TUDFINVOL:

Mathematical & Programmers Guide

Ivo Wenneker

version 1.1

March 12, 2001

Contents

I Mathematical Guide
1 Introduction

2 Basic equations

2.1 Introduction oL e

2.2 Governing equationso e

2.3 Non-dimensionalization of the governing equations
2.3.1 Standard approach Lo
2.3.2 Mach uniform non-dimensionalization
2.3.3 Choice among primary energy variables (implicit time-integration)
2.3.4 Choice among primary energy variables (explicit time-integration)

2.4 Non-dimensionalization of the Riemann problem

2.5 Initial conditions Lo

2.6 Boundary conditionso

3 Description of an unstructured grid
3.1 Definition of an unstructured grid oL
3.2 Relations between number of cells, vertices and faces
3.3 Conditions imposed to the grid L oL
3.4 Staggered set-up

4 Spatial discretization of a convection-diffusion equation

4.1 Introduction L

4.2 Convection-diffusion equation: discretization

4.3 Convection-diffusion equation: boundary conditions

4.4 Convection-diffusion equation: convection term
4.4.1 Convection-diffusion equation: first order upwind scheme
4.4.2 Convection-diffusion equation: central scheme

4.5 Energyequation
4.5.1 Evaluation of time derivative of kinetic energy
4.5.2 Energy equation: enthalpy as primary variable
4.5.3 Energy equation: total enthalpy as primary variable
4.5.4 Energy equation: density times total enthalpy as primary variable
4.5.5 Energy equation: density times total energy as primary variable
4.5.6 Energy equation: explicit time-integration
4.5.7 Convection of kinetic energy L.

© 00 @@

13
13
15
18
20
21
22
23

24
24
25
26
27

28
28
29
31
32
32
32
34
34
34
34
35
35
35
36

CONTENTS

4.6 Continuity equationo
4.6.1 Discretization of the continuity equation
4.6.2 Density biased upwind: first order & central scheme

5 Spatial discretisation of the momentum equation

5.1 Introduction L.

5.2 Momentum equation: discretisation Lo
5.2.1 Discretisation: control volume consisting of whole triangles
5.2.2 Discretisation: control volume consisting of half triangles

5.3 Momentum equation: boundary faces. oo L.
5.3.1 Momentum given at boundary
5.3.2 Boundary conditions: control volume consisting of whole triangles
5.3.3 Boundary conditions: control volume consisting of half triangles

5.4 Convection term: integration over whole triangles
5.4.1 Discussiono e e e e e e e e
5.4.2 Reconstruction procedure Lo
5.4.3 Momentum equation: old first order upwind scheme
5.4.4 Momentum equation: central scheme
5.4.5 Momentum equation: first order upwind scheme
5.4.6 Momentum equation: quasi internal faces
5.4.7 Momentum equation: boundary faces
5.4.8 Spectral properties of central scheme o0

5.5 Convection term: integration over half triangles
5.5.1 First order upwind: convection term with half triangles ascv
5.5.2 Central interpolation: convection term with half triangles ascv
5.5.3 Boundary conditions: convection term with half triangles as cv

5.6 Conservative and non-conservative: normal velocity

5.7 Computation of pressure gradient Lo
5.7.1 Path-integral formulation for a six-point stencil
5.7.2 Path-integral formulation for a three-point stencil
5.7.3 Path-integral formulation for a four-point stencil
5.7.4 Auxiliary point method oo L.
5.7.5 Sign criterion L
5.7.6 Contour integral formulation
5.7.7 Pressure gradient at boundary faces 0.

5.8 Computation of momentum vector at faces

5.9 Computation of velocity at faces o oo

6 Discretization of the equation of state
6.1 Equation of state: discretization oL
6.2 Computation of square of momentum vector in cell-center

7 Pressure-correction
7.1 Introduction L.
7.2 Solution algorithm
7.3 Discretisation of the pressure-correction equations

38
38
38

69
69
71

73
73
73
75

CONTENTS 3

8

10

11

12

I1

13

14

Mach-uniform pressure-correction 77
8.1 Introduction L 77
8.2 Solution algorithm & pressure-correction equation 77
8.3 Discretization of the pressure-correction equation 79
8.3.1 Evaluation of vector in cell-center 79
8.3.2 Discretization time derivative L oo oL 80
8.3.3 Discretization convection term Lo L 81
8.3.4 Discretization Laplacian term 83
Time-discretization 84
9.1 Introduction L 84
9.2 The f-method 85
9.3 Explicit time-integration Lo 87
9.4 Solution algorithm 88
9.5 Termination criterion for stationary problems 89
The linear solver 90
Post-processing 91
11.1 Postprocessing of scalar quantities 91
11.2 Postprocessing of vector quantitieso 0oL 91
11.3 Postprocessing of derived quantities 0oL 92
Flow around profiles 93
12.1 Introduction L L e 93
12.2 Initial and boundary conditions L. oL 93
12.3 Computation of lift and drag L oo L. 95
12.3.1 Computation of pressure coefficient 95
12.3.2 Definition of lift and drag coeflicients 95
12.3.3 Numerical computation of lift and drag coeflicients 98
12.3.4 Numerical integration of ¢, L. 98
12.3.5 Numerical integration of ¢, oL 98
Programmers Guide 100
Data structure: mesh 101
13.1 Vertex array, face-based and cell-based data structures 101
13.2 Boundary treatment in the data structure 105
13.2.1 Cells and boundaries Lo oL 106
13.2.2 Faces and boundaries 0 o0 107

13.3 Software implementation of the data structure 108
Datastructures 110
14.1 Conventions L e e e 111
14.2 Matrix and solution arrays. L oo 113
14.2.1 Arrayisol oL 113

14.2.2 Arrays matrix and ithsd o oL o oo 113

CONTENTS 4

14.2.3 Array intmat L 115

14.3 Array KFINVOL o e 116
14.4 Coefficient arrays L e e e 118
14.5 Arrays with respect to the boundary conditions 120
14.5.1 Array IINBC o 121
14.5.2 Array RINBC oo o 122
14.5.3 Array IBNDCON o 123
14.5.4 Array RBNDCON 125

15 Main structure of the software 127
15.1 Main program: tudfinvol.f L oo o 127
15.2 Time-loop: fvcomput.f L L 127
15.3 Initializations: fvstart.f. o oo 127
15.4 Time-stepping: fvtstep.f o 128
16 Before time-stepping 129
16.1 Checking mesh: fvmshechk.f o o oo oo 130
16.2 Reading input: fvinput.fo o L 130
16.3 Determination of structure of matrices: fvstrmat.f 130
16.3.1 Filling of the matrices: fvmfilmat.f 132

16.4 Weighted interpolation to obtain thermodynamic quantities at faces: fvlinpol.f 133
16.5 Interpolation coefficients for tangential momentum: fvtancomp.f 133
16.6 Weight coefficients to compute velocity gradients: fvgradvel.f 133
16.7 Reconstruction coefficients: fvreconstcoeffo 133
16.8 Prescribing initial conditions: fvinend.f. o o oL 134
17 Time-stepping 136
17.1 Routine fvtstep.f Lo 136
17.2 Routine fvsbstep.f L 137
17.3 Content of solution arrays during time-stepping 138
18 Building matrices 142
18.1 General convection-diffusion equation L. 143
18.1.1 Convection-diffusion equation: source term 143
18.1.2 Convection-diffusion equation: time derivative term 143
18.1.3 Convection diffusion equation: convection term 143
18.1.4 Convection diffusion equation: contribution torhsd 144
18.1.5 Convection diffusion equation: explicit time integration 144

18.2 Momentum equation o e e e 145
18.2.1 Momentum equation: scalars at the faces 145
18.2.2 Momentum equation: source term, 146
18.2.3 Momentum equation: viscous term, 147
18.2.4 Momentum equation: time derivative term 150
18.2.5 Momentum equation: pressure term 151
18.2.6 Momentum equation: convection term 152
18.2.7 Momentum equation: boundary conditions 156

18.2.8 Momentum equation: explicit time integration 156

CONTENTS 5

19

20

21

22

23

18.3 Computation of pressure e 157
18.3.1 Compressible case L L 157
18.3.2 Incompressible case. L L L 157

18.4 Computation of velocity L 158

18.5 Computation of tangential momentum 159

18.6 Numerical evaluation of integral in conservative energy equation 160

Postprocessing 161

19.1 Interpolation to vertices L e 161

19.2 Two levels of postprocessing o 0o 161

19.3 Postprocessing level 1 L 162
19.3.1 Computation of lift and drag coefficient 163
19.3.2 Minimum and maximum Mach number, and number of supersonic vertices163
19.3.3 Position of sonic points Lo 163
19.3.4 Computation of residuals oL 164

19.4 Postprocessing level 2 L L 164
19.4.1 Computation of Mach number 164
19.4.2 Computation of total enthalpy 164
19.4.3 Computation of stagnation pressure 165
19.4.4 Computation of pressure coefficient ¢, 165
19.4.5 Computation of entropy So Lo 165

General print routines 166

20.1 Subroutine fvprinbc oo 167

20.2 Subroutine fvprinbndo Lo Lo 168

20.3 Subroutine fvprincv L L 169

20.4 Subroutine fvprinino Lo 170

20.5 Subroutine fvprinmso 171

20.6 Subroutine fvprinmto 172

20.7 Subroutine fvprinv 173

20.8 Subroutine fvprinvl 174

20.9 Subroutine fvprinv2 Lo 175

20.10Subroutine fvcheck 176

Computation of gradients 178

21.1 Computation of gradients in the software 179

21.2 Implementation of path-integral method for a six-point stencil 180

Miscellaneous 182

22.1 Variable boundary and initial conditions L. 183

22.2 Exact solution is known oL Lo 186
2221 Case 1l 0 e 186
2222 Case 2 e 188

22.3 Exact and computed tangential momentum L. 188

Appendix 190

Part 1

Mathematical Guide

Chapter 1

Introduction

In this manual we describe the mathematical techniques that are used in the TUDFINVOL
program. TUDFINVOL is a program that computes compressible flows at unstructured,
staggered grids, using a finite volume approach.

Chapter 2

Basic equations

2.1 Introduction

In the TUDFINVOL program we restrict ourselves to 2D flows of a perfect gas.

CHAPTER 2. BASIC EQUATIONS 9

2.2 Governing equations

Starting points are the compressible Navier-Stokes equations, describing the conservation of
mass, momentum and energy, and the equation of state for a perfect gas.

Continuity equation
Mass conservation leads to the continuity equation

dp

% +mf, =0, (2.1)
where p stands for the fluid density, m® = pu® represents the momentum vector and u® the
velocity vector. The Einstein summation-convention is used, so for example m?, = divm and
m*m® =m - m.

Conservation of momentum
Conservation of momentum leads to the momentum equations, one for each dimension:

am®
B, a — af a
8t —I_ (u m)75 - p7a—|—7—7ﬁ —I_pf ’ (2'2)

where p is the pressure, and the body forces have been incorporated in the term f*. This
term will be neglected for the moment. The relation between the deviatoric stress tensor 79
and the motion of a Newtonian fluid is given by the constitutive relation

1
b =2, (eaﬁ - §A5°‘5) , (2.3)

where y is called the dynamic viscosity coefficient, §°# is the Kronecker delta

508 _ {0 for a # 3, (2.4)
1 fora=0,
e represents the rate of strain tensor
e*B = % (uob + u%) (2.5)
and
A =uf,. (2.6)
With the stress-tensor 0@ defined as:
0P = —p§oP 4 78, (2.7)
equation (2.2) is written as:
8?: + (uﬁm“>ﬁ = 070;35 + pfe. (2.8)

CHAPTER 2. BASIC EQUATIONS 10

Conservation of energy
The energy equation, describing the conservation of energy, reads:

OpE
P08 | (moH) o = (477" + KT 5. (29)

Herein H stands for the total enthalpy per unit of mass, E for the total energy per unit of
mass, T for the temperature and k for the thermal conductivity. The relation between H and
E is given by:

H=£+2 (2.10)
p

The enthalpy ~ and the total enthalpy H are related:
1
H=h+ §uaua, (2.11)
and the relation between F and the internal energy e is:
1
E=e+ §u“ua. (2.12)

In case of a calorically perfect gas (¢, is a constant), the thermodynamic quantities e and h
are related to the temperature T through

e=c,T, h=¢cT, (2.13)

where ¢, is the specific heat at constant volume and ¢, the specific heat at constant pressure.
The specific heat ratio 7 is defined as

y=-2, (2.14)

being 7/5 for a diatomic perfect gas. Note that
h = ve. (2.15)

Equation of state

There are four equations ((2.1), (2.2) and (2.9)) in 2D, with five unknowns: m® and the
variables of state (e.g. p, h and p). According to thermodynamics, for simple systems there
are only two independent variables of state on which the other variables of state depend. The
relation that couples the variables of state is the equation of state for a perfect gas:

-1 -1 1
p= 7 ph = 7 p [H — —uaua] . (2.16)
g g 2

As primary variables we take m®, p and H; all other variables can be derived from these.

Values for air
The following values for air hold (see pages 258 and 259 of [5]):

e p at standard conditions equals approx. 1.22 kg/m?3.

CHAPTER 2. BASIC EQUATIONS 11

e R =287 m?/(s®> K) and v = 1.4. Consequently, ¢, = 1,005 m?/(s? K) and ¢, = 718
m?/(s? K).
e The viscosity and thermal conductivity follow from the experimental laws of Sutherland:
T3/2 T3/2

E=k(T)=Cs—— 2.17
CZ‘I’T () C3C4+T’ ()

p=pu(T)=C

where C1-C4 are constants for a given gas. For air at moderate temperatures, one has
Cy = 1458 - 107 kg/(m s K'/?), Cy = 1104 K, C3 = 2.495 - 103 (kg m)/ (s> K3/?)
and Cy = 194 K.

e The Prandtl number

o

Pr =
Tk

(2.18)

is often used to determine the thermal conductivity k once p is known. This is possible
because the ratio (¢,/Pr), which appears in the expression

C
EF=-L 2.1
ot (2.19)

is approximately constant for most gases. For air at standard conditions, Pr = 0.72.

o Coefficient k is called the thermal conductivity, appearing in Fourier’s law ¢ = —kVT.
The thermal diffusion coefficient kg is defined as

kg =—. 2.20
" (2.20)

Euler equations
The Euler equations are the compressible Navier-Stokes in which the viscous and diffusion
terms are omitted, i.e. g = k = 0. This leads to the following set of equations:

e Continuity equation (the same as equation (2.1):

dp

5 T =10, (2.21)

e Momentum equation (see equation (2.2)):

8(7;;& + (uﬁma)ﬁ = —Da- (2.22)

e Energy equation (see equation (2.9):

('),g_tE + (m°H)4=0 (2.23)

e Equation of state (the same as equation (2.16)):

—1 1
p= 'VT,O [H - §uau“] . (2.24)

CHAPTER 2. BASIC EQUATIONS 12

Incompressible equations
The incompressible Euler equations are obtained by inserting p = 1 (constant) in the Euler
equations. Due to this, the energy equation and equation of state become obsolete.

e Continuity equation:

uy=V-u=0. (2.25)

,Q

e Momentum equation (see equation (2.2)):

Ot (v0) = pa (2.26)

Notice that the only variables that play a role now are the velocity (which is equal to the
momentum) and the pressure. The density and energy are not present anymore

CHAPTER 2. BASIC EQUATIONS 13

2.3 Non-dimensionalization of the governing equations

In this section the non-dimensionalization of the governing equations is given. In Section 2.3.1
the ‘standard’ compressible non-dimensionalization is discussed. In Section 2.3.2 the non-
dimensionalization as is done for the Mach uniform formulation is discussed.

2.3.1 Standard approach

The Navier-Stokes equations are non-dimensionalized. To this aim we need to choose four
independent reference values (namely, p, T}, u, and a reference length L,); all other reference
values are readily obtained. For example, t, = L, /u, (time-scale), p, = p(pr,T,) (dynamic
viscosity), h, = ¢,T, (enthalpy), a, = /(v — 1)k, (speed of sound) and

1
P =L p,h,. (2.27)
¥

Continuity equation
Non-dimensionalization leaves the continuity equation (2.1) invariant:

% + m, = 0. (2.28)

Momentum equation
Non-dimensionalization of the momentum equation leads to:

om® 1 1
u® a) - = B 2.29
o T <“ ") s T TP T RTS8 (2.29)
where we made use of
22 2
T E—————Y Y 3 (2.30)

hy — a2/(y-1)

and the reference Mach number M, is defined by:

u
M, = L. 2.31
= 231
The Reynolds number is given by:
r Uy Ly
Re = 222 (2.32)
Hor
Energy equation
Since h = ve, we have
hoh = ve,é. (2.33)

We define h, = ~ve,, resulting in h = é. Non-dimensionalization of the energy equation yields:

(y—1)M? 3 1
+ HY), = LEPYTe ey —kh , 2.34
+ (m*H) (Re W RePr B 8 (2.34)

CHAPTER 2. BASIC EQUATIONS 14

where the Prandtl number is given in equation (2.18).

Non-dimensionalization of equation (2.11) is somewhat more subtle. Let quantities with a
tilde denote the dimensionless values, quantities with subscript r denote the reference values
and the quantities without subscript or tilde denote the original, dimensionful value. We
write:

H=HH h=hh u=ui. (2.35)

Inserting this in equation (2.11) leads to:

2 luf
With (2.30) this becomes
H=h, [f} + %(7 - 1)M3'a2] : (2.37)

Choosing H, = h, gives for the dimensionless total enthalpy, omitting the tildes:
1
H=h+3(y- M2 u®u®. (2.38)

Similarly, writing E, = e,, yields the following relations for the dimensionless total energy in
dimensionless quantities, and omitting the tildes:

E = e+ %7(7 —D)Mu? = h+ %v('r -)M* =
1 1 1
= ht (- DM+ (v = Dy - DM = H + Sy - 1P M7 (2.39)

In the second step we used h = e (quantities are dimensionless), and in the last step we used

(2.38).

Equation of state
The non-dimensional equation of state is:

1
p=ph=p|H - 5(7 —) M2 uu®| . (2.40)

Euler equations
The non-dimensionalized Euler equations are given by:

e Continuity equation:

dp
—— e =0. 2.41
0 s, (241)
e Momentum equation:
om® 1
W) = ——pa. 2.42
o+ (u'm s qaEPe (242)

CHAPTER 2. BASIC EQUATIONS 15

e Energy equation:

10pE
- *H) o =0. 2.43
SO+ H), (2.43)
e Equation of state:
1
p=ph=p|H - 5(7 — 1)M? u*u®| . (2.44)

Incompressible equations
The non-dimensionalized incompressible equations are the same as the dimensionalized in-
compressible equations, equations (7.1) and (7.2).

Remarks

e Note that, once the dimensionless initial and boundary conditions are available, we need
two reference values (M, and Re) to solve the dimensionless set of equations (2.28),
(2.29), (2.34) and (2.40). For the Euler equations, we only need one reference value,
namely M,.

To compute the Mach number M in each point of the flow, using only dimensionless
quantities, the following relation must be used:

U U Uyl U, U

M:—: = = —— =

- - Mri,,7
@ VO-Dh iy und ar /1 Vi

where ¢ indicates the dimensionful quantity ¢, and § refers to the dimensionless quantity.

(2.45)

e The Courant number is defined by

o= %. (2.46)

Non-dimensionalization leads to, with @ and A as input:

(i+ 3-Vh)At

o= z 2.47
o (2.47)
2.3.2 Mach uniform non-dimensionalization
Start with the compressible Euler equations:
dp
il up) o = 0, 2.4
D) = 0 (2.48)
aom>
ot M = —pa, (2.49)
d(pE
(gt) 4 (wepH) . = 0. (2.50)

Meaning of the quantities: p is density; t is time; u® is velocity; m® is momentum; p is
pressure; F is total energy and H is total enthalpy. The system of equations is closed by the

equation of state for a perfect gas:

p=(y— 1)pe. (2.51)

CHAPTER 2. BASIC EQUATIONS 16

Additional useful relations:

m* = pu® (2.52)
1

H = h—}—§u2, (2.53)
1

E = e+§u2, (2.54)

h = ¢T, (2.55)

e = ¢1T, (2.56)

h = ~e, (2.57)

M = u/a (2.58)

a? = (y-1)h, (2.59)

where h is the enthalpy; e is the internal energy; u*> = u-u = u*u®; ¢, and ¢, are specific

heat values; v = ¢,/c, is the specific heat ratio; M is the Mach number, @ is the speed of
sound. The equations are made dimensionless by choosing suitable reference quantities u,,
L, (length), T, (temperature) and p,. The dimensionless quantities, indicates by ¢, follow
from:

b= ¢/dr, (2.60)

where ¢, is the reference quantity, and ¢ is any quantity (for example, x, p, u, h, e, M, and
so on), except p. We can derive, from the relations given above, the following expressions:

hy = 7e,, (2.61)
/b, = (y - 1M, (2.62)
h = é (2.63)
t, = Ly uy. (2.64)

The pressure is made dimensionless using;:

p=(p—p)/pru}, (2.65)
where, from the equation of state:

pr= (7= 1)pre,. (2.66)

Note that if we, in the case of subsonic flow, pressure p = 0 at the outflow, we write actually:
Pr = Pout- Making use of the relations given above yields the following dimensionless equation
of state:

~ 1 B
h= 5(1 +yM2p). (2.67)
We can also write this expression as follows:

(L+vM?p), p=—m(ph—1). (2.68)

p=

S
=2
5~

CHAPTER 2. BASIC EQUATIONS 17

Note that, when M, | 0, the density becomes indepent of the pressure, and that the expression
for p becomes singular (this can be avoided by considering vM2p.

The next point is to arrive at a dimensionless version of the Euler equations. It is not
hard to show that the continuity equation and momentum equation are not affected by the
scaling. After some manipulations, using the relations given above, one arrives at the following
dimensionless energy equation:

0 1 1
M2 {5 |+ 56 = Dow?] + 5w lapt S - v 4 7w = (2.69)

where now the tildes have been omitted. Note that, as M, | 0, the solenoidality condition on
the velocity field for incompressible flows is recovered.

CHAPTER 2. BASIC EQUATIONS 18

2.3.3 Choice among primary energy variables (implicit time-integration)

For implicit time-integration with respect to a primitive variable ¢, it is necessary that ¢
itself is present in both the time-derivative as convection term. For explicit time-integration,
see Section 2.3.4, this is not necessary.

Depending on the primary energy variable we take, the dimensionless energy equation (2.43)
and equation of state (2.40) takes the following forms:

e primary variable h.
Energy equation:

2

10 1 1
ph + 57(7 - 1)M,,2m7] +V-m [h + 5(7 ~ M| =0 (2.70)

v ot

Equation of state:

p=ph (2.71)
e primary variable H.
Energy equation:
10 1 2
5 pH—|—§('y—1)2M,,2m7 +V-mH =0 (2.72)
Equation of state:
1
p=plH — 37— D)MP] (2.73)
e primary variable (pH).
Energy equation:
10 1 m? (pH)
—— |(pH)+ (v - 1)’M}—| +V -m-"— =0 2.74
,yat(p)+2(7)rp+mp (2.74)
Equation of state:
1 2 2
p=(pH) = 5(v =)My pu (2.75)
e primary variable (pE).
Energy equation:
10(pE E 1
—%—I—V-m %— S(r= 1M =0 (2.76)
Equation of state:
1 2 2
p=(pE) = 57(v = 1)M;pu (2.77)

The following aspect with respect to the choice of primary variables must be noted:

CHAPTER 2. BASIC EQUATIONS 19

e The advantage of choosing H or (pH) as primary variable, is that when considering
steady problems, we have to solve

V-mH=V-upH =0 (2.78)

which is simpler than the other cases. In this case we don’t have a convection term
consisting of two terms.

e Since u is the convecting velocity (and not m), terms like V - m¢ have to be discretized
as:

/V-m¢dx:/V-upqﬁdx:f(u-n)pqﬁdf%Zuepeqbele, (2.79)

€
where u. = me/pe, and p. follows from a weighted averaging.
e The advantage of choosing (pE) as primary variable, is that the time-derivative is trivial.

e The advantage of choosing h as primary variable, is that the equation of state is trivial.

CHAPTER 2. BASIC EQUATIONS 20

2.3.4 Choice among primary energy variables (explicit time-integration)

As mentioned in Section 2.3.3, for explicit time-integration it is not necessary that primitive
variable ¢ is directly present in both the time-derivative as convection term. Define

q=pFE ¢ = pH, (2.80)
then we see that (equation (2.10))
¢=q+p (2.81)

holds for the dimensionful equations.
For the dimensionless variant, the following relations are relevant. The energy equation reads:

10q
2224V -ud=0. 2.82
Sor TV U (2.82)
The equation of state is given by:
1 2 2
p=q-57(v -)M pu (2.83)

The relation between the dimensionless ¢ and ¢ is given by

g+ (y-1p

. (2.84)

¢g=7¢—(vy-1)p = ¢ =

CHAPTER 2. BASIC EQUATIONS 21

2.4 Non-dimensionalization of the Riemann problem

When considering Riemann problems (e.g. Lax, Sod, Mach 3), one gives (dimensionless) left
and right initial states for the following quantities {a, p, p}. Two problems arise:

1. for the TUDFINVOL-code, I need to give initial conditions for the quantities {m, iL,ﬁ}.
See also Section 2.5

2. I need to compute quantities like the Mach number, total enthalpy and so on.

To solve these problems, the following approach must be taken.
We choose the reference values p, = L, = u, = p, = 1. As a consequence, we have m, =
priy = 1, hence m = pi. Since we have defined, in the beginning of Section 2.3 the relation
Py = Vv;lp,,h,,, we get
v
hy = ——. 2.85
- (2.85)

The dimensionless enthalpy, of course, can be obtained from the dimensionless equation of
state (2.40): h = p/p.
The total enthalpy H can be computed using relation (2.38). The reference Mach number
M, is computed as follows:

M, =2 — - =, (2.86)

“ Vo-Dh L fo-n VT

and the Mach number M then follows from (2.45)

CHAPTER 2. BASIC EQUATIONS 22

2.5 Initial conditions

In order to solve the (dimensionless) set of Navier-Stokes or Euler equations, all variables
have to be known over the whole domain at the initial stage: the initial conditions. Since
there are four independent variables, we need to prescribe these four independent variables
at ¢ = 0. At this moment, we prescribe (in the TUDFINVOL-code) m, p and h. Relating
these to the primary variables (m, p and H) is done using the equation of state to obtain
p, while obtaining the energy variable is done using relations given in the previous section,
depending on which energy variable is taken to be the primary variable. The computation of
the quantity m? at the cell-centers is discussed in Section 6.1.

For the incompressible flow we need to prescribe u and p at the initial time-level.

CHAPTER 2. BASIC EQUATIONS 23

2.6 Boundary conditions

In order to solve the (dimensionless) set of Navier-Stokes or Euler equations, we need to
prescribe boundary conditions: values of quantities at the boundaries, possibly a function of
time and position at the boundary. Especially for the Euler equations it is a delicate matter
which conditions must be prescribed at what boundary. For a more thorough treatment, we
refer to Chapter 16.4 in [4].

Convection-diffusion equation
The most occuring types of boundary conditions for a convection-diffusion equation for scalar
¢ are:

e Dirichlet condition: ¢ is given as function of time and position at the boundary;
e homogeneous Neumann condition: d¢/0dn = 0 at the boundary.

Momentum equation
For the momentum equation, the following types of boundary conditions can occur:
e the momentum-vector m is given as function of position on the boundary and time;

e 0" and the momentum component normal to the boundary are given;

e o™ and the momentum component tangential to the boundary are given;

e 0" and o™ are given.

With the stress-tensor 0*? given by equation (2.7), n' the unit vector normal to the boundary
and t' the unit vector tangential to the boundary, we can deduce that (in dimensionfull

quantities):
g 9 oun .
o™ =njon; = —-p-— gA,u + 2u ; u = u'n’
n
. 2 Out .
U'tt:t,'O'”tj — _p_gAlu_l_Zua_l; ut:uztz
nt ij 8un 3ut
o =niot; = p o + on

Note that prescribing ¢™" is for the Euler equations equivalent to prescribing the pressure.

Chapter 3

Description of an unstructured grid

3.1 Definition of an unstructured grid

In general we distinguish between two types of grids, namely structured and unstructured
grids. A structured grid usually consists of blocks of cells. Each block can be mapped onto
a rectangular grid with a constant number of cells in each of the coordinate directions. For
example, the number of cells that meet each other in an internal vertex is always 4 in a 2D
grid with quadrilaterals. In unstructured grids this restriction is abandonned. Furthermore,
unstructured grids in 2D usually consist of triangles, like finite element grids.

The unstructured grids that we consider, consist solely out of triangles, also called cells. The
edges of the triangles are called faces.

24

CHAPTER 3. DESCRIPTION OF AN UNSTRUCTURED GRID 25

3.2 Relations between number of cells, vertices and faces

For a 2D mesh consisting solely of triangles, the number of cells C', the number of boundary
faces Ep and internal faces E; are related, see [2]:

czéa%+zay (3.1)

The number of faces FE satisfies: E = E; + E. With V the number of vertices and H the
number of holes one can derive that

C+V=E+1-H. (3.2)

For fine meshes the condition E; > Ej is usually satisfied. Using this condition and assuming
that H is negligibly small, we arrive at

C~2V, E=3V. (3.3)

Comparing the number of equations with a vertex-centered scheme, we see that for a scalar
equation the staggered approach results in approximately twice as many equations. For the
momentum equation, one in each direction for a vertex-centered scheme, the staggered ap-
proach results in approximately 3/2 as many equations.

Internal and boundary cells
We distinguish between two kinds of cells:

e Internal cells: internal cells have no faces at the boundary. Consequently, in the dis-
cretized equations no measures have to be taken to include boundary conditions.

e Boundary cells: one or more of its faces are positioned at a boundary. Consequently,
in the discretized equations one or more variables are prescribed or related directly to
values at the boundary.

Let C be the the total number of cells and C; the number of internal cells, then (C' — C;) is
the number of boundary cells. The separation into two different cell types as proposed here
is made on basis of geometry alone.

