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Field of study: My interests lie in the fields of scientific computation and computational applied mathe-
matics, with emphasis on multiscale numerical analysis and efficient numerical solution of partial
differential equations. My work is motivated by real-world applications, such as fluid flow through
porous media, elastic deformation in biological and geophysical settings, quantum chromodynamics,
and electromagnetic fields in geophysical media or circuit design. The common theme is character-
izing the properties of a mathematical model that are responsible for slow convergence of standard
techniques, constructing reduced auxiliary models that appropriately capture these dynamics, and us-
ing these models to effectively accelerate convergence. These auxiliary models may also be used in
a multiscale modelling framework to achieve improved accuracy relative to computational cost for
reduced-order discretizations.

Past and Current Research: My research focuses on the use of coarse-scale models to improve the perfor-
mance of numerical approaches to solving differential equations. Robust algorithms that appropriately
address the inherent heterogeneity found in mathematical models of many interesting real-world pro-
cesses are required for efficient and relevant simulation. In order to improve existing solver technol-
ogy, we seek to identify the properties of a given model that cause difficulties in classical approaches
and, then, to exploit this knowledge in constructing reduced models that address these barriers to
efficiency. From this principle, multigrid methods provide optimal solution of many linear systems
(that is, in time linearly proportional to the number of discrete degrees of freedom) by combining
inexpensive local processing (such as the Jacobi or Gauss-Seidel iterations) with a carefully chosen
coarse-scale correction process. Algebraic multigrid (AMG) methods are based on the same princi-
ple, but attempt to automatically construct such an optimal solver with few (or no) direct assumptions
on the underlying mathematical model but, rather, by making assumptions on the spectral properties
of the linear system. This generalization results in AMG often being the solver of choice for finite
element discretizations on irregular domains with unstructured meshes.

My Ph.D. research was motivated by a desire to improve the robustness of algebraic multigrid algo-
rithms. Multigrid solvers (AMG, in particular) are known to be extremely effective for the solution
of standard discretizations of many elliptic operators, whose spectral properties are relatively easy to
characterize. For non-standard models, such as those with materials that vary on a fine spatial scale,
effective characterization of the needed properties may be quite difficult. Thus, the main focus of my
thesis was the development of a new family of adaptive algebraic multigrid methods that do not rely
on the classical assumptions on the spectral properties of the linear system. The resulting methods
show typical multigrid convergence for scalar, elliptic second-order PDEs and for systems of PDEs,
such as linear elasticity, even when no spectral information is given to the solver. Analyzing the
simpler case of only two grid levels, we proved the convergence of the adaptive process, as well as
detailing a class of problems for which these methods are expected to perform well. This research led
to four journal publications, including one selected to appear in the SIAM Review.

This research led to the first successful application of multigrid-type solvers in the field of lattice gauge
theory, a discrete approach to the theory of quantum chromodynamics (QCD), describing the basic
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building blocks of matter. Within a Monte-Carlo QCD simulation, a series of linear systems must be
solved, whose entries are dependent on a gauge field drawn from a known probability distribution.
Important properties of these linear systems change with the gauge field, making a static choice of
preconditioned Krylov technique for the entire Monte-Carlo simulation ineffective. Classical pre-
conditioners cannot overcome the so-called critical slowing down that results when the parameters
of the model are set to physically relevant values. The adaptive smoothed aggregation multigrid ap-
proach, however, significantly reduces the number of iterations needed to solve each linear system for
a reduced, two-dimensional lattice model.

While AMG is often viewed as a black-box approach for solving linear systems, it is based on varia-
tional principles that provide useful insight into the finite-element models to which it is often applied.
Numerical homogenization, or upscaling, techniques (also known as reduced-order modelling) rely
on a consistent reduction of a PDE model from a given (spatial) scale to a coarser scale that is more
tractable for computation. To maintain fine-scale accuracy, in terms of a given approximation property
or more-general measure, an appropriate basis for a lower-dimensional space must be chosen. Within
AMG, operators on discrete coarser scales are formed by a projection of the fine-scale operator onto
the space on which localized fine-scale processing is ineffective. Such a space, however, typically cor-
responds to that which dominates important approximation properties. That is, the variational AMG
process implicitly defines a basis for an appropriate coarse-scale space and explicitly computes the
projection of the fine-scale operator onto this space. For the Darcy law model of saturated, single-
phase flow through a porous media, we have demonstrated that important features of the fine-scale
solution are preserved in the solutions of the coarse-scale models created by the AMG process. Such
simulations dominate the computational costs of reservoir simulations (for both oil production and
environmental reasons); efficient use of these multiscale models allows for current simulations to be
performed in a fraction of their current time and enables simulations based on higher-resolution data
to be performed as well.

