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Heterogeneous Media

What makes a medium heterogeneous?
o Large relative variation in material properties
e Abrupt changes in material properties

e Large variation in spatial scales
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Heterogeneous Media

What makes a medium heterogeneous?
o Large relative variation in material properties
e Abrupt changes in material properties
e Large variation in spatial scales
Why do we care?
e Many natural media are heterogeneous
e Fine-scale variation affects macroscopic behavior

e Simulation of heterogeneous media must resolve variation
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Subsurface Flow

Rate of flow through a reservoir depends on its composition

e Porosity & Permeability vary on scales from mm upwards
e Domain is ~ 100m x 50m x 10m

From SPE Comparative Solution Project: www.spe.org/csp/
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Darcy’s Law
Model hydraulic head, h, of a fluid confined in a porous media

Q=—-KVh
Oh

e (@ denotes the Darcy-law flux

e g represents external sources or sinks of fluid
e Material properties

» S. = specific storage

» JC = hydraulic conductivity
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Ocular Flow
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A. Llobet et al, News Physiol. Sci. 18, pp 205-209, 2003.
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Trabecular Meshwork
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(right) Courtesy W.D. Stamer, U of Arizona & J.J. Heys, Arizona State U
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Cardiac Bidomain Equations

Model intra- and extra-cellular potentials, ¢; and ¢, in cardiac
tissue:

Vm - ¢i - Qbe
oV,

AmCmW -V (O’,‘V Vm) =V- (J;nge) — Amlion

—V - ((0i 4+ 0e)Voe) =V - (0;V V) + ie(t)

A, is surface-to-volume ratio of the cell membrane

C., is the membrane capacitance per unit area

lon represents ionic currents

ie(t) represents extracellular current injections

Material properties

» o; = intracellular conductivity
» 0. = extracellular conductivity
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Cardiac Tissue

®?2005 Structural Imaging : Bioengineering Iinstitute @ The University of Auckland

Sample of rat left ventricular wall, dimensions are
approximately 3.6 x 0.8 x 0.8mm.

M. Trew, B. Smaill, and A. Pullan, preprint 3/7/2005.
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Elliptic Model Problem

A simpler model still displays same sensitivity to heterogeneity:

—V - (KVh)=gq

e Implicit time stepping adds lower-order term
e Main terms in operator-splitting approach

e Assume K = K(x), possibly tensor-valued

Develop approach for model problem, then extend to particular
applications
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Simulation Challenges

Even for model problem, simulation can be difficult

e If K(x) varies on a fine-enough scale, simulation may be
intractable

Example: 1 km x 1 km X 1 km reservoir, sediment
varies on mm-scale requires 10'® Degrees of
Freedom
Two approaches:
e Average conductivity to scale where simulation is possible

e Take variation in /C(x) into account in discretization
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Effective Media

Given heterogeneous conductivity in a region, can we replace it
by a homogeneous one without changing overall flow?
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Effective Media

Given heterogeneous conductivity in a region, can we replace it
by a homogeneous one without changing overall flow?

In general,
e depends on medium

e depends on flow conditions

e no single average always works

A Variational Approach to Upscaling Heterogeneous Media- p.11



Effective Conductivity in One Dimension

Is it possible to replace a heterogeneous cell,

K1 Ko
T : T X
a b c
with an effective (homogenized, or equivalent) cell,
K
. : X
a c
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Effective Conductivity in One Dimension

Is it possible to replace a heterogeneous cell,

K1 Ko
T : T X
a b c
with an effective (homogenized, or equivalent) cell,
K
; a X
a c

that doesn’t perturb the solution outside a < x < ¢ ?

~ ~

h(a) = h(a), h(c) = h(c)
Q(a) = Q(a), Qc) = Q(o)
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Harmonic Averages

One-dimensional model problem:

0.0
—alCah() 0.

