
Adapting Algebraic Multigrid

Scott MacLachlan†

April 7, 2003

Abstract

Our ability to numerically simulate physical processes is severely con-
strained by our ability to solve the complex linear systems that are often at
the core of the computation. Multigrid methods offer an efficient solution
technique for many such problems. However, fixed multigrid processes
are based on an overall assumption of smoothness that may not be appro-
priate for a given problem. Our aim is to develop an adaptive multigrid
scheme that replaces this predetermined sense of smoothness by one that
is determined automatically. This paper focuses on the principal com-
ponent of such a scheme: adaptive interpolation. Our method is based
on computing a representative error component that is not quickly re-
duced by relaxation and fitting interpolation so that it is eliminated by
the coarse-grid correction process. Numerical results are given to support
the efficiency of this approach.

1 Introduction

We are interested in the numerical solution of the partial differential equations
resulting from the mathematical modeling of physical systems. We assume that
these PDEs have already been discretized in a sensible manner through the use
of finite differences or finite elements [1], and our primary focus is on the efficient
solution of the linear systems that arise from such discretizations. These systems
are typically large (current problems of interest involve millions or even billions
of degrees of freedom (dofs)), sparse (a fixed number of non-zero entries per
row or column, regardless of problem size), and ill-conditioned (with condition
number approaching infinity as problem size increases).

It has been demonstrated that classical linear solvers are quite impractical
for these problems ([8], §1.4); however, there are a number of different meth-
ods that offer nearly optimal efficiency, all based on multiscale analysis. We
consider multigrid methods because of their proven effectiveness for finite ele-
ment discretizations [2]. These methods are based on the complementary use of
stationary linear iterations and coarse-grid correction to obtain what is known
as optimal multigrid efficiency. Multigrid methods are not, however, currently
applicable to every problem of interest. Indeed, the performance of multigrid
algorithms can be quite problem dependent and quite discretization dependent.

†Department of Applied Mathematics, Campus Box 526, University of Colorado at Boulder,
Boulder, CO 80302
Email: maclachl@colorado.edu
Research in collaboration with M Brezina, R Falgout, T Manteuffel, S McCormick, and J
Ruge.

1

Thus, a multigrid algorithm that works well for one problem may not work
at all for a similar problem, although careful parameter tuning can result in
acceptable performance.

Overcoming this sensitivity is one of our primary research goals. We envision
an algorithm that is readily applicable to a large class of problems, without any
significant need for parameter tuning.

2 The Adaptive (Algebraic) Multigrid Algorithm
(αAMG)

Multigrid is founded on a principle of complementarity. Given a relaxation
scheme, coarse-grid correction is used to efficiently eliminate all errors that
relaxation does not. In seeking to generalize classical AMG schemes, we must
not move away from this principle: Efficient multigrid performance is dependent
on the appropriate complementarity of relaxation and coarse-grid correction. In
this study, we consider choosing a relaxation scheme a priori (such as Gauss-
Seidel) and then defining interpolation to ensure the complementarity needed.

In developing the new interpolation procedure, we consider the case of purely
algebraic coarsening; however, for practical reasons, we chose to first implement
the algorithm in the case of regular, geometric coarsening. The numerical results
presented in Section 4 are from this implementation in the case of a scalar PDE.

Since the success of our methods depends on the complementarity of relax-
ation and coarse-grid correction, we see that a good starting point for defining
interpolation would be to consider a vector, e, that is not well treated by relax-
ation. Using a simple (point-wise) relaxation scheme, such as Gauss-Seidel, this
also means that Ae ≈ 0, or

aiiei ≈ −
∑
j∈Ci

aijej −
∑
k∈Fi

aikek,

assuming we already have a splitting of Ni = {j|aij 6= 0} (the algebraic neigh-
borhood of i) into Ci (the coarse-grid neighbors of i) and Fi (the fine-grid
neighbors of i). If, for k ∈ Fi, we can write

ek ≈
∑
j∈Ci

wkjej + wkiei,

we determine a general interpolation formula for a point i ∈ F ,

ei = −
∑
j∈Ci

aij +

∑
k∈Fi

aikwkj

aii +
∑
k∈Fi

aikwki

 ej . (1)

The difference between our interpolation and the interpolation used in classical
AMG [7] is that we choose {wkj} to depend on both the entries in the matrix A
and some algebraically smooth vector, x(1), which we treat as a representative
of a number of algebraically smooth components.

