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Preconditioning

Goal: solve Ax = b as efficiently as possible

Difficulty grows with discrete problem size, n
• Condition Number

• Cost of LU factorization

• Total cost of Jacobi iteration

• Total cost of Krylov subspace iteration

Idea: Transform A to control total costs

Ax = b → B−1Ax = B−1b

• Number of Krylov iterations independent of n

• Cost of computing B−1r grows like nnz(A)
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Algebraic Preconditioners

If we know where A came from, we have a good chance to
define an effective B

What if we don’t?
• continuum problem or application

• discretization procedure

• problem already transformed (unsuccessfully)

• variability in coefficients

• new application

Algebraic preconditioners define B based only on A
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Multilevel Preconditioners

Some types of error may be easily eliminated

• A may have small independent sets of variables

• May know some part of solution

• Richardson iteration, I − σ
‖A‖A, effectively eliminates

eigenvectors with large eigenvalues

Idea: Treat errors that are not easily eliminated separately

• easy to resolve → fine subspace
I treat with A as given

• hard to resolve → coarse subspace
I restrict A to this subspace and resolve there
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Errors and Residuals

(Preconditioned) Residual is only indicator of error

Arnoldi recombines iterates with their residuals:
• vj+1 = α

(
Avj −

∑j
i=1 hijvi

)
Krylov space grows in direction of residual:

• span{vj} = span{Ajv0}

At early stages, error dominated by components with
small relative residuals

Hard to reduce e when r = Ae is small compared to e
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Harmonic Extensions

Ae can be smaller than e if (Ae)i = 0 when ei 6= 0 for many i .

Partition A and e:

Ae =

[
Aff −Afc

−Acf Acc

](
ef

ec

)

If

e =

[
A−1

ff Afc

I

]
ec ,

then e is called the harmonic extension of ec
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Block Factorization

Partition

Ax =

[
Aff −Afc

−Acf Acc

](
xf

xc

)
=

(
bf

bc

)
= b,

then block factor,

A =

[
I 0

−Acf A
−1
ff I

] [
Aff 0

0 Âcc

] [
I −A−1

ff Afc

0 I

]
,

where

Âcc =

[
A−1

ff Afc

I

]T

A

[
A−1

ff Afc

I

]
= Acc − Acf A

−1
ff Afc .
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Approximate Block Factorizations

Block factorization,

A =

[
I 0

−Acf A
−1
ff I

] [
Aff 0

0 Âcc

] [
I −A−1

ff Afc

0 I

]
,

suggests a preconditioning strategy. If

• A−1
ff yf is easily approximated

• Âccxc = yc is easily (approximately) solved

then A−1 is easily approximated.

Many preconditioners are based on this principle

AMLI, additive multigrid, approximate cyclic reduction, ILUM,
ARMS, . . .
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Algebraic Recursive Multilevel Solver1

Approximate Aff by its ILUT factors, Aff ≈ LU .
Preconditioner is

B =

[
I 0

−Acf U
−1L−1 I

] [
LU 0
0 S

] [
I −U−1L−1Afc

0 I

]
,

where S ≈ Acc − Acf U
−1L−1Afc .

Coarse-grid problems

• computed using techniques akin to ILUT

• solved recursively

Y. Saad and B. Suchomel, Numer. Linear Algebra Appl. 2002, 9:359-378
Greedy strategies for multilevel partitioning- p.9



ARMS Analysis2

Let

• A be symmetric and positive definite

• B =
[

I 0
−Acf D

−1
ff I

] [
Dff 0
0 S

] [
I −D−1

ff Afc

0 I

]
•

[
Dff −Afc
−Acf Acc

]
be positive semi-definite

• xT
f Dff xf ≤ λminxT

f Dff xf ≤ xT
f Aff xf ≤ λmaxxT

f Dff xf

• νminxT
c Sxc ≤ xT

c Âccxc ≤ νmaxxT
c Sxc

Then,

κ(B− 1
2 AB− 1

2 ) ≤
(

1 +

√
1− 1

λmax

)2
λ2

maxνmax

min(νmin, λmin)
.

Y. Notay, Numer. Linear Algebra Appl. 2005, 12:419-451
Greedy strategies for multilevel partitioning- p.10



Role of Partitioning

Bound depends on

• equivalence of Dff and Aff

• equivalence of S and Âcc

Goals of partition are

• effective reduction, |C | � |F |
• efficient computation of D−1

ff yf

• good equivalence, λmax small
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Diagonal Dominance

Jacobi on Aff converges if it is diagonally dominant
Stronger dominance → faster convergence

Aff is θ-dominant if, for each i ∈ F ,

|aii | ≥ θ
∑
j∈F

|aij |

Partitioning Goal: Find largest set F such that Aff is
θ-dominant.
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Complexity

The problem,

max{|F | : Aff is θ-dominant},

is NP-complete.