For constant K; on [a, b], integrating in x gives

o ]-le Fa -]

For a heterogeneous media, then
o | =M | ooy | =] o |

-1

If /\Aﬂac = MEMP, then K= (c —a) (b]Tla 4 e b)
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Asymptotic Analysis

Let K = K(%), and consider

V. (IC (g) Vhs) — q(x).

A two-scale asymptotic analysis gives behavior as ¢ — 0.
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Homogenization

Effective conductivity depends on unit cell, Y, relative to §

Define
X
a.(u,v) = /Y <IC (g) V€u> -V.v,
then
TKeT = min a. v v
§' K¢ ¢erpi?y)a (pe + V&, ps + Vo),
where

e { = Vp; is constant

e H(Y) is the Sobolev space, H*(Y'), with periodic
boundary conditions
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Explicit Averages

e In one dimension, answer was harmonic average

e In d dimensions, theory limited to periodic media

How bad are simple, explicit averages at approximating
effective conductivities?
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Explicit Averages

e In one dimension, answer was harmonic average

e In d dimensions, theory limited to periodic media

How bad are simple, explicit averages at approximating
effective conductivities?
Arbitrarily.
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Explicit Averages

e In one dimension, answer was harmonic average

e In d dimensions, theory limited to periodic media

How bad are simple, explicit averages at approximating
effective conductivities?
Arbitrarily. Depending on flow conditions:

y T Arithmetic T

Harmonic
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Weak Forms

Consider solution of

—V - K(x)Vp(x) = q(x)
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Weak Forms

Consider solution of

(=V-KX)Vp(x)) p(x) = q(x)e(x)
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Weak Forms

Consider solution of

/Q (V- K(x)Vp(x)) o(x) = / 4 (x)
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Weak Forms

Consider solution of

/Q(’C(X)VP(X)) -V(x) = / q(x)p(x) + BCs

Q
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Weak Forms

Consider solution of

/Q(’C(X)VP(X)) -Vep(x) = / q(x)p(x) + BCs

Q
Define
a(u, v) = / (K()Vu(x)) - Vv(x)
Q
Properties of a(u, v):
e Defined for u (and v) such that [, Vu-Vu < oo
e Positive Definite: a(u, u) > 0 for u # 0

e Symmetric: a(u,v) = a(v, u),

Weak form defines an inner product and a norm on H'(Q)
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Subspace Minimization
Let p be the solution of
= [ a(x)p(x) + BCs for all ¢ € H'(Q).

Given a subspace, V C Hl(Q), best solution in V is

py = argmina(p — v,p — v)
vey

Minimizer must satisfy

= o 9(x)¢(x) + BCs for all p € V
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Basis Functions

Suppose V = span{¢;(x)}7_;, then py(x) = Z}'zl pid;(x).
Then,

ija(¢j, ¢,) = / q(X)¢i(X) + BCS,’ = q; for all /.
j=1 ¢

Writing p = (p1, p2,---,pa)" and @ = (g1, 42, ..., q,)", then
Ap =q,

where A,J = a(qﬁj, ¢,)
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Classical Finite Elements

Want to choose basis, {¢;}7_;, so that
e py is a good approximation to p
e A and q are easy to calculate
e Ap = q is easy to solve
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Classical Finite Elements

Want to choose basis, {¢;}7_;, so that
e py is a good approximation to p
e A and q are easy to calculate
e Ap = q is easy to solve
Typical choices:
e Piecewise linears on triangles and tetrahedra
e Piecewise bilinears on quadrilaterals
e Piecewise trilinears on hexahedra
Local bases on polyhedra, with as many degrees of freedom
as nodes

a—+ bx+ cy + dxy
a-+ bx +cy
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Approximation Properties

o Take {éj}j’il to be an a(-, -)-orthogonal basis for H*
o {$;}7_, is a basis for V C H'

j=1

oo n
Writing p = _ iy, pv =) Bjdy
j=1

Jj=1

alp—pv.p—pv) = Y Bald), )

Jj=n+1

Want the projection of p onto V* to be small in the
a(-, -)-norm
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Approximation Properties

o Take {(21}1001 to be an a(-, -)-orthogonal basis for H*
o {4}, is a basis for V C H*

