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Preconditioning

Goal: solve Ax = b as efficiently as possible
Difficulty grows with discrete problem size, n
e Condition Number
e Cost of LU factorization
e Total cost of Jacobi iteration

e Total cost of Krylov subspace iteration
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Preconditioning

Goal: solve Ax = b as efficiently as possible
Difficulty grows with discrete problem size, n
e Condition Number
e Cost of LU factorization
e Total cost of Jacobi iteration
e Total cost of Krylov subspace iteration

Idea: Transform A to control total costs
Ax=b — B 'Ax=B"'b
e Number of Krylov iterations independent of n

e Cost of computing B~'r grows like nnz(A)
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Algebraic Preconditioners

If we know where A came from, we have a good chance to
define an effective B

What if we don't?
e continuum problem or application

discretization procedure

problem already transformed (unsuccessfully)

variability in coefficients

new application

Algebraic preconditioners define B based only on A
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Multilevel Preconditioners

Some types of error may be easily eliminated

¢ A may have small independent sets of variables
e May know some part of solution

e Richardson iteration, | — H%\HA’ effectively eliminates

eigenvectors with large eigenvalues
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Multilevel Preconditioners

Some types of error may be easily eliminated

¢ A may have small independent sets of variables
e May know some part of solution

e Richardson iteration, | — H%\HA’ effectively eliminates

eigenvectors with large eigenvalues

Idea: Treat errors that are not easily eliminated separately
e easy to resolve — fine subspace
» treat with A as given
e hard to resolve — coarse subspace
» restrict A to this subspace and resolve there
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Errors and Residuals

(Preconditioned) Residual is only indicator of error

Arnoldi recombines iterates with their residuals:

_ SV hevs
¢ Vir1=a (AVJ > iz hyvi

Krylov space grows in direction of residual:
e span{v;} = span{Av,}

At early stages, error dominated by components with
small relative residuals

Hard to reduce e when r = Ae is small compared to e
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Harmonic Extensions

Ae can be smaller than e if (Ae); = 0 when e; # 0 for many /.

Partition A and e:

. Ar  —Ar €r
Ae = |:_Acf Acc :| (ec)
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Harmonic Extensions

Ae can be smaller than e if (Ae); = 0 when e; # 0 for many /.

Partition A and e:
. Ar  —Ar €r
Ae N |: _Acf Acc :| ( €. )

-1
e — { AfflAfc 1 e,

then e is called the harmonic extension of e,

Greedy strategies for multilevel partitioning- p.6



Block Factorization

Partition

| Ar Ak xr\ _ ( bs\
Ax_|:_Acf Acc:|<xc)_(bc)_b’

then block factor,

A— / 0 A 0 I —Al A
—AsAL | 0 A 0 / ’

where

-1 T 1
Acc - |: Aﬁc/AfC :| A |: AfF/AfC :| == Acc - AcfAFflAfc.
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Approximate Block Factorizations

Block factorization,

suggests a preconditioning strategy. If
o A lys is easily approximated

o A.x. =Y. is easily (approximately) solved

then A~! is easily approximated.
Many preconditioners are based on this principle

AMLI, additive multigrid, approximate cyclic reduction, ILUM,
ARMS, ...
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Algebraic Recursive Multilevel Solver

Approximate Ag by its ILUT factors, Ag ~ LU.
Preconditioner is

/ 0} { LU O } { I —ULA,

B = —A U LY 0 S||o / ’

where S ~ A.c — AU L 1A,
Coarse-grid problems

e computed using techniques akin to [LUT

e solved recursively

Y. Saad and B. Suchomel, Numer. Linear Algebra Appl. 2002, 9:359-378
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ARMS Analysis

Let
e A be symmetric and positive definite

_ / O [Dg O I —D; 1A
B—[fAch;IIMos] o

[_DAffcf o] be positive semi-definite

T T T T

X; Deexe < AminXs Drxe < X7 Agrxe < AmaxXs DX
° Vminxz—sxc S XZ—ACCXC S Vmaxx;rsxc