One way of looking at the choice of {wkj} is to consider the idea called
twice-removed interpolation. Suppose we have a point i, whose neighbors have
been partitioned into the two sets Ci and Fi. The problem of collapsing the

2

fine-fine connections is equivalent to that of determining a way to interpolate
to a point k ∈ Fi from points j ∈ Ci (or, more generally, j ∈ Ci ∪ {i}). That is,
we seek to write (as before)

ek =
∑
j∈Ci

wkjej . (2)

If we have a particular vector, x(1), that we want in the range of interpolation,
we ask that Equation 2 hold for x(1). For this interpolation problem, however,
we have many choices for the {wkj}. We choose to take this interpolation to
Fi of the form −D−1Afc (where Afc is the matrix of connections between F
and C, and D is an arbitrary diagonal matrix - this choice is motivated by the
discussion in [3]). We thus write

dkkx
(1)
k = −

∑
j∈Ci

akjx
(1)
j ,

so that (if x
(1)
k 6= 0)

dkk =

−
∑
j∈Ci

akjx
(1)
j

x
(1)
k

.

Choosing wkj = d−1
kk akj , we get the interpolation formula

ek = −
∑
j∈Ci

akj

dkk
ej

=
∑
j∈Ci

akjx
(1)
k∑

j′∈Ci

akj′x
(1)
j′

ej

=
∑
j∈Ci

wkjej .

Interpolation to i ∈ F is then given by Equation 1 and has the particular form

ei = −
∑
j∈Ci

aij +
∑
k∈Fi

aik
akjx

(1)
k∑

j′∈Ci

akj′x
(1)
j′

aii

ej . (3)

Treating the interpolation operator, P , as an operator from C to F ∪C, we see
that it has the form

P =
[

W
I

]
,

where W is the matrix of coefficients as in Equations 1 and 3.
Another way of looking at twice-removed interpolation is to consider how it

relates to the interpolation used in its place in Ruge-Stueben AMG. For strongly
connected points, AMG uses interpolation of the form

wkj =
akj∑

m∈Ci

akm

3

One of the primary assumptions of AMG is that the global smoothest error
component is the constant vector [7], and thus it must be in the range of interpo-
lation. In our terms, AMG assumes that x(1) ≡ 1. Looking at our interpolation
formula, we see that it reduces to the classical AMG strong interpolation formula
in this case. So, we can look at the αAMG interpolation formula as a simple
generalization of the classical AMG formula for the case where the smoothest
error component (and thus one that needs to be in the range of interpolation)
is any known vector.

Successful implementation of this scheme for interpolation thus relies upon
having an appropriate vector, x(1), to put in the range of interpolation. Since
we need the complementarity of relaxation and coarse-grid correction, it follows
that the best choice for x(1) would be a representative of the vectors for which
relaxation is inefficient. Thus, a straight-forward method for generating such a
representative would be to start with a vector equally rich in all components
(i.e. eigenvectors of symmetric A), construct a b so that the error in Ax = b
matches this initial vector, and then determine the error in the approximate
solution after a sufficient number of relaxations.

Getting a representative vector is thus easy if we apply relaxation to an
equation whose solution is known. We are interested in the error after a number
of relaxations on Ax = b. Clearly, this error is easiest to calculate if we choose
b so that we know the true solution. This is easily done by choosing a solution,
x, and then calculating the appropriate right side, b, but we can make this
problem even easier by choosing x ≡ 0, so that b ≡ 0. Then, starting with any
(non-zero) initial guess and relaxing on Ax = 0, we can identify the error in
the solution after relaxation as simply being the current approximation, since
the true solution is 0. So, starting with a random initial guess and performing
relaxation on Ax = 0 generates a vector, x(1), representative of the slow to
converge components that we can then use in the interpolation formula.

In practice, however, it requires (in our opinion) too many relaxation sweeps
to generate a suitable representative using only relaxation. Thus, to improve
performance, we have implemented a multilevel scheme to quickly generate a
vector, x(1), such that Ax(1) ≈ 0 and so for which relaxation is slow to resolve.
To do this, we start with a random guess on the fine grid and perform a few
relaxation sweeps to generate a tentative x(1). From this, we generate an inter-
polation operator (as above) and form the CGO using the Galerkin condition.
We use injection (direct restriction of the values on the C-points) to form a
coarse-grid initial guess and recurse to the coarsest level. From this coarsest
level, we interpolate the vector back to the finest level, possibly relaxing as we
do, and repeat this process, using that vector as an overall initial guess. In
Section 4, we investigate this procedure, where we focus on choosing the num-
ber of relaxation sweeps to do in each stage of the algorithm. We have found
that, with enough relaxation sweeps in this initial stage, we do indeed recover
grid independent convergence factors all the way to 1024× 1024 grids for many
scalar problems.