Writing p = Zf)jcgj: py = Zﬁjﬁgj
j=1

j=1

a(p—pv,p—pv) = > Pa(d;. ;)
Jj=n+1

Want the projection of p onto V* to be small in the

a(-, -)-norm
For a general g (+ BCs), p; = Jo 9%
P a(9).4)) i
¢ Important to capture modes where % is large
J’ J
e Important to capture functions where 222 is small

()
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Multiscale Finite Element Method

Compute nodal basis of modes where % is small

e Given €2, partition into elements on scale for computation

e For each node, choose non-zero support over neighboring

elements
¢
Q — — U

T. Hou and X. Wu, J. Comput. Phys., 134, pp. 169-189, 1997.
T. Hou, X. Wu, and Z. Cai, Math. Comp., 68, pp. 913-943, 1999.
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Multiscale Finite Element Method

Compute nodal basis of modes where % is small

e Nodal basis implies ¢;(x;) = J;
e Take ¢;(x) = 0 on boundary of its support

Can ¢; = argmm{ (“’ “") :p(x;) = 6;, (x) = 0 on 9Q;}7?

T. Hou and X. Wu, J. Comput. Phys., 134, pp. 169-189, 1997.
T. Hou, X. Wu, and Z. Cai, Math. Comp., 68, pp. 913-943, 1999.
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Multiscale Finite Element Method

Compute nodal basis of modes where % is small
e Nodal basis implies ¢;(x;) = J;
e Take ¢;(x) = 0 on boundary of its support
Can ¢; = argmin{ 7= (“" “") (%) = 9, p(x) =0 on 09;}7

| don’t know.
Hou et al. ignore the denominator

o define ¢; piecewise on each element

e fix boundary conditions and solve a(¢;, ) = 0 on interior

T. Hou and X. Wu, J. Comput. Phys., 134, pp. 169-189, 1997.
T. Hou, X. Wu, and Z. Cai, Math. Comp., 68, pp. 913-943, 1999.
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Artificial Boundary Conditions

Consider the element adjacent to node /,
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Artificial Boundary Conditions

Consider the element adjacent to node /,

o Fix ¢i(x;) =1
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Artificial Boundary Conditions

Consider the element adjacent to node /,

o Fix ¢i(x;) =1
e Set ¢;(x) = 0 on 99;
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Artificial Boundary Conditions

Consider the element adjacent to node /,

o Fix ¢i(x;) =1
e Set ¢;(x) = 0 on 99;

e Impose boundary conditions on remaining edges
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Artificial Boundary Conditions

Consider the element adjacent to node /,

Fix ¢i(x;) =1
Set ¢;(x) =0 on 0%,

Impose boundary conditions on remaining edges

Solve a(¢;, ) = 0 in interior
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Artificial Boundary Conditions

Consider the element adjacent to node /,

Fix (b,'(X,') =1
Set ¢;(x) = 0 on 0Q;
Impose boundary conditions on remaining edges

Solve a(¢;, ¢) = 0 in interior
Exact boundary conditions aren’'t known
e use linear

e solve one-dimensional problem along edge
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Computational Cost of MSFEM

For each node of each element, need to compute basis function

] e constant permeability

(lai]) ) tensor given on each

] fine-scale cell F;;

e choose computational

scale, G

e solve for basis function

of node (k, 1) over C;
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Computational Cost of MSFEM

For each node of each element, need to compute basis function

e constant permeability
] . :
(lai]) i tensor given on each
1 fine-scale cell F;;

e choose computational
scale, G

e solve for basis function
of node (k, 1) over C;

We had three goals for our basis:
e good approximation
e easy to calculate A and q
e easy to solve Ap =q
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Computational Cost of MSFEM

For each node of each element, need to compute basis function

e constant permeability
] . :
(lai]) i tensor given on each
1 fine-scale cell F;;

e choose computational
scale, G

e solve for basis function
of node (k, 1) over C;

We had three goals for our basis:
e good approximation
e easy to calculate A and q
e easy to solve Ap =q

What is the cost of finding four basis functions over
each element, compared to solving fine-scale equations?
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Multigrid: Relaxation on Ax =b

e Want to improve approximation, x(©)
e Introduce residual, r® = b — Ax(®) = A(x — x(©)
o Take x(1) = x© 4 D=1¢ for D1 A~?

