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Why Compute?

Interested in modeling physical processes
Diffusion (Heat, Energy, Chemical)
Fluid Flow
Particle Transport
Elastic Materials

Can describe these processes through differential
equations (both ODEs and PDEs)

Cannot write down closed form solutions

Need to find (approximate) solutions in other ways
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Scientific Computation

Interested in simulating complex physical systems with
parameters, and hence solutions, which vary on
multiple scales

Accuracy constraints lead to discretizations with tens of
millions, or even billions, of degrees of freedom (DOFs)

Need scalability, both algorithmic and parallel
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Challenges - Problem Size

3D Tsunami Model: 200 million cells, 3 weeks on 1200
processors

Protein Folding: 18,000 atoms, 10 microsecond
simulation, 6 months on 84 processors

Transport: 500 million - 1 billion degrees of freedom

Even with optimal methods, three-dimensional
problems can be very expensive to solve
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Challenges - Local Refinement
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Challenges - Complex Geometry
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Challenges - Coupled Systems
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Properties of Discretizations

We consider (primarily) discretizations of the underlying
differential equations via finite elements or finite
differences

The matrices from these discretizations tend to be
Sparse (number of nonzeros per row doesn’t change
with �)
Ill-conditioned
Symmetric (if DE is)
Positive-Definite (if DE is)
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Direct Methods

Interested in solving

��� � �

Gauss Elimination involves factoring linear system into
an upper- and a lower-triangular part

Naive cost is

� � � �
	 � � �
�

� 	

for a 3-dimensional
problem

Utilizing bandedness of our discretization matrix can
reduce cost to

� �
�

�	
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Stationary Iterative Methods

Stationary iterative methods choose approximations

� � ��� �

and iterate using the error equation

If

��� � � � � � �
� 	 � � � �� �

, then � �� � � � � 	 � � � � ��� � 	

The Jacobi iteration chooses

�

to be the diagonal of

�

The Gauss-Seidel iteration chooses

�

to be the
lower-triangular part of

�

SOR chooses

�

to try and minimize 
 �� � � �	
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Stationary Iterative Methods . . .

Jacobi and Gauss-Seidel converge to the level of
discretization error in

� �
�

� 	

operations for the
3-dimensional Poisson problem

SOR with an optimal parameter choice converges in

� �
�

�	

operations
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Krylov Methods

Krylov methods find the optimal approximation to the
solution in a given subspace

Iteratively increase the size of the subspace to improve
accuracy

For 3D Poisson, the Conjugate Gradient algorithm
converges in

� �
�

�	

operations (without any parameter
choice)

Solving PDEs with Multigrid Methods – p.14



Scalability
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Scalability

Because the problems we look to solve are so large,
even the cost of

� � � �
� 	 is too much

If � � � � � �

, then

� �
� � � � ��

An algorithm is said to be scalable (or fast) if it requires
only

� � �	

or

� � � ��� � �	

operations

We must have scalable algorithms in order to solve
problems of interest at resolutions of interest
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Stationary Iterative Methods . . .

Jacobi and Gauss-Seidel converge to the level of
discretization error in

� �
�

� 	

operations for the
3-dimensional Poisson problem

SOR with an optimal parameter choice converges in

� �
�

�	

operations

But, Jacobi and Gauss-Seidel resolve some
components much faster than others

In particular, for Poisson the geometrically smoothest
components of � are the slowest to be resolved

For this reason, Jacobi and Gauss-Seidel are often
called smoothers - they smooth the error in the
approximation
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Smoother Performance
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Complementing Relaxation

If the error left after relaxing is smooth, it can be
accurately represented using fewer degrees of freedom

Problems with fewer degrees of freedom can be solved
with less effort

Error which appears smooth across many degrees of
freedom is oscillatory when represented on fewer
degrees of freedom
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Multigrid Basics

Multigrid methods obtain optimal efficiency through
complementarity

Use a smoothing process (such as Gauss-Seidel) to
eliminate oscillatory errors

Use coarse grid correction to eliminate smooth errors

Obtain optimal efficiency through recursion
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The V-Cycle
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Multigrid Operators

Multigrid V-Cycle requires transfers of residuals and
corrections from one grid to the next

Accomplished through Interpolation (Prolongation) and
Restriction operators

Often pick a form of interpolation (
�

) and take
restriction

� � � �

(theoretical benefits)

Smoothing on coarse grids requires operators on those
grids

These operators must well-approximate the fine grid
operator
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Geometric Multigrid

Multigrid algorithms can be broadly classified by how
they pick their coarse grids

If we start with a geometrically regular grid, coarse
grids can easily be chosen
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Geometric Multigrid

Interpolation that is accurate for geometrically smooth
functions is easy to choose