3 Theoretical Properties

We have already seen one advantageous property of our method, namely, that it
reduces to a form of the classical Ruge-Stueben AMG algorithm when x(1) = 1.
We claim this property to be advantageous in that we can reasonably expect

4

our algorithm to perform well on the class of problems that AMG performs well
on (dependent, of course, on sufficient resolution of x(1)). However, we believe
that our choice of interpolation for x(1) 6= 1 leads to an algorithm that is much
more successful.

One situation that causes difficulty for AMG is when the matrix for a prob-
lem it is effective on is simply rescaled. In particular, consider taking the matrix
A and multiplying it by a positive, diagonal scaling matrix on both the left and
the right sides (to preserve symmetry). That is, replace A with Ã = DAD for
some positive, diagonal matrix D. If Ax(1) = 0, then Ã(D−1x(1)) = 0, so the
new near null-space component is actually D−1x(1). If the diagonal entries of
D have significant variation in them, then D−1x(1) has a significantly different
character than x(1). In the case of classical AMG, this can cause a significant
deterioration in convergence rates.

Our algorithm, however, is not as sensitive to this distinction. In fact, under
minimal assumptions, our algorithm can be shown to be unaffected by such
scaling. Let A and D have the forms

A =
[

Aff Afc

Acf Acc

]
and D =

[
Df 0
0 Dc

]
,

so that

Ã =
[

DfAffDf DfAfcDc

DcAcfDf DcAccDc

]
.

Suppose that if the process for generating the representative vector generates
x(1) when given the matrix A, then it generates x̃(1) = D−1x(1) when given the
matrix Ã. Our choice for interpolation for the matrix Ã is then given by taking

w̃kj =
ãkj x̃

(1)
k∑

j′∈Ci

ãkj′ x̃
(1)
j′

=
dkakjdjd

−1
k x

(1)
k∑

j′∈Ci

dkakj′dj′d−1
j′ x

(1)
j′

= d−1
k wkjdj ,

which gives us

ei = −
∑
j∈Ci

ãij +

∑
k∈Fi

ãikw̃kj

ãii

 ej

= −
∑
j∈Ci

diaijdj +

∑
k∈Fi

diaikdkd−1
k wkjdj

diaiidi

 ej

= −
∑
j∈Ci

d−1
i

aij +

∑
k∈Fi

aikwkj

aii

 djej

5

for i ∈ F . For i ∈ C, we simply take the value from the coarse-grid and assign
it as the value on the fine-grid. Thus, we get an interpolation operator P̃ of the
form

P̃ =
[

W̃
I

]
=

[
D−1

f WDc

I

]
= D−1PDc,

where P is the interpolation operator from the non-scaled case. Further, if we
consider the coarse-grid operators Ac and Ãc, we see that

Ãc = P̃T ÃP̃ = (DcP
T D−1)(DAD)(D−1PDc) = DcP

T APDc = DcAcDc.

That is, the coarse-grid operator for the scaled problem is simply the scaled
version of the coarse-grid operator for the unscaled problem. Noticing that
standard relaxation techniques such as Gauss-Seidel or Jacobi (both point-wise
and block relaxations) are scaling invariant (that is, if we scale the matrix A
to DAD as above, the initial guess x(0) to D(−1)x(0), and the initial right side
b to Db, then the approximation generated changes from x(1) to D−1x(1)), we
see that the entire process is independent of any diagonal scaling. That is, we
expect to get similar convergence factors (measured in the energy norm) for the
diagonally scaled problem as we get for the unscaled problem.

The one assumption this result uses is that, for the scaled problem, we can
generate the scaled vector, D−1x(1), just as easily as the unscaled vector, x(1).
In practice this is more difficult. If we do happen to know the scaling matrix D a
priori, then it is true that, by scaling the initial guess, we can ensure equivalence
between the two vectors. This is, of course, an unrealistic situation - if we knew
the scaling beforehand, we could simply unscale the problem. Starting with
the same initial guess for both the scaled and unscaled problems tends to give
slightly worse convergence rates for the unscaled problem (as is shown in Section
4), but this is not a significant performance hit.

4 Numerical Results

To examine the feasibility of our approach, we implemented our solver for the
special case of a rectangular grid in 2-dimensions with full coarsening. This
restriction in generality has a notable effect on the range of problems that we
are able to reasonably consider (anisotropy, for example, becomes much more
difficult to account for in this setting). However, if we examine problems without
such difficulties, we feel that we can get a good indication of the performance
of our approach.