Error propagation form: et) = (1 — D7!A) e(®
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Multigrid: Relaxation on Ax =b

e Want to improve approximation, x(©)
e Introduce residual, r® = b — Ax(®) = A(x — x(©)
o Take x(1) = x© 4 D=1¢ for D1 A~?

Error propagation form: e(" = (I — D7 A)"e(®)

Jacobi and Gauss-Seidel may be slow to converge, but their
failure is structured

e Eigenvectors of small eigenvalues of D~1A are slow to
change

e Can we use this to our advantage?
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Multigrid: Subspace Correction

Dominant error after relaxation lies in a subspace

What if we could resolve this error by another process that
acted only on the subspace?

Need
e complementary process

e way to combine its results with relaxation
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Multigrid: Subspace Correction

Dominant error after relaxation lies in a subspace

What if we could resolve this error by another process that
acted only on the subspace?

Need
e complementary process

e way to combine its results with relaxation

Want a map from the subspace to the whole space.
Interpolation!
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Multigrid: Variational Coarsening

e Have x(I), approximation after relaxation
e Let P be map from any subspace to whole space

e Corrected approximation will be x(?) = x(!) + Px_

What is the best x. for correction?
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Multigrid: Variational Coarsening

e Have x(I), approximation after relaxation
e Let P be map from any subspace to whole space

e Corrected approximation will be x(?) = x(!) + Px_
What is the best x. for correction?

Symmetric and positive-definite matrix, A, defines an inner
product and a norm:

(X, ¥)a = y Ax and ||x||§\ = x| Ax
Best then means closest to the exact solution in norm:

y* = argmin ||x — y||a
y
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Multigrid: Variational Coarsening

e Have x(I), approximation after relaxation
e Let P be map from any subspace to whole space

e Corrected approximation will be x(?) = x(!) + Px_
What is the best x. for correction?
Closest approximation to x after correction given by

xc = argmin ||x — (XY + Py.)||a
ye

Best x. satisfies (PTAP)x. = PTA(x — x()) = PT¢(1)
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Multigrid: the V-Cycle

Multigrid Components  Relax: xXV=x%D"®
e Relaxation

e Use a relaxation process (such as Jacobi or Gauss-Seidel)
to damp errors

e Remaining error satisfies Ae(t) = r(1) = b — Ax(1)
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Multigrid: the V-Cycle

Multigrid Components  Reax: xX?= X%+D¥?
e Relaxation

e Restriction
Restriction

e Transfer residual to subspace
e Compute PTr(t)
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Multigrid: the V-Cycle

Multigrid Components  Reax: xX?= X%+D¥?
e Relaxation

e Restriction

e Subspace Correction Restriction

Solve: PAPx.= Pt

e Use subspace correction to eliminate dominating errors

e Best correction, x., in terms of A-norm satisfies

PTAPx. = PT¢®
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Multigrid: the V-Cycle

Multigrid Components  Reax: xX?= X%+D%?
e Relaxation

e Restriction
Restriction Interpolation

Subspace Correction

Interpolation
Solve: PAPx = P'r®

Transfer correction to fine scale
Compute x®® = x() + Px,
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Multigrid: the V-Cycle

Multigrid Components  Reax: xX?= X%+D%?
e Relaxation

Relax

e Restriction
Restriction Interpolation

Subspace Correction

Interpolation

Relaxation Solve: PAPx = PT®

Relax once again to damp errors introduced in subspace
correction
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Multigrid: the V-Cycle

Multigrid Components  Reax: xX?= X%+D%?

