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Heterogeneous Media

What makes a medium heterogeneous?

• Large relative variation in material properties

• Abrupt changes in material properties

• Large variation in spatial scales

Why do we care?

• Many natural media are heterogeneous

• Fine-scale variation affects macroscopic behavior

• Simulation of heterogeneous media must resolve variation
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Subsurface Flow

Rate of flow through a reservoir depends on its composition

1

• Porosity & Permeability vary on scales from mm upwards

• Domain is ∼ 100m × 50m × 10m

From SPE Comparative Solution Project: www.spe.org/csp/
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Darcy’s Law

Model hydraulic head, h, of a fluid confined in a porous media

Q = −K∇h

Ss
∂h

∂t
+∇ · Q = q

• Q denotes the Darcy-law flux

• q represents external sources or sinks of fluid

• Material properties
I Ss = specific storage
I K = hydraulic conductivity
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Ocular Flow

2

A. Llobet et al, News Physiol. Sci. 18, pp 205-209, 2003.
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Trabecular Meshwork

3 4

(left) A. Llobet et al, News Physiol. Sci. 18, pp 205-209, 2003.
(right) Courtesy W.D. Stamer, U of Arizona & J.J. Heys, Arizona State U
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Cardiac Bidomain Equations

Model intra- and extra-cellular potentials, φi and φe , in cardiac
tissue:

Vm = φi − φe

AmCm
∂Vm

∂t
−∇ · (σi∇Vm) = ∇ · (σi∇φe)− AmIion

−∇ · ((σi + σe)∇φe) = ∇ · (σi∇Vm) + ie(t)

• Am is surface-to-volume ratio of the cell membrane

• Cm is the membrane capacitance per unit area

• Iion represents ionic currents

• ie(t) represents extracellular current injections

• Material properties
I σi = intracellular conductivity
I σe = extracellular conductivity
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Cardiac Tissue

5

Sample of rat left ventricular wall, dimensions are
approximately 3.6× 0.8× 0.8mm.

M. Trew, B. Smaill, and A. Pullan, preprint 3/7/2005.
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Elliptic Model Problem

A simpler model still displays same sensitivity to heterogeneity:

−∇ · (K∇h) = q

• Implicit time stepping adds lower-order term

• Main terms in operator-splitting approach

• Assume K = K(x), possibly tensor-valued

Develop approach for model problem, then extend to particular
applications
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Simulation Challenges

Even for model problem, simulation can be difficult

• If K(x) varies on a fine-enough scale, simulation may be
intractable

Example: 1 km × 1 km × 1 km reservoir, sediment
varies on mm-scale requires 1018 Degrees of
Freedom

Two approaches:

• Average conductivity to scale where simulation is possible

• Take variation in K(x) into account in discretization
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Effective Media

Given heterogeneous conductivity in a region, can we replace it
by a homogeneous one without changing overall flow?

In general,
• depends on medium

• depends on flow conditions

• no single average always works
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Effective Conductivity in One Dimension

Is it possible to replace a heterogeneous cell,

xppp
a

K1

ppp
b

K2

ppp
c

with an effective (homogenized, or equivalent) cell,

xppp
a

K̂
ppp
c

that doesn’t perturb the solution outside a < x < c ?

ĥ(a) = h(a), ĥ(c) = h(c)

Q̂(a) = Q(a), Q̂(c) = Q(c)
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Q̂(a) = Q(a), Q̂(c) = Q(c)

A Variational Approach to Upscaling Heterogeneous Media- p.12



Harmonic Averages

One-dimensional model problem:

− ∂

∂x
K ∂

∂x
h(x) = 0.

For constant K1 on [a, b], integrating in x gives[
h(b)
Q(b)

]
=

[
1 −b−a

K1

0 1

] [
h(a)
Q(a)

]
= Mb

a

[
h(a)
Q(a)

]
.

For a heterogeneous media, then[
h(c)
Q(c)

]
= Mc

bMb
a

[
h(a)
Q(a)

]
= M̂c

a

[
h(a)
Q(a)

]

If M̂c
a = Mc

bMb
a , then K̂ = (c − a)

(
b−a
K1

+ c−b
K2

)−1

.
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Asymptotic Analysis

ε

Let K = K(x
ε
), and consider

−∇ ·
(
K
(x

ε

)
∇hε

)
= q(x).

A two-scale asymptotic analysis gives behavior as ε → 0.
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Homogenization

Effective conductivity depends on unit cell, Y , relative to x
ε
.

