
Impr oving Robustnessin Multigrid
Methods

Scott MacLachlan

maclachl@colorado.edu

Department of Applied Mathematics, University of Colorado at Boulder

Improving Robustness in Multigrid Methods – p.1/59



Outline

Modern Scientific Computing

Multigrid Methods

Self-Correcting Multigrid Methods

Upscaling and Homogenization

Future Work

Improving Robustness in Multigrid Methods – p.2/59



Collaborator s

Steve McCormick

Tom Manteuffel

John Ruge

Marian Brezina

Rob Falgout

David Moulton

Improving Robustness in Multigrid Methods – p.3/59



Why Compute?

Interested in modeling physical processes

Diffusion (Heat, Energy, Chemical)
Fluid Flow
Particle Transport
Elastic Materials

Can describe these processes through differential
equations (both ODEs and PDEs)

Cannot write down closed form solutions

Need to find (approximate) solutions in other ways
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Scientific Computation

Interested in simulating complex physical systems with
parameters, and hence solutions, which vary on
multiple scales

Accuracy constraints lead to discretizations with tens of
millions, or even billions, of degrees of freedom (DOFs)

Need scalability, both algorithmic and parallel
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Properties of Discretizations

We consider (primarily) discretizations of the underlying
differential equations via finite elements or finite
differences

The matrices from these discretizations tend to be
Sparse (number of nonzeros per row doesn’t change
with �)
Ill-conditioned
Symmetric (if DE is)
Positive-Definite (if DE is)
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Dir ect Methods

Interested in solving

��� � �

Gauss Elimination involves factoring linear system into
an upper- and a lower-triangular part

Naive cost is

� � � 	�
 � � � � � 
 for a 3-dimensional
problem

Utilizing bandedness of our discretization matrix can
reduce cost to

� � � 
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Stationary Iterative Methods

Stationary iterative methods choose approximations� � ��� �

and iterate using the error equation

If

��� � � � � � � � 
 � � � �� �

, then � �� � � � ��� � � � � ��� � 


The Jacobi iteration chooses

�

to be the diagonal of

�

The Gauss-Seidel iteration chooses

�
to be the

lower-triangular part of

�
SOR chooses

�

to try and minimize � �� � � �
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Stationary Iterat ive Methods . . .

Jacobi and Gauss-Seidel converge to the level of
discretization error in

� � � � 
 operations for the
3-dimensional Poisson problem

SOR with an optimal parameter choice converges in� � � �
 operations

But, Jacobi and Gauss-Seidel resolve some
components much faster than others

In particular, for Poisson the geometrically smoothest
components of are the slowest to be resolved

For this reason, Jacobi and Gauss-Seidel are often
called smoothers - they smooth the error in the
approximation

Improving Robustness in Multigrid Methods – p.9/59



Stationary Iterat ive Methods . . .

Jacobi and Gauss-Seidel converge to the level of
discretization error in

� � � � 
 operations for the
3-dimensional Poisson problem

SOR with an optimal parameter choice converges in� � � �
 operations

But, Jacobi and Gauss-Seidel resolve some
components much faster than others

In particular, for Poisson the geometrically smoothest
components of � are the slowest to be resolved

For this reason, Jacobi and Gauss-Seidel are often
called smoothers - they smooth the error in the
approximation

Improving Robustness in Multigrid Methods – p.9/59



Krylo v Methods

Krylov methods find the optimal approximation to the
solution in a given subspace

Iteratively increase the size of the subspace to improve
accuracy

For Poisson, the Conjugate Gradient algorithm
converges in

� � � �
 operations (without any parameter
choice)
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Scalability

Because the problems we look to solve are so large,
even the cost of

� � � �� 
 is too much

If � � �� � �

, then

� �� � �� � 

An algorithm is said to be scalable (or fast) if it requires
only

� � �


or

� � � !#" $ �


operations

We must have scalable algorithms in order to solve
problems of interest at resolutions of interest
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Multigrid Basics

Need a solver whose performance doesn’t significantly
degrade as our problem size increases

Multigrid methods obtain optimal efficiency through
complementarity

Use a smoothing process (such as Gauss-Seidel) to
eliminate oscillatory errors

Use coarse grid correction to eliminate smooth errors

Obtain optimal efficiency through recursion
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CoarseGrid Corr ection

Smoothers, such as Jacobi or Gauss-Seidel, quickly
reduce oscillatory error and leave smooth error

Smooth error can be represented with fewer degrees of
freedom

Problems with fewer degrees of freedom can be solved
with less effort

Error which is smooth over many degrees of freedom
appears oscillatory when represented on fewer DOFs
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The V-Cycle

Relax

Solve

Restrict

Relax

Restrict

Relax

Interpolate

Relax

Relax

Interpolate

Relax
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Inter grid Transfer Operators

Multigrid V-Cycle requires transfers of residuals and
corrections from one grid to the next

Accomplished through Interpolation (Prolongation) and
Restriction operators (matrices!)

