 5.6, 5.6.1
elem vec 5.6.1, 5.6.2
elem weight 5.6.2
element vector 5.6.1, 5.6.2
element weight vector 5.6.2
elintsubr 5.6, 5.6.3
essential boundary conditions 2.4.1, 5.3, 5.4, 5.4.1, 5.4.3, 5.4.11
factor 4.4
flow problem 7.3
fortran 5.3
func 5.2, 5.5
funcbc 5.2, 5.4.3, 5.5, 5.5.1
function plot 6.4
icheld 5.6.2
icheli 5.6.3
implicit none 5.3
inner boundary 2.2
integers 4.3
integrals 5.4, 5.4.9, 5.4.11

8.2 Index September 1999 PRAC

iteration method 5.4.5, 5.4.6
iterative solver 5.4.5
itype 5.4.1, 5.6.1, 5.6.2, 5.6.3
general 4.1.3, 4.2, 4.4
gmres 5.4.5
hole in plate problem 7.2
line 4.1.2, 4.2, 4.4
linear system 5.4.11
matrix (structure) 5.3, 5.4, 5.4.2
mesh 3, 3.1, 4
meshconnect 4.4
meshline 4.1.4, 4.2, 4.4
meshoutput 3.1
meshsurface 4.1.4, 4.2, 4.4
METHOD 5.4.2
natural boundary conditions 2.4.2, 5.4.1
ndim 5.6.1, 5.6.2, 5.6.3
NELGRP 2.1
newton 5.4.6
nodal point 2.1
nonlinear equations 5.3, 5.4, 5.4.6, 5.4.11, 7.4
nonlinear potential problem 7.4
nonlinear system 5.4.11
npelm 5.6.1, 5.6.2, 5.6.3
NUMNATBND 2.4.2
nunk pel 5.6.1, 5.6.2, 5.6.3
outer boundary 2.2
output 5.3, 5.4, 5.4.7, 5.4.11
periodical boundary conditions 2.4.2, 4.4, 5.4.1
plane stress 7.2
plot 3.4, 4.2, 4.4, 6.2, 6.4
plotmesh 3.1, 3.4, 3.5
plot parameters 6.4
point 4.1.1, 4.2, 4.4
positive definite 5.4.5
postprocessing 3, 3.3, 6.1
postsep 3.3, 3.5
potential problem 7.1, 7.4
preconditioning 5.4.5
preprocessing 3, 3.1
prescribed degree of freedom 2.5
print 5.4.11,6.2, 6.3, 5.6.1, 5.6.4, 5.6.5, 5.6.6
printintegerarray 5.6.1, 5.6.5
printmatrix 5.6.1, 5.6.6
printrealarray 5.6.1, 5.6.4
problem 5.3, 5.4, 5.4.1
problem definition 2.3, 5.4, 5.4.1
programming 5.3
quadrilateral 4.1.3, 4.2, 4.4
ratio 4.4
reals 4.3
record 5.3
reset 6.2
scalar 5.4.11
scalar name 4.3, 5.4.11

PRAC Index September 1999 8.3

sepcomp 3.2, 3.5, 5.1, 5.2, 5.3, 5.4
sepcomp.inf 3.2
sepcomp.out 3.2
sepgetpract 5.2
seplink 3.5, 5.2
sepmesh 3.1, 3.5, 4.2
sepplot.001 3.1
seppost 3.3, 3.5, 6.2
sepview 3.4, 3.5
shape number 4.1.4
solve 5.3, 5.4, 5.4.5
standard element 2.1, 4.1.1
standard input file 5.3
standard problem 2.3, 5.4.1
structure 5.4, 5.4.11
subregion 2.1
subroutine missing 5.2
surface 4.1.1, 4.1.3, 4.2, 4.4
time 6.2, 6.5
time history 6.2, 6.5
type number 5.4.1
undefined symbol 5.2
user 4.1.2, 4.2, 4.4
user point 4.1.2, 4.2
variable 4.3, 5.4.11
vector 5.4.11
vector name 4.3, 5.4.11
vector plot 6.4
volume 4.1.1

8.4 Index September 1999 PRAC

	 Introduction
	 General remarks and definitions
	 Elements
	 Boundaries
	 Problem definition
	 Boundary conditions
	 Essential boundary conditions
	 Natural boundary conditions
	 Periodical boundary conditions

	 Some special definitions

	 The global structure of a SEPRAN-session
	The preprocessing part of SEPRAN
	The computational part of SEPRAN
	The postprocessing part of SEPRAN
	Display of SEPRAN plots
	An overview of the simple SEPRAN commands

	 Mesh generation
	General remarks
	 Definition of points, curves, surfaces and volumes
	 Generation of curves
	 Generation of surfaces
	 Coupling of geometrical quantities with element groups

	A simple example
	Some remarks concerning the input files
	Input for the mesh generator
	 Subroutine FUNCCV

	 The computational part of SEPRAN
	Introduction
	How to use program SEPCOMP
	Programming considerations
	Description of the input for program SEPCOMP
	The main keyword PROBLEM
	The main keyword MATRIX
	The main keywords ESSENTIAL BOUNDARY CONDITIONS
	The main keyword CREATE
	The main keyword SOLVE
	 The main keyword NONLINEAR_EQUATIONS
	 The main keyword OUTPUT
	The main keyword DERIVATIVES
	The main keyword INTEGRALS
	The main keyword BOUNDARY_INTEGRAL
	The main keyword STRUCTURE

	Description of some function subroutines to be used together with program SEPCOMP
	 Function subroutine FUNCBC
	 Subroutine CFUNCB
	Function subroutines FUNC and CFUNC

	How to program your own element subroutines
	 Subroutine ELEMSUBR
	 Subroutine ELDERVSUBR
	Function subroutine ELINTSUBR
	 Subroutine PRINTREALARRAY
	 Subroutine PRINTINTEGERARRAY
	 Subroutine PRINTMATRIX
	 Function subroutine FUNCSCAL

	 The postprocessing part of SEPRAN
	Introduction
	General input for program SEPPOST
	Print commands for program SEPPOST
	PLOT commands for program SEPPOST
	Special commands for time-dependent problems with respect to program SEPPOST"

	 Some examples of complete SEPRAN runs
	A potential problem in a L-shaped region
	A mathematical test example showing the use of boundary elements
	An artificial complex example
	A non-linear potential problem

