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1 Introduction

In this manual it is described, how the standard problems available in SEPRAN must be solved,
i.e. which standard elements are present and what their standard problem definition numbers are.
Furthermore, the available types of boundary conditions are given and for linear problems, it is
indicated whether the large matrix is symmetrical and/or positive definite. The manual contains
a very limited number of examples. For a more extended list the reader is referred to the manual
SEPRAN EXAMPLES.

For non-linear problems a description of the iteration process is given.
Section 1.1 Gives some general remarks concerning this manual. elements.
Chapter 2 treats some simple diffusion-like equations.
Chapter 3 treats general second order elliptic equations, both stationary and time-dependent. Typ-
ical representations are the Laplacian (Poisson) equation, the convection-diffusion equation, the
Helmholtz equation and the heat equation.
Elements concerning lubrication are treated in Chapter 4.
Chapter 5 is devoted to mechanical elements.
The available elements for solidification problems are given in Chapter 6.
Chapter 7 treats flow problems governed by the incompressible Navier-Stokes equations.
Spectral elements are the subject of Chapter 8.
In Chapter 10 it is described which methods are available for providing coefficients and other nec-
essary information to the SEPRAN standard elements.
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1.1 General remarks concerning this manual

The description of the available standard problems is given in the next chapters. These chapters
are subdivided into paragraphs corresponding to one type of equation. Each paragraph contains
the following items:

Equation Under this heading the (partial) differential equation is given.

Boundary conditions The types of boundary conditions for which standard elements are avail-
able are given.

Remarks concerning the solution of the equation treats special information concerning the
solution if needed. For example upwind in case of convection, treatment of non-linearity, or
penalty function formulation in case of Navier-Stokes are treated in this part.

Coefficients for the differential equation describes the various coefficients that are available
for this type of equation, including information about coordinate system and numerical
quadrature rule to be applied.
Coefficients may be provided either in a separate coefficients block or in the structure block.
If it is found in a coefficients block corresponding to the equation to be solved, the correspond-
ing value is used. If a specific coefficient is not available it is checked if there is a constant,
variable or vector defined with that specific name. That value is used.
Note that in the last case the name must be precisely the coefficients name. However, the
input is case independent, so it does not matter whether you use capitals or not.

We distinguish between integer coefficients and real coefficients. The first one is usually meant
to make a choice between several options, for example what kind of coordinate system is used.
These integer coefficients are either in the form:
name coefficient = value (integer)
or
name coefficient = string.
For example

integration_rule = 3

coordinate_system = cartesian

If the value is a string it must be put within quotes when used in a structure block. In a
coefficients block, however, these quotes must be neglected. So the example above is meant
for a coefficients block, whereas in the structure block it would be:

integration_rule = 3

coordinate_system = ’cartesian’

In the next chapters each coefficient is followed by eiher (icoef j) or (coef k). This refers to
the internal sequence number of the coefficient and whether it is an integer coefficient (icoef)
or a real one (coef).
Furthermore string names like cartesian are followed by an integer number between brackets
indicating the internal value.
This information is needed for the case that the user provides the coefficients in a user written
program or uses an old sepran program.

Coefficients for the natural boundary conditions has the same meaning and syntax as for
the differential equation.

Type numbers to be used in the problem input block indicates the name that is used to
identify the problem and it also gives the internally used type number which can be used
alternatively or in user written programs.
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In general for natural boundary conditions it is sufficient to give the boundary elements, but
one may also define the type numbers explicitly in the subblock natbouncond. This type
number is also given.

Derivatives For this equation one can compute various derivatives or derived quantities by

vector = derivatives ( input_vector, icheld=i, options )

with input_vector the vector from which the derivative must be computed and icheld = i
a sequence number indicating what type of derivative must be computed.
Alternatively sometimes one might use

vector = name_action(input_vector)

where name_action the name of the specific action is, for example gradient.

Solution method In this part it is described how the problem must be solved. For example,
which iteration process should be used, etc.

Output In this part the output of some subroutines with correspondence to this standard problem
is given. For example, this can be the velocity, the pressure or the stress tensor.

Numbering of unknowns The unknowns in a nodal point are numbered according to a fixed
sequence. Under this heading it is given what number corresponds to which unknown.

Element types and problem definition numbers Under this heading the available element
shapes are treated and their corresponding type numbers with respect to the input block
”PROBLEM”. The available element shapes are indicated by a sequence number, which
refers to the shape number to be used in the mesh generator. See the input of the mesh gen-
erator (Manual SEPRAN INTRODUCTION or SEPRAN USERS MANUAL) for a definition
of all the available shape numbers.

With respect to the use of the standard elements described in this manual the following points are
of importance:
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2 Some simple diffusion-like equations

This Chapter describes a set of very simple equations. All these equation can be considered as
a special case of the general second order elliptic equation treated in Section 3.1. The following
equations are available:

Laplace See 2.1

Poisson See 2.2

Diffusion See 2.3

convection-diffusion See 2.4
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2.1 Laplace equation

This is the most simple of all equations to be solved.

2.1.1 Equation

ρcp
∂φ

∂t
−∆φ = 0. (2.1.1)

or written in terms of derivatives:

ρcp
∂c

∂t
−

n∑
i=1

∂2φ

∂x2
i

= 0, (2.1.2)

with n the dimension of the space Rn (1, 2 or 3) and xi the ith coordinate direction.
In the stationary case the time derivative disappears.
The minus sign is just to make the resulting system of equations positive, but does not change a
thing in the equation.
The matrix corresponding to this equation is symmetric and, except in the case of Neumann bound-
ary conditions on each boundary, also positive definite.

2.1.2 Boundary Conditions

For this equation there are two types of boundary conditions available.

Type 1 (Dirichlet boundary condition) φ(x) given on some part of the boundary.
This is an essential boundary condition, i.e. no boundary elements are required for this type.

Type 2 (Neumann or mixed boundary condition)

∂φ

∂n
+ σφ = h (σ(x) ≥ 0), (2.1.1)

on some part of the boundary. n is the outward normal at the boundary and h a given source
term. Hence the first term is the normal derivative at the boundary.
This is a so-called natural boundary condition. In general, boundary elements are necessary,
except in the case that σ = 0 and h = 0, when there is no need to give any condition on this
part of the boundary. For σ = 0 this is a Neumann boundary condition, otherwise it is a
mixed boundary condition.
σ and h may be function of space.

2.1.3 Coefficients for the differential equation

The differential equation itself does not require any coefficients, however, the user may provide the
following information either in a coefficients block or in the structure block.

INTEGRATION RULE = i (icoef3) defines the type of integration rule to be applied.
This is an integer coefficient, with the following possible values for i:

0 the rule is chosen by the element itself (Default)

> 0 the integration rule is defined by the user, see below

COORDINATE SYSTEM = name (icoef4) Type of co-ordinate system.
name is a string parameter with the following possible values:

CARTESIAN (0) Cartesian co-ordinates (x, y, z) (Default)
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AXI SYMMETRIC (1) Axisymmetric co-ordinates (2D grids only) (r, z)

POLAR (2) Polar co-ordinates (1D grids only) (r)

DENSITY = ρ (coef6) density.
Default value: 1

HEAT CAPACITY = cp (coef7) heat capacity.
Default value: 1

2.1.4 Coefficients for the natural boundary conditions

The non-homogeneous natural boundary conditions require extra input for the coefficients. First of
all the same coefficients integration_rule and coordinate_system as for the differential equation
may be used. Besides that we need to prescribe σ and h:

diff sigma = σ (coef6) defines the value of the coefficient σ.

diff flux = h (coef7) defines the value of the coefficient h.

2.1.5 Type numbers to be used in the problem input block

The use of the Laplace equation is indicated in the problem block by the name

laplace

or alternatively by

type = 700

The natural boundary conditions do not have to be indicated by a type number, but internally type
801 is used.

2.1.6 Derivatives

The following types of derivatives may be computed:

ICHELD = 1 ∂c
∂xi

, where xi is defined by the parameter ix

ICHELD = 2 ∇c
Instead one can also use vector = gradient(input_vector) in the structure block.

ICHELD = 3 -∇c
Alternatively one can also use vector = flux(input_vector)

2.1.7 Extra information

For all other information like vectors of special structure and integrals the reader is referred to
Section 3.1.
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2.2 Poisson equation

The Poisson equation is in fact the Laplace equation with a non-zero right-hand side.

2.2.1 Equation

ρcp
∂φ

∂t
−∆φ = f. (2.2.1)

2.2.2 Boundary Conditions

See Section 2.2.1

2.2.3 Coefficients for the differential equation

Besides the coefficients mentioned in Section 2.2.1, there is one extra term to prescribe the right-
hand side f .

SOURCE = f (coef6) defines the right-hand side. The coefficients density and heat capacity refer
to coef7 and coef8 respectively.

2.2.4 Coefficients for the natural boundary conditions

See Section 2.2.4

2.2.5 Type numbers to be used in the problem input block

The use of the Poisson equation is indicated in the problem block by the name

poisson

or alternatively by

type = 701

The natural boundary conditions do not have to be indicated by a type number, but internally type
801 is used.

2.2.6 Derivatives

See Section 2.2.6
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2.3 Diffusion equation

The diffusion equation is in fact the natural extension of the Poisson equation. The only difference
is that it has a diffusion parameter that is not identical to one.

2.3.1 Equation

ρcp
∂c

∂t
− div(A∇c) = f, (2.3.1)

where A may be a scalar, a diagonal matrix or a general symmetric n × n matrix where n is the
dimension of the space (Rn).
Written in terms of derivatives:

ρcp
∂c

∂t
−

n∑
i=1

n∑
j=1

∂

∂xi

(
Aij

∂c

∂xj

)
= f. (2.3.2)

The matrix corresponding to this equation is symmetric and, except in the case of Neumann bound-
ary conditions on each boundary, also positive definite.

2.3.2 Boundary Conditions

With respect to the Dirichlet boundary conditions the same remarks as in Section 2.1.2 are valid.
The mixed boundary condition in this case reads

n∑
i=1

((

n∑
j=1

Aij(x)
∂c

∂xj
) ni) + σ(x)c(x) = h(x) (σ(x) ≥ 0), (2.3.1)

with ni the component of the normal n in xi direction.
Although Equation (2.3.1) seems more complicated than Equation (2.1.1) it is in fact the same
expression and therefore everything mentioned in Section 2.1.2 is still applicable.

2.3.3 Coefficients for the differential equation

Besides the coefficients mentioned in Section 2.2.3, we need to prescribe the diffusion. If the diffusion
A is a scalar we need to give one parameter, if it is a diagonal matrix we have to give n parameters
and in the general case 3 (n=2) or 6 (n=3).

diffusion = α (coef6/9/11) defines the diffusion as a scalar.

If the diffusion A is a dagonal matrix we use:

diff x = αx (coef6) defines the diffusion in x-direction in case of a diagonal matrix.

diff y = αy (coefy) defines the diffusion in y-direction.

diff z = αz (coefz) defines the diffusion in z-direction.

In the general case the diffusion coefficients are given in the following way:

diff xx = A11 (coef6).

diff xy = A12 (coef7).

diff xz = A13 (coef8).

diff yy = A22 (coef9).
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diff yz = A23 (coef10).

diff zz = A33 (coef11).
All coefficients not given are zero.
The sequence numbers of the other coefficients is:

SOURCE (coef12).

DENSITY (coef13).

HEAT CAPACITY (coef14).

2.3.4 Coefficients for the natural boundary conditions

See Section 2.1.4.

2.3.5 Type numbers to be used in the problem input block

The use of the Diffusion equation is indicated in the problem block by the name

diffusion

or alternatively by

type = 702

The natural boundary conditions do not have to be indicated by a type number, but internally type
801 is used.

2.3.6 Derivatives

ICHELD = 1 ∂c
∂xi

, where xi is defined by the parameter ix

ICHELD = 2 ∇c
Instead of derivatives one can also use vector = gradient(input_vector) in the structure
block.

ICHELD = 3 -∇c

ICHELD = 6 −A∇c, where A is the matrix with coefficients Aij .
vector = flux(input_vector) has the same effect.
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2.4 Convection-diffusion equation

The convection-diffusion equation is in fact the extension of the diffusion equation with a convection
term.

2.4.1 Equation

ρcp
∂c

∂t
− div(A∇c) + ρcpu · ∇c = f, (2.4.1)

with, u, a given velocity, rho, the density, cp, the heat capacity at constant pressure, and all other
terms the same as in Section 2.3.1.
Written in terms of derivatives:

ρcp
∂c

∂t
−

n∑
i=1

n∑
j=1

∂

∂xi

(
Aij

∂c

∂xj

)
+ ρcp

n∑
i=1

ui
∂c

∂xi
= f. (2.4.2)

The matrix corresponding to this equation is asymmetric except in the case that the velocity is zero
everywhere.

2.4.2 Boundary Conditions

See Section 2.3.2

2.4.3 Remarks concerning the solution of the equation (upwind)

If in equation (2.4.2) the convective part
n∑
i=1

ui
∂c
∂xi

dominates the diffusive part−
n∑
i=1

n∑
j=1

∂
∂xi

(
αij

∂c
∂xi

)
,

an improvement of the accuracy may be possible by applying a so-called upwind technique. How-
ever, it must be remarked that upwinding not always improves the accuracy and, moreover, in all
cases the building of matrices in case of upwinding is more expensive than in the standard case.

The upwinding in SEPRAN is realized by the so-called streamline upwind Petrov-Galerkin method
(SUPG), see Brooks and Hughes (1982).

Essential in this method is that next to the standard Galerkin equation an extra term of the
following type is added: ∫

e

(Dc− f)pdΩ

where e is the element. Dc represents the differential equation applied to c and f is the right-hand
side. The upwind parameter p is defined by

pi =
hξ

2

u · ∇φi
‖ u ‖

with

h the width of the element in the direction of the flow,

φi the ith basis function,

u the velocity,
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ξ a choice parameter defining the type of upwinding.

For the definition of ξ we introduce the parameters ε, β by ε = uTαu, where α is the matrix with

elements αij , and β = ‖u‖h
2ε .

The following choices of ξ have been programmed:

1 Classical upwind scheme: ξ = 1

2 Il’in scheme: ξ = coth (β)− 1
β

3 Doubly asymptotic approximation: ξ =

{
β/3 −3 ≤ β ≤ 3
sign(β) | β |> 3

4 Critical approximation: ξ =

 −1− 1/β β < 1
0 −1 ≤ β ≤ 1
1− 1/β 1 ≤ β

5 Hughes approximation: ξ =
√

β2

9+β2

6 Time-dependent approximation: pi =

((
2

∆t

)2
+
(

2‖u‖
h

)2

+
(

4ε
h

)2)− 1
2

u · ∇φ

7 Discontinuity capturing 1 of Hughes et al. (DC-1):
Define

u‖ =
u · ∇c
‖ c ‖2

, (2.4.1)

where c is the solution to be computed.
Then the upwind basis functions pi become:

pi = (τ1u + τ2u‖) · ∇φi (2.4.2)

with τ1 = hξ
2‖u‖ and τ2 = hξ

2‖u‖‖
. In this case ξ is chosen according to the doubly asymptotic

approximation.

8 Discontinuity capturing 2 of Hughes et al. (DC-2):
This method is identical to DV-1, however, τ2 is defined by τ2 = max(0, τ‖ − τ), where τ‖ is
the τ2 defined in DC-1

9 Linear triangular method of Mizukami and Hughes satisfying the maximum principle:
This method, described in Mizukami and Hughes (1985), is only applicable for linear triangles.
The method may be extended to linear tetrahedrons.
In this method the upwind basis functions pi depends on the flow direction as well as the
solution. Hence it is a non-linear method. The upwind basis functions are chosen such that
the maximum principle is satisfied. This means that in the absence of sources the solution can
never be lower than the lowest value on the boundary and never be higher than the highest
value on the boundary.
Since the method is non-linear it requires iteration.
To start the iteration one might start for example with the doubly asymptotic approxima-
tion. Experiments show that sometimes the iteration shows a so-called flip-flop character. It
switches between two different stages without ever converging.
To suppress such behavior two methods may be applied:

• Under-relaxation may be applied. This requires relatively many iterations and the choice
of the under-relaxation parameter may be a problem.
See SEPRAN EXAMPLES Section 3.1.8 for an example.



SP Introduction January 2015 2.4.3

• A flip-flop mechanism may be triggered.
In this mechanism an integer flip-flop array is used that keeps track of the various stages
of the upwind basis functions. If the direction of the upwind basis function is clear it is
kept.
To set this array method = 10 and to update it use method = 11.
See the manual SEPRAN EXAMPLES Section 3.1.8 for an example.

12 Time-dependent approximation according to Thornberg and Enquist

From these choices ξ = 1 gives the least accurate but smoothest results, the accuracy of the
methods 2, 3 and 4 is comparable, method 2 is clearly the most expensive because of the necessity
to compute the coth function for each point. Method 6 should be used in time-dependent problems.
The methods 7 and 8 are examples of non-linear upwind methods. In the time-independent case
they require an iteration, since the solution is part of the upwind parameter. In general the methods
with discontinuity capturing give smoother results than the other methods. Especially DC-1 is very
smooth, but generally less accurate than DC-2.

2.4.4 Coefficients for the differential equation

Compared to the coefficients described in Section 2.3.3, we need to prescribe the velocity, the density
and if necessary information about upwind.
The velocity can be given as a vector with n components per node, or components-wise.

velocity = v (coef12/13/14) defines the velocity as vector v, which must have been filled before.

u velocity = u (coef12) defines the x-component of the velocity.

v velocity = v (coef13) defines the y-component of the velocity.

w velocity = w (coef14) defines the z-component of the velocity.
components that are omitted are equal to zero.

SUPG = name (icoef2) Type of upwind.
name is a string parameter with the following possible values:

NONE (0) No upwind (Default)

CLASIC (1) Classical upwind scheme

ILIN (2) Il’in scheme

DOUBLY ASSYMPTOTIC (3) Doubly asymptotic approximation

CRITICAL (4) Critical approximation

HUGHES (5) Hughes approximation

TIME DEPENDENT (6) Time-dependent approximation

DC1 (7) Discontinuity capturing 1

DC2 (8) Discontinuity capturing 2

MIZUKAMI MAX (9) Linear triangular method of Mizukami and Hughes

MIZUKAMI ACT (10) Activate flip-flop

MIZUKAMI USE (11) Use flip flop

TORNBERG TIME (12) Time-dependent approximation according to Thornberg and En-
quist

TYPE CONVECTION = name (icoef5) Indicates the type of convection term to be applied.
Possible values:

INCOMPRESSIBLE (0) (Default) This is the standard convection term as described above
in Equation 2.4.1.
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COMPRESSIBLE (1) In this case we use the more general form

div uc (2.4.1)

which reduces to the standard form in case of incompressible flow.

ABSOLUTE (2) A special non-linear form of the convective terms is the case in which the
term u · ∇c is replaced by the term:

| ∂c
∂x
|+ | ∂c

∂y
|+ |∂c

∂z
| (2.4.2)

NON LINEAR (3) The convective term may be a function g of ∇c.
At this moment it is assumed that the derivative ∂g(∇c)

∂∇c exists and can be computed by
the user as function of ∇c and x.
Since this term is non-linear a linearization procedure is necessary. At this moment the
standard Newton (-Raphson) method is applied for the linearization.
Furthermore in this case the user must provide a user subroutine FUNCC2 (See Users

Manual, Section 3.3.10), in which both the function g(∇c) and the derivative ∂g(∇c)
∂∇c are

computed as function of ∇c and x.
In the manual SEPRAN EXAMPLES Section 3.3.4 it is explained how these equations
may be solved.

APPLY UPWIND = name (icoef20) Indicates if upwind must be applied to all terms or to
certain terms only.
Possible values:

ALL (0) Applied to all terms (Default)

EXCL MASS MATRIX (1) Applied to all terms except the mass matrix.

CONVECTION ONLY (2) Applied to the convection term only.

The sequence numbers of the other coefficients is:

SOURCE (coef15).

DENSITY (coef16).

HEAT CAPACITY (coef17).

2.4.5 Coefficients for the natural boundary conditions

See Section 2.1.4.

2.4.6 Type numbers to be used in the problem input block

The use of the Diffusion equation is indicated in the problem block by the name

convection_diffusion

or alternatively by

type = 703

The natural boundary conditions do not have to be indicated by a type number, but internally type
801 is used.

2.4.7 Derivatives

See Section 2.3.6.
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3 Second order elliptic and parabolic equations

In this chapter we consider several types of elliptic and parabolic equations of second order.
The following Sections are available:

3.1 Second order real elliptic and parabolic equations with one-degree of freedom.
In this section the general second order quasi linear elliptic equation is treated. Due to the
presence of a time derivative the corresponding parabolic equation is treated as well.
The number of unknowns per point is 1.

3.3 Second order complex elliptic and parabolic equations with one degree of freedom.
This section has the same purpose as Section 3.1, however, in this case complex unknowns
are considered.

3.4 Non-linear equations.
This section is devoted to some special non-linear differential equations.

3.5 δ-type source terms.
This section treats a very special type of source term. It has no general character.

3.6 Second order real elliptic and parabolic equations with two degrees of freedom.
This section has the same purpose as Section 3.1, however, in this case the number of unknowns
is equal to two per point.

3.7 Extended second order real linear elliptic and parabolic equations with two degrees of freedom
This section has the same purpose as Section 3.6, however extra terms defining the coupling
between the equations are present.
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3.1 Second order real linear elliptic and parabolic equations with one
degree of freedom

Equation

In this section we consider an extension of the convection diffusion equation 2.4.1:

ρcp(
∂c

∂t
+ u · ∇c)− div (α∇c+ γ) + βc = f (3.1.1)

i.e.

ρcp
∂c

∂t
+ ρcp

n∑
i=1

ui
∂c

∂xi
−

n∑
i=1

∂

∂xi

 n∑
j=1

(
αij

∂c

∂xj

)
+ γi

+ βc = f (3.1.2)

x = (x1, x2, . . . , xn) ∈ Ω ⊂ IRn

In the stationary case
(
∂c
∂t = 0

)
(3.1.1) reduces to

ρcpu · ∇c− div (α∇c) + βc = f (3.1.3)

In this case the equation is elliptic, otherwise it is parabolic.
The coefficients ρcp, u, α, β and f may depend on space and time and also of solutions of other
problems. The following restrictions for the coefficients are required: Defect correction

This element allows for defect correction as described in the Users Manual Section 3.2.8 under
the keyword SOLVE. If defect correction is applied the matrix to be solved corresponds to central
differences, whereas for the iteration matrix the upwind matrix is used. Hence the input must
contain the information with respect to the upwind method. Of course this option makes only
sense in case convection terms are present.

3.1.1 Boundary Conditions

Besides the Dirichlet boundary conditions the following types of boundary conditions are available:

Type 2 (Neumann or mixed boundary condition)

n∑
i=1

((

n∑
j=1

αij(x)
∂c

∂xj
) + γi)ni + σ(x)c(x) = h(x) (σ(x) ≥ 0) (3.1.1)

on some part of the boundary. This is a so-called natural boundary condition. In general,
boundary elements are necessary, except in the case that σ(x) = 0 and h(x) = 0, when there
is no need to give any condition on this part of the boundary. For σ = 0 this is a Neumann
boundary condition, otherwise it is a mixed boundary condition.

In the case of a convective term that has been written in the form of a linear compressible
convection (icompress=1), one may either use the expression given in 3.1.1 in combination
with extra elements of type 801 corresponding to boundary conditions of type 5, or one may
use the following expression in stead of 3.1.1

n∑
i=1

n∑
j=1

αij(x)
∂c

∂xj
ni − u · nc(x) + σ(x)c(x) = h(x) (σ(x) ≥ 0) (3.1.2)

If expression 3.1.2 is used the input is exactly the same as for 3.1.1, which means that only h
and σ have to be given and if both are zero, no boundary elements are necessary.
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Examples

For the Poisson equation boundary conditions of type 2 are given by: ∂c
∂n + σ(x)c = h(x),

for the convection diffusion equation by: ε ∂c∂n + σ(x)c = h(x),

for ground water flow by: k ∂φ∂n + σ(x)φ = h(x),

for the Reynolds equation by: h3 ∂p
∂n + σ(x)p = h(x)

Type 3
n∑
i=1

((

n∑
j=1

αij(x)
∂c

∂xj
) + γi)ni + σ(x)

∂c

∂t
= h(x) (σ(x) ≥ 0) (3.1.3)

on some part of the boundary,
with ∂c

∂t = ∇c · t, with t the tangential vector.

This is a special type of natural boundary condition. In general, boundary elements are
necessary, except in the case that σ(x) = 0 and h(x) = 0, in which case this condition reduces
to a boundary condition of type 2 on this part of the boundary.

Examples

For the Poisson equation boundary conditions of type 3 are given by: ∂c
∂n + σ(x)∂c∂t = h(x),

for the convection diffusion equation by: ε ∂c∂n + σ(x)∂c∂t = h(x),

for ground water flow by: k ∂φ∂n + σ(x)∂φ∂t = h(x),

for the Reynolds equation by: h3 ∂p
∂n + σ(x)∂p∂t = h(x)

Type 4
∂c

∂n
+ σ(x)

∂c

∂t
= h(x) (σ(x) ≥ 0) (3.1.4)

on some part of the boundary,
with ∂c

∂t = ∇c · t, with t the tangential vector and ∂c
∂n = ∇c · n, n denotes the normal vector.

This is another special type of natural boundary condition. In general, boundary elements are
necessary, except in the case that σ(x) = 0, α is a diagonal matrix with a constant diagonal
and h(x) = 0, in which case this condition reduces to a boundary condition of type 2 on this
part of the boundary.

Type 5 If convective terms of the form (2.4.1) are used and at a part of the outer boundary both
u · n 6= 0 and c is not prescribed, it is necessary to define extra boundary elements with type
number 801. These boundary elements must be considered as additional to other boundary
elements at that boundary.
This possibility has only been implemented for two-dimensional elements. It is in that case
necessary that the boundary where these boundary elements must be applied is created coun-
terclockwise, since a term involving u · n is required and n is computed from the tangential
direction in counter-clockwise direction. If the boundary is created clockwise it is necessary
to use −u instead of u.

Type 6 (Discontinuous boundary condition)
A very special boundary condition is formed by the following boundary condition allowing a
jump in the solution. Suppose the region is subdivided in an upper region (u) and a lower
region (l) separated by a membrane. Assume furthermore that the solution jumps over this
membrane and hence is discontinuous. Furthermore we assume that equation 3.1.1 holds for
both the upper part and the lower part and that the coefficients are the same at the membrane.
At the membrane we assume the following boundary condition:

n∑
i=1

((

n∑
j=1

αij(x)
∂c

∂xj
) + γi)ni + σ(x)(cu(x)− cl(x)) = h(x) (3.1.5)
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cu means the value at the upper region and cl the value at the lower region. This boundary
condition implies that the values at both sides of the membrane are different. In order to use
this boundary condition connection elements as described in the Users Manual Section 2.2 are
necessary. These connection elements must connect linear or quadratic line elements in R2 or
surface elements in R3.
So for example in case of linear elements in R2 one has to use linear line elements as connection
elements, like

celmj = curves 1 ( ck, cl )

The parameter 1 indicates that it concerns linear elements
So in contrast to other boundary conditions it is not longer possible to use so-called boundary
elements, but these elements must be used in the same way as internal elements.
If boundary conditions of this type are applied the resulting matrices are non-symmetrical,
which implies that a non-symmetrical storage must be used.
See the manual SEPRAN EXAMPLES Section 3.1.4 for an example.

Remark

Both for boundary conditions of type 3 and type 4 it is necessary that the boundary elements are
created counter clockwise in order to fix the direction of the normal in relation with the tangential
vector. These boundary conditions are at present only available for linear two-dimensional elements.

3.1.2 Coefficients for the differential equation

Compared to the coefficients described in Section 2.4.2, the following extra coefficients are required.

ZERO ORDER COEF = β (coef18) contains the parameter β.

GAMMA =γ (coef19/20/21) contains the vector γ or alternatively one may prescribe the com-
ponents separately.

X GAMMA =γ1 (coef19) first component of γ

Y GAMMA =γ2 (coef20) second component of γ

Z GAMMA =γ3 (coef21) third component of γ

The sequence number of APPLY UPWIND is icoef25.

3.1.3 Coefficients for the natural boundary conditions

The non-homogeneous natural boundary conditions require extra input for the coefficients. In the
standard case of boundary conditions of type 2 we need the same input as in Section 2.1.4. If other
types of natural boundary conditions are used extra input is needed

1 (icoef1) Type of natural boundary condition.
Possible values:

0,2: natural boundary condition of type 2

3: natural boundary condition of type 3

4: natural boundary condition of type 4
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5: special boundary condition of type 5 corresponding to convective terms of the shape
(2.4.1).

8 α11

9 α12

10 α13

11 α22

12 α23

13 α33

In case of boundary conditions of type 5, which are meant for convective terms of the shape
(2.4.1), it is necessary to use boundary elements of type 801 for those outer boundaries where
u · n 6= 0 and c is not prescribed. In that case 8 coefficients are required.
The coefficients 6, 7 and 8 must contain information about the velocity vector u according to:
coefficient 6: u1

coefficient 7: u2

coefficient 8: u3

3.1.4 Type numbers to be used in the problem input block

The use of this equation is indicated in the problem block by the name

general_elliptic_equation

or alternatively by

type = 705 (or 800)

3.1.5 Derivatives

The first derivatives of the solution as well as the gradient and the flux require the same input as
in Section 2.3.6. Extra possibilities are

ICHELD = 5
(
∂c
∂y ,−

∂c
∂x

)
2D only

ICHELD = 11-20 See 1-10, however, now defined per element

ICHELD = 21 Put a function f defined by the sixth coefficient into the output vector. The only
difference with subroutine CREATE is the use of the averaging procedure.

ICHELD = 31-40 See 1-10, however, now derivatives are computed with general weight 1

The output vector is defined as follows:

1: a vector of the type vector of special structure with 1 unknown per point
2,3,5,6: a vector of the type vector of special structure with ndim unknowns per point
11: a vector of special structure defined per element with one unknown
12,13,15,16: a vector of special structure defined per element with ndim unknowns

In the cases ICHELD = 6, 16 and 21 the user must define coefficients according to:
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ICHELD = 6 and 16 coefficients 6 to 11 must contain the various coefficients αij just as for the
definition of the matrix

ICHELD = 21 coefficient 6 must contain the definition of the function f

Furthermore, the integer parameters 3 and 4 are used in exactly the same way as for the building
of the matrix.
Besides that the first integer parameter (ISEQ) may be used to define from which sequence number
in array ISLOLD the derivatives must be computed if ISLOLD contains more references to solution
vectors.
If ISEQ = 0 or 1 the first vector referenced by ISLOLD is used.

3.1.6 Integrals

If the user wants to compute integrals over the solution, he may use the option INTEGRAL in the
input block ”STRUCTURE”

The parameter ICHELI in the input block ”INTEGRALS” is used to distinguish the various pos-
sibilities:

ICHELI=1
∫
Ω

f(x)dΩ

ICHELI=2
∫
Ω

f(x)c(x)dΩ

ICHELI=2+i
∫
Ω

f(x) ∂c∂xi dΩ (i= 1,2,3)

ICHELI=6
∫
Ω

f(x)cJDEGFDdΩ

ICHELI=7
∫
Ω

dΩ, i.e. the Cartesian volume is computed.

If you need the volume in other coordinate systems, use ICHELI=1 in combination with f=1.

ICHELI=8
∫
Ω

f(x)c2(x)dΩ

ICHELI=11-16 See ICHELI=1 to 6. The same integrals are computed, however, dx is used
instead of dΩ, hence the integral is computed in the positive x-direction only.

ICHELI=21-26 See ICHELI=1 to 6. The same integrals are computed, however, dy is used
instead of dΩ, hence the integral is computed in the positive y-direction only.

ICHELI=31-36 See ICHELI=1 to 6. The same integrals are computed, however, dz is used
instead of dΩ, hence the integral is computed in the positive z-direction only.

In this case c(x) is the vector Vj as indicated by the command INTEGRAL in the input block
”STRUCTURE:. The user must define the function f(x) as first coefficient by one of the methods
described in 2.2.
For ICHELI = 6, uJDEGFD implies the JDEGFDth component of the degree of freedom u. In
general u is a derivative quantity, for example the gradient.

Except for ICHELI=7, the input block ”INTEGRALS” expects also some coefficients that may be
defined by one of the methods described in 2.2, where, in general, the method by SEPCOMP is
recommended.
For each element group 10 parameters and coefficients must be given. The first 3 parameters are
of integer type which means that they must be defined by ICOEFi in the input, the last 7 are real
coefficients.

These parameters and coefficients are defined as follows:
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1 type of numerical integration, see the coefficients for the equation
2 type of co-ordinate system, see the coefficients for the equation
3 not yet used

4 f
5-10 not yet used

3.1.7 Types of vectors of special structure

The following types of vectors are standard for standard elements described in this section as well
as Sections 2.1 to 2.4.

IVEC=0 Solution vector.
Contains 1 degree of freedom per point. May be renumbered.

IVEC=1 Vector of special structure with 1 degree of freedom per point.

IVEC=2 Vector of special structure with 2 degrees of freedom per point.

IVEC=3 Vector of special structure with 3 degrees of freedom per point.

IVEC=4 Vector of special structure with 6 degrees of freedom per point.

IVEC=5 Vector of special structure with ndim degrees of freedom per point, where ndim is the
dimension of the space.

IVEC=6 Vector of special structure with 1 degree of freedom per vertex and none in the other
points.

IVEC=7 Vector of special structure with 2 degrees of freedom per vertex and none in the other
points.

IVEC=8 Vector of special structure with 3 degrees of freedom per vertex and none in the other
points.

IVEC=9 Vector of special structure with 6 degrees of freedom per vertex and none in the other
points.

IVEC=10 Vector of special structure with ndim degrees of freedom per vertex and none in the
other points.

IVEC=11 Vector of special structure with 4 degrees of freedom per point.

IVEC=12 Vector of special structure with 5 degrees of freedom per point.

IVEC=13 Vector of special structure with 7 degrees of freedom per point.

IVEC=14 Vector of special structure with 8 degrees of freedom per point.

IVEC=15 Vector of special structure with 9 degrees of freedom per point.

IVEC=16 Vector of special structure with 10 degrees of freedom per point.
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3.2 A special right-hand side term for the convection diffusion euqation

Equation

In this section we consider the special case of a extra right-hand-side term of the shape

div ( T ∇ci ) (3.2.1)

where ci and T are known vectors.

We assume that this term must be added to convection-diffusion type equations as treated in
Section 3.1.
The idea is that one of more of such terms must be added to the right-hand side. Each term
separately can be constructed in the structure block by the statement:

rhs_i = right_hand_side, problem = p, seq_coef = i

and if more than one of such terms are needed they can be added for example by:

rhs = rhs_1+rhs_2

The result can be used in a time integration by using

seq_add_rhsd = rhs

in the time_integration input block.

The type number for this extra term to be used is 816 and the essential boundary conditions must
be defined in exactly the same way as for the equation to which this term is added. The values of
the boundary conditions are not used.

• Definition of the coefficients for the differential equation:

This extra term requires 7 input coefficients, where the first 5 have exactly the same meaning
as for type 800, defined in Section 3.1.
The other 2 (coef 6 and 7 respectively) refer to T and ci, for example:

coefficients, sequence_number 3

coef 6 = T

coef 7 = c_1

end
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3.3 Second order complex elliptic and parabolic equations with one de-
gree of freedom

Equation

In this section we consider equations of the following form:

ρcp

(
∂c

∂t
+ u · ∇c

)
− div (α∇c) + βc = f (3.3.1)

i.e.

ρcp
∂c

∂t
+ ρcp

n∑
i=1

ui
∂c

∂xi
−

n∑
i=1

n∑
j=1

∂

∂xi

(
αij

∂c

∂xj

)
+ βc = f (3.3.2)

x = (x1, x2, . . . , xn) ∈ Ω ⊂ IRn

In the stationary case
(
∂c
∂t = 0

)
(3.3.2) reduces to

ρcpu · ∇c− div (α∇c) + βc = f (3.3.3)

In this case the equation is elliptic, otherwise it is parabolic.
The coefficients ρcp, u, α, β and f may depend on space and time and also of solutions of other
problems. The following restrictions for the coefficients are required:

• ρcp > 0.

• The coefficients αij , ui, β and f may be complex, ρcp must be real.
The matrix α with coefficients αij must be a symmetric matrix.

Typical examples of equations of the form (3.3.1) are

• The Helmholtz equation: − div (α∇φ) + βφ = f i.e.

u = 0

ρcp = 0

Boundary and initial conditions

In the instationary case it is necessary to give an initial condition at t = 0.

The following types of boundary conditions are available:

Type 1 (Dirichlet boundary condition) c(x) given on some part of the boundary.
This is an essential boundary condition, i.e. no boundary elements are required for this type.

Type 2 (Neumann or mixed boundary condition)

n∑
i=1

n∑
j=1

αij(x)
∂c

∂xj
ni + σ(x)c(x) = h(x) (3.3.4)

on some part of the boundary. This is a so-called natural boundary condition. In general,
boundary elements are necessary, except in the case that σ(x) = 0 and h(x) = 0, when there
is no need to give any condition on this part of the boundary.
Both σ and h are complex functions.
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Input for the various subroutines

• Definition of the storage scheme:

The first thing to be chosen is the type of storage scheme for the matrices. This storage
scheme is defined by the keyword METHOD = i in the input block ”MATRIX” of program
SEPCOMP.

In general, two matrices may be created: the mass matrix and the stiffness matrix. The mass
matrix is only used for time-dependent problems. This matrix pre-multiplies the discretized
time-derivative. The stiffness matrix represents the discretization of the stationary terms in
the left-hand side of equation (3.3.1).

The mass matrix is, in general, positive definite and symmetrical.
The stiffness matrix is, in general, non-symmetrical except in the case that the velocity u = 0.
This matrix is complex.

The storage scheme corresponding to the mass matrix may be either METHOD = 1 or
METHOD = 5. The storage scheme corresponding to the stiffness matrix must be 3 or 7
in case of a symmetrical and 4 or 8 in case of a non-symmetrical matrix.

• Definition of the coefficients for the differential equation:

The coefficients for the differential equation may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP is recommended.
For each element group 5 (1D), 8 (2D) or 12 (3D) parameters and coefficients must be given.
These parameters and coefficients are defined as follows:

seq. number 1D 2D 3D
1 α11 α11 α11

2 u1 α12 α12

3 β α22 α13

4 f u1 α22

5 ρcp u2 α23

6 β α33

7 f u1

8 ρcp u2

9 u3

10 β
11 f
12 ρcp

The coefficients may be zero, constants or functions as described in Section 10.1. They may
also depend on precomputed vectors.

• Parameters for subroutine BUILD:

With respect to subroutine BUILD the parameter IMAS (IINBLD(4)) is of importance. In
the stationary case no mass matrix is necessary so IMAS may be chosen equal to zero.
In the time-dependent case IMAS may be either 1 (diagonal mass matrix), 2 or 3 (”consistent”
mass matrix).

A diagonal mass matrix is only recommended in case of linear elements.

• Computation of derivatives:

The parameter ICHELD in the input block ”DERIVATIVES” is used to distinguish the various
possibilities:

ICHELD = 1 ∂φ
∂xIX

in the vertices of the element. Hence when IX = 2 : ∂φ
∂x2

.
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ICHELD = 2 ∇φ in the vertices of the element.

ICHELD = 3 −∇φ in the vertices of the element.

ICHELD = 4 k ‖ ∇(φ) ‖2=
k(Re [∂φ∂x ])2 + (Im [∂φ∂x ])2 + (Re [∂φ∂y ])2 + (Im [∂φ∂y ])2 + (Re [∂φ∂z ])2 + (Im [∂φ∂z ])2

The output vector is defined as function of ICHELD as follows:

1 for linear elements a vector of the type solution vector with one unknown per point,
otherwise a vector of special structure with sequence number 1 (one unknown in each
vertex)

2,3 for linear elements a vector of special structure with sequence number 1 with NDIM
unknowns per point. Otherwise a vector of special structure with sequence number 2
with NDIM unknowns per vertex.

4 a vector of special structure defined per element (one real unknown per element). No
averaging takes place.
This possibility is only available for linear and bilinear elements.

In the case ICHELD = 4 the user must define the coefficient k as first parameter. k must be
a real parameter.

• Types of integrals that may be computed

The same values for ICHELI as is Section 3.1 with respect to type number 800 are available.
The function c(x) must be real, which means that c(x) may not be the solution of the differ-
ential equation itself. However, c(x) may be for example a real derived quantity like the one
computed with ICHELD=4.

The input block ”INTEGRALS” expects also some coefficients that may be defined by one of
the methods described in 10.1, where, in general, the method by SEPCOMP is recommended.
For each element group 10 parameters and coefficients must be given. The first 3 parameters
are of integer type which means that they must be defined by ICOEFi in the input, the last
7 are real coefficients.

These parameters and coefficients are defined as follows:

1 type of numerical integration, see the coefficients for the equation
2 type of co-ordinate system, see the coefficients for the equation
3 not yet used

4 f
5-10 not yet used
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Definition of type numbers

The type numbers, which are given in the input block ”PROBLEM” for SEPCOMP define the
type of differential equation to be solved. In the old version of SEPRAN type numbers are also
connected to the type of elements to be used. So for the same equation many more type numbers
are necessary. The following type numbers are available:

150 Complex elliptic differential equation for linear triangle in R2.

151 Complex elliptic differential equation for linear triangle in R2, axi-symmetric co-ordinates.

152 Boundary condition of type 2 for linear line element in R2. Must be used with linear triangles
or bilinear quadrilaterals.

154 Complex elliptic differential equation for quadratic triangle in R2.

155 Complex elliptic differential equation for quadratic triangle in R2, using axi-symmetric co-
ordinates.

158 Complex elliptic differential equation for bi-linear quadrilateral in R2.

159 Complex elliptic differential equation for linear triangle in R2, axi-symmetric co-ordinates,
using axi-symmetric co-ordinates.

160 Complex elliptic differential equation for bi-quadratic quadrilateral in R2.

161 Complex elliptic differential equation for bi-quadratic quadrilateral in R2, using axi-symmetric
co-ordinates.

163 Complex elliptic differential equation for linear tetrahedron in R3.

165 Complex elliptic differential equation for tri-linear hexahedron in R3.
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3.4 Non-linear equations

In this section we consider special non-linear elliptic and parabolic equations. In general the equa-
tions treated in Sections 3.1 and 3.2 are linear, but they may be treated as non-linear equations by
using coefficients that depend on preceding solutions. If a non-linear solver is used, these coefficients
may be updated in each iteration step and a type of Picard linearization, also called successive sub-
stitution arises.

In this section we shall be considered with elliptic and parabolic equations in which the non-linearity
is made explicit. For that reason it is possible to use explicit non-linear solvers and therefore a bet-
ter convergence may be achieved.

At this moment only a non-linear diffusion problem, where the diffusion coefficient is a function of
the norm of the gradient of the solution is available. This type of equations is commonly used in
the computation of magnetic fields if a non-linear constitutive relation must be used. See SEPRAN
EXAMPLES Section chap-3.3.1 for the details. An example of the use of these elements is given in
SEPRAN EXAMPLES Section chap-3.3.2, where the magnetic field in an alternator is computed.
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3.4.1 A special non-linear diffusion equation

Equation
− div (α∇φ) + βφ = f (3.4.1.1)

i.e. −
n∑
i=1

n∑
j=1

∂
∂xi

(
α ∂φ
∂xj

)
+ βφ = f

where α = α(x, ‖ ∇φ ‖), ‖ ∇φ ‖=
(

n∑
i=1

(
∂φ
∂xi

)2
) 1

2

x = (x1, x2, . . . , xn) ∈ Ω ⊂ IRn

Remark

α and β must be larger than zero.

Boundary conditions

The following types of boundary conditions are available:

Type 1 (Dirichlet boundary conditions) φ(x) given on some part of the boundary. This is an
essential boundary condition, i.e. no boundary elements are required for this type.

Type 2 (Neumann or mixed boundary conditions)

α
∂φ

∂n
+ σ(x)φ(x) = h(x) (σ(x) ≥ 0) (3.4.1.2)

on some part of the boundary. This is a so-called natural boundary condition. In general,
boundary elements are necessary, except in the case that σ(x) = 0 and h(x) = 0, when there
is no need to give any condition on this part of the boundary. In case σ = 0 this is a Neumann
boundary condition, otherwise it is called mixed boundary condition.

Solution method

Since the equation is non-linear, a linearization procedure must be applied. The following techniques
are available:

- Picard iteration (successive substitution)

- Newton iteration (quadratic convergence)

The iterative procedure is as follows:

(i) Start with an approximation u0. A good starting value may be for example the solution for
α constant, or α(x, 0). For the Newton method a start with Picard may be attractive.

(ii) Solve the system of equations.

(iii) Repeat step (ii) until convergence has been achieved: ‖ ui+1 − ui ‖< εtol, where εtol is some
tolerance.

Remark: In general the rate of convergence of Picard is linear, whereas Newton is a quadratic converging
process. However, the convergence region is usually larger for Picard, than for Newton.
Therefore Newton’s method is frequently started with one or more Picard iterations. Another
method to control convergence is to start with a small value of the source f and to raise this
value during the iteration process.
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Practical implementation

The most simple way of solving the non-linear problem is to use program SEPCOMP with the
option NONLINEAR EQUATIONS in the input file as described in the Users Manual, Section
3.2.9 and 3.2.3.

If the user creates his own main programs, however, the following steps may be programmed:

i Build the start vector (for example by CREATE).

ii Build the matrix and right-hand side for the non-linear equations linearized by Picard or
Newton (subroutine BUILD).

iii Solve the system of equations (subroutine SOLVE).

iv Compute the difference between two succeeding iterations (subroutine MANVEC). When the
difference is too large, repeat steps ii, iii and iv.

The steps ii, iii and iv can be carried out with help of subroutines NONLIN and FILNLN.

Input for the various subroutines

• Definition of the storage scheme:

The first thing to be chosen is the type of storage scheme for the matrices. This storage scheme
is defined by the keyword METHOD = i in the input of program SEPCOMP or subroutine
SEPSTR or alternatively by the parameter JMETOD in subroutine COMMAT.

If a Picard method is chosen, the matrix is symmetrical and positive definite. In that
case METHOD = 1 or 5 may be chosen. Otherwise (Newton iteration) the matrix is non-
symmetrical and METHOD = 2 or 6 must be chosen.

• Definition of the coefficients for the differential equation:

The coefficients for the differential equation may be defined by one of the methods described
in Section 10.1, where, in general, the method by SEPCOMP of FILCOF is recommended.
For each element group 20 parameters and coefficients must be given. The first 5 parameters
are of integer type which means that they must be defined by ICOEFi in the input, the last
15 are real coefficients.

These parameters and coefficients are defined as follows:

1 not yet used
2 not yet used
3 type of numerical integration
4 type of co-ordinate system
5 type of linearization

6 not yet used
7 not yet used
8 not yet used
9 not yet used
10 not yet used
11 not yet used
12 not yet used
13 not yet used
14 not yet used
15 β
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16 f
17-20 not yet used

For each element group 20 parameters and coefficients must be given. The parameters 1 to 5
are of integer type the parameters 15-20 are real.
These parameters and coefficients are exactly the same as for the second-order real linear
elliptic equation described in Section 3.1. The only difference is that the parameters 6 to
14 are not used and the parameter ITER TYPE is used as fifth parameter. This parameter
defines the type of iteration, according to:

ITER_TYPE = 1 Picard iteration
2 Newton iteration

In order to compute the parameters α and ∂α
∂‖∇φ‖ a subroutine FUNCC2 must be provided of

the following shape:

SUBROUTINE FUNCC2 ( ICHOIS, X, Y, Z, GRADPH, ALPHA, DALPDG )

IMPLICIT NONE

INTEGER ICHOIS

DOUBLE PRECISION X, Y, Z, GRADPH, ALPHA, DALPDG

statements to fill ALPHA ( ICHOIS = 1 ) or

ALPHA and DALPDG ( ICHOIS = 2 )

END

Subroutine BUILD gives X, Y, Z and GRADPH a value for each integration point and gives
ICHOIS the value of ITER_TYPE.