Define

aε(u, v) =

∫
Y

(
K
(x

ε

)
∇εu

)
· ∇εv ,

then
ξT K̂ξT = min

φ∈H1
p (Y )

aε(pξ +∇φ, pξ +∇φ),

where
• ξ = ∇pξ is constant

• H1
p (Y ) is the Sobolev space, H1(Y ), with periodic

boundary conditions
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Explicit Averages

• In one dimension, answer was harmonic average

• In d dimensions, theory limited to periodic media

How bad are simple, explicit averages at approximating
effective conductivities?

Arbitrarily. Depending on flow conditions:

Arithmetic

Harmonic

x

y
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Weak Forms

Consider solution of

−∇ · K(x)∇p(x) = q(x)

Define

a(u, v) =

∫
Ω

(K(x)∇u(x)) · ∇v(x)

Properties of a(u, v):

• Defined for u (and v) such that
∫

Ω
∇u · ∇u < ∞

• Positive Definite: a(u, u) > 0 for u 6= 0

• Symmetric: a(u, v) = a(v , u),

Weak form defines an inner product and a norm on H1(Ω)
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Subspace Minimization

Let p be the solution of

a(p, ϕ) =
∫

Ω
q(x)ϕ(x) + BCs for all ϕ ∈ H1(Ω).

Given a subspace, V ⊂ H1(Ω), best solution in V is

pV = argmin
v∈V

a(p − v , p − v)

Minimizer must satisfy

a(pV , ϕ) =
∫

Ω
q(x)ϕ(x) + BCs for all ϕ ∈ V
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Basis Functions

Suppose V = span{φj(x)}n
j=1, then pV(x) =

∑n
j=1 pjφj(x).

Then,

n∑
j=1

pja(φj , φi) =

∫
Ω

q(x)φi(x) + BCsi = qi for all i .

Writing p = (p1, p2, . . . , pn)
T and q = (q1, q2, . . . , qn)

T , then

Ap = q,

where Aij = a(φj , φi).
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Classical Finite Elements

Want to choose basis, {φj}n
j=1, so that

• pV is a good approximation to p
• A and q are easy to calculate
• Ap = q is easy to solve

Typical choices:
• Piecewise linears on triangles and tetrahedra
• Piecewise bilinears on quadrilaterals
• Piecewise trilinears on hexahedra

Local bases on polyhedra, with as many degrees of freedom
as nodes

�
�

�
�

@
@

@
@

t t
t

a + bx + cy t t
t t
a + bx + cy + dxy
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Approximation Properties

• Take {φ̂j}∞j=1 to be an a(·, ·)-orthogonal basis for H1

• {φ̂j}n
j=1 is a basis for V ⊂ H1

Writing p =
∞∑
j=1

p̂j φ̂j , pV =
n∑

j=1

p̂j φ̂j

a(p − pV , p − pV) =
∞∑

j=n+1

p̂2
j a(φ̂j , φ̂j)

Want the projection of p onto V⊥ to be small in the
a(·, ·)-norm

For a general q (+ BCs), p̂j =
R
Ω qφ̂j

a(φ̂j ,φ̂j )

• Important to capture modes where
R
Ω qφ̂j

a(φ̂j ,φ̂j )
is large

• Important to capture functions where a(ϕ,ϕ)
〈ϕ,ϕ〉 is small
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Multiscale Finite Element Method
6

Compute nodal basis of modes where a(ϕ,ϕ)
〈ϕ,ϕ〉 is small

• Given Ω, partition into elements on scale for computation

• For each node, choose non-zero support over neighboring
elements

Ω -

t t t tt t t tt t t tt t t t
-

t t t tt t t tt t t tt t t t
�
�
�

�
��

�
�

��

�
�

�
�

�
�

��

�
��

�
�
�

T. Hou and X. Wu, J. Comput. Phys., 134, pp. 169–189, 1997.
T. Hou, X. Wu, and Z. Cai, Math. Comp., 68, pp. 913–943, 1999.

A Variational Approach to Upscaling Heterogeneous Media- p.22



Multiscale Finite Element Method
7

Compute nodal basis of modes where a(ϕ,ϕ)
〈ϕ,ϕ〉 is small

• Nodal basis implies φi(xj) = δij

• Take φi(x) = 0 on boundary of its support

Can φi = argmin{a(ϕ,ϕ)
〈ϕ,ϕ〉 : ϕ(xj) = δij , ϕ(x) = 0 on ∂Ωi}?