Instead, use simple greedy strategy:

• define measure of suitability for F

• Add all acceptable points to F

• Remove some unsuitable points into C

• Update measures of undecided points
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The Symmetric Case

Measure is given by diagonal dominance

• Initialize U = {1, . . . , n}, F = C = ∅

• For each point in U , compute θ̂i =
|aii |∑

j∈F∪U

|aij |

• Whenever θ̂i ≥ θ, i → F

• While U 6= ∅, pick j = argmini∈U{θ̂i}
I j → C
I Update θ̂i for all i ∈ U with aji 6= 0
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The Non-Symmetric Case

Separate measures for rows and columns

• Accept/reject rows based on row diagonal dominance

• Accept/reject columns based on interaction with rows

Same strategy as symmetric case, but now

• look for dominance of row by any eligible column

• accept row/column pairs that give θ-dominance

• reject rows whenever no domination is possible

• reject single column when no row can be sorted

Resulting partition comes from nonsymmetric permutation
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Theory and Practice

For θ-dominant Aff , want σ(D−1
ff Aff ) bounded

• True if Dff = diag(Aff )
I sparsest possible ILU of Aff

• More fill within incomplete factorization should give
better equivalence

Combine dominance-based partitioning with classical algebraic
coarsening

• Diagonal-dominance partitioning

• ILUT, fixed drop and fill thresholds

• Compute S ≈ Âcc using thresholding

• Recursively solve coarse-scale system
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PDE Test Problems

Two-dimensional bilinear finite element discretizations of

−∇ · K (x , y)∇p(x , y) = 0.

Problem 1: K (x , y) = 1

Problem 2: K (x , y) = 10−8 + 10(x2 + y 2)

Problem 3: K (x , y) = 10−8 on 20% of the cells, chosen
randomly; K (x , y) = 1 otherwise

Problem 4: K (x , y) = [ 1 0
0 0.01 ]
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ARMS Results

Prob. Grid cB tsetup tsolve # iters.
128× 128 2.59 0.3 0.3 28

1 256× 256 2.65 1.5 2.5 44
512× 512 2.68 12.7 24.5 82
128× 128 2.60 0.3 0.4 31

2 256× 256 2.65 1.5 3.4 56
512× 512 2.68 12.7 31.7 97
128× 128 1.40 0.2 0.4 32

3 256× 256 1.41 0.7 2.5 45
512× 512 1.42 3.1 25.1 83
128× 128 1.61 0.2 0.3 26

4 256× 256 1.62 0.8 2.3 42
512× 512 1.63 3.3 17.3 65
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General ARMS Tests3

• Test set from Rutherford-Appleton Labs

• 22 Selected problems, from 120K to 3.6M non-zeros

• Compared to ILUTP, fill factors adjusted to match ARMS
preconditioner complexities

Results:

• ARMS converged in available memory (2GB + 1 GB
swap) on 21 problems

• ILUTP converged for 12 problems, limited to memory or
2× ARMS iteration count

N. Gould and J. Scott, ACM Trans. Math. Softw. 2004, 30:300-325
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Nonsymmetric Tests4

• Test problems from earlier paper (58 matrices)

• Test problems from circuit simulation (41 matrices)

Compare using performance profiles

• S = set of solvers

• P = set of problems

• sij = performance of solver i ∈ S on problem j ∈ P

Define ŝj = min
i∈S

{sij}, then take

pi(α) =
|{j : sij ≤ αŝj}|

|P|

Y. Saad, SIAM J. Sci. Comp. 2006, 27:1032-1057
E. Dolan and J. Moré, Math. Program., Ser. A 2002, 91:201-213
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General Nonsymmetric Tests

• ILUTP, ARMS
I use new (single-stage) partitioning and old (two-stage)

approach
• 58 problems from Harwell-Boeing collection

I All RUA matrices with dimension > 500
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Circuit Simulation Tests
• ILUTP, ARMS

I use new (single-stage) partitioning and old (two-stage)
approach

• 41 problems from UF collection
I Bomhof, Hamm, Schenk, and Wang collections
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Further Reorderings5

Can ARMS partitions be improved by further reordering?

• Aff block ordered as F -rows are selected

• Consider RCM, dissection, MMD, QMD, and AMF

Reordering often improves iteration times

• Improvement usually slight

• Added setup cost not usually recovered

• RCM or One-way Dissection work best

• Consistent with earlier studies of incomplete factorizations

I. Duff and G. Meurant, BIT 1989, 29:635-657
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Summary6

• Theoretical motivation: fine-scale spectral equivalence

• Choose partition to guarantee good equivalence

• Diagonal dominance is simple, but effective

• Multilevel results show robustness and efficiency

• Returns diminishing for improved partitions

Future Directions

• More complicated measures

• Better tuning of rest of ARMS solver

• Use spectral equivalence ideas to improve performance

http://www.cs.umn.edu/~maclach/research/selection.pdf
http://www.cs.umn.edu/~maclach/research/nonsymm.pdf
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Current Work7

Can we better use diagonal dominance of Aff in choice of Dff ?

• Consider ILU vs. MILU
I For M-Matrices, MILU gives better equivalence than ILU

• Aff is θ-diagonally dominant

Idea: Use compensation within ILU to improve/guarantee
spectral equivalence

I. Gustafsson, BIT 1978, 18:142-156
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ARMS vs. AMG8

ARMS is additive, AMG is multiplicative

• Multigrid equivalent of ARMS is AMGr
I Relaxation based only on Aff

I Interpolation based on approximation to A−1
ff

I Variational coarse-grid operator

• Additive preconditioner setting can be more forgiving

• Multiplicative solver setting can be more efficient

ARMS “works” more often than AMG
When AMG “works”, it is often more efficient than ARMS

S. MacLachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006.
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