GRADPH = ‖ ∇φ̄ ‖=
(

n∑
i=1

∂φ̄2

∂x

) 1
2

, with φ̄ the result of the preceding iteration or the start

vector.
When ICHOIS = 1, ALPHA must get the value α(‖ ∇φ ‖), when ICHOIS = 2, ALPHA must
get the value α(‖ ∇φ ‖) and DALPDG the value ∂α

∂‖∇φ‖ .

• Definition of the coefficients for the boundary conditions:

The coefficients for the boundary conditions may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP is recommended.
For each element group 15 parameters and coefficients must be given. The first 5 parameters
are of integer type which means that they must be defined by ICOEFi in the input, the last
10 are real coefficients.

These parameters and coefficients are defined as follows:

1 Type of natural boundary condition
2 Not yet used (must be zero)
3 type of numerical integration
4 type of co-ordinate system
5 not yet used

6 σ
7 h
8-25 not yet used

Parameters that are not yet used must be set equal to zero. They are meant for future
extensions. In the input for SEPCOMP this means that no information about these coefficients
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has to be given.
The coefficients 6 and 7 may be zero, constants or functions as described in Section 10.1.
They may also depend on pre-computed vectors.

With respect to the parameters 1-5 exactly the same choices as in Section 3.1 are available.

• Computation of derivatives:

The definition of the parameter ICHELD as well as the output vector for the computation of
the derivatives is exactly the same as the definition in Section 3.1.

• Types of integrals that may be computed:

The definition of the parameter ICHELI for the computation of volume integrals is exactly
the same as the definition in Section 3.1.
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Definition of type numbers

The type numbers, which are given in the input block ”PROBLEM” for SEPCOMP define the type
of differential equation to be solved.

For the special non-linear diffusion equation in this section the following type numbers are available:

803 general type number for the internal elements. Defines the differential equation. This type
number is available for the following element shape numbers: (see the Users Manual, Section
2.2, Table 2.2.1)

shape = 1 linear line element.

shape = 2 quadratic line element.

shape = 3 linear triangle.

shape = 4 quadratic triangle.

shape = 5 bilinear quadrilateral.

shape = 6 biquadratic quadrilateral.

shape = 11 linear tetrahedron.

shape = 12 quadratic tetrahedron.

shape = 13 trilinear hexahedron.

shape = 14 triquadratic hexahedron.

801 boundary conditions of type 2. This type number is available for the following element shape
numbers: (see the Users Manual, Section 2.2, Table 2.2.1)

shape = 1 linear line element.

shape = 2 quadratic line element.

shape = 3 linear triangle.

shape = 4 quadratic triangle.

shape = 5 bilinear quadrilateral.

shape = 6 biquadratic quadrilateral.
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Previous versions of SEPRAN

In previous versions of SEPRAN equation 3.4.1.1 has been solved with a different type number.
These type numbers may still be used, however, it is recommended to use the new type numbers
described earlier when creating new input or new programs. In this section we will point out the
differences of the previous type number and the present one.

• Definition of the coefficients for the differential equation:

The old version may only be used in R2 with linear triangles.
The coefficient β is not available. The number of parameters is equal to 2 one real and one
integer parameter.
It concerns the following parameters:

1 integer parameter METHOD

2 real parameter f

The integer parameter METHOD defines the type of linearization in the same way as before.

With respect to the computation of integrals and derivatives the same possibilities as described in
Section 3.1, previous version of SEPRAN, are available.

Definition of type numbers

The type numbers, which are given in the input block ”PROBLEM” for SEPCOMP define the
type of differential equation to be solved. In the old version of SEPRAN type numbers are also
connected to the type of elements to be used. For that version only the following type number is
available:

190 Special non-linear diffusion equation for linear triangle in R2.
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3.5 δ-type source terms

3.5.1 Equation

If in the case of equations as treated in 2.2 to 2.4 or 3.1 the right-hand side is a δ-type source term
a special element is necessary.
This source term may be either defined in a point or on a line and is defined such that∫

Ω

δ(x)dΩ = ρ,

where ρ is a given function.

To use this type of source term the user has to define extra point or line boundary elements.

In each nodal point of these boundary elements the value ρ must be provided by the user.

3.5.2 Coefficients for the differential equation

The user must define the height ρ by the name deltarhs (coef1).

3.5.3 Type numbers to be used in the problem input block

The use of the Poisson equation is indicated in the problem block by the name

delta_function

or alternatively by

type = 802
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3.6 Second order real linear elliptic and parabolic equations with two
degrees of freedom

Equation

In this section we consider equations of the following form:

ρ1(
∂c1

∂t
+ u1 · ∇c1)− div (α1∇c1) + β1c1 = f1 (3.6.1)

ρ2(
∂c2

∂t
+ u2 · ∇c2)− div (α2∇c2) + β2c2 = f2 (3.6.2)

i.e.

ρk
∂ck

∂t
+ ρk

n∑
i=1

uki
∂ck

∂xi
−

n∑
i=1

n∑
j=1

∂

∂xi

(
αkij

∂ck

∂xj

)
+ βkck = fk (3.6.3)

k = 1, 2; x = (x1, x2, . . . , xn) ∈ Ω ⊂ IRn

In the stationary case
(
∂ck

∂t = 0
)

(3.6.1,3.6.2) reduces to

uk · ∇ck − div (αk∇ck) + βkck = fk (3.6.4)

In this case the equation is elliptic, otherwise it is parabolic.
The coefficients ρk, uk, αk, βk and fk may depend on space and time and also of solutions of other
problems. The following restrictions for the coefficients are required:

• ρk > 0.

• The matrices αk with coefficients αkij must be positive definite symmetric. In the extreme

case αk may be equal to zero in which case the equation is of hyperbolic type.

Remark
The equations 3.6.1, 3.6.2 are identical to the equation 3.1.1 in Section 3.1, with ρcp replaced by ρ.
Furthermore the number of equations is equal to 2 instead of 1, each with its own coefficients. The
equations itself are not coupled, however, coupling may be possible by the boundary conditions.
Also the coefficients of one equation may depend on the solution of the other equation, but only by
using the result of a previous iteration or time-step.
The case of coupled equations is treated in Section 3.7

Upwinding

Upwinding has not yet been implemented.

Defect correction

Defect correction has not yet been implemented.

Boundary and initial conditions

In the instationary case it is necessary to give an initial condition at t = 0.

The following types of boundary conditions are available:
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Type 1 (Dirichlet boundary condition) ck(x) given on some part of the boundary.
This is an essential boundary condition, i.e. no boundary elements are required for this type.

Type 2 (Neumann or mixed boundary condition)

n∑
i=1

n∑
j=1

αkij(x)
∂ck

∂xj
ni + σk(x)ck(x) = hk(x) (σk(x) ≥ 0) (3.6.5)

on some part of the boundary. This is a so-called natural boundary condition. In general,
boundary elements are necessary, except in the case that σk(x) = 0 and hk(x) = 0, when
there is no need to give any condition on this part of the boundary. For σk = 0 this is a
Neumann boundary condition, otherwise it is a mixed boundary condition.

Type 3
n∑
i=1

n∑
j=1

αkij(x)
∂ck

∂xj
(x)ni + σk(x)

∂ck

∂t
= hk(x) (σk(x) ≥ 0) (3.6.6)

on some part of the boundary,

with ∂ck

∂t = ∇ck · t, with t the tangential vector.

This is a special type of natural boundary condition. In general, boundary elements are
necessary, except in the case that σk(x) = 0 and hk(x) = 0, in which case this condition
reduces to a boundary condition of type 2 on this part of the boundary.

Type 4
∂ck

∂n
+ σk(x)

∂ck

∂t
= hk(x) (σk(x) ≥ 0) (3.6.7)

on some part of the boundary,

with ∂ck

∂t = ∇ck · t, with t the tangential vector and ∂ck

∂n = ∇ck · n, n denotes the normal
vector.

This is another special type of natural boundary condition. In general, boundary elements are
necessary, except in the case that σk(x) = 0, αk is a diagonal matrix with a constant diagonal
and hk(x) = 0, in which case this condition reduces to a boundary condition of type 2 on this
part of the boundary.

Remarks

• Both for boundary conditions of type 3 and type 4 it is necessary that the boundary elements
are created counter clockwise in order to fix the direction of the normal in relation with
the tangential vector. These boundary conditions are at present only available for linear
two-dimensional elements.

• Mark that the boundary conditions of type 1 to 4 are identical to the ones given in the manual
SEPRAN EXAMPLES Section 3.1.1 and these boundary conditions also relate to each of
the unknowns separately. Hence if only these boundary conditions are used in combination
with the equations 3.6.1 and 3.6.2, it is better to use the equations in the manual SEPRAN
EXAMPLES Section 3.1.1 twice.
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Input for the various subroutines

• Definition of the storage scheme:

See the remarks in the manual SEPRAN EXAMPLES Section 3.1.1. In this case the matrix
is only symmetrical if both equations are symmetrical and there is no coupling between the
boundary conditions.

• Definition of the coefficients for the differential equation:

The coefficients for the differential equation may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP is recommended.
For each element group 35 parameters and coefficients must be given. The first 5 parameters
are of integer type which means that they must be defined by ICOEFi in the input, the last
30 are real coefficients.

These parameters and coefficients are defined as follows:

1 not yet used

2 not yet used

3 type of numerical integration

4 type of co-ordinate system

5 not yet used

real parameters with respect to equation 1

6 α1
11

7 α1
12

8 α1
13

9 α1
22

10 α1
23

11 α1
33

12 u1
1

13 u1
2

14 u1
3

15 β1

16 f1

17 ρ1

18-20 not yet used

real parameters with respect to equation 2

21 α2
11

22 α2
12

23 α2
13

24 α2
22

25 α2
23

26 α2
33
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27 u2
1

28 u2
2

29 u2
3

30 β2

31 f2

32 ρ2

33-35 not yet used

Parameters that are not yet used must be set equal to zero. They are meant for future
extensions. In the input for SEPCOMP this means that no information about these coefficients
has to be given.
The coefficients 6-35 may be zero, constants or functions as described in Section 10.1. They
may also depend on pre-computed vectors. Of course, in 1D and 2D not all coefficients are
used.
The default values for the real coefficients 6 to 16 and 21 to 31 are zero, for coefficients 17
and 32 (ρk), however, the default value is one.

With respect to the parameters 1-5 the same choices may be made as in Section 3.1.1, except
for the parts that have not yet been implemented.

• Definition of the coefficients for the boundary conditions:

The coefficients for the boundary conditions may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP is recommended.
For each element group 25 parameters and coefficients must be given. The first 5 parameters
are of integer type which means that they must be defined by ICOEFi in the input, the last
20 are real coefficients.

These parameters and coefficients are defined as follows:

1 Type of natural boundary condition

2 Not yet used (must be zero)

3 type of numerical integration

4 type of co-ordinate system

5 not yet used

real parameters with respect to equation 1

6 σ1

7 h1

8 α1
11

9 α1
12

10 α1
13

11 α1
22

12 α1
23

13 α1
33

14-15 not yet used

real parameters with respect to equation 2
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16 σ2

17 h2

18 α2
11

19 α2
12

20 α2
13

21 α2
22

22 α2
23

23 α2
33

24-25 not yet used

Parameters that are not yet used must be set equal to zero. They are meant for future
extensions. In the input for SEPCOMP this means that no information about these coefficients
has to be given.
The coefficients 6-25 may be zero, constants or functions as described in Section 10.1. They
may also depend on pre-computed vectors. Of course, in 1D and 2D not all coefficients are
used. The coefficients 8-13 and 18-23 are only used for boundary conditions of type 4.

With respect to the parameters 1-5 the same choices as in the manual SEPRAN EXAMPLES
Section 3.1.1 are available, except for the parts that have not yet been implemented.

• Parameters for subroutine BUILD:

See the manual SEPRAN EXAMPLES Section 3.1.1.

• Parameters with respect to the linear solver:

See the manual SEPRAN EXAMPLES Section 3.1.1.

• Computation of derivatives:

The computation of derivatives has not yet been implemented.

• Types of integrals that may be computed:

The computation of integrals has not yet been implemented.
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Definition of type numbers

The type numbers, which are given in the input block ”PROBLEM” for SEPCOMP define the type
of differential equation to be solved.

For the second order elliptic equation in this section the following type numbers are available:

805 general type number for the internal elements. Defines the differential equation.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 1 linear line element.

shape = 2 quadratic line element.

shape = 3 linear triangle.

shape = 4 quadratic triangle.

shape = 5 bilinear quadrilateral.

shape = 6 biquadratic quadrilateral.

shape = 11 linear tetrahedron.

shape = 12 quadratic tetrahedron.

shape = 13 trilinear hexahedron.

shape = 14 triquadratic hexahedron.

806 boundary conditions of type 2 to 4. This type number is available for the following element
shape numbers: (see the Users Manual, Section 2.2, Table 2.2.1)

shape = 1 linear line element.

shape = 2 quadratic line element.

shape = 3 linear triangle.

shape = 4 quadratic triangle.

shape = 5 bilinear quadrilateral.

shape = 6 biquadratic quadrilateral.
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3.7 Extended second order real linear elliptic and parabolic equations
with two degrees of freedom

Equation

The equations considered in this section are the same as in Section 3.6, however with some extra
terms which define a coupling between the two equations. By this extension the equations can
be used to solve the biharmonic equation as a set of two second order equations, if the boundary
conditions allow so.

ρ1(
∂c1

∂t
+ u11 · ∇c1)− div (α11∇c1) + β11c1 − div (α12∇c2) + u12 · ∇c2 + β12c2 = f1 (3.7.1)

ρ2(
∂c2

∂t
+ u22 · ∇c2)− div (α22∇c2) + β22c2 − div (α21∇c1) + u21 · ∇c1 + β21c1 = f2 (3.7.2)

i.e.

ρk
∂ck

∂t
+ρk

n∑
i=1

ukki
∂ck

∂xi
−

n∑
i=1

n∑
j=1

∂

∂xi

(
αkkij

∂ck

∂xj

)
+βkkck−

n∑
i=1

n∑
j=1

∂

∂xi

(
αklij

∂cl

∂xj

)
+

n∑
i=1

ukli
∂cl

∂xi
+βklcl = fk

(3.7.3)
k = 1, 2; x = (x1, x2, . . . , xn) ∈ Ω ⊂ IRn and l 6= k

In the stationary case we have
(
∂ck

∂t = 0
)

In this case the equation is elliptic, otherwise it is parabolic.
The coefficients ρk, ukl, αkl, βkl and fk may depend on space and time and also of solutions of
other problems. The following restrictions for the coefficients are required:

• ρk > 0.

• The matrices αkk with coefficients αkkij must be positive definite symmetric. In the extreme

case αkk may be equal to zero.

Upwinding

Upwinding has not yet been implemented.

Defect correction

Defect correction has not yet been implemented.

Boundary and initial conditions See Section 3.6
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Input for the various subroutines

• Definition of the storage scheme:

In general the matrices are not symmetric, only in very special occasions this may be the case.

• Definition of the coefficients for the differential equation:

The coefficients for the differential equation may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP is recommended.
For each element group 65 parameters and coefficients must be given. The first 5 parameters
are of integer type which means that they must be defined by ICOEFi in the input, the last
60 are real coefficients.

These parameters and coefficients are defined as follows:

1 not yet used

2 not yet used

3 type of numerical integration

4 type of co-ordinate system

5 not yet used

real parameters with respect to equation 1, corresponding to unknown c1

6 α11
11

7 α11
12

8 α11
13

9 α11
22

10 α11
23

11 α11
33

12 u11
1

13 u11
2

14 u11
3

15 β11

16 f1

17 ρ1

18-20 not yet used

real parameters with respect to equation 2, corresponding to unknown c2

21 α22
11

22 α22
12

23 α22
13

24 α22
22

25 α22
23

26 α22
33

27 u22
1

28 u22
2
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29 u22
3

30 β22

31 f2

32 ρ2

33-35 not yet used

real parameters with respect to equation 1, corresponding to unknown c2

36 α12
11

37 α12
12

38 α12
13

39 α12
22

40 α12
23

41 α12
33

42 u12
1

43 u12
2

44 u12
3

45 β12

46-50 not yet used

real parameters with respect to equation 1, corresponding to unknown c1

51 α21
11

52 α21
12

53 α21
13

54 α21
22

55 α21
23

56 α21
33

57 u21
1

58 u21
2

59 u21
3

60 β21

61-65 not yet used

Parameters that are not yet used must be set equal to zero. They are meant for future
extensions. In the input for SEPCOMP this means that no information about these coefficients
has to be given.
The coefficients 6-65 may be zero, constants or functions as described in Section 10.1. They
may also depend on pre-computed vectors. Of course, in 1D and 2D not all coefficients are
used.
The default values for the real coefficients are zero, for coefficients 17 and 32 (ρk), however,
the default value is one.

With respect to the parameters 1-5 the same choices may be made as in Section 3.1.1, except
for the parts that have not yet been implemented.
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• Parameters with respect to the linear solver:

See the manual SEPRAN EXAMPLES Section 3.1.1.

• Computation of derivatives:

The computation of derivatives has not yet been implemented.

• Types of integrals that may be computed:

The computation of integrals has not yet been implemented.
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Definition of type numbers

The type numbers, which are given in the input block ”PROBLEM” for SEPCOMP define the type
of differential equation to be solved.

For the second order elliptic equation in this section the following type numbers are available:

808 general type number for the internal elements. Defines the differential equation.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 1 linear line element.

shape = 2 quadratic line element.

shape = 3 linear triangle.

shape = 4 quadratic triangle.

shape = 5 bilinear quadrilateral.

shape = 6 biquadratic quadrilateral.

shape = 11 linear tetrahedron.

shape = 12 quadratic tetrahedron.

shape = 13 trilinear hexahedron.

shape = 14 triquadratic hexahedron.

806 boundary conditions of type 2 to 4 see Section 3.6
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4 Elements for lubrication theory

In this chapter we discuss elements and examples for lubrication theory.
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4.1 The Reynolds equation

In this section we consider elements for lubrication. The Reynolds equation describes the pressure
in a film flow, where the film thickness h is assumed very small compared to the size of the bearing.
One can show by dimensional analysis that in such a situation the continuity equation and the
Navier-Stokes equations describing fluid flow may be approximated by the Reynolds equations.
Such an approximation is commonly used in lubrication theory. We shall distinguish between an
incompressible (oil) bearing and a compressible (air) bearing. At this moment only elements for
the stationary case are available.

4.1.1 Equation

The Reynolds equation in the incompressible case reads:

div (− h3

12µ
(∇p− ρf) +

h

2
(u1 + u2)) + ht + k(p− p0) = 0. (4.1.1)

In the compressible case the Reynolds equation is given by:

div (−p h
3

12µ
(∇p− p

RT
f) +

ph

2
(u1 + u2)) + pht + k(p2 − p0

2) = 0. (4.1.2)

Here we have assumed that the temperature is constant, hence an adiabatic situation is considered.

The coefficients h, ρ, ht, pht, f and p0 may depend on space and time and also of solutions of other
problems. k and RT must be constants. The following restrictions for the coefficients are required:

• ρ, µ, h, k,RT > 0.

In a physical context the parameters have the following meaning:

h Film thickness

µ The dynamic viscosity

ht or pht For stationary computations ht or pht representing the time-dependent term

∂h
∂t respectively ∂ph

∂t is treated as a squeeze term.

k A given constant

p0 The reference pressure

u1 Velocity of ”lower” surface.

u2 Velocity of ”upper” surface.

p The pressure

RT The constant arising from the ideal gas law

Since the Reynolds equation is a special case of the general second order elliptic equation, also the
elements described in Section 3.1 may be used.
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4.1.2 Generalized Reynolds equation

A more general formulation of the Reynolds equation is due to Dowson (1962):

−div (F2 ∇p −
F3

F0
(U2 −U1)) = −h div (ρU)2 +

h∫
0

∂ρ

∂t
dz + (ρw)2 − (ρw)1 (4.1.1)

The subscript 1 refers to the bottom face and 2 to the top face.
U defines the velocity of these faces (x and y components).
w is the velocity in vertical direction.
The parameters F0, F1, F2 and F3 are given by

F0 =

h∫
0

1

η
dz (4.1.2)

F1 =

h∫
0

z

η
dz = z̄F0 (4.1.3)

F2 =

h∫
0

ρz

η
(z − z̄) dz (4.1.4)

F2 =

h∫
0

ρz

η
dz (4.1.5)

µ =
η

ρ
(4.1.6)

z̄ denotes the mean value of z, which is equal to h
2 .

The horizontal velocities u can be computed by:

u = U1 +

z∫
0

z

η
dz ∇p = (

U2 −U1

F0
− z̄∇p)

z∫
0

1

η
dz (4.1.7)

If η and ρ are constant these equations reduce to Equation (4.1.1).

The shear stress at bottom (z = 0) and top surface (z = h) can be derived from the standard
formulas for shear stress and the expressions (4.1.7) for the velocity:

τ = ∇p(z − z̄) =
U2 −U1

F0
(4.1.8)

4.1.3 Boundary Conditions

The following types of boundary conditions are available:

Type 1: p(x) given on some part of the boundary. This is an essential boundary condition, i.e. no
boundary elements are required for this type.

Type 2: −
(
−h3

12µ (∇p− ρf) + h
2 (u1 + u2)

)
· n + σ(x)p(x) = g(x) (σ(x) ≥ 0)

on some part of the boundary for the incompressible case and

−
(
p−h

3

12µ (∇p− p
RT f) + ph2 (u1 + u2)

)
· n + σ(x)p(x) = g(x) (σ(x) ≥ 0)

for the compressible case.
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This is a so-called natural boundary condition. In general boundary elements are necessary,
except in the case that σ(x) = 0 and g(x) = 0, when there is no need to give any condition
on this part of the boundary.

Type 3: Restrictor boundary condition

A restrictor may be simulated by a point boundary condition. The restrictor Qr flow depends
on the difference between the unknown restrictor pressure pr and the given oil supply pressure
ps according to:

Q = γ(ps − pr) (linear relation) or

Q = γ
√
ps − pr (non-linear relation)

γ denotes the restriction coefficient.

The unknown pressure pr is equal to the pressure computed by the Reynolds equation in the
particular point. Application of this boundary condition, thus introduces a relation between
oil supply pressure and local bearing pressure. If the non-linear relation is used the final
equations become also non-linear.

4.1.4 Cavitation

In some cases the computed pressure may be below the cavitation pressure (usually 0 in the case
of incompressible bearings). In that case we have to satisfy the constraint that the pressure can
never be below the cavitation pressure. At this moment SEPRAN has two options to satisfy this
constraint:

constraint in linear solver This solution is the most simple one. Instead of solving the system
of linear equations in the classical sense, we use the constrained overrelaxation process as
described in the Users Manual Section 3.2.8.
A clear disadvantage of this approach is that it is sometimes difficult to choose the parameters
such that convergence is achieved.

Kumars mass conserving scheme According to the literature standard solvers for the Reynolds
equations are not mass conserving in case of cavitation.
Kumar and booker (1994) describes an algorithm that, according to him guarantees mass
conservation. Actually his method is meant for time dependent problems, but at this moment
we have only implemented it for the stationary case. Therefore there is no need to define a
density.
In this case we need the reaction force, in each step. The reaction force is used to detect
if points satisfy ∂ρ

∂t < 0. In fact for points with a positive reaction force this condition is
satisfied.
So using this method requires the computation of a reaction force and hence the parameter
IBCMAT in the input block matrix must be equal to 1.
If you want to apply Kumars algorithm, you need to add the line solve_bearing to the
structure block and add a new block BEARING to the input file as described in the Users
Manual Section 3.2.24.

4.1.5 Coefficients for the differential equation

The coefficients for the differential equation may be either defined in the structure block or alter-
natively in a coefficients block.
For the standard Reynolds element one may define the following coefficients:

TYPE OF BEARING = text (icoef1) Defines the type of bearing. If used in the structure
block one must use a string between quotes to define the type otherwise in the coefficients
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block the same string without the quotes.
Possible values for text are:

INCOMPRESSIBLE (0)

COMPRESSIBLE (1)

MASS CONSERVING (2)

Default value: INCOMPRESSIBLE

LINEARIZATION = text (icoef2) Defines the type of linearization to be used in case of a
compressible bearing.
Possible values for text are:

PICARD (0) A simple Picard iteration is used.

NEWTON (1) A (quadratic) Newton linearization is used. If it converges it is usually faster
than Picard, but Picard is more robust.

Default value: PICARD

INTEGRATION RULE = i (icoef3) defines the type of quadrature rule (between 0 and 4).

TRANSFORMATION = i (icoef4) i defines the type of transformation from R3 to R2.
Possible values:

0 no special transformation

1 (x, y, z) is transformed to (x, y)

2 (x, y, z) is transformed to (y, z)

3 (x, y, z) is transformed to (x, z)

4 (x, y, z) is transformed to (θ, z), where θ is defined by θ = atan2(y, x), i.e. θ defines the
rotation along the surface of a cylinder.

The reason to define a transformation is that the velocity vectors have only two components
and must be defined in the 2D system that is applied. Hence the transformation also defines
the velocity vector. In the future this may be extended by defining the velocity vector in a
three-dimensional setting.

LAYER THICKNESS = h (coef6) defines the layer thickness. Usually h is a given vector.

VISCOSITY = µ (coef7) defines the viscosity.

SQUEEZE = ht (coef8) defines the squeeze term.

CONSTANT = k (coef9) defines the constant k in the equation.

REFERENCE PRESSURE = p0 (coef10)

VELOCITY =v (coef11/12) defines the velocity vector of the lower surface.

U VELOCITY = v1 (coef11) defines the first component of this vector

V VELOCITY = v2 (coef12) defines the second component of this vector Either the complete
vector or its components are given as input.

DENSITY = = rho (coef14)

RT =rt (coef15)

FORCE = f (coef16/17) defines an extra force vector if present.

X FORCE = f1 (coef16) defines the first component of this vector
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Y FORCE = f2 (coef17) defines the second component of this vector

UPPER FACE VELOCITY (coef19/10) defines the velocity vector of the upper surface.

X UPPER FACE VELOCITY (coef19) defines the first component of this vector

Y UPPER FACE VELOCITY (coef20) defines the second component of this vector Either the
complete vector or its components are given as input.

In case of the generalized Reynolds equation it is easier to use the element for the general second
order elliptic equation (type 800), as treated in Section 3.1. We also need 20 coefficients, where the
first 5 are integer and the last 15 reals.
Only the second and third integer coefficient are used. They have the same meaning for both types
of elements The real coefficients must be filled as follows:

6 F2 or h3

12µ for the classical form

7-8 0

9 coef 6, hence identical to coefficient 6.

10-15 0

16 f (right-hand side).
In case of generalized Reynolds, put the term −hdiv ∇(ρU)2 into this f.

17 ρ.
This term is not used since it refers to the convective terms only, so 0 may be used.

18 F3

F0
(u2 − u1), u is first component of velocity.

19 F3

F0
(v2 − v1), v is second component of velocity.

20 0

4.1.6 Coefficients for the natural boundary conditions

The coefficients for the boundary conditions may be defined by one of the methods described in
2.2, where, in general, the method by SEPCOMP of FILCOF is recommended.

Input for boundary conditions of type 2

For each element group 15 parameters and coefficients must be given. The first 5 parameters are
of integer type which means that they must be defined by ICOEFi in the input, the last 10 are real
coefficients. The input for the boundary conditions is exactly the same as in the manual SEPRAN
EXAMPLES Section 3.1.1. However, actually only the first 7 parameters should be used for the
Reynolds equation. The first one should be chosen equal to 0.

These 7 parameters and coefficients are defined as follows:

1 Type of natural boundary condition (use 0)
2 Not yet used (must be zero)
3 type of numerical integration
4 type of co-ordinate system
5 not yet used

6 σ
7 h
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Parameters that are not yet used must be set equal to zero. They are meant for future extensions.
In the input for SEPCOMP or FILCOF this means that no information about these coefficients has
to be given.
The coefficients 6-15 may be zero, constants or functions as described in Section 10.1. They may
also depend on precomputed vectors.

Input for boundary conditions of type 3

The restriction boundary conditions are implemented by use of a point element. This point element
must be introduced as natural boundary condition in the input part of PROBLEM ... END.

For each element group 3 parameters and coefficients must be given. The first parameter is of
integer type which means that it must be defined by ICOEFi in the input, the last 2 are real
coefficients.

These 3 parameters and coefficients are defined as follows:

1 Type of restriction relation
2 Capillary restriction coefficient γ
3 Oil supply pressure ps

With respect to the parameter 1 the following choices are available:

0: linear relation
1: non-linear relation, with Newton linearization

4.1.7 Parameters with respect to the linear solver

In the case of an incompressible bearing the matrix is not only symmetric but also positive definite.

In the case of a compressible bearing the system of equations is non-linear and hence a non-linear
solver must be used. This may be done by program SEPCOMP if the option SOLVE NONLINEAR EQUATIONS
is used, or by a standard non-linear solver from the Programmers Guide, like subroutine NONLIN.

4.1.8 Derivatives

Depending on the parameter ICHELD in subroutine DERIV various types of derivatives are com-
puted. For a description of possible derivatives and the type of output vector the user is referred
to Section 3.1.

Besides the possibilities mentioned in Section 3.1 for this type of element 4 extra values of ICHELD
are implemented:

ICHELD=22 the so-called flow per nodal point is computed. The flow in a node is defined by the
integral over the equation 4.1.1 or 4.1.2 multiplied by a basis function. In order to compute the
flow DERIV must be used with ICHELD = 22, and the coefficients filled in exactly the same
way as for subroutine BUILD. The computed flow must be approximately zero in the inner
nodal points. To compute the flow through a part of the boundary, it is necessary to integrate
the computed flow by the subroutine BOUNIV or by the option BOUNDARY INTEGRAL
in the input for SEPCOMP.

ICHELD=23 Flow vector is computed. This vector with 2 components is defined by (incompress-
ible case):

− h3

12µ
(∇p− ρf) +

h

2
(u1 + u2) (4.1.1)
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and in the compressible case by:

−p h
3

12µ
(∇p− p

RT
f) +

ph

2
(u1 + u2) (4.1.2)

ICHELD=24 Shear stress at bottom surface, defined by

τ = −h
2

(∇p− ρf) +
µ

h
(u2 − u1) (4.1.3)

ICHELD=25 Shear stress at top surface.

τ =
h

2
(∇p− ρf) +

µ

h
(u2 − u1) (4.1.4)

In case of elements of type 800 we need a different set of coefficients to compute the flow and
shear stress. In that case 25 coefficients instead of 20 are needed. The first 5 are integer the
last 20 are real.
Only the integer coefficients 3 and 4 are used.
The other coefficients must be filled as follows:

6-11 see the generalized Reynolds equation, given before in this section.

12-13 The horizontal components of the bottom velocity

14 0, not yet used

15 F0

16 right-hand side f

17 0

18 ρ

19-21 see the generalized Reynolds equation, positions 18-20.

22 h

23-24 The horizontal components of the top velocity

25 not yet used ( must be 0)

4.1.9 Integrals

If the user wants to compute integrals over the solution he may use subroutine INTEGR.

The type of integrals depends on the parameter ICHELi. For a description of possible integrals the
user is referred to Section 3.1. For example to compute the load of the bearing it is necessary to
use INTEGR or the option INTEGRAL in the input for SEPCOMP.
Mark that the extended definition of the type of co-ordinate system is also valid for the integrals.

4.1.10 Type numbers to be used in the problem input block

The use of the Laplace equation is indicated in the problem block by the name

reynolds

or alternatively by

type = 325

The natural boundary conditions do not have to be indicated by a type number, but internally type
801 is used.
A special type is 304 which is a point element for boundary conditions of type 3.
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4.2 Coupled elasticity-flow interaction for a bearing (Reynolds equation
coupled with mechanical elements)

In this section we consider the interaction of the oil pressure in the lubrication film and the sur-
rounding material. An example of such an interaction is the elasto-hydrodynamic lubrication of an
oil pumping ring seal as shown in Figure 4.2.1. Figure 4.2.2 shows the geometry of the pumping
ring.

crank case

60 bar

60 bar

110 bar

oil

pressure

valve
regulating

cycle

kapseal

mean cycle

pressure

scraper

oil seal

pumping ring

Figure 4.2.1: Assembly of a pumping ring and scraper

14

p=0 bar

p=0 bar

p=110 bar

p=60 bar

3,
5

4,
53

1,
5

8

ROD  DIAMETER 12,000 mm

18

12,2

12,016

Figure 4.2.2: Geometry of the pumping ring

The pumping ring satisfies the stress-strain relations as described in Section 5.1 (axi-symmetric
stress analysis). Due to the oil pressure in the film we have a distributed loading at the inner side
of the ring given by:

Tr = − pTz = − h

2

∂p

∂z
− ηU

h
(4.2.1)

with h the oil film thickness

p the oil pressure

η the fluid dynamic viscosity, and
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U the oil velocity in z-direction.

The film thickness is assumed to be so small that the pressure satisfies the one-dimensional Reynolds
equation:

∂h

∂t
− ∂

∂z
[
h3

12η

∂p

∂z
− Uh

2
] + k(p− p0) = 0 (4.2.2)

with

p0 the reference pressure and

k a given constant.

In stationary computations we have ∂h
∂t = 0.

The pumping ring may be discretized by the elements given in Section 5.1. In this section we choose
for the coupled approach, i.e. the distributed loadings combined with the Reynolds equation are
discretized by a line element with 3 degrees of freedom. The first two degrees of freedom are the
displacements in r and z direction, the third degree of freedom is the oil pressure. The oil pressure
influences the distributed loading at the inner side of the ring, on the other hand the displacement
fixes the film thickness h and hence the oil pressure. So we are faced with a strict non-linear
problem.
In Section 5.3 the decoupled approach is treated, where the elasticity equations and the Reynolds
equation are solved separately in an iteration process.

Boundary conditions for the pressure

The following types of boundary conditions are available:

Type 1: p(x) given in a point. This is an essential boundary condition, i.e. no boundary elements
are required for this type.

Type 2: −(−h
3

12η
∂p
∂z −

hU
2 ) = 0 in an end point.

This is a so-called natural boundary condition. No boundary elements are necessary.

Type 3: −−h
3

12η
∂p
∂z −

hU
2 = qz in an end point.

This is a so-called non-homogeneous natural boundary condition, requiring a point boundary
element.

Input for the various subroutines (line and point element only

• Definition of the storage scheme:

The first thing to be chosen is the type of storage scheme for the matrices. This storage scheme
is defined by the keyword METHOD = i in the input of program SEPCOMP or subroutine
SEPSTR or alternatively by the parameter JMETOD in subroutine COMMAT.

The system of equations is non-linear, hence it is necessary to use an iteration procedure to
solve the system of non-linear equations. In each step of the linearization process a lineariza-
tion must be applied. As a result the matrix is not symmetric anymore and METHOD = 2
or 6 must be chosen.
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• Solution method:

In the stationary case we have to solve a system of non-linear equations because of the non-
linear line element. For the solution of these equations two linearization techniques are avail-
able:

- Picard linearization (successive substitution)

- Newton iteration

In general Newton converges faster than Picard, however, in some problems the convergence
region of Picard is larger than that of Newton.

The iterative procedure is as follows:

Start with an approximation u0, p0. For example one can start with u0 = 0, p0 = 0.

Compute the solution of the system of non-linear equations by program SEPCOMP using
the option SOLVE NONLINEAR EQUATIONS, or by a standard non-linear solver from the
Programmers Guide, like subroutine NONLIN.

For the time-dependent problem we do not only need to linearize the equations but also to
discretize in time. For the linearization the same methods as in the stationary case may be
used. No iteration is necessary for small time steps ∆t. A useful procedure is the following
modified θ-method:

hn+θ − hn

θ∆t
− ∂p

∂z
[
(hn+θ)3

12η

∂pn+θ

∂z
− Uhn+θ

2
] + k(pn+θ − p0) = 0 (4.2.3)

with

hn+1 =
1

θ
hn+θ − 1− θ

θ
hn (4.2.4)

pn + 1 =
1

θ
pn+θ − 1− θ

θ
pn (4.2.5)

un+1 =
1

θ
un+θ − 1− θ

θ
un (4.2.6)

and

n the time level, 0 < θ ≤ 1.

For θ >= 1
2 the θ-method is unconditionally stable. θ = 1

2 is the most accurate one (Crank-
Nicolson), θ = 1 has the best damping properties.

• Definition of the coefficients for the differential equation:

The coefficients for the differential equation may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP of FILCOF is recommended.
For each element group 6 parameters and coefficients must be given. Parameter 6 is of integer
type which means that it must be defined by ICOEFi in the input, the other ones are real
coefficients.

These parameters and coefficients are defined as follows:

1 the diameter of the rod (D)
2 the fluid dynamic viscosity (η)
3 the constant k in the equation
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4 the reference pressure p0

5 the velocity U
6 METHOD

These parameters may be zero, constants or functions as described in Section 10.1. They may
also depend on precomputed vectors.

The oil film thickness hn is computed from: hn = r−D/2 + ur, where ur is the displacement
in r-direction.

With respect to the parameters the following choices are available:

Possible values:
1: stationary case, Picard iteration, shear stress Tz is taken into account
2: stationary case, Newton iteration, shear stress Tz is taken into account
3: instationary case, Picard iteration, shear stress Tz is taken into account
4: instationary case, Newton iteration, shear stress Tz is taken into account
11: stationary case, Picard iteration, shear stress Tz is not taken into account
12: stationary case, Newton iteration, shear stress Tz is not taken into account
13: instationary case, Picard iteration, shear stress Tz is not taken into account
14: instationary case, Newton iteration, shear stress Tz is not taken into account

Besides these parameters also common block CTIME is used as described in the Programmers
Guide Section 7.2. Of these parameters TSTEP and THETA are used explicitly.

• Definition of the coefficients for the boundary conditions:

The coefficients for the boundary conditions may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP of FILCOF is recommended.
For each element group 1 coefficient must be given.

This coefficient is defined as follows:

1 qz

At the initial point (z = zmin), the coefficient must be equal to −qz, at the end point
(z = zmax), the coefficient must be equal to qz.

• Storage of the solution vector:

u and p in the nodal points.

Definition of type numbers

The type numbers, which are given in the standard input file in the part between PROBLEM and
END (input for SEPCOMP or subroutine SEPSTR) define the type of differential equation to be
solved.

At this moment only one-dimensional elements are available as well as the point element for the
boundary conditions.

The following type numbers are available:

302 type number for linear line elements. Defines the differential equation.

303 point element for boundary conditions of type 3.
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4.3 Decoupled elasticity-flow interaction for a bearing (Reynolds equa-
tion coupled with mechanical elements)

In Section 4.2 the coupled solution of the elasticity equations and the Reynolds equations has been
treated. For that coupled approach it was necessary to develop a special line element that contained
the Reynolds equation and the boundary conditions for the elasticity equations in one element. A
clear disadvantage of this approach that it requires new elements for each shape of element. An
advantage, however, is of course, that the convergence may be much faster than in a decoupled
approach. Nevertheless we shall consider the decoupled approach in this section.

We consider an elastic medium that is lubricated by some lubricant. A typical example is given
in the manual SEPRAN EXAMPLES Section 4.3.1. The pressure in the lubrication film and the
deformation of the medium are mutually dependent. The medium will deform due to the hydrostatic
pressure in the film and the pressure depends on the local film height. This film height is a function
of the deformation.

In order to solve this coupled problem we perform the following algorithm:

Start with a given position of the elastic medium

Compute the corresponding film height

While not converged do

• Solve the Reynolds equation in the lubrication film using the just computed film height

• Solve the elasticity equations using the just computed pressure as a given load

• Recompute the film height from the computed deformation
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5 Mechanical elements

In this chapter some mechanical elements are described.
The following sections are available:

5.1 is devoted to standard linear elastic problems.

5.2 treats incompressible or nearly incompressible elasticity.

5.3 is devoted to non-linear elasticity problems.

5.4 deals with (thick) plates.
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5.1 Linear elastic problems

In this section linear elastic elements are described. The equations are based on:

• The conservation of momentum.

• A relation between strain and displacements.

• The stress-strain relation.

Incompressible or nearly incompressible elements are the subject of Section (5.2).
Non-linear cases are treated in Section (5.3).
Plate elements can be found in Section (5.4).

In Section (5.1.1) the equations are given.
Boundary and initial conditions are treated in subsection (5.1.2)
The representation of the equations in various co-ordinate systems is given in subsection (5.1.10)
Temperature dependence is the subject of subsection (5.1.3)
Subsection (5.1.4) deals with solution methods.
The definition of the input of the coefficients for elastic equations is given in subsection (5.1.5)
and for the natural boundary conditions in subsection (5.1.6)
Subsection (5.1.7) deals with the computation of derived quantities, like gradient, stress, strain and
so on.
In subsection (5.1.8) the available type numbers are presented.
Finally in subsection (5.1.9) some information of previous versions of SEPRAN with respect to the
linear elastic equations is given.
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5.1.1 Linear elastic equations

In this section linear elastic elements are described. It concerns two-dimensional elements (plane
stress and plane strain), three-dimensional elements and axi-symmetrical elements.

Equation

The total strain at any point can be defined by the components of strain which contribute to inter-
nal work.

Basic equations

∂2ρu

∂t2
− divσ = F (5.1.1.1)

σ denotes the stress tensor and F a body force acting on a unit volume of material.
In order to express the stresses in displacements it is necessary to define the strain-displacement
relations and the constitutive equations, which define a relation between stresses and strains.

This relation is usually expressed as, (see [1]):

ε = B u (5.1.1.2)

Where B represents the transpose of the divergence operator.

The stress-strain relations are defined by the so-called constitutive equations, which for linear
elasticity is given by a direct linear relation. The constitutive relations read in general form:

σ = D(ε− ε0) + σ0 (5.1.1.3)

ε0 the initial strain and σ0 the initial stress. where D denotes the elasticity matrix, ε0 the initial
strain and σ0 the initial tensor.

In case of a visco-elastic problem we do not use the second order time derivative in Equation (5.1.1.1)
but the stress tensor σ is extended with an extra time-dependent term:

σ = µ1
∂ε

∂t
+ µ2

∂divu

∂t
I + D(ε− ε0) + σ0 (5.1.1.4)

Mark that although the equations are formulated in terms of the stress tensor, the unknown in the
problems in this section is the displacement. The stress tensor itself is a derived quantity.

Loadings

The user may introduce loadings in the following way:

i body forces by Fx and Fy

ii concentrated loads in user defined points (using point elements)

iii distributed loadings on a part of the boundary given. In the 2D case these body forces are
given by:

σxnx + τxyny = Tx σyny + τxynx = Ty

where nx and ny denote the cosine of the (unit) normal at the boundary in the x and y-
direction respectively.
Tx, Ty denote the component of the boundary force per unit area in x and y-direction respec-
tively.
In the 3D case the trivial extension of these boundary forces may be applied.
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5.1.2 Boundary and initial conditions for the linear elastic equations

In the instationary case it is necessary to give an initial displacement and initial velocity at t = t0.
However, in the visco-elastic case we have only first order time-derivatives and hence we need only
an initial displacement.

The following types of boundary conditions are available:

Type 1 One or two or all components of the displacement given at a boundary

Type 2 External loadings given at a boundary, see loadings.
As extra option it is possible to define a linear relation between displacements and loadings
at the boundary in the following way:

LOADi = Ti +

n∑
j=1

αijuj (5.1.2.1)

In the three-dimensional case the external loads may only be given in the direction of the
co-ordinate axis, or if local transformations are used in the direction of the local co-ordinate
axis.
In the two-dimensional case the external boundary loads may be given in two different ways.
These ways are defined by the parameter ILOAD as follows:

ILOAD=2 the load must be given in the direction of local co-ordinate axis. Normally this means in
the x respectively y-direction. In the case of local transforms this means in the direction
of the normal and tangential vectors at the boundary.

ILOAD=3 the load must be given by the parameters T and θ, where θ denotes the angle with the
x-axis and T the length of the load.

In the axi-symmetrical case also the parameter ILOAD is defined. In that case θ defines
the angle with the r-axis.

ILOAD=4 the load must be given in normal and tangential direction. The direction of the element
defines the outward normal.

It is in any case necessary to prescribe exactly two boundary conditions at each boundary in 2D
and three in 3D. The boundary conditions must be given in two (three) independent directions.
However, if at a boundary for one direction no boundary condition is given, this means that at that
position the displacement is free and there is external loading. In fact this means that implicitly a
natural boundary condition is applied.

5.1.3 Temperature dependence

According to [1], temperature changes will in general result in an initial strain vector. The relation
between temperature rise θ and the initial strain depends on the thermal expansion coefficient α
and the type of material. The following relations may be used.

Plane stress-isotropic material:

ε0 =

 αθ
αθ
0

 (5.1.3.1)

3D isotropic material:
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ε0 =


αθ
αθ
αθ
0
0
0

 (5.1.3.2)

Plane strain isotropic material:

ε0 = (1 + ν)

 αθ
αθ
0

 (5.1.3.3)

Plane stress-orthotropic material:

ε0 =

 α1θ
α2θ
0

 (5.1.3.4)

Plane strain-orthotropic material:

ε0 = (1 + ν)

 α1θ
α2θ
0

 (5.1.3.5)

3D Axi-symmetrical isotropic material:

ε0 =


αθ
αθ
αθ
0

 (5.1.3.6)

3D Axi-symmetrical stratified material:

ε0 =


αzθ
αrθ
αrθ
0

 (5.1.3.7)

with αz the thermal expansion coefficient in axial direction and αr in the plane normal to it.

5.1.4 Solution methods for the linear elastic equations

Definition of the storage scheme:
The matrices that are created are symmetric and positive definite. Hence in the input block
matrix one can use the keyword symmetric, which reduces the amount of storage by a factor
2.
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Time dependence
In the time dependent case a mass matrix and a stiffness matrix is formed. These matrices
are both symmetric and positive definite.
In the elastic case we are dealing with second order time-derivatives and it is necessary to use
a time integration scheme that is suitable for this type of equations. Recommended methods
are for example the Newmark scheme of the generalized α scheme, see the Users Manual
Section 3.2.15. An example is treated in the manual Examples Section 5.1.3.

In the visco-elastic case we have order time derivatives, which implies that standard methods
like Euler Implicit or Crank Nicolson may be used.

5.1.5 Definition of the coefficients for the linear elasticity input

The user may provide the following information either in a coefficients block or in the structure
block.

STRESS STRAIN RELATION = name (icoef2) type of stress-strain relations.
name is a string parameter with the following possible values:

PLANE STRESS (0) plane stress, isotropic material or 3D stress, isotropic material (Carte-
sian).
This is the default value.

PLANE STRAIN (1) plane strain, isotropic material (Cartesian)

AXI SYMMETRIC STRESS (2) axi-symmetrical stress, isotropic material

ORTHOTROPIC PLANE STRESS (3) plane stress, orthotropic material

ORTHOTROPIC PLANE STRAIN (4) plane strain, orthotropic material

STRATIFIED AXI SYMMETRIC STRESS (5) axi-symmetrical stress, stratified ma-
terial

USER DEFINED ELASTICITY CART (6) user defined elasticity matrix (3x3) (Carte-
sian)

USER DEFINED ELASTICITY AXI (7) user defined elasticity matrix (4x4) (Axi-symmetric)

INTEGRATION RULE = i (icoef3) defines the type of integration rule to be applied.
This is an integer coefficient, with the following possible values for i:

0 the rule is chosen by the element itself (Default)

> 0 the integration rule is defined by the user, see below

ELASTIC MODULUS (coef6) E

POISSONS RATIO (coef7) ν

THICKNESS (coef27) thickness of the plate: h

FORCE (coef28/29/30) body force

X FORCE (coef28) Fx (body force in x-direction, or in the axi-symmetrical case r-direction)

Y FORCE (coef29) Fy (body force in y-direction, or in the axi-symmetrical case z-direction)

Z FORCE (coef30) Fz (body force in z-direction, 3D only)

INITIAL STRAIN (coef31 .. 36) initial strain

XX INITIAL STRAIN (coef31)

XY INITIAL STRAIN (coef32)
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XZ INITIAL STRAIN (coef33)

YY INITIAL STRAIN (coef34)

YZ INITIAL STRAIN (coef35)

ZZ INITIAL STRAIN (coef36)

INITIAL STRESS (coef37..42) initial stress

XX INITIAL STRESS (coef37)

XY INITIAL STRESS (coef38)

XZ INITIAL STRESS (coef39)

YY INITIAL STRESS (coef40)

YZ INITIAL STRESS (coef41)

ZZ INITIAL STRESS (coef42)

DENSITY (coef43) density ρ

5.1.6 Definition of the coefficients for the natural boundary conditions
input

The user may provide the following information either in a coefficients block or in the structure
block.