I don’t know.
Hou et al. ignore the denominator

• define φi piecewise on each element

• fix boundary conditions and solve a(φi , ϕ) = 0 on interior

T. Hou and X. Wu, J. Comput. Phys., 134, pp. 169–189, 1997.
T. Hou, X. Wu, and Z. Cai, Math. Comp., 68, pp. 913–943, 1999.
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Artificial Boundary Conditions

Consider the element adjacent to node i ,

t t
tt

i

• Fix φi(xi) = 1

• Set φi(x) = 0 on ∂Ωi

• Solve a(φi , ϕ) = 0 in interior
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Artificial Boundary Conditions

Consider the element adjacent to node i ,

t
tt

t
i

• Fix φi(xi) = 1

• Set φi(x) = 0 on ∂Ωi

• Impose boundary conditions on remaining edges

• Solve a(φi , ϕ) = 0 in interior

Exact boundary conditions aren’t known

• use linear

• solve one-dimensional problem along edge
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Computational Cost of MSFEM
For each node of each element, need to compute basis function

Ci,j

Fi,j

• constant permeability
tensor given on each
fine-scale cell Fi ,j

• choose computational
scale, Ci ,j

• solve for basis function
of node (k , l) over Ci ,j

We had three goals for our basis:

• good approximation
• easy to calculate A and q
• easy to solve Ap = q

What is the cost of finding four basis functions over
each element, compared to solving fine-scale equations?
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Multigrid: Relaxation on Ax = b

• Want to improve approximation, x(0)

• Introduce residual, r(0) = b− Ax(0) = A(x− x(0))

• Take x(1) = x(0) + D−1r(0), for D−1 ≈ A−1

Error propagation form: e(1) = (I − D−1A) e(0)
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Multigrid: Relaxation on Ax = b

• Want to improve approximation, x(0)

• Introduce residual, r(0) = b− Ax(0) = A(x− x(0))

• Take x(1) = x(0) + D−1r(0), for D−1 ≈ A−1

Error propagation form: e(n) = (I − D−1A)ne(0)

Jacobi and Gauss-Seidel may be slow to converge, but their
failure is structured

• Eigenvectors of small eigenvalues of D−1A are slow to
change

• Can we use this to our advantage?
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Multigrid: Subspace Correction

Dominant error after relaxation lies in a subspace

What if we could resolve this error by another process that
acted only on the subspace?
Need
• complementary process

• way to combine its results with relaxation

Want a map from the subspace to the whole space.
Interpolation!
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Multigrid: Variational Coarsening

• Have x(1), approximation after relaxation

• Let P be map from any subspace to whole space

• Corrected approximation will be x(2) = x(1) + Pxc

What is the best xc for correction?

A Variational Approach to Upscaling Heterogeneous Media- p.28



Multigrid: Variational Coarsening

• Have x(1), approximation after relaxation

• Let P be map from any subspace to whole space

• Corrected approximation will be x(2) = x(1) + Pxc

What is the best xc for correction?

Symmetric and positive-definite matrix, A, defines an inner
product and a norm:

〈x, y〉A = yTAx and ‖x‖2
A = xTAx

Best then means closest to the exact solution in norm:

y? = argmin
y

‖x− y‖A
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Multigrid: Variational Coarsening

• Have x(1), approximation after relaxation

• Let P be map from any subspace to whole space

• Corrected approximation will be x(2) = x(1) + Pxc

What is the best xc for correction?

Closest approximation to x after correction given by

xc = argmin
yc

‖x− (x(1) + Pyc)‖A

Best xc satisfies (PTAP)xc = PTA(x− x(1)) = PT r(1)
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Multigrid: the V-Cycle

Multigrid Components

• Relaxation

• Restriction

• Subspace Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0) (0)r-1+D

• Use a relaxation process (such as Jacobi or Gauss-Seidel)
to damp errors

• Remaining error satisfies Ae(1) = r(1) = b− Ax(1)
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Multigrid: the V-Cycle

Multigrid Components

• Relaxation

• Restriction

• Subspace Correction

• Interpolation

• Relaxation

Restriction

Relax: x(1)= x(0) (0)r-1+D

• Transfer residual to subspace

• Compute PT r(1)
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Multigrid: the V-Cycle

Multigrid Components

• Relaxation

• Restriction

• Subspace Correction

• Interpolation

• Relaxation

Restriction

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0)+D (0)r-1

• Use subspace correction to eliminate dominating errors

• Best correction, xc , in terms of A-norm satisfies

PTAPxc = PT r(1)
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Multigrid: the V-Cycle

Multigrid Components

• Relaxation

• Restriction

• Subspace Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D

• Transfer correction to fine scale

• Compute x(2) = x(1) + Pxc
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Multigrid: the V-Cycle

Multigrid Components

• Relaxation

• Restriction

• Subspace Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D
Relax

• Relax once again to damp errors introduced in subspace
correction
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Multigrid: the V-Cycle

Multigrid Components

• Relaxation

• Restriction

• Subspace Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D
Relax

Direct solution of coarse-grid problem isn’t practical
Recursion!