Then,

2

1 v Vmax
/{(B‘zAB‘é)S(lJr 1- ) Ama/m

min(l/mim )\min) '

max

Y. Notay, Numer. Linear Algebra Appl. 2005, 12:419-451
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Role of Partitioning

Bound depends on
e equivalence of Dy and Ag
e equivalence of S and /Z\CC
Goals of partition are
o effective reduction, |C| < |F|
e efficient computation of Df;IYf

e good equivalence, A\pax small
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Diagonal Dominance

Jacobi on Ag converges if it is diagonally dominant
Stronger dominance — faster convergence

Ag is 6-dominant if, for each i € F,
|ai] > 0> |ay]

JEF

Partitioning Goal: Find largest set F such that Ag is
f-dominant.
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Complexity
The problem,
max{|F| : A is f-dominant},
is NP-complete.

Instead, use simple greedy strategy:
e define measure of suitability for F
e Add all acceptable points to F
e Remove some unsuitable points into C

e Update measures of undecided points

Greedy strategies for multilevel partitioning- p.13



The Symmetric Case

Measure is given by diagonal dominance

Initialize U ={1,...,n}, F=C =10

For each point in U, compute 0, =

Whenever 9A,- >0,i— F

While U # 0, pick j = argmin;.,{0;}
> j— C
» Update ; for all i € U with ajj #0
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The Non-Symmetric Case

Separate measures for rows and columns

e Accept/reject rows based on row diagonal dominance

e Accept/reject columns based on interaction with rows

Same strategy as symmetric case, but now
e look for dominance of row by any eligible column
e accept row/column pairs that give #-dominance

e reject rows whenever no domination is possible

reject single column when no row can be sorted

Resulting partition comes from nonsymmetric permutation
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Theory and Practice

For 6-dominant Ag, want a(Df}lAff) bounded

e True if fo = dlag(Aff)
» sparsest possible ILU of Ag

e More fill within incomplete factorization should give
better equivalence
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Theory and Practice

For 6-dominant Ag, want a(Df}lAff) bounded

e True if fo = dlag(Aff)
» sparsest possible ILU of Ag

e More fill within incomplete factorization should give
better equivalence

Combine dominance-based partitioning with classical algebraic
coarsening

e Diagonal-dominance partitioning
e ILUT, fixed drop and fill thresholds
o Compute S &~ A using thresholding

e Recursively solve coarse-scale system
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PDE Test Problems

Two-dimensional bilinear finite element discretizations of
—V - K(x,y)Vp(x,y) = 0.

Problem 1: K(x,y) =1

Problem 2: K(x,y) = 1078 + 10(x? + y?)

Problem 3: K(x,y) =107 on 20% of the cells, chosen
randomly; K(x,y) = 1 otherwise

Problem 4: K(x,y) =[3§0%]
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ARMS Results

Prob. Grid CB | tsetup | tsolve | FF iters.

128 x 128 || 259 | 0.3 | 0.3 28
1 256 x 256 || 265 | 15 | 25 44
512 x 512 || 2.68 | 12.7 | 24.5 82

128 x 128 | 260 | 0.3 | 0.4 31
2 256 x 256 || 2.65 | 15 | 3.4 56
512 x 512 || 2.68 | 12.7 | 31.7 97

128 x 128 | 1.40 | 0.2 | 0.4 32
3 256 x 256 || 1.41 | 0.7 | 25 45
512 x 512 | 1.42 | 3.1 | 25.1 83

128 x 128 || 1.61 | 0.2 | 0.3 26
4 256 x 256 || 1.62 | 0.8 | 2.3 42
512 x 512 || 1.63 | 3.3 | 17.3 65
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General ARMS Tests

e Test set from Rutherford-Appleton Labs
e 22 Selected problems, from 120K to 3.6M non-zeros

e Compared to ILUTP, fill factors adjusted to match ARMS
preconditioner complexities

N. Gould and J. Scott, ACM Trans. Math. Softw. 2004, 30:300-325
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General ARMS Tests

e Test set from Rutherford-Appleton Labs
e 22 Selected problems, from 120K to 3.6M non-zeros

e Compared to ILUTP, fill factors adjusted to match ARMS
preconditioner complexities