ILOAD (icoef1) Type of natural boundary condition (ILOAD)

0,2 ILOAD = 2

3 ILOAD = 3

4 ILOAD = 4

STRESS STRAIN RELATION = name (icoef2) type of stress-strain relations.
name is a string parameter with the same meaning as in Section 5.1.5.

INTEGRATION RULE = i (icoef3) defines the type of integration rule to be applied.
This is an integer coefficient, with the following possible values for i:

0 the rule is chosen by the element itself (Default)

> 0 the integration rule is defined by the user, see below

X LOAD (coef6) Tx

Y LOAD (coef6) Ty

Z LOAD (coef8) Tz

THICKNESS (coef9) h.
If omitted the value of the differential equation is copied.
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5.1.7 Computation of quantities derived from the solution of the linear
elastic equations

Depending on the parameter ICHELD in subroutine DERIV the following types of derivatives are
computed:

1
∂uj
∂xi

, where xi is defined by the parameter ix, and j by the parameter JDEGFD.

2 ∇u

3 -∇u

4 div u

5 curl u

6 The stress σ, according to 5.1.10.1 to 5.1.10.3

7 The strain ε, according to 5.1.10.1 to 5.1.10.3.

12-17 See types 2-7 but now defined per element, i.e. constant values per element. The output
vector is vector of special structure defined per element (type 116).

32-37 See types 2-7 but now defined per node per element.
At this moment only ICHELD = 36 and 37 have been implemented.
The output vector is vector of special structure defined per node per element (type 126).

42-47 See types 2-7 but now defined per integration point per element.
At this moment only ICHELD = 46 and 47 have been implemented.
The output vector is vector of special structure defined per integration point per element
(type 129).

The output vector is defined as follows:

1,4 a vector of the type solution vector with one unknown per point

2,3 a vector of the type vector of special structure with ndimndim unknowns per point

5 a vector of the type solution vector with 0, 1 or 3 unknowns per point if ndim is respectively
1, 2 or 3

11 a vector of special structure defined per element with one unknown

6,7 a vector of the type solution vector with six unknowns per point

In the cases ICHELD = 6, 7, 16, 17, 36, 37, 46 and 47 the user must define exactly the same
coefficients as for the differential equation, except for the parameter ρ, which is not used.

5.1.8 Type numbers available for the linear elastic equations

The type numbers, which are given in the standard input file in the part between PROBLEM and
END (input for SEPCOMP or subroutine SEPSTR) define the type of differential equation to be
solved.

For the linear elasticity equation in this section the following type numbers are available:

250 general type number for the internal elements. Defines the differential equation.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)
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shape = 3 linear triangle.

shape = 4 quadratic triangle.

shape = 5 bilinear quadrilateral.

shape = 6 biquadratic quadrilateral.

shape = 7 7 point triangle. This element is treated as shape 4, i.e. there are no degrees of
freedom in the center.

shape = 11 linear tetrahedron.

shape = 12 quadratic tetrahedron.

shape = 13 trilinear hexahedron.

shape = 14 triquadratic hexahedron.

251 boundary conditions of types 2 and 3.
The element may be either a point element for a point load or a boundary element for a
distributed load. The boundary elements must be curve elements in 2D and surface elements
in 3D. This type number is available for the following element shape numbers: (see the Users
Manual, Section 2.2, Table 2.2.1)

shape = 0 Point element. (point element for concentrated load)

shape = 1 linear line element.

shape = 2 quadratic line element.

shape = 3 linear triangle.

shape = 4 quadratic triangle.

shape = 5 bilinear quadrilateral.

shape = 6 biquadratic quadrilateral.

5.1.9 Previous versions of SEPRAN dealing with the linear elastic equa-
tions

In previous versions of SEPRAN equation (5.1.1.1) has been solved with different type numbers.
These type numbers may still be used, however, it is recommended to use the new type numbers
described earlier when creating new input or new programs. In this section we will point out the
differences of the previous type numbers and the present one.

• Definition of the coefficients for the differential equation:

The coefficients for the differential equation may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP of FILCOF is recommended.
For each element group 5 or 6 parameters and coefficients must be given.

These parameters and coefficients are defined as follows:

1 IGPROB with:

IGPROB=1 : plane stress

IGPROB=2 : plane strain

IGPROB=3 : axi-symmetrical stress

2 E

3 ν

4 Fx or Fr

5 Fy or Fz
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6 h (plane stress and strain only)

• Definition of the coefficients for the boundary conditions:

The coefficients for the boundary conditions may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP of FILCOF is recommended.
For each element group 4 or 5 parameters and coefficients must be given.

These parameters and coefficients are defined as follows:

1 IGPROB

2 ILOAD. Possible values:

1 The load T is given in the co-ordinate direction

3 The load T is given in one direction and the angle θ between this direction and x-
direction is given.

3 Tx or Tr if ILOAD=1 or T if ILOAD=3

4 Ty or Tz if ILOAD=1 or θ if ILOAD=3

5 h (plane stress and strain only)

• Computation of derivatives:

Depending on the parameter ICHELD in subroutine DERIV the following types of derivatives
are computed:

1: The stress σ, according to 5.1.10.1 to 5.1.10.3
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Definition of type numbers

The type numbers, which are given in the standard input file in the part between PROBLEM and
END (input for SEPCOMP or subroutine SEPSTR) define the type of differential equation to be
solved.

For the linear elasticity equation in this section the following type numbers are available:

206 Plane stress or plane strain for linear triangle in R2.

207 Plane stress or plane strain for bilinear quadrilateral in R2.

208 Boundary condition of type 2 for type numbers 206 and 207

209 Point element for concentrated load.

5.1.10 Representation of the linear elasticity equations for various coor-
dinate systems

Although the stress tensor, the strain tensor and the displacement vector itself are independent on
the co-ordinate system, their representation in various co-ordinate systems varies. The following
representations are presently available for this element:

2D Cartesian co-ordinates:

σ =

 σx
σy
τxy

 u =

[
ux
uy

]
ε =

 εx
εy
γxy

 =


∂ux
∂x
∂uy
∂y

∂ux
∂y +

∂uy
∂x

 (5.1.10.1)

3D Cartesian co-ordinates:

σ =


σx
σy
σz
τxy
τyz
τzx

 u =

 ux
uy
uz

 ε =


εx
εy
εz
γxy
γyz
γzx

 =



∂ux
∂x
∂uy
∂y
∂uz
∂z

∂ux
∂y +

∂uy
∂x

∂uy
∂z + ∂uz

∂y
∂uz
∂x + ∂ux

∂z


(5.1.10.2)

3D Axi-symmetrical co-ordinates:

σ =


σr
σz
σθ
τrz

 u =

[
ur
uz

]
ε =


εr
εz
εθ
γrz

 =


∂ur
∂r
∂uz
∂z
ur
r

∂ur
∂z + ∂uz

∂r

 (5.1.10.3)

The equation in these co-ordinate systems get the following shapes:

2D Cartesian co-ordinates

∂2ρux
∂t2

− ∂σx
∂x
− ∂τxy

∂y
= Fx (5.1.10.4)

∂2ρuy
∂t2

− ∂σy
∂y
− ∂τxy

∂x
= Fy (5.1.10.5)

3D Cartesian co-ordinates
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∂2ρux
∂t2

− ∂σx
∂x
− ∂τxy

∂y
− ∂τzx

∂z
= Fx (5.1.10.6)

∂2ρuy
∂t2

− ∂τxy
∂x
− ∂σy

∂y
− ∂τyz

∂z
= Fy (5.1.10.7)

∂2ρuz
∂t2

− ∂τzx
∂x
− ∂τyz

∂y
− ∂σz

∂z
= Fz (5.1.10.8)

3D Axi-symmetrical co-ordinates

∂2ρur
∂t2

− ∂σr
∂r
− ∂τrz

∂z
− σr − σθ

r
= Fr (5.1.10.9)

∂2ρuz
∂t2

− ∂σz
∂z
− ∂τrz

∂z
− τrz

r
= Fz (5.1.10.10)

Elasticity matrix D

The constitutive equations depend on the type material properties. These properties are translated
into the elasticity matrix D. For this element there are several types of elasticity matrices available.

Plane stress-isotropic material:

D =
E

1− ν2

 1 ν 0
ν 1 0

0 0 (1−ν)
2

 (5.1.10.11)

where E denotes Young’s modulus and ν Poisson’s ratio.

3D isotropic material:

D =
E(1− ν)

(1 + ν)(1− 2ν)



1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0
ν

1−ν
ν

1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν) 0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)


(5.1.10.12)

where E denotes Young’s modulus and ν Poisson’s ratio.

Plane strain isotropic material:

D =
E(1− ν)

(1 + ν)(1− 2ν)

 1 ν
1−ν 0

ν
1−ν 1 0

0 0 1−2ν
2(1−ν)

 (5.1.10.13)

Plane stress-orthotropic material:
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D =
E2

1− nν2
2

 n nν2 0
nν2 1 0
0 0 m(1− nν2

2)

 (5.1.10.14)

with n = E1

E2
, m = G2

E2
.

Plane strain-orthotropic material:

D =
E2

(1 + ν1)(1− ν1 − 2nν2
2)

 n(1− nν2
2) nν2(1 + ν1) 0

nν2(1 + ν1) (1− ν1
2) 0

0 0 m(1 + ν1)(1− ν1 − 2nν2
2)


(5.1.10.15)

with n = E1

E2
, m = G2

E2
.

3D Axi-symmetrical stratified material:

D =
E2

(1 + ν1)(1− ν1 − 2nν2
2)


1− ν1

2 nν2(1 + ν1) nν2(1 + ν1) 0
nν2(1 + ν1) n(1− nν2

2) n(ν1 + nν2
2) 0

nν2(1 + ν1) n(ν1 + nν2
2) n(1− nν2

2) 0
0 0 0 m(1 + ν1)(1− ν1 − 2nν2

2)


(5.1.10.16)

with n = E1

E2
, m = G2

E2
.

3D Axi-symmetrical isotropic material:

D =
E(1− ν)

(1 + ν)(1− 2ν)


1 ν

1−ν
ν

1−ν 0
ν

1−ν 1 ν
1−ν 0

ν
1−ν

ν
1−ν 1 0

0 0 0 1−2ν
2(1−ν)

 (5.1.10.17)

with n = E1

E2
, m = G2

E2
.

User defined elasticity matrix:

D =

 d11 d12 d13

d21 d22 d23

d31 d32 d33

 , (5.1.10.18)

where dij = dji.

Thickness of the plate

In the 2D applications (plane strain and plane stress) the thickness of the solid h may be linear
variable in the element, see Figure 5.1.10.1. The finite element equations are integrated over the
local thickness of the plate. At this moment the average thickness per element is used for the
integration.

Remark
If Poisson’s ratio ν approaches 0.5, the standard displacement formulation given in this section
fails. In that case it is necessary to use the elements described in Section 5.2, concerning (nearly)
incompressible materials.
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h

Figure 5.1.10.1: membrane element with thickness h

5.1.11 Old definition of the coefficients for the linear elasticity input

These parameters and coefficients are defined as follows:

1 not yet used

2 type of stress-strain relations

3 type of numerical integration

4 not yet used

5 not yet used

6-26 information about the elasticity matrix depending on the type of stress-strain relations

27 thickness of the plate: h

28 Fx (body force in x-direction, or in the axi-symmetrical case r-direction)

29 Fy (body force in y-direction, or in the axi-symmetrical case z-direction)

30 Fz (body force in z-direction, 3D only)

31-36 initial strain

37-42 initial stress

43 density ρ

44 parameter mu1 for the visco-elastic model.

45 parameter mu2 for the visco-elastic model.

The parameters that are not used must be set equal to zero, since this is the default value in case
of future extensions.

With respect to these parameters the following choices are available:

2 Type of stress-strain relations (IGPROB)
Possible values:

0 plane stress, isotropic material or 3D stress, isotropic material (Cartesian)

1 plane strain, isotropic material (Cartesian)

2 axi-symmetrical stress, isotropic material

3 plane stress, orthotropic material

4 plane strain, orthotropic material

5 axi-symmetrical stress, stratified material
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6 user defined elasticity matrix (3x3) (Cartesian)

7 user defined elasticity matrix (4x4) (Axi-symmetric)

3 Type of numerical integration
Possible values:

0 default value defined by element

6-26 Information about the elasticity matrix
The following values are needed depending on IGPROB:

IGPROB = 0, 1 or 2:
coefficient:

6 E

7 ν

IGPROB = 3:
coefficient:

6 E1

7 E2

8 ν2

9 ν2

10 G2

IGPROB = 4, 5:
coefficient:

6 E1

7 E2

8 ν1

9 ν2

10 G2

IGPROB = 6:
coefficient:

6 d11

7 d21

8 d31

9 d22

10 d23

11 d33

IGPROB = 7:
coefficient:

6 d11

7 d21

8 d31

9 d41

10 d22

11 d32
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12 d42

13 d33

14 d43

15 d44

31-36 Initial strain:
coefficient:

31 (εx)0 or (εr)0

32 (εy)0 or (εz)0

33 (εz)0 or (εθ)0

34 (γxy)0 or (γrz)0

35 (γyz)0

36 (γzx)0

If the initial strain tensor is stored as a vector of special structure defined per element per node
(type 126), then this vector should be provided as coefficient 31. Once a vector of type 126 is
recognized it is assumed that the whole tensor is stored in this vector and the coefficients 32
to 36 are skipped.
The same is the case for vectors of type 129 (defined per integration point per element).

37-42 Initial stress:
coefficient:

37 (σx)0 or (σr)0

38 (σy)0 or (σz)0

39 (σy)0 or (σθ)0

40 (τxy)0 or (τrz)0

41 (τyz)0

42 (τzx)0

If the initial stress tensor is stored as a vector of special structure defined per element per node
(type 126), then this vector should be provided as coefficient 37. Once a vector of type 126 is
recognized it is assumed that the whole tensor is stored in this vector and the coefficients 38
to 42 are skipped.
The same is the case for vectors of type 129 (defined per integration point per element).

In case of the visco-elastic model we have to increase the integer coefficient 2 by 200.
Hence icoef2 = 200, means visco-elastic model and plane stress.
icoef2 = 201, means visco-elastic model and plane strain.

5.1.12 Old definition of the coefficients for the natural boundary condi-
tions input

The coefficients for the boundary conditions may be defined by one of the methods described in
2.2, where, in general, the method by SEPCOMP of FILCOF is recommended.
For each element group 25 parameters and coefficients must be given. The first 5 parameters are
of integer type which means that they must be defined by ICOEFi in the input, the last 20 are real
coefficients.

These parameters and coefficients are defined as follows:

1 Type of natural boundary condition (ILOAD)
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2 type of stress-strain relations (IGPROB, see differential equation)

3 type of numerical integration

4 Not yet used (must be zero)

5 not yet used

6 Tx

7 Ty

8 Tz

9 h

10 α11

11 α12

12 α13

13 α22

14 α23

15 α33

16-25 not yet used

Parameters that are not yet used must be set equal to zero. They are meant for future extensions.
In the input for SEPCOMP or FILCOF this means that no information about these coefficients has
to be given.
The coefficients 6-15 may be zero, constants or functions as described in Section 10.1. They may
also depend on precomputed vectors. Of course, in 1D and 2D not all coefficients are used. The
coefficients 8-13 are only used for boundary conditions of type 4.

With respect to the parameters 1-5 the following choices are available:

1 Type of natural boundary condition.
Possible values:

0,2 ILOAD = 2

3 ILOAD = 3

4 ILOAD = 4

3 Type of numerical integration rules.
Possible values:

0 the rule is chosen by the element itself (Default)

> 0 the integration rule is defined by the user.
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5.2 Linear incompressible or nearly incompressible elastic problems

When Poisson’s ratio ν approaches 0.5 or when the material becomes incompressible, the standard
displacement formulation of elastic problems as described in Section 5.1 fails.
Even when the material becomes nearly incompressible, with ν > 0.4 sometimes problems may be
expected, for example for the linear triangle. This is for example the case if we use rubber-like
materials.

Once a material becomes (nearly) incompressible it is better to use a so-called mixed formulation.
To that it is convenient to separate the mean stress of pressure from the total stress field and treat
it as an independent variable.

In this section we shall concentrate ourselves to this kind of problems.

Equation

Basic equations

The mean stress of pressure is given by

p =
σx + σy + σz

3
(5.2.1)

Remark:

Equation 5.2.1 is only true for materials where the pressure can be defined by splitting the stress
into a hydrostatic and a deviatoric stress. In many cases this is not possible, but for some material
models is is, for example for Neo-Hookean and Mooney models.
The rest of the equations in this section, however, remain valid.

The pressure is related to the volumetric strain, εv, by the bulk modulus of the material K, for
isotropic behaviour:

εv = εx + εy + εz =
p

K
(5.2.2)

For an incompressible material K =∞ and the volumetric strain is zero.
The deviatoric strain εd is defined by

εd = ε− mεv
3

= (I− 1

3
mmT )ε (5.2.3)

with m given by
mT = [1, 1, 1, 0, 0, 0] (5.2.4)

εd is related in isotropic elasticity to the deviatoric stress σd by the stress modulus G as

σd = σ −mp = GD0εd = G(D0 −
2

3
mmT )ε (5.2.5)

with

D0 =


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.2.6)

Mark that G and K are related to E and ν in Section 5.1 by

G =
E

2(1 + ν)
K =

E

3(1− 2ν)
(5.2.7)
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The equations 5.2.1 to 5.2.7 can be rewritten into

∂ρu

∂t
− div σd +∇p = F (5.2.8)

and
div u =

p

K
(5.2.9)

Boundary and initial conditions

With respect to boundary and initial conditions, the same types as in Section 7.1 for the incom-
pressible Navier-Stokes equations are available. This means that it is not possible to prescribe the
pressure at the boundary, except implicitly through the normal stress.

Solution method

The equations for the (nearly) incompressible materials have the same structure as the incompress-
ible Navier-Stokes equations, without the convective terms. This means that remarks about the
solution method that are made in Section 7.1 for the Navier-Stokes equations are also valid here,
except those concerning the convective terms.

In particular this means that the continuity equation 5.2.9 provides extra difficulties, although for
K finite the material is not exactly incompressible.
As a consequence, it is not possible to use any arbitrary approximation of pressure and displace-
ment, but only a limited number will produce correct results. Furthermore we can use the same
type of solution methods as described in Section 7.1, i.e. either the penalty function method or the
integrated method.
In case of a penalty function method it is necessary to define a penalty parameter ε.

Input for the various subroutines

• Definition of the storage scheme:

The first thing to be chosen is the type of storage scheme for the matrices. This storage scheme
is defined by the keyword METHOD = i in the input of program SEPCOMP or subroutine
SEPSTR or alternatively by the parameter JMETOD in subroutine COMMAT.

In general, two matrices may be created: the mass matrix and the stiffness matrix. The mass
matrix is only used for time-dependent problems. This matrix pre-multiplies the discretized
time-derivative. The stiffness matrix represents the discretization of the stationary terms in
the left-hand side of equations (5.2.8) and (5.2.9).

Both the stiffness matrix and the mass matrix are positive definite, which means that
METHOD = 1 or 5 may be chosen.

• Definition of the coefficients for the differential equation:

The coefficients for the differential equation may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP of FILCOF is recommended.
For each element group 20 parameters and coefficients must be given. The first 5 parameters
are of integer type which means that they must be defined by ICOEFi in the input, the last
15 are real coefficients.

These parameters and coefficients are defined as follows:
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1 not yet used

2 not yet used

3 type of numerical integration

4 type of co-ordinate system

5 not yet used

6-20 information about the problem and the penalty parameter in case a penalty function
method is applied

6 density ρ

7 Poisson ration ν

8 Elasticity modulus E

9 Fx (body force in x-direction, or in the axi-symmetrical case r-direction)

10 Fy (body force in y-direction, or in the axi-symmetrical case z-direction)

11 Fz (body force in z-direction, 3D only)

12 penalty function parameter ε

13-20 not yet used

The parameters that are not used must be set equal to zero, since this is the default value in
case of future extensions.
With respect to these parameters the following choices are available:

4 Type of co-ordinate system Possible values:

0 Cartesian co-ordinates

1 Axi-symmetric co-ordinates

• Definition of the coefficients for the boundary conditions: See Section 7.1 for the boundary
conditions

• Parameters for subroutine BUILD:

With respect to subroutine BUILD the parameter IMAS (IINBLD(4)) is of importance. In
the stationary case no mass matrix is necessary so IMAS may be chosen equal to zero.
In the time-dependent case IMAS may be either 1 (diagonal mass matrix) or 2 (”consistent”
mass matrix).

A diagonal mass matrix is only recommended in case of linear elements.

• Parameters with respect to the linear solver:

The stiffness matrix is not only symmetric but also positive definite.

• Computation of derivatives:

Depending on the parameter ICHELD in subroutine DERIV the following types of derivatives
are computed:

1
∂uj
∂xi

, where xi is defined by the parameter ix, and j by the parameter JDEGFD.

2 ∇u

3 -∇u

4 div u

5 curl u

6 The stress σ
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7 The strain ε

21-27 See 1 to 7, however, now defined in the vertices instead of the nodal points.

The output vector is defined in exactly the same way as in Section 7.1.

• Types of integrals that may be computed:

See Section 7.1.
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Definition of type numbers

The type numbers, which are given in the standard input file in the part between PROBLEM and
END (input for SEPCOMP or subroutine SEPSTR) define the type of differential equation to be
solved.

For the incompressible linear elasticity equation in this section the following type numbers are
available:

260 General type number for the internal incompressible elasticity elements.
This number is restricted to the penalty function formulation only.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 4 extended quadratic triangle. This is a so-called Crouzeix-Raviart element. Inter-
nally the displacement is treated as a quadratic polynomial with extra third order term.
The displacement in the centroid is internally used, but not available to the user. The
internal pressure is defined in the centroid, but also not available to the user. Only the
averaged pressure produced by ”DERIV” is available.
The solution vector contains two displacement components in each node.

shape = 5 Linear quadrilateral. This is a so-called Crouzeix-Raviart element that does not
satisfy the Brezzi-Babuska condition. The displacement is defined in the vertices.
Since the Brezzi-Babuska condition is not satisfied, the pressure may contain unrealistic
wiggles. However, if at some part of the boundary the normal stress is given (or equiva-
lently the normal component of the displacement is not prescribed), there is good chance
that the wiggles are not visible. The internal pressure is defined in the centroid, but not
available to the user.
The solution vector contains two displacement components in each node.

shape = 6 Bi-quadratic quadrilateral. This is a so-called Crouzeix-Raviart element. The
internal pressure is defined in the centroid, but not available to the user. Only the
averaged pressure produced by ”DERIV” is available.
The solution vector contains two displacement components in each node.

shape = 14 Tri-quadratic hexahedron. This is a so-called Crouzeix-Raviart element. The
internal pressure is defined in the centroid, but not available to the user. Only the
averaged pressure produced by ”DERIV” is available.
The solution vector contains three displacement components in each node.

262 General type number for the internal elements.
This number is restricted to the integrated solution method only.
For this type of element, swirl is not allowed.
Elements of this type may be used in combination with direct methods and iterative methods.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 6 Bi-quadratic quadrilateral. This is a so-called Crouzeix-Raviart element. The
internal pressure and its gradient are defined in the centroid and available to the user.
This pressure is discontinuous over the element boundaries. The averaged pressure pro-
duced by ”DERIV” is available.
The solution vector contains two displacement components in each node.
Furthermore in the centroid (Point 9), the pressure and the gradient of the pressure are
available. In this point we have:
1: v1 2: v2 3: p 4: ∂p

∂x 5: ∂p
∂y

shape = 7 extended quadratic triangle. This is a so-called Crouzeix-Raviart element. The
displacement is treated as a quadratic polynomial with extra third order term. The
displacement in the centroid is available to the user. The internal pressure is defined in
the centroid and available to the user. This pressure is discontinuous over the element
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boundaries. The averaged pressure produced by ”DERIV” is available.
The solution vector contains two displacement components in each node.
Furthermore in the centroid (Point 7), the pressure and the gradient of the pressure are
available. In this point we have:
1: v1 2: v2 3: p 4: ∂p

∂x 5: ∂p
∂y

shape = 9 Linear quadrilateral. This is a so-called Crouzeix-Raviart element that does not
satisfy the Brezzi-Babuska condition. The displacement is defined in the vertices.
Since the Brezzi-Babuska condition is not satisfied, the pressure may contain unrealistic
wiggles. However, if at some part of the boundary the normal stress is given (or equiva-
lently the normal component of the displacement is not prescribed), there is good chance
that the wiggles are not visible. The internal pressure is defined in the centroid, but not
available to the user.
The solution vector contains two displacement components in each vertex. In the centroid
only the pressure is defined.

shape = 14 Tri-quadratic hexahedron. This is a so-called Crouzeix-Raviart element. The
internal pressure is defined in the centroid and available to the user. This pressure is dis-
continuous over the element boundaries. The averaged pressure produced by ”DERIV”
is available.
The solution vector contains three displacement components in each node.
Furthermore in the centroid (Point 14), the pressure and the gradient of the pressure are
available. In this point we have:
1: v1 2: v2 3: v3 4: p 4: ∂p

∂x 6: ∂p
∂y 7: ∂p

∂z

261 General type number for the internal elements.
This number is restricted to the integrated solution method only.
For this type of element, swirl is not allowed.
The difference with type number 262 is that the gradient of the pressure and the displacement
in the centroid are eliminated internally. As a consequence the number of unknowns is reduced
considerably.
Elements with this type number may be used in combination with direct and iterative linear
solvers. Experiments have shown that sometimes the iterative solvers do not converge. In
that case it is advised to use type number 262 instead.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 7 extended quadratic triangle. This is a so-called Crouzeix-Raviart element. The
displacement is treated as a quadratic polynomial with extra third order term. The
displacement in the centroid is available to the user. This pressure is discontinuous over
the element boundaries. The averaged pressure produced by ”DERIV” is available.
The solution vector contains two displacement components in each node except the
centroid.
In the centroid (Point 7), the pressure is available, but not the pressure gradient.
In this point there is only one unknown (p), but this pressure is the physical degree of
freedom with sequence number 3.

With respect to type numbers for the boundary conditions the reader is referred to Section 7.1.
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5.3 Nonlinear solid computation

Non-linear solid mechanics problems can be solved either by a Total Lagrange approach or an
updated Lagrange approach. In SEPRAN elements for both types of equations are available.
Section (5.3.1) treats elements using the Total Lagrange approach.
Elements using the updated Lagrange approach are treated in Section (5.3.2).
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5.3.1 Nonlinear solid computation using a Total Lagrange approach

For nonlinear elasticity geometrical nonlinearity (i.e. large deformation) and material nonlinearity
(i.e. nonlinear stress-strain relation) is supported for isotropic and anisotropic stress-strain relations.
At this moment 3D Cartesian coordinates and 2D axi-symmetric coordinates are only supported.
In both cases a Total-Lagrange approach is used.

For (nearly) incompressibility two methods are supported. The first is reduced integration of com-
pression relations This method is also referred to a Natural Penalty Method in literature Ogden
(1984), Peng and Chang (1997), Gielen (1998). The second is a special Total-Lagrange formulation
of the Enhanced Stiffness Method Souza et al (1996), Gielen (1998) that suppresses mesh locking
in incompressibility.

General theory

Equation

In the case of non-linear solid computations, the situation is more complex than for linear elastic-
ity. It is not longer possible to define the basic equations in terms of a simple partial differential
equation at a fixed domain.

In the case of large displacements it is common practice to start with a reference situation at time
t0 and to step gradually in time. During this time-stepping both the load as well as the material
properties may change. Furthermore the region is deformed in each step. In the reference situation

A0

V0

x 0 x
A

V

F
tt 0

Figure 5.3.1.1: Deforming configuration.

at time t0, the body volume is V0q and the boundary surface A0. Every point of the body is
identified with a space vector ~x0. In the deformed situation at time t these quantities are V , A and
~x, respectively. The way the material points deform, as shown in figure 5.3.1.1, is described using
the deformation tensor F , which is defined as

F = (grad 0~x)c (5.3.1.1)

where c is a tensor conjugation, and grad 0 the gradient with respect to the reference configuration.
When neglecting inertial and body forces, the local conservation of momentum can be written as

grad · σc = ~0 (5.3.1.2)

where σ is the Cauchy stress in the material. The conservation of moment of momentum can be
expressed as:

σ = σc (5.3.1.3)

This property is often used to simplify equations. In general, it is impossible to determine the exact
solution of equation (5.3.1.2). A differential equation in the form of equation (5.3.1.2) is not a good
starting point for the determination of an approximation solution. We use the weighted residuals
formulation ∫

V

~w · (grad · σc)dV = 0 (5.3.1.4)
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with ~w a weight function. It can be proved that equation (5.3.1.4) equals equation (5.3.1.2) for
arbitrary weight function ~w. This formulation is weakened by partial integration∫

V

(grad ~w)c : σdV =

∫
A

~w · ~tdA (5.3.1.5)

with ~t = σ ·~n and ~n the outer normal of area A. The right-hand side of equation (5.3.1.5) represents
the surface traction.

To complete equation (5.3.1.5), we must specify how σ relates to F and t, by means of a constitutive
equation, and we must choose an appropriate iteration scheme.

Iteration scheme

The iteration scheme has two requirements. Firstly the integration over the unknown volume V and
area A must be transformed to a known volume and area. Secondly, due to the large deformations,
the equations have to be linearized.
We transform (5.3.1.5) to the reference configuration. This approach is called Total Lagrange. This
yields ∫

V0

(grad 0 ~w)c : (S · F c)dV0 = −
∫
A0

(~w · σext · F−c · ~n0J)dA0 (5.3.1.6)

with J = det(F ) and σext the externally applied stress. The second Piola Kirchoff stress tensor S
is defined as:

S = det(F ) F−1 · σ · F−c (5.3.1.7)

The second Piola Kirchoff stress tensor S is a function of the Green-Lagrange strain tensor, that is
defined as:

E = (F c · F − I)/2 (5.3.1.8)

The linearization is accomplished by a Newton-Raphson scheme, which substitutes ~x = ~x0 +~u with
~x = ~x0 + ~u∗ + δ~u. Or, the real configuration is the undeformed configuration (~x0) plus a estimated
displacement (~u∗), plus a deviation displacement (δ~u). Likewise, S∗ + δS is substituted for S. For

reason of convenience we write ~q instead of ~δu. When second order terms are neglected, equation
(5.3.1.6) transforms into∫

V0

(grad 0 ~w)c : (S∗ · (grad 0~q) + δS · F ∗c)dV0 = k −
∫
V0

(grad 0 ~w)c : (S∗ · F ∗c)dV0 (5.3.1.9)

with k the right-hand side of equation (5.3.1.6). In the computation the stress estimate S∗ and
deformation estimate F ∗ are determined using the configuration estimate ~x∗ = ~x0 + ~u∗. The stress
increment δS is determined from the constitutive behaviour by

δS =
∂S

∂E
: δE with δE = F ∗ · grad 0~q + (F ∗ · grad 0~q)

c (5.3.1.10)

where ∂S/∂E =4 M is the tangential material stiffness at strain-state E∗ Using the symmetry
properties of this fourth order tensor 4M , the left-hand side of (5.3.1.9) can be rewritten as∫

V0

(grad 0 ~w)c : S∗ · grad 0~qdV0 +

∫
V0

(grad 0 ~w)c · F ∗c :4 M : F c · grad 0~qdV0 (5.3.1.11)

The first term of equation (5.3.1.11) is the stiffness due to the stress-state, often referred to as
the initial or nonlinear stiffness matrix, and the second term is the stiffness due to the material
stiffness, often referred to as the tangential, linear, or incremental stiffness matrix.

Discretization

Discretization in this case, is equal to rewriting the equations in index notation. The integration
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has to be taken into account with a numerical integration rule (not included in the description, but
trivial).

(LK
IJ
ij +NL K

IJ
ij )qJj = RIi (5.3.1.12)

LK
IJ
ij = Fik

∂φI

∂xl
Mklmn

∂φJ

∂xm
Fjn (5.3.1.13)

NLK
IJ
ij =

∂φI

∂xi
δijSjk

∂φJ

∂xk
(5.3.1.14)

RIi = FijSkj
∂φI

∂xj
(5.3.1.15)

In fact the problem is reduced to a series of linear elasticity problems, where in each step a new
right-hand side and a new matrix is computed.

Theory concerning incompressibility

In the case of (nearly) incompressibility, convergence problems may occur. At this moment two
methods are supported: A natural penalty method and an enhanced stiffness method. In both cases
the constitutive equation is extended with a compression function, so that:

σ = σm + σc (5.3.1.16)

The part σm is specified with the constitutive equation of the general theory. The part σc is
specified with an extra constitutive equation that approximates the conservation of volume. With
a proper choice of the extra constitutive equation

σc = −pI (5.3.1.17)

With the natural penalty method the convergence is improved if the extra equation is integrated
reduced. This is expressed in the integer coefficient 2, with inonlin=2 or 4. The compression
function must be supplied in the extra subroutine fncomprs.

In case of the enhanced stiffness method, the definition of the strain tensor is redefined. First the
deformation tensor is splitted into a distortional (F d) and a volumetric (F v) part according to:

F = F d · F v = F v · F d
{
F d = J−

1
3F

F v = J
1
3 I

(5.3.1.18)

For a near-incompressible material, the decomposition of 5.3.1.18 forms the basis for formulating
strain interpolation schemes that do not suffer from the over-constraining associated with isopara-
metric interpolation. The essential idea is to discard the volumetric part of F v computed from
the interpolated displacements and to replace it by a suitable modified volumetric part F̃ v. This
modified volumetric deformation field is chosen such that it incorporates less deformation modes
than the compatible field. In this way fewer constraints result when the incompressibility limit is
approached and locking is overcome. The modified deformation field is constructed by using lower
order interpolation or, as in this case, lower order integration as:

F̃ = F̃ d · F̃ v = F̃ v · F̃ d
{
F̃ d = J̃−

1
3 F̃

F̃ v = J̃
1
3 I

(5.3.1.19)

with J̃ = det(F̃ ).
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A modified deformation tensor is constructed with

F̄ = F d · F̃ v =
( J̃
J

) 1
3F (5.3.1.20)

where F̃ represents the deformation tensor in the centre of the element.

If the system of equations is linearized, a non-symmetric set of matrix equations appears. This
method is selected with setting inonlin=1 or 3 for icoef2, and 1 or 2 for icoef5. In this case the
compression function must be incorporated in fnmateri. See the remarks of both fnmateri and
fncomprs.

Input for the various subroutines:

• Definition of the storage scheme:

(See also 5.1) In general the stiffness matrix will be positive definite. The storage scheme is
chosen as METHOD = 1 (direct solver) or 5 (iterative solver).

• Definition of the coefficients for the differential equation:

1 not yet used

2 type of stress-strain relation

3 type of numerical integration

4 type of material model

5 extra options

6-15 material coefficients

16-45 not yet used

With respect to these parameters the following choices are available:

2 stress-strain relation:
The non-linear behaviour must be expressed by the integer coefficient 2 (IGPROB), for
which extra possibilities are added: icoef 2 = igprob + 10*inonlin + 100*ispecial

Remark: These definitions have been changed from 1 august 1997 (subroutine ELM250,
version 4.0). If you are not sure which version you have, check this subroutine using for
example sepvi.

Possible values for igprob:

0 3D stress-strain relation ship.

1 reserved for the future.

2 2D axi-symmetric

Possible values for inonlin:

1 physical and geometrical nonlinear behaviour. Only globally defined anisotropy is
possible.
The user has to supply a user written function subroutine fnmateri to define the
material properties.

2 physical and geometrical nonlinear behaviour, with reduced integrated incompress-
ibility term. The extra equation must be supplied with user written subroutine:
fncomprs
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3 physical and geometrical nonlinear behaviour. Anisotropy with local directions is
possible.
The user has to supply two user written subroutines:
fnmateri to define the material properties and
fnlocdir to define the local anisotropy directions. If the material is isotropic, it
makes no sense to use inonlin=3; one is advised to use inonlin=1 instead.

4 physical and geometrical nonlinear behaviour. Anisotropy with local directions is
possible. An extra constitutive equation is added, which is reduced integrated. This
extra equation must be supplied with user written subroutine: fncomprs.

Possible values for ispecial:

0 : no specialties.

1 : Muscle contraction. This option is only supported at Eindhoven University of
Technology, department of Mechanical Engineering, section Engineering Fundamen-
tals (Contact: Frans van de Vosse or Cees Oomens). Based on method described in
Gielen (1998).

3 integration rule:

0 default (2-point Gauss)

1 Newton-Cotes: this integration rule will result in a poor shear response.

2 Gauss 1-point

3 Gauss 2-point

4 material model choice number: In fnmateri and fncomprs it is termed: ichoice. In
future these will be used for standard material models. If you do not write your own
fnmateri and fncomprs, the standard routines of Sepran are used. The coefficient has
the following definition:
icoef4 = imateri + 10*icomprs + 100*iadd

imateri Material model number of the default Sepran FNMATERI. See description of
FNMATERI for the definitions of the model numbers.

icomprs Compression model number of the default Sepran FNCOMPRS. See the de-
scription of FNCOMPRS for the definition of the model numbers.

iadd If iadd=1 then the stresses and tangential matrix of the FNCOMPRS function
is added to the stresses and tangential matrix of FNMATERI. This option is used
in combination with the Enhanced Stiffness Method and should not be used in
combination with reduced integration.

5 extra options:

0 no extra options (default)

1 de Enhanced Stiffness incompressibility method of the first kind. The matrix will
be non-symmetric! METHOD must be 2 (direct solver) or 6 (iterative solver).

2 de Enhanced Stiffness incompressibility method of the second kind. The matrix will
be non-symmetric! METHOD must be 2 (direct solver) or 6 (iterative solver).

3 Hydrostatic suppression. This one is experimental: do not use it unless you
know exactly what you are doing!

6-15 material parameters: These are transferred to fnmateri and fncomprsto be used in
computation of stress estimate and material stiffness. In fnmateri they are termed:
matpar(1..10).

• Definition of the coefficients for the boundary conditions:
The input is the same as in Section 5.1 for type number 251 for linear elastic analysis.
Note: Natural boundary conditions are described with respect to the undeformed configu-
ration, except for the the combination of icoef1 = 4 and icoef2 = 10. In that case the
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natural boundary conditions is applied only for normal loads (coef6) with respect to the
deformed geometry. When this option is used, the old solution (i.e., estimated solution) must
be supplied as the first old solution vector, and only boundary element shape 5 (linear quad)
is allowed.

• Parameters for subroutine BUILD:
An old solution must be specified with the total displacement as the first old vector. In case
of the specialty option (ispecial=1) a second old solution vector must be supplied.

• Notes on STRUCTURE: (if you use structure)
The solution of a nonlinear solid mechanics problem, happens in a iterative way. In every
iteration a correction vector ~q is computed, that must be added to the previous displacement
estimate ~u∗. This means that there are two vectors needed to compute the results: one
holds correction the vector ~q (i.e. the solution of the matrix equations), the other the total
displacement ~u. Be sure that at least the next 3 commands appear in the structure block:

1. create vector, vector = a: (a an integer number)
This command initializes vector a, that will be used as the total displacement vector ~u.
(Do not forget to give the corresponding create block).

2. prescribe boundary conditions, vector = b (b an integer number)
The prescribed boundary conditions are placed in the b vector, that will also be used
to store the incremental displacements ~q. (Do not forget to give the corresponding
essential boundary conditions block).

3. solve nonlinear system, vector = b (b an integer number)
This block tells Sepran to solve the nonlinear problem, and store the iteration solutions
(i.e., the incremental displacements ~q) in vector b. (Do not forget to give the correspond-
ing nonlinear equations block).

• Notes on NONLINEAR EQUATIONS:
Be sure that you set the iteration method with: iteration method = incremental newton

and to store the total solution in a different vector, with seqtotal vector = a (a an integer
number). Do not forget to put a fill coefficients command in this block.

• Computation of derivatives:
Depending on the parameter ICHELD in subroutine DERIV the following types of derivatives
are computed:

1–5 Standard derivatives

6 The Cauchy or true stress σ. If local directions are used, then the stresses are with
respect to the local directions.

7 The Green-Lagrange strain E. If local directions are used, then the strains are with
respect to the local directions.

8 Function of det(F ). The user has to supply the subroutine fndetf.
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User written subroutines

Depending on the parameter icoef 2, the user must supply extra user written subroutines. These
subroutines must be written according to the following rules:

Subroutine FNMATERI

Description

This routine computes the material behaviour. The user gets the strain estimate E∗ and
has to return the stress estimate S∗ and the material stiffness 4M . The material stiffness
tensor 4M is stored as a 6x6 matrix (see also the linear stiffness matrix in Section 5.1).
The material parameters for this routine are given by the user as coefficients 6 to 15.

Heading

subroutine fnmateri ( ichoice, s, se, eps, detf, matpar, makese )

Parameters

INTEGER ICHOICE

DOUBLE PRECISION S(6), SE(6,6), EPS(6), DETF, MATPAR(10)

LOGICAL MAKESE

ICHOICE this is icoef 4.
Mark that this parameter has been included in the version of August 1997. Hence
old versions must be updated.

S In this array the user has to store the second Piola-Kirchoff stress tensor. The se-
quence of the elements is (1,1), (2,2), (3,3), (1,2), (2,3), (3,1)

SE In this array the user has to store the tangential matrix. This matrix is symmetrical,
but has to be filled completely by the user. The sequence of the rows and columns
is like S.

EPS Contains the Green-Lagrange strains at input. Storage as in S.

DETF Contains the determinant of the deformation gradient at input.

MATPAR Contains the user defined material parameters at input. These are exactly
the coefficients 6 to 15 provided by the user at input.

MAKESE If true the tangential matrix SE has to be filled, otherwise, (false) there is
no need to fill SE.

Input

The arrays EPS and MATPAR have been filled by the element subroutine.
DETF and MAKESE have got a value.

Output

The user must fill array S and depending on MAKESE also array SE.

Remark
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If you do not supply a subroutine FNMATERI, the default subroutine is used. At present
the following values of imateri have been programmed in the default subroutine:

0 Hookean material. See also linear elasticity.
The following coefficients are required:

6 E

7 ν

1 Orthotropic hookean material. See also linear elasticity.
The following coefficients are required:

6 E1

7 E2

8 ν1

9 ν2

10 G1

2 Exponential material, based on strain energy function:

W = a0

(
exp(a1IE + a2II

2
E + a3E

2
11 + a4(E2

12 + E2
13))− 1

)
with the first and second invariant of the Green-Lagrange strain tensor, defined as:

IE = trace(E) IIE =
1

2

(
I2
E − trace(E2)

)
The following coefficients are required:

6 a0

7 a1

8 a2

9 a3

10 a4

This model requires a compression model (see FNCOMPRS).

3 Mooney Rivlin material.
The following coefficients are required:

6 c1

7 c2

If c2 = 0 this model reduces to Neo-Hookean material. The model requires a
compression model (see FNCOMPRS).

Note: The default FNMATERI routine does not check if the coefficients make any
sense. The user has to take care that they do.
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Subroutine FNCOMPRS

Description

This routine computes the extra constitutive equation, which must be an isotropic func-
tions. The user gets the strain estimate E∗ and has to return the stress estimate S∗ and
the material stiffness 4M . The material stiffness tensor 4M is stored as a 6x6 matrix
(see also the linear stiffness matrix in Section 5.1). The material parameters for this
routine are given by the user as coefficients 6 to 15. Note: If your coefficients depend on
coordinates or old solutions, the values are the values computed for the last integration
point of the element, not the value in the centre!

Heading

subroutine fncomprs ( ichoice, s, se, eps, detf, matpar, makese )

Parameters

INTEGER ICHOICE

DOUBLE PRECISION S(6), SE(6,6), EPS(6), DETF, MATPAR(10)

LOGICAL MAKESE

ICHOICE this is icoef 4

S In this array the user has to store the second Piola-Kirchoff stress tensor. The se-
quence of the elements is (1,1), (2,2), (3,3), (1,2), (2,3), (3,1)

SE In this array the user has to store the tangential matrix. This matrix is symmetrical,
but has to be filled completely by the user. The sequence of the rows and columns
is like S.

EPS Contains the Green-Lagrange strains at input. Storage as in S.

DETF Contains the determinant of the deformation gradient at input.

MATPAR Contains the user defined material parameters at input. These are exactly
the coefficients 6 to 15 provided by the user at input.

MAKESE If true the tangential matrix SE has to be filled, otherwise, (false) there is
no need to fill SE.

Input

The arrays EPS and MATPAR have been filled by the element subroutine.
DETF and MAKESE have got a value.

Output

The user must fill array S and depending on MAKESE also array SE. Note: S and SE
must be isotropic functions of EPS. A sample FNCOMPRS is included in the SEPRAN
source. A copy is obtained with the command: sepget fncomprs.

Remark

If you don’t write your own FNCOMPRS, then the default Sepran subroutine is used.
This default routine uses the following definition for the compression function:

−p =
1

ε
h(J) = Kh(J)

with p the pressure, ε the penalty parameter or K the bulk-modulus, h the compression
function that depends on J , the relative change of volume. The following model are
programmed for the values of icomprs given below:
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1 h(J) = J − 1

2 h(J) = log(J)

3 h(J) = 1
2b (J

2b − 1), default b = 1/6.

4 h(J) = 1
b−1 ( 1

J −
1
Jb

), default b = 10.

5 h(J) = 1
2J(J2 − 1)

The bulk modulus K is coef11 and b is coef12. In case of icomprs=3 or 4, b is made
the default value if coef12=0E0 or if coef12 is omitted.
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Subroutine FNLOCDIR

Description

This routine determines the rotation matrix in case of anisotropic material with vari-
able anisotropy directions. Constant anisotropy can be taken care of in the material
behaviour. The rotation matrix, contains the per column the projection of the local
vector i = 1 . . . 3 on the global coordinates x, y, z.

R =

 n1
x n2

x n3
x

n1
y n2

y n3
y

n1
z n2

z n3
z

 (5.3.1.21)

Example: If the rotation of Figure 5.3.1.2 has to be programmed, the rotation matrix

α

x

y

n1

n2

Figure 5.3.1.2: Example for fnlocdir. x and y are the global axes, n1 and n2 the local axes. The
rotation matrix will hold the projection of the local vectors on the global axes.

is:

R =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 (5.3.1.22)

Or:
Rij = (ni, nj) i = 1 . . . 3 j = x, y, z (5.3.1.23)

with (ni, nj) the inner product of ni with nj .

Heading

SUBROUTINE FNLOCDIR ( POS, DIR, ELGRP )

Parameters

INTEGER ELGRP

DOUBLE PRECISION POS(3), DIR(3,3)

POS This is position (x,y,z) at which location the local direction must be given.

DIR In this array the user has to store the rotation matrix.

ELGRP This is the element group number.
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Input

POS and ELGRP have been filled by the element subroutines.

Output

The user must fill DIR.
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Function FNDETF

Description

For ICHELD=8 the user has to supply the routine FNDETF, where the user can supply a
function of DETF. This option is useful in the case of nearly incompressibility to monitor
the volume changes, or the compute the pressure given a compressibility relation.