Apply same methodology to solve coarse-grid problem

A Variational Approach to Upscaling Heterogeneous Media- p.29



Multigrid: Operator-Induced Interpolation8

Success of multigrid iteration depends on how well the range
of P captures the slow-to-converge modes of relaxation

• For simple relaxation, slow-to-converge modes are close
to eigenvectors of A with small eigenvalues

• Knowing structure of A (or continuum problem that
generated it) allows effective choice of P

For −∇ · K∇p, Black Box MG reduces error in the A-norm

• by a factor bounded less than 1 per iteration

• at a cost per iteration proportional to the size of A

J.E. Dendy, Jr., J. Comput. Phys., 48, pp. 366-386, 1982.
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MSFEM and Optimal Solvers

For scalar elliptic PDEs, discretized by standard finite
elements, multigrid is an optimal solver.

• Error-reduction factor bounded independent of matrix size

• Iteration cost is bounded proportional to matrix size

In essence, solving a problem with 2n degrees of freedom takes
twice as long as solving one with n degrees of freedom.
For MSFEM:

• Each basis function requires fine-scale solve over each
element in its support

• Total cost is proportional to number of fine-scale nodes

• Same as cost of solving fine-scale problem itself!
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Multigrid and Approximation

Optimal approximation properties rely on representing
functions where a(ϕ,ϕ)

〈ϕ,ϕ〉 is small

Operator-Induced Interpolation, P ,
• chosen based on discrete operator

• must accurately represent modes where xT Ax
xT x

is small

Variational coarsening

• restricts A to range of interpolation

• explicitly constructs coarse-scale discrete model,
Ac = PTAP

Modes needed for good approximation properties are
also needed for good multigrid performance
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Implicit Basis Functions
9 Fine-scale finite-element discretization:

Aij = eT
j Aei =

∫
Ω

(K(x)∇φj) · ∇φi

Variational coarsening gives coarse-grid operator,

(Ac)ij = (PTAP)ij = (P êj)
TA(P êi)

=

∫
Ω

(
K(x)∇

(∑
k

pkjφk

))
· ∇

(∑
l

pliφl

)

=

∫
Ω

(
K(x)∇φ̂j

)
· ∇φ̂i

Variational coarsening implicitly defines basis functions on
coarse scale, φ̂i =

∑
l pliφl .

T. Grauschopf, M. Griebel, & H. Regler, Appl. Numer. Math., 23, 1997
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Periodic tiling of inclusion problem: K = 1000 in inclusions,
K = 1 in background
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Periodic tiling of inclusion problem: K = 1000 in inclusions,
K = 1 in background
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Bilinear basis function on coarse scale
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Basis function accounting for coarsest 2 scales
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Basis function accounting for coarsest 3 scales
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Basis function accounting for coarsest 4 scales
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Basis function accounting for all scales
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Geostatistical Media
10

• Principle axis of statistical anisotropy chosen

• Correlation length of 0.8 along axis, 0.04 across axis

• log10(K) normally distributed with mean 0, variance 4

C. Deutsch and A. Journal, GSLIB, geostatistical software library, 1998
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Permeability field for 0 degrees
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Basis for node at (1
2
, 1

2
) for 0 degrees
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Permeability field for 30 degrees
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Basis for node at (1
2
, 1

2
) for 30 degrees

A Variational Approach to Upscaling Heterogeneous Media- p.36



Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Permeability field for 45 degrees
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Multigrid Basis Functions

Variational multigrid defines a multiscale finite element basis

Basis for node at (1
2
, 1

2
) for 45 degrees
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Implicit Upscaling

Multigrid coarse-scale operators represent consistently
upscaled models

• Equivalent to finite element discretization with implicit
basis functions

• Accurately represent small-Rayleigh quotient modes
• Require no fine-scale solution to form coarse-scale model
• Are easily solved using multigrid

Algorithm:
• Form fine-scale discrete model
• Use operator-induced variation coarsening to create

coarse-scale models
• Restrict sources and boundary conditions to chosen

computational scale
• Solve model on chosen scale
• Interpolate solution to fine scale
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Implicit Upscaling