Can use linear/bilinear/trilinear averaging to get values
at fine-grid points that are not also coarse-grid points

Restriction can be chosen either by simply taking the
fine-grid values at coarse-grid points (injection), or as
the transpose of interpolation

Coarse grid equations can be chosen by rediscretizing
the PDE on the coarser grid or . . .
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Variational Multigrid

Multigrid with

� � � �

and

��� � � � �

is called a
variational formulation

Terminology comes from minimization form of

�� � �

:

� ��� 	 �
�

� � ���� � 	 � � �� � 	

� � 
� � � 
���� � � ��� 	

Given an approximation � to the solution on the fine
level, it can be shown that the optimal coarse grid
correction

��� solves

� � � � �	 � � � � � � � �� 	
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Theoretical Results

Convergence in a fixed, finite number of V-cycles for
finite differences

Convergence in a fixed, finite number of V-cycles for
finite element discretizations for

� �

-elliptic operators
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Numerical Results
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Numerical Results
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Numerical Results
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Complications

Difficult to work out appropriate interpolation for
arbitrary geometries

Some problems don’t have associated geometry (e.g.
graph problems)

Linear interpolation is not appropriate across material
boundaries (discontinuities in PDE coefficients)

Linear interpolation is inefficient in cases of strong
anisotropy or convection
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Philosophy

All of the above problems can be solved by tweaking
the standard, geometric multigrid algorithm

Different smoothers and different interpolations can be
used

Each problem requires its own tuning

Instead, we concentrate on developing an algorithm
which is nearly-optimal on a larger number of problems
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Algebraic Multigrid

In the absence of geometric information, choices must
be made based on algebraic information

Interpolation and coarse grids must be chosen based
on the ability to interpolate a suitable correction

Coarse grid operators must be chosen based on the
fine-grid operator - Galerkin coarsening may be the
most natural choice
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Smoothness

Without geometric information, we can’t talk about a
vector being “smooth” in the same sense

We define a vector, � , to be algebraically smooth if it is
slow to be reduced by relaxation on

��� � �

For Jacobi, the condition becomes�� � � � �� � � 	 � �� ��� 	

In general, we think of � as being algebraically smooth if��� �
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Influence and Dependence

Classical (Ruge-Stueben) AMG is all about keeping
track of how one gridpoint affects another

Two gridpoints,

�

and

�

are said to be strongly
connected if �� � is large

In particular, we say

�

strongly influences

�

if

� �� � � � � � 
�
� 	�
 �

� � � � �

We say

�

strongly depends on

�

if

� �� � � � � � 
�
� 	�
 �

� �� � �
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Coarsening Heuristics

An good choice of a coarse grid is one which can be
effectively used to complement relaxation

That is, we want to choose a coarse grid to allow us to
correct the algebraically smooth components on the
fine grid

Ideally, to interpolate to a point
�

, we would want to have
values at all points that it strongly depends on

In practice, this would yield far too many coarse-grid
points

Instead, we say that for each point

�

that strongly
influences

�

, either
�

is a coarse grid point or it is itself
strongly dependent on one coarse-grid neighbour of

�
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Coarsening Heuristics

We must also, however, balance the desire for a good
interpolation with the need to have a small coarse-grid

To do this, we insist that the set of coarse points is a
maximal subset of the fine-grid such that no coarse-grid
point strongly depends on another coarse-grid point

Implementing these heuristics is accomplished using a
colouring algorithm
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Defining Interpolation

For each fine-grid point,

�

, we want to interpolate its
values from neighbouring coarse-grid points

Solving PDEs with Multigrid Methods – p.37



�, the Neighbourhood of

�

Coarse Grid Points

Fine Grid Points
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Defining Interpolation

For each fine-grid point,

�

, we want to interpolate its
values from neighbouring coarse-grid points

We consider an interpolation operator that must be
accurate for algebraically smooth components, so we
start by considering

� � � �

, or

�� � � � � �
� � ��
�

�� � � � �
� � ��

�� � � �

Must get rid of connections to points

� � ��
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Defining Interpolation

Points

� � �� can be either strongly or weakly
connected to

�

If

�

is weakly connected, it isn’t important in
interpolation, so collapse to the diagonal (i.e. consider

� � � � � )

If

�

is strongly connected, then we’ve ensured it is
strongly dependent on something in

��

So, approximate � � by a weighted average of � �� � � ��

� � �
� � ��
�

� � � � �

� � ��
�

� � �
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Improvements

Resulting algorithm can easily handle jumps in
coefficients

No need to know underlying geometry

Can be adapted to handle anisotropy

Can be modified to handle more complicated problems,
e.g. Elasticity, Stokes Flow, Maxwell’s Equations,
Hyperbolic PDEs, . . .
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Numerical Results