Heading

double precision function fndetf ( ichoice, eps, detf, matpar )

Parameters

INTEGER ICHOICE

DOUBLE PRECISION EPS(6), DETF, MATPAR(10)

ICHOICE this is icoef 4. This parameter is added. Update your old fndetf!

EPS Contains the Green-Lagrange strains at input.

DETF Contains the determinant of the deformation gradient at input.

MATPAR Contains the user defined material parameters at input. These are exactly
the coefficients 6 to 15 provided by the user at input.

FNDETF must be given a value by the user.

Input

The arrays EPS and MATPAR and the variable ICHOICE have been filled by the
element subroutine.

Output

The user must give FNDETF a value.

Remark

If you do not write a FNDETF routine, the default routine is used. In that case the
function returns the pressure according to the pressure definition described in FNCOM-
PRS.
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Definition of type numbers

The type number which are given in the standard input file in the part PROBLEM define the
type of differential equation to be solved. For nonlinear elasticity the following type numbers are
available:

250 Type number for the internal elements.

shape = 11 linear tetrahedron. (pyramid) Note: As linear tetrahedrons give poor results,
they are not tested for all options. Most options will work, but no guarantee is given.

shape = 13 trilinear hexahedron. (brick)

251 Type number for the boundary elements.

shape = 1 In preparation for nonlinear axi-symmetric analysis. See linear elasticity for
linear options.

shape = 2,3,4,6 See linear elasticity.

shape = 5 Besides the linear options (See linear elasticity), for this shape also a nonlinear
option is supplied for ILOAD=4 and IGPROB=10. In that case the normal loads are
applied with respect to the deformed configuration. Don not prescribe any tangential
loads with this option. Note: If you use this option, be sure that a = 1 and b > 1 in
the nonlinear equations block. ILOAD = 0 or 2 is in preparation.
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5.3.2 Nonlinear solid computation using an Updated Lagrange approach

Introduction

In this section a general nonlinear solid mechanics element in Sepran is considered in two and three
dimensional space using an updated Lagrange approach. Besides the mathematical formulation
also the user input coefficients are defined. In the standard version, Sepran offers several types
of material behaviour and types of pressure approximation. Also some characteristic test examples
are included to demonstrate the use of this element.

This section is written by Tijmen Gunther and is compiled from work by Jurgen de Hart, Raoul
van Loon, Chris van Ooijen, Marco Stijnen, Tijmen Gunther, Peter Bovendeerd and Frans van de
Vosse of Eindhoven University.

Governing equations

In this section we consider a nonlinear solid mechanics element in two dimensional (plain strain)
and three dimensional space. When neglecting body forces, the equations of mass and momentum
can be written as: {

∇ · σ = ~0 in Ω(t) (5.3.2.1a)

det(F )− 1 = 0 in Ω(t) (5.3.2.1b)

with σ the Cauchy stress tensor and F = (grad 0~x)T the deformation gradient tensor defining the
deformation from the reference state Ω0 with position vectors ~x0 to the current state Ω(t) with
position vectors ~x(t). The Cauchy stress can be written as:

σ = −pI + τ (5.3.2.2)

where p is the hydrostatic pressure and τ the deviatoric stress resulting from deformation. In order
to model the deviatoric stress tensor τ it is necessary to specify the constitutive behaviour.

Constitutive equations

Besides a Neo-Hookean material model also a Moonley-Rivlin model, a composite model and a user
defined model is available. These elastic material laws are characterized by:

τ = τ (B) (5.3.2.3)

in which B is the Finger tensor (B = F · F T ). For example in the case of an incompressible
Neo-Hookean material it holds τ = G(B − I). More general, for isotropic hyperelastic materials
the deviatoric stress can be derived from a strain energy function W = W (I1, I2, I3), where In is
the n-th invariant of B. In the incompressible case I3 = 1 the strain energy function reduces to
W = W (I1, I2). Splitting the Cauchy stress according to equation 5.3.2.2 the extra stress tensor τ
yields:

τ = 2

[
∂W

∂I1
B − ∂W

∂I2
B−1

]
= g1(I1, I2)B − g2(I1, I2)B−1 (5.3.2.4)

Here the following relation is used:

σ =
2

J
F · dW

dC
· F T (5.3.2.5)

where J = det (F ) and the Cauchy-Green tensor C is defined as:

C = F T · F (5.3.2.6)

Together with appropriate boundary and initial conditions the system of equations can be solved.
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Boundary and initial conditions

The following types of boundary conditions are available:

1 Components of the displacement ~v(~x) can be given on (some part of) the boundary. These
essential boundary conditions are also called Dirichlet conditions.

2 A load is imposed on (a part of) the boundary. This is a so-called natural boundary condition
(also called Neumann condition). Only the normal stress σn is defined in this element type
i.e. in the normal direction of the surface. The tangential components σt are not defined.
For this type of boundary conditions boundary elements are required.

Coordinate system

Although the stress tensor, strain tensor and the displacement vector itself are independent of the
coordinate system, their representation may vary in various coordinate systems:

2D Cartesian coordinates:

σ =

 σx
σy
τxy

 , ε =

 εx
εy
γxy

 , ~x =

[
x
y

]
(5.3.2.7)

3D Cartesian coordinates:

σ =


σx
σy
σz
τxy
τyz
τzx

 , ε =


εx
εy
εz
γxy
γyz
γzx

 , ~x =

 x
y
z

 (5.3.2.8)

Solution method

For this type of element the updated Lagrange approach is used. In figure 5.3.2.1 a schematic
representation of describing the deformation within an updated Lagrange approach is depicted.
Following this approach we can define:

Fn the deformation tensor which describes the deformation of the continuum to the configuration
Ωn at t = tn.

F∆ the deformation tensor which describes the deformation from the last known configuration Ωn
to the current configuration Ωt at t = tn+1.

In the Theoretical manual the weak form using an updated Lagrange approach is presented.
Whereas in the total Lagrange method a transformation back to the initial configuration Ω0 is
made, the updated Lagrange method uses transformations back to the last known configuration
Ωn. Moreover since the set of equations is nonlinear in terms of the displacement Newton iterations
are used to solve the equations. Hence also the linearized weak form of the governing equations
(eq. 5.3.2.1b) is presented the Theoretical Manual.
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F
F

F = F    F

F

After convergence
Ω

Ω

Ω

0

n

t

n

n ∆

∆

∆

^

Ω̂

.

t = t

n+1t = t

n

Figure 5.3.2.1: Representation of the updated Lagrange approach.

Definition of the coefficients for the differential equation

The coefficients for the differential equation may be defined by one of the methods described in
Section 2.2 of the SEPRAN User Manual, where, in general, the method by SEPCOMP is recom-
mended. For each element group 45 parameters and coefficients must be given.The first 5 parameters
are of integer type which means that they must be defined by ICOEFi in the input, the other co-
efficients are reals.

These parameters and coefficients are defined as follows:

1 Integer (ifsi solution) refers to sequence number of solution vector for fully coupled fluid
structure interaction. More info becomes available soon. Please contact the University of
Technology Eindhoven, department of Mechanical Engineering, division MATE.

2 Type of stress-strain relation (IGPROB):

0 Default value for fully 3D and plane strain (only 2D) problems

3 Type of numerical integration (INTRULE):

0 Default, integration rule is defined by element.

1 Newton-Cotes numerical integration.

2 Gauss numerical integration (element dependent).

3 Gauss numerical integration (element dependent).

4 Type of constitutive law (IMATLAW):

1 Compressible elastic solid.

2 Incompressible elastic solid.

3 Compressible Moonley-Rivlin material.

4 Incompressible Moonley-Rivlin material.

10 Composite material.

11 Composite material (with volume-fraction θ).

99 User defined material.

5 User flags (coef = IUSRVC + 100*IUSRFLG)
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Coefficients 6 − 45 contain information about the elasticity matrix depending on the type of con-
stitutive law (icoef4). The parameters that are not used must be set equal to zero, since this is the
default value in case of future extensions. The following values are needed depending on IMATLAW:

IMATLAW = 1, 2, 4, 10, 11:

6 Density ρ

7-9 not used

IMATLAW = 1:

10 Shear modulus G

11 Bulk modulus κ

IMATLAW = 2:

10 Shear modulus G

IMATLAW = 4:

10 material parameter c0

11 material parameter c1

IMATLAW = 10, 11:

10-29 see above for matrix material

30 type of constitutive equation for matrix material

31 not used

32 number of fiber layers

33 not used

34 theta (only for ICOEF4 = 11)

35-45 fiber material parameters

IMATLAW = 99:

10-29 user material parameters

Definition of the coefficients for the natural boundary conditions

The coefficients for the boundary conditions may be defined by one of the methods described in
2.2 of the SEPRAN User Manual, where, in general, the method by SEPCOMP is recommended.
The element type in this case is type = 210. For each element group 15 parameters and coefficients
must be given. The first 5 parameters are of integer type which means that they must be defined
by ICOEFi in the input, the last 10 are real coefficients.

These parameters and coefficients are defined as follows:

1 Type of natural boundary condition (ILOAD)

0 Global system

1 Local system



SP Updated Lagrange approach September 2004 5.3.2.5

2 Integer refers to sequence number of solution vector for fully coupled fluid-structure interaction
(IFSI SOLUTION) More info becomes available soon. Please contact the University of
Technology Eindhoven, department of Mechanical Engineering, division MATE.

3 Type of numerical integration

0 Default value depending on element shape

1 Newton-Cotes numerical integration

3 Gauss numerical integration

4 not used

5 not used

6 1-component of stress

7 2-component of stress

8 3-component of stress

9 cx

10 cy

11 cz

Coefficients 12− 15 are not used yet.

Computations of derivatives:

Depending on the parameter ICHELD in subroutine DERIV the following types of derivatives are
computed:

1
∂uj
∂xi

, where xi is defined by the parameter ix, and j by the parameter jdegfd.

2 ∇u

3 - ∇u

4 div u

5 curl u

6 Stress σ (ivec= 11), depending on ix:

ix = 1 default (depends on element)

ix = 2 tau

ix = 3 fiber stress (global)

ix = 4 fiber stress (local)

7 Pressure p (ivec= 1)

8 Strain (ivec= 11)

9 Deformation gradient(ivec= 13), depending on ix:

ix = 1 nodal points

ix = 2 integration points

10 Local direction (ivec=3)
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Definition of type numbers:

The type numbers, which are given in the standard input file in the PROBLEM block (input for
SEPCOMP or subroutine SEPSTR) define the type of differential equation to be solved. The fol-
lowing type numbers are available:

200 General type number for the internal elements. Defines the differential equation. This type is
available for the following element shape numbers (See the Users Manual, Section 2.2, table
2.2.1):

shape = 7 extended quadratic triangle

shape = 9 quadratic quadrilateral

shape = 14 quadratic hexahedron

shape = 16 extended quadratic tetrahedron

In the case of element type 200 no divergence part is build.

201 Discontinuous pressure element (Crouzeix-Raviart). Available shapes: See type 200.

202 Continuous pressure element (Taylor-Hood). Available shapes: See type 200 and also shape
= 6 (quadratic triangle).

210 General type number for boundary elements. The boundary elements are (curved) line ele-
ments in 2D and (curved) surface elements in 3D. This type is available for the following
element shape numbers (See the Users Manual, Section 2.2, table 2.2.1):

shape = 2 quadratic line element

shape = 6, 7 (extended) quadratic triangle

shape = 9 quadratic quadrilateral

Additional topics

As mentioned before SEPRAN offers several types of material behaviour. The material dependent
part is specified through the material stress tensor σ and the material stiffness matrix DT

¯
. In the

Theoretical Manual this topic is elaborated. Both are computed in the subroutines el83xx.f in
which xx denotes a specific material law, e.g. el8302 is used for an incompressible Neo-Hookean
material behaviour. A more general subroutine is el8309 (See also Section 5.3.2 in the Theoretical
Manual. This subroutine can easily be used for material laws obtained from Strain Energy Density
functions W .
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5.4 (Thick) plate elements

In this section plate elements are described. Plates require a special approach. The method we
use can be found in many text books like Bathe (1982), Zienkiewicz and Taylor (1989), Volume 2,
Mohr (1992) and Hughes (1987).

Equation

Starting point of the equations are the 3D linear elasticity equations as given in Section 5.1. Fol-
lowing the Reissner-Mindlin theory we make the following assumptions:

1. The domain Ω ∈ R3 can be written as:
z ∈ [−t/2, t/2]; (x, y) ∈ A ⊂ R2,
with t the thickness of the plate and A its area with boundary S.

2. σ33 = 0

3. u1(x, y, z) = zΘ2(x, y), u2(x, y, z) = −zΘ1(x, y)

4. u3(x, y, z) = w(x, y)

w is the transverse displacement and Θα is the rotation vector. It may be interpreted as the rotation
of a fiber initially normal to the plate mid surface (z = 0).
The direction of the rotation vector is as follows: θ1 is in the direction of the x-axis and θ2 in the
direction of the y-axis as sketched in Figure 5.4.1.
So we have three unknowns w,Θ1 and Θ2. The orientation of the axis is given in Figure 5.4.1.

x

y

z w

θ

θ1

2

Figure 5.4.1: Orientation of rotation vectors

Constitutive Equation

The constitutive equation can be derived from the linear elasticity using our previous assumptions.
In the isotropic case this leads to

σij = λδijεkk + 2µεij , (5.4.1)

where λ and µ are the Lamé coefficients and δij is the Kronecker delta.
Assumption 2 implies

ε33 =
−λ

λ+ 2µ
εαα, (5.4.2)

σαβ = λ̄δαβεγγ + 2µεαβ , (5.4.3)

σα3 = 2µεα3, (5.4.4)

where

λ̄ =
2λµ

λ+ 2µ
. (5.4.5)
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λ̄ and µ may be expressed in Young’s modulus E and Poisson’s ratio ν:

λ̄ =
νE

1− ν2
, (5.4.6)

µ̄ =
E

2(1 + ν)
. (5.4.7)

Strain-displacement relations

From assumptions 3 and 4 we get the following strain-displacement relations:

ε1β = u(1,β) = zθ(2,β), (5.4.8)

ε2β = u(2,β) = −zθ(1,β), (5.4.9)

εα3 = u(α,3) =
−θα + w,α

2
. (5.4.10)

With u(i,j) we mean
ui,j+uj,i

2 and with ui,j :
∂ui
∂xj

.

Implementation

The stiffness matrix can we written as k = kb + ks, with

kb =

∫
A

BbTDbBbdA (bending stiffness), (5.4.11)

ks =

∫
A

BsTDsBsdA (shear stiffness), (5.4.12)

where the submatrices Bb and Bs are given by:

Bb =

 0 ∂
∂x 0

0 0 ∂
∂y

0 ∂
∂y

∂
∂x

 (5.4.13)

and

Bb =

[ ∂
∂x −1 0
∂
∂y 0 −1

]
, (5.4.14)

multiplied by the shape (basis) functions..
The matrices Db and Ds follow from integration over z of the classical stiffness matrix and the σα3

term respectively.

Elasticity matrices Db and Ds

The constitutive equations depend on the type material properties. These properties are translated
into the elasticity matrices Db and Ds. For this element the following type of elasticity matrices is
available.

Isotropic material:

Db =
Et3

12(1− ν2)

 1 ν 0
ν 1 0

0 0 (1−ν)
2

 (5.4.15)
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Ds =
Etk

2(1 + ν)

[
1 0
0 1

]
(5.4.16)

where E denotes Young’s modulus and ν Poisson’s ratio.
k is a constant to account for the actual non-uniformity of the shearing stress. Following the
standard literature we take k = 5/6.
At this moment only a distributed loading is allowed as force vector.

Boundary conditions

At this moment only Dirichlet boundary conditions, i.e. transverse displacement or rotations given.
If at a boundary a component is not prescribed this implies that a natural boundary condition is
available.
The following alternatives per point are available:

• Either the transverse displacement given or the boundary shear force Q = 0 .

• Either the αth component of the rotation vector given or boundary moment Mα = 0.

The following types of boundary conditions are common for practical physical situations:

Clamped w = 0,Θs = 0,Θs = 0

Free Q = 0,Ms = 0,Mn = 0

Simply supported either w = 0,Ms = 0,Mn = 0 or w = 0,Θn = 0,Mn = 0.
According to Hughes the latter corresponds to thin plate theory but the first one is preferred
as curved boundaries are used.

Symmetric Q = 0,Ms = 0,Θs = 0

Input for the various subroutines

• Definition of the storage scheme:

The first thing to be chosen is the type of storage scheme for the matrices. This storage scheme
is defined by the keyword METHOD = i in the input of program SEPCOMP or subroutine
SEPSTR or alternatively by the parameter JMETOD in subroutine COMMAT.

The stiffness matrix is positive definite, which means that METHOD = 1 or 5 may be chosen.

• Definition of the coefficients for the differential equation:

The coefficients for the differential equation may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP of FILCOF is recommended.
For each element group 45 parameters and coefficients must be given. The first 5 parameters
are of integer type which means that they must be defined by ICOEFi in the input, the last
40 are real coefficients.

These parameters and coefficients are defined as follows:

1 not yet used

2 type of stress-strain relations

3 type of numerical integration
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4 not yet used

5 not yet used

6-26 information about the elasticity matrix depending on the type of stress-strain relations

27 thickness of the plate: h

28 (distributed load in z-direction)

29-30 not yet used

31-36 not yet used

37-42 not yet used

43 not yet used

44 In case the distributed load depends on the displacement, the linear part of this expression
(∂F∂w ), may be subtracted from the right-hand side and added to the matrix. Here F
denotes the load and w the displacement.

45 not yet used

The parameters that are not used must be set equal to zero, since this is the default value in
case of future extensions.

With respect to these parameters the following choices are available:

2 Type of stress-strain relations (IGPROB)
Possible values:

0 isotropic material (Cartesian)

3 Type of numerical integration
Possible values:

0 default value defined by element

6-26 Information about the elasticity matrix
The following values are needed depending on IGPROB:

IGPROB = 0:
coefficient:

6 E

7 ν

• Definition of the coefficients for the boundary conditions:

At this moment no coefficients for the boundary conditions are required.

• Parameters with respect to the linear solver:

The stiffness matrix is not only symmetric but also positive definite.

• Computation of derivatives:

Depending on the parameter ICHELD in subroutine DERIV the following types of derivatives
are computed:

1 The derivatives
∂uj
∂xi

, where j refers JDEGFD and i to IX.

In this case we mean by u the vector (w, θ1, θ2)T . IX may take the values 1 and 2.

6 The stress σ, for z = h. This tensor is defined by (σ11, σ22, σ12, σ23, σ31, σ33), using the
formulas: 5.4.1 to 5.4.4.
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7 The strain ε, for z = h. This tensor is defined by (ε11, ε22, ε12, ε23, ε31, ε33), using the
formulas: 5.4.8 to 5.4.10.

The output vector is defined as follows:

1 a vector of the type of the solution vector.

6,7 a vector of special structure with six unknowns per point.

In the cases ICHELD = 6 and 7 the user must define exactly the same coefficients as for the
differential equation, except for the parameter ρ, which is not used.
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Definition of type numbers

The type numbers, which are given in the standard input file in the part between PROBLEM and
END (input for SEPCOMP or subroutine SEPSTR) define the type of differential equation to be
solved.

For the plate problem in this section the following type numbers are available:

255 general type number for the internal elements. Defines the differential equation.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 5 bilinear quadrilateral. This is the special T1 element described by Hughes and
developed to prevent the so-called locking problem.
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6 Solidification problems

Solidification problems are examples of free surface problems, where the interface between the solid
and liquid part of the region is determined by the solution itself.
In order to solve such kind of problems we may distinguish between fixed grid methods and adaptive
mesh methods. In the first approach we have a fixed grid that is used for solid and liquid part. The
interface intersects the grid somewhere, usually not along edges of elements. In case of an adaptive
mesh method the interface is computed explicitly and the mesh is adapted such that the interface
is a (internal) boundary of the mesh.

In this chapter we shall follow both approaches.

Fixed grid methods

6.1 Enthalpy approach.
The enthalpy equation is solved instead of the standard temperature equation, to avoid dis-
continuities at the interface.
At this moment we have to alternatives:
The non-linearity is solved in a non-linear over-relaxation (6.1.1 or
The non-linearity is solved by a quasi Newton approach due to Nedjar et al. (6.1.2.

6.2 The Newton approach of Fachinotti et al.

6.3 The heat capacity method.
An effective heat capacity is computed depending on the enthalpy. This is an alternative for
the enthalpy approach.

Adapted grid methods
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6.1 A fixed grid method: the enthalpy method

Consider a region in which we have a solid part and a liquid part. The solid is melting gradually.
The interface between the solid and liquid is considered to have thickness zero. Physical parameters
in the solid part and liquid part may be different.
At the interface we have a latent heat L which describes the extra heat necessary for the melting
of the solid.

Equation

The problem is described by the standard heat equation

ρcp
∂T

∂t
− div (κ∇T ) = Q (6.1.1)

with

T the temperature,

ρ the density,

cp the specific heat and

κ the thermal conductivity

So we are dealing with the same type of equation as in Section 3.1.

Boundary and initial conditions

Exactly the same type of boundary and initial conditions as in Section 3.1 may be applied.

Interface conditions

The interface is a special type of boundary. Besides that not only the position of the interface is
unknown, we need two boundary conditions instead of one. One of the two is the standard boundary
condition, the other one is used to compute the position of the interface.
The following interface conditions are used:

T = Tm melting temperature. (6.1.2a)

ρLvn =

[
κ
∂T

∂n

]
The jump in the flux = ρLvn (6.1.2b)

The first interface condition (6.1.2a) makes the temperature at the interface equal to the melting
temperature.
The second interface condition (6.1.2b) defines the velocity of the interface as function of the
difference of the flux κ∂T∂n at both sides of the interface.

Solution method

In order to solve the temperature equation with interface conditions (6.1.2a), (6.1.2b) we use the
enthalpy H defined by

H(T ) =


T∫
T0

ρcp(T )dT T ≤ Tm
T∫
Tm

ρcp(T )dT + ρL T > Tm

, (6.1.3)

where T0 is some reference temperature.

The heat equation (6.1.1) is now replaced by the enthalpy equation

∂H

∂t
− div (κ∇T ) = Q (6.1.4)
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Note that this equation contains both the enthalpy H and the temperature T . Since T depends on
H in a non-linear way, this is essentially a non-linear time dependent problem. The main advantage
is that we do not have to impose the interface conditions, since they are hidden in the formulation.
To solve this equation internally a Kirchoff transformation is employed, transforming the temper-
ature to a normalized form. The non-linear equations may be solved either by a Newton-method,
or in the case that the coefficients are constant for each phase, by a constrained over-relaxation
method.
At present only the last approach has been implemented.
For more details about the solution method the reader is referred to the Theoretical Manual.

The solution of the enthalpy equation follows the following steps:

t = 0
Give the initial temperature.
Compute the initial enthalpy from the temperature
while end time not reached do
t = t+ ∆t
Solve one step of the enthalpy equation by non-linear iteration.
Compute the temperature from the enthalpy

end while

The non-linear iteration can be carried out in several ways.
In this section we restrict ourselves to a non-linear over-relaxation approach (6.1.1) and a quasi-
Newton approach due to Nedjar et al (6.1.2).
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6.1.1 Enthalpy approach by non-linear over-relaxation

In the non-linear over-relaxation method, the non-linear system of equations is solved by an over-
relaxation method. So the non-linearity is immediately coupled to the solution of the system of
equations. The main advantage of this approach is that the system of equations has to be formed
only once. Solving and linearization are coupled into one big system.
Disadvantage is that at this moment the method can not be coupled to a standard hear equation.
Hence if in one part of the region we have no phase change, whereas in another part we have, the
method can not be applied.
Another disadvantage might be that sometimes the over-relaxation method converges slowly. How-
ever, in a number of applications this method proved to be fast and simple.
Below we describe the input necessary to run this method.

SEPRAN input At this moment only the input in case of constant coefficients per phase is de-
scribed. In that case the constrained over-relaxation process is applied per time step.
The user may use program SEPCOMP to solve the problem. In the input file several blocks must
be filled in a specific way. Each of these blocks is treated separately.

constants
This block is not necessary, but it makes the input much more easy.

Some reals and vector names may be defined in this block, which are recognized by name by
the program. It makes the rest of the input more simple

constants

reals

rho = ...

kappa_s = ...

kappa_l = ...

latent_heat = ...

capacity_s = ...

capacity_l = ...

melt_temp = ...

vector_names

Temperature

Enthalpy

end

Meaning of these variables

rho density ρ
kappa s thermal conductivity κ in the solid phase
kappa l thermal conductivity κ in the liquid phase
latent heat latent heat L
capacity s specific heat cp in the solid phase
capacity l specific heat cp in the liquid phase
melt temp melting temperature Tm

Temperature name of temperature vector
Enthalpy name of enthalpy vector

problem
In this block the user must define the usual input with respect to the temperature equation.
Hence, for example, type number 800 must be used.

matrix
This block defines the structure of the matrix.
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Since over-relaxation is used it is necessary to use storage method 9, i.e. compact storage
defined per row. Hence the block looks like

matrix

method = 9

end

coefficients
The coefficients to be filled have the same meaning as in Section 3.1. However, due to the
internal transformations applied it is required to make both the diffusion coefficients as well
as the parameter ρcp equal to 1. The actual parameters are used in the transformation. So
the input block in R2 looks like:

coefficients

elgrp1(nparm=20)

coef6 = 1 # kappa

coef9 = 1 # kappa

coef17 = 1 # rho*c

end

solve
It is necessary to provide this block, since an over-relaxation method is used. The block must
contain at least the following parts

solve

iteration_method = overrelaxation, omega = 1, max_iter = ....

end

The choice of iteration method is clear, ω must be set to 1 so that in each time step a new
over-relaxation parameter is computed. Otherwise the process may diverge. The maximum
number of iterations must be set to a value, for example 1000.

time integration
This block is necessary for the process. It should look like:

time_integration

method = euler_implicit

tinit = ...

tend = ...

tstep = ...

end

More parameters may be given but the ones shown are necessary. The method has only been
tested in combination with Euler implicit.

enthalpy integration
This block is specific for the enthalpy integration. The input is not described in the Users
Manual since it is restricted to this particular application.
The following input is recognized:

enthalpy_integration [, sequence_number = s]

seq_enthalpy = i (Default 1)

seq_temperature = i (Default 2)

seq_time_integration = i (Default 1)

seq_boundary_conditions = i (Default 1)

kappa_s = k (Default 1)
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kappa_l = k (Default kappa_s)

latent_heat = k (Default 0)

capacity_s = k (Default 1)

capacity_l = k (Default capacity_s)

rho = k (Default 1)

end

Only the first and last line are mandatory, all others are optional.
Meaning of the various lines:

enthalpy integration , sequence number = s
Necessary statements, opens the input for the enthalpy equation.
May be provided with a sequence number in case more input blocks of this type are used.

seq enthalpy = i , defines the sequence number of the enthalpy vector in the set of solution
arrays.
If this line is not given, it is checked if a vector with name enthalpy can be found. If
so, that is the default, otherwise the default is 1.

seq temperature = i , defines the sequence number of the temperature vector in the set of
solution arrays.
If this line is not given, it is checked if a vector with name temperature can be found.
If so, that is the default, otherwise the default is 2.

seq time integration = i defines the sequence number of the block with time integration
input.
Default value: 1

seq boundary conditions = i defines the sequence number of the block with essential
boundary conditions input.
This must contain the essential boundary conditions for the temperature.
Default value: 1

kappa s = k defines the value of κ in the solid phase.
If this line is not given, it is checked if a constant with name kappa_s can be found. If
so, that is the default, otherwise an error message is given.

kappa l = k defines the value of κ in the liquid phase.
If this line is not given, it is checked if a constant with name kappa_l can be found. If
so, that is the default, otherwise an error message is given.

latent heat = k defines the value of the latent heat L.
If this line is not given, it is checked if a constant with name latent_heat can be found.
If so, that is the default, otherwise an error message is given.

capacity s = k defines the value of cp in the solid phase.
If this line is not given, it is checked if a constant with name capacity_s can be found.
If so, that is the default, otherwise an error message is given.

capacity l = k defines the value of cp in the liquid phase.
If this line is not given, it is checked if a constant with name capacity_l can be found.
If so, that is the default, otherwise an error message is given.

rho = k defines the value of the density ρ.
If this line is not given, it is checked if a constant with name rho can be found. If so,
that is the default, otherwise an error message is given.

structure
This block is also necessary. It defines the structure of the main program. It must contain at
least the following lines:

structure

create_vector, vector=%Temperature
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compute_enthalpy

start_time_loop

enthalpy_integration, sequence_number = 1

end_time_loop

end

Explanation:
The first and last line are always required for the structure block.
The second line create_vector is necessary to define the initial conditions for the tempera-
ture. It refers to an input block create.
The third line compute_enthalpy computes the enthalpy from the already computed temper-
ature. It uses the information of the input block enthalpy_integration.
The next line start_time_loop is required to do the time integration. Since in this case we
do a special type of time integration, this is the way to deal with it.
The next line enthalpy_integration defines how the enthalpy integration must be per-
formed. It uses the information of the input block enthalpy_integration. The new tem-
perature and enthalpy are computed.
The next line end_time_loop ends the time loop.

Of course the user may extend this block with extra lines for manipulation, printing, plotting
and output.

For an example of the use of this input, the reader is referred to Section 6.1.1 of the manual
Examples.
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6.1.2 Enthalpy approach by quasi-Newton

An alternative of the over-relaxation method is the quasi-Newton approach of Nedjar et al. This
method allows for coupled heat equation with the phase change problem and is therefore more
flexible. A clear disadvantage is that during each non-linear iteration the matrix must be build and
the system of equations be solved. An advantage is that every linear solver can be used, so also the
most fastest ones.
In practice this method may take a relatively large number of non-linear iterations, so sometimes
it s very expensive.
The SEPRAN input for this case is very similar to that of the over-relaxation method, so we
concentrate only at the differences.

SEPRAN input The constants block for both methods can be the same, so no need to repeat.
The following blocks are different.

problem
In this block the user must define the usual input with respect to the enthalpy equation.
Since we are dealing with a complete new type of equation type number 800 can not be used
anymore, but should be replaced by a new type number: 810.
This type number is only suited for the enthalpy equation. It can be combined with type
numbers 800 in parts of the region without phase change, where only the temperature equation
must be solved.

matrix
This block defines the structure of the matrix.
Since the standard linear solver is used the storage must be adapted to the solver. A com-
mon choice is method = 5, which means that a compact symmetric storage is used. The
corresponding solver is the preconditioned conjugate gradients method.

coefficients
Since we are dealing with a new type number, also the storage of the coefficients is a little bit
different from type 800.
The number of coefficients required is 25.
Coefficients 1 to 5 are again integer.
Coefficients 1 to 4 and 6 to 16 have the same meaning as for type 800. Coefficients 23 to 25
are not yet used and must be zero. (3.1). The following coefficients have a different meaning:

5 iseq temperature (integer), gives the sequence number of the temperature in the set of
solution vectors.
A common choice is icoef5 = %Temperature

17 rho (real), defines the density ρ.
A common choice is coef17 = $rho

18 capacity s (real), defines the heat capacity in solid.
A common choice is coef18 = $capacity_s

19 capacity l (real), defines the heat capacity in fluid.
A common choice is coef19 = $capacity_l

20 latent heat (real), defines the latent heat L.
A common choice is coef20 = $latent_heat

21 melt temp (real), defines the melting temperature Tm.
A common choice is coef21 = $melt_temp

22 iseq enthalpy (integer), gives the sequence number of the enthalpy in the set of solution
vectors.
A common choice is icoef22 = %Enthalpy

A typical example in 1D could be
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coefficients

elgrp1(nparm=25)

icoef3 = 3

icoef5 = %Temperature

coef6 = $kappa

coef17 = $rho

coef18 = $capacity_s

coef19 = $capacity_l

coef20 = $latent_heat

coef21 = $melt_temp

icoef22 = %Enthalpy

end

solve
The input block solve is standard. An example could be

solve

iteration_method = cg

end

time integration
This block is necessary for the process. Compared to the over-relaxation method it must
contain at least the following extra items:

non_linear_iteration

max_iter = ...

abs_iteration_accuracy = ...

All these parameters are used to define the non-linear iteration process per time step.

enthalpy integration
This block is specific for the enthalpy integration.
In this case we need less input than for the over-relaxation method, since the matrix is formed
by type 810.
The following input is commonly used:

seq_time_integration = ...

solution_method = nedjar

seq_coefficients = ...

seq_boundary_conditions = ...

The sequence numbers just refer to input blocks, where sequence number 1 is always the
default.
solution method = Nedjar is necessary for the method to decide that this quasi newton iter-
ation is applied.

structure
The structure block can be the same as for the over-relaxation method and will not be repeated
here.

For an example of the use of this input, the reader is referred to Section 6.1.2 of the manual
Examples.
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6.2 The Newton approach of Fachinotti et al.

Equation

The method of Fachinotti et al. uses the temperature formulation. The diffusion of heat is described
by:

ρcs,l
∂T

∂t
+ ρL

∂fl
∂t
− κs,l∆T = q, (6.2.1)

with T the temperature, ρ the density, c the heat capacity, κ the thermal conductivity and L the
latent heat. The subscript s refers to the solid phase and l to the liquid phase. fi(T ) denotes
the liquid volume fraction, which in case of isothermal phase-change is equal to the heavyside step
function H(T − Tm), with Tm the melting temperature.
The time-derivative of the liquid volume fraction is to be interpreted in the weak sense. Boundary
conditions for Equation (6.2.1), are the same as for the heat equation (3.1.2).
Application of the general Galerkin procedure, in which the temperature field is approximated by

T (x, t) ≈
n∑
i=1

φi(x)Ti(t), (6.2.2)

where φi is a (linear) basis shape function and Ti is the nodal temperature, in combination with an
Euler backward time discretization, yields the following discretized system of (nonlinear) equations
(at time level m+ 1):

Mm+1T
m+1 − Tm

∆t
+
Lm+1 − Lm

∆t
+ Sm+1Tm+1 = qm+1. (6.2.3)

Note that both the mass matrix as well as the stiffness matrix are time-dependent (specific heat c
is included in the mass matrix; thermal conductivity κ is included in the stiffness matrix).

The matrix and vector entries for the above system are given by (boundary conditions have been
omitted):

llMij =
∫
Ω

ρcφiφjdΩ, (6.2.4)

Sij =
∫
Ω

∇φi · (κ∇φj)dΩ, (6.2.5)

Li = ρL
∫
Ω

φifldΩ, (6.2.6)

qi =
∫
Ω

φiqdΩ. (6.2.7)

The distinct feature of the temperature based approach is the use of discontinuous integration in
space. The key idea behind discontinuous integration, as for instance described by Fachinotti et
al., is that for elements intersected by the moving interface, the integrals (6.2.4 - 6.2.7) are not
computed over an element as a whole at once, using for instance an averaged value for the physical
parameters, but are instead computed over the liquid and solid subdomains separately.
For details on the evaluation of the integrals and the solution of the non-linear system, the reader
is referred to the thesis of John Brusche.

Input for the various subroutines

• Definition of the storage scheme:

Except for 1D problems it is advised to use an iterative solver. Hence use

storage_scheme = compact
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• Definition of the coefficients for the differential equation:

The coefficients for the differential equation may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP is recommended.
For each element group 20 parameters and coefficients must be given. The first 5 parameters
are of integer type which means that they must be defined by ICOEFi in the input, the last
15 are real coefficients.

These parameters and coefficients are defined as follows:

1 not yet used

2 not yet used

3 type of numerical integration

4 type of co-ordinate system

5 not yet used

6 κs

7 κl

8 ρ

9 cs

10 cl

11 Q, i.e. source term

12 L (latent heat)

13 Tm (melting temperature)

14-20 not yet used

Parameters that are not yet used must be set equal to zero. They are meant for future
extensions. In the input for SEPCOMP this means that no information about these coefficients
has to be given.
The coefficients 6-20 may be zero, constants or functions as described in Section 10.1. They
may also depend on pre-computed vectors.
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6.3 The heat capacity method

Equation

C∗
∂T

∂t
−∇ · (k · ∇T ) = q (6.3.1)

i.e. C∗ ∂T∂t −
n∑
i=1

n∑
j=1

∂
∂xi

k ∂T∂xi = q

x = (x1, x2, . . . , xn) ∈ Ω ⊂ IRn

where C∗ denotes the ”effective” heat capacity,
k the thermal conductivity,
T the temperature, and
q a source.

The conditions at the freezing front are:
T1 = T2 = Tf (t > 0, x = s(t))

and k1
∂T1

∂n − k2
∂T2

∂n = ρ1L
∂s
∂t x = s(t)

where T1 and k1 correspond to the solid phase, and T2 and k2 to the liquid phase.
L is the latent heat,
Tf the freezing temperature and
s the freezing front position.

The freezing front is accounted for implicitly, and does not have to be specified.

Boundary conditions

The following types of boundary conditions are available:

Type 1: T (x) given on some part of the boundary. This is an essential boundary condition, i.e.
no boundary elements are required for this type.

Type 2: k ∂T∂n + σ(x)T (x) = h(x) (σ(x) ≥ 0)
on some part of the boundary. This is a so-called natural boundary condition. In general
boundary elements are necessary, except in the case that σ(x) = 0 and h(x) = 0, when
there is no need to give any condition on this part of the boundary.

Solution method

The freezing front may be defined by one temperature Tf , or by a freezing interval 2∆Tf defined
by:

Tf1 = Tf −∆Tf ≤ T ≤ Tf + ∆Tf = Tf2

where Tf1 and Tf2 are the solidus and liquidus temperature respectively. The ”effective” heat
capacity C∗ is defined by: C∗ = ∂H

∂T
where the enthalpy H satisfies:

H(T ) =
T∫
T0

ρC1(T )dT T < Tf1
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H(T ) = H(Tf0) +
T∫

Tf1

[ρ∂L(T )
∂T + ρCf (T )]dT Tf1 ≤ T ≤ Tf2

or H(T ) = H(Tf0) + ρL when ∆Tf = 0 and T = Tf

H(T ) = H(Tf1) +
T∫

Tf1

ρC2(T )dT T > Tf2

where ρCf denotes the heat capacity in the freezing interval.
The heat capacity C∗ may be evaluated directly from ∂H

∂T , or in order to prevent overshoot of the
freezing front, an approximation may be used. The following approximations are available:
”Lemmon-approximation”:

C∗ =


(
∂H
∂x1

)2

+
(
∂H
∂x2

)2

+
(
∂H
∂x3

)2

(
∂T
∂x1

)2

+
(
∂T
∂x2

)2

+
(
∂T
∂x3

)2


1
2

”Del Guidice-approximation”:

C∗ =
∂H
∂x1

∂T
∂x1

+ ∂H
∂x2

∂T
∂x2

+ ∂H
∂x3

∂T
∂x3(

∂T
∂x1

)2

+
(
∂T
∂x2

)2

+
(
∂T
∂x3

)2

After space discretization, the heat equation reduces to:

(∗) C∂T
∂t + KT = F

with C the heat capacity matrix, K the heat conduction matrix and F represents the effect of the
right hand side and boundary conditions.

The following algorithms can be used for the solution of (∗):

(i) Θ-method

Cn+Θ Tn+1−Tn

∆tn
+ Kn+Θ(ΘTn+1 + (1−Θ)Tn) = Fn+Θ

with 0.5 ≤ Θ ≤ 1, ∆tn the local time step, and Tn+Θ = ΘTn+1 + (1−Θ)Tn

or: (Cn+Θ + Θ∆tnKn+Θ)Tn+1 = (Cn+Θ − (1−Θ)∆tnKn+Θ)Tn + ∆tnFn+Θ

Cn+Θ is approximated by : C(ΘTn+1,i + (1−Θ)Tn)
with Tn+1,0 = (1 + ∆tn

∆tn−1
)Tn − ∆tn

∆tn−1
Tn−1

Usually only one or two iterations i are necessary.

Kn+Θ is approximated by K(ΘTn+1,i + (1−Θ)Tn)

Remark: The matrix C is lumped, i.e. it is a diagonal matrix.

Practical implementation

(i) initial condition: set t = 0,T0 and T−1.

(ii) Time stepping algorithm to be performed until the end time has been reached:

a. set ∆tn.
Tn+1,0 = (1 + ∆tn

∆tn−1
Tn − ∆tn

∆tn−1
Tn−1 (subroutine MANVEC).

b. Build matrix K and diagonal matrix C with the old solution Tn+Θ,i

(subroutine BUILD).
The diagonal matrix C is stored as a right-hand side vector. The effect of boundary
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conditions may not be taken into account.

Build right hand side vector, Fn+Θ including the effect of boundary conditions (sub-
routine BUILD).

When Θ 6= 1: compute vector Kn+Θ,iTn (subroutine MAVER).

Compute vector Cn+Θ,iTn−(1−Θ)∆tnKn+Θ,iTn+∆tnFn+Θ (subroutine MAVER
+ MANVEC).

Compute the matrix Cn+Θ,i + Θ∆tnKn+Θ,i (subroutine ADDMAT).

Solve the BUILD of equations:
(Cn+Θ,i + Θ∆tnKn+Θ,i)Tn+1,i+1 = (Cn+Θ,i − (1−Θ)∆tnKn+Θ,i)Tn + ∆tnFn+Θ

(Subroutine SOLVE).

c. Repeat step b. until convergence has been achieved:
‖ Tn+1,i+1−Tn+1,i ‖< ε (subroutine DIFFVC or ANORM).

d. Tn+1 = Tn+1,i+1

tn+1 = tn + ∆tn, return to step (ii).

Input for the various subroutines

Subroutine BUILD

(i) Input for the differential equation (matrices C and K).

The user must specify the parameters METHOD, ICOORD as well as the coefficients C∗, k
and q for each standard element. The specification of METHOD and ICOORD must be stored
in array IUSER, the specification of q in IUSER and USER. For the parameters C∗ and k
function subroutines are required. Subroutine FIL100 may be used for the storage in arrays
IUSER and USER. The parameter IPARM in FIL100 must be equal to 3. The sequence of
the parameters in IUSER is:

METHOD, ICOORD, q.

Meaning of the parameters:

METHOD indicates whether the matrices or the right hand side must be built, and the
type of approximation to be used. Possibilities:

1 Only the right hand side f is built. This possibility is only necessary when q 6= 0.

>1 The matrices C and K are built.

2 The ”Lemmon” approximation is used for C. K is evaluated directly.

3 The ”Del Guidice” approximation is used for C. K is evaluated directly.

4 The ”Lemmon” approximation is used for C and K.

5 The ”Del Guidice” approximation is used for C and K.

ICOORD indicates the type of co-ordinates to be used. Possibilities:

1 Cartesian co-ordinates.

2 Axi-symmetric co-ordinates.

q Right hand side function (may be zero).

For the parameters C∗ and k three or four function subroutines are required, depending on
the value of METHOD:
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FNH000 This function subroutine gives the value of enthalpy H as function of the temper-
ature T. Call:

VALUE = FNH000(T),
where T gets a value in the element subroutine and FNH000 gets a value in the function
subroutine.

FNC000 This function subroutine gives the value of the heat capacity ρC as function of the
temperature T. Call:

VALUE = FNC000(T)

FNK000 This function subroutine gives the value of the heat conductivity k as function of
the temperature T. Call:

VALUE = FNK000(T)
When METHOD = 4 or 5 also a function subroutine for the integral of k is needed:

FNK001 This function subroutine gives the value of the integral of the heat conductivity k
as function of the temperature T:

FNK001(T) =
T∫
T0

k(T )dT .

Call:
VALUE = FNK001(T)

The functions FNH000. FNC000, FNK000 and FNK001 must be programmed as follows:

FUNCTION FNx00. ( T )

IMPLICIT NONE

DOUBLE PRECISION FNx00., T, alpha

statements to give alpha a value

FNx00. = alpha

END

In this function subroutine x denotes H, C or K, and . 0 or 1.

(ii) Input for the boundary conditions.

Essential boundary conditions must be filled in the solution vector. This may be done by
subroutine BVALUE (User Manual 5.3).
When boundary elements are necessary (boundary conditions of type 2 with σ(x) 6= 0 or
g(x) 6= 0), the user must specify the coefficients σ(x) and g(x) and store this information in
the arrays IUSER and USER. Subroutine FIL101 may be used for this storage. The sequence
of the parameters in the arrays IUSER and USER is: σ, h.
The parameter IPARM in FIL101 must be equal to 2.

Subroutine COMMAT

The user should set JMETOD = 1 in the call of subroutine COMMAT.

Subroutine SOLVE

IPOS = 1 must be used in the call of subroutine SOLVE.
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Subroutine DERIVA

The parameters ICHOIS and IVEC are computed by the subroutine. Parameter IX defines the
contents of the output vector IOUTVC. See output.
ICHELD and JDEGFD must be equal to 1.

Output of some subroutines

Subroutine SOLVE: T in the nodal points.

Subroutine DERIVA:
When ICHELD = 1: ∂T

∂xIX
in the vertices of the element. Hence when IX = 2: ∂T

∂x2

Available element types and problem definition numbers

6.1.1 Linear triangle in IR2

Differential equation:
element shape number for mesh generation (see 2.2): 3.
Problem definition number: 500

Boundary conditions of type 2:
element shape number for mesh generation (see 2.2): 1.
Boundary problem number : 102
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7 Flow problems

In this chapter some elements for flow problems are described.
In order to use these elements it is necessary that you have the special license to run Navier-Stokes
elements. Inform at your local installation officer whether you have this license.

The following Sections are available:

7.1 is devoted to isothermal laminar incompressible and weakly compressible flow problems.
Examples for this type of flows can be found in the Introduction Section 7.3 (Flow in T-
shaped region using the penalty function method) and in the Users Manual Section 6.3.1
(Flow through a bend). Also in the manual SEPRAN EXAMPLES there are a lot of examples
with these elements.

7.2 deals with temperature-dependent laminar incompressible flow problems.

7.3 treats isothermal turbulent incompressible flow.
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7.1 The isothermal laminar flow of incompressible or slightly compress-
ible liquids

In this section we consider the laminar flow of incompressible liquids described by the Navier-Stokes
equations. These equations consist of three parts:

• The conservation of mass.

• The conservation of momentum.

• The constitutive equation.

In the non-isothermal case these relations must be extended with a temperature equation (see
Section 7.2) and in the turbulent case with extra equations for the turbulence modeling (see Section
7.3). In this section we restrict ourselves to isothermal laminar flow.

7.1.1 Navier-Stokes Equations

The set of Navier-Stokes equations and continuity equation is given by:

The conservation of mass
In case of incompressible flow:

div v = 0 (7.1.1)

or alternatively in case of slightly compressible flow:

div ρv = 0 (7.1.2)

To make things more general it is also allowed to give a right-hand side fdiv instead of zero.

Conservation of momentum (Euler-Cauchy equations):

ρ[
∂v

∂t
+ (v · ∇)v + 2Ω× v] + ∇P − div t = ρf (7.1.3)

The parameters in the Equations (7.1.1) and (7.1.3) have the following meaning:

ρ density of the liquid.

v velocity.

Ω angular velocity Ω = (0, 0, ω) of rotating co-ordinate system with respect to an inertial system x.

f external force field (body force).

t deviatoric stress tensor.

The stress tensor σ consists of two parts: the pressure part and the deviatoric stress tensor
according to:

σ = − P1 + t. (7.1.4)

The generalized or reduced pressure P can be written as

P = p +
1

2
ρ(Ω× x) · (Ω× x), (7.1.5)

where p denotes the hydrostatic pressure. Mark that the quantity P contains the contribution
of all conservative forces.
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In order to model the deviatoric stress tensor t it is necessary to add the constitutive equations.
These equations depend on the type of material used. In SEPRAN a Newtonian model can
be used, but also a number of non-Newtonian models are available. In this section we restrict
ourselves to generalized Newtonian fluids.
The following models are available:

• Newtonian model

• Power-law model

• Carreau model

• Plastico-viscous model

• Three user type models

These models are characterized by their constitutive relations.