Real internal, quasi internal and boundary faces

We distinguish between two kinds of faces:
e Internal faces: internal faces are not positioned at the boundary of the domain.
e Boundary faces: are positioned at a boundary.

There are F; internal faces and Fp boundary faces, and F = E; + Ej.
For a suitable implementation of the discretization of the momentum equation, see Chapter
5, we need to distinguish between two kinds of internal faces:

e Real internal faces: the two cells adjacent to this face are both internal cells.
e QQuasi internal faces: at least one of the adjacent cells is a boundary cell.

Let the number of real internal faces be Ej,, then the number of quasi internal faces follows
from (E; — E;;).

CHAPTER 3. DESCRIPTION OF AN UNSTRUCTURED GRID 26

Figure 3.1: A (forbidden) situation in which only three faces meet at a vertex. The control
volume for the momentum at face ¢ is shaded.

3.3 Conditions imposed to the grid

In order to avoid problems with the discretization, or badly shaped grids, the grids must
satisfy the following properties, see also Section 16.1:

e the number of faces/cells that meet at each vertex in the interior of the mesh must be
at least four. The discretization is not suited to deal with situations in which only three
faces meet at a vertex, see Figure 3.1. This because otherwise the treatment of the
convection-term becomes too complicated.

(Note: Until now no meshes were encountered in which this criterion was not satisfied:
probably the SEPRAN mesh-generator itself does not allow such a situation.)

e the angles inside each triangle must be smaller than a certain value. Let a and b be the
tangential vectors of two faces of a triangle, then the angle ¢ between these two faces
follows from:

(3.4)

At this moment we don’t allow for angles with cos¢ < —0.8, or, equivalently, ¢ >
143.13°.

CHAPTER 3. DESCRIPTION OF AN UNSTRUCTURED GRID 27

Figure 3.2: Staggered grid. At the cell-centroids the scalars are located; the normal momen-
tum components are positioned at the midpoints of the faces.

3.4 Staggered set-up

The primitive variables in our approach are the density p, the momentum vector m and an
energy variable (e.g. h, H or (pH)). The pressure follows from the equation of state (2.40).

In Figure 3.2 the employed staggered placement of variables in the grid is shown. At the cell
centroids the scalar variables like density, pressure and enthalpy are located. The projected
momentum m, i.e. the component of the momentum vector parallel to the normal of the cell
face, is stored at the midpoint of this face. This placement of the variables is similar to the
classic staggered scheme on structured grids with quadrilateral cells ([3]), used by our group
in, for example, [1], [9], [8], [10] and [7]. At every face a normal vector N is defined in a
unique manner. The momentum equation for m = m - N = m®N® follows directly from a
projection of (2.29) on N = N<.

Chapter 4

Spatial discretization of a
convection-diffusion equation

4.1 Introduction

A general form for a convection-diffusion equation for scalar ¢ is given by:

d(ad

M) 49 (o) V- (eV9) +ds =, (1)
where a, b, ¢, d and g are coefficients that may depend on space, time and previously computed
solutions. The second term in (4.1) is called the convection term, and the third term is the
diffusion (conduction) term. In this chapter we discuss the discretization, implementation of
boundary conditions and the numerical treatment of the convection term. Since the energy

and continuity equation are special forms of (4.1), they are also treated in this chapter.

28

CHAPTER 4. SPATIAL DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION29

Figure 4.1: Cell-numbers are underlined, face-numbers not.

4.2 Convection-diffusion equation: discretization

The control volume (CV) for scalar ¢;, positioned in the cell-center of cell 7, is the triangle 4
itself with area €2;, see Figure 4.1. The stencil as given in this figure, is the one that we have
implemented.

Integration of (4.1) over the CV and application of Gauss’ divergence theorem leads to:

ntl gntl ~ -
QO a, ¢z + Z bgﬂugﬂqbgﬂle . Z CZ+1(V¢n+1 . N)ele + Qid?-}—lgb?-}—l _
= Qzﬁ + Qig;%”-i-l‘ (42)
T

The following aspects must be noted:

e An implicit Euler time-integration scheme is used, see Chapter 9. Parameter 7 repre-
sents the time-step.

e The summation over e represents the summation over the faces of the CV, i.e. e =

{k,1,0}.

e With N, the uniquely defined normal at face e, and n. the, with respect to cell i,
outwards pointing normal, the convection term is treated as follows:

A;vmmwdgzﬁ#pmqmmrzg}J%q@@@:g}w@%, (4.3)

where 4. = u. + N, and

lo = I.(n.-N.). (4.4)
This can be proven by noting that |n.| = [N.| = 1 and n. = +N, leads to:

n. = (n. - N.)N.. (4.5)

Note that (n. - N¢) = £1 always.

CHAPTER 4. SPATIAL DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION30

e Note that u. is computed using ue = me/pe, where p. follows from linear interpolation
among adjacent cell-center values.

e Computation of b. is done by interpolating values of b located at the cell-centers.
e The computation of ¢7*! is treated in Section 4.4.
e The computation of (V#"+! - N). can be found in Section 5.7.

e Note that (4.2) forms a linear system of the form: Ax = b, where A represents the
C x C-matrix following from the left-hand side, vector x = (¢?+1, e ,¢g+1), with C
the number of cells, and b stands for the right-hand side of (4.2). For more information
concerning the linear solver, see Chapter 10.

e For explicit time-integration, see Section 9.3.

CHAPTER 4. SPATIAL DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION31

Figure 4.2: Boundary cell 7 with boundary face o.

4.3 Convection-diffusion equation: boundary conditions

At this moment we have restricted ourselves to Dirichlet and homogeneous Neumann bound-
ary conditions. Note that for the Euler equations (¢ = 0), no homogeneous Neumann condi-
tions may be given. However, boundary faces on which no Dirichlet condition for ¢ is given,
are treated numerically (using one-sided differences) as if a homogeneous Neumann condition
were given.

Consider a boundary cell ¢+ with boundary face o, see Figure 4.2. Note that the problem is to
find expressions for "+ and (V¢"*! . N), in the convection and diffusion term in equation
(4.2). Note that this equation is not altered in the presence of boundaries; only the numerical
treatment is different. At this moment, we restrict ourselves to the Euler case, leading to the
following consequences of the boundary conditions:

e Dirichlet boundary condition: ¢"*! is given. The term —b"*t1ut1,¢7*! is moved to
the right-hand side. The coefficients a,; and o, 4, equation (4.6), are put to zero.

e Homogeneous Neumann boundary condition: (V¢"+! - N), = 0. This condition is
treated using one-sided differences: ¢! = ¢?*!. This leads to a contribution of size
b2ty t], to the diagonal. The coefficients a,; and a,,, equation (4.6), are put to
zero.

CHAPTER 4. SPATIAL DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION32

4.4 Convection-diffusion equation: convection term

The term ¢2*! appearing in the convection term of equation (4.2), is obtained from in-
terpolations from neighbouring scalar values using central or upwind methods. We have
implemented a first-order upwind and a central interpolation scheme. This means that ¢7+!
is determined by the scalar values in the two cells adjacent to the face. Consequently, we
write, with reference to Figure 4.1, and omitting the superscript n + 1:

Ok = 00+ o P,
o = oidi+ by
(bo = ao,iqbi + ao,q¢q- (46)

The coefficients o depend on the choice of upwind method. Note that consistency demands
that ok + ag; = i+ iy = @oi + @0 g = 1.

4.4.1 Convection-diffusion equation: first order upwind scheme

The first order upwind scheme is based on taking upstream values. For ¢,, see Figure 4.1,
this results in:

b0 = ¢q if the flow is from cell ¢ to i; (4.7)
° ¢; if the flow is from cell 7 to q. '
This statement can be rewritten in the following form:
if n+1io 0:
g, = 4 %0 Mo 1o <O; (4.8)
¢ if m™t, > 0.
Using ¢, = a;0; + a4y, vet another form of this equation is
0 if m?t, < 0;
a; = 1 TRO v < (49)
1 if m2t, > 0.
and oy =1 — .
4.4.2 Convection-diffusion equation: central scheme
With ¢, = a;¢; + a,¢,, we find that, see below:
Q, Q,
.= = 4.10
“Tara, YT ra, (4.10)
Using arguments as given in [6], it may be better to use
1 1
o; = 5 qu = 5 (411)

to reduce the global error. This is discussed here below.

CHAPTER 4. SPATIAL DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION33

Figure 4.3: The cell-centers are ¢ and r, and the face is indicated with 3.

Spectral properties of the central scheme
The discretized convection equation may be written as:
d¢

D%—I—C(u)gb:r, (4.12)

where D is a diagonal positive definite matrix containing the areas of the control volumes,
C' is the discretized convection operator, ¢ is the solution vector and r are the other terms.
Veldman et al. [6] suggest that the discrete operators should mimick physical properties,
hence C' should be anti-symmetric:

C,'j = —Cj' V1,7 C;; =0. (4.13)

Using central interpolations of the type: ¢, = %(@ + ¢g4), leads to the following matrix
elements:

Cii = %(uoio + uply + wilh) Cig = %'uofo. (4.14)
Notice that C;; = 0 for incompressible flows. Doing the same, but now for cell ¢, leads to:
Cyi = %uoio, (4.15)
where I, now has the opposite sign as in Cjq. Hence, C;y = —Cy;.

Weighted interpolation
In several parts of the computations, a weighted interpolation is used to interpolate scalars,
known at the cell-centers, to the cell faces.

Knowing ¢, and ¢,, we want to compute ¢;, see Figure 4.3. Weighted interpolation of ¢
along line gr yields, at the intersection between this line and face 2:

Q Q,

q
o+t a, e,

bq; (4.16)

with € indicating the area of the cells.
This can be proven by noting that, with h, (h,) the shortest distance between cell ¢ (r) and
face ¢, weighted interpolation leads to

h A,
o, +

4.1
hq + by hq+h,,¢‘1 (4.17)

at the mentioned intersection. With €; = 1(3h;)l, and Q, = 1(3h,)l, this results in equation
(4.16).

We use (4.16) as an approximation for ¢;, even when the mentioned intersection is not posi-
tioned at the midpoint of face 7.

CHAPTER 4. SPATIAL DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION34

4.5 Energy equation

The energy equation is of the form (4.1). For the moment, we restrict ourselves to the
dimensionless Euler form, i.e. equation (2.43).

4.5.1 Evaluation of time derivative of kinetic energy

/Qi ((m.m)n+1 - (m.m)n) dQ) (4.18)

7-pn+1 Tpn

The term

must be evaluated. Omitting the superscripts, we write:

/Mdﬁ ~ g, ()i (4.19)
Q; P Pi

The computation of (m - m); will be discussed in Chapter 6.

4.5.2 Energy equation: enthalpy as primary variable

With h as primary variable the energy equation is given by (2.70). Discretization and com-
parison with (4.2 leads to the following relations for the coefficients:

n-I—l n
art o= P ap =l ot gt gt g

Y Y

1 ntl .m)?

Q! = —gw—l)Mmi((m -)
P, P;
2 1 (M- m))et!
— Z(y—1)M? Z Tl)ze. (4.20)

The implementation of several terms in coefficient Q,'g?’" *1 s discussed in Sections 4.5.1 and
4.5.7.

4.5.3 Energy equation: total enthalpy as primary variable

With H as primary energy variable, we have (2.72) as energy equation. Discretization and
comparison with (4.2) leads to the following relations for the coefficients:

n+1

gt = P =l o g =
v
n,n 1 -1 2 n+1 . 5
¢ 2 v Tp?+ TP}
n,n+1l .

The implementation of the terms in coefficient €;g, is discussed in Section 4.5.1.
When H is the primary energy variable, we have a Dirichlet boundary condition for H only
when both & and m (or |m|) are given at the boundary. The total enthalpy at the boundary

is then computed using

1 (m-m)
H=h+=(y—-1)M?
+2(P)/) r p2 b

where for the density p we take the value in the adjacent boundary cell.

(4.22)

CHAPTER 4. SPATIAL DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION35

4.5.4 Energy equation: density times total enthalpy as primary variable

With (pH) as primary energy variable, we have (2.74) as energy equation. Discretization and
comparison with (4.2) leads to the following relations for the coefficients:

aftt = S B it =0
Y Y
1(y—1)? ot -m)?
2 v ,o?* P!
n+1

The implementation of the terms in coefficient €,g." is discussed in Section 4.5.1.
When (pH) is the primary energy variable, we have a Dirichlet boundary condition for (pH)
only when both h and m (or |m|) are given at the boundary. The quantity (pH) at the
boundary is then computed using

m - m)

1
pH = ph+ (- a2 1), (4.24)
P

where for the density p we take the value in the adjacent boundary cell.

4.5.5 Energy equation: density times total energy as primary variable

With (pFE) as primary variable the energy equation is given by (2.76). Discretization and
comparison with (4.2 leads to the following relations for the coefficients:

a?"’l = 1 a; = l prtl =1 it = dn+1 =0
Y
n 1 n+1
Qgit = S MZX:mn+1 mnrfl)) Le. (4.25)
n,n+1 .

The implementation of several terms in coefficient €2;¢, is discussed in Sections 4.5.1 and
4.5.7
When (pE) is the primary energy variable, we have a Dirichlet boundary condition for (pE)
only when both h and m (or |m|) are given at the boundary. The quantity (pE) at the
boundary is then computed using
1 m-m
pE = ph-+ (- M), (4.20)

where for the density p we take the value in the adjacent boundary cell.

4.5.6 Energy equation: explicit time-integration

The dimensionless energy equation, see Section 2.3.4, is discretized and implemented as well.
We have implemented it only for primary energy variable ¢ = pH.
A minor problem is formed by the fact that we do not store variable ¢g. Noting that we do
store primary variable ¢ and pressure p, the time-derivative is discretized as (use equation
(2.84)):

0 "' —q¢" "t —y9"+ (v - 1p"

5~ At = At . (4.27)

CHAPTER 4. SPATIAL DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION36

The explicit variant of equation (4.2) for the energy equation discussed here, is:

n+1 n+1

q — —
9,7’ blu, ool — o " N)ele + Qd} o7 =
T —I_ ze: € U/E € Ze: C@ (V¢) —I_ 2 ¢l
= ’p’¢ + Qg (4.28)
with coefficients given by:
n+1 1 n n n n
a; = — a; =1 b, =1 cg=d; =0
v
Qg™ = —(y - Dt (4.29)

T

4.5.7 Convection of kinetic energy

In several convection terms in the preceding sections the following term, representing convec-
tion of the kinetic energy, appears in the right-hand side:

m n+1

T~ — 1 MZZ n+1mTley (430)

with the summation over the three faces of the control volume. At each face e the quantity

u™*1 is known (from u. = m./p., where p. follows from weighted averaging); the problem is
to determine (m - m)?*t!/p?*!. Considering face o in Figure 4.1, we will discuss the imple-
mentation of the first order upwind and central scheme.

First order upwind scheme

Assume that the flow on face o in Figure 4.1 is from cell ¢ to 4, i.e. m”t'l, < 0. We then
use: pntl = p”"’1 The term (m - m) at face ¢, obtained using first order upwind, with a flow
from ¢ to 7, will be denoted as (m - m)2*!. Note that

(m - m)gdt = (mgg")? + (mgg')?, (4.31)

where both mg;l and mg’j;l (note that we do not use the known value m”*! !} are obtained
using the reconstruction algorithm (also discussed, in more detail, in Section 5.4). The for-
mulas from which m?t! and m”"‘1 follow, are repeated here shortly. Determine coefficients

0,9
« and § from:

N, = o,N,+a,N
t, = ﬁUNU—I_ﬁUJN

Then
mg:;l = ozumn"' + a,m ”+1
~n+l +1 +1
Mgy = Bemy™ + Bumy’ .

When face o is a boundary face, see Figure 4.2, then one-sided differences are applied for the
density, normal momentum component and tangential momentum component.

CHAPTER 4. SPATIAL DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION37

Central scheme

Again considering face o in Figure 4.1, we determine p?*! using averaging:

n 1 n n
T = (). (4.32)

With the computation of (m-m)}+! and (m-m)"T! similar to the computation of (m-m)ptt,

as discussed above in this section (the part on the first order upwind scheme), we compute:

(m-m)7 = S[(m w2 + (), (4.33)

0,2

On boundary faces, one-sided differences are taken. Hence, the treatment of boundary faces
is identical for the first order upwind and the central scheme.

CHAPTER 4. SPATIAL DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION38

4.6 Continuity equation

4.6.1 Discretization of the continuity equation

The density is computed from the continuity equation, by considering this equation as a
convection equation:

dp Jdp m

LoV .m=2L1vV.[p=)=0. 4.34
ot tVom ot + ('0 p) (4:34)
With n and (n + 1) representing the time-levels, the discretization of this equation, with ¢
denoting the control volume and e the three faces of it, is done as follows:

PnH 1 17 pi
Q- ”"‘ ”+ . =Q,—% 4.
+Z . (4.35)

eup

In this equation p{ . represents the density at face e, obtained using weighted interpolation
(denoted by the .), at the old time-level; see Section 4.4.2. Quantity pg’t; is the density at
face e, obtained using density biased upwind; see Section 4.6.2. Equation (4.35) is considered
as a special form of the general convection-diffusion equation (4.1).

Repeat equation (4.2), where we have to recall that p"*! is the unknown ¢"*1:

n+1 ¢n+1

Q——— Zb” ugtorte =) el (Vo N)elet

n n¢n ‘

_|_Qld:z+1¢? — zpz _I_Q nn+1 (436)
Note that in the time-derivative at the left-hand side we write p™ instead of p"*!, and further-
more, in the convection term we write b” instead of 67*1. This because p™*! is still unknown.
The following coefficients result from comparing equation (4.35) with equation (4.36):

=1 a'=1 =1 S =4 =gt =0, (4.37)
In order to discretize correctly at the boundary (no Dirichlet boundary conditions for the
density are given explicitly), we do the following. If the momentum vector m is given at the
boundary (e.g. inflow boundary), then we assume the following Dirichlet boundary condition
for the density: p = m/u, where m the given normal momentum component, and u the latest
obtained given normal velocity. In all other situations, a homogeneous Neumann condition
for the density is prescribed.
For explicit time-integration, in equation (4.35) the terms m”*! and p2*! are replaced by m?
and pP. This consequently leads to trivial changes in equation (4.36).

4.6.2 Density biased upwind: first order & central scheme

See Section 4.4. Note that the first order scheme is also called unconditional upwind scheme.

Chapter 5

Spatial discretisation of the
momentum equation

5.1 Introduction

The dimensionless momentum equation including viscous terms is given by (2.29). For the
moment, we restrict ourselves to the Euler approximation, i.e. equation (2.42). In this chap-
ter we discuss the discretisation, implementation of boundary conditions and the numerical
treatment of the convection term. Furthermore, the computation of gradients located at cell-
faces is discussed. The momentum equation for incompressible flows is exactly the same as for
compressible flows. The only differences are: (1) the primary variable is the velocity for the
incompressible case. The relation between velocity and momentum is simple, since m = u;
(2) The factor 1/yM? for the pressure gradient is not present in the incompressible case.

39

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 40

Figure 5.1: The control volume for the momentum component normal to face ¢ is shaded.
The number denote the cells, while the faces are indicated by letters.

5.2 Momentum equation: discretisation

The Euler momentum equation (2.42) is projected on a normal vector N*:

dmeN© 1
T+ (wPmon) = ~3mPa N (5.1)

)

Defining m = m*N® = m - N, being the component of the momentum in the direction of the
normal vector, shortly called normal momentum component, this equation is rewritten as

am 1
W—I_V'um__'yM,?

Vp-N. (5.2)

As mentioned in Section 3.4, at every face midpoint the normal momentum component is
positioned.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 41

5.2.1 Discretisation: control volume consisting of whole triangles

The control volume for the momentum at face i, see Figure 5.1, is chosen to consist of the
two triangles adjacent to this face. For the situation in which ¢ is a boundary face, we refer
to Section 5.3. Integration of (5.2) over the control volume and numerical quadrature yields
an equation for m; = m; - N;, with N; the uniquely defined normal on face i:

Q1+ Q9 1
= n

T

D+ . _
S P m™ N,
o D m N

The following aspects must be noted:

e An implicit Euler time-integration scheme is used. See Chapter 9 for more information.
Parameter 7 represents the time-step.

e The summation over e represents the summation over the faces of the CV, i.e. e =

{k7 l? 07j}'

e Picard linearization of the convection term is applied:
V- (u"tm ") 2 v (u"mm). (5.4)

e With N, the uniquely defined normal at face e, and n. the, with respect to control
volume €2;, outwards pointing normal, the convection term is treated as follows:

/V-(um)dﬂ = V-(u(m-N,-))dQ:j{ (u-n)(m-N;)dl' ~
Q; o8;

A
>

X

u - n)(me - Nole =) (ue - No)(me - Nj)le, (5.5)

e e

where we used (4.5) and
le = l.(n. - N.). (5.6)

The computation of (m. - N;) is treated in Section 5.4. The term (u. - N¢) can be
obtained using a ’conservative’ approach or using a ’nonconservative’ approach, see
Section 5.6.

e Note that (5.3), in the case of implicit time-integration, forms a linear system of the
form: Ax = b, where A represents the E X E-matrix following from the left-hand

side, vector x = (m?“, e ,m%“), with E the number of faces, and b stands for the
right-hand side of (5.3). For more information concerning the linear solver, see Chapter
10.

e See Section 13.1, part Face-based data structure, concerning the definition of the unique
normal N;.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 42

5.2.2 Discretisation: control volume consisting of half triangles

Considering Figure 5.1, the control volume for face 7 consists then of half of triangle 1 and
half of triangle 2. With N; pointing from cell 1 to cell 2, the discretized momentum equation
for face ¢ becomes:

m?tl —mn 1
Q—— 4+ (Fh - F)=-Q;,— " . N),, .
where Q,; = %(Ql + Q3) and
F1 = (111 . N,)(ml . N,), (58)

where u; and m; stand for the velocity vector respectively the momentum vector in cell 1.
These have to be interpolated using a central or some sort of upwind scheme. For explicit
time-integration, u and m in equation (5.8) are taken at time-level n. For implicit time-
integration, a Picard linearization is used, which means that u is taken at time-level n and
m at time-level n 4+ 1. The computation of fluxes F is the subject of Section 5.5.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 43

\Y

3

N

Figure 5.2: The control volume for the momentum component normal to boundary face i is
shaded. The number denote the cells, while the faces are indicated by letters.

5.3 Momentum equation: boundary faces

5.3.1 Momentum given at boundary

At boundary faces several sets of boundary conditions for the momentum equation can be
given, see Section 2.6. They can be divided into two groups: either the normal momentum
component is prescribed, or this quantity is not prescribed.

Incorporating the first possibility is trivial: the ith row, with ¢ indicating a boundary face, of
the matrix is given by A;; = 8, with 6% the Kronecker delta, and b;, the ith element of the
right-hand side vector b, is put equal to m?*!

i .

5.3.2 Boundary conditions: control volume consisting of whole triangles

When m; is not given, we need to write down an equation similar to (5.3).

Subsonic outflow

Note that, within the Euler approximation, in this situation always ¢"™" = —p, i.e. the
pressure, is given at the boundary. For the control volume for boundary face ¢, we choose
the corresponding boundary cell, see Figure 5.2. Integrating (5.2) over the control volume 2,

: : n+l,
yields an equation for m;™ :

—m” nTEUN) (ue - Nl = —m? — Q(Vp-N),. 5.9
- m, + ze:(me)(11) - m, ’YMTZ 1(p) ()

The summation over e stands for the summation over the CV-faces: e = {1, j,k}. For the
discretisation of the pressure gradient, see Section 5.7.7. The treatment of the convection
term at the outflow boundary is discussed in Section 5.4.7.

5.3.3 Boundary conditions: control volume consisting of half triangles

Boundary faces
Let ¢ be a boundary face. When m; is not given (at the outflow boundary, for example, where

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 44

the pressure is given), the discretized equation reads (cf. equation (5.7) and Figure 5.2):

m?t —mn

1
Q;———" 4 li(u;m; — Fy) = —QiW(VP N, (5.10)

T r

where €; = %Ql and F} is defined in (5.8). For the computation of the pressure gradient, see
Section 5.7.7. For the computation of F, see Section 5.5.3.

Quasi internal faces

Note that, when the full momentum vector is given at a boundary face, we have only used
information with respect to the normal component at the boundary face. The given tangen-
tial momentum component must also be used in some manner. Let at face ¢ in Figure 5.2
the momentum-vector m; be given. At quasi internal face j we then prescribe the normal
momentum component by inserting m; = m; - N;. When face j is a quasi internal face for
more than one boundary face at which the momentum vector is given, we do the following.
Let at faces ¢ and o the momentum vector be given. Then we prescribe the normal momentum
component at face j by inserting m; = %(m, -N; 4+ m, - Nj). Completely similar, when there
are three nearby boundary faces at which the momentum vector is given.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 45

5.4 Convection term: integration over whole triangles

For a discussion of the treatment of the convection term when dealing with a control volume
consisting of half triangles, we refer to Section 5.5.

5.4.1 Discussion

The discretized convection term is given by
C=3Co=3 (m*'-Nj(uy - N (5.11)

A relevant aspect is the computation of (u.-N,) in equation (5.11), to be discussed in Section
5.6.
There are two ways to compute the term (m. - N;):

1. The momentum vector at face e can be decomposed in a component normal to face e
and a component parallel to this face:

me = mNe + Mete, (5.12)
leading to
m, N, = me(Ne . N,) + me(te . N,) (5.13)

The difficulty lies in determining the tangential momentum component ., since only
the normal momentum components are stored at the faces.

2. The term (m, - N;) itself is upwinded.

Both schemes will be discussed below.
5.4.2 Reconstruction procedure
We have, see Figure 5.1,
tj = &Ng + &Ny, (5.14)
where &, and &, can be solved from:
v llel=l]
’ ’ = A (5.15)
|: Now Npy &p tiy

With N = (N,, Ny), we define t = (t,, —t,). The inverse of a 2 X 2 matrix

A= [itz] (5.16)

a1 @32

is given by:

1 _
A [22—] (5.17)

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 46

Another way of solving for £ is by using the orthogonality of the tangential and normal vectors:
ty Ny =t,-N,=0. (5.18)
Taking the inner product with t, and t, leads to

(tj 'tq) = 5p(Np) tq)
(tj) tp) = 5q(Nq 'tp)

from which the coefficients £ can be found easily.
If m is constant, we have exactly

mj =my - t; =m;j- ({Ng +Np) = Egmg + Emyp. (5.19)

This equation will be used as approximation when m is variable. Of course, cell 1 can be
used just as well, leading to

ﬁ”o]‘ =&m; + Egmy. (5.20)

An alternative way to reconstruct the momentum has also been implemented. We start
from the divergence theorem:

/ff;d@: Fngdl (5.21)
Q o0

Now choose f = (a-r) with a and b constant and r = x — x¢ the position vector, where
Xg is suitably chosen point. Then

fﬁ = (aarabs) = aab55aﬁ = auba, (5.22)
and hence
/ div (a-r)bdQ = (a-b)|Q]. (5.23)
Q

On the other hand,
}éﬂf-ndfzze:jge(a-r)(b-n)(ﬂ‘:
Z(b-n)a-% rdP:Z(b-n)a-(Xe—xo)le,

e € e

(5.24)

with /. the length of the edge e. So,

(a-b)[Q=a-) (xc - x0) (b-n)l. (5.25)

e

Since this equation holds for any arbitrary constant a, we get

1
b= Gl Z (%e — x0) (b - n) . (5.26)

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 47

Substitution b = m gives
1
m = 9] g (xe — %X0) (m - m) l. (5.27)

Multiplying by t and chosing xo = mathbfz; leads to the reconstruction formula
7 ! >t) mel (5.28)
m; = —————— C(%e — x5) mele. .
T+ Q] 4 ’
6—17 7p7q
in the case of the internal or quasi internal face. In general we can write
;= XqMq + XpMp + XkMk + XiMi, (5.29)
where the coefficients x depend on geometry and type of interpolation applied.
Another, related form of reconstruction, is the following. We can write
N;j = 1gNg + 1pNy, (5.30)
where 7, and 7, can be solved from:
’ ’ = . (5.31)
[Noy Npy Tp Njy
Of course, also in this case we can make use of the orthogonality between the tangential and
normal vectors, resulting in

(Nj-tg) = mp(Np-ty)
(Nj-tp) = ng(Ng-tp)

5.4.3 Momentum equation: old first order upwind scheme

Has keyword OLD_FIRST_QO, and belongs to method 1 (see Section 5.4.1).
Reference is made to Figure 5.1. For the first order upwind method, with a flow from cell 6
to 1 (u;l < 0), we take in (5.13):

mj = Egmg + Epmyp, (5.32)
and with a flow from cell 1 to 6 (u;l > 0) we have in (5.13):

ﬁlj =&emy, + &m;. (5.33)

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 48

5.4.4 Momentum equation: central scheme

Two possible schemes are implemented.

o Keyword NONE.
This method is based on an averaging of the two upwind interpolations with keyword
FIRST_ORDER as given in Section 5.4.5, i.e.

1
(m; - N;) ~ 5(77me + ngmq + m;) (5.34)

For the spectral properties of this scheme, see Section 5.4.8.

e Keyword OLD_NONE.
Belongs to method 1 (see Section 5.4.1).
Reference is made to Figure 5.1 and equation (5.29). Central interpolation leads to:

. Ql - Ql . QG o QG '
Xq = Q, _1_96511 Xp = QO+ 96513 Xk = O+ 96£k Xi = 01 + 9651 (5.35)
or, see the discussion in [6],
1 1 1 1
Xq = §5q Xp = 5510 Xk = §5k Xi = 551 (5.36)

At this moment we have implemented (5.36) for keyword OLD_NONE.