We start with 2 test problems on

� �� � � �

, both from
bilinear FE discretizations

Problem 1 is Poisson with pure Dirichlet Boundary
Conditions

Problem 2 is � ��� � � � � �	 ��� � � � �	 � �
with Dirichlet BCs

on the left and right and Neumann BCs on top and
bottom, and

� � � � �	 �

� �� � � � �	 � � �
�� �
�

� �

�

otherwise
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Numerical Results

Convergence Factors for AMG

�

Problem 1 Problem 2

� �� �

0.09 0.14

� �� �

0.10 0.13

� � � ��

0.14 0.16

� � �� �

0.13 0.15

� �� � �

0.15 0.21
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Complications

Each new type of problem requires a new adaptation

Coupled Systems become complicated - should tune
AMG to each piece of the system

Very hard to predict what tuning will be necessary

Many knobs to turn
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AMG Assumptions

Algebraic Multigrid methods attempt to mimic geometric
methods in their choices of interpolation operators and
coarse grids

Typically use a fixed, pointwise relaxation scheme

Classical (Ruge-Stueben) AMG assumes that
algebraically smooth error varies slowly along strong
connections

This is equivalent to assuming that algebraically smooth
error is essentially (locally) constant
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AMG Weaknesses

AMG assumes the slowest-resolved components are
near-constant

For standard (e.g. finite difference, Galerkin FE)
discretizations of scalar differential operators this is
usually true

If discretizations are non-standard or the resulting
matrices are scaled, AMG cannot achieve good
performance
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Importance of Interpolation

Complementarity is key in multigrid - error components
that are not quickly reduced by relaxation must be
reduced by coarse-grid correction

A component can only be corrected from the
coarse-grid if it is properly interpolated from that grid

Interpolation must be most accurate for components
that relaxation is slowest to resolve
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Choosing Interpolation

Seek to define interpolation to fit an algebraically
smooth vector

Algebraic smoothness means

� ��� 	 � � �

or �� � � � � �
� � ��

�� � � �

� �
� � �
�

�� � � � �
� � ��

�� � � �

To define interpolation, need to collapse connections
from

�� to

��
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Choosing Interpolation . . .

Seek to define interpolation to fit an algebraically
smooth vector

If

� � �� is connected to a set of

� � �� , we want to write

� � �
� � �
�

� � � � �

Then, using the definition of algebraic smoothness, we
have

�� � � � � �
� � �
�

�� � � � �
� � ��

�� � � �

�� � � � � �
� � �
�

�� � � � �
� � �� � � �
�

�� � � � � � �
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Choosing ��

If we have a vector, � � � �

, such that

� �� � � � 	 � � �
and so

� � � �
� � �

� � �
� � �
�

� � � �
� � �

� �
� � � �
�

� � � �
� � �

�

Eliminate extra terms by replacing matrix entry � � � with
arbitrary

� � �

� � � �
� � �

� � �
� � �
�

� � � �
� � �

�

Solving PDEs with Multigrid Methods – p.50



Choosing � � . . .

Taking the value of

� � � given here, we can write

�
� � �

� � �
� � ��
�

� � �
� � �

�
� � �

� �
� � ��
�

� � � �
� � �

�

�� � ��
�

� � �� �
� � �

��
�

� � �
�

Use this formula to collapse all algebraically smooth
error

� � �
� � �
�

��
��
�

� � � �
� � �

�

�� � ��
�

� � �� �
� � �

��

��
��
�

� � �
� � �
�

� � � � �
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Adaptive Interpolation

So, we define interpolation to a fine grid point

�

as

� � � �
� � ��
�

�� � 	
� � ��

�� � � � �

�� �

� �

� �
� � �
�

�� � 	
� � ��

�� �
��
��
�

� � � �
� � �

�

�� � �
�

� � �� �
� � �

��

��
��
�

�� �

� �
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Relation to Ruge-Stueben

Ruge-Stueben AMG takes � � � �
� �

Substituting this into our interpolation formula gives

� � � �
� � ��
�

�� � 	
� � ��

�� �
��
��
�

� � �

�� � �
�

� � ��
��
��
�

�� �

� �

This is the same as the AMG strong-connection-only
interpolation formula

Solving PDEs with Multigrid Methods – p.53



Scaling Invariance

Combining our interpolation with pointwise relaxation
leads to an algorithm that is nearly insensitive to any
diagonal scaling

In particular, if

�

is scaled to

� ��

, and � � � �

is scaled to� � � � � � �

, then we achieve the same convergence rates
for the scaled problem as for the unscaled problem

Difficulty lies in generating the scaled vector

� � � � � � �
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Determining

� � �

Choosing a good interpolation operator requires a good
approximation, � � � �

, to the algebraically-smoothest
vector of a given matrix

�

Such an approximation could be determined by
sufficient relaxation on a random initial guess with a
zero right-hand side

In practice, this requires too much computation to be
feasible

Instead, we use preliminary V-cycles to accelerate the
exposure of components for which

��� � �
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Determining

� � �

. . .