Constitutive equations:

The constitutive equations have all the form:

t = η(∇v)(∇v +∇vT )

The choice of η(∇v) defines the model

• Newtonian fluid: η is constant.

• Power-law liquid: η = ηnII
n−1
2

• Carreau liquid: η = ηc(1 + λII)
n−1
2

• Plastico-viscous liquid: η = ηpv(1 + [ s
ηpv

II−
1
2 ]

1
n )n

limII→0
1
2t : t = limII→0 η

2II = s2

• user model 1: η = FNV000(∇v)

• user model 2: η = FNV001(II)

• user model 3: η = FNV002(x1, x2, x3, v1, v2, v3, II)

η denotes the dynamic viscosity (> 0) and s the yield stress. The parameters ηn, ηc, ηpv and
n must be all positive. These parameters including s must be provided by the user.

II denotes the second invariant of the velocity deformation tensor, defined by
II = 1

2A1 : A1; A1 = ∇v +∇vT .

A specially scaled form of the equations

Besides the standard form of the Navier-Stokes equations as treated before it is also allowed to use
the following specially scaled form of these equations.
Mark that this form can only be used for Cartesian coordinates in two dimensions.
The Navier-Stokes equations in the special form read:

Continuity

cdiv1
∂v1

∂x1
+ cdiv2

∂v2

∂x2
(7.1.6)

Momentum

−cvisc1
∂v2

1

∂x2
1

− cvisc2
∂v2

1

∂x2
2

+ cconv1v1
∂v1

∂x1
+ cconv2v2

∂v1

∂x2
+ cgrad

∂p

∂x1
= f1 (7.1.7)

−cvisc3
∂v2

2

∂x2
1

− cvisc4
∂v2

2

∂x2
2

+ cconv3v1
∂v2

∂x1
+ cconv4v2

∂v2

∂x2
+ cgrad

∂p

∂x2
= f2 (7.1.8)
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7.1.2 Boundary Conditions

In the instationary case it is necessary to give an initial condition for the velocity at t = 0.

The following types of boundary conditions are available:

Type 1 Components of the velocity v(x) given on some part of the boundary. This is an essential
boundary condition, i.e. no boundary elements are required for this type.

Type 2 Stress tensor components given on a part of the boundary. This is a so-called natural boundary
condition.
Define σn as the stress component in the normal direction of a surface, and σt as the tangential
component. Define vn as the velocity component in the normal direction of a surface and vt
as the tangential component. In R2 σt and vt are scalar quantities.

Type 3 Mass flux given. This boundary condition is usually applied in combination with periodical
boundary conditions. If the velocities at opposite boundaries are periodical and the pressure
is periodical but with a pressure difference between the two sides, then we need an extra
condition to prescribe the difference. A possibility is to give the mass flux. This parameter
implicitly prescribes the pressure difference.

Type 4 (discontinuous boundary condition) This is the same type of boundary condition as used in
the membrane in Section (3.1). Suppose the region is subdivided in an upper region (u) and
a lower region (l) separated by a membrane. Assume furthermore that the solution jumps
over this membrane and hence is discontinuous. Furthermore we assume that equation (7.1.3)
holds for both the upper part and the lower part and that the coefficients are the same at the
membrane.
At the membrane we assume the following boundary conditions:

σn = Tn − Cn(vuppern − vlowern ) (7.1.1)

σt = Tt − Ct(vuppert − vlowert ) (7.1.2)

So there is no combination of tangential and normal components. vupper means the value at
the upper region and vlower the value at the lower region. This boundary condition implies
that the values at both sides of the membrane are different. In order to use this boundary
condition connection elements as described in the Users Manual Section 2.2 are necessary.
These connection elements must connect linear or quadratic line elements in R2 or surface
elements in R3.
So for example in case of quadratic elements in R2 one has to use quadratic line elements as
connection elements, like

celmj = curves 2 ( ck, cl )

The parameter 2 indicates that it concerns quadratic elements
So contrary to other boundary conditions it is not longer possible to use so-called boundary
elements, but these elements must be used in the same way as internal elements.
If boundary conditions of this type are applied the resulting matrices are non-symmetrical,
which implies that a non-symmetrical storage must be used.
It is not necessary to have both boundary conditions (7.1.1) and (7.1.2). If only one of the
two is used, the coefficients of the other one must be made equal to zero. Of course in that
case for that component another boundary condition is required.
For an example of the use of the boundary condition see the manual SEPRAN EXAMPLES
Section 7.1.15.1.

The following combinations are permitted:

1. cnvn + σn and ctvt + σt given; σn = n · σ · n , σt = σ · n − σnn
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2. cnvn + σn given and vt given.

3. ctvt + σt given and vn given.

4. periodical boundary conditions and mass flux given.

5. combination with the membrane boundary conditions

n denotes the outward normal on the boundary and t the tangential vector. In case (2) σt = 0
and in case (3) σn = 0 may be used, since these values are not utilized. The boundary conditions
vt given and vn given are essential boundary conditions. When these boundary conditions are used
with n and t not in the direction of the co-ordinate axis, local transformations are necessary (see
the Users Manual, Section 1.2.4).
When σn 6= 0 and/or σt 6= 0, boundary elements for this type are necessary, when σn = 0 (or
non-prescribed) and σt = 0 (or non-prescribed) no boundary elements have to be used.

Remark When at no part of the boundary the normal stress is given (in other words if everywhere
at the boundary the normal velocity component is prescribed), the pressure P is fixed up to an
additive constant. If the penalty function formulation is used this has no consequences, however,
if the integrated method in combination with a direct linear solver is used, this means that the
pressure must be prescribed in some point.

The following combinations of boundary conditions are frequently used:

1. no-slip condition: v = 0

2. free-slip condition: vn = 0 and σt = 0.

3. symmetry condition: vn = 0 and σt = 0.

4. instream/outstream condition: σn given and σt given.
At fully developed flow: σn = − P, vt = 0.

5. Periodical boundary conditions with mass flux given. For examples see the manual SEPRAN
EXAMPLES Sections 7.1.9, 7.1.10 and 7.1.11.

Mark that the normal component of the stress σn is equal to −P+η ∂un∂n . As a consequence prescrib-
ing the normal stress is usually identical to prescribing the pressure, since in practice frequently
either η is small or ∂un

∂n is small at those places where the normal stress is prescribed. In this
definition n is the outward normal.

In order to prescribe a surface tension one has to prescribe the normal stress by σn = γ( 1
R1

+ 1
R2

),
with R1 and R2 the radii of curvature on the surface. In a 2D Cartesian case we have R2 =∞ and
hence only R1 is used.

7.1.3 Solution methods for the stationary Navier-Stokes equations

The finite element equations for the incompressible fluid can be written as:

M
∂u

∂t
+ S(u)u + N(u)u − LTp = F (momentum equations). (7.1.1)

Lu = 0 (continuity equation). (7.1.2)

where u denotes the discretized velocity.
M denotes the mass matrix.
S denotes the stress matrix; for a generalized Newtonian fluid S depends on u.
N(u)u is the discretization of the convective terms.
−LTp represents the ∇P term.
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For the solution of the Navier-Stokes equations the following items are distinguished:

• incompressibility condition.

• non-linearity (due to convective terms and stress tensor in the case of non-Newtonian fluids)

• time dependence. See subsection (7.1.10)

Continuity equation

The equations (7.1.1) and (7.1.2) may in the stationary case be written in compact form as:[
S LT

L 0

]
=

[
f
0

]
(7.1.3)

In this case S stands for the combination of viscous terms and convective terms. It is clear
that the main diagonal contains a so-called zero-block at the main diagonal due to the absence
of the pressure in the continuity equation. This zero-block may give rise to extra complications
and for that reason several solution techniques have been developed. We distinguish between
the following three methods:

Integrated method or coupled approach Both the velocity and the pressure are used as
degrees of freedom. In this case it is possible that, without precautions, the matrix to be
inverted gets zero pivots during the elimination process. This is caused by the fact that
the pressure is not present in the continuity equation. Since the continuity equation is
the equation that is coupled to the pressure unknowns, this means that a zero diagonal
element occurs. If no renumbering is performed, the first pivot during the elimination
process may be zero and the LU-decomposition subroutines fail.

The method to overcome this problem is to renumber the unknowns in such a way that
first the velocities and then the pressure unknowns are used. However, this type of
numbering may result in a very large matrix and is for that reason inefficient.
The alternative is to renumber the unknowns per level as described in the Users Manual,
Section 3.2.2, in the input block ”PROBLEM”. This numbering has been developed
especially for Stokes and Navier-Stokes type problems and is at present the most efficient
one to be used in case of an integrated method.

If an iterative solver is used to solve the resulting systems of linear equations, both the
complete renumbering of unknowns and the renumbering per level may be applied, since
in that case the size of the matrix is independent of the ordering. However, a number
of experiments indicate that renumbering per level might result in a faster convergence.
Since only a limited number of experiments have been carried out, it is too early to state
that renumbering per level is superior to complete renumbering and the user is advised
to experiment himself in this matter.
The only case where there renumbering of the unknowns does not improve convergence
is in the case of Taylor-Hood elements with linear pressure and velocity approximation.
In this particular case renumbering makes the convergence slower.

The system of linear equations, resulting from the integrated approach, may be solved
by a direct or an iterative method. However, there is also the option to use a special
block iterative methods, like the simple method the augmented Lagrangian method or
the LSC method. SIMPLE is variant, of the simple method, used in finite differences or
finite volumes. An example of how to use these block methods is described the manual
SEPRAN EXAMPLES Section 7.1.20.

Examples of the integrated method may for example be found in the manual SEPRAN
EXAMPLES Sections 7.1.1, 7.1.3, 7.1.4 and 7.1.8.
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Penalty function method or decoupled approach In order to decouple pressure and ve-
locity, thus reducing the system of equations to be solved, the penalty function method
may be applied. This method has as extra advantage that there is no problem with zero
pivots. The method can be described as follows:
The mass balance equation is perturbed:

εP + div v = 0 (7.1.4)

The small number ε must be chosen such that εP = O(10−6). P is eliminated from the
momentum balance equations. Hence the velocity v is considered as degree of freedom
and P is computed as a derived quantity. For further details and a convergence proof
of the method, see Girault and Raviart (1979). The reduced pressure P may contain all
the conservative external force fields. When the body force f can be written as f = ∇φ
then P may be defined as P = p − 1

2ρ(Ω× x) · (Ω× x) − ρφ.
This has consequences for the boundary conditions: for fully developed flow σn = −P .

When at no part of the boundary the normal stress is given, the pressure is fixed up to
an additive constant. The penalty method sets this constant such that

∫
Ω

PdΩ = 0.

In discretized form the penalty function method reads:

M
∂u

∂t
+ S(u)u + N(u)u +

1

ε
LTM−1

p Lu = F, (7.1.5)

and the pressure is computed from:

εMpp = − Lu. (7.1.6)

The matrix Mp is termed the pressure mass matrix.

A clear advantage of the penalty function method is the reduction of the size of the
matrix. For standard two-dimensional problems this means usually a large reduction in
computing time.
Disadvantages of the penalty function method are:

• The parameter ε must be chosen. For standard problems this is no problem, however,
if the pressure becomes large as in very viscous fluids (usually of non-Newtonian
type), it may be too difficult to choose a suitable value of ε.

• Due to the small parameter ε, which appears as 1
ε in the matrix, the condition of

the system of equations to be solved will be large. As a consequence loss of figures
may be possible. More severe is that iterative solution techniques do not longer
converge ones the penalty function method is applied. For large two-dimensional
and moderate three-dimensional problems this means that the computation time
will become very large. In that case the integrated method is recommended.

Examples of the penalty function method may be found in the manual SEPRAN EX-
AMPLES Sections 7.1.1, 7.1.2 and 7.1.8.

Method of divergence-free basis functions This method is not yet available.

Non-linearity

The non-linear terms (convective terms, generalized Newtonian model) must be linearized in
order to solve the equations.
For the convective terms two techniques are available:

• Picard linearization (successive substitution): (v · ∇v)n+1 ≈ vn · ∇vn+1

• Newton iteration: (v · ∇v)n+1 ≈ vn · ∇vn+1 + vn+1 · ∇vn − vn · ∇vn

• ”incorrect” Picard linearization: (v · ∇v)n+1 ≈ vn+1 · ∇vn.
This method is called ”incorrect” since it usually does not converge.
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For time-dependent problems a linearization per time step is sufficient. For a stationary
problem iteration is necessary.

The iterative procedure is as follows:

• Start with an approximation u0.
Good starting values are for example:

a The vector u0 = 0 in the inner region and u0 is equal to the boundary conditions
for the boundary.

b The solution of the Stokes equations (convective terms neglected).

c The solution of the Navier-Stokes equations for a smaller Reynolds number (larger
value of the viscosity).

• Compute the solution of the non-linear system of equations. To that end the input block
”NONLINEAR EQUATIONS” must be utilized.

Remarks

For moderate values of the Reynolds number Re Newton’s method can be used. Usually 3 to
5 iterations are sufficient for the convergence of the convective terms. The rate of convergence
of the generalized Newtonian model decreases for decreasing values of n (0 < n < 1).
For larger values of Re it is recommended to use one Picard iteration before Newton’s method
is applied. When too many iterations are necessary, use a smaller Reynolds number to find a
good initial estimate.

The linearization of the stress for the generalized Newtonian liquid requires special attention.
For the plastico-viscous model, Picard linearization (successive substitution) is used. This
linearization method is also applied to the power-law and Carreau model when 0 < n < 1.
The convergence of this type of iteration can be accelerated with the help of a relaxation
factor 1 + α(1 − n) with α ≈ 0.4 − 0.6 (see the description of the input block ”NONLIN-
EAR EQUATIONS” in the Users Manual, with ω replaced by α). For n > 1, however, the
power-law and Carreau model require the linearization by means of Newton’s method. Re-
laxation is not required. SEPRAN itself automatically selects the correct method. One is
strongly advised to perform the first iteration with help of the Newtonian model in order to
obtain a reasonable initial estimate.

Types of elements

In general two classes of elements are distinguished:

• Elements of Taylor-Hood type with continuous pressure.
These pressure is always defined in vertices and as a consequence, it is not possible to
use the penalty function method. Hence one can only apply the integrated method.

• Elements of Crouzeix-Raviart type with discontinuous pressure.
The pressure and possibly its gradient is defined in the centroid of the elements. For
post-processing purposes it is always necessary to average the pressure to vertices.
In this case both the integrated method and the penalty function method may be applied.

Treatment of the boundary condition: mass flux given

The combination of periodical boundary conditions with given mass flux and hence unknown
pressure difference is a very special one. There are two implementations available:

• The implementation as one treated in Segal et al (1994) by a penalty function approach.

• The implementation using global unknowns. This approach is treated in Segal et al
(1994) for the finite volume method.
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The mass flux is given by ∫
Γ

u · ndΓ , (7.1.7)

where Γ denotes the inflow boundary. Hence the Navier-Stokes equations are solved with the
given mass flux as constraint. Corresponding to this constraint we have an unknown pressure
jump between the inflow and outflow boundary.

• The penalty function method and can only be used in combination with a direct linear
solver.
For that method it is necessary to define a line element along the complete inflow bound-
ary. This must already been done in the input for program SEPMESH. Along this line
element a special boundary element is defined that prescribes the mass flux.

• If the option with global unknowns is used, there is no need to define a line element
along the inflow boundary. It is sufficient to define a global unknown (the pressure
jump) along the inflow or outflow boundary. Since no penalty parameter is used, it is no
longer necessary to use a direct solution method.
Also in this case a special boundary element is used, but this element is different from
that in the penalty function approach.

At the opposite sides it is necessary to use periodical boundary conditions hence in the input
of SEPMESH also connection elements must be defined. The pressure, however, contains a
pressure difference over the inflow and outflow boundary and this means that we have to be
sure that the pressure is not periodical. This may be achieved by excluding the connection
elements when computing the pressure in the DERIVATIVES input block. This is only
possible in combination with Crouzeix-Raviart elements.
For examples see the manual SEPRAN EXAMPLES Sections 7.1.9, 7.1.10 and 7.1.11.

Treatment of the boundary condition: pressure given

The boundary condition pressure given is never applied directly to the unknowns but always
implicitly through the normal stress. This is even the case if Taylor-Hood elements are
applied. In that case we have pressure unknowns at the boundary and one might assume
that prescribing these pressures has the same effect as giving the normal stress. However,
experiments with a simple channel flow, driven by a pressure difference, show that prescribing
the pressures lead to completely wrong answers, whereas giving the normal stress produces a
good approximation.

Treatment of the boundary condition: surface tension given

A given surface tension is treated as an extra force on the surface where this surface tension
is given. As described in the theoretical manual this surface tension involves the radius of
curvature, which in a finite element context is replaced by a derivative of the tangential
vector along the surface. This is achieved by application of the Gauss divergence theorem for
surfaces. As a consequence, at the begin and end point of a free surface curve in R2 we get
two ”boundary” terms. If in an end point the normal velocity is prescribed this term vanishes,
however, if the normal velocity is free in an end point we have to prescribe this boundary
term. Actually this term appears to be equal to the surface tension coefficient γ times the
tangential vector of the boundary. So implicitly this defines the so-called contact angle.
In other words, if at a boundary a surface tension is given and if in an end point not the
normal velocity is prescribed, it is necessary to prescribe the tangential vector. For example
in the case of a jet where you want a horizontal outflow, you must prescribe the tangential
vector even though we can not speak about a contact angle in this case. Of course this is not
necessary of the curve with the surface tension is closed.
An example of the use of surface tension in combination with a free surface is treated in
Sections (7.6) and the manual SEPRAN EXAMPLES Section 7.6.1.



SP Incompressible laminar flow October 2007 7.1.9

7.1.4 Coefficients for the differential equation

The following coefficients may be filled for the Navier-Stokes equations

MODEL = name (icoef2) Type of viscosity model
name is a string parameter with the following possible values:

NEWTONIAN (1) Newtonian liquid. In this case η is the dynamic viscosity.
This is the Default value.

POWER LAW (2) Power-law liquid. In this case η is the parameter ηn and n the parameter
n in the power of the model.

CARREAU (3) Carreau liquid. In this case η is the parameter ηc and n the parameter n
in the power of the model. λ is the parameter λ the viscosity model.

PLASTICO VISCOUS (4) Plastico-viscous liquid. In this case η is the parameter ηpv and
n the parameter n in the power of the model. λ is the parameter s the viscosity model.

INTEGRATION RULE = i (icoef3) defines the type of integration rule

COORDINATE SYSTEM = name (icoef4) Type of co-ordinate system.
name is a string parameter with the following possible values:

CARTESIAN (0) Cartesian co-ordinates (x, y, z) (Default)

AXI SYMMETRIC (1) Axisymmetric co-ordinates (2D grids only) (r, z)

POLAR (2) Polar co-ordinates (1D grids only) (r)

LINEARIZATION = name (icoef5) Type of linearization of the convective terms.
name is a string parameter with the following possible values:

NONE (0) Stokes flow, the convective terms (v · v) are neglected. (Default)

PICARD (1) Linearization by Picard’s method.

NEWTON (2) Linearization by Newton’s method.

INCORRECT PICARD (3) Linearization by the ”incorrect” Picard method.

PENALTY (coef6) Parameter ε for the penalty function method.
If this parameter is given in a Taylor-Hood element it is neglected.
If this parameter is given in Crouzeix-Raviart element in combination with the integrated
method it is used as a kind of artificial compressibility parameter. It might improve the
performance in case an iterative solver is used for the system of linear equations.
Mark that this parameter is in fact the inverse of a penalty parameter and hence must have
a small value.

DENSITY (coef7) Density ρ.

ANGULAR VELOCITY (coef8) Angular velocity ω.

FORCE (coef9/10/11) Force vector.

X FORCE (coef9) First component of body force f1.

Y FORCE (coef10) Second component of body force f2.

Z FORCE (coef11) Third component of body force f3.

VISCOSITY (coef12) Viscosity parameter η.

POWER N (coef13) Viscosity model parameter n.

LAMBDA (coef14) Viscosity model parameter λ.
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7.1.5 Coefficients for the natural boundary conditions

The coefficients for the natural boundary conditions of type 2 may be defined by one of the methods
described in 2.2, where, in general, the method by SEPCOMP is recommended.
For each element group 15 coefficients must be given, 5 integer coefficients (1 to 5) and 10 real
coefficients.

These coefficients are defined as follows:

1 ILOAD: type of boundary condition
Possible values for ILOAD:

0 Prescribed stresses in the direction of the co-ordinate axis or in case of local transforma-
tions in the direction of the transformed co-ordinates.

1 Prescribed stresses in normal and tangential direction. At this moment this possibility
has only been implemented for R2

2 Surface tension given. At this moment this possibility has only been implemented in R2

3 Friction option.
The boundary condition is in this case ctvt + σt = f · t, with t the tangential vector.
Usually this is a friction boundary condition with ct the friction parameter and f the
velocity of the surface along which the fluid flows.
In fact this is a special case ILOAD=0, however, there are some special issues connected
to this option:

• This boundary condition may only be used in R3.

• This boundary condition may only be applied on a surface where a local trans-
formation is defined. The first direction of the local transformation must be the
normal direction, the other two directions must be tangential directions. How these
tangential directions are defined is of no importance.

• The vector f must be given in Cartesian coordinates. By the inner product with
the tangential vector (extracted from the local transform) it is transformed in the
correct direction.

• The parameter ct must be given as coefficient 9, the Cartesian components of the
vector f in coefficients 6 to 8.

2 not yet used

3 Type of numerical integration.

0: the rule is chosen by the element itself (Default)

> 0: the integration rule is defined by the user.

4 Type of co-ordinate system.
Possible values:

0 Cartesian co-ordinates

1 Axi-symmetric co-ordinates

2 Polar co-ordinates

5 not yet used The rest of the coefficients depend on the parameter ILOAD.

If ILOAD=0:

6 Tx (1-component in local co-ordinate system). If the 1-direction is the normal direction, this
is the parameter σn

7 Ty (2-component in local co-ordinate system). If the 2-direction is the first tangential direction,
this is the first component of σt.
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8 Tz (3-component in local co-ordinate system). If the 3-direction is the second tangential
direction, this is the second component of σt.

9 cx (1-component of multiplication factor in local co-ordinate system).

10 cy (2-component of multiplication factor in local co-ordinate system).

11 cz (3-component of multiplication factor in local co-ordinate system).

12-15 not yet used

If ILOAD=1:

6 Tn, i.e. the normal component of the stress. The normal direction is defined clockwise with
respect to the tangential direction. The tangential direction is defined by the direction of the
curve from which the boundary elements are constructed.

7 Tt, i.e. the tangential component of the stress.

8-15 not yet used

If ILOAD=2:

6 γ, i.e. the coefficient for surface tension.
On the boundary where you prescribe the surface tension, it is not allowed to give local
transformations.
If you want the combination local transformation with surface tension, please contact SEPRA.

7 is only used in case of a point element which is necessary to define the contact angle. It must
then contain the t1 component of the tangential vector in the point. Together with coefficient
8, this defines the tangential vector and hence the contact angle.

8 is only used in case of a point element which is necessary to define the contact angle. It must
then contain the t2 component of the tangential vector in the point.

9-15 not yet used

If ILOAD=3:

6 fx, i.e. the x-component of the vector f .

7 fy, i.e. the y-component of the vector f .

8 fz, i.e. the z-component of the vector f .

9 ct, i.e. the friction coefficient.

10-15 not yet used

In the two-dimensional case σt must be defined in the direction of the curve and σn in direction of
the outward normal.
For axi-symmetric problems with swirl either the component of σt perpendicular to the (r,z)-plane
is supposed to be zero, or vφ must be prescribed.
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Definition of the coefficients for given mass flux:

The boundary condition of type 3 requires 10 coefficients, 5 integer ones (1 to 5) and 5 real ones
(6-10). These coefficients are defined as follows:

icoef 1 Not yet used, must be zero.

icoef 2 Not yet used, must be zero.

icoef 3 Type of integration of the mass flux integral.
This parameter is only used if the penalty mass flux method with the large line element is
applied.
Possible values:

1 Linear integration, i.e. Trapezoid rule. This must be used in combination with linear
internal elements.

2 Quadratic integration, i.e. Simpsons rule. This must be used in combination with quadratic
internal elements.

icoef 4 Type of coordinate system.
Possible values:

0 Cartesian coordinates.

1 Axi-symmetric coordinates.

icoef 5 Sequence number of degree of freedom that corresponds to the normal component. Possible
values:

1 The normal component is the first component. This is usually the u-component, but it may
also be the result of a local transformation.

2 The normal component is the second component. This is usually the v-component.

3 The normal component is the third component. This is usually the w-component.

coef 6 Amount of mass through the boundary, i.e.
∫
Γ

u · ndΓ

coef 7 Penalty parameter.
This parameter is only used if the penalty mass flux method with the large line element is
applied.
This parameter is necessary to force the constraint. Usually a value of 106 suffices.
Mark that this is a real penalty parameter, which means that it must have a large value.
The penalty parameter in the continuity equation, however, is in fact the inverse of a penalty
parameter and therefore must have a small value.

coef 8 Not yet used, must be zero.

coef 9 Not yet used, must be zero.

coef 10 Not yet used, must be zero.

7.1.6 Type numbers to be used in the problem input block

The following type numbers indicate that the (Navier-) Stokes equations must be solved.

NAVSTOKES PENALTY (900) Navier-Stokes equations using Crouzeix Raviart elements with
discontinuous pressure. The penalty function method is applied hence velocity and pressure
are segregated.
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NAVSTOKES REDUCED (901) Navier-Stokes equations using Crouzeix Raviart elements with
discontinuous pressure. Coupled approach. The gradient of the pressure and the velocity in
the center are eliminated.

NAVSTOKES CR (902) Navier-Stokes equations using Crouzeix Raviart elements with discon-
tinuous pressure. Coupled approach.

NAVSTOKES TH (903) Navier-Stokes equations using Taylor-Hood elements with continuous
pressure. Coupled approach.

The natural boundary conditions do not have to be indicated by a type number, but internally type
901 is used.

7.1.7 Derivatives

Depending on the parameter ICHELD in the input block ”DERIVATIVES” the following types of
derivatives are computed:

1 The derivative ∂vJDEGFD
∂xIX

, with JDEGFD and IX parameters in the input block ”DERIVA-
TIVES”.

2 ∇v is computed in the nodes of the elements.

3 −∇v is computed in the nodes of the elements.

4 div v is computed in the nodes of the elements.

5 curl v is computed in the nodes of the elements.

6 t is computed in the nodes of the elements.

7 The pressure is computed in the nodes of the elements.
This value may only be applied in case of Crouzeix-Raviart type elements. Taylor-Hood
elements contain the pressure as unknown in the equations.

8 The rate of elongation ε̇ is computed in the nodes of the elements.
ε̇ is the rate of strain in the direction of the velocity: ε̇ = 1

2v ·A1 · v
‖v‖

9 The shear rate γ̇ is computed in the nodes of the elements, according to the definition:
γ̇ = n1 ·A1n2, n1 · n2 = 0, ‖n1‖ = ‖n2‖ = 1

For problems with two velocity components: ‖n1‖ = v
‖v‖ , ‖n2‖ = (−v2,v1)

‖v‖
For problems with three velocity components:
γ̇12 = e1 ·A1 · e2, γ̇13 = e1 ·A1 · e3, γ̇23 = e2 ·A1 · e3

10 II
1
2 is computed in the nodes of the elements.

11 The viscous dissipation 1
2t : A1 is computed in the nodes of the elements.

12-20 All quantities are computed per element (vector of type 116).

12-16 See 2-6.

17 See 11.

18-19 See 8-9.

20 The pressure in the centroid is stored in a vector of special structure defined per element.
(vector of type 116).

21-31 See 1-11, however, now defined in the vertices instead of the nodal points.
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32-42 See 1-11, however, all quantities computed per element per node. (vector of type 126)

43-53 See 1-11, however, all quantities computed per element per integration point. (vector of type
129)

The stress t is defined in exactly the same way as in Section (5.1). Hence this tensor has always 6
components independent of the dimension of the space.
In Cartesian co-ordinates these components are t = [txx, tyy, tzz, txy, tyz, tzx]T .
In axi-symmetric co-ordinates: t = [trr, tzz, tφφ, trz, tzφ, tφr]

T .

The gradient vector ∇v is defined as follows:
2D Cartesian co-ordinates: ∂v1

∂x1
, ∂v2
∂x1

, ∂v1
∂x2

, ∂v2
∂x2

3D Cartesian co-ordinates: ∂v1
∂x1

, ∂v2
∂x1

, ∂v3
∂x1

, ∂v1
∂x2

, ∂v2
∂x2

, ∂v3
∂x2

, ∂v1
∂x3

, ∂v2
∂x3

, ∂v3
∂x3

,

Axi-symmetric co-ordinates without swirl: ∂vr
∂r ,

∂vz
∂r ,

∂vr
∂z ,

∂vz
∂z

3D Cylinder co-ordinates: ∂vr
∂r

∂vφ
∂r

∂vz
∂r

∂vr
r∂φ −

vφ
r
∂vφ
r∂φ + vr

r
∂vz
r∂φ

∂vr
∂z

∂vφ
∂z

∂vz
∂z

Polar co-ordinates: ∂vr
∂r

∂vφ
∂r

∂vr
r∂φ −

vφ
r
∂vφ
r∂φ + vr

r
The storage of the solution vector depends on the type of element.
The storage of the vectors of special structure is as follows:

IVEC = 1 1 unknown per point

IVEC = 2 2 unknowns per point

IVEC = 3 3 unknowns per point

IVEC = 4 6 unknowns per point

IVEC = 5 NDIM unknowns per point

IVEC = 6 1 unknown per vertex

IVEC = 7 2 unknowns per vertex

IVEC = 8 3 unknowns per vertex

IVEC = 9 6 unknowns per vertex

IVEC = 10 NDIM unknowns per vertex

IVEC = 11 3 (R2) or 6 (R3) unknowns per point

IVEC = 12 1 (R2) or 3 (R3) unknowns per point

IVEC = 13 4 (R2) or 9 (R3) unknowns per point

IVEC = 14 3 (R2) or 6 (R3) unknowns per vertex

IVEC = 15 1 (R2) or 3 (R3) unknowns per vertex

IVEC = 16 4 (R2) or 9 (R3) unknowns per vertex

The output vector is defined as follows:

ICHELD=1,4,7,8,10,11 IVEC=1

ICHELD=2,3 IVEC=13

ICHELD=5,9 IVEC=12

ICHELD=6 IVEC=4
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ICHELD=20 Vector of special structure defined per element, with one unknown per element

ICHELD=21,24,27,28,30,31 IVEC=6

ICHELD=22,23 IVEC=16

ICHELD=25,29 IVEC=15

ICHELD=26 IVEC=9

7.1.8 Integrals

If the user wants to compute integrals over the solution, he may use the option INTEGRAL in the
input block ”STRUCTURE”

The parameter ICHELI in the input block ”INTEGRALS” is used to distinguish the various pos-
sibilities:

ICHELI=1
∫
Ω

f(x)dΩ

ICHELI=2
∫
Ω

f(x)vJDEGFD(x)dΩ

ICHELI=2+i
∫
Ω

f(x)∂vJDEGFD∂xi
dΩ (i= 1,2,3)

In this case v(x) is the vector Vj as indicated by the command INTEGRAL in the input block
”STRUCTURE:. The user must define the function f(x) as first coefficient by one of the methods
described in 2.2.
For each element group 10 parameters and coefficients must be given. The first 3 parameters are
of integer type which means that they must be defined by ICOEFi in the input, the last 7 are real
coefficients.

These parameters and coefficients are defined as follows:

1 type of numerical integration, see the coefficients for the equation
2 type of co-ordinate system, see the coefficients for the equation
3 not yet used

4 f
5-10 not yet used

7.1.9 Other input issues for the Navier-Stokes equations

In this subsection we treat other issues that are important when solving the Navier-Stokes equations

• Definition of the storage scheme:
The resulting finite element matrices are in general non-symmetric. Only in the case of a
Newtonian Stokes flow in combination with the penalty function method the matrices are
symmetric and positive definite.

The first thing to be chosen is the type of storage scheme for the matrices. This storage
scheme is defined by the keyword METHOD = i in the input block ”MATRIX” of program
SEPCOMP.

In the case of a Stokes problem with Newtonian constitutive equation the system of equa-
tions produced by the penalty method is symmetric and positive definite. In that case
METHOD = 1 may be chosen. In all other cases METHOD should be equal to 2 (direct
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method) or 6 (iterative solution method).

• Parameters with respect to the linear solver:

In the case of the Stokes problem with Newtonian viscosity model the matrix is not only
symmetric but also positive definite if the penalty method is applied. In all other cases the
matrix is non-symmetric.

For small problems the direct solver is probably the best, however, for large problems it is
advised to use an iterative solver.
Note that in case of the penalty function method, iterative solvers do not converge, hence
such solvers are restricted to the integrated approach. In case of an iterative solver, in general
one has to renumber the unknowns, in order to avoid zeros on the main diagonal, except in
the special case of linear Taylor-Hood elements. Furthermore, one must always use an ILU
preconditioner.
Also for an iterative solver, Picard linearization (icoef5=1) in general is more robust than
Newton linearization (icoef5=2).
An alternative is to use the simple methods to solve the Navier-Stokes equations iteratively.
Until now the standard iterative approach has proven to converge better (in case it converges)
than SIMPLE.

7.1.10 Time-dependent solution of the Navier-Stokes equations

The discretized Navier-Stokes equations read:

M
∂u

∂t
+ S(u)u + N(u)u − LTp = F (momentum equations). (7.1.1)

Lu = 0 (continuity equation). (7.1.2)

If you want to solve the time-dependent Navier-Stokes equations, you can use the standard program
SEPCOMP. Although not necessary, it is recommended to use the input block STRUCTURE (Users
Manual 3.2.3) in combination with the keyword Navier Stokes. This refers to the input block
NAVIER STOKES described in the Users Manual Section 3.2.22.
With this block you can choose between the methods described in this section.

There are several ways to solve the time-dependent equations:

Straight-forward solution of the time-dependent Navier-Stokes equations

The most simple way to solve the time dependent equations is to use program SEPCOMP in
combination with the input block time_integration.
In this case the same methods as for the stationary Navier-Stokes equations can be applied.
See for example the manual EXAMPLES, sections 7.1.5, 7.1.12.3 and 7.1.12.4.
The alternative is to use the STRUCTURE BLOCK, with a time loop and in the time loop
a call to NAVIER STOKES. This refers to the keyword NAVIER STOKES in which you
activate the subkeyword method = standard

In case of Navier-Stokes one must start with a given initial velocity field. The the most stable
linearization of the convective terms is either using Picard (icoef5=1) or Newton (icoef5=2).
If the time integration is only first order accurate, like for example in case of implicit Euler,
Picard is accurate enough. Besides that the matrix is more suited for iterative linear solvers.
Only in case of second accurate time-dependent schemes, like for example Crank-Nicolson,
Newton is recommended. Although all methods for the stationary equation can also be applied
for the instationary equations there are some things one has to take into account.
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• In case of the penalty function method it is not possible to use an explicit time integration,
since this method will never be stable.
In all other cases an implicit method is highly recommended.

• If elements of type 900 are used (i.e. Crouzeix-Raviart elements in combination with
the penalty function method) the velocity is always computed correctly. However, if the
centroid of an element is eliminated, like for the quadratic triangle with 6 points and the
9-point bi-quadratic quadrilateral, the pressure will not be computed correctly.
In these two cases one should use elements of type 902 (integrated method), if the pressure
is important. The reason is that the mass matrix is not taken into account in the static
condensation.
This problem only appears for 2D elements.

• In case of the mini-element (Linear Taylor-Hood) also the pressure is incorrect for the
same reason.

Splitting method

Another option is to use a splitting method, where the non-linear terms are treated explicitly
and all other terms implicitly.
In order to avoid stability problems, the explicit part is solved with a smaller time-step than
the implicit part.

The method works as follows.
Consider the discretized momentum equations (7.1.1) and continuity equation (7.1.2).
Let un be the velocity at the previous time level.
Let mstep be the number of substeps for the convection integration.
Define ∆t∗ = ∆t

mstep .

Then the operator splitting can be described in the following scheme.

First we start with the explicit convection update:
For istep := 1 (1) mstep do

M
u∗ − un

∆t∗
+ N(un)un = 0 (7.1.3)

un := u∗ (7.1.4)

In the next step we apply Stokes using the newly computed un

M
un+1 − un

∆t
+ LTpn+1 = fn+1 (7.1.5)

Lun+1 = 0 (7.1.6)

to get the new velocity and pressure.

If we apply the splitting method we need two sets of coefficients, one for solving the Stokes
equations and for solving the convective part.
The set of coefficients to solve the Stokes equations are identical to the ones described in
Section (7.1.12). Since there is no convection the parameter MCONTV (icoef5) must have the
value 0.
The set of coefficients for the convective part is identical to that of the Stokes part, except
that we have to give MCONTV the value 2. This corresponds to Newton linearization and is
necessary to compute the convection at the previous time level.
Parameters with respect to viscosity, right-hand side and continuity are not used in the con-
vection part and may therefore be skipped.

Pressure Correction
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From Finite Difference Methods and Finite Volume Methods it is known, that in case of
time-dependent problems the pressure correction method is very attractive. The reason is
that the computation of pressure and velocity is automatically segregated, without the need
to perform extra iterations to satisfy the continuity equation.
In fact there are two possible ways to discretize the Navier-Stokes equations by a pressure
correction approach. The first one is the continuous approach, in which the pressure correction
method is applied to the continuous Navier-Stokes equations. These equations are discretized
by the FEM and solved. The alternative is to apply pressure correction immediately to
the discretized equations discrete approach. Although the latter method has the advantage
of not having to prescribe boundary conditions for the pressure, this method has not been
implemented yet. The reason is that it requires the inverse mass matrix, which makes the
implementation quite complicated. So at the moment we restrict ourselves to the continuous
approach.
The method works as follows:
Consider the time dependent Navier-Stokes equations (7.1.3) and continuity equation (7.1.1).
For simplicity we skip some terms and write the equations in the more simple form:

ρ[
∂v

∂t
+ (v · ∇)v] + ∇P − div t = ρf (7.1.7)

div v = 0 (7.1.8)

We explain the method for the case of Euler implicit, although it can be applied for all types
of time integration. If we apply Euler implicit to the equations (7.1.7) and (7.1.8) we would
get:

ρ[
vn+1 − vn

∆t
+ (vn+1 · ∇)vn+1] + ∇Pn+1 − div tn+1 = ρfn+1 (7.1.9)

div vn+1 = 0 (7.1.10)

with vn+1 the velocity at time level n+1 and vn at time level n. ∆t denotes the time step. In
general the convective terms are linearized with one of the methods treated in Section (7.1.3).
Now the trick is that we start by computing a predictor v∗, by replacing vn+1 in Equation
(7.1.9) by v∗ and Pn+1 by Pn. Hence the pressure at the previous time level is used. In
combination with Picard linearization this gives:

ρ[
v∗ − vn

∆t
+ (vn · ∇)v∗] + ∇Pn − div tn+1 = ρfn+1 (7.1.11)

To satisfy the incompressibility condition, Equation (7.1.11) is subtracted from Equation
(7.1.9) and all higher order terms are neglected as described in van Kan (1993).
This results in:

ρ
vn+1 − v∗

∆t
= −∇(Pn+1 − Pn) (7.1.12)

Application of the divergence operator and using (7.1.10), results in:

−∆δp = −ρdivv∗

∆t
(7.1.13)

with δp = Pn+1 − Pn.
From Equation (7.1.13) we can compute δp provided we prescribe boundary conditions for
the pressure. Mathematically speaking there is no need to give these boundary conditions for
the original Navier-Stokes equations, but due to our approximations this is necessary. In the
literature one prescribes the pressure at outflow, i.e. where vn is free and sets ∂δp

∂n = 0 for all
boundaries where vn is prescribed.
Once equation (7.1.13) is solved, Pn+1 is also known. vn+1 can be computed from (7.1.12).
This is called the correction step.
So the solution is split into the solution of the momentum equations to get a predictor and
the solution of Laplacian equation to solve the pressure and by some algebraic manipulations
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the final velocity.

Since this continuous method explicitly requires boundary conditions for the pressure, it is
necessary to have the pressure in the boundaries of the elements. Therefore the continuous
pressure correction method can only be applied in the case of Taylor-Hood elements.
Using the pressure correction method requires the solution of 2 problems, hence we need to
define 2 problems, one for the velocity and one for the pressure. Also we need at least two
solution vectors.

In the predictor step we are also allowed to perform operator splitting just as for the standard
method. In that case we need three input blocks for the coefficients, one for the Stokes part,
one for the convective part and one for the pressure equations.
Besides the time integration input block also an input block for pressure correction is needed.
See the Users manual Section 3.2.22. This must be part of a time loop in the structure block.

Type numbers to be used for pressure correction are 905 for the velocity and 906 for the
pressure.
The coefficients for type 905 are defined in exactly the same way as for type 903. The only
difference is coefficient 6 which is an integer coefficient which must contain the sequence
number of the pressure in the set of solution equations. Hence in general:

icoef6 = %pressure

Type number 906 does not require any coefficients.
Besides that, in case of natural boundary conditions for the pressure, element 907 can be used.
This element has exactly the same definition and input as elements of type 801 for natural
boundary conditions with respect to second order elliptic equations as described in Section
(3.1). The only difference is that unknowns are only present in the vertices and not in the
midside points.
For an example of the use of the pressure correction method, the reader is referred to the
manual Examples Section 7.1.18.

Solving the time-dependent problem as part of the elements

The Navier-Stokes equations are discretized by the following modified θ-method:

M
un+θ − un

∆t
+ S′(un)un+θ + N′(un)un+θ − LTpn+θ = F′(un+θ) (7.1.14)

Lun+θ = 0 (7.1.15)

un+1 =
1

θ
un+θ − 1− θ

θ
un 0 ≤ θ ≤ 1

tn+θ = tn + θ∆t

where S′(un), N′(un) and F′(un) are the result of the Newton or Picard linearization. See
non-linearity.
The θ-method is conditionally stable for 0 ≤ θ ≤ 0.5. When the penalty function method is
used, a time-step of O(ε) must be used in order to get a stable scheme for θ < 0.5. One is
therefore recommended to restrict the values of θ to the interval 0.5 ≤ θ ≤ 1. For θ = 0.5
the θ-scheme reduces to a modified Crank-Nicolson scheme, which is the most accurate one
for the class of θ-methods. However, a Crank-Nicolson scheme is very sensitive for transients
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especially in the computation of the pressure with the penalty function method. This problem
can be solved by starting with θ=1, and after one or two steps change this value to θ=0.5.
The damping properties of this scheme for θ=1 are excellent, even too much information may
be damped.
A better approach is to use the fractional step method or generalized theta method as de-
scribed in the Users Manual Section 3.2.15.
If one wants to construct only one complete time-dependent matrix, instead of a separate
Stiffness and Mass matrix, it is necessary to set the parameter ITIME (icoef1) equal to 1 or 2.
In that case it is necessary to define θ and ∆t. This may be done by common block CTIMEN
as defined in subroutine SOLTIM.

double precision t, tout, dt, tend, t0, theta, rtime

integer itime

common /ctimen/ t, tout, dt, tend, t0, theta, rtime(4), itime(10)

The parameter dt is the time step ∆t and theta is the parameter θ in the θ method. All other
parameters are not used by the element subroutines.
If one uses the time integration as described for program SEPCOMP, these parameters are
automatically set.
Remark: this last method is not recommended.

7.1.11 Representation of the Navier-Stokes equations for various coor-
dinate systems

3-dimensional Cartesian co-ordinates (x1, x2, x3)

Continuity equation

div v =

3∑
j=1

∂vj
∂xj

(7.1.1)

Momentum equations

ρ[
∂vi
∂t

+

3∑
j=1

(vj
∂vi
∂xj

) + 2ωCi] +
∂P

∂xi
−

3∑
j=1

∂tji
∂xj

= ρfi i = 1, 2, 3 (7.1.2)

with C1 = −v1, C2 = v2, C3 = 0 the Coriolis acceleration, and

tji = η(
∂vj
∂xi

+
∂vi
∂xj

)

2-dimensional Cartesian co-ordinates (x1, x2)

See 3-dimensional case, however, with v3 = 0, ∂
∂x3

= 0.

Stream function ψ: v1 = ∂ψ
∂x2

, v2 = − ∂ψ
∂x1

3-dimensional cylindrical co-ordinates ( r, φ, z )

Continuity equation

div v =
∂rvr
r∂r

+
∂vφ
r∂φ

+
∂vz
∂z

(7.1.3)

Momentum equations

ρ[
∂v

∂t
+ (v · ∇)v + 2Ω× v] + ∇P − div t = ρf (7.1.4)
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with
v = (v1 , v2 , v3) = (vr , vφ , vz),

[(v · ∇)v]i = vr
∂vi
∂r + vφ

∂vi
r∂φ + vz

∂vi
∂z −

v2φ
r δ1i +

vrvφ
r δ2i, i = 1, 2, 3

Ω× v = ω(−vφ , vr , 0)

∇P = (∂P∂r , ∂P
r∂φ ,

∂P
∂z )

[div t]i = ∂rtri
r∂r +

∂tφi
r∂φ + ∂tzi

∂z −
tφφ
r δ1i +

tφr
r δ2i, i = 1, 2, 3

t = η(∇v + ∇vT )

∇v =


∂vr
∂r

∂vφ
∂r

∂vz
∂r

∂vr
r∂φ −

vφ
r

∂vφ
r∂φ + vr

r
∂vz
r∂φ

∂vr
∂z

∂vφ
∂z

∂vz
∂z


Axisymmetric co-ordinates with swirl. (x1, x2)

See cylindrical co-ordinates, however, with ∂
∂φ = 0.

Only two co-ordinates (r, z) remain. For the mesh generator the problem is two-dimensional
in (r, z).
In case of constant viscosity and incompressible velocity, the Stokes equations reduce to

η(∆vr −
v2
r

r
) = fr (7.1.5)

η∆vz = fz (7.1.6)

with ∆u = ∂2u
∂r2 + ∂2u

∂z2 + 1
r2
∂u
∂r .

Stream function ψ: vr = ∂ψ
2πr∂z , vz = − ∂ψ

2πr∂r
The factor 2π ensures that ψ measures the volume flux.

Axisymmetric co-ordinates without swirl. (x1, x2)

See cylindrical co-ordinates, however, with vφ = 0 and ∂
∂φ = 0.

The second momentum balance equation disappears; ω must be equal to 0. Only two co-
ordinates (r, z) remain. For the mesh generator the problem is two-dimensional in (r, z).
Stream function ψ: vr = ∂ψ

2πr∂z , vz = − ∂ψ
2πr∂r

The factor 2π ensures that ψ measures the volume flux.

2-dimensional polar co-ordinates. (x1, φ)

See cylindrical co-ordinates, however, with vz = 0 and ∂
∂z = 0.

The third momentum balance equation disappears.
Only two co-ordinates (r, φ) remain. For the mesh generator the problem is two-dimensional
in (r, φ).
Stream function ψ: vr = ∂ψ

r∂φ , vφ = − ∂ψ
∂r

7.1.12 Old way to describe the coefficients for the differential equation

The coefficients for the differential equation may be defined by one of the methods described in 2.2,
where, in general, the method by SEPCOMP is recommended.
For each element group 20 parameters and coefficients must be given. The first 5 parameters are
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of integer type which means that they must be defined by ICOEFi in the input, the last 15 are real
coefficients.

These parameters and coefficients are defined as follows:

1 Parameter itime with respect to the time integration.

2 Type of viscosity model modelv.

3 Type of numerical integration.

4 Parameter ICOOR, defining the type of co-ordinate system.

5 Parameter MCONTV, defining how to treat the convection and the (in)compressibility term.

6 Parameter ε for the penalty function method.
If this parameter is given in a Taylor-Hood element it is neglected.
If this parameter is given in Crouzeix-Raviart element in combination with the integrated
method it is used as a kind of artificial compressibility parameter. It might improve the
performance in case an iterative solver is used for the system of linear equations.
Mark that this parameter is in fact the inverse of a penalty parameter and hence must have
a small value.