5.4.5 Momentum equation: first order upwind scheme

o Keyword NFIRST_ORDER.
Belongs to method 1 (see Section 5.4.1). Reference is made to Figure 5.1. When the
flow is from cell 1 to 6, we compute the desired convection term without using the
expansion on normal and tangential vectors. Hence, instead of (5.33), we do:

(mj . N,) ~ (m, . NZ) =m;. (5.37)
When the flow is from cell 6 to 1, we use (5.32).

e Keyword FIRST_ORDER.
Belongs to method 2 (see Section 5.4.1). We can solve, see Section 5.4.2, for coefficients

n:
N; = n,Np + 14Ny N; = iN; 4 7 Np. (5.38)

Note that, clearly, we have n; = 1 and nr = 0. Let the flow in Figure 5.1 be from cell 6
to 1, then we write:

m; - N; = mj - (7N, + 14Ng) = mpmyp, + ngmyg. (5.39)
Let the flow in Figure 5.1 be from cell 1 to 6, then we write:
m; - N,; = m; - (mN,' + nka) ~m;. (5.40)

Note that this is the same relation as that we use when the flow is from cell 1 to 6 for
keyword NFIRST_ORDER.

Numerical experiments show that this method, with keyword FIRST_ORDER, is consis-
tent.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 49

5.4.6 Momentum equation: quasi internal faces

The four CV-faces e, e = {k,l, 0,7}, Figure 5.1, are divided into two groups: internal (real
and quasi) faces ¢ and boundary faces b: e = qU b.

We divide the boundary faces b into several groups, depending on the boundary conditions
given: faces b4 on which the full momentum vector is given, faces b5 on which only the normal
momentum component is given, faces b6 on which the tangential momentum component
and the pressure is given, and faces b7 on which only the pressure is given. We have b =
b4UbSUbB6 U DT, and e = qU b4 U b5 U b6 U b7.

The two adjacent faces of boundary face b are indicated with ¢ and x. The contribution to
the convection-term resulting from face b equals:

(mb . N,‘)‘M[Jb = 'ubib[nzb(Nb . N,) + ﬁlb(tb . N,)] (5.41)

The boundary conditions at face b are implemented using one-sided differences. Note that
there is always a contribution of size uplp(Np - N;) to matrix-element A, .
The following approach is used, for method 1 as discussed in Section 5.4.1:

e When 1 is prescribed; b € {b4,b6}:
Subtract uplpmp(ts - N;) from the right-hand side.

e When my is not prescribed; b € {b5,b7}:
With

my = &my; + Exmyg, (5.42)

where coefficients £ follow from a reconstruction procedure, put numbers uply (ty - N;)E;
and uplp(tp - N;)&; in matrix-elements A;; and A4;; of the matrix.

For method 2, see Section 5.4.1, we use for boundary conditions b4, b5 and b6 the methods as
given a few lines above. The reason for switching to method 1 in this case is clearly the fact
that the boundary conditions are also given in terms of tangential and/or normal momentum
components. For boundary condition 57 (this must be at an outflow boundary) we make use
of (myp - N;) ~ m;, which is in accordance with method 2 and which enlarges the diagonal.

5.4.7 Momentum equation: boundary faces

At boundary face 7, see Figure 5.2, we need to evaluate the term C; = (m; - N,’)’U,’L’ in the
convection term. We evaluate this term by C; = m;u;l;, independent whether method 1 or
2 (section 5.4.1) is used. Note that, with N; = n;N; + 7Ny, it would be more consistent
with method 2 to write C; = (n,;m; + nkmk)'uiii, but we prefer to use C; = mju;l; since this

enlarges the diagonal.

5.4.8 Spectral properties of central scheme

Here the properties of the central scheme, equation (5.34), in the light of the arguments
formulated by Veldman, [6], are gathered.
The discretized momentum equation can be written as:

d
Dd—r;l +C(uym=r, (5.43)

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 50

where D a positive definite diagonal matrix, C the convection matrix, m the solution vector
and r the other terms. Veldman [6] states that the convection operator should be skew-
symmetric:

Ci; = —-Cj; Vi, j C;; =0. (5.44)

We will show whether and when our central scheme satisfies this property.
The following relations (reconstruction and closed contour integral) holds:

N; = N, +nN, (5.45)
N, = #’N;+7'N; (5.46)
Zqu + Zpr + Zka + Z,N, = 0. (5.47)

Writing the convection term out in the equation for m;, leads to, among others, the following
matrix elements:

1 . 1 _ _ _ _
C,'q = 577;uj‘lj Cii = §(u]‘lj + uply + uply + uolo). (5.48)

Notice that C;; = 0 when the flow is incompressible. Writing out the equation for m, leads
to the following matrix elements:

1
Cyi = §U?uj‘l]‘, (5.49)
where l} has a sign opposite to the sign in Cj,. Hence, C;, = —Cl; if and only if

= nl. (5.50)

We will derive a relation between 77; and 7!, using the reconstruction and closed contour
integral relations given above. First, we find that

1 - _ _
N, = i—(—liNi — kN — [,N,) (5.51)
q
Inserting this leads to:
L7) No= (= 3" | Np = 17 N (5:52)
q q q

Notice that, since N; and Ny, can never be parallel, the term in front of N, can never be zero.
Hence, we get:

Lt it
= ,-lgp = i ql-i . (5.53)
Ip — Mgy, Ip — Mq1,

One special case occurs when condition 77; = n{ is satisfied, namely when N; and N, are
parallel and Ny and N, are parallel. This is for example the case in grids consisting of
triangles with angles of 60° and Courant grids. More generally speaking, this is the case for
unstructured grids where there is an underlying structured grid that is not ’skewed’.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 51

3

Figure 5.3: Triangle. Face 3 is the one for which the momentum equation is solved.

5.5 Convection term: integration over half triangles

The convection term in the discretized momentum equation consists of computing fluxes Fy
and Fy, equation (5.8). This problem is considered in more detail in this Section. For the
sake of discussion, consider Figure 5.3. Face 3 corresponds to face ¢ in Figure 5.1. One needs
to find an approximation for F = (u-Nj3)(m- N3), where u and m stand for approximations
for the velocity and momentum vector in the triangle.

5.5.1 First order upwind: convection term with half triangles as cv

One can write, see Section 5.4.2:
N3 =mN; + 72Ny, (5.54)

where 77 and 7y can be computed easily. When the flow at face 3 is moving outwards with
respect to triangle, a first order upwind interpolation for F leads to:

F =lu-Ns][m-Nz] = [u- (mNy+72N2)][m- (mN1 + 72No)] = [mur + naua][nma + nama].
(5.55)

When the flow is in the other direction, then a first order upwind interpolation for F leads
to:

F = [u-Nj3][m - N3] &~ uzgms. (5.56)

It is still not clear what this means for conservativity of the numerical scheme. It seems
plausible that, since also for faces 1 and 2 a momentum equation is written, the reconstructed
velocity and momentum vector in the cell should be equal for all three faces. The first two
items are, supposed that the mentioned notion is true, conservative, while the third one is
not.

5.5.2 Central interpolation: convection term with half triangles as cv

The flux computed from a central interpolation can be seen as the average from the two
possible first order upwind interpolations: F, = %(F,, + F}), where subscripts ¢, r and [stand
for ’central’, 'right’ and ’left’. With the situation as sketched in the previous section, this
results in

1 1
F = 5[(771'1“ + neuz) (mma + mama)] + §‘U3m3. (5.57)

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 52

For the situation in Section 5.2.2, Figure 5.1, one gets:

1 1
F = 5[(%‘%‘ + meuk) (n;my + meme) + uim;l; F, = 5[(771?” + Motto) (M + Momo) + uima],

(5.58)
where coefficients 7;, 7x, m and 7, follow from:
Ni=nN; + mNg; Ny =Ny + 70No. (5.59)
The convection term in (5.7) equals:
1
Fy = Fy = S[(muwr + noto) (mmi + 1j0mo) — (1145 + i) (njm; + ngmy,)]. (5.60)

Note that the term corresponding to the face under consideration, cancels in the convection
term, as is usual for central interpolations.

5.5.3 Boundary conditions: convection term with half triangles as cv

Computation of flux Fy in equation (5.10) is done as follows (regardless whether a first order
upwind or central scheme is applied):

Fy = (nju; + meur) (mym; + mema,). (5.61)

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 53

5.6 Conservative and non-conservative: normal velocity

The term (u. - N¢), in the convection term (5.5) can be evaluated in two ways: conservative
and non-conservative. Before continuing, it must be noted that the terminology has nothing
to do with conservation of quantities. The reason to use the words ’conservative’ and 'non-
conservative’ nevertheless, is due to the fact that in ISNaS these words are used.

The non-conservative approach can be considered as a central interpolation approach. This
approach is explained in Section 5.9.

The conservative approach is discussed below. The aim is to compute u; = u;-N;, see Figure
5.1. Assume the flow is from cell 6 to cell 1. Similar to the discussion in Section 5.4.2, we
can write

N; = n,N, + n,Ny, (5.62)

where we can solve for coefficients 7, and 7,. The normal momentum m; = (m;-N;), in this
‘conservative’ approach, then follows from m; = n,m,+ n,m,, and the normal velocity equals

My MM+ gy (5.63)

U —
’ Pj Pe

When the flow is from cell 6 to 1, a similar approach is followed.
If face ¢ is a boundary face, then, for example, in Figure 5.2, we use

w = M, TG TRk
J ~ .

5.64
Pj P1 ()

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 54

5.7 Computation of pressure gradient

For the numerical evaluation of the term (Vp - N),;, with ¢ an internal face, several methods
can be utilized. In general, we will arrive at an expression of the form

(Vp-N); = Z%’,j(i)pj(i)y (5.65)
(4

where the summation is over the stencil j(i) belonging to face i, and v; j(;) is a weight coeffi-
cient, depending solely on geometrical quantities. Note that consistency requires that

> i) = 0. (5.66)
3()

We compute all coefficients v at all faces and store them. This leads to a gradient matrix
with elements G;; = 7;;. At boundary faces ¢ where the normal momentum component is
given, the ith row of the gradient matrix consists of zeroes.

In Section 5.7.1 the path-integral method using a six-point stencil is discussed. In Sections
5.7.2 and 5.7.3 the path-integral method using a three-point respectively four-point stencil is
discussed. In Section 5.7.4 a method using auxiliary points between four designated stencil-
points is discussed. In Section 5.7.5 the sign criterion is discussed.

Second order derivatives
Also second order derivatives can be computed once we know the quantities v; ;;). The
diffusion term in (4.2) reads:

D et (Ve Nl (5.67)
Using (5.65), and replacing p by ¢, the diffusion term is computed from:
PBLA S PLATALIEY (5.68)
ile)

e

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 55

5.7.1 Path-integral formulation for a six-point stencil

Keyword: path_six.

For the numerical evaluation of the term (Vp - N);, with ¢ an internal face, the so-called
path-integral formulation can be employed. This formulation is based on the idea that first
an approximation of the vector (Vp); is made, after which taking the inner product with N;
is a trivial task. The heart of the path-integral formulation is formed by the integral identity

b
Pb— Pa = / Vp - dx. (5.69)
a
Discretisation of this expression leads to

Pb—Pa = (Vp)ab : (Xb - Xa)7 (570)

where the gradient term is assumed to be evaluated somewhere between x, and xp.
We will show how the path-integral methods leads to an evaluation of (Vpi-N),. Application
of (5.70) on the path from the center of cell 1 to the center of cell 2, see Figure 5.1, gives

p2 — p1 = (Vp); - (x2 — x1), (5.71)

where we note that, at least in regular grids, the midpoint of face ¢ is located in the vicinity
of the line between x; and x3. Equation (5.71) alone is not sufficient to obtain (Vp);; to this
aim we need one additional relation. Using (5.70) on the path from 5 to 3 leads to

p3s —ps = (Vp)i - (X3 — x5),
and, similarly,
Pa—Pe = (Vp)i : (X4 - XG)-
Combination of these two expressions leads to
P3—Pe+Ps—ps R Vp;i - (X3 — X6 + X4 — X5). (5.72)

Solution of the 2x2-system (5.71)-(5.72) results in a discretisation of (Vp);. Then the inner
product with N, is easily taken, leading to an equation of the form (5.65). In the vicinity of
boundary, when one or more cells in the stencil of Figure 5.1, the path appearing in (5.72) is
modified. For explicit formulas, see Chapter 21.2.

It must be noted that the path-integral method using a six-point stencil is, unlike the methods
using a three-point or four-point stencil, not equivalent to the contour-integral formulation
(see (5.75)). This is easily seen that, when vector (x; — x;) is parallel to N;, then the
path-integral method using a six-point stencil results in:

P2 — D1
Vp-N; = ——.
p i xo — x1|

(5.73)

The contour-integral formulation leads to a different result.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 56

5.7.2 Path-integral formulation for a three-point stencil

Keyword: path_three.

The same idea as in Section 5.7.1 is used, but now we restrict ourselves to a three-point
stencil. This stencil consists of the points 1 and 2, Figure 5.1, and the third point k is the one
amongst points 3, 4, 5 and 6 which lies closest to the midpoint of face i. The two equations
that yield an approximation for (Vp); are:

P2—M1 = (Vp)z' : (Xz - Xl)
pr—p1 ~ (Vp)i-(xx—x1) (5.74)
Note that changing the second equation by taking a path from 2 to k leads to identical results.

It must be noted that this method is exact for a pressure field of the form p = a + bz + ¢y,
and leads to identical results as doing a contour-integral formulation along contour 1-2-%-1.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 57

Ny
> 1

23

Ny

Figure 5.4: A four point stencil. The grey shaded region has area 2.

5.7.3 Path-integral formulation for a four-point stencil

Keyword: fourpoint.

The path-integral method can also be applied using a four-point stencil. In Section 5.7.4 the
method used to find these four points among the six points surrounding face ¢ is given. We
always make use of points 1 and 2, and we choose one point out of each set {3,6} and {4,5}.
The two equations that yield an approximation for (Vp); are:

pk—p1 & (Vp) (xk—x1)
Pj — D2 (Vp)i - (x; — x2)

where k is 4 or 5, and j is 3 or 6. It is interesting to note that the path-integral method for
a four-point stencil is identical to computation of the pressure gradient using

2

1
Vp=) }[pn dar, (5.75)

where the closed contour is the one connecting points 1-j-k-2-1, and €2 is the area of this
contour. This is proven below.

The stencil is sketched in Figure 5.4. The path-integral equations that yield an approximation
for Vp are of the form

AVp=h, (5.76)
where
T3 —T1 Y3 — Ui ap/aﬂf] [ps—pl]
[u—xz y4—yz] P [8p/3y P4 — D2
Note that

det A = [(x3 — x1) X (x4 — x2)] = 290 (5.77)
The pressure gradient follows from

_ i (ya —y2)(p3 —11) — (Y3 — y1)(Pa — p2)
VP =50 [—(z4 —22)(p3 — p1) + (z3 — 1) (pa — p2)]

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 58

Consider now the contour-integral formulation. The vector l,png,p is obtained after rotating
vector (Xp — X4) with 90° in the clockwise direction, hence lapnes = (Yb — Yoy Ta —). Using
the midpoint rule yields for the pressure gradient:

1
Vp = ﬁfpndl“z
1

1 1 1 1
= [—(Zh + p2)lignga + 5(?2 + p3)lagngs + 5(103 + pa)lzanzg + 5(?4 +p)lang | =

X

Q|2

_ L [(Ya —y2)(p3 — p1) — (Y3 — y1)(Pa — p2)
20 | —(z4a—z2)(p3 — 1) + (23 — 21)(pa — p2)

b

which is identical to the result obtained from the path-integral method.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 59

Figure 5.5: Auxiliary point method. N represents the line through the midpoint of face ¢ and
parallel to N;. Points A and B are the intersections between line NV and the lines, indicated
by the numbers in the circles, connecting the centers of the triangles.

5.7.4 Auxiliary point method

Keyword: auxline.

The auxiliary point method uses, as the method discussed in Section 5.7.3, a four point stencil.
The auxiliary point method is different from the path-integral/contour-integral method.
Take a look at Figure 5.5. The line N through x;, the midpoint of face ¢, and parallel to N;
is given by

Iy = x; + AN; Ae R. (5.78)
Lines 1, 2, 3 and 4 are given by
La =%p + n(xq — %p), (5.79)

where for line 1 we have {p, ¢} = {1, 3}, for line 2 {p, ¢} = {2,4}, for line 3 {p, ¢} = {2,5} and
for line 4 {p,q} = {1,6}. The intersections between N, and lines 1-4, can be computed by
solving Iy =1, 4, which results in four values 7, ... ,74 and Ay, ..., Ay. With the situation as
depicted in Figure 5.5, we will find that 0 < m; < 1,0 < 12 < 1,93 < 0and n4 < 0. Let A and
B be the intersections between line N and 1 respectively 2, and define (linear interpolation)

pa=p1+mps—m) pB = P2 + M2(pa — p2) (5.80)

then we compute the projected pressure gradient using

PB — PA
(Vp-N); = ——

= : 5.81
E— (5.81)

Implementation of this, with taking into account the possibility that for the intersections the
values for n can be smaller than 0, is done in a robust manner. With the definition of the
following function

_J0 <O
f(n)—{77 >0 (5.82)

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 60

Figure 5.6: Treatment of boundaries in the auxiliary point method.

the following linear interpolations are readily obtained:

pa = p1+ fm)lps — pi] + f(n4)[pe — p1]
pB = D2+ f(n2)[pa — p2] + f(03)[ps — 2]
x4 = X1+ f(m)[xs —x1] + f(na)[x6 — x1]
xp = Xa+ f(n2)[x4 —xo] + f(n3)[x5 — 2]

The pressure gradient then follows from (5.81). Writing this equation out, cf. equation (5.65),
yields

(Vp-N); = [_1—f(?71) —f(?74)]p1_|_ [1—f(772) —f(n3)]p2+
xB — x4 xB — x4
e B e R e B i

Consider the case in which cell 3 is not present, hence cell 1 is a boundary cell, and the bound-
ary face is denoted with j, see Figure 5.6. For x3 we put the coordinates of the intersection
between the boundary face j and the line which goes through x; and which is parallel to the
normal N; at the boundary face. Let A and B be the vertices that define face j, then x3 is
computed from solving: x4 + 7(xp — x4) = x1 + AN,;. We put in addition p; = p;. Other
situations in the vicinity of boundaries are treated similarly. Note that when the triangles
are skewed, the line parallel to N; may intersect the boundary face before it meets the line
connecting the cell-centers.

It is not clear what has to be done in the case of skewed triangles, i.e. line ly intersects the
lines connecting the cell-centers for values of 7 larger than one. Especially in the vicinity of
a boundary this can occur relatively easy.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 61

5.7.5 Sign criterion

In the vicinity of steep gradients, the methods for computing the pressure gradient as given
in the previous sections may fail since the sign of (Vp-N); is wrong, i.e. the flow is forced
in the wrong direction. We will show this for the path-integral method with a six-point stencil.

The pressure gradient at face 7, Figure 5.1, is computed using:

6
(Vp-N)i = vipj, (5.83)
i=1
where >;v; = 0 (consistency), and 1 = —72 and 93 = 74 = —75 = —7, see Chapter

21. Suppose there is a steep pressure gradient between cell 4 and the other cells, such that
P1 = P2 = P3 = Ps = Pe = Pa, P4+ = Pp and p, < pp. In this situation, of course, (Vp-N); =0,
but since we have included point 4 in the stencil, this will in the case that v4 # 0 not be
obtained. Due to the direction of the pressure gradient, we allow for numerically computed
pressure gradients satisfying (Vp-N); > 0 (vector N; points from cell 1 to cell 2). This leads
to:

6
(Vp-N)i = 7ip; =pbYa+Pa ¥ _ % = va(ps — pa), (5.84)
J=1 J#4

hence v4 > 0 is necessary to meet the criterion. A completely similar derivation leads to
the criteria v > 0, v5 > 0, and v; < 0, 73 < 0 and 76 < 0. Note that this cannot be rec-
onciled with v3 = v4 = —v5 = —7g, except for the case that these coefficients are equal to zero.

More generally spoken, the weightcoefficient in the pressure gradient stencil of a point a, with
coordinates x,, must be larger (or equal) to zero when (x, — x;) - N; > 0, and vice versa.
This will be called the sign-criterion.

For the three point stencil, Section 5.7.2 it can also be shown that it doesn’t always meet the
criterion. The auxiliary point method meets the mentioned requirement as long as the values
for n are not larger than one. This can especially be a problem in the vicinity of boundaries.

In this section we will discuss a method using a stencil consisting of four points, which
always (only may be in the vicinity of the boundaries) meets the sign-criterion. (This method
however sometimes lead to a stencil that was not consistent with the stencil as obtained using
the procedure described in Section 16.3. Therefore we have restricted ourselves in the code to
the stencil as discussed in in Section 5.7.3. For the computation of the pressure gradient the
path-integral formulation, Section 5.7.3, is used.

At face 7 alocal (N, t;)-coordinate system is defined, consisting of four quadrants, see Figure
5.7. With x the coordinates of a point, chosen relative to x;, then its quadrant is determined
as follows:

e first quadrant when x-t; > 0 and x - N; < 0;
e second quadrant when x -t; < 0 and x - N; < 0;

e third quadrant when x-t; < 0 and x - N; > 0;

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 62

Scd

Figure 5.7: Four quadrant method. Points a, b, ¢ and d are in the respectively first, second,
third and fourth quadrant.

e fourth quadrant when x -t; > 0 and x - N; > 0.

When cell a lies on the boundary between quadrants 1 and 2, and cell ¢ on the boundary
between quadrants 3 and 4, then they are in quadrant 2 and 4 respectively, and the pressure
gradient then follows simply from

De — Pa
|Xc — Xq|

(Vp-N),; = (5.85)
Vector sj,, with jo = {ab, bc, cd, da}, is computed by rotating vector (x, — x;) with 90° in
the clockwise direction. Hence, s, = (Yo — ¥;,2; — Z,). Furthermore, it is trivial to deduce
that sj, + Ssoq = Sjq. As discussed in Section 5.7.3, the path-integral formulation for a four-
point stencil is equivalent to the contour-integral formulation. The pressure gradient in the
direction of the normal is computed from, with Q the area of the shaded region in Figure 5.7:

1
Vp-N,' = ﬁNi-fpndF:
1.1 1 1 1
= ﬁ[a(pa + Pb)Sab + §(pb + De)Sbe + §(pc + Pd)Scd + §(pd + Pa)Sda] - N; =
1
= E[pa(sdb - IN;) 4 po(Sac - Ni) + pe(sba - Ni) + pa(sca - N;)]

It is trivial to see that the weighting coefficients all have the correct sign (for p, and p, nega-
tive, and for p. and pq positive), and that this is due to their location in different quadrants.
Furthermore, the coefficient for p, and pp is, apart from the sign, the same as the coefficient
for, respectively p. and pq.

The next issue to be discussed, is how do we choose our stencil. We omit here the restriction
to the six-point stencil as sketched in 5.1, and we choose our stencil among the cells that are
connected to the two vertices of face 7, see Figure 5.8. Nevertheless, in most of the occurring
cases the four points will all be part of the six-point stencil. The criterion is that we choose

in each quadrant the point that is located closest to face 7. In Figure 5.8, this leads to ¢ = 1,
b=3,c=2and d=05.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 63

Figure 5.9: Stencil for the four quadrant method in the vicinity of boundaries. The used
points are indicated with a e.

In the vicinity of boundaries, in the situation that one quadrant is empty, we use a three-
point stencil. In the situation that two quadrants are empty, we use in each of the non-empty

quadrant one additional point: the one second closest to face 7. This is summarized in Figure
5.9.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 64

5.7.6 Contour integral formulation

The contour integral formulation to compute the pressure gradient is based on the identity:

/ Vp-N;dx = N; / Vpdx = N; - pndl, (5.86)
A A dA
where n is the outwards pointing normal on the boundary 90A of area A. With A being the
two triangles adjacent to face i, the pressure gradient at face 7 is computed from:

1

1 -
-N,‘— N,'- dl' ~ — eleNe-N,’. .
(Vp-N)i =) o yy ze:p () (5.87)

In this expression, A; = €1 42, is the area of the two triangles, the loop is over the four faces
e € {k,l,0,5} and I, = I.(n. - N.). The pressure at face e follows from a weighted averaging
of the two neighboring pressure values. The stencil consists of the six cells. Notice that for
the situation in which (x2 — x1) is parallel to N;, the contour integral formulation does not,
unlike the path-integral formulation, reduce to (5.73).

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 65

Figure 5.10: Boundary face ¢ with boundary cell 1.

5.7.7 Pressure gradient at boundary faces

When the normal momentum component is given at a boundary face, then there is no need to
discretize the pressure gradient term. When the normal momentum component is not given,
then the pressure gradient must be evaluated numerically.

Subsonic outflow

At a subsonic outflow boundary the pressure is given. We have implemented, depending on
the pressure gradient method, two ways to compute the pressure gradient at a boundary
where the pressure is given:

Path-integral method, auxiliary point method, four quadrant method.
With Figure 5.10 in mind, we write for the pressure gradient at boundary face ¢:

pi —p1=(Vp)i- (xi — x1) = (Vp); - lre,, (5.88)

where p; is the given pressure at the boundary face. Here we introduced (x; — x1) =
|x; — x1|e, = l,e,. In addition, we write

pi —pir = (Vp)i- (xi —x11) = (Vp-N)l, (5.89)

Assuming that the pressure gradient in the tangential direction, i.e. parallel to the
boundary face, is negligible, we can write p; = py,. Simple geometrical considerations
lead to

I, (xi—x1)-N; (x;—x1)-N;

== = 5.90
=T — N T (590
resulting in the following pressure gradient
bi — D1
N,‘- V?dQ:Q,V NZQQZ— 5.91
/v (Vo N)iw S (591

Contour integral method
The CV for face ¢ is cell 1, hence application of the contour integral method gives:

/ Vp-N; dx = f p(n'Ni) dl' ~ Zpeie(Ne N,), (592)
Q; oQ; e

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 66

where the summation is over faces e € {i,j,k}. Obviously, p; is given. With &£ an
internal face, the pressure at face k follows from area weighted averaging as discussed
in Section 4.4.2. If j is an internal face, then of course a similar averaging is done. If
7 is a boundary face, at this moment we have restricted us to the situation in which
the pressure at face j is not given, and a one-sided differencing is used: p; = p;. In the
future the situation in which also p; is given, has to be inserted in the software.

Supersonic outflow boundary
At a supersonic outflow boundary neither the momentum nor the pressure is given. We put
the pressure gradient to zero at the outflow boundary.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 67

5.8 Computation of momentum vector at faces

Once we have obtained the normal momentum components at all faces of the grid, we want
to compute, using interpolations, the full momentum vector at all faces. Recall, see Section
5.4.2, that we have developed methods to obtain the tangential momentum component at the
faces. The tangential momentum component at face j, equation (5.29), is computed using
weighted interpolations, i.e. with

& & Q6 Q6

“Iarat YTare” “Tare® Vaget 09

Note that equation is the same as (5.35). On boundary faces, one-sided interpolations are
used.

Now that we have the momentum vector in terms of normal and tangential components, it is
trivial to find the z— and y—component using

m, = m-e; =mN,+ mt,;

my = m-e, =mN,+ mt,.

CHAPTER 5. SPATIAL DISCRETISATION OF THE MOMENTUM EQUATION 68

5.9 Computation of velocity at faces

Once we have obtained the normal momentum component m; at face ¢ and the density in the
adjacent cell-centers ¢ and r, the normal velocity component at face ¢ is computed using

m;
up = —, (5.94)
pPi
where p; follows from weighted interpolation (4.16). At boundary faces, a one sided approxi-
mation is used.

Chapter 6

Discretization of the equation of
state

6.1 Equation of state: discretization

The relation between three thermodynamic quantities is called the equation of state. Several
forms are gathered in Section 2.3.3. This equation of state is needed in the time-stepping
procedure, see Section 9.4 , and for the initial conditions, see Section 2.5. Note that in many
occasions the quantity (m-m) or (u - u) is required at the cell-centers.

To examine this problem closer, consider Figure 6.1. Let H,, p, and m., e = {7, j,k} be
given. Then p, follows from the equation of state (in dimensionless quantities):

1
Pa = pa |Ha — 5(7 - 1)Mr2(u ‘W) - (6.1)
The problem lies, because of the staggered placement of the variables, in determining (u-u),.
The first step is to note that:
m-m
(u-u), = B2 (6.2)
Pa
Hence the problem is now to determine (m - m),.
To this aim we have developed methods based on two different starting points. The first one
is based on using the momentum vector at the three faces of the triangle, and the second one
on a least squares approach where only the normal momentum components at the three faces

Figure 6.1: Cell ¢ with faces ¢, j and k.

69

CHAPTER 6. DISCRETIZATION OF THE EQUATION OF STATE 70

of the triangle are used.

Supersonic inflow
At a supersonic inflow face, both the momentum vector and the pressure are given. In order
to take the given pressure into account, we put the pressure in the boundary cells adjacent
to supersonic inflow faces equal to the prescribed pressure at the boundary faces.

CHAPTER 6. DISCRETIZATION OF THE EQUATION OF STATE 71

6.2 Computation of square of momentum vector in cell-center

Consider Figure 6.1. We have developped two different methods to evaluate ¢eep = (m - m).
The first method is based on the reconstruction procedure, and the second one on a least
squares approach.

Method 0: compute (m - m), using the least squares approach

The problem is, as said before, to determine m, = (M4 q, My4). Of course, since the triangles
are ’small’, we have m; & (m,-n;), m; & (m,-n;) and my & (mg-ng). We have implemented
the following least squares approaches. Choose m, such that the momentum functional

F(ma,my) =Y [me — (m - n,)] (6.3)

e

is minimal. The summation is over the three faces of the cell.
The minimum of F(my, my) is found there where

oF

B = 5 —2nge(Me — Mgy e — MyNye) = 0
T
€
oOF
Fy = E 20y (Me — Mgng e — Myny) = 0.
€

This is equivalent to solving the system:

Ze nz:,e Ee Ngelye My Ee MeNz e

Ee nz,eny,e Ee nz,e my Ee meny,e

The routine that does this computation, is fvmomcelc00.f, and is the default.