ν0

ν1

ν1

ν1

ν1

ν1
ν

2

ν
2

ν
2

ν
2

ν
2 ν1

ν1

ν1

ν1

In 2D, total cost of relaxation can then be approximated
by �� 	 �

� � � 	 �
� �� work units
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Test Problems

We start with 2 test problems on

� �� � � �

, both from
bilinear FE discretizations

Problem 1 is Poisson with pure Dirichlet Boundary
Conditions

Problem 2 is � ��� � � � � �	 ��� � � � �	 � �
with Dirichlet BCs

on the left and right and Neumann BCs on top and
bottom, and

� � � � �	 �

� �� � � � �	 � � �
�� �
�

� �

�

otherwise
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Test Problems

The second pair of problems come from diagonally
scaling Problems 1 and 2

To scale, we use the node-wise scaling function

� 	 � 
� �� � � � � � 	 � 
� � �� � � � � 	 	 � � � �

This function gives variable scaling on each node, but
does not change its character with

�
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Numerical Results

Coarse grids are chosen geometrically, based on
full-coarsening

Coarse grid operators are determined by the Galerkin
condition.

Compute asymptotic convergence factor, then use this
to estimate number of V(1,1)-cycles needed to reduce
error by

� � � �

From number and cost of cycles (

�
� work units), can

estimate total cost of solution stage

Solving PDEs with Multigrid Methods – p.59



AMG-Equivalent Results

By fixing � � � �
� �

, we can generate results indicative of
AMG’s performance

Work Units for standard AMG

�

Problem 1 Problem 2 Problem 3 Problem 4

� �� �

12.9 14.5 1297 59.4

� �� �

13.4 15.6 4075 112.1

� � � ��

13.6 14.9 6122 218.7

� � �� �

13.8 16.4 6122 430.6

� �� � �

13.9 15.2 7350 858.6

� � � � � �

13.9 16.7 7350 1656
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Distributing Relaxation

To choose how to distribute relaxation, we fix the
number of work units allotted to the relaxation in the
setup phase

�� 	
�

� � � 	
�

� �� � � �
Best results were achieved for � � � �� � � � �� �� � �

, with
good results also seen for � � � �� � � � �� �� � �

and

�� � �� � � � �� �� � �

Poor results were achieved with � � � �� � � � �� �� � �

and �� � �� � � � �� �� � �
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Work units for solution

�� � �� � � � �� �� � �

�

Problem 1 Problem 2 Problem 3 Problem 4

� �� �

12.9 14.8 12.9 14.7

� �� �

13.4 15.6 13.5 15.3

� � � ��

13.6 14.7 13.8 15.4

� � �� �

13.8 16.4 13.9 30.3

� �� � �

13.9 24.0 13.9 25.8

� � � � � �

749.0 926.1 103.7 977.2
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Work units for solution

�� � �� � � � �� �� � �

�

Problem 1 Problem 2 Problem 3 Problem 4

� �� �

12.9 14.7 12.9 14.7

� �� �

13.4 15.6 13.5 15.4

� � � ��

13.6 14.9 13.7 14.7

� � �� �

13.9 16.4 13.9 25.2

� �� � �

13.9 15.8 13.9 16.4

� � � � � �

13.9 23.2 13.9 25.6
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Work units for solution

�� � �� � � � �� �� � �

�

Problem 1 Problem 2 Problem 3 Problem 4

� �� �

12.9 14.9 12.9 14.9

� �� �

13.4 15.6 13.5 15.3

� � � ��

13.6 15.2 13.7 15.3

� � �� �

13.8 16.4 13.8 16.4

� �� � �

13.9 15.2 13.9 15.2

� � � � � �

13.9 16.7 13.9 16.8
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Convergence Factors
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Current and Future Work

Developing a theory for self-correcting AMG

Developing a fully-algebraic version

Investigating better coarsening procedures (Compatible
Relaxation)

Natural extension to systems

Alternate smoothers
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Summary

Applications driving need for solvers for large problems

Classical iterative methods do not scale appropriately
for the sizes we are considering

Multigrid (multiscale) methods do offer optimal
efficiency
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Summary

For regular grids, with smooth PDE coefficients,
geometric MG works well

For irregular grids, discontinuous coefficients, algebraic
MG works well

For coupled systems, exotic bases, adaptive algebraic
MG offers hope

All are

� � �	

algorithms, constants are non-trivial, but
not prohibitive
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