While a significant range of tests would be necessary to catalog the overall
strengths and weaknesses of our approach (as in [5] and [4]), we concentrate
here on determining the appropriate form of relaxation to perform in the setup
stage. To determine overall efficiency, we must consider the costs of both the
setup and the solution phases. We measure these in work units - the cost of a
sweep of relaxation on the finest grid.

To simplify our comparison, we consider a fixed solution stage consisting of
V(1,1) cycles. We consider our problem solved if we have reduced the error
in the energy norm by a factor of 10−6. Given an algorithm with asymptotic
convergence factor ρ, we know that n ≥ −6

log ρ steps are needed to do this. Since
a V(1,1) cycle costs approximately 8

3 work units ([6], p. 47), we get an approx-
imate cost of −16

log ρ work units for the entire solution stage.

6

The cost of the setup stage is similarly computed. We begin by performing
a given number, ν0, of relaxation sweeps on the finest grid. We then perform
two sweeps of the process described in Section 2, performing ν1 relaxations on
each level of the downward sweep in both cycles and ν2 relaxations of each level
in the upward sweep of the first cycle (the MG hierarchy is not changed after
the second downward sweep, so relaxation on the upward stage is unnecessary).
Thus, the cost in work units of these relaxations is ν0 + 8

3ν1 + 4
3ν2.

We compute these costs for four test matrices. Our first two problems come
from bilinear finite element discretizations on the canonical unit square. Prob-
lem 1 is Laplace’s Equation with pure Dirichlet boundary conditions, Problem
2 is

−∇ ·D(x, y)∇p(x, y) = 0

with Dirichlet boundary conditions on the East and West boundaries and Neu-
mann boundary conditions along the North and South boundaries. D(x, y) is
chosen as

D(x, y) =
{

102 (x, y) ∈ [13 , 2
3]2

1 otherwise .

Our second two problems come from scaling these matrices, as described in
Section 3, with the nodal scaling function

1 + sin(547πxi) sin(496πyj) + 10−7.

This function gives a nearly-independent scaling on each node by a constant in
the range [10−7, 2 + 10−7], but does not change character with h.

As a basis for comparison, we consider the convergence properties of a full-
coarsening multigrid using the AMG strongly-connected formula for collapsing
fine-fine connections. That is, we force AMG-style interpolation onto our coars-
ening scheme. The approximate numbers of work units to achieve convergence
(that is, a reduction in the energy-norm of a factor of 10−6) are reported in
Table 1, computed as discussed above.

Problem Size Problem 1 Problem 2 Problem 3 Problem 4
32× 32 12.9 14.5 1297 59.4
64× 64 13.4 15.6 4075 112.1

128× 128 13.6 14.9 6122 218.7
256× 256 13.8 16.4 6122 430.6
512× 512 13.9 15.2 7350 858.6

1024× 1024 13.9 16.7 7350 1656

Table 1: Work Units for standard AMG

These results show that classical AMG interpolation gives a scalable solver
for Problems 1 and 2, coming directly from discretization. If, however, the
discretization matrices are scaled, there is a significant increase in the needed
work units for solution, especially as the problem grows but also on the coarsest
grids. We are unable to improve upon the results from Problems 1 and 2, so
our aim should be to determine a balance where we significantly improve the
results from the scaled problems, while not driving up the cost of solution for
the directly discretized problems.

We now investigate two points in determining an appropriate form for the
initial relaxation. First, we determine where it is appropriate to invest our work

7

(as relaxations on the fine level, on the downward part of the cycle, or on the
upward part of the cycle), then we determine how much work is necessary to
obtain scalable results.

We answer the first question by fixing the number of work units performed
in the setup stage at twelve. There are a plentiful number of ways to allocate
these work units so that ν0 + 8

3ν1 + 4
3ν2 = 12, and we present, for illustration,

the cases ν0 = 4, ν1 = 2, ν2 = 2 in Table 2, and ν0 = 0, ν1 = 3, ν2 = 3 in Table
3. These tables show the number of work units required for the solution phase
only, not counting the 12 work units required for the setup. The results for
ν0 = 4, ν1 = 3, ν2 = 0 and ν0 = 4, ν1 = 1, ν2 = 4 are quite similar to those in
Table 2, whereas the results for ν0 = 4, ν1 = 0, ν2 = 6 were quite poor, closer to
(though slightly better than) the results in Table 3.