Method 1: compute (m - m), using the reconstruction procedure

For more information concerning the reconstruction procedure, we refer to Section 5.4.2.
Using the reconstruction procedure, we can compute the tangential momentum component
m at all faces. Hence, we can compute m = mN + mt at all faces. Let ¢. be a Cartesian
component of the momentum vector (i.e. m, or my) at face e, and let (z.,y.) be the coor-
dinates of the midpoints of the faces e = ¢, j, k, then we can approximate ¢ = ¢(z,y) over
triangle ¢ by a linear function of the form:

d(z,y) = 1+ cox + c3y. (6.4)

Coefficients ¢y, ¢3 and c3 then follow from the system:

1 oz, vy c1 ¥
1 oz y; c | = | @5
1 2 c3 Pk

The inverse A™! of the 3x3 matrix is given by:
1 TiYk — YTk TTYk T YTk Tl — YT

AN —Yr + Y; Ye — Y —Y; + s
T T A
k 7 k Z; Zy Z;

CHAPTER 6. DISCRETIZATION OF THE EQUATION OF STATE 72

with ||A|| the determinant of the matrix:
Al = 29k — yizk — Tiyk + vtk + 2iy; — viz;. (6.5)

The coefficients ¢, ¢ and c3 then are readily obtained for ¢ = m, and for ¢ = m,. With
(Za, Ya) the coordinates of the cell center of cell a, the sought vector of m at the cell center
follows from:

¢($a7 ya) =c1+ cxq + C3Ya (66)

The routine that does this computation, is fvmomcelcO1.f.

Chapter 7

Pressure-correction

7.1 Introduction

The incompressible dimensionless Euler equations are repeated here:
e Continuity equation:

uf, =diva =0. (7.1)
e Momentum equation (see equation (2.2)):

%“ 4 (uﬁua)ﬁ = _p.. (7.2)

Note that we have inserted p = 1 everywhere. The continuity equation is a constraint on
the possible velocity field, and the pressure must be such that the divergence-free constraint
is satisfied. Another problem is that there is no equation containing the time-derivative
of the pressure, i.e. there is no equation yielding the new pressure. The pressure-correction
approach is a way to solve these problems. We apply the so-called discrete pressure-correction
method, in which first the time and space discretisation is derived and afterwards the pressure-
correction. By doing this there is no need to define boundary conditions for the pressure
equation (which are not part of the original problem). The necessary boundary conditions
have already been incorporated in the discretization.

7.2 Solution algorithm
Discretisation in space and time of (7.1)—(7.2) can be written symbolically as:

Du"™t' = 0 (7.3)
un+1_ n

RTU+CH”+1 — _RGp"™! (7.4)

Remarks:

e an implicit Euler time-integration scheme has been used;

73

CHAPTER 7. PRESSURE-CORRECTION

74

e D is the discrete divergence operator; R is an operator containing the area of the control
volume (R;; = 0 for ¢ # j), C is the convection operator and G the gradient operator.

e u and p are the velocity and pressure solution vectors.

The predictor of the new velocity u* is computed from:

u* —u” N n
Subtracting (7.5) from (7.4) yields:
n+1l _ 0%
Rll N u + C(un+1 B ll*) — —RG(pn+1 _pn)

Postulating
Cu"t! —u*) =0

and defining the pressure-correction dp as:

we arrive at:

u"t! — ut = —AtGép.
Inserting (7.3) into (7.9) yields the pressure-correction equation:
AtDGép = Du”

Knowing ép, we can compute the new velocity by rewriting (7.9) as:

u"t! = u* — AtGép

Hence, summarizing, the pressure-correction algorithm consists of three steps:

1. Compute the velocity predictor u* from (7.5).
2. Compute the pressure-correction é¢ from (7.10).
3. Compute the new velocity u™*! from (7.11).

In the next section, the discretisation of these equations is discussed.

(7.6)

(7.7)

(7.9)

(7.11)

CHAPTER 7. PRESSURE-CORRECTION 75

7.3 Discretisation of the pressure-correction equations

In this section, the discretisation of equations (7.5), (7.10) and (7.11) is discussed.
The discretisation of (7.5) is discussed in Chapter 5.

Consider Figure 4.1. The pressure gradient at face k is computed from, see Section 5.7:

(Gp)e = (VP-N)k = > 7hsPs) (7.12)
s=s(k)

where the summation is over the gradient stencil of face k. For example, if the path-integral
method is used, the stencil is given by: s = s(k) = {4, 4, ¢, f, g,r}. Similar expressions hold
for other faces. The divergence operator on a vector v located in cell 7 is defined by

(Dv); = Z vel, Ve = Ve + Ng le = le(n. - N), (7.13)
e=e(1)
and e = e(i) = {k,l,0}. Putting this together leads for the pressure-correction equation
(7.10) to:

ALY (Vop-N)ele =Y ulle. (7.14)
The discretisation of (7.11) is trivial:

uptt =g — A Y ka(0p)ss (7.15)
s=s(k)

One question is, how do the boundary conditions enter the discretisation? Assume that face
k in Figure 4.1 is a boundary face.

First consider the case that uZ‘H is given at this boundary face. Then there is obviously no
need to compute the pressure gradient at this face in the momentum equation, hence we put
Yk,s = 0 for all possible s. Hence, u; = uZ‘H. As a consequence, the contribution of face &
to the summation in both sides of (7.14) is zero. Furthermore, the gradient term in (7.15)
equals zero, as it should.

Now consider the case that wuy is not given. In this situation, the pressure gradient at face
k is computed using the procedure discussed in Section (5.7.7), and the remainder of the
algorithm looks identical to the algorithm as discussed before.

Diagonal dominancy of the pressure-correction equation
The ith row of the pressure-correction matrix follows from the left-hand side of (7.14). Using
(5.66) we see that the sum S; of all matrix elements in the ¢th row adds up to zero:

Si=AtY 1o Y Yea=0. (7.16)
e s=s(e)

Ounly for boundary cells with a boundary face at which the pressure is given, this does not
hold. Let at boundary face k the pressure pr be given, then the pressure gradient at this face
is computed from, see equation (5.91):

Dk -1 -
(

(Vp N)p =1+ vrpi r=—— Vi = T 7.17)
Xk — X, Xk — X,

CHAPTER 7. PRESSURE-CORRECTION

This leads to

S; = At Z I Z Ye,s + Atlyi,; < 0,
e=e(1) s=s(e)

where the summation over e = e(7) is over the internal faces.

76

(7.18)

Chapter 8

Mach-uniform pressure-correction

8.1 Introduction

With respect to the Mach-uniform pressure-correction method, the following remarks are
made:

e the corresponding equations are discussed in Section 2.3.2.

e the alm is to be able to compute, efficiently and accurately, incompressible and com-
pressible flows, or flows in which both incompressible and compressible parts are present,
with one algorithm.

8.2 Solution algorithm & pressure-correction equation

The following solution algorithm is proposed:

1. The new density follows from:

n+1 n
P - p n n+1
—+ V. =0. 8.1
N T Voup (8.1)
2. The predictor of the momentum follows from:

% +V-u"m* = -Vp". (8.2)
3. Compute u*.

4. From (2.69) a suitable pressure-correction equation will be derived. This means that
we obtain the new pressure and the corrected momentum and velocity. This will be
discussed below.

5. The new enthalpy follows from (2.67).

The relation between the predictor of the momentum and the predictor of the velocity is

defined by:

m* = p"tlu*, (8.3)

CHAPTER 8. MACH-UNIFORM PRESSURE-CORRECTION 78

.

(a) (b)

Figure 8.1: Pressure-correction stencil for incompressible computations (a). Pressure-
correction stencil after discretization of (8.7) (b).

The following pressure-correction is postulated:

u't! = u* - pf‘fl Viép, (8.4)
where
dp=p"t" —p" (8.5)
Note that
<pu2)n+1 _ (mz/p)n'H — (m* — At Vap)?/pit. (8.6)
Inserting all this in (2.69) yields:
M? {% + %(7 Y Lo Atwp)Z’;nH — (m/e"

At 1
+ 9 (w =2 [0+ o)+ - D - aevane | |+
. At

The pressure-correction stencil that we use for incompressible computations is depicted in
Figure 8.1a, where the shaded cell is the cell under consideration. We would like to keep
this stencil the same for the discretized version of (8.7). In the second line of (8.7), a term
representing the convected kinetic energy is present. The convected kinetic energy has to be
evaluated in each cell, after which an upwind or central approximation should be applied.
How the kinetic energy in a cell is obtained, will be discussed later, but it suffices here to
state that the pressure gradient at its faces has to be evaluated. Suppose a first order upwind
interpolation is used, and the velocity is directed as indicated in Figure 8.1b. This means
that, in order to obtain the pressure-correction equation for the shaded cell, the kinetic energy

CHAPTER 8. MACH-UNIFORM PRESSURE-CORRECTION 79

has to be evaluated in the cells indicated by a e. In order to obtain the kinetic energy in these
cells, the pressure gradient at the faces indicated by o has to be evaluated. As a consequence,
the stencil for the pressure-correction equation is enlarged, see Figure 8.1b, and this is what
we did not want to happen.

Hence, some changes with respect to (8.7) have to be made. It is clear that the V - u, i.e. the
last line in (8.7), has to be discretized implicitly in order to have the scheme reduced to the
standard incompressible pressure-correction scheme. In the derivation to arrive at (2.69), one
notices that the V - u term stems from the convection velocity of the pressure, which means
that we have to evaluate the convection velocity (second line of (8.7)) also at the new time
level. If we take the kinetic energy at the x level instead of the new time level, this will not
affect the scheme in the limit M, | 0, and the standard 10 point stencil is maintained. The
temporal accuracy is probably not too much affected. Hence, this leads to:

(m° — AtV /p"H — (")?/p" |
At

op 1
2) F _ —
% At n 1 *\2 /7 n+1
Ve S Vop) 70"+ 0p) 4 5y = 1) (mT) +
. At

Linearization of this equation, i.e. leaving the terms linear in dp and omitting the higher
order terms, and rearranging results in:

ERMC R I T

At

1
+ V.u {1 + MY +0p) + 5 (v - 1)M3(m*)2/p”+1} -
_ X At 2,n } _ 2 N2/ nt+l | __
v —pn+1v5p 1+ yM?*p —|—2(7)M (m*)*/p =0. (8.9)

Discretization of this equation will be discussed in the next section.

8.3 Discretization of the pressure-correction equation

We will derive a discretization of (8.9) in cell 1, both for the interior and boundary case, see
Figure 8.2. Before the separate terms are discussed, we will discuss how to obtain vector
quantities in cell-centers.

8.3.1 Evaluation of vector in cell-center

In the past we have devised several ways to obtain a vector in the cell-center. One of them
came down to obtaining the vector at the three cell-faces by means of reconstruction using
the normal vector components at the surrounding faces. This would result in the use of
the normal vector components at all nine faces (in the interior case) that are depicted in
Figure 8.2a. This is what we have to avoid, since this would lead, due to the evaluation of the
vector Vép in the time derivate, to a larger stencil than given in Figure 8.1a. However, only

CHAPTER 8. MACH-UNIFORM PRESSURE-CORRECTION 80

o ¢

(a) (b)

Figure 8.2: The CV for the pressure-correction equation is shaded. Interior (a) and boundary

(b).

making use of the normal components at the three cell-faces does not enlarge the stencil. We
will now show how this can be done. (See also Chapter 6)

Our aim is to find an approximation of the vector v in the cell-center of cell 1, making only
use of given values of v, = v, - N, with e € {i, 7, k} the faces of cell 1 (see Figure 8.2). We
choose vy such that the least squares functional

F(vi) =) [ve— (v-No)J? (8.10)
e(1)
is minimal. Writing v = (v, vy), the minimum of F (v, vy) is found there where

oFr
Ovy

o0F
G = 2~ 2Ne(te = vaNae =0, Nye) = 0.

e

= Z _2N$76(,U6 - /UxN1576 - ,UyNy7e) = 0

The summation over e represents summation over the three faces of cell 1. This is equivalent
to solving the system Av = b, with

Ee Nz,e Ze queN%@ Ee UeNz,e
A= , b=) vN.= : (8.11)
Y NaeNye 3. Ny. e 2e VelNye

Note that, because we restrict ourselves to the three normal components of the cell under
consideration, this procedure needs not be modified near boundaries.

8.3.2 Discretization time derivative

The discretization of the the time derivative, i.e. the first line in equation (8.9) yields:

{ (6p)1 | 1 [(m})? — 2At (m* - Vép)] /p*! — (m})?/ph }

Oy M?

T

F‘}‘g(’y—l) At (8'12)

CHAPTER 8. MACH-UNIFORM PRESSURE-CORRECTION 81

where € is the area of cell 1. The terms with (dp) are put in the matrix, whereas the
other terms are put in the right-hand side. The terms (m3})? and (m7)? are obtained using
the procedure described in Section 8.3.1. Only the term (Vép); in (m* - Vép); poses some
additional problems. The expression (Vdp); is written in terms of (Vép- N.)., e € {1, j, k},
as discussed in Section 8.3.1. As discussed elsewhere, at face e the normal pressure gradient
is computed using

(Vop - Ne)e = 7e(0p)e, (8.13)
c(e)

where the summation is over the gradient stencil, which consists of the neighboring and
next-neighboring cells of face e. With A as in (8.11), the expression (Vép); follows from

A(VEp)1 =) N> 7e(dp)e, (8.14)
e c(e)

or, written out:
1 Ec(e) EE{QZ,ZNe,x - Ee al,ZNe,y}’Yc((sp)c
(Vép)1 = . (8.15)
a1,1G2,92 — @1 2021
' ' ' ' Ec(e) Ze{_GZ,lNe,z + Ee al,lNe,y}')/c((sp)c

Here we made use of

-1
11 @12 1 292 —01.2
A—l — — . (816)

1,122 — Q12021

a1 G279 —a21 a1

Taking the inner product of (Vép); with m7 is trivial.

Boundary conditions
Consider now the boundary case, i.e. cell 1is a boundary cell and face 7 is the boundary face,
see Figure 8.2b. Two situations can occur:

e The normal momentum component m; is given.
In this case, there is no need to compute the pressure-correction term (Vdp-N);, since it
is zero. In the algorithm as given above, this means that the summation over e implies
summation over only 7 and k. Another, mathematically equivalent way of seeing this,
is by putting all coefficients 7, to zero in the summation over ¢(7). Doing this facilitates
the use of DO-loops over all (i.e. internal and boundary) cells.

e The normal momentum component m; not given.
In this situation, the pressure-correction term needs also to be computed at the bound-
ary face. In the algorithm as given above, this implies no changes, apart from the fact
that a given pressure-difference at the boundary has to be put in the right-hand side.

8.3.3 Discretization convection term

The discretized convection term is given by

St {1 M2 + 0]+ - DMl (8.17)
e(1)

CHAPTER 8. MACH-UNIFORM PRESSURE-CORRECTION 82

Here the summation is over the faces of cell 1. Because the complete term that is between
curly braces originates from pH, each term needs to interpolated (central or upwind) in an
identical manner.

Internal faces
The projected normal velocity predictor at an internal face 7, see Figure 8.2a, is computed
using:

uf =m;/pit) (8.18)

i,av !
where

S VSR
Piav = Ql‘l‘QZpl Ql_|_92,02-

(8.19)

If a first order upwind scheme is used, then, if u;l; > 0, the pressure-correction matrix P and
right-hand side r are changed as follows due to the contribution of face :

Py = Py yMM,
EXD i 1 * t
ro= o —ull; {1+ v M?p + 5(7 - 1)M3(m1)z/p1+1} :
On the other hand, if wil; < 0, then
Py = P+ yM?ull;,
*x7 7 1 * n
ro= o —ull; {1 + Y MEph + 5(7 - 1)Mf(m2)z/,02+1} :
The following central scheme is used:
1 2, %7
Py o= P+ §7Mrui l;,
1 2 %7
Py, = P+ §7Mrui l;,
_ 1
ryoi= o —ul; {1 + Y M p + 5(7 - 1)Mr2(m?)2/p?+1} '
where:
by = 5(271 +), (m])?/pi*t =) [(m})?/pi™" + (m3)%/p5+!] .

Boundary conditions
Consider boundary face ¢, see Figure 8.2b. The term

1 *7 * n
5 (v = DMl (m7)*/p7 ! (8-20)

is moved to the right-hand side. The normal velocity predictor, cf. (8.18), is computed with
Piav = p1 instead of (8.19). If both m and h are given at this face (e.g. inflow), then:

Uil {1+ v M2+ (O]} = 01T {1y MEPH = T g = U (s.21)

CHAPTER 8. MACH-UNIFORM PRESSURE-CORRECTION 83

is moved to the right-hand side as well. If a central scheme is applied, and p at the boundary
face ¢ is given (e.g. outflow), then we write

. - 1
T (1M + G0} = il {14 JE 4 G4 62
resulting in the following changes of the matrix-elements:
1 2 x7
Pyoi= P+ §7Mr u;l;,
rooi= =l {1 + 'er(pl +p”+1)}

In all other situations (e.g. homogeneous Neumann conditions for enthalpy and pressure (free-
slip walls), or first order upwind and pressure given), one-sided differences are used, resulting
in the following changes of the matrix-elements:
Py = Py +yMufl;,
ry o= o —ull {1 + 'yM,,zp?} .

8.3.4 Discretization Laplacian term

The discretization of the Laplacian term is given by:
1 n
—Z P {1+7M2 +30 v —1)M?*(m +1}Z% (6p)e. (8.23)

The quantities at face p., pe and (m})?/p. are obtained using weighted averagings as in (8.19).

Boundary conditions

The prescribed values or, if the required quantities are not given, one-sided differences are
used to obtain pe, pe and (m?)?/p.. At the faces at which the normal momentum component
is given, the coefficients ~. are put to zero, corresponding to zero correction at these faces.
At the faces e at which the pressure is given, we have

(V-6p - N)e = 7e(0p)e = 7e(0p)e + Y 7e(dp)e; (8:24)
c(e) c(e)#e
with (dp). = p?*! — p? the prescribed pressure difference at boundary face e. We assume

that (6p). = 0, i.e. the pressure at the outflow boundary does not vary in time.

Chapter 9

Time-discretization

9.1 Introduction

The spatial discretization of the Navier-Stokes equations is discussed in Chapters 4, 5 and 6.
This chapter is devoted to the time-integration, for which the #-method, discussed in Section
9.2 is employed. Explicit time-integration, using an Euler forward scheme, is discussed in
Section 9.3. The order in which the conservation laws are solved, is subject of Section 9.4.
When considering a stationary problem, time-stepping is utilized to march towards the steady
solution. The termination criterion, determining whether a solution is converged sufficiently
to the steady state, is treated in Section 9.5.

84

CHAPTER 9. TIME-DISCRETIZATION 85

9.2 The #-method

In this section an implicit one-step time-integration method is presented, the #-method.
We have the following PDE for a primary Q:
2Q
— 4+ LpQ =0 9.1
ot + hQ ’ ()
where Ly, represents the spatial discretization. Let n be an integer representing the time-level,
and let 0 < # < 1, we then assume that a linear interpolation of the form

Q™ = Q" 0@ - Q") (92)
suffices to relate Q", Q™% and Q™*!. This equation can be rewritten as
n+1 1 n+6 1 n
Q= QM (1 Q" 99

Hence, knowing Q™ and Q™19 is sufficient to find @Q™t'. Quantity Q"¢ is computed from

Qn+6 _ Qn

s +HLiQ" =0 (9.4)

(This is equivalent to using Euler backward with a time-step (67); it is also implemented this
way). Inserting (9.2) in (9.4) leads to the more familiar

n+l _ n
Qe -Q

T

(1-0)LpQ" +6L7Q"" =0, (9.5)

which can be evaluated for 0 < # < 1. For # = 0 we have Euler forward (explicit method), for
= 1 we have Euler backward (implicit method), and for # = 1/2 we have Crank-Nicolson
(implicit method). The advantage of using (9.4), (9.3) instead of (9.5) is circumvention of
the time-consuming matrix-vector multiplication L7Q". Note that for # = 0 we cannot use
(9.4), (9.3), and that for # = 1 equation (9.3) becomes trivial. The explicit method, # =0, is
discussed in Section 9.3.

The #-method is employed for primary variables @1, @Q3,..., which are m, p and H in
our case. Derived quantities ¢ are functions of the primary variables, ¢ = f(Q1,Qq,...),
think of for example the velocity and the pressure. The question that then raises, is how to
compute ¢"t': do we use ¢"t? = f(Q?"'e, ;H-e’ ...) and compute ¢"*! from an interpolation
of the form (9.3), or do we first obtain Q?‘H, g"’l, ... and compute ¢"*! from ¢"t! =
f@ih.eytt, .)7

TRy)T
First we will show that these two methods lead to different values for ¢"*', and then we will
argue which solution procedure to take.
Assume that we have given Q7, @7, Q?"'g and Q;H'G, and that the derived variable ¢ follows
from

q=Q1Q2. (9.6)
The first method gives, with

0 = Qs (0.7

CHAPTER 9. TIME-DISCRETIZATION 86

for ¢gnt1:
1
= QMO+ (1 QTGS 99)
The second method, with
n+1 n+6 1 n n+1 1 n+6 1 n

leads to
o= ey = [Lart o par] [T a- pas) -
= QIR (- QIS QIS + (1) °QQs #
Q””Q”” (1—5)62?623

for 6 # 1.
The second method seems the best, since we want the derived variables to be consistent with
the relations ¢ = f(Q1,Q2,...) at the time-levels n, (n+1),.... We are not interested in the

solutions at intermediate stages (n + 6), but solely in solutions at time-levels n, (n 4+ 1),....
Then the second method seems the best, since we want the derived variables to be consistent
with the relations ¢ = f(Q1,Q2,...) at these time-levels.

CHAPTER 9. TIME-DISCRETIZATION 87

9.3 Explicit time-integration
An implicit Euler time-integration of equation (9.1) leads to:
D(q"t!' —q") +Cq"t! =r. (9.10)
An explicit Euler time-integration of equation (9.1) leads to:
D(q"t!' —q") + Cq" = F. (9.11)

Vectors q” and q"t! refer to the solution vectors at time-levels n» and n + 1. D is the
diagonal contribution resulting from the time-derivative. C' is the operator resulting from
the convection and possibly viscous term. The right-hand side vectors r and r contain the
pressure gradient term (in case (9.1) is the momentum equation) and information w.r.t. the
boundary conditions. Note that, with the current discretization, the only difference between
r and T is in the values for the boundary conditions. Equation (9.10) is written as:

Alq"t = b, (9.12)
where superscript * refers to the word ’implicit’, and
A=D+C b’ =r+ Dq". (9.13)
Equation (9.11) can be written as:
Dq"*t' + Cq™ = b b' =&+ Dq", (9.14)
or, equivalently:
q"t! = A°q" +b°, (9.15)
where superscript © refers to the word ’explicit’, and
A® = -D7'C b = D7'b’. (9.16)

Note that computation of D~ is trivial, since D is a diagonal matrix.

In our software, which is focussed on implicit time-integration, we have at a certain moment
matrices A, D and vector b’ at our disposal. Suppose that we want to do explicit time-
integration, then we need A° and b®. First we make sure that, in the case of explicit time-
integration, we compute b' instead of b'. This is easy, since the difference between these
vectors lies solely in the boundary conditions. Quantities A® and b® are easily found using:

A*=_-D7'C=-D'(4'-D)=1-D"'4", (9.17)
with I the unit matrix. This means for matrix-elements Afj:
Alej = (S” - dz_zlAZ] (918)
Furthermore,
b = D7'b’ (9.19)

is trivial.

CHAPTER 9. TIME-DISCRETIZATION 88

9.4 Solution algorithm

Compressible approach
Having at time-level n all quantities, the quantities at time-level (n+ 1) are computed in the
following order:

1. the normal momentum components m" !, see Chapter 5;

2. the tangential momentum components m”*!, see Section 5.8;
3. the density p"t!, see Section 4.6.

4. the energy variable (e.g. H"*! A"+l E pH), see Section 4.5;

5. the pressure p"t!, see Chapter 6.

+1

6. the normal velocity components u”7", see Section 5.9.

For items 1, 3 and 4 a linear system has to be solved. For all other items, simple algebraic

relations are used.

Incompressible approach
Having at time-level n all quantities, the quantities at time-level (n+ 1) are computed in the
following order:

1. the normal predictor velocity components u*, see Chapter 5;

2. the new pressure p"t!, see Section 7.3;

+1

3. the new velocity components ™7, see Section 7.3;

+1

4. the tangential velocity components #"7", see Section 5.8;

For items 1 and 2 a linear system has to be solved. For all other items, simple algebraic
relations are used.

Mach uniform approach
Having at time-level n all quantities, the quantities at time-level (n+ 1) are computed in the
following order (see also Chapter 8:

1. the new densityp™t!, see Section 4.6.

2. the normal predictor momentum components m*, see Chapter 5;
3. the normal predictor velocity w*.

4. the new pressure p"t1;

5. the corrected momentum and velocity, see Section 7.3;

6. the tangential momentum components m"t!, see Section 5.8;

7. the new enthalpy using the equation of state.

For items 1, 2 and 4 a linear system has to be solved. For all other items, simple algebraic
relations are used.

CHAPTER 9. TIME-DISCRETIZATION 89

9.5 Termination criterion for stationary problems

In order to monitor when the time stepping scheme has converged sufficiently to steady
state, a termination criterion has been implemented. We define the 2-norm for a vector
u=(uy,...,up) as follows:

P2
[alf2 = 7’;1 L, (9.20)

Let u™ be the solution vector of quantity u at time-level n with length p, equal to C, the
number of cells, or E, the number of faces. We use the following termination criterion:

1-—

A
[u ! — ||, < (er][u™]2 + €2) (9.21)
with

_ ™ —a"l

A

| —un]y

and €; and €3 the relative and absolute accuracy parameters, to be given by the user. When
equation (9.21) is satisfied for all three primary variables, the solution is assumed to be
converged within the tolerances as given by the user.

Chapter 10

The linear solver

For information the linear solvers, we refer to the ISNaS Mathematical manual.

90

Chapter 11

Post-processing

The SEPRAN postprocessing routines require the quantities to be located at the vertices.
Hence, due to the locations of the variables, interpolations are required. For scalar quantities,
positioned at the cell-faces, these interpolations are discussed in 11.1. Section 11.2 is devoted
to the interpolation of vector quantities, e.g. the momentum, which are positioned at the
cell-faces. The postprocessing of derived variables is discussed in Section 11.3.

11.1 Postprocessing of scalar quantities

The scalar variables (p, p and an energy variable) are positioned in the cell-centers, see Figure
11.1. Let V be a vertex surrounded by NN cells 1,...,N, and let (); be the value of scalar @
at the cell-center of cell j, then Qv , the value of scalar) at vertex V¢, is computed using

N

The weight-coeflicients w; are chosen to be the inverse of the distance between cell j and
vertex V.

11.2 Postprocessing of vector quantities

The normal components of the momentum vector are positioned at the midpoints of the
faces, see also Figure 11.2. At each of the faces the full momentum vector is reconstructed,

B

Figure 11.1: Vertex V surrounded by cells 1,...,5.

91

CHAPTER 11. POST-PROCESSING 92

Figure 11.2: Vertex V surrounded by faces 1,...,5.

see Section 5.8. Interpolation to the vertices is then done using the same formulation as given
in the previous section:

N
N
E]‘:1 w;

where () stands for the z- and y-component of the momentum. The weight-coefficients are
now taken to be the inverse of the distance between the midpoint of face 7 and vertex V.

Qv =

11.3 Postprocessing of derived quantities

Apart from the primary variables, some derived quantities are computed at the vertices as
well.

The pressure at each vertex is computed by interpolating the cell-center values of the pressure,
even though it is fundamentally more correct to insert the interpolated density and enthalpy
in the equation of state.

For the treatment of the primary and derived energy variables, see Section 19.1.

In all vertices the velocity vector is obtained by dividing the interpolated momentum vector
by the interpolated density.

The Mach number in the vertices results from the interpolated velocity and enthalpy, together
with relation (2.45).

Chapter 12

Flow around profiles

12.1 Introduction

An application for which the TUDFINVOL often is used, is the computation of flows around
airfoils. In this chapter some relevant information concerning this type of flows is gathered.

12.2 Initial and boundary conditions

In Figure 12.1 curves for a generic grid around an airfoil are shown. Since the SEPRAN grid-
generator general is not capable of dealing with grids containing a hole, a slit s is required.
The slit is used as a sort of boundary between the ends of a C-grid. The curves 7, f and o
stand for the inflow, (air)foil and outflow boundary, respectively.

The following boundary conditions are usually given for Euler flow:

e at the inflow curve i: the enthalpy h = 1, |m| = 1 and «, the angle of incidence of the
flow, usually called angle of attack;

e at the outflow curve o: 0™ = —1 (i.e. p=1) and 0h/0n = 0;
e at the airfoil f: m =0 and 9h/0n = 0;
e at the slit s no boundary conditions are given.

Note that prescribing dh/0n = 0, though mathematically not correct, is done to instruct the
software that one-sided differences should be used.

|

Figure 12.1: Curves in a generic grid for low computations around an airfoil.

93

CHAPTER 12. FLOW AROUND PROFILES 94

The following initial conditions are usually given for Euler flow: the momentum vector m =
(mg, my) = (Jm|cosa, |m|sina), the enthalpy A = 1 and pressure p = 1. Note that, though
we use H and p as primary thermodynamic variables, we prescribe values for A and p. The
reason for this is solely to remain compatible with the ISNaS input files.

CHAPTER 12. FLOW AROUND PROFILES 95

12.3 Computation of lift and drag

The computation of the pressure coefficient is discussed in Section 12.3.1. In Section 12.3.2 the
lift and drag coefficients are introduced. In Sections 12.3.3, 12.3.4 and 12.3.5 the numerical
computation of these coefficients is treated.

12.3.1 Computation of pressure coefficient

The pressure-coefficient at the airfoil is defined as:

— P~ Poo

1 2 "
9Poo U

¢ (12.1)

The subscript co stands for the value of the corresponding quantity far away (at infinity)
from the airfoil, and p is the computed pressure at the airfoil. In dimensionless quantities,
the definition for ¢, becomes:

c. = 1 P~ P
14 ’VMZ%poougo'

(12.2)

T

(In the rest of this section 12.3.1, all quantities are dimensionless). The dynamic pressure

%poougo is computed using

1 2_11rn00-moo_1|1rnoo|2

Lul = _ 12.3
Rt = 5 — > e (12.3)

The length of the momentum |m.,| is given, usually at the inlet, and p, follows from the
dimensionless equation of state

Poo
o= 12.4
p 3 (12.4)

[e,¢]

where ho, usually at the inlet, and p, usually at the outlet (or inlet, in supersonic compu-
tations), are given.