Current efforts, in collaboration with Los Alamos National Laboratory, are aimed at extending both
this multilevel upscaling technique and our understanding of it. Contrary to many existing multiscale
techniques, the AMG framework provides a complete hierarchy of consistent models across many
scales, which can be used to automatically select the level of accuracy in the coarse-scale solution.
Such a multiscale representation is also quite useful for nonlinear models, where the dominating be-
haviour may occur on vastly different scales in different parts of the physical domain. Ongoing theo-
retical analysis focuses on the relationship between the AMG coarsening process and recent advances
in generalized and multiscale finite element methods.

In my earlier postdoctoral research, we considered the important practical question of choosing the
coarse-grid degrees of freedom within the AMG algorithm. As long as the coarse-scale model is of
sufficient dimension, the subspace corresponding to errors that are slow to be resolved by localized
fine-scale processing can always be represented. From a practical standpoint, however, compactly
supported basis functions for this subspace are necessary to maintain the optimal efficiency of the
multigrid process. This localization is only possible if a set of good seed nodes for these basis func-
tions is properly identified. The selection of these nodes is often based on heuristics derived for the
matrices arising in isotropic diffusion processes; for more difficult problems, these heuristics may
lead to poor choices of coarse-scale nodes, resulting in either a poor-quality correction or one that
is too expensive to calculate. Our work identifies theoretical properties of good coarse-scale nodes
for any symmetric and definite operator. At the University of Minnesota, we devised a coarsening
procedure that, coupled with standard choices of inter-scale transfer operators, guarantees optimal
two-level performance and, in practice, delivers optimal or near-optimal multilevel performance for
many symmetric and non-symmetric problems.



My current research, as a Marie Curie fellow at the Delft University of Technology, is on the devel-
opment of multigrid techniques for PDEs with complex-valued coefficients. This project is aimed at
developing optimally efficient solvers for applications such as frequency-domain wave propagation,
electromagnetics, and QCD, in the presence of heterogeneity. Previous work by the Delft group pro-
duced efficient geometric multigrid solvers for the Helmholtz equation; we are investigating further
improvements to efficiency that are possible using AMG ideas for the frequency-domain acoustic
wave equation (in collaboration with Shell), as well as for applications that naturally lead to unstruc-
tured meshes, such as circuit-board design and fabrication. A motivating theoretical framework is
provided by the tools of local Fourier analysis that, for the homogeneous case, give sharp bounds on
the expected AMG performance. Extending my previous work on multigrid solvers for (real-valued)
heterogeneous applications, in combination with this analysis, we aim to develop algebraic multigrid
tools for complex-valued problems that are as powerful as those available for real-valued problems.

Future Directions: The ever-increasing power of computational hardware is still not sufficient to meet
the simulation needs of application scientists; advanced algorithmic tools are also needed to enable
simulations of physically relevant phenomena in interesting parameter regimes. Driving factors in
these needs are the inherent heterogeneity of the world around us as well as the multiscale nature of
our mathematical models.

Recent experiments suggest that the adaptive AMG framework is a powerful tool for problems where
the coefficients of the model depend on random parameters. The theory of quantum chromodynamics
is an attempt to understand matter at scales where validating experiments are often not practical; effec-
tive algorithms would allow simulation to take some of the role of expensive experiments. Uncertainty
in data also leads to models with random parameters in other applications, again requiring adaptive
solution techniques to achieve optimal efficiency for each realization. Further development of the
adaptive multigrid framework will address the effects of stochastic coefficients on the choices made
in the multigrid algorithm and consider how to best make these choices, based on known properties
of the random parameters.

Understanding the dynamics of industrial and environmental processes requires efficient and accurate
simulation tools. The flow of multiphase reacting fluids in porous media is an important problem
in oil-reservoir management, modelling environmental contamination, and developing safe storage
and remediation plans for toxic waste. Modelled by a system of nonlinearly coupled PDEs, these
applications quickly lead to complicated dynamics across many space and time scales. A flexible
model-order reduction framework, such as the AMG-based multilevel upscaling approach described
above, will capture the evolving reaction dynamics along boundaries between fluid phases. Through
the use of error indicators that naturally arise in the generalization of multigrid to nonlinear problems,
the basis-function analogue of automated grid refinement and de-refinement can maintain optimal
approximation properties with a minimum number of degrees of freedom. While there are many
challenges in realizing such a simulation, the principles on which it is based are well-understood for
simpler models. Addressing the mathematical and computational challenges in a systematic way will
lead to tools that offer optimal accuracy measured against the computational cost.

The multidisciplinary nature of applied mathematics requires understanding of physical problems,
mathematical models, and computational techniques. I aim to develop and understand computational
tools that address the simulation needs of application scientists. I am eager to explore new fields of
research, and new applications for my past and current work; my experiences in numerical simulation
and mathematical analysis lead to natural collaboration with industrial and academic partners. Follow-
ing this applications-driven approach, I hope to develop a research program blending mathematical
analysis and computational science that improves our understanding of the world around us.


