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The Need for Optimal Linear Solvers

Significant interest in simulating complex physical
systems with features, and hence solutions, that vary
on multiple scales

Accuracy constraints lead to discretizations with tens of
millions, or even billions, of degrees of freedom (DOFs)

3D Tsunami Model: 200 million cells
Transport: 500 million to 1 billion degrees of freedom

Without optimal methods, solving three-dimensional
problems can be prohibitively expensive
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Properties of Matrices

We consider (primarily) discretizations of the underlying
continuum models (differential equations) via finite
elements or finite differences

The matrices from these discretizations tend to be
sparse and ill-conditioned

The matrices inherit properties of the continuum model
(e.g. symmetry, definiteness)
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Classical Methods do not Suffice
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Stationary Iterative Methods

The Jacobi and Gauss-Seidel iterations do converge for
FE discretizations of elliptic operators, but are not
require

� � � �
� �

operations for 3-D problems

These methods do, however, resolve some components
much faster than others

For example, for the Laplacian, it is the geometrically
smoothest components of the solution that are the
slowest to be resolved

For this reason, Jacobi and Gauss-Seidel are often
called smoothers - they smooth the error in the
approximation

Robust Algebraic Multigrid – p.6



Smoother Performance
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Complementing Relaxation

If the error left after a few Jacobi or Gauss-Seidel
sweeps is smooth, it can be accurately represented
using fewer degrees of freedom

Problems with fewer degrees of freedom can be solved
with less effort

Error which appears smooth across many degrees of
freedom is more oscillatory when represented on fewer
degrees of freedom

We choose to represent such error using a subset of
the fine-grid degrees of freedom
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)
Relax

Use a smoothing process (such as Gauss-Seidel) to
eliminate oscillatory errors

Remaining error satisfies

��� � �
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Level

1

2

Relax

Restriction

Need to transfer residual to coarse-grid
use Restriction operator
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Level

1

2

Relax

Restriction

Use coarse grid correction to eliminate smooth errors
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction

To solve for error on coarse-grid, use residual equation
� � � �
�

� � �

� �
� � �
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction

Solving on coarse-grid requires an operator on this grid
which well-approximate the fine-grid operator

The coarse-grid operator can be formed by
rediscretization or using a variational principal
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation

Need to transfer correction to fine-grid
use Interpolation (Prolongation) operator

Often pick a form of interpolation (

�

) and take
restriction

� � � �

(theoretical benefits)
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation
Solve

Restrict

Relax

Restrict

Relax

Interpolate

Relax

Relax

Interpolate

Relax

Relax 1

Level

3

K

2

Obtain optimal efficiency through recursion
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Challenges

It is complicated to design multigrid schemes for
complex geometries, nonsmooth PDE coefficients,
and systems of PDEs

Algebraic multigrid methods extend the geometric
multigrid ideas, but use only the matrix coefficients

Classical (Ruge-Stueben) AMG assumes that error
after smoothing varies slowly along strong matrix
connections (i.e., it is essentially locally constant)
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Improving Robustness

Complementarity is key in multigrid: error components
that are not quickly reduced by relaxation must be
reduced by coarse-grid correction

A component can only be corrected from the
coarse-grid if it is properly interpolated from that grid

Error components that are not reduced by relaxation
are exposed by relaxation on

��� � �

Such components are then treated by our definition of
interpolation and coarse-grid operators
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Adaptive Approach

Our method is also adaptive: as a better representation
of the error not reduced by relaxation is found, it is
integrated into the algorithm

Our method reduces to the classical, Ruge-Stueben
method when relaxation is least-efficient for a constant
vector

A priori knowledge of the errors left after relaxation
yields “textbook multigrid efficiency”

We use a bootstrap approach to allow the algorithm to
optimally adapt itself
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Adaptive Approach

Start with a random initial guess and relax on
��� � �

to
expose error not reduced by relaxation

Relaxation alone requires too much effort to do this

Instead, we use an adaptive approach to creating the
multigrid V-cycle

This provides us with a mechanism for the multilevel
development of the error to be captured by coarse-grid
correction

We are developing a two-level theory which shows that
each bootstrap cycle improves the overall performance
of the algorithm
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Numerical Results

Coarse-grid selection is currently done geometrically
and coarse-grid operators are determined using a
variational principle

Problems 1 and 2 are standard, bilinear FE
discretizations of � ��� � � ��� � � �	� � ��� � � � �
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Bilinear FE matrices

Work units required to reduce error by
� � � �

Standard AMG Adapted AMG

�

Problem 1 Problem 2 Problem 1 Problem 2

� �� �

12.9 14.5 12.9 14.9

� �� �

13.4 15.6 13.4 15.6

� � � �	

13.6 14.9 13.6 15.2

� � �
 �

13.8 16.4 13.8 16.4

� � 
 � �

13.9 15.2 13.9 15.2

� � � � � �

13.9 16.7 13.9 16.7
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Scaled Problems

The second pair of problems come from diagonally
scaling Problems 1 and 2

To scale, we use the node-wise scaling function

� ��� ��� � 
 � ��� �	 �� ��� � �
 � � �� � � � � � �

This function gives variable scaling on each node, but
does not change its character with

�
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Scaled Matrices

Work units required to reduce error by
� � � �

Standard AMG Adapted AMG

�

Problem 3 Problem 4 Problem 3 Problem 4

� �� �

1297 59.4 12.9 14.9

� �� �

4075 112.1 13.5 15.3

� � � �	

6122 218.7 13.7 15.3

� � �
 �

6122 430.6 13.8 16.4

� � 
 � �

7350 858.6 13.9 15.2

� � � � � �

7350 1656 13.9 16.8
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Summary

Optimal (

� � � �

) solution methods are required for
modern computational science and engineering
applications

Classical methods (direct and iterative) are not optimal

Multigrid methods (geometric and algebraic) offer
optimal performance for many problems

Implicitly incorporating information from relaxation into
interpolation yields improved solver performance at the
cost of a more complex setup procedure

Optimality and efficiency of these methods are
supported by a theory under development
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