Given the scaled coordinates of the profile, together with the c,-values at all vertices, the lift
and drag coefficient can be computed, see the subsequent sections.

12.3.2 Definition of lift and drag coefficients

Given a 2D airfoil, see Figure 12.2, defined by the functions
y = Yu(z) upper surface (12.5)
yi(z) lower surface

and 0 < z < ¢, with ¢ the length of the airfoil. Note that the z-axis passes through both
the leading and trailing edge, and that the origin is positioned at the leading edge. Vector R
represents the sum of all forces on the airfoil.

The components of force R in the z- and y-direction are respectively the tangential force T

CHAPTER 12. FLOW AROUND PROFILES 96

R

Y, (X)

y) o x

Figure 12.2: Airfoil.

Figure 12.3: Forces on the airfoil.

and the normal force N. With e; indicating the unit-vector of the tangential force and e, the
unit-vector of the normal force (e; = e, and e, = e,), we write

R=Te;+ Ne,.

The angle of attack « is defined as the angle between the chord line, i.e. the z-axis, and
the flow direction. Similarly, the components of force R can be expanded in a component e;
perpendicular to the flow and a component ey parallel to the flow. These components, see
Figure 12.3, are respectively called L (lift) and D (drag), and consequently we can write

R=Le + Dey.
The relations between components T, N, L and D are

L = Ncosa—Tsina

D = Nsina+4Tcosa.

Division by %poougoc, with po and wu., representing the undisturbed density and velocity,
yields relations between the force coefficients:

g = ¢,cosa— ¢psina (12.6)

cqg = cpsina+ ccosa. (12.7

CHAPTER 12. FLOW AROUND PROFILES 97
dr,
\, o
X

/e
dF

Figure 12.4: Forces dF, and dF; acting on element dz of the airfoil.

The next step is to determine ¢,, and ¢;. At a small piece (thickness dz) forces dF, and dF;
(dF, > 0; dF; > 0) are present, see Figure 12.4. Since we omit viscous effects for the moment,
these forces are perpendicular to the profile. Piece dz has at the upper surface a length (ds),
and a slope with angle v,: 7, = tan(dy/dz),; at the lower surface this length is (ds);, with a
slope angle v;: v = tan(dy/dz);.

The connection between forces dF,, and dF; and the normal and tangential forces are given

by:

e upper surface of the airfoil:

d
dN, = -—dF, cos~y, = —dF, (_33)
ds /,,
) dy
dl, = dF,siny,=dF,|—] ;
ds),

e lower surface of the airfoil:
d
dN; = dF; cosy; = dF; (_x)
ds /,
dy

dl; = —dF;siny, = —dF, (—) .
ds /),

With p,(z) and pi(z) the pressure distribution at the upper and lower surface of the profile,
respectively, the forces dF, and dFj follow from

iF, = p)as) = o) () do

dF; = pi(z)(ds) = pi(z) (j—;)ldac

The normal and tangential force at piece dz are:
dN = dN,+ dN;= (p1 — pu) dz

dye d
dT AT, + dT; = (pu Y ﬂ).

E_pld.r

CHAPTER 12. FLOW AROUND PROFILES 98

Integration over z € [0, ¢] and division by §psu c results in

1 C

n = —/ (ep, — Cp,) dz (12.8)
¢ Jo
1 ¢ dyu dyl

G = E/O (Cpu% — sz%) 3 (129)

with ¢,, and cp, the pressure coefficient at the upper respectively lower surface of the profile.
The pressure coefficient is defined by

C. — P — Poo
P 1 2
2P0 U

Given (12.5), ¢, and c,,, one can compute the lift and drag coefficient using relations (12.6),
(12.7), (12.8) and (12.9).
12.3.3 Numerical computation of lift and drag coefficients

Given is a set of coordinates (24, Yu,i), with ¢ = 1,..., N, where N, equals the number of
vertices at the upper surface of the airfoil. We use the convention that z,; < %441 for all
possible i. Note that (241, Yu,1) = (0,0) and (24N, , Yu,N,) = (¢,0). In addition we have a
set ¢p,; = Cp,(Tu;). Furthermore we have similar sets (z;,,y;) and ¢, ; = ¢p, (71;), With
i=1,...,N,. ’

12.3.4 Numerical integration of ¢,

Equation (12.8) is first split into two parts:

cnzl/oc[cpl(m) e ()]dx_l/occpl(x)dm—lfoccpu(m)dm.

C C C

Each of these parts is written symbolically as

%/ch(x) da. (12.10)

As mentioned above, we have given a set z; and a set f; = f(z;), with ¢ = 1,..., N and
x; < Ziy1, where 21 =0 and 2y = 1.
Numerical integration of (12.10) is done using the trapezoidal rule:

1 c 1N—1 Tig1 1N 11
E/O f(w)dxzz;/zz f(z) 2122;5 (fi + fir1)(migr — z5). (12.11)

12.3.5 Numerical integration of ¢;
Equation (12.9) is first split into two parts:

L) L[()
i . u de — = . dz.
o= [o @eae -1 [o0 as

c

CHAPTER 12. FLOW AROUND PROFILES 99

Each of these parts is written symbolically as

1 re, dy(z)
- dx. 12.12
IR (1212)
As mentioned above, we have given a set {z;,y;} and aset f; = f(z;), withi=1,..., N and
x; < Tiy1, where 21 = 0 and 2y = c.
We write (12.12) as
N-1 .
1 f° dy(z) 1 Tit1 dy(z)
- dx = — dx. 12.1
FRCE~LEEd O IR (12.13)

Numerical integration of (12.13) is done by using the trapezoidal rule, together with a finite
difference approximation for dy/dx:

T g 1 i1 — i 1
[B e x5 f) B s <) = 5 i) s =)
(12.14)

A somewhat different approach, using partial integration, leads to the same final result:

[o de = ez - [Ly @) de = 3G+) i - w0
1 (12.15)

i

Part 11

Programmers Guide

100

Chapter 13

Data structure: mesh

We restrict ourselves to 2D meshes consisting of triangles. Some extensions to the SEPRAN
data structure are made in order to be able to implement the TUDFINVOL code. These
extensions, together with some often used SEPRAN data structure arrays, are discussed in
this chapter.

These extensions and often-used-arrays are discussed in Section 13.1. To take into account
the presence of grid boundaries, some additional arrays and constants must be defined: see
Section 13.2. How to do appropriate calls to the grid-related arrays and find the grid-related
constants mentioned in this chapter, is summarized in Section 13.3.

13.1 Vertex array, face-based and cell-based data structures

The data structure of the mesh contains mainly connectivity information, i.e. provides the
necessary information to connect grid components (cells, faces) to adjacent components. Two
fundamentally different mesh related arrays must be constructed: face-based for the momen-
tum equation, and cell-based for the convection-diffusion equations. In addition to these two
data structures, we need to have a wverter array containing the coordinates of all vertices.
Making use of these, arrays containing the lengths of the faces and the areas of the cells are
created. These parts of the datastructure will be discussed. For more information we refer to
the SEPRAN Programmers Guide, Section 24.2.

It must be noted that we use a finite-volume terminology rather than a finite-element termi-
nology: we use the word ’cell’ and ’face’ where finite-element terminology uses ’element’ and
‘edge’.

Vertex array: coor

The vertex array contains the Cartesian coordinates v; = (vjg, viy) of all vertices v;. The
vertex array is a real array coor(2,npoint) in the SEPRAN data structure, where npoint is
the number of vertices, and npoint = kmesh(8). The memory management number of array
coor is kmesh(23). Note that V' = npoint, in equation (3.2).

Cell-based data structure: cellfv

The memory management sequence number of array cellfvis kmesh(kmesh(48)-1+432) + nelem
in integer array IBUFFR. For more info, see SEPRAN Programmers Guide, Section Array
KMESH. In the case of 2D triangles, array cellfv is an integer (0:3 x nelem)-array where

101

CHAPTER 13. DATA STRUCTURE: MESH 102

b

a

Figure 13.1: Convention with respect to normal and tangential vector. Adjacent cell-numbers
are m and o, and vertex-numbers are ¢ and b

the first number (0,*) refers to the number of faces (always 3 in this case), and the other three
numbers ((1,%), (2,%) and (3,*)) refer to the face numbers of each cell. nelem is the total

number of cells (nelem=kmesh(9)). The following conventions in storing cellfv are adopted:
e the order in storing the face numbers corresponds to a counterclockwise contour.

e the face number is stored as a positive or negative number depending on the direction
of the face.

Hence, the face-numbers are the absolute values of the elements in array cellfv. Note that
C = nelem, in equations (3.1) and (3.2).

Face-based data structure: face

The memory management sequence number of array face is kmesh(kmesh(50)-1421) in
array IBUFFR. Array face is an integer (6 x nfaces)-array, where nfaces stands for the
total number of faces, nfaces = kmesh(kmesh(48)-144), with the following contents:

e face(l,e) and face(2,e) contain the vertex numbers that define face e.
e face(3,e) and face(5,e) contain the cell numbers of the cells adjacent to face e.

e face(4,e) and face(6,e) contain the local face numbers of respectively cells face(3,e)
and face(5,e). The local face number is the column-position (1,2 or 3) in which the
face is stored for the corresponding cell in array cellfv.

Note that E = nfaces, in equation (3.2).
The following conventions are made in storing array face:

e face(3,e) < face(5,e) always.

e the cell with cell number face(3,e) must always lie 'left’ of the vector defined by
(face(2,e) - face(l,e)), and consequently the cell with cell number face(5,e) lies always
'right’ of this vector. The normal vector of (face(2,e) - face(1l,e)) that is obtained after
rotating this vector by 7/2 radials in the clockwise direction, points towards the cell
that lies 'right’. The definition of what is ’left” now is trivial. Note that due to this
convention we cannot interchange face(1,e) and face(2,e).

In Figure 13.1 the normal and tangential vector are drawn for face e. Note that face(l,e) =
a, face(2,e) = b, face(3,e) = m and face(5,e) = o. Note that m < o.

CHAPTER 13. DATA STRUCTURE: MESH 103

Figure 13.2: Example of a mesh. Cell numbers are in circles, face numbers are underlined,
and the other numbers are vertex identification numbers.

In the case that face e is a boundary face, face(5,e) is put to (nelem+1), and face(6,e) is
put to zero.

To illustrate the use of arrays cellfv and face, consider Figure 13.2. Array cellfv has the
following contents (the face numbers may be permutated in a cyclic manner):

cell 4: =12 13 14

cell 5: =14 15 -16

cell 6: 18 -17 186.
Assuming that faces 12, 13, 15, 17 and 18 are boundary faces and that! nelem=6, array face
has the following contents:

face 12: 9 7
face 13: 7 8
face 14: 8 9
face 15: 8 10

face 16: 10 9
face 17: 11]
face 18: 10 11

o N I AR A T S
BN WD WN
NN NN N
OO0 WwWOoOkr oo

Recall that on every face e a unique choice for the direction of the normal N, has to be made
for the momentum equation, see Section 5.2. Our decision is to let N, point from the cell with
the smaller identification integer towards the cell with the larger identification integer. Note
that due to this convention, the normal on boundary faces is always pointing outwards. Since
the direction of translation vector s, = face(2,e) - face(l,e) is related to the identification
integers of the cells, the normal vector N. can be obtained in a unique manner from s. by
taking into account the following three conditions:

Se -n. = 0, IN.| =1 and (se x N¢), <O0. (13.1)

The third condition defines the direction of N, with respect to s.. Writing in Cartesian
coordinates

Se = (Sa, Sy)s (13.2)
we arrive at

N, = (Sy, —Sz)/]8e|- (13.3)

!Note that cells 1, 2 and 3 are not drawn. The reason for this, is to avoid confusion between the local face
numbers (always 1,2 or 3) and the cell numbers. This example hence serves only to give an illustration.

CHAPTER 13. DATA STRUCTURE: MESH 104

Note that the direction of the normal vector is obtained by rotating the translation vector s
over an angle 7/2 in clockwise direction, see also Figure 13.1.

Array containing lengths of faces: lengthf
From the arrays face and coor we can obtain the lengths of all faces, using I, = |s.| =

\/ 8%+ s2,. Array lengthf, with length nfaces, contains the lenght of all faces: lengthf (i)

contains the length of face 1¢.

Array containing areas of cells: areafv
From the arrays cellfv, face and coor we can obtain the areas of all cells, by using;:

1 1 1
Q= Jlsa X sy = Flsa X sc| = Flsp X scl, (13.4)
where s,, sp and s, are the three translation vectors of the cell faces a, b and c.

In addition, the following quantities can be obtained. Note that these quantities are not
stored, hence they have to be computed each time when they are needed.

1. the midpoint of a face follows from e = (v,+vp)/2, where v, and v;, are the coordinates
of the vertices of the face.

2. the uniquely defined normal vector N, of face e; see discussion above.

3. the inner product (n.-N.), where n. is the normal pointing outwards of the cell under
consideration, and N, the uniquely defined normal vector. Say that m stands for the
cell under consideration, and n is the cell that lies adjacent to face e. If the cell number
of m < n, then (n.-N.) =1, else (n. - N.) = -1. For example, if we consider cell 5 in
Figure 13.2, then (n14-Ny4) = -1 and (n16- Nyg) = 1.

4. the coordinates of the cell-centroid ¢ from

1
c= g(vi—I—Vj—l—vk), (13.5)

where v;, v; and vy, are the coordinates of the three cell vertices.

CHAPTER 13. DATA STRUCTURE: MESH 105

13.2 Boundary treatment in the data structure

Now we are going to discuss the influence of the presence of boundaries in the data structure.
In Sections 13.2.1 and 13.2.2 the cells and faces are divided into subgroups: internal cells
and boundary cells, and internal faces, quasi internal faces and boundary faces. Additional

reordering arrays are created, and discussed.

CHAPTER 13. DATA STRUCTURE: MESH 106

13.2.1 Cells and boundaries

As discussed in Section 3.2, we distinguish between internal and boundary cells.

In the software, with nelem = kmesh(9) we intend the total number of cells C' and with
nelemi = kmesh(kmesh(50)-1+4) we intend the total number of internal cells C;.

In integer array iconcell(nelem) we have rearranged the cell numbers such, that the first
nelemi elements refer to internal cells, and the next (nelemi + 1) to nelem elements to
boundary cells. The memory management sequence number of array iconcell is kmesh(

kmesh(50)-1422).

CHAPTER 13. DATA STRUCTURE: MESH 107

I
@
C)

@, @

@ %

2 14

%)

Figure 13.3: Example of a mesh in the vicinity of boundaries. Cell numbers are in circles and
face numbers are underlined.

13.2.2 Faces and boundaries

As discussed in Section 3.2, we distinguish between internal and boundary faces. Further-
more, the internal faces are subdivided in real internal faces and quasi internal faces.

In the software, with nfaces = kmesh(kmesh(48)-144) we intend the total number of faces E,
nfacesi = kmesh(kmesh(50)-1+2) stands for the number of internal faces E;, and nfacesir
= kmesh(kmesh(50)-1+3) represents the number of real internal faces E;,. The number of
boundary faces: Ey = (E — E;). The number of quasi internal faces: E, = (E; — E;y).

In integer array iconface(nfaces) we have rearranged the face numbers such, that the
first Ep elements of this array correspond to boundary faces, the next (Ep + 1) to (Ep + E,)
elements to quasi internal faces, and the final (Eb—I—Eq—I—l) to E elements to real internal faces.
In addition, we have stored the array convarray(nfaces), which is the inverse of iconface(nfaces).
This array is stored immediately after array iconface. This means that, when i = iconface(j),
then j = convarray(i). The use of this is the following: when doing a loop over all boundary
faces, we do a loop over the elements j = 1 to Fp in array iconface. Storing relevant info
then is done in some array, call it boundary_info, with a length equal to Ey. When we know
the face number i of a face, we use array convarray to find the corresponding position in
array iconface, i.e. the position in array boundary_info.

To give an example of the use of arrays iconcell, iconface and convarray, consider Figure
13.3. The internal cells are 2, 3, 6 and 9. Consequently, the boundary cells are 1, 4, 5, 7 and
8. The internal faces are 1, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 17, of which the faces 7, 12 and 17
are real internal faces. Consequently, the quasi internal faces are 1, 5, 6, 8, 9, 10, 11 and 13.
Consequently, the boundary faces are 2, 3, 4, 8, 14, 15 and 16. This leads to the following
mesh-related constants: C = 9;C; =4;C, =5; E=17; E;, =10, E;, =3, B, =7; V = 0.
The relations 3.1 and 3.2 (H = 0) are satisfied.
The array iconcell is given by:

h 23609 [/ 14578 h
(where the parts between % may be permutated).
The array iconface is given by:

% 2348 14 15 16 / 7 12 17 [/ 156910 11 13 [/
(where the parts between % may be permutated).
The array convarray is given by:

11123 12 13 8 4 14 15 16 9 17 5 6 7 10.

CHAPTER 13. DATA STRUCTURE: MESH 108

13.3 Software implementation of the data structure

To obtain an unstructured mesh, the appropriate SEPRAN routines are used or adapted (if
necessary). In order to obtain the mesh related quantities as described above, the author has
written some new procedures (note that generation of array cellfv is not implemented by
the author).

e array face is created by routine mshface.f.
e arrays lengthf and areafv are created by routine mshgeom.f.

e arrays iconcell and iconface, together with the numbersnelemi, nfacesi and nfacesir,
are created by routine mshrenum.f.

The way to find the starting-addresses (ip*#**) of these arrays, is to use the procedure
iniactmk.f, see Section 22.9.1 in the SEPRAN Guide called Subroutine INIJACTMK. The
number indicated with mm*** are memory management sequence numbers. The dummy-
parameter, required in the call to iniactmk, must be declared as a one-dimensional integer
array, i.e. dummy(1).

Some important numerical values (note that it is trivial to compute other numerical values
like the number of boundary faces or the number of quasi internal faces):

ndim = kmesh(6).

npoint = kmesh(8).

nelem = kmesh(9).

ncurvs = kmesh(11).

nfaces = kmesh(kmesh(48)-1+4).

nfacesi = kmesh(kmesh(50)-1+2).

nfacesir = kmesh(kmesh(50)-1+3)

nelemi = kmesh(kmesh(50)-1+4).

e Find array coor:
call iniactmk (ibuffr, 1, 23, kmesh, dummy, mmcoor)
ipcoor = inidgt(mmcoor),
and give buffer(ipcoor) in the call-statement. Length of this array: 2 x npoint.

e Find array face:
call iniactmk (ibuffr, 4, 21, kmesh, dummy, mmface)
ipface = iniget(mmface) ,
and give ibuffr(ipface) in the call-statement. Length of this array: 6 x nfaces.

e Find array iconcell:
call iniactmk (ibuffr, 4, 22, kmesh, dummy, mmconcel)
ipconcel = iniget(mmconcel) |,
and give ibuffr(ipconcel) in the call-statement. Length of this array: nelem.

e Find array iconface:
call iniactmk (ibuffr, 4, 23, kmesh, dummy, mmconfac)
ipconfac = iniget(mmconfac) |,
and give ibuffr(ipconfac) in the call-statement. Length of this array: nfaces.

CHAPTER 13. DATA STRUCTURE: MESH 109

e Find array convarray:
call iniactmk (ibuffr, 4, 23, kmesh, dummy, mmconfac)
ipconfac = iniget(mmconfac) |,
ipconv = ipconfac 4 nfaces,
and give ibuffr(ipconv) in the call-statement. Length of this array: nfaces. Note
that this array is the inverse of array iconface, and that it is stored immediately next
to (behind) iconface.

e Find array lengthf:
call iniactmk (ibuffr, 4, 24, kmesh, dummy, mmlengthf)
iplengthf = inidgt(mmlengthf) |,
and give buffer(iplengthf) in the call-statement. Length of this array: 6 x
nfaces.

e Find array areafv: call iniactmk (ibuffr, 4, 25, kmesh, dummy, mmareafv)
ipareafv = inidgt(mmareafv) ,
and give buffer(ipareafv) in the call-statement. Length of this array: nelem.

e For the cellfv-array, the following actions have to be performed:

call iniactmk (ibuffr, 2, 32, kmesh, dummy, mmcellfv)

ipcellfv = iniget(mmcellfv) |,
and give ibuffr(ipcellfv + nelem) in the call-statement. In the routine itself,
array cellfv must be declared as:

cellfv(0:3,nelem),

so that the elements cellfv(1l,*), cellfv(2,*) and cellfv(3,*) correspond to the
faces. The number cellfv(0,*) correspond to the number of faces of the element under
consideration, hence is always equal to 3 when dealing with triangles. Note that the
mentioned procedure works only for meshes consisting solely out of triangles.
The reason to do this so complicatedly, is that array cellfv is actually KMESH part
aa, NMESH part b; see SEPRAN Programmers Guide. Recall that we consider only
2D triangles, and that we use a finite volume terminology rather than a finite element
terminology (see the beginning of Section 13.1).

Chapter 14

Datastructures

In Section 14.1 the reference numbers to each unknown is given. Furthermore, some definitions
concerning the total number of unknowns is given. The storage of the matrix, right-hand side,
solution and matrix structure is discussed in Section 14.2. Array KFINVOL, containing very
general information about array IINPUT and gradient arrays, is discussed in Section 14.3.
The rest of the chapter is devoted to the description of arrays containing boundary-condition

information and other parameters.

110

CHAPTER 14. DATASTRUCTURES 111

14.1

Conventions

At this moment we can only deal with coupled momentum equations (icoupled = 0; icoupled
is at position 76 in array [INPUT, see ISNaS Programmers Guide Section 16.9). Concerning
the type of flows, we can deal with fully compressible flows (mcom = 3; mcom is at position 1
in array IINCOM, see ISNaS Programmers Guide Section 16.9), incompressible flows (mcom
= 0) and Mach-uniform flows (mcom = 1). With parameter eq we refer to an unknown. The
following ordening of the unknowns/solutions is adopted:

eq = 1,..., ndim: in the coupled case the momentum component m normal to the faces
is stored at eq = 1 and the numbers eq = 2, ..., ndim refer to tangential momentum
components. In the 2D-case (ndim = 2), eq = 2 refers to m. ndim is the number of
dimensions (stored at position 57 in IINPUT).

eq = (ndim+1): pressure.

eq = (ndim+2), ..., (ndim+14ntrnsp): transport variables. Position eq = (ndim+2) is
reserved for the energy variable (e.g., enthalpy, total enthalpy, total energy, ...). ntrnsp
is the number of transport variables (stored at position 63 in IINPUT).

eq = (ndim+24ntrnsp), ..., (ndim+14ntrnsp+nturb): turbulence quantities. nturb
is the number of turbulence equations (stored at position 70 in IINPUT).
eq = (ndim+424ntrnsp+nturb), ..., (ndim+1l+ntrnsp+nturb4nvcextra): derived

quantities. Derived quantities are quantities that can be computed by simple relations
from the primary variables. Storing derived quantities hence is not strictly necessary,
but for ease of programming they are stored nevertheless. At this moment we have
nvcextra = 2 for compressible flows and nvcextra = 0 for incompressible flows. In the
case of compressible flows, the first position (i.e. eq = (ndim+1+ ntrnsp4nturb+1))
refers to the density, and the second position to the velocity.

Furthermore, in the code we use sometimes the following variables:

Number of transport variables: ntrans = (ntrnsp + nturb);
Number of unknowns: numunk = (ndim+1l4ntrans);
Number of degrees of freedom: ndegfd = numunk.

Number of solutions: numsol = (ndim+14ntrans+ nvcextra).

At this moment, the compressible (i.e. mcom = 0,1) part of the code is suited for ndim =
2, ntrnsp = 1 (energy variable), nturb = 0 and nvcextra = 2. This leads to the following

ordening:

eq = 1: normal momentum component m,
eq = 2: tangential momentum component 7,
eq = 3J: pressure p,

eq = 4: energy variable (e.g. h, H, E, ...), (when mcom = 1, then this has to be h).

CHAPTER 14. DATASTRUCTURES 112

e eq = 5: density p,
e eq = 6: normal velocity component wu,

and the following constants: ndim = 2, ntrnsp = 1, nturb = 0, nvcextra = 2, ntrans = 1,
numunk = ndegfd = 4 and numsol = 6.

The incompressible part of the code is suited for ndim = 2, ntrnsp = 0 (no energy variable),
nturb = 0 and nvcextra = (. This leads to the following ordening;:

e eq = 1: normal velocity component u,
e eq = 2: tangential velocity component i,

® eq = 3: pressure p,

CHAPTER 14. DATASTRUCTURES 113

14.2 Matrix and solution arrays

14.2.1 Array isol

Information concerning the solution arrays is stored in integer array isol(5,numsol ,ntimlv+1),
where numsol is defined in Section 14.1, and ntimlv is the number of time-levels for which
the solution remains stored. ntimlv may never be smaller than 2; at this moment we have
ntimlv = 2. Array isol is initialized in routine fvincnd.f.

e isol(1,1i,j) refers to memory management number of equation number eq = i (see
Section 14.1) at a certain time-level. j = ntimlv - 1 = 1 refers to the ’old’ solution,
and j = ntimlv = 2 refers to the 'new’ (latest obtained) solution. j = ntimlv + 1 =
3 is used for the post-processing.

e isol(2,1i,j) = 127 for the normal and tangential momentum (i = 1,..., ndim, and all
j), and isol(2,1i,j) = 116 for all other (scalar) quantities (i = ndim + 1,... numsol,
and all j)

e is01(3,1,j) = 0 for all i and j.

e isol(4,i,j) = 0 for the normal and tangential momentum (i = 1,..., ndim, and all
j), and isol(4,i,j) = 1001 for all other quantities (i = ndim + 1,... numsol, and all

i)
e isol(5,1,]j) equals nusol, the length of the stored solution vector. Hence, if i refers

to a momentum or velocity solution, nusol = nfaces. If i refers to a transport or
turbulence solution, then nusol = nelem.

For a more complete description of isol, see SEPRAN Programmer’s Guide Section 24.4.
For the actual content of the arrays to which the memory management numbers isol(1,1i,j)
refers, see Section 17.3.

14.2.2 Arrays matrix and irhsd

The integer arrays matrix(5) and irhsd(5), refering to the matrix resp. right-hand side, are
descriped in the SEPRAN Programmer’s Guide as well (the sections on Array MATR and
Array IRHSD, resp. 24.7 and 24.5). The matrix is stored using JMETOD = 6. In short, the
arrays have the following content:

e matrix(1) = 806 (momentum equation) or 1806 (scalar equation).
e matrix(2) = 103.

e matrix(3): memory management number refering to actual matrix.
e matrix(4) = 0.

e matrix(5) = 0.

e irhsd(1): memory management number refering to actual right-hand side

e irhsd(2) = 116 (scalar equation) or 127 (momentum equation).

CHAPTER 14. DATASTRUCTURES 114

e irhsd(3) = 0.
e irhsd(4) = 1.

e irhsd(5): length of right-hand side vector (i.e. nfaces for momentum equation, and
nelem for scalar equation).

In the computer code, these arrays, as well as the large arrays containing the matrix and the
right-hand side, are created at every time-level and for every equation in routine fvbldmat.f,
and after having solved the matrix equation, these arrays are deleted in routine fvsbstep.f,
see also Section 17.2.

CHAPTER 14. DATASTRUCTURES 115

14.2.3 Array intmat

Information concerning the structure of the matrices is stored in integer array
intmat (5,numunk). For definition of numunk, see Section 14.1. Storage scheme JMETOD =
6 is used. Short description of content (see also SEPRAN Programmers Guide Section 24.6):

e intmat(1,i) = 806 (momentum equation) or 1806 (scalar equation).

e intmat(2,i) = 102

e intmat(3,i) = memory management number refering to actual matrix structure.
e intmat(4,i) =0

e intmat(5,1i): length of vector in which matrix itself is stored. For the momentum
matrix this length is called lmstrmom and for the scalar matrix this length is called
Imstrcvdf.

At this moment we can account for only two matrix-structures: one for the momentum, and
one for the scalar variables. Hence, for the density, enthalpy and all other scalar variables
we use the same matrix structure as for the pressure correction (hence intmat(i,ndim+1) =
intmat(i,ndim+2) = intmat(i,ndim+...) for all i). Matrix intmat (5,numunk) is created
in routine fvstrmat.f.

(It must be noted that, when building a matrix for the density, having equation-number
(numunk + 1), we don’t have any position left in intmat. But, since intmat is the same for
all scalar quantities, we will use the enthalpy-positions in intmat instead.)

CHAPTER 14. DATASTRUCTURES 116

14.3 Array KFINVOL

Array KFINVOL contains general information that is required to build the matrices. The
positions in KFINVOL have the following meaning:

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

Pos.

1 Declared length of array KFINVOL (to be filled in by user).

2 1000. This number is used to indicate that this is an array of structure KFINVOL.
3 Actual length of array KFINVOL.

4 0.

5 0.

6 mmiinput. Memory management sequence number of integer array IINPUT.

7 mmrinput. Memory management sequence number of real array RINPUT.

8 mmcoefs. Memory management sequence number of integer array IINCOFS; see
Section 14.4.

9 mmigrfac. Memory management sequence number of integer array IGRFAC, con-
taining for each face the 6-points stencil required to evaluate gradients with e.g. the
path-integral method; see Chapter 21.

10 mmrgrfac. Memory management sequence number of real array RGRFAC, contain-
ing the weights corresponding to the elements in IGRFAC; see Chapter 21.

11 mmibndcon. Memory management sequence number of integer array IBNDCON
containing integer information with respect to the boundary conditions, see Section
14.5.3.

12 mmrbndcon. Memory management sequence number of real array RBNDCON con-
taining real information with respect to the boundary conditions, see Section 14.5.4.

13 mmlinpol. Memory management sequence number of real array LINPOL, contain-
ing linear interpolation coefficients required to compute quantities at faces when the
quantities are located at the cell-centres (e.g. density); see Section 16.4.

14 mmitancomp. Memory management sequence number of integer array ITANCOMP,
containing the four surrounding faces of the face under consideration; see Section 16.5.

15 mmrtancomp. Memory management sequence number of real array RTANCOMP,
containing the weights in order to compute the tangential component; see Section 16.5.