e Relaxation Relax

e Restriction

o Subspace Correction Restriction Interpolation
e Interpolation

e Relaxation Solve: PAPx.= P'rY

Direct solution of coarse-grid problem isn't practical
Recursion!
Apply same methodology to solve coarse-grid problem
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Multigrid: Operator-Induced Interpolation

Success of multigrid iteration depends on how well the range
of P captures the slow-to-converge modes of relaxation

e For simple relaxation, slow-to-converge modes are close
to eigenvectors of A with small eigenvalues

e Knowing structure of A (or continuum problem that
generated it) allows effective choice of P
For —V - KVp, Black Box MG reduces error in the A-norm
e by a factor bounded less than 1 per iteration
e at a cost per iteration proportional to the size of A

J.E. Dendy, Jr., J. Comput. Phys., 48, pp. 366-386, 1982.
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MSFEM and Optimal Solvers

For scalar elliptic PDEs, discretized by standard finite
elements, multigrid is an optimal solver.

e Error-reduction factor bounded independent of matrix size
e lteration cost is bounded proportional to matrix size
In essence, solving a problem with 2n degrees of freedom takes

twice as long as solving one with n degrees of freedom.

For MSFEM:
e Each basis function requires fine-scale solve over each

element in its support
e Total cost is proportional to number of fine-scale nodes

e Same as cost of solving fine-scale problem itself!
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Multigrid and Approximation

Optimal approximation properties rely on representing

functions where 224 is small

()

Operator-Induced Interpolation, P,
e chosen based on discrete operator

T .
e must accurately represent modes where XXT/)‘(X is small

Variational coarsening
e restricts A to range of interpolation

e explicitly constructs coarse-scale discrete model,
A. = PTAP

Modes needed for good approximation properties are
also needed for good multigrid performance
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Implicit Basis Functions

Fine-scale finite-element discretization:
A,'J- = eJ-TAe,- = / (K(X)V¢J) : V¢,
Q

Variational coarsening gives coarse-grid operator,

(Ac)j = (PTAP); = (P&;)T A(Pg))

o) o
_ /Q (/C(X)Vng) Vi

Variational coarsening implicitly defines basis functions on
coarse scale, ¢; = >, pi¢.

T. Grauschopf, M. Griebel, & H. Regler, Appl. Numer. Math., 23, 1997
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Periodic tiling of inclusion problem: C = 1000 in inclusions,
IC =1 in background
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Periodic tiling of inclusion problem: C = 1000 in inclusions,
IC =1 in background
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

03

03
y X

Bilinear basis function on coarse scale
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

03

03
Y X

Basis function accounting for coarsest 2 scales
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

03

03
Y X

Basis function accounting for coarsest 3 scales
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

03

03
Y X

Basis function accounting for coarsest 4 scales
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

03

¥ X

Basis function accounting for all scales
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Geostatistical Media

e Principle axis of statistical anisotropy chosen
e Correlation length of 0.8 along axis, 0.04 across axis

e log;,(K) normally distributed with mean 0, variance 4

C. Deutsch and A. Journal, GSLIB, geostatistical software library, 1998
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

X

Permeability field for O degrees
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Multigrid Basis Functions
Variational multigrid defines a multiscale finite element basis
1
08
0.6
04

0.2

0.6
y 04 045 05 0.55

X

Basis for node at (3, 1) for 0 degrees
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis
1

0 02 04 06 T 08 1

X

Permeability field for 30 degrees
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis
T

0.8 N

0.6+

0.4~
0.2~

0\
0.6

045 05 0.55

0.45

X

04

04

y
Basis for node at (3, 1) for 30 degrees
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

0 02 04 06 08 1

X

Permeability field for 45 degrees
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis
1

Basis for node at (3, 1) for 45 degrees
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Implicit Upscaling

Multigrid coarse-scale operators represent consistently
upscaled models

Equivalent to finite element discretization with implicit
basis functions

Accurately represent small-Rayleigh quotient modes
Require no fine-scale solution to form coarse-scale model