7 Density ρ

8 Angular velocity ω

9 First component of body force f1

10 Second component of body force f2

11 Third component of body force f3

12 Viscosity parameter η

13 Viscosity model parameter n

14 Viscosity model parameter λ

15 Special integer parameter (to be defined by icoef15) that defines the sequence number of the
mesh velocity vector in the vector of old solutions.
The mesh velocity is subtracted from the real velocity when the convective terms are com-
puted, even if there are no convective terms given. This parameter is especially meant for free
surface flows, where the convective terms must be adapted due to the movement of the mesh.
The mesh velocity must have at least, ndim,degrees of freedom per point. The first ndim are
considered to be the velocity.
The pressure computation has not yet been adapted.

16 GL, parameter for the Görtler equations. These equations will be available in the future.

17 κ, parameter for the Görtler equations.

18 fdiv, right-hand side for the continuity equation.

19 Given stress tensor used in the right-hand side vector.
At this moment it is supposed that the stress is defined per element and that in each element
all components are constant. This stress tensor can only be defined as an old solution.

20 cdiv1 for special scaled form of continuity equation
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21 cdiv2 for special scaled form of continuity equation

22 not yet in use, must be zero

23 cgrad for special scaled form of momentum equation

24-27 cconvi for special scaled form of convection term in momentum equation

28-32 not yet in use, must be zero

33-36 cvisci for special scaled form of viscous term in momentum equation

37-41 not yet in use, must be zero

The parameters that are not used must be set equal to zero, since this is the default value in case
of future extensions.

With respect to the parameters 1-5 the following choices are available:

1 Parameter itime with respect to the time integration.
This parameter consists of 2 parts: itime old and iseqprev according to itime = itime old
10 × iseqprev.

The parameter itime old must contain some information about the time integration. Possible
values are:

0 If the parameter imas in subroutine BUILD is equal to 0, a time-independent flow is
assumed and the mass matrix is not built.
If imas>0, a mass matrix is built according to imas, i.e.
imas=1: diagonal mass matrix
imas=2: consistent mass matrix.
The parameter imas is set by the block time_integration in the input file. It corre-
sponds to the input corresponding to the mass matrix. Usually it is sufficient to set
itime old equal to 0.

1 The θ method is applied directly in the following way:
the mass matrix divided by θ∆t is added to the stiffness matrix.
The mass matrix divided by θ∆t and multiplied by un is added to the right-hand-side
vector.

Default value: 0.

The parameter iseqprev refers to the velocity vector in the previous iteration. This parameter
makes only sense if during a time step the velocity is computed iteratively. This means that
the old velocity in the convective terms for example is taken equal to the velocity at the
previous iteration. The velocity used in the discretization of the time derivative, however, is
the old velocity of the previous time level. If no iteration per time step is used both are equal
and iseqprev may be chosen equal to 0.
iseqprev defines the sequence number of the iteration velocity vector in the general array of
solution vectors.

2 Type of constitutive equation (MODELV)
Possible values:

1 Newtonian liquid. In this case η is the dynamic viscosity.

2 Power-law liquid. In this case η is the parameter ηn and n the parameter n in the power
of the model.

3 Carreau liquid. In this case η is the parameter ηc and n the parameter n in the power
of the model. λ is the parameter λ the viscosity model.
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4 Plastico-viscous liquid. In this case η is the parameter ηpv and n the parameter n in the
power of the model. λ is the parameter s the viscosity model.

5 Use the viscous term as defined in Equations (7.1.7) and (7.1.8). In this case the number
parameters must be at least 41.

10 Newtonian liquid. In this case η is the dynamic viscosity. The continuity equation is
substituted in the stress tensor in order to get a more simple expression, in which velocity
components are decoupled. This option is only correct in case of constant viscosity and
incompressible flow.
In this case the term div t is replaced by η∆v, where ∆ represents the Laplace operator.
The advantage of this approach is, that the reduced storage scheme as described in
Section 3.2.4 of the Users Manual, can be used. This means that one can use the
keyword DECOUPLED_DEGFD = (1, 2) inR2 or DECOUPLED_DEGFD = (1, 2, 3) inR3 in
the input block MATRIX.

100 user provided model, depending on ∇v.

101 user provided model, depending on II.

102 user provided model, depending on x,v and II.

102 user provided model, depending on x,v, II and also on extra vectors stored in array
uold.

Default value: 1.

3 Type of numerical integration.
The parameter icoef3 consists of two parts irule and interpol according to: icoef3 = irule +
100 × interpol, with
irule

0: the rule is chosen by the element itself (Default)

> 0: the integration rule is defined by the user. The types of integration rules available depend
on the type of elements applied.

interpol

0: Coefficients are computed by using the interpolation applied for the basis functions.

1: Coefficients that are defined by an old solution vector, are computed by linear interpo-
lation. If the element is a quadrilateral or a hexahedron, or if the element is quadratic,
subelements are used to define a local linear interpolation.
This option is useful if the coefficients are rapidly changing and standard interpolation
may produce an overshoot.

4 Type of co-ordinate system.
This parameter consists of two parts ICOOR ORIG and IMETHOD according to ICOOR =
ICOOR ORIG + 100 × IMETHOD. Possible values for ICOOR ORIG:

0 Cartesian co-ordinates

1 Axi-symmetric co-ordinates

2 Polar co-ordinates

Possible values for IMETHOD:

0 Standard method

1 The system of equations is solved by an AUGMENTED LAGRANGE approach. The
diagonal of the pressure mass matrix is also computed.

Default value: 0.
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5 Parameter MCONTV, defining how to treat the convection and also the continuity equation,
according to MCONTV=MCONV+10×MCONT+100×MCOEFCONV.
Possible values for MCONV:

0 Stokes flow, the convective terms (v · v) are neglected.

1 Linearization by Picard’s method.

2 Linearization by Newton’s method.

3 Linearization by the ”incorrect” Picard method.

Possible values for MCONT:

0 Standard method: the continuity equation is div v = 0

1 A special continuity equation div ρv = 0, with ρ variable is solved. This is not the
standard continuity equation for incompressible flow. In fact we have a time-independent
compressible flow description.

2 The Görtler equations are solved.

3 The continuity equation is treated as in Equation (7.1.6). In this case the number
parameters must be at least 41.
Also the pressure term is treated as in Equations (7.1.7) and (7.1.8).

Possible values for MCOEFCONV:

0 the convection term is treated in the standard way.

1 the convection term is treated as defined in Equations (7.1.7) and (7.1.8). In this case
the number parameters must be at least 41.

If MODELV ≥ 100 the user must provide a user written function subroutine, which computes η as
function of the parameters. The following choices for user subroutines are available:

MODELV = 100: function subroutine FNV000 is used.

MODELV = 101: function subroutine FNV001 is used.

MODELV = 102: function subroutine FNV002 is used.

MODELV = 103: function subroutine FNV003 is used.

These function subroutines have the following shape:

FUNCTION FNV000 ( GRADV )

IMPLICIT NONE

DOUBLE PRECISION FNV000, GRADV(*)

statements to compute the viscosity as function of GRADV

FNV000 = computed viscosity

END

FUNCTION FNV001 ( SECINV )

IMPLICIT NONE

DOUBLE PRECISION FNV001, SECINV
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statements to compute the viscosity as function of SECINV

FNV001 = computed viscosity

END

FUNCTION FNV002 ( X1, X2, X3, V1, V2, V3, SECINV )

IMPLICIT NONE

DOUBLE PRECISION FNV002, X1, X2, X3, V1, V2, V3, SECINV

statements to compute the viscosity as function of SECINV, X and V

FNV002 = computed viscosity

END

FUNCTION FNV003 ( X1, X2, X3, V1, V2, V3, SECINV, NUMOLD, MAXUNK,

+ UOLD )

IMPLICIT NONE

INTEGER NUMOLD, MAXUNK

DOUBLE PRECISION FNV002, X1, X2, X3, V1, V2, V3, SECINV,

+ UOLD(NUMOLD,MAXUNK)

statements to compute the viscosity as function of the parameters

FNV003 = computed viscosity

END

In these subroutines array GRADV contains the gradient of the velocity in one point, SECINV the
second inverse, X1,X2,X3 the co-ordinates of the point and V1,V2,V3 the velocity components.
NUMOLD and MAXUNK define dimension parameters for array UOLD.
NUMOLD indicates the number of old solutions stored in UOLD.
MAXUNK indicates the maximum number of degrees of freedom stored in the old solution vectors
stored in UOLD.
UOLD defines the array of old solutions. It is related to the array ISLOLD in subroutine BUILD,
or defines the old vectors already computed in program SEPCOMP.
UOLD(1,1) contains the first unknown of the first vector in the node, UOLD(1,2) the second
unknown and so on.

The storage of the gradient depends on the type of co-ordinate system. The following possibilities
are available:

two-dimensional Cartesian co-ordinates

∂v1

∂x1
,
∂v2

∂x1
,
∂v1

∂x2
,
∂v2

∂x2
(7.1.1)

three-dimensional Cartesian co-ordinates
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∂v2

∂x1
,
∂v3
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,
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∂x2
,
∂v2

∂x2
,
∂v3

∂x2
,
∂v1

∂x3
,
∂v2

∂x3
,
∂v3

∂x3
(7.1.2)
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three-dimensional cylindrical co-ordinates
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(7.1.3)

two-dimensional axi-symmetric co-ordinates without swirl (r,z)
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,
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(7.1.4)

two-dimensional axi-symmetric co-ordinates with swirl (r,z)
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, (7.1.5)

two-dimensional polar co-ordinates (r,φ)
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(7.1.6)

7.1.13 Old type numbers available for the Navier-Stokes equations

The type numbers, which are given in the input block ”PROBLEM” for SEPCOMP define the type
of differential equation to be solved.

For the Navier-Stokes equation in this section the following type numbers are available:

900 General type number for the internal Navier-Stokes elements based on Crouzeix-Raviart ele-
ments, hence with discontinuous pressure.
This number is restricted to the penalty function formulation only.
For this type of element, swirl is not allowed. This type number is available for the following
element shape numbers: (see the Users Manual, Section 2.2, Table 2.2.1)

shape = 4 extended quadratic triangle. This is a so-called Crouzeix-Raviart element. Inter-
nally the velocity is treated as a quadratic polynomial with extra third order term. The
velocity in the centroid is internally used, but not available to the user. The internal
pressure is defined in the centroid, but also not available to the user. Only the averaged
pressure produced by ”DERIV” is available.
The solution vector contains two velocity components in each node.
The computation of the pressure is only accurate for stationary flows. For instationary
flows one should use shape 7.

shape = 5 Linear quadrilateral. This is a so-called Crouzeix-Raviart element that does not
satisfy the Brezzi-Babuska condition. The velocity is defined in the vertices.
Since the Brezzi-Babuska condition is not satisfied, the pressure may contain unrealistic
wiggles. However, if at some part of the boundary the normal stress is given (or equiv-
alently the normal component of the velocity is not prescribed), there is good chance
that the wiggles are not visible. The internal pressure is defined in the centroid, but not
available to the user.
The solution vector contains two velocity components in each node.

shape = 6 Bi-quadratic quadrilateral. This is a so-called Crouzeix-Raviart element. The
internal pressure is defined in the centroid, but not available to the user. Only the
averaged pressure produced by ”DERIV” is available.
The solution vector contains two velocity components in each node.

shape = 7 extended quadratic triangle. This is exactly the same as shape 4, but the centroid
is not eliminated. In case of a pressure computation in an instationary flow, this shape
should be used instead of shape 4.
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shape = 14 Tri-quadratic hexahedron. This is a so-called Crouzeix-Raviart element. The
internal pressure is defined in the centroid, but not available to the user. Only the
averaged pressure produced by ”DERIV” is available.
The solution vector contains three velocity components in each node.

902 General type number for the internal Navier-Stokes elements, using Crouzeix-Raviart type
elements with discontinuous pressure.
This number is restricted to the integrated solution method only.
For this type of element, swirl is not allowed.
Elements of this type may be used in combination with direct methods and iterative methods.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 6 Bi-quadratic quadrilateral. This is a so-called Crouzeix-Raviart element. The
internal pressure and its gradient are defined in the centroid and available to the user.
This pressure is discontinuous over the element boundaries. The averaged pressure pro-
duced by ”DERIV” is available.
The solution vector contains two velocity components in each node.
Furthermore in the centroid (Point 9), the pressure and the gradient of the pressure are
available. In this point we have:
1: v1 2: v2 3: p 4: ∂p

∂x 5: ∂p
∂y

shape = 7 extended quadratic triangle. This is a so-called Crouzeix-Raviart element. The
velocity is treated as a quadratic polynomial with extra third order term. The velocity
in the centroid is available to the user. The internal pressure is defined in the centroid
and available to the user. This pressure is discontinuous over the element boundaries.
The averaged pressure produced by ”DERIV” is available.
The solution vector contains two velocity components in each node.
Furthermore in the centroid (Point 7), the pressure and the gradient of the pressure are
available. In this point we have:
1: v1 2: v2 3: p 4: ∂p

∂x 5: ∂p
∂y

shape = 9 Linear quadrilateral. This is a so-called Crouzeix-Raviart element that does not
satisfy the Brezzi-Babuska condition. The velocity is defined in the vertices.
Since the Brezzi-Babuska condition is not satisfied, the pressure may contain unrealistic
wiggles. However, if at some part of the boundary the normal stress is given (or equiv-
alently the normal component of the velocity is not prescribed), there is good chance
that the wiggles are not visible. The internal pressure is defined in the centroid, but not
available to the user.
The solution vector contains two velocity components in each vertex. In the centroid
only the pressure is defined.

shape = 14 Tri-quadratic hexahedron. This is a so-called Crouzeix-Raviart element. The
internal pressure is defined in the centroid and available to the user. This pressure is dis-
continuous over the element boundaries. The averaged pressure produced by ”DERIV”
is available.
The solution vector contains three velocity components in each node.
Furthermore in the centroid (Point 14), the pressure and the gradient of the pressure are
available. In this point we have:
1: v1 2: v2 3: v3 4: p 4: ∂p

∂x 6: ∂p
∂y 7: ∂p

∂z

901 General type number for the internal Navier-Stokes elements, based on Crouzeix-Raviart ele-
ments with discontinuous pressure.
This number is restricted to the integrated solution method only.
For this type of element, swirl is not allowed.
The difference with type number 902 is that the gradient of the pressure and the velocity in
the centroid are eliminated internally. As a consequence the number of unknowns is reduced
considerably.
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Elements with this type number may be used in combination with direct and iterative linear
solvers. Experiments have shown that sometimes the iterative solvers do not converge. In
that case it is advised to use type number 902 instead.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 7 extended quadratic triangle. This is a so-called Crouzeix-Raviart element. The
velocity is treated as a quadratic polynomial with extra third order term. The velocity
in the centroid is available to the user. This pressure is discontinuous over the element
boundaries. The averaged pressure produced by ”DERIV” is available.
The solution vector contains two velocity components in each node except the centroid.
In the centroid (Point 7), the pressure is available, but not the pressure gradient.
In this point there is only one unknown (p), but this pressure is the physical degree of
freedom with sequence number 3.

903 General type number for the internal Navier-Stokes elements, based on Taylor-Hood elements
with continuous pressure.
This number is restricted to the integrated solution method only.
For this type of element, swirl is not allowed.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 3 linear triangle. This so-called mini-element is exactly the same as the mini-
element with shape=10. However, in this case the velocities in the centroid are eliminated
at element level, thus reducing the number of unknowns. Both the velocity and the
pressure are continuous.
The solution vector contains two velocity components and one pressure unknown in each
node, in the sequence v1, v2, p.

shape = 4 Quadratic triangle.
In fact this is the classical Taylor-Hood element. The velocity is defined as a quadratic
field, the pressure as a linear field per element.
The solution vector contains two velocity components in all nodes. In the vertices there
are three unknowns: v1, v2, p.

shape = 5 Bi-linear quadrilateral. This element is exactly the same as the element with
shape=9. However, in this case the velocities in the centroid are eliminated at element
level, thus reducing the number of unknowns. Both the velocity and the pressure are
continuous.
The solution vector contains two velocity components and one pressure unknown in each
node, in the sequence v1, v2, p.

This element has not yet been implemented.

shape = 6 Bi-quadratic quadrilateral.
This is the natural extension of the classical Taylor-Hood element to quadrilaterals. The
velocity is defined as a bi-quadratic field, the pressure as a bi-linear field per element.
The solution vector contains two velocity components in all nodes. In the vertices there
are three unknowns: v1, v2, p.

shape = 9 Bi-linear quadrilateral with bubble function.
This is the natural extension of the triangular mini-element to quadrilaterals. The ve-
locity is defined as a bi-linear field, extended with a bubble function which is zero at
the boundaries of the element and 1 in the centroid. This bubble function is necessary
in order to satisfy the so-called B-B condition and may be considered as a stabilization
parameter. The pressure is bi-linear per element.
The solution vector contains two velocity components in all nodes. In the vertices there
are three unknowns: v1, v2, p.

This element has not yet been implemented.
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shape = 10 Linear triangle with bubble function.
This is the classical mini element. The velocity is defined as a linear field, extended with
a bubble function which is zero at the boundaries of the element and 1 in the centroid.
This bubble function is necessary in order to satisfy the so-called B-B condition and may
be considered as a stabilization parameter. The pressure is linear per element.
The solution vector contains two velocity components in all nodes. In the vertices there
are three unknowns: v1, v2, p.

shape = 11 linear tetrahedron. This so-called mini-element is exactly the same as the mini-
element with shape=18. However, in this case the velocities in the centroid are eliminated
at element level, thus reducing the number of unknowns. Both the velocity and the
pressure are continuous.
The solution vector contains three velocity components and one pressure unknown in
each node, in the sequence v1, v2, v3, p.

shape = 12 Quadratic tetrahedron.
In fact this is 3D-extension of the classical Taylor-Hood element. The velocity is defined
as a quadratic field, the pressure as a linear field per element.
The solution vector contains three velocity components in all nodes. In the vertices there
are three unknowns: v1, v2, v3, p.

shape = 13 Tri-linear hexahedron. This element is exactly the same as the element with
shape=17. However, in this case the velocities in the centroid are eliminated at element
level, thus reducing the number of unknowns. Both the velocity and the pressure are
continuous.
The solution vector contains three velocity components and one pressure unknown in
each node, in the sequence v1, v2, v3, p.

shape = 14 Tri-quadratic hexahedron.
This is the natural extension of the classical Taylor-Hood element to hexahedrons. The
velocity is defined as a tri-quadratic field, the pressure as a tri-linear field per element.
The solution vector contains three velocity components in all nodes. In the vertices there
are three unknowns: v1, v2, v3, p.

shape = 17 Tri-linear hexahedron with bubble function.
This is the natural extension of the triangular mini-element to hexahedrons. The velocity
is defined as a tri-linear field, extended with a bubble function which is zero at the
boundaries of the element and 1 in the centroid. This bubble function is necessary in
order to satisfy the so-called B-B condition and may be considered as a stabilization
parameter. The pressure is tri-linear per element.
The solution vector contains three velocity components in all nodes. In the vertices there
are three unknowns: v1, v2, v3, p.

shape = 18 Linear tetrahedron with bubble function.
This is the extension of the classical mini element to 3D. The velocity is defined as a linear
field, extended with a bubble function which is zero at the boundaries of the element and
1 in the centroid. This bubble function is necessary in order to satisfy the so-called B-B
condition and may be considered as a stabilization parameter. The pressure is linear per
element.
The solution vector contains three velocity components in all nodes. In the vertices there
are three unknowns: v1, v2, v3, p.

905 Element that can only be used for pressure correction. It is based on Taylor-Hood elements.
This element is used to solve the momentum equations with out the pressure. The pressure at a
previous level is used. Only quadratic elements for the velocity are allowed, the corresponding
pressure approximation is linear.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 4 quadratic triangle.
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shape = 6 bi-quadratic quadrilateral.

shape = 12 quadratic tetrahedron.

shape = 14 tri-quadratic hexahedron.

906 Element that can only be used for pressure correction. It corresponds to type 905 and is used
to solve the pressure equation. Although the pressure approximation is linear, exactly the
same elements as for type 906 must be used. 905 and 906 always are used as a couple.

910 boundary conditions of type 2 to be applied for the Crouzeix-Raviart type elements.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 1 linear line element.

shape = 2 quadratic line element.

shape = 6 bi-quadratic surface element (quadrilateral).

911 boundary conditions of type 2 to be applied for the Taylor-Hood type elements.
This type number is available for the following element shape numbers: (see the Users Manual,
Section 2.2, Table 2.2.1)

shape = 1 linear line element.

shape = 2 quadratic line element.

shape = 6 bi-quadratic surface element (quadrilateral).

912 boundary conditions of type 3 to be applied for the Crouzeix Raviart elements in combination
with a direct linear solver. This element is used to prescribe the mass flux if the penalty
function approach for the mass flux is used.
The only shape number allowed in -1, which means all nodes along a curve. Such elements
must be created as line elements in SEPMESH.

913 boundary conditions of type 3 to be applied for the Crouzeix Raviart elements.
This element is used to prescribe the mass flux if the approach with global unknowns for the
mass flux is used.
This method may be used both for curves as for surfaces.
The shape number of the elements is already defined in the problem definition.

914 boundary conditions of type 4 to be applied for the Crouzeix Raviart elements. This type
number is available for the following element shape numbers: (see the Users Manual, Section
2.2, Table 2.2.1)

shape = 1 linear line element.

shape = 2 quadratic line element.

shape = 6 bi-quadratic surface element (quadrilateral).

Since connection elements must be used the actual elements consists of pairs of the elements
indicated above and the actual shape numbers are equal to -10001-shape, where shape is the
value given in the table.

7.1.14 Previous versions of SEPRAN dealing with the Navier-Stokes
equations

In previous versions of SEPRAN equation (7.1.1) has been solved with different type numbers.
These type numbers may still be used, however, it is recommended to use the new type numbers
described earlier when creating new input or new programs. In this section we will point out the
differences of the previous type numbers and the present one.
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• In the old version only the penalty function formulation may be used. The integrated method
is not available.

• Definition of the coefficients for the differential equation:

For each element group 11 parameters and coefficients must be given.

These parameters and coefficients are defined as follows:

1 Parameter ε for the penalty method.

2 Density ρ.

3 Parameter MCONV, defining the type of linearization.

4 Angular velocity ω

5 First component of body force f1

6 Second component of body force f2

The next parameters depend on the type of co-ordinate system and the viscosity model
used.

7 Third component of body force f3
This parameter is only used in the three-dimensional case or if an axi-symmetric model
with swirl is used.
If f3 is not used, the next parameters start at position 7, otherwise at position 8.

7 or 8 Parameter MODELV, defining the type of viscosity model

Depending on the value of MODELV this parameter must be followed by the parameters
η, n and λ.

The following values for the parameter MCONV are available:

0 Stokes flow, the convective terms (v · v) are neglected.

1 Linearization by Picard’s method.

2 Linearization by Newton’s method.

10-12 See MCONV-10, in this case it is assumed that the instationary Navier-Stokes equations
are solved and the linear combination of Mass matrix and Stiffness matrix is computed
as indicated with itime=1.

30 Only the mass matrix M is computed and stored.

• Definition of coefficients for the boundary conditions:

For each element group 2 (R2 or 3 R3) coefficients must be given.

These coefficients are defined as follows:

1 σn

2 First component of σt

3 Second component of σt

• Computation of derivatives:

Depending on the parameter ICHELD in the input block ”DERIVATIVES” the following
types of derivatives are computed:

1 The pressure is computed in the vertices of the elements.
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2 The derivative ∂vJDEGFD
∂xIX

, with JDEGFD and IX parameters in the input block ”DERIVA-
TIVES”.

3 div v is computed in the vertices of the elements.

4 curlv is computed in the vertices of the elements.

5 t is computed in the vertices of the elements.

6 ∇v is computed in the vertices of the elements.

7 The rate of elongation ε̇ is computed in the vertices of the elements.
ε̇ is the rate of strain in the direction of the velocity: ε̇ = 1

2v ·A1 · v
‖v‖

8 The shear rate γ̇ is computed in the vertices of the elements, according to the definition:
γ̇ = n1 ·A1n2, n1 · n2 = 0, ‖n1‖ = ‖n2‖ = 1

For problems with two velocity components: ‖n1‖ = v
‖v‖ , ‖n2‖ = (−v2,v1)

‖v‖
For problems with three velocity components:
γ̇12 = e1 ·A1 · e2, γ̇13 = e1 ·A1 · e3, γ̇23 = e2 ·A1 · e3

9 II
1
2 is computed in the vertices of the elements.

The output vector is defined as follows:

ICHELD=1,2,3,7,9 a vector of special structure (IVEC=1) with one unknown in each
vertex.

ICHELD=4 In the two-dimensional case a vector of special structure (IVEC=1) with one
unknown in each vertex.
In the three-dimensional case a vector of special structure (IVEC=5).
This is also the case for two-dimensional axi-symmetric flow with swirl.

ICHELD=5 a vector of special structure (IVEC=3).

ICHELD=6 a vector of special structure (IVEC=4).

ICHELD=8 In the two-dimensional case a vector of special structure (IVEC=1) with one
unknown in each vertex.
In the three-dimensional case a vector of special structure (IVEC=5).

• Types of integrals that may be computed:

If the user wants to compute integrals over the solution, he may use the option INTEGRAL
in the input block ”STRUCTURE”

The parameter ICHELI in the input block ”INTEGRALS” is used to distinguish the various
possibilities:

ICHELI=1
∫
Ω

f(x)dΩ

The user must define the function f(x) as first coefficient by one of the methods described in
2.2.

• Input with respect to the time-dependence.

In case of a time-dependent equation it is necessary to define θ and ∆t. This may be done
by common block CTIMEN. Unfortunately in the old version of SEPRAN the common block
CTIMEN used is not consistent with the common block CTIMEN used in SOLTIM. This
means that the old version can not be combined with SOLTIM.
In the old version CTIMEN is defined as follows:

double precision t, dt, theta, rtime

integer itime

common /ctimen/ theta, dt, t, rtime(7), itime(10)
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The parameter dt is the time step ∆t and theta is the parameter θ in the θ method. All other
parameters are not used by the element subroutines.

Furthermore in the previous version of SEPRAN it is not possible to compute stiffness matrix
and mass matrix explicitly in the time-dependent case (except if MCONV=10). Hence only
itime = 1 is used in the time-dependent case. This case is recognized by the value of MCONV.
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Definition of type numbers

The type numbers for the old version are defined as follows:

400 Quadratic isoparametric triangle in R2, Cartesian co-ordinates.

401 Boundary conditions of type 2 corresponding to type 400.
The element must be a quadratic boundary element in R2.

402 Quadratic isoparametric triangle in R2, Polar co-ordinates.

403 Boundary conditions of type 2 corresponding to type 402.
The element must be a quadratic boundary element in R2.

404 Quadratic isoparametric triangle in R2, Axisymmetric co-ordinates without swirl.

405 Boundary conditions of type 2 corresponding to type 404.
The element must be a quadratic boundary element in R2.

406 Quadratic isoparametric triangle in R2, Axisymmetric co-ordinates with swirl.

407 Boundary conditions of type 2 corresponding to type 406.
The element must be a quadratic boundary element in R2.

410 Quadratic isoparametric hexahedron in R3, Cartesian co-ordinates.
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7.2 The temperature dependent laminar flow of incompressible liquids
(Boussinesq approximation)

In this section we consider the laminar flow of incompressible liquids described by the Navier-Stokes
equations, where the temperature is a driving force. It is assumed that a Boussinesq approximation
is applied. Furthermore the temperature satisfies a convection diffusion equation. These equations
consist of four parts:

• The conservation of mass.

• The conservation of momentum.

• The constitutive equation.

• The temperature equation.

Equations

The conservation of mass
In case of incompressible flow:

div v = 0 (7.2.1)

Conservation of momentum (Euler-Cauchy equations):

ρ[
∂v

∂t
+ (v · ∇)v + 2Ω× v] + ∇P − div t − ρgβ(T − T0) = ρf (7.2.2)

Temperature equation

ρcp(
∂T

∂t
+ v · ∇T ) − div(κ∇T ) = ρfT +

α

2
t : A1 (7.2.3)

The parameters in the Equations 7.2.1, 7.2.2 and 7.2.3 have the following meaning:

ρ density of the liquid.

v velocity.

Ω angular velocity Ω = (0, 0, ω) of rotating co-ordinate system with respect to an inertial system x.

f external force field (body force).

t deviatoric stress tensor.

T Temperature.

cp Heat capacity at constant pressure.

β volume expansion coefficient.

g Acceleration of gravity in the z-direction: g = (0 , 9.81).
If a problem with swirl is solved then g = (0 , 0 , 9.81).

T0 Reference temperature.

κ Thermal conductivity.

fT External field for the temperature equation (e.g. heat source).
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The stress tensor σ consists of two parts: the pressure part and the deviatoric stress tensor
according to:

σ = − P1 + t. (7.2.4)

Remark: The Boussinesq approximation may only be applied for small values of β(T − T0).

The generalized or reduced pressure P can be written as

P = p +
1

2
ρ(Ω× x) · (Ω× x), (7.2.5)

where p denotes the hydrostatic pressure. Mark that the quantity P contains the contribution
of all conservative forces.

In order to model the deviatoric stress tensor t it is necessary to add the constitutive equations.
These equations depend on the type of material used. In SEPRAN a Newtonian model can
be used, but also a number of non-Newtonian models are available. In this section we restrict
ourselves to generalized Newtonian fluids.
The following models are available:

• Newtonian model

• Power-law model

• Carreau model

• Plastico-viscous model

• Three user type models

These models are characterized by their constitutive relations.

Constitutive equations:

The constitutive equations have all the form:

t = η(∇v)(∇v +∇vT )e−ct(T−T1) (η, cT > 0

The choice of η(∇v) defines the model

• Newtonian fluid: η is constant.

• Power-law liquid: η = ηne
−ct(T−T1)II

n−1
2

• Carreau liquid: η = ηce
−ct(T−T1)(1 + λII)

n−1
2

• Plastico-viscous liquid: η = ηpve
−ct(T−T1)(1 + [ s

ηpv
II−

1
2 ]

1
n )n

limII→0
1
2t : t = limII→0 η

2II = s2

• user model 1: η = FNVT00(∇v, T )

• user model 2: η = FNVT01(II, T )

• user model 3: η = FNVT02(x1, x2, x3, v1, v2, v3, II, T )

η denotes the dynamic viscosity (> 0) and s the yield stress. The parameters cT , T1, ηn, ηc,
ηpv and n must be all positive. These parameters including s must be provided by the user.

II denotes the second invariant of the velocity deformation tensor, defined by
II = 1

2A1 : A1; A1 = ∇v +∇vT .

α denotes a switch indicating if the viscous dissipation 1
2t : A1 must be taken into account

(α = 1) or not (α = 0).
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Boundary and initial conditions

In the instationary case it is necessary to give an initial condition for the velocity and temperature
at t = 0.

The following types of boundary conditions are available:

(i) Boundary conditions for the velocity

Type V1 Components of the velocity v(x) given on some part of the boundary. This is an essential
boundary condition, i.e. no boundary elements are required for this type.

Type V2 Stress tensor components given on a part of the boundary. This is a so-called natural
boundary condition.
Define σn as the stress component in the normal direction of a surface, and σt as the
tangential component. Define vn as the velocity component in the normal direction of a
surface and vt as the tangential component. In R2 σt and vt are scalar quantities.

Consult Section 7.1 with respect to the combinations that may be used.

(ii) Boundary conditions for the temperature

Type T1 Temperature T (x) given on some part of the boundary. This is an essential boundary
condition, i.e. no boundary elements are required for this type.

Type T2 κ∂T∂n + σT = h on some part of the boundary. This is a so-called natural boundary
condition.
In general boundary elements are necessary, except in the case that σ(x) = 0 and
h(x) = 0, when there is no need to give any condition on this part of the boundary.

Solution method

The finite element equations for the temperature dependent incompressible fluid can be written as:

Mu
∂u

∂t
+ Suu(u,T)u + SuT (T) − LTp = Fu (momentum equations). (7.2.6)

MT
∂T

∂t
+ STT (u,T)T = FT (temperature equation). (7.2.7)

Lu = 0 (continuity equation). (7.2.8)

with

u the discretized velocity.

Mu the velocity mass matrix.

Suu the matrix corresponding to stresses and the convective terms in the momentum equations.

SuT the discretization of the Boussinesq term.

−LTp represents the ∇P term.

Fu the momentum source term.

T the discretized temperature.

MT the temperature mass matrix.

STT is the matrix due to the discretization of the space part of the temperature equation.
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FT the temperature source term.

For the solution of the Navier-Stokes equations the following items are distinguished:

• incompressibility condition.

• non-linearity (due to convective terms and stress tensor in the case of non-Newtonian fluids)

• coupling between temperature equation and momentum equations.

• time dependence.

Continuity equation

See Section 7.1. At this moment only the penalty function method has been implemented.

Non-linearity

See Section 7.1.
The temperature in the viscosity is always taken at a preceding time level or iteration level in
the stationary case. Hence for the temperature dependence always a Picard approach is used.

Time dependence

See Section 7.1. The Temperature equation is treated in exactly the same way as the momen-
tum equations.

Coupling between temperature equation and momentum equations

The non-linear equations must be solved iteratively (stationary case) or by a time-discretization
method (time-dependent case). In either situation the momentum equations and the temper-
ature equation may be solved simultaneously (with a large number of degrees of freedom;
velocities as well as temperatures) or uncoupled. In the latter case the momentum equations
and the temperature equation are solved separately in an alternating sequence. This results
in two smaller systems of equations to be solved, however, the number of iterations necessary
for convergence may increase considerably.

In the coupled situation the iterative procedure is exactly the same as in Section 7.1, where
the vector u is replaced by the larger vector (u,T. For an example see the manual SEPRAN
EXAMPLES Section 7.2.1
For an example of the uncoupled approach we refer to the manual SEPRAN EXAMPLES
Section 7.2.2.

Input for the various subroutines

• Definition of the storage scheme:

The first thing to be chosen is the type of storage scheme for the matrices. This storage
scheme is defined by the keyword METHOD = i in the input block ”MATRIX” of program
SEPCOMP.

In Nearly all cases METHOD should be equal to 2 (direct method) or 6 (iterative solution
method).
The only exception is the uncoupled case in combination with an absence of convective terms
in the momentum equations. In that case the temperature part is taken at a preceding level
and hence a source term. So effectively the momentum equations reduce to STOKES and the
matrix is symmetrical.
The temperature equation is always unsymmetrical.
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• Definition of the coefficients for the differential equation:

The coefficients for the differential equation may be defined by one of the methods described
in 2.2, where, in general, the method by SEPCOMP is recommended.
For each element group 17 parameters and coefficients must be given.

These parameters and coefficients are defined as follows:

1 Real parameter ε for the penalty method.

2 Density ρ (real).

3 Integer parameter MCONV, defining the type of linearization.

4 Angular velocity ω (real)

5 Volume expansion coefficient β (real)

6 Reference temperature T0 (real)

7 Heat capacity at constant temperature cp (real)

8 Thermal conductivity κ (real)

9 First component of body force f1 (real)

10 Second component of body force f2 (real)

11 Third component of body force f3
This parameter is only used in the three-dimensional case or if an axi-symmetric model
with swirl is used.
If this parameter is necessary the next parameter are all one higher than indicated.

11 Heat source fT (real)

12 Integer parameter MODEL, defining the type of viscosity model.

Depending on the value of MODEL this parameter must be followed by the parameters
η, cT , T1, n and λ in that sequence. Compare with Section 7.1 (previous version of
SEPRAN).

Meaning of the integer parameters:

MCONV defines the type of linearization of the convective terms.
Possible values:

0 Stokes flow, the convective terms (v · v) are neglected.

1 Linearization by Picard’s method.

2 Linearization by Newton’s method.

10-12 See MCONV-10, in this case it is assumed that the instationary Navier-Stokes equa-
tions are solved and the linear combination of Mass matrix and Stiffness matrix is
computed as indicated in Section 7.1(previous version of SEPRAN).

MODEL Type of constitutive equation. MODEL consists of two parts: MODELV and α
according to:
MODEL = MODELV + 1000 × α, with

MODELV Type of constitutive equation. Possible values:

1 Newtonian liquid. In this case η is the dynamic viscosity.

2 Power-law liquid. In this case η is the parameter ηn and n the parameter n in
the power of the model.

3 Carreau liquid. In this case η is the parameter ηc and n the parameter n in the
power of the model. λ is the parameter λ the viscosity model.

4 Plastico-viscous liquid. In this case η is the parameter ηpv and n the parameter
n in the power of the model. λ is the parameter s the viscosity model.

100 user provided model, depending on ∇v.



SP Temperature dependent incompressible laminar flow January 1996 7.2.6

101 user provided model, depending on II.

102 user provided model, depending on x,v and II.

α Indication if the viscous dissipation 1
2t : A1 must be taken into account (α = 1) or

not (α = 0).

If MODELV ≥ 100 the user must provide a user written function subroutine, which computes
η as function of the parameters. The following choices for user subroutines are available:

MODELV = 100: function subroutine FNVT00 is used.

MODELV = 101: function subroutine FNVT01 is used.

MODELV = 102: function subroutine FNVT02 is used.

These function subroutines have the following shape:

FUNCTION FNVT00 ( GRADV, TEMP )

IMPLICIT NONE

DOUBLE PRECISION FNVT00, GRADV(*), TEMP

statements to compute the viscosity as function of GRADV and TEMP

FNVT00 = computed viscosity

END

FUNCTION FNVT01 ( SECINV, TEMP )

IMPLICIT NONE

DOUBLE PRECISION FNVT01, SECINV, TEMP

statements to compute the viscosity as function of SECINV and TEMP

FNVT01 = computed viscosity

END

FUNCTION FNVT02 ( X1, X2, X3, V1, V2, V3, SECINV, TEMP )

IMPLICIT NONE

DOUBLE PRECISION FNVT02, X1, X2, X3, V1, V2, V3, SECINV

statements to compute the viscosity as function of SECINV, X, V

and TEMP

FNVT02 = computed viscosity

END

In these subroutines array GRADV contains the gradient of the velocity in one point, SECINV
the second inverse, X1,X2,X3 the co-ordinates of the point V1,V2,V3 the velocity components,
and TEMP the temperature.
The storage of the gradient depends on the type of co-ordinate system, see Section 7.1.

• Definition of coefficients for the boundary conditions:

The natural boundary conditions may require input depending on the values given. Separate
boundary elements for velocity and temperature are required.
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Input for the velocity natural boundary conditions For each element group 2 (R2 or 3 R3)
coefficients must be given.

These coefficients are defined as follows:

1 σn

2 First component of σt

3 Second component of σt

Input for the temperature natural boundary conditions For each element group 2 coefficients
must be given.

These coefficients are defined as follows:

1 σ

2 h

• Computation of derivatives:

Depending on the parameter ICHELD in the input block ”DERIVATIVES” the following
types of derivatives are computed:

1 The pressure is computed in the vertices of the elements.

2 The derivative ∂vJDEGFD
∂xIX

, with JDEGFD and IX parameters in the input block ”DERIVA-
TIVES”.

3 div v is computed in the vertices of the elements.

4 curl v is computed in the vertices of the elements.

5 t is computed in the vertices of the elements.

6 ∇v is computed in the vertices of the elements.

7 The rate of elongation ε̇ is computed in the vertices of the elements.
ε̇ is the rate of strain in the direction of the velocity: ε̇ = 1

2v ·A1 · v
‖v‖

8 The shear rate γ̇ is computed in the vertices of the elements, according to the definition:
γ̇ = n1 ·A1n2, n1 · n2 = 0, ‖n1‖ = ‖n2‖ = 1

For problems with two velocity components: ‖n1‖ = v
‖v‖ , ‖n2‖ = (−v2,v1)

‖v‖
For problems with three velocity components:
γ̇12 = e1 ·A1 · e2, γ̇13 = e1 ·A1 · e3, γ̇23 = e2 ·A1 · e3

9 II
1
2 is computed in the vertices of the elements.

10 ∇T in the vertices is computed.

The output vector is defined as follows:

ICHELD=1,2,3,7,9 a vector of special structure (IVEC=1) with one unknown in each
vertex.

ICHELD=4 In the two-dimensional case a vector of special structure (IVEC=1) with one
unknown in each vertex.
In the three-dimensional case a vector of special structure (IVEC=5).
This is also the case for two-dimensional axi-symmetric flow with swirl.

ICHELD=5 a vector of special structure (IVEC=3).

ICHELD=6 a vector of special structure (IVEC=4).

ICHELD=8 In the two-dimensional case a vector of special structure (IVEC=1) with one
unknown in each vertex.
In the three-dimensional case a vector of special structure (IVEC=5).

ICHELD=10 a vector of special structure (IVEC=6).
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• Types of integrals that may be computed:

If the user wants to compute integrals over the solution, he may use the option INTEGRAL
in the input block ”STRUCTURE”

The parameter ICHELI in the input block ”INTEGRALS” is used to distinguish the various
possibilities:

ICHELI=1
∫
Ω

f(x)dΩ

The user must define the function f(x) as first coefficient by one of the methods described in
2.2.

• Input with respect to the time-dependence.

See Section 7.1 previous version of SEPRAN. MCONV=30 has not been implemented.
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Definition of type numbers

The type numbers for the old version are defined as follows:

420 Quadratic isoparametric triangle in R2, Cartesian co-ordinates.

423 Boundary conditions of type V2 corresponding to type 420.
The element must be a quadratic boundary element in R2.

426 Boundary conditions of type T2 corresponding to type 420.
The element must be a quadratic boundary element in R2.

421 Quadratic isoparametric triangle in R2, Axisymmetric co-ordinates without swirl.

424 Boundary conditions of type 2 corresponding to type 421.
The element must be a quadratic boundary element in R2.

427 Boundary conditions of type T2 corresponding to type 421.
The element must be a quadratic boundary element in R2.

422 Quadratic isoparametric triangle in R2, Polar co-ordinates.

425 Boundary conditions of type V2 corresponding to type 422.
The element must be a quadratic boundary element in R2.

428 Boundary conditions of type T2 corresponding to type 422.
The element must be a quadratic boundary element in R2.

429 Quadratic isoparametric triangle in R2, Axisymmetric co-ordinates with swirl.

437 Boundary conditions of type V2 corresponding to type 437.
The element must be a quadratic boundary element in R2.

438 Boundary conditions of type T2 corresponding to type 437.
The element must be a quadratic boundary element in R2.
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7.3 Turbulent flow

In this Section we consider the elements that are available for turbulent flow.
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7.3.1 The isothermal turbulent flow of incompressible liquids according
to Boussinesq’s hypothesis

Equations

For the derivation of the equations the averaging procedure of Osborne Reynolds is applied. The
fluctuating instantaneous velocity u is decomposed into an average velocity V, slowly varying with
time and space, and the fluctuating component v with average v̄ = 0. In a general reference system
the resulting equations are:

Conservation of mass (incompressibility constraint):

div V = 0 .

Conservation of momentum (Reynolds’s form of the Euler-Cauchy equations):

ρ

[
∂V

∂t
+ ( V · grad ) V + 2Ω×V

]
+ gradP − div (tvisc − ρvv) = ρf

with generalized pressure (or reduced pressure) P :

P = p− 1

2
ρ (Ω× x) · (Ω× x)

with unit tensor 1. The turbulent stress is defined as:

tturb = −ρvv +
ρ

3
v21 , Pm = P +

ρ

3
v2 , Σ = −Pm1 + t , t = tvisc + tturb,

which defines a new generalized pressure Pm and a total stress Σ. The constitutive equations for
purely-viscous liquids and for the Reynolds stresses according to Boussinesq’s hypothesis are:

tvisc = ηA1 , tturb = ηm A1 , A1 = gradV + (gradV)T .

with ( )T denoting the transpose of a tensor. The tensor A1 is two times Euler’s rate of deformation
tensor.

The equations are rewritten with help of the new generalized pressure Pm and extra stress t

ρ

[
∂V

∂t
+ ( V · grad ) V + 2Ω×V

]
+ gradPm − div t = ρf

The governing equations have the same structure as the equations for isothermal laminar flow for a
generalized newtonian liquid. This means that for fully-developed flow there is only one component
of the velocity V = (V1(x2), V2 = 0, V3 = 0) different from zero: the component in the direction
of the mean flow and it varies only perpendicular to this direction. The pressure Pm is a linear
function of the coordinate along the mean flow only !

Meaning of the parameters :

ρ density of the liquid
V mean velocity of the liquid
v turbulent fluctuating part of the velocity
Ω angular velocity (0, 0, ω) of the co-ordinate system with respect to an inertial system.
p hydrostatic pressure
Pm generalized (turbulent) pressure
Σ total stress tensor
η dynamic viscosity
ηm turbulence or eddy viscosity (Boussinesq’s hypothesis)
f external force field (body force)
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Criticism

At the axis of symmetry of a channel or a pipe the elements of the tensor A1 are equal to zero for
fully developed flow conditions, and therefore, according to Boussinesq’s hypothesis:

tturb = 0 , v2
1 = v2

2 = v2
3 = v2/3

which differs from experiments. For comments and criticism see Hinze (1975) and Tennekes and
Lumley (1974). However, for flows with no more than one characteristic length scale and one
characteristic velocity scale Boussinesq’s hypothesis is useful. These flows are approximately-parallel
flows.

The velocity profile close to a wall

Much of the reliability of the computation of a turbulent flow depends on the accurate modeling
of ηm near a solid wall. The viscosity η is small with respect to ηm except for a thin layer close
to the wall. At the wall vv must be zero because v = 0 there. Close to the wall are —in order of
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Figure 7.3.1.1: Velocity profile near a fixed wall

increasing distance from the wall— the viscous sublayer, the buffer layer, the inertial sublayer, and
the core region of an internal flow (or the outer layer of an external flow).

The friction velocity u∗ is a useful concept. It is defined with help of the shear stress along the wall
τw. Then also a dimensionless distance y+ from the wall can be defined:

u2
∗ =

τw
ρ
, τw = n ·Σ · t , y+ =

yu∗ρ

η

with distance from the wall y, normal and tangential vectors n and t, and stress tensor Σ. An
initial estimate of u∗ is therefore required. It depends on the type of flow and the smoothness of
the wall how u∗ depends on the global flow characteristics.

It has been given by Hussain and Reynolds (1975) on empirical grounds for channel flow, pipe flow,
and flow along a flat plate with negligible pressure gradient:

Re∗ ' 0.1058Re0.911 , 104 ≤ Re ≤ 6.104 , Re =
ρVmL

η
, Re∗ =

ρu∗L

η

with characteristic velocity Vm and length L of the mean flow. Re is the Reynolds number. Vm can
be based of the average flow rate, and L can be the diameter of a tube. Then we have also

y+ =
y

L
Re∗ , V+ =

V

u∗
=

V

Vm

Re

Re∗
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For illustrative purposes a picture of the velocity profile near the wall has been given in Fig-
ure 7.3.1.1. In the viscous sublayer (y+ ≤ 5) V+ = y+ and in the inertial sublayer (y+ > 55)
V+ = 1

κ log(y+) +B, κ ≈ 0.33− 0.41, B ≈ 4− 6. The constants κ (von Karmann’s constant) and B
have been determined from experiments. For the velocity profile in the buffer layer is no analytical
expression.

Close to the wall in the sublayers the flow is parallel to the wall. With coordinates x and y parallel
and perpendicular to the wall respectively, the equation for conservation of momentum yields

∂(tvisc + tturb)yx
∂y

=
∂Pm
∂x
− ρfx , (

∂

∂x
≡ 0 for V and Σ )

Integration of this equation over y from 0 to δ in the inertial subrange yields tyx(y = δ) = tyx(y =
0) +O(δ). For large values of Re we have therefore in the inertial sublayer

tyx(y = δ) = (ηm + η)

(
dVx
dy

)
y=δ

= η

(
dVx
dy

)
y=0

= τw

−ρuxuy ≈ τw = ρu2
∗

when η is neglected with respect to ηm which is allowed when δ is in the midst of the inertial
sublayer.