16 mmgradvel. Memory management sequence number of real array GRADVEL, con-
taining the weights in order to compute the velocity gradient, see Section 16.6.

17 mmreconstnor. Memory management sequence number of real array RECONST-
NOR, containing the reconstruction coefficients for a normal vector in terms of sur-
rounding normals. See Section 16.7.

CHAPTER 14. DATASTRUCTURES 117

Pos. 18 mmreconsttan. Memory management sequence number of real array RECONST-
TAN, containing the reconstruction coeflicients for a tangential vector in terms of sur-
rounding normals. See Section 16.7.

Pos. 19 mmnormal. Memory management sequence number of real array NORMAL, con-
taining the normal vector at each face. See Section 13.1.

CHAPTER 14. DATASTRUCTURES 118

14.4 Coefficient arrays

Information with respect to the coefficients, see ISNaS Programmers Guide Section 16.10, is
stored in arrays iincofs(ncoefs,ndegfd) and rincofs(ncoefs,ndegfd). For every equa-
tion, at every time-level, a real array coefs(ncoefs,nelem) is filled. This filling is done
in routine fvcoefs.f. Array coefs contains information with respect to coefficients (may
be functions of time and/or space) for each cell. Then routine fvscalarfaces.f uses those
values to interpolate the viscosity in face centers, which is needed for the momentum equa-
tion. It also calculates the density in face centers, but this is calculated from the array dens
because the density is not the coefficient but a calculated value. Those values are stored in
array facecoefs.

For the tudfinvol-code we have added some additional terms in array coefs for the convection-
diffusion equation. To this aim we had to increase integer ncoefs from 10 to 11 (in fvreadal.f
and fvinput.f). Let the convection-diffusion equation be of the following form:

00 V- (bug) ~ V- (V) +db =g, (14.1)

where a, b, ¢, d and ¢ are the coeflicients. For discretization of this equation, see Section
4.2. The positions j and i, with j running from 1 to 11, and i from 1 to nelem, in array
coefs(j,1i), contain:

convection diffusion equation

n+1

e i = 1: capacity at new time-level a;

e i = 2: constant d:»‘"'l

e i — 3: source fi"+1

e i = 4: scalar diffusion C?-H
e i = 5: scalar diff, y

e i = 6: scalar diff, y

e i = 7: scalar diff, 2

e i = 8: scalar diff, 2

e i = 9: scalar diff, z

e i = 10: convection term b?"'l

n
i

e i = 11: capacity at old time-level a
momentum equation
e i = 1: density

e i = 2: viscosity

CHAPTER 14. DATASTRUCTURES 119

Array facecoefs(j,1i) contains the density for i = 1 and viscosity for i = 2.
The energy equation, see Section 4.5, and the continuity equation, see Section 4.6 are
considered as special forms of the convection-diffusion equation. Note that the source term

f is an external source and not the term Q;g; in relation (4.2).

CHAPTER 14. DATASTRUCTURES 120

14.5 Arrays with respect to the boundary conditions

With respect to boundary conditions, we distinguish between four types of arrays:
e iinbc Array containing integer information of the boundary conditions.
e rinbc Array containing real information of the boundary conditions.

e ibndcon Array containing integer information of the boundary conditions, for every
boundary face, for the equation under consideration.

e rbndcon Array containing real information of the boundary conditions, for every
boundary face, for the equation under consideration.

Arrays iinbc and rinbc are stored in arrays iinput and rinput, see ISNaS Programmers
Guide Section 16.11. Note that the content of arrays iinbc and rinbc differs from the content
in ISNaS.

At every time-level, for every equation, arrays ibndcon and rbndcon are filled again. These
arrays contain, respectively, integer and real information concerning the type and numerical
value(s) of the boundary conditions at each face, for a certain equation at a certain time-level.
Filling these arrays is done in routine fvbndcon.f. Arrays ibndcon and rbndcon are used in
the computation of the matrix elements. The contents of the arrays iinbc, rinbc, ibndcon
and rbndcon is discussed subsequently.

CHAPTER 14. DATASTRUCTURES 121

14.5.

1 Array IINBC

Array iinbc is an integer array of dimension (ncurvs x ndegfd x 3), where ncurvs is the
number of curves used to define the mesh (in mesh-input-file), and ndegfd is the number of
degrees of freedom.

Element iinbc(icurnr,j,k) refers to curve-number icurnr and the jth degree of freedom

(see description of parameter eq in Section 14.1). Parameter k runs from 1 to 3:

k = 1: gives type of boundary condition, see Section 16.11 of the ISNaS programmers

guide. For example, if iinbc(icurnr,1,1) = 4, then at curve icurnr we have the
normal and tangential momentum given for the momentum equation. For example,
if iinbc(icurnr,ndim+2,1) = 1, then at curve-number icurnr we have a Dirichlet
condition for the enthalpy. When iinbec(icurnr,j,1) =0, then no boundary condition
for variable j is given. This occurs for example at inner curves.

2: refers to the value of the boundary condition (see ISNaS Programmers Guide Sec-
tion 16.11.3). If iinbc(icurnr,j,2) = -1, then the boundary condition is constant
over the curve and in time. The value of the boundary condition is then stored in
rinbc(icurnr,j,1). If iinbc(icurnr,j,2) > 0, then the boundary condition is a
function of the position and/of time. The value of the boundary condition must then
be computed.

3: refers to another value of the boundary condition (see ISNaS Programmers Guide
Section 16.11.3). This value is needed for example in case of a Robbins type of bound-
ary condition. If iinbc(icurnr,j,3) = -1, then the boundary condition is constant
over the curve and in time. The value of the boundary condition is then stored in
rinbc(icurnr,j,2). If iinbc(icurnr,j,3) > 0, then the boundary condition is a
function of the position and/of time. The value of the boundary condition must then
be computed.

CHAPTER 14. DATASTRUCTURES 122

14.5.2 Array RINBC

Array rinbc is a real array of dimension (ncurvs x ndegfd x 2), where ncurvs is the number
of curves used to define the mesh (in mesh-input-file), and ndegfd is the number of degrees
of freedom.

Array rinbc is used to store real constants for the computation of boundary conditions for
each curve and for each equation. The contents are defined by array iinbc, see previous
section.

For example, let m be given at curve icurnr (i.e. iinbc(icurnr,1,1) = 4), then we have:
m, = rinbc(icurnr,1,1); m = rinbc(icurnr,2,1).

CHAPTER 14. DATASTRUCTURES 123

14.5.3 Array IBNDCON

Array ibndcon is an integer array with length nfacesb, where nfacesb stands for the number
of boundary faces (hence, nfacesb = nfaces - nfacesi, with nfaces and nfacesi the total
number of faces and the number of internal faces, respectively).
The (ibouface)th element of array ibndcon, i.e. ibndcon(ibouface), refers to the (bound-
ary) face with number iface in array face (see KMESH part y). Note that 1 < ibouface
< nfacesb. The relations between the integers ibouface and iface are:

iface = iconface(ibouface);

ibouface = convarray(iface),
with convarray the inverse of array iconface, a part of KMESH part y, see also Section
13.2.2.
Array ibndcon contains for each boundary face an integer indicating the type of boundary
condition. For every face ibouface lying on curve icurnr, we have ibndcon(ibouface) =
iinbc(icurnr,eq,1), for equation eq. For a description, see Section 16.11.3 in the ISNaS
Programmers Guide. In short, the following types of boundary conditions are implemented,
together with their corresponding integer numbers in ibndcon:

Momentum equation

4 Momentum vector m = (m, m) is given (Dirichlet).

5 Normal momentum m and tangential stress o’ given.

6 Normal stress ¢™" and tangential momentum m given.

7 Stress (0™ = —p and o) given (Neumann).

10 Cartesian momentum components m = (m,, m,) given (Dirichlet).

11 Length of momentum vector |m| and angle of inflow « given (Dirichlet). The angle of
inflow is the angle between the positive z-axis and the direction of the flow, being
positive in the counterclockwise direction. For profile flow, the angle of inflow is usually
called angle of attack.

14 Momentum vector m = (7, m) and ¢"" = —p are given (supersonic inflow).

15 Cartesian momentum components m = (m,,m,) and o™ = —p are given (supersonic
inflow).

16 Length of momentum vector |m|, angle of inflow a and ¢™” = —p are given (supersonic
inflow).

17 Nothing is given (supersonic outflow).

Note that items 10 and 11 are equivalent to item 4, and that items 15 and 16 are equivalent
to item 14. In routine fvbndcO01.f boundary conditions of type 10 and 11 are transformed
to type 4, and boundary conditions of type 15 and 16 are transformed to type 14.

Scalar equation

1 Scalar is given (Dirichlet).

CHAPTER 14. DATASTRUCTURES 124

2 Robbins boundary condition (a¢ + (kV¢) - n = f) for scalar. At this moment only
homogeneous Neumann implemented ((kV¢)-n = 0, or, equivalently, a« = f = 0).

For the continuity equation, with density as primary variable, no explicit boundary conditions
are given. For the discretization, see also Section 4.6.1, a homogeneous Neumann boundary
condition at all boundary faces (ibndcon = 2, for all positions) is when the momentum vec-
tor is not given. If the momentum vector is given, a Dirichlet condition for the density is
given (p = m/u, where the normal momentum component m follows from the given Dirichlet
condition for the momentum vector, and the normal velocity u is the most recently computed
value).

When the enthalpy h is not the primary variable (menergy # 1), then at the boundaries a
Dirichlet condition holds when both the enthalpy and the momentum vector are given, see
also the end of Section 14.5.4.

Pressure-correction equation

No boundary conditions are required for the incompressible pressure-correction equation.
For the compressible pressure-correction, this is not the case, see also the discussion in
Chapter 8. The following contents for the corresponding arrays is implemented: From
iinbc(1,ndim+2,1) we can see whether a Dirichlet or homogeneous boundary condition
for the enthalpy is given (values for iinbc(1,ndim+2,1) are 1 and 2 respectively). From
iinbc(1,1,1) we can derive whether the pressure (actually o™ is given at the boundary or
not. The values for ibndcon are given here below:

1 Dirichlet condition for the enthalpy, no condition for the pressure given. We have: rbndcon(1,ibouface,1)
= h, with h the given enthalpy.

2 Neumann condition for enthalpy and pressure.

3 Both pressure and enthalpy given, and stored as follows: rbndcon(1,ibouface,1) = h
and rbndcon(2,ibouface,1) = o™".

4 Pressure given and Neumann for enthalpy. The given pressure is stored in: rbndcon(2,ibouface,1)
= o™,

CHAPTER 14. DATASTRUCTURES 125

14.5.4 Array RBNDCON

Array rbndcon is a real array of dimension (2 x nfacesb x ndim), where nfacesb is the
number of boundary faces, and ndim is the dimension of the problem. The (ibouface)th
element of array rbndcon, i.e. rbndcon(i,ibouface,j), with i = 1,2, and j = 1,...,ndim,
refers to the (boundary) face with number iface in array face (see KMESH part y). Note
that 1 < ibouface < nfacesb. The relations between the integers ibouface and iface are:
iface = iconface(ibouface);
ibouface = convarray(iface),
with convarray the inverse of array iconface, a part of KMESH part y, see also Section
13.2.2.
Array rbndcon contains for every boundary face the value(s) of the boundary conditions.

For all equations, except for the momentum equation, only the elements rbndcon (i, ibouface,1),
with i = 1,2, are filled. For every face ibouface lying on curve icurnr, we have, in case of
constant boundary conditions, rbndcon(i,ibouface,1) = rinbc(icurnr,eq,i) (with i =
1,2), for all eq except the momentum equation. In case that the boundary conditions depend

on position and/or time, the values of rbndcon(i,ibouface,1) are computed.

For the momentum equation, all elements of rbndcon are used. For every face ibouface lying
on curve icurnr, we have, in case of constant boundary conditions, rbndcon(i,ibouface,j)
= rinbc(icurnr,j,i),fori = 1,2, and j = 1,...,ndim. In case that the boundary conditions
depend on position and/or time, the values of rbndcon(i,ibouface,j) are computed.
For example, assume that at boundary-face ibouface, lying at curve icurnr, both the nor-
mal momentum m and tangential momentum 7 are given and are constant. Furthermore,
assume that ndim=2. We then have:
iinbc(icurnr,1,1) = 4; iinbc(icurnr,1,2) = -1; iinbc(icurnr,1,3) = 0;
iinbc(icurnr,2,1) = 4; iinbc(icurnr,2,2) = -1; iinbc(icurnr,2,3) = 0;
rinbc(icurnr,1,1) = m; rinbc(icurnr,1,2) = 0;
rinbc(icurnr,2,1) = m; rinbc(icurnr,2,2) = 0;
leading to:
ibndcon(ibouface) = 4; rbndcon(1,ibouface,1) = m; rbndcon(2,ibouface,1) =
0;
rbndcon(1,ibouface,2) = m; rbndcon(2,ibouface,2) = 0.
Filling array rbndcon is done in routine fvbndcon.f.

A systematic overview of the contents of array rbndcon, for face ibouface, with ndim = 2,
with given values of ibndcon (see previous section).

Momentum equation

4 rbndcon(1,ibouface,1) = m; rbndcon(2,ibouface, 1) = 0;
rbndcon(1,ibouface,2) = m; rbndcon(2,ibouface,2) = 0.

5 rbndcon(1,ibouface,1) = m; rbndcon(2,ibouface, 1) = 0;
rbndcon(1,ibouface,2) = o'’; rbndcon(2,ibouface,2) = 0.

6 rbndcon(1,ibouface,1) = ¢™"; rbndcon(2,ibouface, 1) = 0;
rbndcon(1,ibouface,2) = m; rbndcon(2,ibouface,2) = 0.

CHAPTER 14. DATASTRUCTURES 126

7 rbndcon(1,ibouface,1) = ¢™”; rbndcon(2,ibouface,1) = 0;
rbndcon(1,ibouface,2) = o'’; rbndcon(2,ibouface,2) = 0;

14 rbndcon(1,ibouface,1) = m; rbndcon(2,ibouface,1) = o™";
rbndcon(1,ibouface,2) = m; rbndcon(2,ibouface,2) = 0.

Scalar equation

1 rbndcon(1,ibouface,1) = ¢"*! (at boundary); rbndcon(2,ibouface,1) = 0;
rbndcon(1,ibouface,2) = 0; rbndcon(2,ibouface,2) = 0.

2 rbndcon(1,ibouface,1) = a; rbndcon(2,ibouface,1) = f;
rbndcon(1,ibouface,2) = 0; rbndcon(2,ibouface,2) = 0.
Note that, for the moment, we have implemented homogeneous Neumann, i.e. ¢ = f =

0.

For the continuity equation, in order to be consistent with the discretization, we have inserted
a homogeneous Neumann condition at all boundaries.

When the total enthalpy is a primary variable, we have (of course) rbndcon(1,ibouface,1)
= H"*! at the boundary in case of a Dirichlet condition. As mentioned in Section 14.5.3, a
Dirichlet condition for H only holds when both A as the momentum vector m or length of
momentum vector |m| are given at the boundary. Note that (m-m) = |m|?. The required
density p is taken to be the density at in the adjacent boundary cell, and then we compute
H at the boundary using

m - m)

1
H=h+5(y- 1)M,?(p (14.2)

This is done in routine fvbndc02.f. For other primary energy variables, see Section 2.3.3 for
equations that relate this energy variable with A and m, a similar approach is followed.

Chapter 15

Main structure of the software

In this chapter a general overview of the software is given. Note that a lot of things are
omitted for reasons of clarity: they will be discussed further on in this manual.

15.1 Main program: tudfinvol.f

The main program tudfinvol.f initializes the buffer-arrays buffer and ibuffr with an
equivalence-statement. The total length of the buffer-array is set to 5000000 = 5 - 10°

positions.
The program tudfinvol.f calls the routine fvcomput.f.

15.2 Time-loop: fvcomput.f

The routine fvcomput .f contains the time-loop.
In fvstart.f initializations etc. are performed. As long as the actual time tact is smaller

Algorithm 1 fvcomput.f

call fvstart

while (¢ < +*"?) and (not-converged) do
call fvtstep

end while

than the end-time tend given by the user, and as long the solution is not converged, then the
time-stepping continues, in fvtstep.f.

15.3 Initializations: fvstart.f

Before the time-loop commences, all sorts of arrays concerning the mesh, data structure,
initial and boundary conditions etc. etc. have to be put in appropriate arrays. This is all
done in routine fvstart.f. For more information, see Chapter 16.

127

CHAPTER 15. MAIN STRUCTURE OF THE SOFTWARE 128

15.4 Time-stepping: fvtstep.f

Routine fvtstep.f is designed such that it contains exactly one time-step of the time-stepping
procedure. In each time-step a certain number of linear systems is built and solved. At this
moment we assume that the #-method or explicit Euler is applied to do the time-integration,
and that no fractional time-stepping or sub-stepping are used. For more information, see
Chapter 17.

Chapter 16

Before time-stepping

In this Chapter we discuss the work to be performed before the time-stepping for the un-
structured finite volume solver can take place. This work consists of, among others, a check
of the grid, the creating and filling of certain arrays, reading the input files, setting the initial
conditions and so on. We have copied from the ISNAS software as much as possible, and
in those cases references to the ISNAS Programmers Guide will suffice. Therefore, in this
chapter the main focus lies on the aspects that are different from ISNAS. The main routine
dealing with the work before the time-stepping starts, is routine fvstart.f, see below. The
subroutines of fvstart.f are discussed in Section 16.1 and the following section.

The time-stepping itself is discussed in Chapters 17 and 18. In routine fvstart.f, see the al-

Algorithm 2 fvstart.f
some initializations
check the mesh (fvmshchk.f)
read the input (fvinput.f)
determine the structure of the matrices (fvstrmat.f)
Compute the normal vectors at each face (fvnormal.f)
compute the gradient coefficients (fvgrad.f)
compute the weighted interpolation coefficients (fvlinpol.f)
compute the interpolation coefficients for the tangential momentum (fvtancomp)
compute the weight coefficients needed to compute the velocity gradients (fvgradvel).

compute the reconstruction coefficients (fvreconstcoef.f)
store the initial conditions (fvincnd.f)
print some information concerning the grid used (fvpringridinfo.f)

gorithm given in this section, several subroutines are called. They are discussed, respectively,
in Sections 16.1 to 16.8.

129

CHAPTER 16. BEFORE TIME-STEPPING 130

16.1 Checking mesh: fvmshchk.f

Routine fvmshchk.f checks whether the mesh is suited for the discretization, see Section 3.3.

16.2 Reading input: fvinput.f

Routine fvinput.f reads the problem inputfile for the program TUDFINVOL. The input is
recognized in exactly the same way as in ISNaS.

16.3 Determination of structure of matrices: fvstrmat.f

Routine fvstrmat.f creates two distinct matrix-structures: one for the scalar equations, and
one for the momentum. This is done in subroutines fvstrcvdf and fvstrmom respectively.
Note that for all scalar equations (energy, density, pressure-correction) the same matrixstruc-
ture (i.e. stencil) is used.
The necessary info concerning these matrix-structures is stored in the arrays intmat (5,ndegfd)
(Section 14.2.3), istrcvdf (listrcvdf) and istrmom(listrmom). The arrays istrcvdf (listrcvdf)
and istrmom(listrmom) contain the positions of the essential non-zero elements of the ma-
trices for the scalar respectively momentum matrix. We use JMETOD = 6, (see SEPRAN Pro-
grammers Guide, Section 24.6 on INTMAT) because the matrices are real and non-symmetric,
but have a symmetric profile. This means that only the diagonal and lower triangular elements
are stored in arrays istrmom and istrcvdf. The creation of these arrays, with respectively
lengths listrmom and 1istrcvdf, is done in routines fvstrmom.f and fvstrcvdf.f. In these
routines, first the complete stencil is determined and after that the connectivities are ordened
such as to satisfy the requirements belonging to JMETOD = 6 (integer storage in increasing
order; only diagonal and lower triangular connectivities are stored). Furthermore, these rou-
tines compute the lengths lmstrmom and Imstrcvdf of the real arrays mstrmom and mstrcvdf
that will contain the matrix-elements. These lengths are computed from:

lmstrmom = nfaces + 1 + 2*istrmom(nfaces+1)

lmstrcvdf = nelem + 1 + 2*xistrcvdf(nelem+1).
These lengths are stored in resp. intmat(5,1) and intmat(5,ndim+1).
With respect to the stencil, the following must be said. The stencil for the scalar variables,
see Figure 16.1A, consists of at most! 10 points. This is sufficient for Euler and Navier-Stokes
computations, and suited for higher order upwind as well. The stencil for the momentum
equation, see Figure 16.1B, contains at this moment 29 points: enough for Euler and Navier-
Stokes, with higher order upwind.

'In the vicinity of the boundaries or high-aspect ratio cells this number may be smaller

CHAPTER 16. BEFORE TIME-STEPPING 131

v

NP
KX

Figure 16.1: The stencil for scalar equations and the momentum equation.

B

CHAPTER 16. BEFORE TIME-STEPPING 132

16.3.1 Filling of the matrices: fvmfilmat.f

In the routine that fills the matrix, the following problem is met: given the integer array
istrcvdf or istrmom, and given a matrixelement A;; and the positions ¢ and j, what is the
position of this element in array mstrcvdf (or mstrmom)? Note that problem occurs when we
have computed the matrix-elements. For more information concerning these computations,
see Chapter 18.

Let nusol = nelem for the scalar matrix, and nusol = nfaces for the momentum matrix.
There are three cases to be considered (for mstrmom this is completely similar):

e i = j (diagonal element). This element is stored at the i¢th position of the matrix array
mstrcvdf.

e i > j (lower triangular element). The number of essential non-zero, lower triangular,
elements in the ith row is given by
ncolumn = istrcvdf(i+1) - istrcvdf(i). (Completely similar for momentum ma-
trix)
This means that there is exactly one integer k, £k = 1,..., ncolumn, for which j =
istrcvdf(istrcvdf (i)+nusol+1+k) holds. The matrix-element A,; is stored at posi-
tion (istrcvdf(i)+nusol+k) in the real matrix array.

e i < j (upper triangular element). Let 2 be the position in the real matrix array of
element Aj; (this position is determined by the procedure given above), then the element
A;; is stored at position (z + istrcvdf(nusol+1)) of the real matrix array.

CHAPTER 16. BEFORE TIME-STEPPING 133

16.4 Weighted interpolation to obtain thermodynamic quan-
tities at faces: fvlinpol.f

The aim of interpolating scalar quantities like density and enthalpy, is to obtain their values
at the midpoint of the cell faces, see Section 4.4.2 for how this should be done.

Scalar ¢, at face ¢ with adjacent cells ¢ and r, is computed from (4.16), which we write here
as:

bi = ardr + gy (16.1)

Recalling that r and ¢ are integer cell numbers (Section 13.1), and noting that a, + a; = 1,
we can write:

¢i — ¢r + Ui(¢q - qbr) 1f q>r (162)
¢q+ai(¢1’_¢q) 1f7‘>(]
So
o o, ifg>r (16.3)
' o, ifr>gq '

In this way, we have to store per face only one quantity (o;) to do the weighted interpolation
unambiguously.

When face 7 is a boundary face and cell r the boundary cell, then we replace the weighted
interpolation by: ¢; = ¢,. Since cell ¢ does not exist, but is referred to as having a number
(nelem + 1), see Section 13.1), we always have ¢ > r. The weighted interpolation hence still
can be done by using o; = 0.

The quantities o; are computed using this formula for all internal faces ¢, and are put to zero
for all boundary faces. This computation is done in fvlinpol.f, and the coefficients o; are
put in array linpol(nfaces).

16.5 Interpolation coefficients for tangential momentum: fv-
tancomp.f

The weight coefficients and the stencil, as discussed in Section 5.8, are stored in arrays RTAN-
COMP and ITANCOMP. User has a possibility to chose between the clasical and the alter-
native reconstruction by using the keyword alter_reconstr.

16.6 Weight coefficients to compute velocity gradients: fv-
gradvel.f

TO BE FILLED IN

16.7 Reconstruction coefficients: fvreconstcoef.f

Consider Figure 16.2. The reconstruction procedure as discussed in 5.4.2 gives us the following

CHAPTER 16. BEFORE TIME-STEPPING 134

0)

Figure 16.2: Face ¢ is surrounding by four other faces.

relations:

N; = 7N+ 9Nk = 1Ny + 1Ny,
t; = ng] + 5ka — goNo + gpr

Let the cell-number of the left cell be smaller than the cell-number of the right cell. The
arrays reconstnor and reconsttan contain:
reconstnor(1,i) = 7;; reconstnor(2,i) = n; reconstnor(3,i) = 7,; reconstnor(4,i)
= Tps
reconsttan(1,i) = {;; reconsttan(2,i) = ; reconsttan(3,i) = &,; reconsttan(4,i)

= gp'

16.8 Prescribing initial conditions: fvincnd.f

Routine fvinend.f sets the initial conditions for program TUDFINVOL in the appropriate
arrays. Memory management numbers are put in array isol (5,numsol,3), see Section 14.2.1.

Compressible flow

In the input files we give (dimensionless) initial conditions for the momentum vector m, en-
thalpy h and pressure p. As primary variables we use m, density p and an energy variable
or dp. Note that when h is not the energy variable, this energy variable must be computed
using relations as given in Section 2.3.3. Computing p from a given p and & is done using the
equation of state. Routine fvinctoth.f makes use of the relations as given in Section 6.1.
The method described in Chapter 6 is used to do the required interpolation.

Incompressible flow
In the input files we give (dimensionless) initial conditions for the primary variables: velocity

vector m and pressure p.

The outlines of fvincnd.f is given in the algorithm presented in this Section.

CHAPTER 16. BEFORE TIME-STEPPING 135

Algorithm 3 Set initial conditions (fvincnd.f)
Create solution arrays
Put m and m at all faces (fvincu2.f)
Put scalar quantities in all cells (fvinct2.f)
if Compressible flow then
Compute p in all cells (fveqsta03.f)
if h is not the primary energy variable then
Compute primary energy variable in all cells (fvinctoth.f)
end if
end if

Chapter 17

Time-stepping

17.1 Routine fvtstep.f

Routine fvtstep.f contains one time-step, see also Section 15.4.
Routine fvsbstep.f builds and solves the matrix for each primary variable. The order in

Algorithm 4 fvtstep.f
for all primary variables do
build matrix and solve linear system (fvsbstep)
end for
check for convergence (fvstopcr)
extrapolate values to next time-level (fvthetaextrpol)
if t =t or (requested) or (converged) then
do postprocessing (fvpost)
end if

shift solution arrays to be ready for next time-level (fvshift)

which the equations are solved, is discussed in Section 9.4. For a more thorough description
of fvsbstep.f, see Section 17.2.

After that all equations at one time-level are solved, the convergence of the solution is checked
in fvstopcr.f, using the termination criterion as given in Section 9.5.

Routine fvthetaextrpol.f extrapolates the solutions, having the solutions at time-levels n
and (n + #), to time-level (n 4 1). Equation (9.3) is used to this aim. After that all primary
variables are extrapolated to time-level (n 4+ 1), the derived quantities (velocity, pressure)
are computed. See for the discussion in Section 9.2 why first the primary variables have to
be extrapolated before the derived quantities can be computed. For the computation of the
velocity at the faces, see Section 5.9. The computation of the pressure, from the equation of
state (2.40), is done in fveqsta02.f. When h is the primary energy variable, this is trivial.
When we have another primary energy variable, see Chapter 6.

Routine fvpost.f does the post-processing, see Chapter 19.

Routine fvshift.f does some rearrangements in the solution arrays, such that they are fit to
enter the new time-level. To be more precise, array isol(*,*,1) and isol(*,%*,2) contain,
when entering routine fvshift.f, the solutions at respectively time-levels n and (n + 1).
In fvshift.f the new time-level N = (n 4 1), the solution at the new N = (n 4 1), i.e.

136

CHAPTER 17. TIME-STEPPING 137
isol(*,*,2), is copied to its 'new’ position, i.e. isol(*,*,1).

17.2 Routine fvsbstep.f

Routine fvsbstep.f performs a part of the time-stepping. To be more precise, fvsbstep.f
builds and solves a matrix-equation for one primary variable. In some cases, to be discussed
below, it performs some additional things.

Routine fvsbstep.f starts with filling arrays related to the boundary conditions (arrays
ibndcon and rbndcon, using procedure fvbndcon.f, see also Section 14.5).

Then it fills the relevant coefficient-arrays in routine fvcoefs.f, see Section 14.4.

The matrix-equation is built in routine fvbldmat.f. The matrix and right-hand side for
a scalar variable (density and energy variable) is made in fvcvdf.f. For the momentum
equation, the matrix and right-hand side are made in fvprmom.f. These things will be
discussed in much more detail in Chapter 18.

The matrix-equation is solved, for implicit time-integration, in routine fvsolve.f. When
considering explicit time-integration, a matrix-vector multiplication and a vector addition
(see Section 9.3) must be done.

The so-called additional things are specified below.

Algorithm 5 fvsbstep.f
Some initializations
Fill arrays concerning boundary conditions (fvbndcon)
Fill arrays concerning with coefficients (fvcoefs)
Build matrix-vector equation (fvbldmat)
if Implicit time-integration then
Solve linear system (fvsolve)

else
Do matrix-vector multiplication (maver and fvaddvec)
end if
if condition then
do additional things
end if

To be more precise, see the comment statements in fvsbstep.f.

CHAPTER 17. TIME-STEPPING 138

17.3 Content of solution arrays during time-stepping

The content of the arrays to which the memory management numbers isol(1,eq,itimlv),
with eq an equation number (Section 14.1) and itimlv = 1,..., ntimlv, refer, is now being
discussed. For the content of array isol, see also Section 14.2.1. We have implemented only
for ntimlv = 2.