Are easily solved using multigrid
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Implicit Upscaling

Multigrid coarse-scale operators represent consistently
upscaled models

Equivalent to finite element discretization with implicit
basis functions

Accurately represent small-Rayleigh quotient modes
Require no fine-scale solution to form coarse-scale model
Are easily solved using multigrid

Algorithm:

e Form fine-scale discrete model

e Use operator-induced variation coarsening to create
coarse-scale models
Restrict sources and boundary conditions to chosen
computational scale
Solve model on chosen scale
Interpolate solution to fine scale
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The Multilevel Upscaling Algorithm

From a multigrid point of view, this is just not smoothing on
scales finer than the coarse (computational) scale

Grid Spacing
i Fine—scale
Restrict Interpolate
2h
Restrict Interpolate
4h Coarse-scale
4h Smooth Smooth
Restrict Interpolate
8h Smooth Smooth
16h Restrict Interpolate

Solve
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Adaptivity

MLUPS framework is a natural setting for adaptivity

Variational multigrid approach
e creates a hierarchy of models at different scales

e naturally restricts A-norm to coarse scales
e allows for coarse-scale error estimation

e allows for local improvement on scales finer than chosen
coarse scale

Nonlinear multigrid (FAS) framework gives flexible framework
for error estimation and control
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Test problems

Two-dimensional geostatistical media
e Chosen axis of statistical anisotropy
e Correlation lengths of 0.8 along axis, 0.04 across axis
e log;y(KC) normally distributed with mean 0, variance of 4
Boundary Conditions
e mean uniform flow driven by imposed Dirichlet boundaries
e h(0,y) =1 h(1,y)=0

e Homogeneous Neumann boundaries on top and bottom
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Test problems

IC chosen to be piecewise constant on 256 x 256 mesh

Four algorithms:
e Bilinear finite elements on 256 x 256 mesh

e MSFEM with coarse scale of 8 x 8 elements
e MLUPS with coarse scale of 8 x 8 elements

e MLUPSa with coarse scale of 8 x 8 elements

» MLUPSa is MLUPS with relaxation on all finer scales in
final interpolation

Accuracy measured versus solution of problem on 2048 x 2048
grid.
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Errors in Fine-Scale Pressures

Errors are measured in discrete vector norms:

le(h)ll2 = (

N

2 elh

evaluated at each node on the 2048 x 2048 mesh.
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Errors in Fine-Scale Flux

Errors measured component-wise in discrete vector norms:

1e(Q-%)]l> = ( > e@Q )  [[€(Q%) oo = max[e(Q-X);],

i=1

evaluated at cell-centers of the 2048 x 2048 mesh.
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Errors in Fine-Scale Flux

Errors measured component-wise in discrete vector norms:

2

e(@9)2 = (% > e(@: 9)?) 1e(@9) o = max|e(@9)]

evaluated at cell-centers of the 2048 x 2048 mesh.
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Summary

e Accurate simulation relies on resolving heterogeneities in
media

e Coefficient upscaling only valid in special cases

e Variational principles allow accurate upscaling of model

e MSFEM approach accurate, but expensive

e Operator-induced multigrid also captures necessary modes

e Multilevel Upscaling (MLUPS) approach accurate, 15
times cheaper than MSFEM

S.P. MacLachlan & J.D. Moulton, Water Resour. Res., 42, 2006

http://www.cs.umn.edu/ "maclach/research/multiscale.pdf
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Ongoing Research

Relationship between coefficient and model upscaling

Accounting for mass conservation in variational framework
¢ Removing artificial boundary conditions from MSFEM
Relationship between MSFEM and MLUPS

3D, time-dependent, nonlinear

Stochastic coefficients, stochastic FEM

Local error estimation and adaptivity

S.P. MacLachlan & J.D. Moulton, Water Resour. Res., 42, 2006

http://www.cs.umn.edu/ "maclach/research/multiscale.pdf
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