Problem Size Problem 1 Problem 2 Problem 3 Problem 4
32× 32 12.9 14.7 12.9 14.7
64× 64 13.4 15.6 13.5 15.4

128× 128 13.6 14.9 13.7 14.7
256× 256 13.9 16.4 13.9 25.2
512× 512 13.9 15.8 13.9 16.4

1024× 1024 13.9 23.2 13.9 25.6

Table 2: Work units for αAMG with ν0 = 4, ν1 = 2, ν2 = 2

Problem Size Problem 1 Problem 2 Problem 3 Problem 4
32× 32 12.9 14.8 12.9 14.7
64× 64 13.4 15.6 13.5 15.3

128× 128 13.6 14.7 13.8 15.4
256× 256 13.8 16.4 13.9 30.3
512× 512 13.9 24.0 13.9 25.8

1024× 1024 749.0 926.1 103.7 977.2

Table 3: Work units for αAMG with ν0 = 0, ν1 = 3, ν2 = 3

These results suggest that the best form for the setup phase is to divide
the relaxation effort somewhat evenly between relaxations on the fine grid and
relaxations in the multilevel cycle. Within this cycle, it seems that the best
results are achieved by balancing the relaxations between the upward and the
downward paths. Following these results, we tested the combinations ν0 =
2, ν1 = 1, ν2 = 1 and ν0 = 4, ν1 = 3, ν2 = 3. Using 6 work units gave mediocre
results for the two Poisson-based problems, showing similar results to those in
Table 2 for all grids except 1024 × 1024, where some growth in the number
of work units needed is seen. The results for the two discontinuous-coefficient
based problems are significantly worse, however, than those shown in Table 3.
Increasing the number of works units to 18, by choosing ν0 = 6, ν1 = 3, ν2 = 3,
provided quite excellent results, as shown in Table 4

These results are very much as we hoped. For the latter two problems, we
see a tremendous improvement in the amount of effort required for solution
as compared to the AMG-interpolation based results in Table 1. The solution
phase of the algorithm scales well across all 6 grids, and the actual costs are

8

Problem Size Problem 1 Problem 2 Problem 3 Problem 4
32× 32 12.9 14.9 12.9 14.9
64× 64 13.4 15.6 13.5 15.3

128× 128 13.6 15.2 13.7 15.3
256× 256 13.8 16.4 13.8 16.4
512× 512 13.9 15.2 13.9 15.2

1024× 1024 13.9 16.7 13.9 16.8

Table 4: Work units for αAMG with ν0 = 6, ν1 = 3, ν2 = 3

quite reasonable. It must be noted, however, that once we account for the
cost of the setup phase of our algorithm, AMG is a much better solver for the
two unscaled matrices. Put simply, if one knows the algebraically smoothest
component of an elliptic PDE exactly, one can do no better than designing
the multigrid interpolation based on that component. Indeed, if we give this
component as input to our method for creating the multigrid hierarchy, we can
solve the problem with the same cost as AMG on the unscaled problem, simply
by using it as x(1) in Equation 3, as discussed in Section 3.

5 Conclusions

Our numerical results indicate that our full-coarsening-based version of αAMG
does offer some advantages when compared to geometric multigrid or classical
AMG. The foci of our future work are improving and extending this algorithm as
well as understanding the theoretical roots of its performance. There are many
possible avenues for this investigation, and we hope that, by careful study, we
can produce an algorithm offering significant improvements in robustness over
earlier methods without adding undue computational expense.

References

[1] D. Braess, Finite Elements, Cambridge University Press, Cambridge, 2001.
Second Edition.

[2] J. H. Bramble, Multigrid Methods, vol. 294 of Pitman Research Notes in
Mathematical Sciences, Longman Scientific & Technical, Essex, England,
1993.

[3] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E.
Jones, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge, Alge-
braic multigrid based on element interpolation (AMGe), SIAM J. Sci. Com-
put., 22 (2000), pp. 1570–1592.

[4] M. Brezina, R. D. Falgout, S. P. MacLachlan, T. A. Manteuf-
fel, S. F. McCormick, and J. W. Ruge, Adaptive algebraic multigrid
(αAMG), in preparation, (2003).

[5] , Adaptive smoothed aggreation (αSA), submitted, SIAM J. Sci. Com-
put., (2003).

9

[6] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid
Tutorial, SIAM Books, Philadelphia, 2000. Second edition.

[7] J. W. Ruge and K. Stüben, Algebraic multigrid (AMG), in Multigrid
Methods, S. F. McCormick, ed., vol. 3 of Frontiers in Applied Mathematics,
SIAM, Philadelphia, PA, 1987, pp. 73–130.

[8] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Aca-
demic Press, London, 2001.

10