Multigrid coarse-scale operators represent consistently
upscaled models

• Equivalent to finite element discretization with implicit
basis functions

• Accurately represent small-Rayleigh quotient modes
• Require no fine-scale solution to form coarse-scale model
• Are easily solved using multigrid

Algorithm:
• Form fine-scale discrete model
• Use operator-induced variation coarsening to create

coarse-scale models
• Restrict sources and boundary conditions to chosen

computational scale
• Solve model on chosen scale
• Interpolate solution to fine scale
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The Multilevel Upscaling Algorithm

From a multigrid point of view, this is just not smoothing on
scales finer than the coarse (computational) scale

Smooth

Smooth Smooth

Smooth
Interpolate

Interpolate

Restrict

Restrict

Solve
16h

8h

4h

Interpolate

Interpolate
h

2h

4h

Restrict

Restrict

Grid Spacing
Fine−scale

Coarse−scale
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Adaptivity

MLUPS framework is a natural setting for adaptivity

Variational multigrid approach
• creates a hierarchy of models at different scales

• naturally restricts A-norm to coarse scales

• allows for coarse-scale error estimation

• allows for local improvement on scales finer than chosen
coarse scale

Nonlinear multigrid (FAS) framework gives flexible framework
for error estimation and control
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Test problems

Two-dimensional geostatistical media

• Chosen axis of statistical anisotropy

• Correlation lengths of 0.8 along axis, 0.04 across axis

• log10(K) normally distributed with mean 0, variance of 4

Boundary Conditions

• mean uniform flow driven by imposed Dirichlet boundaries

• h(0, y) = 1, h(1, y) = 0

• Homogeneous Neumann boundaries on top and bottom
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Test problems

K chosen to be piecewise constant on 256× 256 mesh

Four algorithms:
• Bilinear finite elements on 256× 256 mesh

• MSFEM with coarse scale of 8× 8 elements

• MLUPS with coarse scale of 8× 8 elements

• MLUPSa with coarse scale of 8× 8 elements
I MLUPSa is MLUPS with relaxation on all finer scales in

final interpolation

Accuracy measured versus solution of problem on 2048× 2048
grid.
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Errors in Fine-Scale Pressures

Errors are measured in discrete vector norms:

‖e(h)‖2 =

(
1

N

N∑
i=1

e(h)2
i

) 1
2

, ‖e(h)‖∞ = max
i
|e(h)i | ,

evaluated at each node on the 2048× 2048 mesh.
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Errors in Fine-Scale Flux

Errors measured component-wise in discrete vector norms:

‖e(Q·x̂)‖2 =

(
1

N

N∑
i=1

e(Q · x̂)2
i

) 1
2

, ‖e(Q·x̂)‖∞ = max
i
|e(Q·x̂)i | ,

evaluated at cell-centers of the 2048× 2048 mesh.
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Errors in Fine-Scale Flux

Errors measured component-wise in discrete vector norms:

‖e(Q·ŷ)‖2 =

(
1

N

N∑
i=1

e(Q · ŷ)2
i

) 1
2

, ‖e(Q·ŷ)‖∞ = max
i
|e(Q·ŷ)i | ,

evaluated at cell-centers of the 2048× 2048 mesh.
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Summary
11

• Accurate simulation relies on resolving heterogeneities in
media

• Coefficient upscaling only valid in special cases

• Variational principles allow accurate upscaling of model

• MSFEM approach accurate, but expensive

• Operator-induced multigrid also captures necessary modes

• Multilevel Upscaling (MLUPS) approach accurate, 15
times cheaper than MSFEM

S.P. MacLachlan & J.D. Moulton, Water Resour. Res., 42, 2006
http://www.cs.umn.edu/~maclach/research/multiscale.pdf

A Variational Approach to Upscaling Heterogeneous Media- p.45

http://www.cs.umn.edu/~maclach/research/multiscale.pdf


Ongoing Research
12

• Relationship between coefficient and model upscaling

• Accounting for mass conservation in variational framework

• Removing artificial boundary conditions from MSFEM

• Relationship between MSFEM and MLUPS

• 3D, time-dependent, nonlinear

• Stochastic coefficients, stochastic FEM

• Local error estimation and adaptivity

S.P. MacLachlan & J.D. Moulton, Water Resour. Res., 42, 2006
http://www.cs.umn.edu/~maclach/research/multiscale.pdf
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