Boundary conditions.

Application of boundary conditions requires extreme care, as they determine the solution completely.
The differential equations are of elliptic type, so we need boundary conditions everywhere at the
boundary.

Permitted are the combinations

(i) V prescribed

(ii) Σn and Vt prescribed

(iii) Σt and Vn prescribed

(iv) Σn and Σt prescribed

with unit normal and tangential vectors n, t on/along a surface and with the definitions:

Σ = −Pm1 + (η + ηm)A1 , Σn = n ·Σ · n , Σt = n ·Σ− nΣn

=⇒ Σn = −Pm + 2(η + ηm)
∂Vn
∂n

.

The following combinations of the boundary conditions are frequently used

(i) no-slip condition V = 0 at a fixed wall

(ii) velocity prescribed in inertial sublayer at y+ ≈ 100 , Vn = 0 , Vt = u∗/κ log(y+) +B, which
requires estimation of u∗. Along a rough wall we can use exactly the same formula with
slightly different value of the constant B.

(iii) free slip condition or symmetry condition Vn = 0 , Σt = 0

(iv) instream or outstream condition Σn and Vt given. For fully developed flow Σn = −Pm , Vt =
0
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Prandtl’s mixing length hypothesis

Prandtl’s mixing length hypothesis specifies ηm in terms of a length scale lm. Implicitly is assumed
that the turbulent problem can be described in terms of one characteristic length scale only.

ηm = ρlnmII
1
2 , II =

1

2
A1 : A1 , n > 0 .

The quantity II =
∑
i

∑
j A1(ij)A1(ji)/2 is the second invariant of the tensor A1; for parallel flow

with V = (V1(x2), 0, 0) we have II = |dV1/dx2|. Strictly speaking the above model has been derived
by Prandtl for channel flow and pipe flow with n = 2. For other values of the parameter n the
physical dimensions of the equation are not correct. The formula is then of empirical value only.
The user may either choose between standard models from the package or may submit his own
model for the mixing length lm. The choice of this model depends strongly of the type of flow. For
the channel and pipe flow the power n = 2 must be applied. A short discussion will be presented
to this case below. This is of special importance for the application of the boundary conditions for
fully developed flow.

For the turbulent stress in the inertial sublayer can be written:

−(uxuy)y=δ = l2mII
1/2 dVx

dy
=⇒= l2m

∣∣∣∣dVxdy
∣∣∣∣ dVxdy

Therefore, using the definitions for y+, V+, we can derive lm+dV+/dy+ = 1. Using the expression
for the velocity profile in the inertial sublayer the mixing length becomes

lm+ = κy+ ,

which is also valid for a totally rough wall. In order to make this expression valid also in the buffer
layer and the viscous sublayer van Driest proposed:

lm+ = κy+

(
1− e−y+/A

)
, A ≈ 26

In the core region of a channel or pipe flow the mixing length according to Nikuradse can be used

lm,k/h = 0.14− 0.08(1− y/h)2 − 0.06(1− y/h)4 ,
y

h
=

L

hRe
y+

with distance h from the wall to the axis of symmetry. For y → δ , lm,k → 0.4y which is equal to
the equation lm+ = κy+ for κ = 0.4 . Now for a complete generalization of the mixing length for
both kernel area and wall area the Nikuradse form is corrected with van Driest’s proposal:

lm/h = lm,k/h
(

1− e−y+/A
)

It will be clear from the above discussion that u∗ or τw must be known for the determination of y+

and lm. The formula of Hussain and Reynolds can be used for that purpose. In a more advanced
version τw can be computed by the package (not yet available). The mixing length must be specified
in dimensional units.

Practical computations

The velocity gradient close to the wall is very large. In order to compute the velocity field V
accurately in the whole field including the wall region, at least 4 very thin elements along the wall
are required to cover 0 < y+ < 100. They must have increasing width ! It depends on u∗ what
y+ = 100 is in real units. For the kernel region of a channel or pipe flow another 6 elements are
required for a reasonable approximation. For higher accuracy more elements are required in both
regions.
It is strongly advised to gain experience with channel flow or pipe flow and compare the numerical
and experimental results.
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In many cases one is interested only in the solution away from the wall. In this region viscosity
does not play an important role and van Driest’s correction can be left out. Nikuradse’s formula
can de used without correction. The boundary of the region of the computations must be within
the inertial sublayer (for example at y+ ≈ 100), u∗ must be estimated and a slip velocity at the
wall must be prescribed.

The resulting equations are nonlinear due to convective terms and the nonlinear ηm. The effective
viscosity of the mixing-length model resembles that of the power-law model of generalized-newtonian
liquids (laminar flow) with power n = 2 and ηp = η+ηm. This model also requires an initial estimate
of the solution with help of another model: choose the newtonian flow with η ≈ ηp and without
convection. As second step perform a few iterations with convection. If the Reynolds number
based on max ηm for this flow is to large, then a lower value of Reynolds must be chosen for the
initial estimate. Then, finally the computations with the mixing-length model can be started. The
values of ηm for this initial estimates can be gained from experiments. For fully developed flow
and Re ≈ 3.104 the maximum of ηm/η is about 110, so ηp = 110η can be taken, i.e. the flow at a
Reynolds number about a factor 100 lower: Re ≈ 300.
It will be clear from the discussion in this section that a user should be more or less familiar with
the literature on turbulence in order to use the package effectively.

For some details about the solution method and the treatment of the nonlinear terms, Section 7.1
may be consulted.

Input for the various subroutines

• Definition of the storage scheme:

The first thing to be chosen is the type of storage scheme for the matrix. This storage scheme is
defined by the keyword METHOD = i in the input block ”MATRIX” of program SEPCOMP.
The matrix is not symmetrical due to convection, so METHOD=2 must be used.

• Definition of the coefficients for the differential equation:

The coefficients for the differential equation may be defined by one of the methods described
in Section 10.1, where, in general, the method by SEPCOMP is recommended.
The input parameters are similar to the laminar case and, additionally, information about the
wall(s) with respect to which the mixing length must be computed. The walls are specified
by curve numbers of the mesh. Suppose that the wall is composed of c1,c2,c3 and c5,c6,c7.
Then we have 2 sets of curves c1,c3 and c5,c7 if the last point of cn coincides with the first
point of cn+1 for n = 1, 2; 3, 4. Otherwise you should, for this example, specify NSETS=6 for
the sets of curves c1,c1; c2,c2; c3,c3; c5,c5; c6,c6; and c7,c7. In the parameter list (see below)
the numbers of the curves must be used. These are denoted by IC1, IC2, etcetera.

For the input of the parameters subroutine FIL100 can be used, which means that the arrays
IWORK and WORK must be filled as sketched in the table. The total number of parameters is
also indicated.
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meaning of parm sequence number integer real

penalty 1 0 ε
density 2 0 ρ
linearization 3 MCONV -
rotation 4 0 ω
body force x1 5 ICHF1 or 0 F1

body force x2 6 ICHF2 or 0 F2

body force xncomp 4+ncomp ICHF. or 0 Fncomp

viscosity model 5+ncomp MODELV -
viscosity 6+ncomp ICHETA or 0 η
power 7+ncomp (modelv=1) 0 n

friction velocity 8+ncomp (modelv=1) ICHu∗ or 0 u∗
length scale 9+ncomp (modelv=1) ICHh or 0 h

n sets of curves 7+ncomp or 10+ncomp NSETS -
first curve of 1 · · · ICS11 -
second curve of 1 · · · ICS12 -

...
...

...
first curve of n · · · ICSN1 -
second curve od n · · · ICSN2 -

MODELV NPARM

1 12+NSETS∗2
100 9+NSETS∗2

Meaning of the parameters :

ε penalty function parameter (see section 7.1).
ε must be chosen such that εPm = O(10−6).

ρ density of the liquid.
MCONV indicates type of linearization of the convective terms. Possible:

1 the convective terms (V · grad)V are linearized according to Picard’s method.
2 linearization by Newton’s gradient method.

ω angular velocity of the rotating system.
fi external forces (body force).
MODELV indicates the type of model. Possibilities:

1 Prandtl’s mixing length defined by the package.
100 User-defined model depending on x and distance from the wall curves.

η the dynamic viscosity of the liquid.
n the power of the length scale (MODELV=1 only).
u∗ friction velocity (MODELV=1 only).
h local length scale from wall to symmetry axis for Nikuradse’s formula (MODELV=1 only).
NSETS number of sets of curves that form the fixed wall.
ICS11 curve number of the first curve of the first set.
ICS12 curve number of the last curve of the first set.
...
ICSN2 curve number of the last curve of the NSETSth set.

When MODELV is equal to 100 the user must provide a function subprogram FML100 that
computes the mixing length as a function of x and the distance from wall curves. This
distance is computed by the package for any nodal point (or integration point). This function
is called by the matrix building subroutines in the following form:

FUNCTION FML100 (X1,X2,X3,DISTWL)

IMPLICIT NONE

DOUBLE PRECISION FML000, X1, X2, X3, DISTWL

...

C

C statements to give PRANDTL a value as function of x1,x2,distwl
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C

FML100=PRANDTL

END

• Definition of the coefficients for the boundary conditions:

The coefficients for the boundary conditions may be defined by one of the methods described
in Section 10.1, where, in general, the method by SEPCOMP is recommended.

When stresses must be prescribed that are different from zero, then boundary elements must
be created and Σn and Σt must be specified. These are the only two coefficients required and
are numbered 1 and 2 respectively.

• Computation of derivatives:

The parameter ICHELD in the input block ”DERIVATIVES” is used to distinguish the various
possibilities:

ICHELD = 1 the generalized pressure is computed in the vertices of the elements (IVEC=1).

ICHELD = 2 the derivative
∂Vj
∂xi

is computed with JDEGFD=j,IX=i (IVEC=1).

ICHELD = 3 divV is computed in the vertices of the elements (IVEC=1).

ICHELD = 4 curlV is computed in the vertices of the elements (IVEC=1).

ICHELD = 5 t = tvisc + tturb is computed in the vertices of the elements (IVEC=3).

ICHELD = 6 grad V is computed in the vertices of the elements (IVEC=4).

ICHELD = 7 the elongation rate ε̇ is computed in the vertices of the elements (IVEC=1).
For the definition see Section 7.1.

ICHELD = 8 the shear rate γ̇ is computed in the vertices of the elements (IVEC=1). For
the definition see Section 7.1.

ICHELD = 9 the quantity II1/2 is computed in the vertices of the elements (IVEC=1).

The output vector is defined as follows:

ICHELD= 1 the generalized pressure Pm is computed in the vertices of the elements.

2 the derivative
∂Vj
∂xi

is computed with JDEGFD=j, IX=i.

3 divV is computed in the vertices of the elements.
4 curlV is computed in the vertices of the elements.
5 t = tvisc + tturb is computed in the vertices of the elements.

Cartesian coordinates: t11, t12, t22, axi-symmetrical coordinates trr, trz, tzz, tφφ.
6 gradV is computed in the vertices of the elements.

See section 7.1.1 for details.
7 the elongation rate ε̇ is computed in the vertices of the elements.

For the definition see section 7.1.1.
8 the shear rate γ̇ is computed in the vertices of of the elements.

For the definition see section 7.1.1.
9 the quantity II1/2 is computed in the vertices of the elements.

• Types of integrals that may be computed:

If the user wants to compute integrals over the solution, he may use the option INTEGRAL
in the input block ”STRUCTURE”

The parameter ICHELI in the input block ”INTEGRALS” is used to distinguish the various
possibilities:
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ICHELI=1
∫
Ω

f(x)dΩ is computed. The function f(x) must be specified as first coefficient.

• Computation of stream function

When ICHELS=1 in STREAM then the stream function is computed in the nodal points
(IVEC=2).
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Definition of type numbers

The type numbers, which are given in the input block ”PROBLEM” for SEPCOMP define the type
of differential equation to be solved.

For the second order elliptic equation in this section the following type numbers are available:

430 Quadratic isoparametric triangle in R2 (Cartesian co-ordinates).
element shape number for mesh generation: 4

401 Boundary conditions of stress type:
(Cartesian co-ordinates).
element shape number for mesh generation: 2

431 Quadratic isoparametric triangle in R3 (Axi-symmetrical co-ordinates, no swirl: 2 space co-
ordinates).
element shape number for mesh generation: 4

405 Boundary conditions of stress type:
(Axi-symmetrical co-ordinates, no swirl: 2 space co-oordinates).
element shape number for mesh generation: 4 element shape number for mesh generation: 2

433 Quadratic isoparametric triangle in R3 (Axi-symmetrical co-ordinates, with swirl: 2 space co-
oordinates, 3 velocity components).
element shape number for mesh generation: 4

407 Boundary conditions of stress type:
(Axi-symmetrical co-ordinates, with swirl: 2 space co-oordinates, 3 velocity components).
element shape number for mesh generation: 2
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7.4 Methods to compute solid-fluid interaction

In this section we consider some methods available to tackle the problem of a solid-fluid interaction.
At this moment the following specific methods are available:

Fictitious domain method This method is especially meant for a moving solid in a fluid domain.

Below we give a short description of the various methods; examples are treated in the next sections.

Fictitious domain method The problem we consider is a rigid body that moves with some speed
in a fluid domain. The speed of the solid may be given. Due to the movement of the solid,
the velocity field in the fluid changes.
The idea behind the fictitious domain method is that it is difficult to mesh the fluid region
since the position of the solid changes in each time step. For that reason we use a fixed mesh
for the fluid, which includes the solid part and a fixed mesh for the solid. Both meshes are
considered as stand-alone, hence no points of the two meshes are coupled.
In order to couple the solid velocity and the fluid velocity we introduce the constraint that
the velocity at part of the boundary of the solid that is inside the fluid is equal to the velocity
in the same position in the fluid. Since, in general the solid boundary does not coincide with
fluid nodes, it is necessary to apply this constraint in a weak sense.
For that purpose we define so-called Lagrangian multipliers at the boundary of the solid
elements as far as this boundary is in the fluid. So we define boundary elements for that
boundary and on these boundary elements we define Lagrangian multipliers. The constraint
is translated into an integral relation.
For details of the method, the user is referred to Glowinski et al (1994a, 1994b, 1999) and
Bertrand et al (1997).
The Lagrange multipliers act as extra unknowns, necessary to satisfy the constraint. From the
literature it is known that the basis functions (shape functions) corresponding to the Lagrange
multipliers must be one degree lower than the approximation of the displacement in the solid
element.
Hence to apply the fictitious domain method we have to apply the following steps:

• Create a mesh for the fluid without taking the solid into account.

• Create a mesh for the solid without taking the fluid into account.

• Define fictitious elements along the part of the solid that is in the fluid.

• solve the problem

Hence not much extra steps are necessary to apply the fictitious domain method. Besides the
fact that we need to independent meshes, all we have to do is to provide input stating where
the fictitious unknowns must be positioned.
This step is done in the input block problem.
It consists of two parts of input:

• Part fictitious_unknowns.
In this parts the various groups of fictitious elements are defined and the corresponding
element types as described in this section.

• Part fictitious_elements.
In this part we define where the fictitious elements must be positioned.
Furthermore it is described which fluid element groups correspond to these elements as
well which structural (solid) element groups.
Also the shape of the basis functions for the Lagrange multipliers is defined.
At this moment the shape must always be of one degree less than that of the struc-
tural elements. Hence if we use linear two-dimensional elements for the structural el-
ements, we need constant basis functions along the boundary. This is indicated by
multiplier_shape=1.
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In the manual SEPRAN EXAMPLES Section 7.4.1 a very simple example is given to show
what kind of input is expected.

Warning

If you define fictitious unknowns along a boundary where the fluid part satisfies a Dirichlet
boundary condition, for example no-slip, the result will be a singular matrix. In that case the
fictitious unknowns are not coupled to any fluid unknown and this causes the problem.

Definition of type numbers

At this moment only one general type number for the fictitious elements is available.

921 Standard type number for fictitious elements.

923 Standard type number for fictitious elements with only one degree of freedom per point.
Hence this element is meant to be used for scalar equations.
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7.5 Methods to compute fluid flow in the presence of an obstacle

In this section we consider some methods available to tackle the problem of a stiff obstacle in the
fluid. The obstacle may be either stationary or moving in time. At this moment the following
specific methods are available:

Adapted Mesh method In this case the mesh is adapted to the obstacle.
This method is the most accurate since only the flow region is covered by elements.
It is less suited for moving obstacles.

Fictitious domain method This method is especially meant for a moving solid in a fluid domain.

Approximate Adapted Fixed Mesh method In this method the fixed mesh is locally adapted
to the obstacle in some approximate sense.
This method can be used both for fixed as well moving objects.

Pseudo concentration method This fixed mesh method is very similar to the level set method.
A description is not yet available.

All methods we describe (except the adapted mesh method) have in common that the fixed mesh
is intersected by the obstacle. All these methods therefore start by computing the intersection of
the edges of the fixed mesh with the obstacle in a very efficient way.
Once this has been done, nodes and elements are labeled.
We distinguish between the following types of elements:

• Elements that are completely outside the obstacle. These elements have no special name and
correspond to the fluid mesh only.

• Elements that are completely inside the obstacle. These elements are defined in the Users
Manual by inner_obstacle. See for example Section 3.2.2 (part SKIP ELEMENTS).

• Elements that are partly inside the obstacle and partly outside the obstacle. So in fact they are
intersected by the obstacle. These elements are defined in the Users Manual by on_obstacle.
See for example the Users Manual Section 3.2.2 (part SKIP ELEMENTS).

• Of this last category there is a class of elements that has all nodes either inside the obstacle or
on the boundary of the domain. These elements may be special with respect to the solution,
since it is possible that all nodes have prescribed velocities.
Such elements are indicated by the combination on_obstacle and curves ( ci to cj).
See also the Users Manual Section 3.2.2 (part SKIP ELEMENTS)

Also the nodal points can be distinguished into several groups:

• Nodes that are in elements that are completely outside the obstacle. These nodes have no
special name and correspond to the fluid mesh only.

• Nodes that are in elements that are completely inside the obstacle. These nodes are referred
to as in_inner_obstacle in the Users Manual Section 3.2.2 (part ESSENTIAL BOUNDARY
CONDITIONS).

• Nodes that are in elements that are intersected by the obstacle, i.e. these elements are partly
inside and partly outside the obstacle. These nodes are called in_boun_obstacle in the Users
Manual Section 3.2.2 (part ESSENTIAL BOUNDARY CONDITIONS).

• Nodes of the fixed mesh that are on the boundary of the obstacle. These nodes are called
on_boun_obstacle in the Users Manual Section 3.2.2 (part ESSENTIAL BOUNDARY CON-
DITIONS).
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• Finally there is the set of nodes that are completely inside the obstacle (boundary of the
obstacle included). These points are not directly coupled to a special class of elements.
These nodes are denoted by in_all_obstacle in the Users Manual Section 3.2.2 (part ES-
SENTIAL BOUNDARY CONDITIONS).

Below we give a short description of the various methods; examples are treated in the next sections.

Adapted Mesh method The adapted mesh method is the most accurate method of all methods
that treat the flow around an obstacle. However, this method requires that the mesh is
adapted to the obstacle. For a two-dimensional fixed obstacle this is no problem at all and
also for a three-dimensional obstacle mesh generation can be carried out.
However, as soon as the obstacle starts to move the generation of the mesh may be become a
problem.
Examples of this method can be found in the manual SEPRAN EXAMPLES Section 7.5.1

Fictitious domain method This method has already been described in Section 7.4. It can also be
used for a free moving object in a fluid, as will be shown in the manual SEPRAN EXAMPLES
Section 7.5.1

Approximate Adapted Fixed Mesh method The idea of the Approximate Adapted Fixed
Mesh method (AAFM) is the following. We start with a fixed mesh in the fluid domain
that like all other fixed mesh methods, does not take the obstacle into account.
After that we compute the intersection of the obstacle with all the edges of the fixed mesh.
At this moment the method is restricted to linear triangles (2D) and tetrahedrons (3D) only.
The extension to other types of elements is very difficult, but quadratic elements do not form
a bottle neck.
The intersection points on the intersected edges are all marked as new points for the mesh.
However, we make some important limitations that make the method feasible. First of all, if
the intersection is close to the end point of an edge, we mark that end point as an intersection
point. o the corresponding end point is said to be on the boundary of the obstacle, even if
it is actually not on the boundary. At this moment close is defined as a distance to the end
point which is less than 30% of the length of the edge. This construction is necessary in order
to avoid ill-shaped elements.
The other restriction we impose is that each edge may only once be intersected by the obstacle
(outside the end points of course). If more than one intersection point is found, which are
not close to the end point, the intersection is supposed to be positioned in the middle of both
intersection points.
Once the new intersection points are defined, new subelements of the original fixed fluid mesh
are made based on the extra points. For example in a triangle the number of extra points is
at most 3 and the triangle may be subdivided into at most 4 subtriangles.
After the new subdivision we have only elements that are completely inside or completely
outside the obstacle. In fact the obstacle is approximated by a new obstacle defined by the
intersection points. This new obstacle may be close to the original one, but in general it will
not be exactly the same. The influence of this approximation is usually only local, i.e. in the
neighbourhood of the obstacle itself. If such an approximation is not good enough, the only
solution is to use a finer mesh in the neighbourhood of the obstacle.
After the new mesh is created we have a mesh consisting of two parts, one inside the obstacle
and one outside. By prescribing the velocities inside the obstacle we return back to the same
method as used for the adapted mesh method.
Once the solution on the new mesh has been computed completely the adapted mesh is re-
moved and the solution is mapped back onto the old mesh. This last step is trivial since all
nodes of the old mesh are also part of the new mesh.
If the problem is time-dependent and the obstacle moves through the fixed mesh, this process
of creation a new mesh and removing it is repeated in each time step.
In the structure block described in the Users Manual Section 3.2.3, the following keywords
are available for the AAFM:
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MAKE_OBSTACLE_MESH: Creates an adapted mesh.
REMOVE_OBSTACLE_MESH: Removes an adapted mesh.
MOVE_OBSTACLE: Moves an obstacle.
If an adapted mesh is made, also all previous solutions are interpolated to that mesh. After
removing the mesh, all new solutions are copied back to the old mesh.

Pseudo concentration method A description is not yet available.

Definition of type numbers

At this moment the following general type number for the fictitious elements are available.

921 Standard type number for fictitious elements.

923 Standard type number for fictitious elements with only one degree of freedom per point.
Hence this element is meant to be used for scalar equations.
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7.6 Stationary free surface flows

Free surface problems are those problems where not only the flow problem must be solved, but
also the position of some of the boundaries is unknown. This means that such boundary must be
detected during the computations. Usually the number of boundary conditions on the free surface
is one more than required to solve the differential equations for the flow problem. In that case the
free boundary is defined implicit;y by this extra boundary condition.
In this section we shall restrict ourselves to stationary free boundary problems only. Instationary
free boundary problems are the subject of Section 7.7.
In general one may say that the solution of a stationary free surface problem consists of the following
steps:

Estimate the free boundary. This defines the initial region.
while not converged do

Solve the flow problem on the present region using all but one of the boundary conditions on
the free boundary.
Adapt the free boundary using the boundary condition that is left.
Adapt the mesh by adapting the coordinates or if necessary by remeshing.

end while

At this moment the following methods to adapt the free boundary are available

1. Iterative adaptation of the free boundary using one of the boundary conditions
The extra boundary condition is immediately applied to compute the free surface.

2. Implicit update of the free boundary
The position of the free boundary is used as an extra unknown. In this way the solution of
the free boundary problem is made implicit.

3. Approximating the free boundary by a convection problem
The free boundary is considered to be a streamline. The position of the stream line is solved
by solving a simple convection equation.

Below we give a short description of the various methods; examples are treated in the next sections.

Iterative adaptation of the free boundary using one of the boundary conditions In a 2d
case we need two velocity related boundary conditions to solve the incompressible
(Navier-)Stokes equations. So on the free surface we need in that case three boundary con-
ditions. A common set of boundary conditions for a stationary free boundary problem in R2

is:
u · n = 0; σnn = −p0; σnt = 0 (7.6.1)

The first one expresses that there is no flow through the free boundary, the second one that
the normal stress is equal to the pressure outside the flow (usually 0) and the last one that
the shear stress is equal to 0.
In order to solve the problem one usually takes 2 of the 3 boundary conditions to solve the
flow problem and the third one to update the free boundary. Intuitively the most simple
combination is to solve the Navier-Stokes equations using the stress boundary conditions and
to update the free boundary using the condition un = 0. However, depending on the surface
tension on the free boundary, a better convergence might be achieved by prescribing the shear
stress and normal velocity and using the normal stress to update the free boundary.
Methods that use the no-flow boundary condition are called kinematic conditions, methods
that utilize the normal stress conditions to update the boundary will be referred to as normal
stress balance.
In order to explain these method we assume that we have a free boundary in R2, which can
be written as y = h(x), and that the velocity has two components u and v.
Examples of kinematic methods are
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• the streamline variant.
Since the surface is a stream line we have dh

dx = v
u . This first order differential equation

is solved along the actual free boundary, starting with a fixed point. In fact this method
can be generalized to more dimensions using the convection variant treated under part
3.

• the film variant.
This method, introduced by Caswell and Viriyayuthakorn (1983), is based on conserva-
tion of mass. The difference between old and new free surface is given by a thin film
with uniform velocity. Formulas are given in the Users Manual Section 3.4.4.

• other methods like the method described by Silliman and Scriven (1980) or the optimal
control method (See for example Cuvelier (1980)) are not yet implemented in SEPRAN.

Also normal stress balance methods have not been implemented in SEPRAN.

Implicit update of the free boundary In this case the height h(x) is introduced as an extra
unknown on the free surface. So on the free boundary we have three unknowns (u, v and
h). The Navier-Stokes equations together with the boundary conditions on the free surface
and the position of the free surface are linearized by a Newton linearization. This results in
a larger system of equations due to the extra unknowns but in a faster convergence. In our
case the total linearization method of Kruyt et al (1988) has been implemented. It requires
an extra boundary element along the free boundary.

Approximating the free boundary by a convection problem This method is based on re-
placing the equation for the stream line by a convection equation of the shape:

u
dh

dx
= v (7.6.2)

This equation is integrated along the free boundary. So in each iteration step we start by solv-
ing the Navier-Stokes equations with the stress boundary conditions along the free boundary.
Then we solve the convection equation and finally we update the free boundary. It is clear
that this method can be applied both in R2 as well as in R3.

Definition of type numbers

At this moment the following general type numbers for the total linearization method are available.

915 This element may only be used in combination with quadratic Crouzeix Raviart extended
triangles for the Navier-Stokes equations.
It requires the following input for the 10 coefficients (the first 5 are integer the second 5 are
real):

1. not yet in use, must be 0

2. not yet in use, must be 0

3. not yet in use, must be 0

4. not yet in use, must be 0

5. not yet in use, must be 0

6. density ρ

7. viscosity η

8. surface tension coefficient γ

9. in case of line elements: the pressure at the previous iteration.
In case of point elements: first component of tangential vector t1

10. only for point elements: second component of tangential vector t2

Type 915 may be used both for the line elements as well as for point elements in the end of
the free surface boundary to prescribe the tangential vector.
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7.7 Instationary free surface flows

This section is under construction
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8 Second order elliptic and parabolic equations using spectral elements

Spectral elements
The spectral element method combines the rapid convergence rate of the plain spectral methods
with the generality of the finite element techniques. Spectral methods provide highly accurate
solutions to partial differential equations governing complex physical phenomena, but they have
been limited to idealized research problems due to their lack of geometric flexibility. The spectral
element method was developed to increase the geometrical flexibility of high order spectral methods.
More information on the spectral element method can be found in Canuto et al (1988) and in van
de Vosse and Minev (1996).

In this chapter we consider elliptic and parabolic equations of second order that are solved by
spectral elements.
The following Sections are available:

8.1 Second order real elliptic and parabolic equations with one-degree of freedom.
In this section the general second order quasi linear elliptic equation is treated. Due to the
presence of a time derivative the corresponding parabolic equation is treated as well.
The number of unknowns per point is 1.
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8.1 Second order real linear elliptic and parabolic equations with one
degree of freedom

Equation

In this section we consider equations of the following form :

ρcp(
∂c

∂t
+ u · ∇c)− div(α∇c) + βc = f (8.1.1)

i.e.

ρcp
∂c

∂t
+ ρcp

n∑
i=1

ui
∂c

∂xi
−

n∑
i=1

n∑
j=1

∂

∂xi

(
αij

∂c

∂xj

)
+ βc = f, (8.1.2)

where x = (x1,x2, . . . ,xn) ∈ Ω ⊂ Rn.

In stationary case (∂c∂t = 0) (8.1.1) reduces to

u · ∇c− div (α∇c) + βc = f . (8.1.3)

In this case the equation is elliptic, otherwise it is parabolic.
The coefficients ρcp,u, α, β and f may depend on space and time and also of solutions of other
problems. The following restrictions are required :

• ρcp > 0.

• The matrix α with coefficients αij must be positive definite symmetric matrix. In the extreme
case α may be equal to zero in which case the equation is of hyperbolic type.

Remark
If the matrix αij is non-symmetric it may be split into a symmetric and and an anti-symmetric
part. Using the chain rule of differentiations it is easy to see that the anti-symmetric part yields
only first order derivatives of c.

Typical examples of equations of the form (8.1.1) are given in Section 3.1.

Upwinding

The combination of upwinding and spectral elements is not yet available.

Boundary and initial conditions

In the in-stationary case it is necessary to give an initial condition at t = 0.
The following type of boundary conditions are available :
Type 1 (Dirichlet boundary condition) c(x) given on some part of the boundary.

Type 2 (Neumann or mixed boundary condition)

n∑
i=1

n∑
j=1

αij
∂c

∂xj
ni + σ(x)c(x) = h(x) (σ(x) ≥ 0) (8.1.4)

on some part of the boundary. this is a so-called natural boundary condition. In general, boundary
elements are necessary , except in the case that σ(x) = 0 and h(x) = 0, when there is no need to
give any condition on this part of the boundary. For σ = 0 this is a Neumann boundary condition,
otherwise it is a mixed boundary condition.

Also other special type of natural boundary conditions are possible in combination with (8.1.1) (see
Section 3.1). However they have not been implemented yet (contact SEPRA).

Input for the various subroutines
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• Definition of the storage scheme :

The first thing to be chosen is the type of storage scheme for the matrices. the storage scheme
is defined by the keyword METHOD = i in the input block ”MATRIX” of the program
SEPCOMP.

In general, two matrices may be created : the mass matrix and the stiffness matrix. The
mass matrix is only used for time-dependent problems. This matrix, diagonal for spectral
elements, pre-multiplies the discretized time-derivative. The stiffness matrix represents the
discretization of the stationary terms in the left hand side of equation (8.1.1).

In the case of a symmetrical stiffness matrix METHOD = 1 or 5 may be chosen, otherwise
METHOD should be equal to 2 or 6. The choice between 1,2 or 5,6 depends on the choice of
solution method. A direct method requires METHOD = 1 or 2, an iterative method, using a
compact storage of the matrix, 5 or 6.

• Definition of the coefficients for the differential equation : The coefficients for the differential
equation, using spectral elements (ITYPE = 600), are defined similar to the coefficients for
finite elements (ITYPE = 800).
For each elements group 20 parameters and coefficients must be given. the first 5 parameters
are of integer type, which means that they must be defined by ICOEFi in the input, the last
15 are real coefficients.

The parameters and coefficients are defined as follows:

1 not yet used

2 type of upwinding and convective terms

3 type of numerical integration

4 type of co-ordinate system

5 not yet used

6 α11

7 α12

8 α13

9 α22

10 α23

11 α33

12 u1

13 u2

14 u3

15 β

16 f

17 ρcp

18-20 not yet used

Parameters that are not yet used must be set equal to zero. they are meant for future
extensions. In the input for SEPCOMP this means that no information about these coefficients
has to be given.
The coefficients 6-20 may be zero, constants or functions as described in Section 10.1. They
may also depend on pre-computed vectors. Of course, in 1D and 2D not all coefficients are
used.
The default values for the real coefficients 6 to 16 are zero, for coefficient 17 (ρcp), however,
the default is one.

With respect to the parameters 1-5 the following choices are available:



SP Second order elliptic and parabolic equations ( 1 unknown) September 1996 8.1.3

2 Type of upwinding and convective terms.
At this moment only the default value 0 is allowed. This means no upwinding and the
convective term in equation (8.1.1) has the form (u · ∇)c.

3 Type of numerical integration rules.
At this moments only the default value 0 is allowed. This means a Gauss-Lobatto-
Legendre rule is used.

4 Type of co-ordinate system.
At this moment only Cartesian co-ordinates may be used (default value 0).

• Definition of the coefficients for boundary conditions:

The coefficients for the boundary conditions may be defined by one of the methods described
in Section 10.1, where, in general the method by SEPCOMP is recommended. For each
element group 15 parameters and coefficients must be given. The first 5 parameters are of
integer type which means that they must be defined by ICOEFi in the input, the last 10 are
real coefficients.

These parameters and coefficients are defined as follows:

1 Type of natural boundary condition

2 Not yet used (must be zero)

3 type of numerical integration

4 type of co-ordinate system

5 not yet used

6 σ

7 h

8 α11

9 α12

10 α13

11 α22

12 α23

13 α33

14-15 not yet used

Parameters that are not used must be set equal to zero. They are meant for future extensions.
In the input for SEPCOMP this means that no information about these coefficients has to be
given.
The coefficient 6-15 may be zero, constants or functions as described in Section 10.1. They
may also depend on pre-computed vectors. Of course, in 1D and 3D not all coefficients are
used. The coefficient 8-13 are for future use for boundary conditions of type 4 ( see Section
3.1, element 800).

With respect to the parameters 1-5 the following choices are available:
For the type of natural boundary condition possible values are 0,2. For type of numerical
integration rule only the default 0 is possible (Gauss-Lobatto-Legendre). Only Cartesian
co-ordinates are available for spectral elements.

• Parameters for subroutine BUILD :
With respect to subroutine BUILD the parameter IMAS (IINBLD(4)) is of importance. Note
that the combination of the spectral basis functions the Gauss-Lobatto integration rule leads
to a diagonal mass matrix (see also van de Vosse and Minev (1996)).
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• Parameters with respect to linear solver :
In the case u = 0 and β ≥ 0 the stiffness matrix is not only symmetric but also positive
definite.

• Computation of derivatives:

The parameter ICHELD in the input block ”DERIVATIVES” is used to distinguish the various
possibilities:

ICHELD = 1 ∂c
∂xi

, where xi is defined by the parameter ix.

ICHELD = 2 ∇c
ICHELD = 3 -∇c
ICHELD = 4 not yet defined

ICHELD = 5
(
∂c
∂y ,−

∂c
∂x

)
2D only

ICHELD = 6-10 not yet defined

ICHELD = 11-24 not yet defined

ICHELD = 25 Compute residual Su

ICHELD = 26-29 not yet defined

ICHELD = 30 (∇c, ψ) computed weak,ix = 1, 2 (only 3D) , 3

ICHELD = 31 (∇ · c, ψ) computed weak

ICHELD = 32 (∇∇ · c, ψ) ix = 1, 2 (only 3D) , 3

ICHELD = 33 Compute convection u · ∇c

ICHELD = 34 Compute non-constant viscosity term ∇ · (ν∇c+ (∇c)T )

ICHELD = 35-39 not yet defined

ICHELD = 40 Interpolation routines (only for odd number of side-points )

The output vector is defined as follows :
1,11-40: a vector of the type solution vector with one unknown per point
2,3,5: a vector of the type vector special structure with ndim unknowns per point

• Types of integrals that may be computed :
The parameter ICHELI in the block ”INTEGRALS” is used to distinguish the various possi-
bilities:

ICHELI=1
∫
Ω

f(x)dΩ

ICHELI=2
∫
Ω

f(x)c(x)dΩ

ICHELI=2+i
∫
Ω

f(x) ∂c∂xi dΩ (i= 1,2,3)

• Creation of spectral mesh

To define a spectral mesh two lines have to added to the mesh input file:

intermediate points

sidepoints = 4, subdivision = legendre, midpoints = filled

By changing the number of sidepoints the order of the spectral method is altered. The order
of the method is always one more than the number of sidepoints. At this moment the number
of sidepoints can be chosen between 1 and 23.
The option sidepoints = 0 has not been implemented yet.
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Example

Consider the following mesh input-file :

mesh2d

points

p1=(-1.0d0, 0.0d0)

p2=( 0.5d0, 0.0d0)

p3=( 0.5d0, 0.5d0)

p4=(-1.0d0, 0.5d0)

curves

c1=line1(p1,p2,nelm=2)

c2=line1(p2,p3,nelm=2)

c3=line1(p3,p4,nelm=2)

c4=line1(p4,p1,nelm=2)

surfaces

s1=rectangle5(c1,c2,c3,c4)

intermediate points

sidepoints=4,subdivision=legendre,midpoints=filled

plot(jmark=3, numsub=1)

norenumber

end

Program sepmesh in combination with this input file creates the four spectral elements of 5th
order that are shown in Figure 8.1

x

y

1 2 3

4 5 6

7 8 9

10 11 12 13

14 15 16 17

18 19 20 21

22 23 24 25

26 27 28 29
30 31 32 33

34 35 36 37

38 39 40 41

42 43 44 45

46 47 48 49
50

51

52

53

54 55 56 57

58 59 60 61

62 63 64 65

66 67 68 69

70

71

72

73
74 75 76 77

78 79 80 81

82 83 84 85

86 87 88 89

90 91 92 93

94

95

96

97
98 99 100 101

102

103

104

105

106

107

108

109
110 111 112 113

114

115

116

117
118 119 120 121

1 2

3 4

MESH
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Definition of type numbers
The type numbers, which are given in the input block ”PROBLEM” for SEPCOMP define the type
of differential equation to be solved.

For the second order elliptic equation the following type numbers are available:

600 general type number for the internal elements. Defines the differential equation.
This type number is available for the following elements shape numbers :

shape = 1 linear line element.

shape = 5 bilinear quadrilateral.

shape = 13 trilinear hexahedron.

General Remark
In general any problem using elements 800 and 801 can be solved by spectral elements by just
changing the problems numbers into 600 and 601 respectively. Further, the mesh input-file should
be modified (addition of section intermediate points). Note however, that some options of elements
800 and 801 are not yet implemented in the spectral elements. Please contact SEPRA if you need
additional options.
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9 Fourth order elliptic and parabolic equations

In general fourth order equations require special elements that allow continuity of the first order
derivatives of the basis functions. A disadvantage of such an approach is that high degree polyno-
mials are required, which are difficult to construct.
An alternative is to split the unknown in a set of two unknowns each satisfying a second order
equation. Such an option is not always possible. For example the boundary conditions must be
formulated in terms of these new unknowns. This can be done only for special combinations of
boundary conditions. In this chapter we consider such a case:

9.1 The Cahn-Hilliard equation. This equation is used to model pattern formation, or spinodal
decomposition.
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9.1 The Cahn-Hilliard equation

The Cahn-Hilliard equation is used to model pattern formation, or spinodal decomposition. The
equation is important where phase transitions occur. Models based on Cahn-Hilliard equations are
applicable to the following phenomena that occur during phase transitions within the domain of
computation Ω:

- nucleation of particles or secondary phases (this is the formation of particles);

- growth and dissolution of the particles or secondary phases;

- merging of particles or secondary phases.

In Cahn-Hilliard type models, the secondary phase (or the particles) is usually identified by by the
portion of the computational domain where a certain threshold is exceeded, that is

Ωp = {x ∈ Ω : c(t,x) ≥ ĉ}, (9.1.1)

in which c = c(t,x) denotes the solution and x and t, respectively denote the spatial position and
time.

Equations

Let c be the volume fraction of a phase in a binary system, i.e. a system that consists of two species
only, then, the total Ginzburg-Landau free energy of the system is given by

F (c) =

∫
Ω

{
f(c) +

κ

2
|∇c|2

}
dV, (9.1.2)

where κ ≥ 0 denotes the gradient energy coefficient. Further, f(c) is the bulk free energy, which
can be obtained from thermodynamic databases. A typical form is the following

f(c) = RT

(
c ln(c)

N1
+

(1− c) ln(1− c)
N2

)
+ ωc(1− c). (9.1.3)

Here ω denotes the interaction parameter. An example of a bulk free energy of the above form is
shown in Figure 9.1.1. Here N1 and N2 are related to the molecular size. The values cL and cR are
known as the binodal points, determined by the common tangent construction, as shown in Figure
9.1.1. The second term in equation (9.1.2) is crucial in the interfacial region, where the gradient of
c is large. Therefore, the second term is also refer to as the interfacial energy. The diffusive flux,
J , is postulated to be proportional to the gradient of the chemical potential, hence

J = −M∇µ(c) = −M∇δF (c)

δc
. (9.1.4)

Here the derivative δF (c)
δc is given by

δF

δc
= f ′(c)− κ∆c. (9.1.5)

From now on, we will assume M to be a constant. Substitution of equation (9.1.5) into (9.1.4) and
use of the mass-balance,

∂c

∂t
= −∇ · J, (9.1.6)

gives the Cahn-Hilliard equation on Ω

∂c

∂t
= ∇ · {M [f ′′(c)∇c− κ∇∆c]} . (9.1.7)
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Figure 9.1.1: A plot of a Gibbs free energy function and the determination of the binodal concen-
trations.

In the above equation the second derivative Mf ′′(c) acts like a diffusion coefficient. The fourth
order term, with κ, in the Cahn-Hilliard equation is also considered as a stabilization term, for the
case where f ′′(c) < 0. This equation has been applied to model phase segregation and spinodal
decomposition in numerous studies. In the case of phase-separation and spinodal decomposition,
the second derivative of f with respect to c becomes negative in the interface part of the domain.
Physically, the negative values of the second derivative of f give rise to ’uphill diffusion’, which is
diffusion from low concentration areas to high concentration regions. As boundary conditions we
use symmetry conditions, i.e.

∂c

∂n
=
∂(∆c)

∂n
= 0, on ∂Ω. (9.1.8)

These two boundary conditions are necessary due to the fourth order spatial partial derivative that
occur in the Cahn-Hilliard equation. In many other studies, periodic boundary conditions are used
instead. Further, we have an initial condition for the concentration c:

c = c0, for t = 0. (9.1.9)

It should be realized that
√
κ is a measure of the interface thickness. Furthermore, one can demon-

strate that solutions to the Cahn-Hilliard equation satisfy the following fundamental properties:

- Solutions to the Cahn-Hilliard equation are mass conserving. that is d
dt

∫
Ω
cdΩ = 0;

- The total energy is non-increasing, that is dF (c)
dt ≤ 0.

Solution method

In our approach, we follow the work due to Elliott et al and the more recent work due to Ceniceros
& Roma in which we use reduction of order for the spatial derivatives. This approach is suitable
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if one works with symmetry boundary conditions. Therewith we introduce a function u such that
u = ∆v, then this gives the following system for the binary case:

∆c = u,

∂c

∂t
= ∇ · {M [f ′′(c)∇c− κ∇u]}.

(9.1.10)

The above system to be solved is allowable because of the nature of the boundary conditions, which
turn into

∂c

∂n
= 0 =

∂u

∂n
, for x ∈ ∂Ω. (9.1.11)

These equations can be solved by the method described in Section 3.7.
An example can be found in the manual SEPRAN Examples.
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10 coefficients in case of own programs

10.1 How to provide coefficients and parameters

In general all standard problems described in this manual require information concerning coeffi-
cients and parameters. These parameters may be parameters with respect to the equation, but
also parameters concerning the solution method. Essentially, we distinguish between two types of
parameters, parameters which may have only an integer value (usually parameters influencing the
solution process) and parameters which may have both real and integer values (coefficients). In
each standard problem parameters and coefficients get a sequence number. This sequence number
is essential for the recognition of these parameters.

The user may provide parameters and coefficients in several ways. The most simple way is provided
by or program SEPCOMP (which in fact calls subroutine FILCOF). A less simple way is provid-
ing coefficients and parameters through the subroutines FIL100-FIL104 or FIL150-FIL154. The
advantage of these subroutines is that no input from the standard input file is required. Both the
subroutines FILCOF and FIL100-FIL104 fill information of the parameters and coefficients into the
arrays IUSER and USER. These arrays are used by subroutines like BUILD, DERIV and INTEGR.
The most complicated but also most general way of providing coefficients is by filling the arrays
IUSER and USER directly.
We shall now consider these three possibilities in more detail.

Method 1 simple input provided by the user through the standard input file.

If program SEPCOMP is used, or if the subroutines LINSOL(LINSTM) or FILCOF are used the
user must provide information about the coefficients and parameters through the standard input
file.
Program SEPCOMP is described in the manual SEPRAN INTRODUCTION, the description of
FILCOF can be found in the SEPRAN PROGRAMMERS GUIDE.

The syntax of the input in the input file is as follows (see also SEPRAN INTRODUCTION and
USERS MANUAL):

[COMPLEX] COEFFICIENTS

ELGRP1 (NPARM = n_1) (information of coefficients for element group 1)

ELGRP2 (NPARM = n_2) (information of coefficients for element group 2)

.

.

.

ELGRP nelgrp (NPARM = n_nelgrp) (information of coefficients for element group nelgrp)

BNGRP1 (NPARM = m_1) (information of coefficients for boundary element group 1)

.

.

.

END

ni denotes the number of parameters (coefficients) for element group i and mi the number of
parameters for boundary element group i.

The syntax for the information of coefficients is as follows:

ICOEF_1 = i

ICOEF_2 = j

COEF_3 = description_1

COEF_4 = description_2
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.

.

.

where description may have one of the following shapes:

VALUE = v

v

FUNC = f

POINTS, IREF = r_1

ELEMENTS, IREF = r_2

COEF_j

OLD_SOLUTION j [,DEGREE_OF_FREEDOM d],[COEF = desc]

where desc may have one of the following shapes:

VALUE = v

v

FUNC = f

For the meaning of these parameters the reader is referred to the Users Manual (3.2.6).

Method 2 simple input provided by the user directly in the main program.

An alternative for the filling of coefficients by FILCOF which requires input from the standard
input is to fill information in the arrays IUSER and USER directly through the subroutine FIL1.. .
The following subroutines are available:

FIL100 (10.2.1) Simple filling of coefficients for real differential equations.

FIL101 (10.2.2) Simple filling of coefficients for natural boundary conditions corresponding to real
differential equations.

FIL103 (10.2.5) Extended filling of coefficients for real differential equations.

FIL104 (10.2.6) Extended filling of coefficients for natural boundary conditions corresponding to
real differential equations.

FIL150 (10.2.3) Simple filling of coefficients for complex differential equations.

FIL151 (10.2.4) Simple filling of coefficients for natural boundary conditions corresponding to
complex differential equations.

FIL153 (10.2.7) Extended filling of coefficients for complex differential equations.

FIL154 (10.2.8) Extended filling of coefficients for natural boundary conditions corresponding to
complex differential equations.

For a description of these subroutines see Section 10.2.

Method 3 directly filling of the arrays IUSER and USER by the user.

This is far most the most complicate way of filling coefficients and parameters. For a description
of this method see Section 10.3.
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10.2 Subroutines FIL...

10.2.1 Subroutine FIL100

Description

The specification of the coefficients for the standard problems is stored in the arrays IUSER and
USER. Besides with subroutine FILCOF this may also be done by the subroutines FIL... .
A subroutine FIL... must be called for each standard element and for each standard boundary
element separately. Hence at most NELGRP + NUMNATBND calls of subroutines FIL... are
necessary, before the call of subroutine BUILD. Subroutine FIL100 may not be used for boundary
elements.

Call

CALL FIL100 ( IELGRP, IUSER, USER, KPROB, IPARM, IWORK, WORK )

Parameters

INTEGER IELGRP, IUSER(∗), KPROB(∗), IPARM, IWORK(IPARM)

DOUBLE PRECISION USER(∗), WORK(IPARM)

IELGRP Standard element number (1 ≤ IELGRP ≤ NELGRP ).
The calls of subroutines FIL... must be done in a natural sequence, hence first a call for
IELGRP = 1, then for IELGRP = 2 etc.