Results:

e ARMS converged in available memory (2GB + 1 GB
swap) on 21 problems

e |ILUTP converged for 12 problems, limited to memory or
2x ARMS iteration count

e |[LUTP needed fewer iterations for 8 problems

e Equal iterations for 1

o ARMS needed fewer iterations for 12

N. Gould and J. Scott, ACM Trans. Math. Softw. 2004, 30:300-325
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General ARMS Tests

e Test set from Rutherford-Appleton Labs
e 22 Selected problems, from 120K to 3.6M non-zeros

e Compared to ILUTP, fill factors adjusted to match ARMS
preconditioner complexities

Results:

e ARMS converged in available memory (2GB + 1 GB
swap) on 21 problems

e |ILUTP converged for 12 problems, limited to memory or
2x ARMS iteration count

e |[LUTP needed least time for 6 problems

e Equal time for 1

e ARMS faster for 14 problems

N. Gould and J. Scott, ACM Trans. Math. Softw. 2004, 30:300-325
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Nonsymmetric Tests

e Test problems from earlier paper (58 matrices)

e Test problems from circuit simulation (41 matrices)

Compare using performance profiles
e S = set of solvers
e P = set of problems
e s; = performance of solver i € S on problem j € P

Define §; = rlnelg{sy} then take

[/ : sy < a3}
pi(a) - J‘P‘ ’

Y. Saad, SIAM J. Sci. Comp. 2006, 27:1032-1057
E. Dolan and J. Moré, Math. Program., Ser. A 2002, 91:201-213
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General Nonsymmetric Tests
o ILUTP, ARMS

» use new (single-stage) partitioning and old (two-stage)
approach
e 58 problems from Harwell-Boeing collection
» All RUA matrices with dimension > 500
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Circuit Simulation Tests
e ILUTP, ARMS

» use new (single-stage) partitioning and old (two-stage)
approach
e 41 problems from UF collection
» Bomhof, Hamm, Schenk, and Wang collections
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Further Reorderings

Can ARMS partitions be improved by further reordering?

e A4 block ordered as F-rows are selected
Consider RCM, dissection, MMD, QMD, and AMF

Reordering often improves iteration times

Improvement usually slight

Added setup cost not usually recovered

RCM or One-way Dissection work best

Consistent with earlier studies of incomplete factorizations

|. Duff and G. Meurant, BIT 1989, 29:635-657
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Summary

Theoretical motivation: fine-scale spectral equivalence

Choose partition to guarantee good equivalence

Diagonal dominance is simple, but effective

Multilevel results show robustness and efficiency

Returns diminishing for improved partitions

http://www.cs.umn.edu/ maclach/research/selection.pdf

http://www.cs.umn.edu/ "maclach/research/nonsymm. pdf
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Summary

Theoretical motivation: fine-scale spectral equivalence

Choose partition to guarantee good equivalence

Diagonal dominance is simple, but effective

Multilevel results show robustness and efficiency
e Returns diminishing for improved partitions
Future Directions
e More complicated measures
e Better tuning of rest of ARMS solver

e Use spectral equivalence ideas to improve performance

http://www.cs.umn.edu/ maclach/research/selection.pdf

http://www.cs.umn.edu/ "maclach/research/nonsymm. pdf
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Current Work

Can we better use diagonal dominance of Ag in choice of Dg?

e Consider ILU vs. MILU
» For M-Matrices, MILU gives better equivalence than ILU

e Ag is f-diagonally dominant

|dea: Use compensation within ILU to improve/guarantee
spectral equivalence

|. Gustafsson, BIT 1978, 18:142-156
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ARMS vs. AMG

ARMS is additive, AMG is multiplicative

e Multigrid equivalent of ARMS is AMGr

» Relaxation based only on Ag
» Interpolation based on approximation to Ag,l
» Variational coarse-grid operator

e Additive preconditioner setting can be more forgiving

e Multiplicative solver setting can be more efficient

ARMS *“works” more often than AMG
When AMG “works”, it is often more efficient than ARMS

S. Maclachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006.
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