Compressible flows

At the beginning of the time-loop to obtain quantities at time-level n+1 (so all quantities up
to time-level n are known) the memory management numbers refer to the following quantities
(stored in solution arrays):

e isol(1,1,1): m™;
isol(1,1,2): idem.

e isol(1,2,1): m™;
iso0l(1,2,2): idem.

e isol(1,ndim+1,1): p™;
isol(1,ndim+1,2): idem.

e isol(1,ndim+2,1): energy variable (A", H" or (pH)", ...); when considering the ex-
plicit scheme we have here ¢ = (pH)"
isol(1,ndim+2,2): idem.

e isol(l,ndim+1+ntrnsp+nturb+1,1): p";
isol(1,ndim+1+ntrnsp+nturb+1,2): idem.

e isol(1l,ndim+1+ntrnsp+nturb+2,1): u";
isol(1,ndim+1+ntrnsp+nturb+2,2): idem.

The changes in the stored solution vectors for every part of the time-stepping procedure, see
Section 9.4, will now be discussed.

When the theta-method, see Section 9.2, is employed to do the time-stepping, the content of
the arrays is as follows.

1. Computation of the normal momentum.
isol(1,1,1) still refers to m™.
isol(1,1,2) now contains m"t?,

2. Computation of tangential momentum.
isol(1,2,1) still refers to m™.

is01(1,2,2) now contains m"t?.

3. Computation of new density.
isol(1,ndim+1+ntrnsp+nturb+1,1) still refers to p”.
isol(1,ndim+1+ntrnsp+nturb+1,2) now contains p"*?.

4. Computation of new energy variable, say ¢.
isol(1,ndim+2,1) still refers to ¢”.
isol(1,ndim+2,2) now contains ¢”+9.

CHAPTER 17. TIME-STEPPING 139

5.

6.

Computation of new pressure.
isol(1,ndim+1,1) still refers to p”.
isol(1,ndim+1,2) now contains p"t!.

Computation of new velocity.
isol(1,ndim+1+ntrnsp+nturb+2,1) still refers to u".
isol(1,ndim+1+ntrnsp+nturb+2,2) now contains untt,

Between items 4 and 5, routine fvthetaextrpol.f is used to extrapolate the solutions from
time-level (n 4 #) to time-level (n+1); see Section 17.1. The derived quantities (pressure and
velocity) are then obtained immediately at time-level (n + 1).

When the explicit Euler scheme is used, see Sections 2.3.4 and 4.5.6, the content of the arrays
is as follows:

1.

Computation of the normal momentum.

isol(1,1,1) still refers to m™.

isol(1,1,2) now contains m”t!.

. Computation of tangential momentum.

isol(1,2,1) still refers to m™.

isol(1,2,2) now contains m™t!.

. Computation of new density.

isol(1,ndim+1+ntrnsp+nturb+1,1) still refers to p™.
isol(1,ndim+1+ntrnsp+nturb+1,2) now contains p"*t!.

Computation of new energy variable ¢"*t1; ¢ = pE.
isol(1,ndim+2,1) still refers to ¢" = (pH)".
isol(1,ndim+2,2) now contains ¢"*! = (pE)"+1.

. Computation of new pressure.

isol(1,ndim+1,1) still refers to p".
isol(1,ndim+1,2) now contains p"*!. Furthermore, ¢ is transformed to ¢, see Section

18.3.

. Computation of new velocity.

isol(1,ndim+1+ntrnsp+nturb+2,1) still refers to u".
isol(1,ndim+1+ntrnsp+nturb+2,2) now contains untl,

Incompressible flows

At the beginning of the time-loop to obtain quantities at time-level n+1 (so all quantities up
to time-level n are known) the memory management numbers refer to the following quantities
(stored in solution arrays):

e isol(1,1,1): u™;

isol(1,1,2): idem.

e isol(1,2,1): u"™;

isol(1,2,2): idem.

e isol(1,ndim+1,1): p™;

n—1

isol(1,ndim+1,2): ép=p" —p

CHAPTER 17. TIME-STEPPING 140

Note that at isol1(1,ndim+1,2) we have stored ép, and not p™. The reason is that the linear
solver wants to use this vector as start-vector of the GMRES-iterations when solving the
pressure-correction equation.

The changes in the stored solution vectors for every part of the time-stepping procedure, see
Section 9.4, will now be discussed.

When the theta-method, see Section 9.2, is employed to do the time-stepping, the content of
the arrays is as follows. Usually, only 8 = 1 is used.

1. Computation of the predictor of the velocity.
isol(1,1,1) still refers to u™.
isol(1,1,2) now contains u*.

2. Computation of pressure-correction.
isol(1,ndim+1,1) still refers to p”.

isol(1,ndim+1,2) now contains dp = p"t? —

i
3. Computation of new velocity by corrector step.
isol(1,1,1) still refers to u™.
is0l(1,1,2) now contains u"t?

4. Computation of tangential velocity.

isol(1,2,1) still refers to 4™.

iso01(1,2,2) now contains "+,
Routine fvthetaextrpol.f is used to extrapolate the solutions from time-level (n 4 6) to
time-level (n 4 1); see Section 17.1. Concerning the pressure solution arrays, it makes sure
that isol(1,ndim+1,1) contains p"*! and isol(1,ndim+1,2) contains dp = p"T' —p”. Asa
consequence, fvshift.f does not need to move the content from the pressure solution arrays
anymore. For the postprocessing, we want to have the solution p"*! in isol(1,ndim+1,2).
This is done in fvpost.f with help of fvchprincr.f.

Mach-uniform flows

At the beginning of the time-loop to obtain quantities at time-level n+1 (so all quantities up
to time-level n are known) the memory management numbers refer to the following quantities
(stored in solution arrays):

e isol(1,1,1): m™;
isol(1,1,2): idem.

e isol(1,2,1): m™;
isol(1,2,2): idem.

e isol(1l,ndim+1,1): p™;
isol(1,ndim+1,2): idem.

e isol(1,ndim+2,1): A"
isol(1,ndim+2,2): idem.

e isol(1l,ndim+1+ntrnsp+nturb+i,1): p™;
isol(1,ndim+1+ntrnsp+nturb+1,2): idem.

CHAPTER 17. TIME-STEPPING 141

e isol(1l,ndim+i+ntrnsp+nturb+2,1): u";
isol(1,ndim+1+ntrnsp+nturb+2,2): idem.

The changes in the stored solution vectors for every part of the time-stepping procedure, see
Section 9.4, will now be discussed.

When the theta-method, see Section 9.2, is employed to do the time-stepping, the content of
the arrays is as follows.

1. Computation of the density.
isol(1,ndim+1+ntrnsp+nturb+1,1) still refers to p”.
is0l(1,ndim+1+ntrnsp+nturb+1,2) now contains p"*!.

2. Computation of the predictor of the momentum.
isol(1,1,1) still refers to m™.

isol(1,1,2) now contains m*.

3. Computation of the predictor of the velocity.
isol(1,ndim+1+ntrnsp+nturb+2,1) still refers to u".
isol(1,ndim+1+ntrnsp+nturb+2,2) now contains u*.

4. Computation of new pressure.
isol(1,ndim+1,1) still refers to p".
isol(1,ndim+1,2) now contains ép.

5. Correction of the momentum.
isol(1,1,1) still refers to m™.

isol(1,1,2) now contains m”t!.

6. Computation of tangential momentum.
isol(1,2,1) still refers to m™.
isol(1,2,2) now contains m”t!.

7. Computation of the new velocity.
isol(1,ndim+1+ntrnsp+nturb+2,1) still refers to u".
isol(1,ndim+1+ntrnsp+nturb+2,2) now contains u™tt,

8. Computation of new enthalpy h.
isol(1,ndim+2,1) still refers to A".
isol(1,ndim+2,2) now contains A"*1.

Between items 6 and 7, routine fvthetaextrpol.f is used to extrapolate the solutions from
time-level (n+ #) to time-level (n+1); see Section 17.1. The derived quantities (pressure and
velocity) are then obtained immediately at time-level (n + 1).

Chapter 18

Building matrices

In this chapter the building of the matrices and right-hand sides is described in great detail.
With ’building of the matrix’, we mean computation of the matrix-elements and computation
of the right-hand sides. The implementation of a general convection-diffusion equation of
a scalar is discussed in Section 18.1. A distinction is made between internal and boundary
cells. Note that the continuity equation and energy equation are specific forms of the general
convection-diffusion equation. The implementation of the momentum equation is discussed
in Section 18.2. A distinction is made between real internal, quasi internal and boundary
faces. The computation of the pressure is discussed in Section 18.3. The computation of
the velocity is discussed in Section 18.4. The computation of the tangential momentum
component is discussed in Section 18.5. Numerical evaluation of a term in the conservative
energy equation is discussed in Section 18.6.

142

CHAPTER 18. BUILDING MATRICES 143

18.1 General convection-diffusion equation

All procedures concerning the evaluation of scalar ¢"*!, using the conservative form of the
convection-diffusion equation, are put together here. For a mathematical derivation of the
discretization, we refer the reader to read Chapter 4.

We build the matrix using an implicit time-integration scheme. Each term in the equation
(time derivative, convection term, diffusion term) is evaluated in another routine, see Algo-
rithm 6. In the case that we want to do explicit time-integration, we still build the matrix

Algorithm 6 Build matrix for scalar(n+1) (fvevdf.f)

Store structure of upper matrix in temporary arrays (fvintmat.f)
Add source term to right-hand side (fvecvdfsrc.f)
Store time derivative part into matrix (fvevdftim.f)
Store convection term into matrix (fvevdfconv)
Compute contributions to the right-hand side (fvcvdfrhsd)
if # =0 then
Make matrix and right-hand side ready for explicit time-integration (fvexplicitmat).

end if

using implicit time-integration, but we do some manipulation with the matrix and right-hand
side in fvexplicitmat.

18.1.1 Convection-diffusion equation: source term

With ¢(x,t) a source term, the following term is added to the right-hand side in fvcvdfsrc.f:
b; = b; + 45, (18.1)

with ¢ the cell under consideration and ¢; = ¢(x;,?) at the appropriate time ¢.

18.1.2 Convection-diffusion equation: time derivative term

In routine fvevdftim.f the time derivative term is computed and inserted in the matrix and

right-hand side.

The contribution for cell 7 to the diagonal term is:

Q;a™t!
Ay = Ay + 4 (18.2)
The contribution to the right-hand side is:
b = b; + QT (18.3)

18.1.3 Convection diffusion equation: convection term

In routine fvcvdfconv.f the convection term is computed and inserted in the right-hand
side. For mathematical information we refer to Chapter 4. In routine fvcvdfconv.f the
convection term for the convection diffusion equation is computed. Here below we discuss the

CHAPTER 18. BUILDING MATRICES 144

implementation.
For a discussion of the implementation, we refer to the pseudo-code and comment-statements
in fvcvdfconv.f.

18.1.4 Convection diffusion equation: contribution to rhsd

In Sections 4.5 and 4.6 we see that the term Q,-g?’n-H has to be added to the right-hand side.
Define:

Q; (m
Qz n+1
T = 7(“"% (18.5)
n+1
crtl = Zm”“ m-m) (18.6)

n+1)

then we see that the corresponding expressions in (4.20), (4.21), (4.23) and (4.25) can be
written in the form:

Qg™ = (T -) 4 C.en ! (18.7)

L

with C; and C. constants. Note that the corresponding expression in (4.29) is trivial. For
more info we refer to the pseudo code and comments in fvcvdfrhsd.f.

18.1.5 Convection diffusion equation: explicit time integration

In the case that the user wishes to do explicit Euler time integration, we still will build
the matrix and right-hand side as if we were to do implicit Euler time integration. Routine
fvexplicitmat then changes the matrix and rigth-hand side such that they can be used for
explicit time integration. For a mathematical discussion on this topic we refer to Section 9.3.

CHAPTER 18. BUILDING MATRICES 145

18.2 Momentum equation

All procedures concerning the evaluation of m"t! are put together here. For a mathematical

derivation of the discretization, we refer the reader to Chapter 5. It must be noted that the
unknown is the primary variable m (projected momentum), and not the flux (equal to (m x1),
where [is length of the face) as one does in ISNAS.

There are three kinds of faces, see Section 3.2: real internal faces, quasi internal faces and
boundary faces.

We build the matrix using an implicit time-integration scheme. Each term in the equation
(time derivative, convection term, viscous term, pressure gradient) is evaluated in another

-

routine, see Algorithm 7. In the case that we want to do explicit time-integration, we still

Algorithm 7 Build matrix for m(n+1) (fvprmom.f)

Calculate the scalars at the faces (fvscalarfaces.f)

Store structure of upper matrix in temporary arrays (fvintmat.f)
Compute source term for right-hand side (fvmomsrc.f)
Store viscosity part into matrix (fvviscmat.f)
Store time derivative part into matrix (fvmomtim.f)
Store projected pressure gradient term in right hand side (fvpresgrad)
Store convection term into matrix (fvmomconv)
Store boundary conditions into matrix and right-hand side (fvmombound.f)
if # =0 then
Make matrix and right-hand side ready for explicit time-integration (fvexplicitmat).

end if

build the matrix using implicit time-integration, but we do some manipulation with the matrix
and right-hand side in fvexplicitmat.

18.2.1 Momentum equation: scalars at the faces

Subroutine fvscalarfaces.f calculates the density and the viscosity at the face centers by
the linear interpolation. There is a switch areaweighted in this subroutine that allows to
chose between the area-weighted interpolation and arithmetic averaging. Density is calculated
from the array dens, and the velocity is calculated from coefs. Those interpolated scalars
are stored in the array facecoefs.

CHAPTER 18. BUILDING MATRICES 146

18.2.2 Momentum equation: source term

Let f be a source term force. Let the control volume for face ¢ be €; = Q4 U€2,, where € and
Q9 are in distinct triangles. When integration is done over whole triangles, then €2; and €
are these triangles. When integration is done over half triangles, then ©; and €25 are these
half triangles. The term added to the right-hand side is:

Of; N, = Q) - Ny + Qofy - Ny (18.8)

This is done in routine fvmomsrc.f.

CHAPTER 18. BUILDING MATRICES 147

18.2.3 Momentum equation: viscous term

In routine fvviscmat.f the viscous term is computed and inserted in the matrix and the

right-hand side.

Algorithm 8 Viscous term (fvviscmat.f)

if Integration over whole triangles then
if Incompressible case then
Compute viscous term for internal and quasi-internal faces (fvviscmatiq2s.f)
Compute viscous term for boundary faces (fvviscmatb2s.f)
else
Compute viscous term for internal and quasi-internal faces (fvviscmatiq2.f)
Compute viscous term for boundary faces (fvviscmatb2.f)
end if
else if Integration over half triangles then
Compute viscous term for internal faces (fvviscmati.f)
Compute viscous term for quasi-internal faces (fvviscmatq.f)

end if

Viscous term: integration over whole triangles

For mathematical information we refer to Section 5.2.1. Routines fvviscmatiq2s.f and
fvviscmatb2s.f calculate the viscous term in simplified incompressible case, when viscosity
is constant and whole viscous term becomes a Laplacian. Only Dirichlet boundaty conditions
had been implemented. Those routines serve mainly for experimental purposes, and presently
such mode can be activated by setting simplemode = .true. in routine fvviscmat.f.

Routines fvviscmatiq2.f and fvviscmatb2.f normaly calculate the viscous term on
whole triangles. The global structure of all those routines is the same.

Viscous term: integration over half triangles

Only Dirichlet boundary conditions had been implemented. Since the momentum is given at
the boundary, there is no need to treat the boundary cells.

CHAPTER 18. BUILDING MATRICES

148

Algorithm 9 fvviscmatiq2.f

for all internal and quasi-internal faces 7 face do
Find the two elements corresponding to i face
Compute the normal to the face
for both elements ielem do
for all three faces j face in telem exept i face do
Get
if tangential stress is given then
Add contribution to rhsd
if normal stress is given then
Add it to the rhsd
Go to next jface
else
Calculate multiplication factors that relate the stress to the gradient
end if
else
Calculate multiplication factors that relate the stress to the gradient
end if
for all three or four faces kface around j face do
Calculate normal and tangential vectors
Calculate multiplication factors for gradient
Fill part of stencil corresponding to normal component
Fill part of stencil corresponding to tangential component
end for
end for
end for
Store the stencil in the matrix
end for

CHAPTER 18. BUILDING MATRICES

149

Algorithm 10 fvviscmatb2.f

for all boundry faces 7 face do
Find the element ielem corresponding to i face
Compute the normal to the face
for all three faces jface in ielem exept i face do
Get
if tangential stress is given then
Add contribution to rhsd
if normal stress is given then
Add it to the rhsd
Go to next jface
else

Calculate multiplication factors that relate the stress to the gradient

end if
else
Calculate multiplication factors that relate the stress to the gradient
end if
for all three or four faces k face around j face do
Calculate normal and tangential vectors
Calculate multiplication factors for gradient
Fill part of stencil corresponding to normal component
Fill part of stencil corresponding to tangential component
end for
end for
Store the stencil in the matrix
end for

Algorithm 11 fvviscmati.f, fvviscmatq.f

for all internal (or quasi-internal) faces iface do
Find the two elements corresponding to i face
Compute the normal to the face
for both elements ielem do
Get
for all three faces j face in telem do
Calculate multiplication factors that relate the stress to the gradient
for all three or four faces kface around jface do
Calculate normal and tangential vectors
Calculate multiplication factors for gradient
Fill part of stencil corresponding to normal component
Fill part of stencil corresponding to tangential component
end for
end for
end for
Store the stencil in the matrix
end for

CHAPTER 18. BUILDING MATRICES 150

18.2.4 Momentum equation: time derivative term

In routine fvmomtim.f the time derivative term is computed and inserted in the matrix and

right-hand side.

Algorithm 12 Time derivative (fvmomtim.f)

Time derivative for internal faces (fvmomtimi.f)
Time derivative for boundary faces (fvmomtimb.f)

Time derivative for internal faces: fvmomtimi.f
Let cells 1 and 2 be the adjacent cells of face 7. The area of control volume follows from

Q; = C(Q + D), (18.9)

with C' = 1 when one integrates over whole triangles, and C' = 1/2 when one integrates over
half triangles. The contribution to the diagonal of the matrix is:

Q;

A=A+ ? (18.10)
The contribution to the right-hand side is:
Q;m?
by = by — (18.11)
T

In addition, we store the contribution to the diagonal of the matrix, i.e. the term D;; = Q;/7,
since this is required in the case of explicit time-integration, see Section 18.2.8.

Time derivative for boundary faces: fvmomtimb.f

If at boundary face ¢ the normal momentum component is given, we put A4;; = D;; = 1 and
we leave A;; = 0 for j # ¢. Furthermore we put b; = mf”’l. If at boundary face 7 the normal
momentum component is not given, and let cell 1 be the adjacent boundary cell, then

Q; = CQ;. (18.12)

The contribution to the diagonal and the right-hand side are then the same as given above.

CHAPTER 18. BUILDING MATRICES 151

18.2.5 Momentum equation: pressure term

In routine fvpresgrad.f the projected pressure gradient term is computed and inserted in
the right-hand side.

Algorithm 13 Pressure gradient (fvpresgrad.f)

Pressure gradient at internal faces (fvpresgradi.f)
Pressure gradient at boundary faces (fvpresgradb.f)

Pressure gradient at internal faces: fvpresgradi.f
With (18.9) giving the area of the control volume, the right-hand side for face i is altered as
follows:

Q;
b; := b; — szjyjpj. (18.13)

The factor 1/yM? is absent (hence, equal to 1) in the incompressible case. The computation
of the coefficients 7; and the corresponding stencil is discussed in Section 5.7. These coef-
ficients and the corresponding stencil are stored in arrays rgrfac and igrfac, see Chapter 21.

Pressure gradient at boundary faces: fvpresgradb.f
When at boundary face ¢ the momentum is given, then, obviously, the pressure gradient need
not be calculated. When the momentum is not given, see Section 5.7.7.

CHAPTER 18. BUILDING MATRICES 152

18.2.6 Momentum equation: convection term

In routine fvmomconv.f the convection term is computed and inserted in the right-hand side.

Algorithm 14 Convection term (fvmomconv.f)

if Integration over whole triangles then

Compute convection term when integrating over whole triangles (fvmomconvwhol.f)
else if Integration over half triangles then

Compute convection term when integrating over half triangles (fvmomconvhalf.f)

end if

Convection term: integration over whole triangles

For mathematical information we refer to Sections 5.2.1 and 5.4. In routine fvmomconvwhol .f
the convection term for the momentum equation is computed, when the user has specified
that we wants to do the integration over whole triangles. Routine fvmomconvwhol.f calls two
subroutines, see Algorithm 15, dealing with respectively internal and boundary faces.

Algorithm 15 Convection term when integration over whole triangles (fvmomconvwhol.f)

Convection term for internal faces (fvmomconvwholi.f)
Convection term for boundary faces (fvmomconvwholb.f)

Convection term for internal faces: fvmomconvwholi.f

For the mathematical discussion we refer to the corresponding sections in Chapter 5. The
algorithm used in the routine for internal faces is given in Algorithm 16. For more details we
refer to the comment-statements in the routine itself.

Algorithm 16 fvmomconvwholi.f)

for all internal faces ¢ do
Determine the four face-numbers e of the control volume (CV)
Determine the rest of the stencil, the cell-numbers and whether one of more CV-faces
are boundary faces
Determine /. for all faces e
Compute (N - N;) and (te - N;) for all faces e
Compute (u. - N.) for all faces e
Compute contributions to the matrix and the right-hand side. Note that this depends
on the type of upwind
Insert the matrix-contributions in the matrix
end for

Convection term for boundary faces: fvmomconvwholb.f

For the mathematical discussion we refer to the corresponding sections in Chapter 5. The
algorithm used in the routine for boundary faces is given in Algorithm 17. For more details
we refer to the comment-statements in the routine itself.

CHAPTER 18. BUILDING MATRICES 153

Algorithm 17 fvmomconvwholb.f)

for all boundary faces ¢ do
Determine the two other face-numbers e of the control volume (CV)
Determine the rest of the stencil, the cell-numbers and whether another CV-face is a
boundary face
Determine [for 7 and both faces e
Compute (N, -N;) and (t. - N;) for both faces e, and (N, -N;) =1 and (t; - N;) = 0.
Compute (u. - N.) for 7 and both faces e
Compute contributions to the matrix and the right-hand side. Note that this depends
on the type of upwind
Insert the matrix-contributions in the matrix

end for

CHAPTER 18. BUILDING MATRICES 154

Convection term: integration over half triangles

For mathematical information we refer to Sections 5.2.2 and 5.5. In routine fvmomconvhalf .f
the convection term for the momentum equation is computed, when the user has specified
that we wants to do the integration over half triangles. Routine fvmomconvwhol.f calls three
subroutines, see Algorithm 18, dealing with respectively internal, boundary and quasi internal
faces.

Algorithm 18 Convection term when integration over half triangles (fvmomconvhalf.f)

Convection term for internal faces (fvmomconvhalfi.f)
Convection term for boundary faces (fvmomconvhalfb.f)
Convection term for quasi internal faces (fvmomconvhalfq.f)

Convection term for internal faces: fvmomconvhalfi.f

For the mathematical discussion we refer to the corresponding sections in Chapter 5. The
algorithm used in the routine for all internal faces is given in Algorithm 19. Note that routine
fvmomconvhalfq.f, working on all quasi internal faces, overwrites in certain cases the matrix
elements and right-hand side obtained in fvmomconvhalfi.f For more details we refer to the
comment-statements in the routine itself.

Algorithm 19 fvmomconvhalfi.f)

for all internal faces ¢ do
Determine the face-numbers of the four surrounding faces and the cell-numbers (indicated
with 1 and 2)
Compute /;(uy - N;) and /;(ug - N;)
Compute contributions to the matrix. Note that this depends on the type of upwind
used
Insert the matrix-contributions in the matrix

end for

Convection term for boundary faces: fvmomeconvhalfb.f

For the mathematical discussion we refer to the corresponding sections in Chapter 5. The
algorithm used in the routine for boundary faces is given in Algorithm 20. For more details
we refer to the comment-statements in the routine itself.

Convection term for quasi internal faces: fvmomeconvhalfq.f

For the mathematical discussion we refer to the corresponding sections in Chapter 5. The
algorithm used in the routine for quasi internal faces is given in Algorithm 21. For more
details we refer to the comment-statements in the routine itself.

CHAPTER 18. BUILDING MATRICES 155

Algorithm 20 fvmomconvhalfb.f)
for all boundary faces ¢ do
if m; is given then
Do nothing

else
Determine the face-numbers of the two surrounding faces and the cell-number (indi-
cated with 1)
Compute /;(uy - N;)
Compute contributions to the matrix.
Insert the matrix-contributions in the matrix

end if

end for

Algorithm 21 fvmomconvhalfq.f)

for all quasi internal faces ¢ do
Determine whether at one or more of the four surrounding faces the momentum vector
is given
if At at least one surrounding face m is given then
Compute contributions to the matrix and right-hand side.
Insert the matrix-contributions in the matrix
end if
end for

CHAPTER 18. BUILDING MATRICES 156

18.2.7 Momentum equation: boundary conditions

If at boundary face ¢ the normal momentum is given, we put A;; = D;; =1 and A;; = 0 for
j # 4. This is done in routine fvmombound.f.

Contibutions of other types of boundary conditions to viscous term are treated in routines
fvviscmatiq2.f and fvviscmatb2.f

18.2.8 Momentum equation: explicit time integration

In the case that the user wishes to do explicit Euler time integration, we still will build
the matrix and right-hand side as if we were to do implicit Euler time integration. Routine
fvexplicitmat then changes the matrix and rigth-hand side such that they can be used for
explicit time integration. For a mathematical discussion on this topic we refer to Section 9.3.

CHAPTER 18. BUILDING MATRICES 157

18.3 Computation of pressure

In the compressible situation, the pressure follows from the equation of state, see Section
18.3.1. In the incompressible case, the pressure follows from the pressure-correction approach,
see Section 18.3.2.

18.3.1 Compressible case

The scaled equation of state reads (in dimensionless quantities) for several primary energy
variables is given in Section 2.3.3. In procedure fveqsta02.f the new pressure p"*! for every
cell is obtained from the equation of state. With h as primary variable, it is trivial. When A
is not a primary variable, see Chapter 6 for some necessary information. In the situation of a
supersonic inflow boundary, the pressure is given at the inflow boundary. This is implemented
by putting the pressure in all boundary cells adjacent to the inflow boundary, equal to the
prescribed pressure (routine fvinletpres.f).

When dealing with explicit time-integration, the variable enth entering routine fveqsta02.f
is ¢, equation (2.80). When leaving this routine, variable enth stands for ¢, computed using

(2.84).

18.3.2 Incompressible case

For a mathematical formulation of the pressure-correction equation, see Sections 7.3 or Chap-
ter 8, see routine fvpres.f.

CHAPTER 18. BUILDING MATRICES 158

18.4 Computation of velocity

The normal velocity component is computed in routine fvveloO1.f, using the method as

given in Section 5.9.

The correction to the velocity #*, in the pressure-correction approach, is computed in fvvelcor.f.

CHAPTER 18. BUILDING MATRICES 159

18.5 Computation of tangential momentum

The tangential momentum component is computed on every face using the (known) normal
momentum components at every face. The procedure as given in Section 5.8 is employed.
The routine that computes the tangential momentum component, is fvtanmom.f.

CHAPTER 18. BUILDING MATRICES 160

18.6 Numerical evaluation of integral in conservative energy
equation

In the energy equation, see Section 18.1, the following term appears in the right-hand side,
in term Q:

/m ((m'm)n+1 - (m'm)n) dq. (18.14)

7-pn+1 Tpn

The numerical evaluation of this term is explained in Section 4.5.1, and is implemented in
routine fvbengy.f.

Chapter 19

Postprocessing

After a certain, by the user defined, number of time-steps, the ’progress’ of the computed
solution has to be stored. This storing, together with the computation of derived quantities
and plotting, is called postprocessing.

Due to the staggered placement of the variables, we have to interpolate all (scalar and vector)
quantities to the vertices. This is subject of Section 19.1. The postprocessing itself is divided
into two levels, and this is discussed in Section 19.2.

19.1 Interpolation to vertices

The interpolation of scalars (p, p and H or h) to vertices is discussed in Section 11.1. The
routine doing this interpolation is routine fvposts.f. The interpolation of the momentum
vector m to vertices is discussed in Section 11.1. The routine doing this interpolation is
routine fvpostm.f. In routine fvpostuv.f the velocity-vector at the vertices is computed,
using simply u, = m,/p and u, = my/p, where m,, m, and p are the interpolated values at
the vertices.

A special treatment is made for the total enthalpy. Since we want a unique energy variable in
the postprocessing (i.e. we do not want to have IF-statements everywhere), in all vertices the
enthalpy h is stored. When we have another primary energy variable, this is first transformed
to h in all vertices using equations like (2.38) This is done in routine fvtransenth.f.

19.2 Two levels of postprocessing

The postprocessing is divided into two levels.

1. Level 1. At (almost) every time-level we write some quantities to file. This must be
restricted to a few numbers each time-step in order to avoid memory problems. Think of
quantities like lift, number of supersonic vertices etcetera. The aim of this is primarily
to check convergence.

2. Level 2. At a few (O(10)) time-levels the complete solution is written to file, to be put
in seppost.f. Note that this requires much memory, since arrays with length equal to
the number of vertices have to be stored.

161

CHAPTER 19. POSTPROCESSING 162

In Algorithm 22 the postprocessing routine fvpost.f is described schematically. Postpro-

cessing level 1 is discussed in Section 19.3, and postprocessing level 2 is discussed in Section
19.4.

Algorithm 22 Postprocessing: fvpost.f

Interpolate quantities (m, p, h, p, u) to vertices
if fregout is true then
Postprocessing level 1
end if
if writeoutput is true then
Postprocessing level 2

end if

19.3 Postprocessing level 1

At (almost) every time-level some quantities are written to file. At which time-levels, and
which quantities, depends on what the user specifies in the inputfile file.prb, under keyword
FREQUENT_QOUTPUT, see ISNaS Users Guide Section 5.15.
Postprocessing level 1 is controlled by Algorithm 23, a part of fvpost.f.