IUSER Integer array in which information concerning the coefficients is stored.
Variable length array.

USER Real array in which information concerning the coefficients is stored.
Variable length array. In general 100 positions are sufficient.
The arrays IUSER and USER are used as input for subroutine BUILD.

KPROB Array containing information of the problem to be solved.
Output of subroutine SEPSTR.

IPARM In this position the number of parameters for the differential equation must be stored.
This parameter is given for each standard problem.

IWORK,WORK User arrays of length IPARM. In these arrays information concerning the coeffi-
cients must be stored in the sequence as indicated at the description of the standard problems.
When IWORK(i) = 0 then the ith parameter is a constant, whose value must be stored in
WORK(i).
When IWORK(i) > 0 then the ith parameter is a function.
When IWORK(i) < 1000 the user written function subroutine FUNCCF is used to compute
the value of this parameter in a point. For a description of FUNCCF see 10.4. The value of
IWORK(i) is used as the parameter ICHOIS in FUNCCF
When IWORK(i) > 1000 and IWORK(i) < 2000 then the user written function subroutine
FUNCC1 is used to compute the value of this parameter. For a description of FUNCC1 see
10.4. The value of IWORK(i) - 1000 is used as the parameter ICHOIS in FUNCC1.
IWORK(i) > 2000 is not allowed.
Mark that IWORK and WORK are not treated as SEPRAN variable arrays, hence the user
must take care of the declaration himself.

Input
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The user must give IELGRP and IPARM a value.
When IELGRP > 1 the arrays IUSER and USER must have been filled before by IELGRP - 1
preceding calls of subroutines FIL... .
The arrays KPROB, IWORK, and WORK must have been filled.

Output

A part of the arrays IUSER and USER have been filled.
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10.2.2 Subroutine FIL101

Description

The specification of the coefficients for natural boundary conditions is stored in the arrays IUSER
and USER.
Subroutine FIL101 must be called for each standard boundary element separately. Hence at most
NUMNATBND calls of FIL101 are necessary before the call of BUILD.

Call

CALL FIL101 ( IBNGRP, IUSER, USER, KPROB, IPARM, IWORK, WORK )

Parameters

INTEGER IBNGRP, IUSER(∗), KPROB(∗), IPARM, IWORK(IPARM)

DOUBLE PRECISION USER(∗), WORK(IPARM)

IBNGRP Standard boundary element number (1 ≤ IBNGRP ≤ NUMNATBND).
The calls of subroutines FIL... must be done in a natural sequence, first for all internal
elements (i.e. corresponding to the differential equation) and then for the boundary element
with boundary element number IBNGRP = 1, then for IBNGRP = 2 etc.

IUSER,USER See subroutine FIL100 (10.2.1).

KPROB Array containing information of the problem to be solved.
Output of subroutine SEPSTR.

IPARM In this position the number of parameters for the natural boundary conditions must be
stored. This parameter is given for each standard problem.

IWORK,WORK User arrays of length IPARM. In these arrays information concerning the coeffi-
cients must be stored in the sequence as indicated at the description of the standard problems.
When IWORK(i) = 0 then the ith parameter is a constant, whose value must be stored in
WORK(i).
When IWORK(i) > 0 then the ith parameter is a function.
When IWORK(i) < 1000 the user written function subroutine FUNCCF is used to compute
the value of this parameter in a point. For a description of FUNCCF see 10.4. The value of
IWORK(i) is used as the parameter ICHOIS in FUNCCF
When IWORK(i) > 1000 and IWORK(i) < 2000 then the user written function subroutine
FUNCC1 is used to compute the value of this parameter. For a description of FUNCC1 see
10.4. The value of IWORK(i) - 1000 is used as the parameter ICHOIS in FUNCC1.
IWORK(i) > 2000 is not allowed.
Mark that IWORK and WORK are not treated as SEPRAN variable arrays, hence the user
must take care of the declaration himself.

Input

The user must give IBNGRP and IPARM a value.
The arrays IUSER and USER must be filled by NELGRP + IBNGRP - 1 preceding calls of sub-
routines FIL...
Array KPROB must have been filled.

Output

A part of the arrays IUSER and USER have been filled.
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10.2.3 Subroutine FIL150

Description

The specification of the coefficients for the standard problems is stored in the arrays IUSER and
USER. In the case of the simple input (see 10.1), this may be done by the subroutines FIL... .
A subroutine FIL... must be called for each standard element and for each standard boundary
element separately. Hence at most NELGRP + NUMNATBND calls of subroutines FIL... are
necessary, before the call of subroutine BUILD. Subroutine FIL150 must be used for complex
coefficients and may not be used for boundary elements.

Call

CALL FIL150 ( IELGRP, IUSER, USER, KPROB, IPARM, IWORK, WORK )

Parameters

INTEGER IELGRP, IUSER(∗), KPROB(∗), IPARM, IWORK(IPARM)

DOUBLE PRECISION USER(∗)

COMPLEX ∗16 WORK(∗)

IELGRP Standard element number (1 ≤ IELGRP ≤ NELGRP ).
The calls of subroutines FIL... must be done in a natural sequence, hence first a call for
IELGRP = 1, then for IELGRP = 2 etc.

IUSER Integer array in which information concerning the coefficients is stored.
Variable length array.

USER Real array in which information concerning the coefficients is stored.
Variable length array. In general 100 positions are sufficient.
The arrays IUSER and USER are used as input for subroutine BUILD.

KPROB Array containing information of the problem to be solved.
Output of subroutine SEPSTR.

IPARM In this position the number of parameters for the differential equation must be stored.
This parameter is given for each standard problem.

IWORK,WORK User arrays of length IPARM. In these arrays information concerning the coeffi-
cients must be stored in the sequence as indicated at the description of the standard problems.
Array WORK must be a complex array.
When IWORK(i) = 0 then the ith parameter is a constant, whose value must be stored in
WORK(i).
When IWORK(i) > 0 then the ith parameter is a function.
When IWORK(i) < 1000 the user written function subroutine CFUNCF is used to compute
the value of this parameter in a point. For a description of CFUNCF see 10.4. The value of
IWORK(i) is used as the parameter ICHOIS in CFUNCF
When IWORK(i) > 1000 and IWORK(i) < 2000 then the user written function subroutine
CFUNC1 is used to compute the value of this parameter. For a description of CFUNC1 see
10.4. The value of IWORK(i) - 1000 is used as the parameter ICHOIS in CFUNC1.
IWORK(i) > 2000 is not allowed.
Mark that IWORK and WORK are not treated as SEPRAN variable arrays, hence the user
must take care of the declaration himself.

Input

The user must give IELGRP and IPARM a value.
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When IELGRP > 1 the arrays IUSER and USER must be filled before by IELGRP - 1 preceding
calls of subroutines FIL... .
The arrays KPROB, IWORK, and WORK must have been filled.

Output

A part of the arrays IUSER and USER have been filled.
Each complex quantity in WORK takes two positions in array USER.
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10.2.4 Subroutine FIL151

Description

The specification of the coefficients for natural boundary conditions is stored in the arrays IUSER
and USER.
Subroutine FIL151 must be called in the case of complex coefficients for each standard boundary
element separately. Hence at most NUMNATBND calls of FIL151 are necessary before the call of
BUILD.

Call

CALL FIL151 ( IBNGRP, IUSER, USER, KPROB, IPARM, IWORK, WORK )

Parameters

INTEGER IBNGRP, IUSER(∗), KPROB(∗), IPARM, IWORK(IPARM)

DOUBLE PRECISION USER(∗)

COMPLEX ∗16 WORK(∗)

IBNGRP Standard boundary element number (1 ≤ IBNGRP ≤ NUMNATBND).
The calls of subroutines FIL... must be done in a natural sequence, first for all internal
elements (i.e. corresponding to the differential equation) and then for the boundary element
with boundary element number IBNGRP = 1, then for IBNGRP = 2 etc.

IUSER,USER See subroutine FIL150 (10.2.3).

KPROB Array containing information of the problem to be solved.
Output of subroutine SEPSTR.

IPARM In this position the number of parameters for the natural boundary conditions must be
stored. This parameter is given for each standard problem.

IWORK,WORK User arrays of length IPARM. In these arrays information concerning the coeffi-
cients must be stored in the sequence as indicated at the description of the standard problems.
Array WORK must be a complex array.
When IWORK(i) = 0 then the ith parameter is a constant, whose value must be stored in
WORK(i).
When IWORK(i) > 0 then the ith parameter is a function.
When IWORK(i) < 1000 the user written function subroutine CFUNCF is used to compute
the value of this parameter in a point. For a description of CFUNCF see 10.4. The value of
IWORK(i) is used as the parameter ICHOIS in CFUNCF
When IWORK(i) > 1000 and IWORK(i) < 2000 then the user written function subroutine
CFUNC1 is used to compute the value of this parameter. For a description of CFUNC1 see
10.4. The value of IWORK(i) - 1000 is used as the parameter ICHOIS in CFUNC1.
IWORK(i) > 2000 is not allowed.
Mark that IWORK and WORK are not treated as SEPRAN variable arrays, hence the user
must take care of the declaration himself.

Input

The user must give IBNGRP and IPARM a value.
The arrays IUSER and USER must be filled by NELGRP + IBNGRP - 1 preceding calls of sub-
routines FIL...
Array KPROB must have been filled.

Output

A part of the arrays IUSER and USER have been filled.
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10.2.5 Subroutine FIL103

Description

The specification of the coefficients for the standard problems is stored in the arrays IUSER and
USER. In the case of the simple input (see 10.1), this may be done by the subroutines FIL... .
A subroutine FIL... must be called for each standard element and for each standard boundary
element separately. Hence at most NELGRP + NUMNATBND calls of subroutines FIL... are
necessary, before the call of subroutine BUILD. Subroutine FIL103 may not be used for boundary
elements.
Subroutine FIL103 differs from subroutine FIL100 in the sense that it permits the reading of nodal
values or element values of the coefficients from a file.

Call

CALL FIL103 (IPROB, IELGRP, IUSER, USER, KPROB, NPARM, IWORK, WORK, KMESH)

Parameters

INTEGER IPROB, IELGRP, IUSER(∗), KPROB(∗), NPARM, IWORK(1:4, 1:NPARM), KMESH(∗)

DOUBLE PRECISION USER(∗), WORK(NPARM)

IPROB Problem number. With IPROB the user indicates to which problem the arrays IUSER
and USER correspond. Usually IPROB = 1, however, if different problems are to be solved
on the same mesh, IPROB may have a value larger than zero. Of course that problem must
have been introduced in subroutine SEPSTR or PROBDF.

IELGRP Standard element number (1 ≤ IELGRP ≤ NELGRP ).
The calls of subroutines FIL... must be done in a natural sequence, hence first a call for
IELGRP = 1, then for IELGRP = 2 etc.

IUSER Integer user array of variable length that is filled with integer information concerning
the coefficients of the standard problems. Since IUSER is a variable length array, the first
position must be filled by the user with the declared length. In general a length of 100 will
be sufficient for standard applications.

USER Double precision user array of variable length that is filled with real information concerning
the coefficients of the standard problems. Since USER is a variable length array, the first
position must be filled by the user with the declared length. In general a length of 100 will be
sufficient for standard applications. However, if the user uses the input option with iref (See
input), then the length needed will be considerably longer, since information for each nodal
point or each element must be stored.
The arrays IUSER and USER are used as input for the subroutine BUILD.

KPROB Array containing information of the problem to be solved.
Output of subroutine SEPSTR.

NPARM In this position the number of parameters for the differential equation must be stored.
This parameter is given for each standard problem.

IWORK,WORK User arrays in which the user must store some information concerning the
coefficients in the sequence as given in the description of the standard problems.
IWORK is an integer two-dimensional array with dimension:
IWORK(1:4,1:NPARM)
and WORK a double precision one-dimensional array with dimension:
WORK(1:NPARM).
When IWORK(1,i) = 0, the ith parameter is a constant, whose value must be stored in
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WORK(i).

When IWORK(1,i) > 0, the ith parameter is a function.

When IWORK(1,i) < 1000, the user written function subroutine FUNCCF is used to compute
the value of this parameter in a point. For a description of FUNCCF see 10.4. The value of
IWORK(1,i) is used as the parameter ICHOIS in FUNCCF

When IWORK(1,i) > 1000 and IWORK(1,i) < 2000, the user written function subroutine
FUNCC1 is used to compute the value of this parameter. For a description of FUNCC1 see
10.4. The value of IWORK(1,i) - 1000 is used as the parameter ICHOIS in FUNCC1.

When IWORK(1,i) = -j <0: In this case the coefficient number i is identical to coefficient
number j (j<i).

When IWORK(1,i) = 2001, the coefficient is given by the user in each nodal point.
Define IREF = IWORK(2,i). If IREF > 0 then the NPOINT values are read from file IREF
(free format). Exactly NPOINT values must be given. All these coefficients are stored in
array USER, hence this array must have sufficient length. If IREF < 0 then the user written
subroutine FUNCFL (see Programmers Guide 5.11.1) must be used to fill array USER in
these NPOINT points. The parameter ICHOIS in the call of FUNCFL is equal to -IREF at
the call of FUNCFL.
All these coefficients are stored in array USER, hence this array must be sufficiently long.

When IWORK(1,i) = 2002, then the coefficient is given by the user in each element of element
group IELGRP. The NELEM(IELGRP) (= number of elements in element group IELGRP)
values are read from file IREF (free format), where IREF is equal to IWORK(2,i). Exactly
NELEM(IELGRP) values must be given. All these coefficients are stored in array USER,
hence this array must be sufficiently long.

When IWORK(1,i) = 2003, then the coefficient is equal to the dth degree of freedom in
each node in each jth vector in array IVCOLD. IVCOLD denotes the parameter ISLOLD in
subroutine BUILD. j must be stored in IWORK(2,i) and d in IWORK(3,i).

When IWORK(1,i) = 2004, then the coefficient is equal to the dth degree of freedom in each
node in each jth vector in array IVCOLD multiplied by a function or a constant. IVCOLD
denotes the parameter ISLOLD in subroutine BUILD. j must be stored in IWORK(2,i) and
d in IWORK(3,i). IWORK(4,i) must contain information of the multiplication factor. If
IWORK(4,i) = 0, then the multiplication factor is a constant whose value must be stored in
WORK(i), when IWORK(4,i) > 0 the user written function subroutine FUNCCF is used to
compute the value of this multiplication factor in a point. For a description of FUNCCF see
10.4. The value of IWORK(4,i) is used as the parameter ICHOIS in FUNCCF. Only values
of IWORK(4,i) < 1000 are permitted. When IWORK(1,i) > 10000, the user written function
subroutine FUNCC3 is used to compute the value of this parameter. For a description of
FUNCC3 see 10.4. The value of IWORK(1,i) - 10000 is used as the parameter ICHOIS in
FUNCC3
Mark that IWORK and WORK are not treated as SEPRAN variable arrays, hence the user
must take care of the declaration himself.

KMESH Output of the mesh generator

Input

The user must give IPROB, IELGRP and NPARM a value.
When IELGRP > 1 the arrays IUSER and USER must be filled before by IELGRP - 1 preceding
calls of subroutines FIL... .
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The arrays KMESH, KPROB, IWORK, and WORK must have been filled.

Output

A part of the arrays IUSER and USER have been filled.
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10.2.6 Subroutine FIL104

Description

The specification of the coefficients for the standard problems is stored in the arrays IUSER and
USER. In the case of the simple input (see 10.1), this may be done by the subroutines FIL... .
A subroutine FIL... must be called for each standard element and for each standard boundary
element separately. Hence at most NELGRP + NUMNATBND calls of subroutines FIL... are
necessary, before the call of subroutine BUILD. Subroutine FIL104 must be called for each boundary
element separately. Hence at most NUMNATBND calls of FIL104 are necessary. Subroutine FIL104
differs from subroutine FIL101 in the sense that it permits the reading of nodal values or element
values of the coefficients from a file.

Call

CALL FIL104 (IPROB, IBNGRP, IUSER, USER, KPROB, NPARM, IWORK, WORK, KMESH)

Parameters

INTEGER IPROB, IBNGRP, IUSER(∗), KPROB(∗), NPARM, IWORK(1:4, 1:NPARM), KMESH(∗)

DOUBLE PRECISION USER(∗), WORK(NPARM)

IPROB Problem number. With IPROB the user indicates to which problem the arrays IUSER
and USER correspond. Usually IPROB = 1, however, if different problems are to be solved
on the same mesh, IPROB may have a value larger than zero. Of course that problem must
have been introduced in subroutine SEPSTR or PROBDF.

IBNGRP Standard boundary element number (1 ≤ IBNGRP ≤ NUMNATBND).
The calls of subroutines FIL... must be done in a natural sequence, first for all internal
elements (i.e. corresponding to the differential equation) and then for the boundary element
with boundary element number IBNGRP = 1, then for IBNGRP = 2 etc.

IUSER Integer user array of variable length that is filled with integer information concerning the
coefficients of the standard problems. Since IUSER is a variable length array, the first position
must be filled by the user with the declared length. In general a length of 100 will be sufficient
for standard applications.

USER Double precision user array of variable length that is filled with real information concerning
the coefficients of the standard problems. Since USER is a variable length array, the first
position must be filled by the user with the declared length. In general a length of 100 will be
sufficient for standard applications. However, if the user uses the input option with iref (See
input), then the length needed will be considerably longer, since information for each nodal
point or each element must be stored.
The arrays IUSER and USER are used as input for subroutine BUILD.

KPROB Array containing information of the problem to be solved.
Output of subroutine SEPSTR.

NPARM In this position the number of parameters for the differential equation must be stored.
This parameter is given for each standard problem.

IWORK,WORK User arrays in which the user must store some information concerning the
coefficients in the sequence as given in the description of the standard problems.
IWORK is an integer two-dimensional array with dimension:
IWORK(1:3,1:NPARM)
and WORK a double precision one-dimensional array with dimension:
WORK(1:NPARM).
When IWORK(1,i) = 0, the ith parameter is a constant, whose value must be stored in
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WORK(i).

When IWORK(1,i) > 0, the ith parameter is a function.

When IWORK(1,i) < 1000, the user written function subroutine FUNCCF is used to compute
the value of this parameter in a point. For a description of FUNCCF see 10.4. The value of
IWORK(1,i) is used as the parameter ICHOIS in FUNCCF

When IWORK(1,i) > 1000 and IWORK(1,i) < 2000, the user written function subroutine
FUNCC1 is used to compute the value of this parameter. For a description of FUNCC1 see
10.4. The value of IWORK(1,i) - 1000 is used as the parameter ICHOIS in FUNCC1.

When IWORK(1,i) = -j <0: In this case the coefficient number i is identical to coefficient
number j (j<i).

When IWORK(1,i) = 2001, the coefficient is given by the user in each nodal point.
Define IREF = IWORK(2,i). If IREF > 0 the NPOINT values are read from file IREF
(free format). Exactly NPOINT values must be given. All these coefficients are stored in
array USER, hence this array must have sufficient length. If IREF < 0 then the user written
subroutine FUNCFL (see Programmers Guide 5.11.1) must be used to fill array USER in
these NPOINT points. The parameter ICHOIS in the call of FUNCFL is equal to -IREF at
the call of FUNCFL.
All these coefficients are stored in array USER, hence this array must be sufficiently long.

When IWORK(1,i) = 2002, then the coefficient is given by the user in each element of element
group IBNGRP. The NELEM(IBNGRP) (= number of elements in element group IBNGRP)
values are read from file IREF (free format), where IREF is equal to IWORK(2,i). Exactly
NELEM(IBNGRP) values must be given. All these coefficients are stored in array USER,
hence this array must be sufficiently long.

When IWORK(1,i) = 2003, then the coefficient is equal to the dth degree of freedom in
each node in each jth vector in array IVCOLD. IVCOLD denotes the parameter ISLOLD in
subroutine BUILD. j must be stored in IWORK(2,i) and d in IWORK(3,i).

When IWORK(1,i) = 2004, then the coefficient is equal to the dth degree of freedom in each
node in each jth vector in array IVCOLD multiplied by a function or a constant. IVCOLD
denotes the parameter ISLOLD in subroutine BUILD. j must be stored in IWORK(2,i) and
d in IWORK(3,i). IWORK(4,i) must contain information of the multiplication factor. If
IWORK(4,i) = 0, then the multiplication factor is a constant whose value must be stored in
WORK(i), when IWORK(4,i) > 0 the user written function subroutine FUNCCF is used to
compute the value of this multiplication factor in a point. For a description of FUNCCF see
10.4. The value of IWORK(4,i) is used as the parameter ICHOIS in FUNCCF. Only values
of IWORK(4,i) < 1000 are permitted.

When IWORK(1,i)> 10000, the user written function subroutine FUNCC3 is used to compute
the value of this parameter. For a description of FUNCC3 see 10.4. The value of IWORK(1,i)
- 10000 is used as the parameter ICHOIS in FUNCC3
Mark that IWORK and WORK are not treated as SEPRAN variable arrays, hence the user
must take care of the declaration himself.

KMESH Output of the mesh generator.

Input

The user must give IPROB, IBNGRP and NPARM a value.
When IBNGRP > 1 the arrays IUSER and USER must be filled before by NELGRP + IBNGRP
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- 1 preceding calls of subroutines FIL... .
The arrays KMESH, KPROB, IWORK, and WORK must have been filled.

Output

A part of the arrays IUSER and USER have been filled.
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10.2.7 Subroutine FIL153

Description

The specification of the coefficients for the standard problems is stored in the arrays IUSER and
USER. In the case of the simple input (see 10.1), this may be done by the subroutines FIL... .
A subroutine FIL... must be called for each standard element and for each standard boundary
element separately. Hence at most NELGRP + NUMNATBND calls of subroutines FIL... are
necessary, before the call of subroutine BUILD. Subroutine FIL153 may not be used for boundary
elements.
Subroutine FIL153 differs from subroutine FIL150 in the sense that it permits the reading of nodal
values or element values of the coefficients from a file. It is the complex equivalent of FIL103.

Call

CALL FIL153 (IPROB, IELGRP, IUSER, USER, KPROB, NPARM, IWORK, WORK, KMESH)

Parameters

INTEGER IPROB, IELGRP, IUSER(∗), KPROB(∗), NPARM, IWORK(1:4, 1:NPARM), KMESH(∗)

DOUBLE PRECISION USER(∗)

COMPLEX ∗16 WORK(∗)

IPROB Problem number. With IPROB the user indicates to which problem the arrays IUSER
and USER correspond. Usually IPROB = 1, however, if different problems are to be solved
on the same mesh, IPROB may have a value larger than zero. Of course that problem must
have been introduced in subroutine SEPSTR or PROBDF.

IELGRP Standard element number (1 ≤ IELGRP ≤ NELGRP ).
The calls of subroutines FIL... must be done in a natural sequence, hence first a call for
IELGRP = 1, then for IELGRP = 2 etc.

IUSER Integer user array of variable length that is filled with integer information concerning the
coefficients of the standard problems. Since IUSER is a variable length array, the first position
must be filled by the user with the declared length. In general a length of 100 will be sufficient
for standard applications.

USER Double precision user array of variable length that is filled with real information concerning
the coefficients of the standard problems. Since USER is a variable length array, the first
position must be filled by the user with the declared length. In general a length of 100 will be
sufficient for standard applications. However, if the user uses the input option with iref (See
input), then the length needed will be considerably longer, since information for each nodal
point or each element must be stored.
The arrays IUSER and USER are used as input for the subroutine BUILD.

KPROB Array containing information of the problem to be solved.
Output of subroutine SEPSTR.

NPARM In this position the number of parameters for the differential equation must be stored.
This parameter is given for each standard problem.

IWORK,WORK User arrays in which the user must store some information concerning the co-
efficients in the sequence as given in the description of the standard problems.
IWORK is an integer two-dimensional array with dimension:
IWORK(1:4,1:NPARM)
and WORK a complex one-dimensional array with dimension:
WORK(1:NPARM).



SP Subroutine FIL153 November 1993 10.2.7.2

When IWORK(1,i) = 0, the ith parameter is a constant, whose value must be stored in
WORK(i).

When IWORK(1,i) > 0, the ith parameter is a function.

When IWORK(1,i) < 1000, the user written function subroutine CFUNCF is used to compute
the value of this parameter in a point. For a description of CFUNCF see 10.4. The value of
IWORK(1,i) is used as the parameter ICHOIS in CFUNCF

When IWORK(1,i) > 1000 and IWORK(1,i) < 2000, the user written function subroutine
CFUNC1 is used to compute the value of this parameter. For a description of CFUNC1 see
10.4. The value of IWORK(1,i) - 1000 is used as the parameter ICHOIS in CFUNC1.

When IWORK(1,i) = -j <0: In this case the coefficient number i is identical to coefficient
number j (j<i).

When IWORK(1,i) = 2001, the coefficient is given by the user in each nodal point.
Define IREF = IWORK(2,i). If IREF > 0 then the NPOINT values are read from file IREF
(free format). Exactly NPOINT values must be given. All these coefficients are stored in
array USER, hence this array must have sufficient length. If IREF < 0 then the user written
subroutine FUNCFL (see Programmers Guide 5.11.1) must be used to fill array USER in
these NPOINT points. The parameter ICHOIS in the call of FUNCFL is equal to -IREF at
the call of FUNCFL.
All these coefficients are stored in array USER, hence this array must be sufficiently long.

When IWORK(1,i) = 2002, then the coefficient is given by the user in each element of element
group IELGRP. The NELEM(IELGRP) (= number of elements in element group IELGRP)
values are read from file IREF (free format), where IREF is equal to IWORK(2,i). Exactly
NELEM(IELGRP) values must be given. All these coefficients are stored in array USER,
hence this array must be sufficiently long.

When IWORK(1,i) = 2003, then the coefficient is equal to the dth degree of freedom in each
node in each jth vector in array IVCOLD. IVCOLD denotes the parameter ISLOLD in sub-
routine BUILD. j must be stored in IWORK(2,i) and d in IWORK(3,i). When IWORK(1,i)
= 2004, then the coefficient is equal to the dth degree of freedom in each node in each jth

vector in array IVCOLD multiplied by a function or a constant. IVCOLD denotes the param-
eter ISLOLD in subroutine BUILD. j must be stored in IWORK(2,i) and d in IWORK(3,i).
IWORK(4,i) must contain information of the multiplication factor. If IWORK(4,i) = 0,
then the multiplication factor is a constant whose value must be stored in WORK(i), when
IWORK(4,i) > 0 the user written function subroutine CFUNCF is used to compute the value
of this multiplication factor in a point. For a description of CFUNCF see 10.4. The value of
IWORK(4,i) is used as the parameter ICHOIS in CFUNCF. Only values of IWORK(4,i) <
1000 are permitted.
Mark that IWORK and WORK are not treated as SEPRAN variable arrays, hence the user
must take care of the declaration himself.

KMESH Output of the mesh generator

Input

The user must give IPROB, IELGRP and NPARM a value.
When IELGRP > 1 the arrays IUSER and USER must be filled before by IELGRP - 1 preceding
calls of subroutines FIL... .
The arrays KMESH, KPROB, IWORK, and WORK must have been filled.

Output
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A part of the arrays IUSER and USER have been filled.
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10.2.8 Subroutine FIL154

Description

The specification of the coefficients for the standard problems is stored in the arrays IUSER and
USER. In the case of the simple input (see 10.1), this may be done by the subroutines FIL... .
A subroutine FIL... must be called for each standard element and for each standard boundary
element separately. Hence at most NELGRP + NUMNATBND calls of subroutines FIL... are
necessary, before the call of subroutine BUILD. Subroutine FIL154 must be called for each boundary
element separately. Hence at most NUMNATBND calls of FIL154 are necessary. Subroutine FIL154
differs from subroutine FIL101 in the sense that it permits the reading of nodal values or element
values of the coefficients from a file. It is the complex equivalent of FIL103.

Call

CALL FIL154 (IPROB, IBNGRP, IUSER, USER, KPROB, NPARM, IWORK, WORK, KMESH)

Parameters

INTEGER IPROB, IBNGRP, IUSER(∗), KPROB(∗), NPARM, IWORK(1:4, 1:NPARM), KMESH(∗)

DOUBLE PRECISION USER(∗)

COMPLEX ∗16 WORK(∗)

IPROB Problem number. With IPROB the user indicates to which problem the arrays IUSER
and USER correspond. Usually IPROB = 1, however, if different problems are to be solved
on the same mesh, IPROB may have a value larger than zero. Of course that problem must
have been introduced in subroutine SEPSTR or PROBDF.

IBNGRP Standard boundary element number (1 ≤ IBNGRP ≤ NUMNATBND).
The calls of subroutines FIL... must be done in a natural sequence, first for all internal
elements (i.e. corresponding to the differential equation) and then for the boundary element
with boundary element number IBNGRP = 1, then for IBNGRP = 2 etc.

IUSER Integer user array of variable length that is filled with integer information concerning the
coefficients of the standard problems. Since IUSER is a variable length array, the first position
must be filled by the user with the declared length. In general a length of 100 will be sufficient
for standard applications.

USER Double precision user array of variable length that is filled with real information concerning
the coefficients of the standard problems. Since USER is a variable length array, the first
position must be filled by the user with the declared length. In general a length of 100 will be
sufficient for standard applications. However, if the user uses the input option with iref (See
input), then the length needed will be considerably longer, since information for each nodal
point or each element must be stored.
The arrays IUSER and USER are used as input for subroutine BUILD.

KPROB Array containing information of the problem to be solved.
Output of subroutine SEPSTR.

NPARM In this position the number of parameters for the differential equation must be stored.
This parameter is given for each standard problem.

IWORK,WORK User arrays in which the user must store some information concerning the
coefficients in the sequence as given in the description of the standard problems.
IWORK is an integer two-dimensional array with dimension:
IWORK(1:3,1:NPARM)
and WORK a double precision one-dimensional array with dimension:
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WORK(1:NPARM).
When IWORK(1,i) = 0, the ith parameter is a constant, whose value must be stored in
WORK(i).

When IWORK(1,i) > 0, the ith parameter is a function.

When IWORK(1,i) < 1000, the user written function subroutine CFUNCF is used to compute
the value of this parameter in a point. For a description of CFUNCF see 10.4. The value of
IWORK(1,i) is used as the parameter ICHOIS in CFUNCF

When IWORK(1,i) > 1000 and IWORK(1,i) < 2000, the user written function subroutine
CFUNC1 is used to compute the value of this parameter. For a description of CFUNC1 see
10.4. The value of IWORK(1,i) - 1000 is used as the parameter ICHOIS in CFUNC1.

When IWORK(1,i) = -j <0: In this case the coefficient number i is identical to coefficient
number j (j<i).

When IWORK(1,i) = 2001, the coefficient is given by the user in each nodal point.
Define IREF = IWORK(2,i). If IREF > 0 the NPOINT values are read from file IREF
(free format). Exactly NPOINT values must be given. All these coefficients are stored in
array USER, hence this array must have sufficient length. If IREF < 0 then the user written
subroutine FUNCFL (see Programmers Guide 5.11.1) must be used to fill array USER in
these NPOINT points. The parameter ICHOIS in the call of FUNCFL is equal to -IREF at
the call of FUNCFL.
All these coefficients are stored in array USER, hence this array must be sufficiently long.

When IWORK(1,i) = 2002, then the coefficient is given by the user in each element of element
group IBNGRP. The NELEM(IBNGRP) (= number of elements in element group IBNGRP)
values are read from file IREF (free format), where IREF is equal to IWORK(2,i). Exactly
NELEM(IBNGRP) values must be given. All these coefficients are stored in array USER,
hence this array must be sufficiently long.

When IWORK(1,i) = 2003, then the coefficient is equal to the dth degree of freedom in
each node in each jth vector in array IVCOLD. IVCOLD denotes the parameter ISLOLD in
subroutine BUILD. j must be stored in IWORK(2,i) and d in IWORK(3,i).

When IWORK(1,i) = 2004, then the coefficient is equal to the dth degree of freedom in each
node in each jth vector in array IVCOLD multiplied by a function or a constant. IVCOLD
denotes the parameter ISLOLD in subroutine BUILD. j must be stored in IWORK(2,i) and
d in IWORK(3,i). IWORK(4,i) must contain information of the multiplication factor. If
IWORK(4,i) = 0, then the multiplication factor is a constant whose value must be stored in
WORK(i), when IWORK(4,i) > 0 the user written function subroutine CFUNCF is used to
compute the value of this multiplication factor in a point. For a description of CFUNCF see
10.4. The value of IWORK(4,i) is used as the parameter ICHOIS in CFUNCF. Only values
of IWORK(4,i) < 1000 are permitted.
Mark that IWORK and WORK are not treated as SEPRAN variable arrays, hence the user
must take care of the declaration himself.

KMESH Output of the mesh generator.

Input

The user must give IPROB, IBNGRP and NPARM a value.
When IBNGRP > 1 the arrays IUSER and USER must be filled before by NELGRP + IBNGRP
- 1 preceding calls of subroutines FIL... .
The arrays KMESH, KPROB, IWORK, and WORK must have been filled.
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Output

A part of the arrays IUSER and USER have been filled.
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10.3 Direct filling of IUSER and USER

Direct filling of the arrays IUSER and USER requires more effort of the user, but gives some extra
possibilities compared to the simple input. This possibility may be combined with the subroutines
described in Section 10.2.
The way the arrays IUSER and USER must be filled is standard for each problem. We distinguish
between 4 possibilities:

• the parameter is given as a function.

• the parameter is given as a constant (including zero).

• the parameter is given for each nodal point.

• the parameter is given for each element.

In order to distinguish between all possibilities the following scheme is adopted:

• (i) The user must give IUSER(5+IELGRP) a value: ISTART. IELGRP is the standard ele-
ment number ( 1 ≤ IELGRP ≤ NELGRP ); for boundary elements:
( NELGRP + 1 ≤ IELGRP ≤ NELGRP +NUMNATBND ).
Hence ISTART = IUSER( 5 + IELGRP ).
ISTART must satisfy: ISTART > 5 + NELGRP + NUMNATBND.

• (ii) The actual information of the parameters must be stored in array IUSER from position
ISTART. Let the parameters for the standard element be p1 , p2 , p3 , ... in that sequence.
Then:

IUSER(ISTART) corresponds to parameter p1.
When IUSER(ISTART) = 0, p1 = 0.
When IUSER(ISTART) < -5, p1 is a constant. The value of the constant must be stored by
the user in USER( -IUSER(ISTART)).
When 0 < IUSER(ISTART) < 1000, p1 is a function. The function values are computed by the
user written function subroutine FUNCCF (see 10.4). The parameter ICHOIS in FUNCCF
gets the value IUSER(ISTART).
When 1000 < IUSER(ISTART) < 2000, p1 is a function. The function values are computed by
the user written function subroutine FUNCC1 (see 10.4). The parameter ICHOIS in FUNCC1
gets the value IUSER(ISTART)-1000.
When IUSER(ISTART) = 2001, p1 must be stored by the user in array USER for each nodal
point. In this case an extra position in array IUSER is required. Hence ISTARTnew = ISTARTold + 1.
In IUSER(ISTARTnew) the starting position of the information in array USER must be stored
by the user. The values of p1 in each nodal point must be stored by the user in the following
way:

- Fill IADRES in IUSER(ISTARTnew).

- Fill p1(xi) in USER(IADRES+i-1) (i = 1 (1) NPOINT ).

In the following ISTARTnew is used instead of ISTART.
When IUSER(ISTART) = 2002, p1 is supposed to be constant in each element. The user
must fill the values of p1 for each element, with standard element IELGRP in USER. In this
case an extra position in array IUSER is required. Therefore ISTART must be raised by one,
i.e. ISTARTnew = ISTARTold + 1. In IUSER(ISTARTnew) the starting position of the
information in array USER must be stored by the user.
Hence the arrays IUSER and USER must be filled by the user in the following way:

IUSER(ISTART) = 2002
ISTART = ISTART + 1
IUSER(ISTART) = IADRES
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USER(IADRES+i-1) = p1(elementiIELGRP ) ( i = 1(1) NELEMIELGRP )
where NELEMIELGRP is the number of elements with standard element number IELGRP
and elementiIELGRP is the ith element with standard element IELGRP.
Furthermore IUSER(ISTART+1) corresponds to the parameter p2 exactly in the same way
as IUSER(ISTART) corresponds to p1. The value of ISTART must be the corrected value of
ISTART when p1 is given in nodal points or elements. In the same way IUSER(ISTART+2)
corresponds to the parameter p3 etc.

Example

Consider the differential equation:

∂

∂x
α11

∂φ

∂x
− ∂

∂x
α12

∂φ

∂y
− ∂

∂y
α12

∂φ

∂x
− ∂

∂y
α22

∂φ

∂y
+ u1

∂φ

∂x
+ u2

∂φ

∂y
+ βφ = f

Let there be one standard element, hence NELGRP = 1.
Let NUMNATBND be zero.
Let furthermore α12 = 0, α11 = α22 = 1; u1 , u2 be given point-wise, and β be given element-
wise and f be given by subroutine FUNCCF with ICHOIS = 10. The sequence of the parameters
is α11, α12 , α22 , u1 , u2 , β , f . Then IUSER and USER may be filled in the following way:

ISTART = 7
IUSER(6) = ISTART

IUSER(ISTART) = -6 α11

USER(6) = 1

IUSER(ISTART+1) = 0 α12

IUSER(ISTART+2) = -6 α22

IUSER(ISTART+3) = 2001 u1

ISTART = ISTART + 1
IUSER(ISTART+3) = 7
statements to fill USER(7), . . . ,USER(6+NPOINT)
with u1(x1), ..., u1(xNPOINT )

IUSER(ISTART+4) = 2001 u2

ISTART = ISTART + 1
IUSER(ISTART+4) = 7 + NPOINT
statements to fill USER(7+NPOINT), . . . ,USER(6+2 × NPOINT)
with u2(x1), ..., u2(xNPOINT )

IUSER(ISTART+5) = 2002 β
ISTART = ISTART + 1
IUSER(ISTART+5) = 7 + 2 × NPOINT
statements to fill USER(7+ 2 × NPOINT), . . . ,USER(6+2 × NPOINT + NELEM)
with β(elem1), ..., β(elemNELEM )

IUSER(ISTART+6) = 10 f

Combination of simple and extended input

The user may couple the simple input for one standard element, with the extended input for another
standard element. In that case he must use the following positions of IUSER and USER.
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In IUSER(2) the last standard element number IELGRP filled, must be stored.
1 ≤ IELGRP ≤ NELGRP + NUMNATBND
In IUSER(4) the last position used in IUSER must be stored.
In USER(4) the last position used in USER must be stored.

These positions are used and also filled by the subroutines FIL... (See 10.2)
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10.4 Subroutines FUNCCF, FUNCC1, FUNCC3, CFUNCF and CFUNC1

10.4.1 Function subroutine FUNCCF

Description

With this function subroutine a function may be defined.
FUNCCF must be written by the user.

Heading

function funccf ( ichoice, x, y, z )

Parameters

INTEGER ICHOICE

DOUBLE PRECISION FUNCCF, X, Y, Z

ICHOICE Choice parameter. This parameter enables the user to distinguish between
several cases. ICHOICE must have been given a value before in a subroutine, for
example BUILD.

X,Y,Z X, y, respectively z co-ordinates of the nodal point. For each nodal point this
subroutine is called.

FUNCCF At output FUNCCF should get the computed value of the function in the
nodal point.

Input

ICHOICE, X, Y, Z have got a value, depending on the dimension of the space.

Output

FUNCCF must have got a value.

Remark

Function subroutine FUNCCF must be programmed by the user and satisfy the following
requirements (see also the user manual):

FUNCTION FUNCCF ( ICHOICE, X, Y, Z )

IMPLICIT NONE

INTEGER ICHOICE

DOUBLE PRECISION FUNCCF, X, Y, Z

statements to compute a value

FUNCCF = value

END
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10.4.2 Function subroutine FUNCC1

Description

Function subroutine FUNCC1 has the same task as FUNCCF (10.4.1), however, it
contains an extra parameter.

Heading

function funcc1 ( ichoice, x, y, z, uold )

Parameters

INTEGER ICHOICE

DOUBLE PRECISION FUNCC1, X, Y, Z, UOLD(∗)
ICHOICE,X,Y,Z See function FUNCCF (10.4.1).

UOLD In this array of length NUNKP positions, the values of UOLD∗ in the nodal
point are stored, where UOLD∗ is the array in the call of subroutine BUILD. Hence
UOLD(1) contains the first unknown in the nodal point, UOLD(2) the second one
etc.
UOLD is filled by subroutine BUILD.

Input

ICHOICE, X, Y, Z, UOLD have got a value, depending on the dimension of the space.

Output

FUNCC1 has got a value.
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10.4.3 Function subroutine FUNCC3

Description

Function subroutine FUNCC3 has the same task as FUNCC1 (10.4.2), however, it con-
tains some extra parameters.

Heading

VALUE = FUNCC3 ( ICHOICE, X, Y, Z, NUMOLD, MAXUNK, UOLD )

Parameters

INTEGER ICHOICE, NUMOLD, MAXUNK

DOUBLE PRECISION FUNCC3, X, Y, Z, UOLD(NUMOLD, MAXUNK)

ICHOICE,X,Y,Z See function FUNCCF (10.4.1).

NUMOLD Dimension parameter for array UOLD. Indicates the number of old solu-
tion vectors stored in UOLD.

MAXUNK Dimension parameter for array UOLD. Indicates the maximum number of
degrees of freedom stored in the old solution vectors stored in UOLD.

UOLD In this two-dimensional array of length NUMOLD × MAXUNK positions, the
values of UOLD∗ in the nodal point are stored, where UOLD∗ is the array in the
call of subroutine BUILD. Hence UOLD(1,1) contains the first unknown of the first
vector in the nodal point, UOLD(1,2) the second one etc.
UOLD(2,∗) corresponds to the second vector and so on.
UOLD is filled by subroutine BUILD.

Input

ICHOICE, X, Y, Z, UOLD have got a value, depending on the dimension of the space.

Output

FUNCC3 has got a value.
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10.4.4 Subroutine CFUNCF

Description

Subroutine CFUNCF has the same task as FUNCCF (10.4.1), however, it is used for
complex problems.

Heading

subroutine cfuncf ( ichoice, x, y, z, comval )

Parameters

INTEGER ICHOICE

DOUBLE PRECISION X, Y, Z

COMPLEX ∗16 COMVAL

ICHOICE,X,Y,Z See function FUNCCF (10.4.1).

COMVAL Complex variable in which the function value must be stored.

Input

ICHOICE, X, Y, Z have got a value, depending on the dimension of the space.

Output

COMVAL must have been filled by the user.
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10.4.5 Subroutine CFUNC1

Description

Subroutine CFUNC1 has the same task as CFUNCF (10.4.4), however, it contains an
extra parameter.

Heading

subroutine cfunc1 ( ichoice, x, y, z, comval, uold )

Parameters

INTEGER ICHOICE

DOUBLE PRECISION X, Y, Z

COMPLEX ∗16 COMVAL, UOLD(∗)
ICHOICE,X,Y,Z See function FUNCCF (10.4.1).

COMVAL See subroutine CFUNCF (10.4.4).

UOLD See function FUNCC1 (10.4.2).
The only difference is that uold is complex in this case.

Input

ICHOICE, X, Y, Z, UOLD have got a value, depending on the dimension of the space.

Output

COMVAL must have been filled by the user.
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Index

absolute value of convective term, 3.1
axi-symmetric stress analysis, 5.1
bearing (incompressible), 4.1
bearing (compressible), 4.1
bending of plates, 5.4
Bingham liquid, 7.1, 7.2
boundary conditions
Boussinesq approximation, 7.2
Boussinesq equations, 7.2
Carreau liquid, 7.1, 7.2
casson liquid, 7.1, 7.2
Cauchy stress, 5.3.1, 5.3.2
cfunc1, 10.4, 10.4.5
cfuncf, 10.4, 10.4.4
coefficients, 10.1, 10.2
complex, 3.3
concentrated load, 5.1
conservation of mass, 5.3.2, 7.1, 7.2
conservation of momentum, 5.3.2, 7.1, 7.2
constitutive equations, 5.1, 5.3, 5.4
continuity equation, 7.1, 7.2
Convection-diffusion equation, 3.1
del guidice approximation, 2.4, 6.3
delta function, 3.5
deviatoric stress, 5.3.2
Diffusion equation, 2.3 discontinuity, 7.1
discontinuity capturing, 3.1
displacement, 5.1
distributed loading, 5.1
dynamic viscosity, 7.1, 7.2
elasticity, 5
elasticity-flow interaction, 4.2
elasticity matrix, 5.1
elasto-hydrodynamic lubrication, 4.2
element shapes, 10
elliptic equations, 3
enthalpy method, 6.1
equation, 10
equilibrium equations, 5.1
fictitious domain method, 7.4
fil100, 10.2.1
fil101, 10.2.2
fil102, 10.2.5
fil104, 10.2.6
fil150, 10.2.3
fil151, 10.2.4
fil153, 10.2.7
fil154, 10.2.8
Finger tensor, 5.3.2
flow problem, 7
FNC000, 6.3
FNH000, 6.3
FNK000, 6.3



SP Index March 2005 12.2

FNLOCDIR, 5.3
FNMATERI, 5.3
free-slip, 7.1
free surface flow, 7.6
freezing front, 6
friction, 7.1
funcc1, 10.4
funcc3, 10.4
funccf, 10.4
gravity, 7.1
heat capacity, 6.3, 7.2
heat capacity matrix, 6.3
heat conduction matrix, 6.3
heat equation, 3.1
Helmholtz equation, 3.3
hydrostatic pressure, 7.1, 7.2
hyperelastic material, 5.3.2
incompressibility condition, 7.1, 7.2, 7.3
incompressible material, 5, 5.2
Incompressible Neo Hookean material, 5.3.2
Incompressible isotropic hyperelastic material, 5.3.2
input, 10
instationary flow, 7.1
instream condition, 7.1, 7.2
iuser, 10.3
Laplace equation, 2.1 lemmon approximation, 6.3
library, 10
lubrication, 4, 4.1
mass flux, 7.1
maximum principle, 3.1
mechanical elements, 5
melting point, 6.1
melting trajectory, 6.1
membrane element, 5.1
momentum equations, 7.1, 7.2
Moonley-Rivlin model, 5.3.2
Neo-Hookean material, 5.3.2
Newtonian fluid, 7.1, 7.2
non-linear convection, 3.1
non-linear diffusion equation, 3.4
non-linear solids, 5, 5.3, 5.3.2
non-newtonian flow, 7.1
no-slip, 7.1
numbering of unknowns, 10
obstacle, 7.5
oil film, 4.2
output, 10
outstream condition, 7.1, 7.2
over-relaxation, 6.1.1 parabolic equations, 3, 3.1
penalty function approach, 7.1, 7.2
phase-change, 6.1, 6.3
plane strain, 5.1
plane stress, 5.1
plastico-viscous liquid, 7.1, 7.2
plate elements, 5.4
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Poisson equation, 2.2, 3.1
Poisson’s ratio, 5.1
power law liquid, 7.1, 7.2
restrictor, 4.1
Reynolds equation, 4.1
rubber element, 5.2
second order elliptic equations, 3, 3.1, 3.3
second order parabolic equations, 3, 3.1, 3.3
simple heat equation, 6.3
solid-fluid interaction, 7.4
solidification, 6
standard elements, 10.1
Stefan problem, 6.1
strain displacement relations, 5.1, 5.4
surface tension, 7.1
swirl, 7.1, 7.2
temperature dependent laminar flow, 7.2
temperature equation, 7.2
thermal conductivity, 6.3, 7.2
thick plates, 5.4
total stress tensor, 7.1, 7.2
total Lagrange method, 5.3.1
turbulent flow, 7.3
updated Lagrange method, 5.3.2
upwind, 3.1
user, 10.3
velocity, 7.1, 7.2
volume expansion coefficient, 7.2
Young’s modulus, 5.1
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