Arrays ipost and rpost contain relevant information, which is in fact also stored in other

Algorithm 23 Postprocessing level 1

Compute desired quantities
Write desired quantities to file

arrays. These arrays are filled by routine fvpostia.f, a subroutine of fvreadbody.f. Ar-
rays ipost and rpost are put in COMMON-blocks SPcommon/cpostl and SPcommon/cpost?2
respectively. These arrays are also used for seppost.f; see also Section 19.4.
Array ipost: i=1: Length array ipost (now: 10).

i=2: Length array rpost (now: 10).

i=3: 1 (flow around profile) or 0 (no profile flow).

i=4: curve number of upper surface of profile (only when ipost(3) = 1).

i=>5: curve number of lower surface of profile (only when ipost(3) = 1).

i=T7: mcom.
Array rpost: i=1: v

i=2: M,

i=3: poo

i=4: ho

i=5: [my|

i=6: ¢ (length of airfoil)

i=7: a (angle of attack)

CHAPTER 19. POSTPROCESSING 163

The computation of the desired quantities (lift, drag, number of supersonic vertices, position
of the sonic points, residuals) is discussed in the following subsections: 19.3.1, 19.3.2, 19.3.3
and 19.3.4. Writing the desired quantities to file sepcomp.freq is done in routine fvwrite.f.

19.3.1 Computation of lift and drag coefficient

Routine fvpslift.f computes the lift and drag coefficient ¢; and ¢4 (rlift and rdrag). Note

Algorithm 24 fvpslift.f
Find number of vertices at upper and lower surface (fvlnodprf.f)
Find vertex numbers at upper and lower surface (fvnnodprf.f)
Compute coordinates of vertices at airfoil, and pressure coeflicient ¢, in each vertex at
airfoil (fvpslift01)
Compute lift and drag coefficient (fvps1ift02)

that the leading edge has to be in the origin always, and the trailing edge at position (0, ¢)
The pressure-coefficient at the airfoil is computed using the equations given in Section 12.3.1
Note that pso, hoo, Poo and |my,| are present in array rpost.

Given the scaled coordinates of the profile, together with the c,-values at all vertices, the
lift and drag coefficient can be computed, routine fvpslift02.f. More information on this
subject can be found in Section 12.3.

19.3.2 Minimum and maximum Mach number, and number of supersonic
vertices

Routine fvpsmimxmach.f computes, depending on input-parameter ichoice, the number of
supersonic vertices, i.e. the number of vertices in the domain with a Mach number larger
than 1 (integer nsupersvert), or the minimum and maximum Mach number in the domain
(real array mimxmach). The Mach number in a vertex is computed using (2.45), where we use
u? = (ul + ul).

19.3.3 Position of sonic points

Routine fvpssonic.f computes the positions, the scaled z-coordinate to be more precise, of
the sonic points at the airfoil, and puts them in array rpossonic(4). Sonic points are points
with Mach number equal to 1. In this array, the first two positions are reserved for the sonic
points at the upper part of the airfoil, and the last two positions are reserved for the sonic
points at the lower part of the airfoil. Routines fvlnodprf and fvnnodprf, discussed already
in 19.3.1, find the numbers of the vertices at the airfoil. Routine fvpssonic01 computes then
the position of the sonic points at the airfoil. This is done as follows: in all vertices at the
airfoil the Mach number is computed using equation (2.45). Say that at z; the Mach number
M; is subsonic/supersonic and at z;4; the Mach number M, is supersonic/subsonic, hence
a sonic point is present in the domain [z;,#;41]. Then we assume the Mach number, for
z; < & < 2341, to behave as

M =az +b, (19.1)

CHAPTER 19. POSTPROCESSING 164

with
Mgy — M;
o=t b=M; — ax; = M1, — azitq. (19.2)
Tip1 — Iy
The position of the sonic point (M=1) then follows from:
1-b

Tap =~ (19.3)

19.3.4 Computation of residuals

Another quantity of importance, is the residual (the difference between two subsequent solu-
tion vectors in a certain norm). How smaller the residual, the closer to the stationary solution.
Therefore the time-history of the residual can be used for convergence investigation.

At this moment we have, for |[p"t1 — p7||, ||m" ! — m"|| and ||A"T! — A7|| (n: time-level),
the following norms, with u = (uy, ug,...,u,), implemented, in routine fvnorm.f:
e 1 norm:
P,
[|ully = Loiz Jui] (19.4)
p
e 2 norm:
P2
lufla = ==21 195
P (19.5)
e 0O norm:
|[u]|oc = max([ui]) (19.6)

19.4 Postprocessing level 2

In fvpost.f at a few time-levels the whole solution (interpolated to the vertices) is written to
files sepcomp.inf and sepcomp.out. In seppost.f then all desired variables in the vertices
are computed, using, among others, the routines mentioned in this section. The connecting
routine is insp0O1.f. The computation of the Mach number is discussed in Section 19.4.1.
The computation of the total enthalpy is discussed in Section 19.4.2. The computation of the
stagnation pressure is discussed in Section 19.4.3.

19.4.1 Computation of Mach number

The Mach number is computed using routine prmachno.f, using relation (2.45).

19.4.2 Computation of total enthalpy

The dimensionless total enthalpy H is computed using relation (2.38) in routine prtotenth.f.

CHAPTER 19. POSTPROCESSING 165

19.4.3 Computation of stagnation pressure

The stagnation pressure pg, following from

v/v-1
L] , (19.7)

po =D [1 +5 (- 1M
is computed in routine prstagpres.f.

19.4.4 Computation of pressure coeflicient ¢,

The pressure coefficient ¢,, see Section 12.3.1 is computed in routine prcpcoef.f.

19.4.5 Computation of entropy S

The entropy S is computed in routine prentropy.f, using the relation

S =1n(p/p7), (19.8)

where p and p are dimensionless.
For the Mach-uniform pressure-correction formulation, another non-dimensionalization has
been used, resulting in the following expression for the entropy:

2
S =1In (M) . (19.9)
p’Y

Chapter 20

General print routines

In this section some print-routines are described. All print-routines for the finite-volume
unstructured flow solver start with the letters fvprin.

166

CHAPTER 20. GENERAL PRINT ROUTINES 167

20.1 Subroutine fvprinbc

Description :
Prints the content of arrays iinbc and rinbc, arrays dealing with the boundary condi-
tions.

Heading :
subroutine fvprinbc (iinbc, rinbc, ncurvs, ndegfd)

Parameters :

iinbe : Array containing integer information of the boundary conditions
rinbe : Array containing real information of the boundary conditions
ncurvs: Number of curves; given in the mesh-input-file

ndegfd: Number of degrees of freedom

Output :
Arrays iinbc and rinbc.

Position where to insert in the software :
In fvinput.f after the call to fvreadal.f. Insert ndegfd = ibuffr(ipiinput-1+55)
before calling to fvprinbec.

CHAPTER 20. GENERAL PRINT ROUTINES 168

20.2 Subroutine fvprinbnd

Description :
Prints the content of arrays ibndcon and rbndcon, arrays containing info of the bound-
ary conditions for the equation under consideration.

Heading :

subroutine fvprinbnd (ibuffr, kmesh, ibndcon,
rbndcon, nfacesb, ndim, iseq)

Parameters :

ibuffr : Array containing integer information of the problem
kmesh : Array containing mesh-information.
convarray: Array containing the inverse of array iconface, see KMESH part y.

ibndecon : Array containing integer information of the boundary conditions, for every
boundary face, for the equation under consideration.

rbndcon : Array containing integer information of the boundary conditions, for every
boundary face, for the equation under consideration.

nfacesb : Number of boundary faces.
ndim : Dimension of the problem
iseq : Number of the equation under consideration.

Output :
Arrays ibndcon and rbndcon.

Position where to insert in the software :
In routine fvbldmat.f, before the call to the equation under consideration.

CHAPTER 20. GENERAL PRINT ROUTINES

20.3 Subroutine fvprincv

Description :
Prints face-number per curve.

Heading :
subroutine fvprincv (ibuffr, kmesh)

Parameters :

ibuffr: Array containing integer information of the problem

kmesh : Array containing mesh-information.

Output :
Prints per curve, the face-numbers on that curve.

Position where to insert in the software :
At the end of fvstart.f.

169

CHAPTER 20. GENERAL PRINT ROUTINES 170

20.4 Subroutine fvprinin

Description :
Prints the contents of arrays iinput and rinput.

Heading :
subroutine fvprinin (iinput, rinput, kmesh)

Parameters :

iinput: Array containing integer user input.
rinput: Array containing real user input

kmesh : Array containing mesh-information.

Output :
Prints numerical constants with respect to the problem under consideration; prints
arrays iincof and rincof; prints arrays iincnd and rincnd; prints arrays iintim and
rintim; prints arrays iinsol and rinsol; prints arrays iindsc and rindsc; prints
arrays iintur and rintur; prints arrays iincom and rincom; prints arrays iinseq and
rinseq, and prints arrays iincav and rincav.

Position where to insert in the software :
At the end of fvstart.f. Insert then in fvstart.f :
call fvprinin (ibuffr(ipiinput), buffer(iprinput), kmesh).

CHAPTER 20. GENERAL PRINT ROUTINES 171

20.5 Subroutine fvprinms

Description :
Prints the contents of KMESH part y and some additional info. In fact, it prints mesh-
related information that is used for the unstructured finite-volume solver.

Heading :
subroutine fvprinms (ibuffr, buffer, kmesh)

Parameters :

ibuffr: Array containing integer information of the problem
buffer: Array containing real information of the problem

kmesh : Array containing mesh-information.

Output :
Prints numerical constants with respect to the mesh; prints array face; prints array
iconcell; prints array iconface; prints array lengthf; prints array areafv; prints
array cellfv; prints array coor (the coordinates of the vertices); prints area of largest
and smallest cell, together with its coordinates, and prints lenght of largest and smallest
faces, together with its coordinates.

Position where to insert in the software :
At the end of fvstart.f.

CHAPTER 20. GENERAL PRINT ROUTINES 172

20.6 Subroutine fvprinmt

Description :
Prints the matrix-structure (see Section 16.3), the matrix itself and the right-hand side.

Heading :

subroutine fvprinmt (lmstrmat, nusol, istrmat,
mstrmat, rhsd, eq)

Parameters :

Imstrmat: Length of array mstrmat

nusol : Length of array rhsd (always nelem or nfaces).
istrmat : Integer array containing matrix structure.
mstrmat : Real array containing matrix elements.

rhsd : Real array containing right-hand side.

eq : Integer indicating equation number; see Section 14.1.

Output :
Prints non-zero elements of the matrix.

Position where to insert in the software :
At the end of routine fvcvdf.f or fvprmom.f, depending on the equation you want to
consider. In fvcvdf.f:

call fvprinmt (lmstrcvdf, nelem, ibuffr(ipistrcvdf),
buffer(ipmstrcvdf), buffer(ipirhsd), 4)

or, in fvprmom.f:

call fvprinmt (lmstrmom, nfaces, ibuffr(ipistrmom),
buffer(ipmstrmom), buffer(ipirhsd), 1)

CHAPTER 20. GENERAL PRINT ROUTINES 173

20.7 Subroutine fvprinv

Description :
Prints the solution vector.

Heading :
subroutine fvprinv (ibuffr, buffer, kfinvol, eq, isol, numsol, ntimlv, ichoice)

Parameters :

ibuffr: Array containing integer information of the problem
buffer: Array containing real information of the problem

kfinvol: Array containing integer information with respect to memory management
numbers; see Section 14.3.

eq : Integer indicating equation number; see Section 14.1.
isol : Array with integer information concerning the solution vector; see Section 14.2.1.
numsol: Number of solutions; see Section 14.1.

ntimlv: Number of time-levels for which the solution is stored, is usually 2. See Section
14.2.1.

ichoice: Choice parameter.

Output :
ichoice = 0. Prints the length of the solution vector of the equation under considera-
tion, the solution vector itself, and the solution vector at the previous time-level.
ichoice # 0. Prints quantities of solution vector at the new time-level, using routine
fvprinvi.f. The parameter ichoice is then passed to fvprinvi.f.

Position where to insert in the software :
In fvshift.f, after the call to fvveloO1.f.

CHAPTER 20. GENERAL PRINT ROUTINES 174

20.8 Subroutine fvprinvl

Description :
Prints (quantities of) a vector containing real elements.

Heading :
subroutine fvprinvl (vector, length, ichoice)

Parameters :

vector: Vector, containing real elements, under consideration
length: Length of the vector

ichoice: Integer to be chosen by user
ichoice = 1: prints average of the absolute values of all vector-components (i.e.
>or i lzil/n), and the maximum of the absolute value of all vector components (i.e.

max{|z1|,...,|za|}). With n the length of the vector is intended.

ichoice = 2: prints average of all vector-components (i.e. Y ., ;/n) and prints
the maximum of all vector components (i.e. max{zy,...,z,}).

ichoice = 3: prints absolute values of all vector components (i.e. |zy|,...,|za|).
ichoice = 4: prints all vector components (i.e. z1,...,Z,).

Output :
Prints the length of the solution vector of the equation under consideration, the solution
vector itself, and the solution vector at the previous time-level.

Position where to insert in the software :
In fvsbstep.f, after the call to fvsolve.f.

CHAPTER 20. GENERAL PRINT ROUTINES 175

20.9 Subroutine fvprinv2

Description :
Prints (quantities of) a vector containing of integer elements. Routine fvprinv2.f is
the integer version of fvprinvi.f.

CHAPTER 20. GENERAL PRINT ROUTINES 176

20.10 Subroutine fvcheck

Description :
A routine that can be used to check whether the matrix is built correctly.
The exact matrix A.,, right-hand side b, and solution-vector x¢, satisfy: AcyXer = bes-
The computed matrix Acomp and right-hand side beonmp lead to solution-vector Xcomp,
according to AcompXcomp = Peomp- (Of course, we want Acomp = Aer and beomp = beg,
leading t0 Xcomp = Xez.) Suppose we know the exact solution of a certain problem,
i.e. we know X, and b.,;. Then we can check whether the matrix Acomp is computed
correctly, by considering (bey — AcompXez) = r. The elements in vector r that are not
equal to zero, correspond to either i) elements (cells or faces) for which the matrix is not
built correctly, or to ii) elements (cells or faces) for which the matrix cannot represent
the exact solution.
The error of solution i is defined as: €; = |; comp — Tiex|- The average error follows
from: e = E?:l e;/n, with n the dimension of vector x. The maximum error €,,q,
follows from: €4, = max(e;).
Note that this whole procedure has only sense, when we give the exact solution as initial
condition, and that we consider solely the computation after one time-step.

Heading :

subroutine fvcheck (ibuffr, buffer, kfinvol, matrix, isol, intmat,
numsol, ntimlv, numunk, irhsd, kprob, eq,
ipar)

Parameters :

ibuffr: Array containing integer information of the problem
buffer: Array containing real information of the problem

kfinvol: Array containing integer information with respect to memory management
numbers; see Section 14.3.

matrix: Integer array with information concerning the matrix; see Section 14.2.2.
isol : Array with integer information concerning the solution vector; see Section 14.2.1.
intmat: Array with integer information concerning matrix storage; see Section 14.2.3.
numsol: Number of solutions; see Section 14.1.

ntimlv: Number of time-levels for which the solution is stored, is usually 2. See Section
14.2.1.

numunk: Number of unknowns; see Section 14.1.

irhsd : Integer array with information concerning the right-hand side; see Section
14.2.2.

kprob : Integer array with information concerning problem-definition.
eq : Integer indicating equation number; see Section 14.1.

ipar : Integer to be chosen by user:
ipar = 1: prints be, and begpp.

CHAPTER 20. GENERAL PRINT ROUTINES 177

ipar = 2: prints (bey — AcompXes). Note that be, and x., must be known.
ipar = 3: prints € and €,,4,. Note that x., must be known.

ipar = 4: prints e. Note that x., must be known.

ipar = 5: prints 7 and r;,,4,. Note that x., must be known.

Output :
Depending on parameter ipar, the arrays be, and beomp, 0 (bey — AcompXes) are
printed.

Position where to insert in the software :
In routine fvsbstep.f, after the call to fvsolve.f.

Chapter 21

Computation of gradients

The methods discussed in Section 5.7, are ways of computing first order or second order
derivatives. In this chapter, its implementation for computation of first order derivatives,
of the form (Vp-N),, where i is a face, and variable p is positioned at the cell-centers, is

discussed.

178

CHAPTER 21. COMPUTATION OF GRADIENTS 179

21.1 Computation of gradients in the software

The main routine for the computation of everything that is related to the computation of
gradients, is routine fvgrad.f.

For all faces (internal and boundary), we compute the coefficients v once, and store them in
array rgrfac(6,nfaces). The second index runs from 1 to nfaces, and refers to the face.
In addition, we store the required cell-numbers in igrfac(6,nfaces). The elements igrfac
and rgrfac are computed in routine fvgradif.f. The ordering of the cell numbers to which
the elements correspond is the same as in Figure 21.1 for the path-integral method for a six-
point, four-point and three point-stencil and the auxiliary point method. For the four-point
method, the numbering is like the one in Figure 5.7, where @ corresponds to igrfac(1,i),
b to igrfac(2,1), and so on (hence igrfac(5,i) and igrfac(6,i) remain empty). Note
that, since we have only implemented the gradient methods for internal faces, the columns in
rgrfac and igrfac corresponding to boundary faces, are put to zero. The actual computa-
tion of the pressure gradient coeflicients rgrfac(6,nfaces) is done in routine fvgrad01.f.
Hence, with prescv(k) the pressure at cell £ and 7 the face-number, the surrounding cell-
numbers follow from igrfac(1,i),...,igrfac(6,1), and we find that:

(gradp); - N; = rgrfac(1,i) - prescv(igrfac(1,i)) + ... +
+ rgrfac(6,i) - prescv(igrfac(6,i)).

CHAPTER 21. COMPUTATION OF GRADIENTS 180

Figure 21.1: Situation for path-integral method.

21.2 Implementation of path-integral method for a six-point
stencil

In the software, the path-integral method using a six-point stencil is chosen to be the default
choice for computing gradients. It is indicated by parameter ipresgrad = 0.
Repeating the equations to arrive at (Vp); from Section 5.7.1, see also Figure 21.1:

P2—D1 = (Vp)i : (Xz - Xl)
p3—Petpa—ps = (Vp)i- (X3 — X6+ Xa— Xs). (21.1)

Note that the second equation is a combination of equations

P3s —ps = (Vp)i : (Xs - X5)
pa—pe = (Vp)i-(xa—x6). (21.2)

Difficulties arise when one or more cells of the group {3,4,5,6} are absent. For example,
when cell 3 is absent, we replace the first equation of (21.2) by p1 —ps = (Vp)i- (x1 — x5). If
we now define the following things:

e if cell 3 is absent, then we put x3 = x; and p3 = p;.
e if cell 4 is absent, then we put x4 = x93 and ps = ps.
e if cell 5 is absent, then we put x5 = x5 and p5 = ps.
e if cell 6 is absent, then we put xg = x; and pg = p;.

In doing this, we can incorporate automatically the possible absence of cells by rewritting
(21.2) as:

ps—pitpi—ps = (Vp)i- (X3 —x1+x1 —X5)
pa—p2tp2—pe = (Vp)i- (X4 — X2+ X2~ Xg). (21.3)
Using this, equations (21.1) can be rewritten as:

p2—p1 = (Vp)i-(x2—x1) (21.4)
P3—P1+p1—ps+pa—p2+pr—ps = (Vp)i-(x3—x1+X1 — X5+ X4 — Xo+ X — Xg).

CHAPTER 21. COMPUTATION OF GRADIENTS 181

Writing this set of equations as

[ai;r arg] [817/835] _ (P2 — D1) (21 5)
21 A2 dp/dy P3—De+Pa—Dp5)’ ’
where

1] =22 — 21 12 = Y2 — 1 (21-6)

31 =23 —T1+T1 — s+ s — To+ Ty — Tg a2 =Ys— 1+ —Ys+Ys— Y2+ Y2 — Ys-

Solution of this linear system leads to pressure-gradient (Vp); in terms of matrix-coefficients
a1, ..., agp and pressure-values pi, ..., ps. The inner product of (Vp); with respect to
N; = (N,, Ny) then results in

6
(V)i Ni =D vpj, (21.7)
i=1

where the coefficients v follow from

(Izsz — (121¢7Vy

N1 =72 =
G112 — 12021
a1 Ny — a12N,

V=V4= V=% = . : (21.8)
G112 — A12021

Note that consistency is satisfied:

6
0=> v (21.9)
7=1

When, for example, cell 3 is absent, the coefficients 4’ that must be used to compute the
pressure gradient, are changed according to:

’Yi =7 +7vs ’Yéz 0. (21.10)

Similar relations hold when other cells are absent.

Chapter 22

Miscellaneous

In this section some miscellaneous aspect are gathered. In Section 22.1 an example is given
how to insert boundary conditions that depend on time and/or position, or initial conditions
that depend on position in the input-files. In Section 22.2 some remarks are made concerning
testing of the software in cases that an exact solution is available. In Section 22.3 a description
is given of routines that compare the exact tangential momentum at each face (note: this
means that the exact solution must be known) with the interpolated tangential momentum.

182

CHAPTER 22. MISCELLANEQOUS 183

22.1 Variable boundary and initial conditions

In many occasions the boundary and/or initial conditions will be functions of time and/or
place. (Of course, the initial conditions may only depend on place, and not on time). Here
below the inputfiles of a simple example (flow in a channel, with h =1, M =0, p = 1,
m = u = (z, —y)) are given.

Mesh (file-name channel.msh):

mesh2d
points
p1=(0,0)
p2=(3,0)
p3=(3,3)
p4=(0,3)
curves
cl

linel(pl,p2,nelm=3)

c2 = linel(p2,p3,nelm=3)

c3 = linel(p3,p4,nelm=3)

c4 = linel(p4,pl,nelm=3)
surfaces

sl = quadrilateral3(cl,c2,c3,c4)
* refine 1
check_level = 2
plot(jmark=3, ren_plot)
end

Input (file-name channel.prb):

*
* Input for the channel problem
*
number_of_transport_equations = 1
compressible

mach = 0.0d0
initial_conditions

u_momentum = func = 1

v_momentum = func = 2

pressure = 0.0d40

transport 1 = 1.0d0
time_integration

tinit = 0
tend = 20
tstep = 0.01d0
theta = 1

rel_stationary_accuracy = 1d-2
boundary_conditions
curve 1 to 4: ux = func = 1, uy = func

1}
N

CHAPTER 22. MISCELLANEQOUS 184

transport 1 = dirichlet = 1.0d0
coefficients
momentum_equations
mu = 0.0d0
linear_solver
momentum_equations

amount_of_output = O
relaccuracy = 1d-6
divaccuracy = 0
pressure_equations
amount_of_output = O

divaccuracy = 0
startvector = zero
transport_equation = 1
amount_of_output = O
divaccuracy = 0
startvector = zero

File containing functions (file-name channel.f):

program channel
implicit none

integer pbuffr

parameter(pbuffr = 5000000)
integer ibuffr

double precision buffer(pbuffr/2)
common ibuffr(pbuffr)

equivalence (ibuffr(1), buffer(1))

call fvcomput (ibuffr, buffer, pbuffr)
end
c —-—-— Function with respect to boundary conditions
function usfunb (ichoice, x, y, 2z, t)
User written function subroutine. It gives
the user the opportunity to define a

boundary condition as a function of space
and time.

O o o o0

implicit none

double precision usfunb, x, y, 2, t
integer ichoice

CHAPTER 22. MISCELLANEQOUS 185

C X i x-coordinate

c y i y-coordinate

c t i actual time

c ichoice 1 choice parameter given by the user input
c usfunb o computed boundary condition

if (ichoice.eq.1) then
usfunb = x
else if (ichoice.eq.2) then
usfunb = -y
end if

end
c -—-— Function with respect to initial conditions

function usfuni (ichoice, x, y, z)

c User written function subroutine. It gives
c the user the opportunity to define a
c coefficient as a function of space
C and time.
implicit none
double precision usfuni, x, y, z
integer ichoice
C X i x-coordinate
c y i y-coordinate
c z i z-coordinate
c ichoice 1 choice parameter given by the user input
c usfunc o computed coefficient

if (ichoice.eq.l) then
usfuni = x

else if (ichoice.eq.2) then
usfuni = -y

end if

end

CHAPTER 22. MISCELLANEQOUS 186

22.2 Exact solution is known

There are two distinct cases to be distinguished, discussed in two subsections.

22.2.1 Case 1l

For testing purposes, problems for which exact solutions are available, are used. In this sec-
tion an example is given of how to incorporate the exact solution in the software such that
the testing can take place.

In the example of the previous section, a stationary solution (0m/dt = 0) is found when
the right-hand equals the vector f = (z,y). The momentum equation then reads:

oM L S (am) = f (22.1)
ot

This means that the pressure is given by p(z,y) = po — %mz — %yz, with pg an arbitrary
constant. The right-hand side of the discretized momentum equation (projection on normal
n; integration over area 2) equals: —QVp-n = —Q(%, g—’;) (ng, ny) = Q(zny + yny). Note
that, in the fully compressible case, the right-hand side has to be multiplied by 1/yM?2. The

vector-function f is inserted in file channel.f as follows:

c --- Function with respect to right-hand side

function usfunc (ichoice, x, y, 2z, t)

c User written function subroutine. It gives
c the user the opportunity to define a
c coefficient as a function of space
c and time.
implicit none
double precision usfunc, x, y, z, t
integer ichoice
c t i actual time
C X i x-coordinate
c y i y—coordinate
c z i z-coordinate
c ichoice 1 choice parameter given by the user input
c usfunc o computed right-hand side

if (ichoice.eq.l) then
usfunc = x

else if (ichoice.eq.2) then
usfunc = y

end if

CHAPTER 22. MISCELLANEQOUS 187

end

The routine adding the number -QVp-n to the right-hand side is called fvmkrhsd.f, which
must be put at an appropriate position (after initialization of the right-hand side vector, and
before the actual solving of the matrix-vector equation) in fvprmom.f.

In the input-file channel.prb the following statement has to be added:

coefficients
momentum_equations
forcel = func =1
force2 = func = 2

CHAPTER 22. MISCELLANEQOUS 188

22.2.2 Case 2

In case that the exact solution is known, then one is interested in the error, defined as the
difference between the exact and numerical solution. Define e = (ey,...,en) as the error,
with NV the total number of unknowns (equal to the number of cells for the pressure and equal
to the number of faces for the velocity). The following norms are defined:

e L -norm: |e|, = max; |e;]|.

e Lynorm: |e[y = />, e?/N.

e Weighted Ly-norm: |e|; = \/zl Qie?/ >, Q;, where Q; represents the area of the control

volume.

In order to compute these errors, remark the following;:
e insert the key-word exacterror as subkeyword of time_integration.

e put the exact solution as a function usfune (ichoice, x, y, z) in the main pro-
gram. The following convention is adopted: ichoice = 1 corresponds to the z-component
of the velocity; ichoice = 2 corresponds to the y-component of the velocity; ichoice
= 3 corresponds to the pressure.

e until so far it is only implemented for 2D incompressible flows.

An example is the testproblem pois_unstr02

22.3 Exact and computed tangential momentum

The computation of tangential momentum components m using surrounding normal momen-
tum components m is discussed in the mathematical sections. In order to see how accurate
the interpolations reproduce the exact tangential momentum, routine fvtmom0O1.f has been
written. The routine fvtmomO1.f yields for every face at which the tangential momentum is
not prescribed, the absolute value of the reconstruction error, i.e. d = |Mezact — Mezact|- This
quanity is put in the array diftmom(nfaces). Inserting this piece of code goes as follows, by
making the following changes in the software:

e Add in fvprmom.f the following items at the appropriate positions:
call ini080 (ibuffr, mmdiftmom, nfaces, ’diftmom’)
ipdiftmom = inidgt(mmdiftmom)
do i = 1, nfaces

buffer(ipdiftmom+i-1) = 0.0d0

end do

call ini066 (ibuffr, mmdiftmom)

CHAPTER 22. MISCELLANEQOUS 189

Furthermore, the array diftmom must be given in the CALL to fvprmomr and fvprmomq
by using: buffer(ipdiftmom).

o Add array diftmomint(nfaces) to the parameter-lists of fvprmomr and fvprmomgq.

e The CALL to fvtmomO1 must be done after the CALL to fvupmomr and fvupmomq in
routines fvprmomr and fvprmomg.

e Add in fvprmomr.f the quantities imombnd(1) = ... = imombnd(4) = 0.

o Insert a write-statement after the call to fvprmomb, for example call fvprinvl (buffer(ipdiftmom), n
(note that this must be done before the statement call ini066 (ibuffr, mmdiftmom).

Chapter 23

Appendix

No content yet.

190

CHAPTER 23. APPENDIX 191

Backmatter of the document

Bibliography

[1] H. Bijl and P. Wesseling. A unified method for computing incompressible and compress-
ible flows in boundary-fitted coordinates. J. Comp. Phys., 141:153-173, 1998.

[2] D.J. Ewing, A.J. Fawkes, and J.R. Griffiths. Rules governing the numbers of nodes and
elements in a finite element mesh. Int. J. Num. Meth. in Eng., 2:597, 1970.

[3] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous incom-
pressible flow of fluid with a free surface. The Physics of Fluids, 8:2182-2189, 1965.

[4] C. Hirsch. Numerical Computation of Internal and Fxternal Flows. Vol.2: Computational
Methods for Inviscid and Viscous Flows. Wiley, Chichester, 1990.

[5] J.C. Tannehill, D.A. Anderson, and R.H. Pletcher. Computational Fluid Dynamics and
Heat Transfer. Taylor and Francis, London, 1997.

[6] F. Vermolen and K. Vuik. A vector valued Stefan problem from aluminium industry.

Report MAS-R 9814, CWI, Amsterdam, 1998.

[7] P. Wesseling, A. Segal, and C.G.M. Kassels. Computing flows on general three-
dimensional nonsmooth staggered grids. J. Comp. Phys., 149:333-362, 1999.

[8] P. Wesseling, A. Segal, C.G.M. Kassels, and H. Bijl. Computing flows on general two-
dimensional nonsmooth staggered grids. J. Eng. Math., 34:21-44, 1998.

[9] P. Wesseling, M. Zijlema, A. Segal, and C.G.M Kassels. Computation of turbulent flow
in general domains. Math. Comp. Sim., 44:369-385, 1997.

[10] M. Zijlema and P. Wesseling. Higher-order flux-limiting schemes for the finite volume
computation of incompressible flow. Int. J. Comp. Fluid Dyn., 9:89-109, 1998.

192