Often pick a form of interpolation ( ) and take
restriction (theoretical benefits)

Many choices for interpolation
Piecewise constant
Linear, bilinear, trilinear
. . .
Operator Induced
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CoarseGrid Operators

Smoothing on coarse grids requires operators on those
grids

These operators must well-approximate the fine grid
operator

Many ways to create coarse grid operators (CGOs)
Rediscretization
Averaging
Galerkin coarsening
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Variational Multigrid

Multigrid with

& � % '

and

�)( � & � %

is called a
variational formulation

Terminology comes from minimization form of :

Given an approximation to the solution on the fine
level, it can be shown that the optimal coarse grid
correction solves
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GeometricMultigrid

When the original problem

��� � �

comes from a
geometrically regular discretization of a DE, we can use
geometric information in the coarse-grid problems

Coarse grids can be created by removing points from
the fine-grid in a geometrically regular fashion

Coarse grid operators can be determined by simple
rediscretization on the reduced space

Interpolation operators can be determined by geometric
locations
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Algebraic Multigrid

In the absence of geometric information, choices must
be made based on algebraic information

Interpolation and coarse grids must be chosen based
on the ability to interpolate a suitable correction

Coarse grid operators must be chosen based on the
fine-grid operator - Galerkin coarsening may be the
most natural choice
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Self-Correcting AMG

Interested in applying algebraic multigrid methods to
“more difficult” problems, such as systems (e.g.
elasticity)

Develop an algebraic multigrid solver with increased
robustness properties while not sacrificing optimality

Develop a solver which defaults to simplicity if given a
simple problem
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BasicMultigrid Properties

Simple (Gauss-Seidel) Relaxation is inefficient for�� � �

on error components � that give relatively small
residuals:

��� is “small” relative to � (� is said to be
algebraically smooth)

Example: For s.p.d. matrices, Richardson iteration
stalls iff the error satisfies

For efficient multigrid performance, relaxation and
coarse grid correction must be complementary

Aim: construct coarsening to quickly eliminate
algebraically smooth components
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Main Ideas

Build a multigrid hierarchy based on an approximation
of the components that relaxation is slow to resolve

Complementarity of relaxation and coarse grid
correction means that if relaxation is inefficient on a
component then that component must be treated by
coarse grid correction

Components that are slow to converge for will
also be slow for
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Detailsof the Method

“Relax” on

�� � � with a random initial guess to quickly
resolve a representative of the slow-to-converge
components

or show that relaxation is sufficient for the
problem

Define a 2-grid method by choosing a coarse grid and
interpolation so that this component is in the range of
interpolation (and using variational properties)

Go to a multigrid method by recursion
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Details . . .

x  := rnd(1)
1

P
1

X  = {x  }
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Choosing Inter polation

Seek to define interpolation to fit an algebraically
smooth vector

Algebraic smoothness means

� � � 
?> @ �
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A, the neighborhood of

B
Coarse Grid Points

Fine Grid Points
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Choosing Inter polation

Seek to define interpolation to fit an algebraically
smooth vector

Algebraic smoothness means

� ��� 
?> @ �

or C> > � > @ �D 9 EGF
C> D � D

� �D 9 H F
C> D � D � � 9 IF
C> � � �

To define interpolation, need to collapse connections
from

*> to

J>
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Choosing Inter polation . . .

Seek to define interpolation to fit an algebraically
smooth vector

If is connected to a set of , we want to write

Have a vector, , such that and so

Eliminate extra terms by replacing matrix entry with
arbitrary
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Choosing Inter polation . . .

Eliminate extra terms by replacing matrix entry C � � with
arbitrary

R � �
R � � � O � P� � �D 9 H F
C �D � O � PD

Taking the value of given here, we can write

Use this formula to collapse all algebraically smooth
error
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Choosing Inter polation . . .

� � � D 9 H F
TUTUT C �D � O � P�

DS 9 H F
C �DS � O � PDS

VUVUV � D � D 9 H F
; �D � D

Then, using the definition of algebraic smoothness, we
have

C> > � > @ �D 9 H F
C> D � D � � 9 IF
C> � � �

C> > � > @ �D 9 H F
C> D � D � � 9 IF D 9 H F
C> � ; �D � D
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Choosing Inter polation . . .

So, we define interpolation to a fine grid point

W
as

� > � �D 9 H F
C> D �

� 9 IF
C> � ; �D

C> > � D

� �D 9 H F
C> D �

� 9 IF
C> � TUTUT C �D � O � P�

DS 9 H F
C �DS � O � PDS

VUVUV

C> > � D
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Scaling Property

If we scale

�

as

X � X

for some diagonal matrix
X

,
scAMG performance need not suffer

If

��� O � P � � , then

X � X � X � � � O � P 
 � �
Replacing � O � P

with

X � � � O � P

, can show that coarse grid
matrices for

X � X

are simply diagonally-rescaled
versions of the coarse grid matrices for

�

Pointwise relaxation is also invariant to diagonal scaling

If we can generate

X � � � O � P
as easily as we get � O � P

,
overall performance won’t degrade
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Curr ent Assumptions

Coarse grids are predetermined and sufficient for full
multigrid efficiency

Currently choosing coarse grids based on geometric
criteria, could also use Ruge-Stueben algebraic
coarsening
Eventually hope to determine coarse grids
adaptively as well (Compatible Relaxation)
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Numerical Results

� Y[Z X � � / \
 Y<] � � / \
 � � on

^�_/ � `  

Geometric choice of coarse grids

Interpolation chosen as above given the vector � O � P

given by two cycles of a multilevel relaxation procedure
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a b c

(Laplace)

size Dirichlet BCs Neumann BCsd -fe d -

0.058 0.064g he g h

0.065 0.067� -i e � -i

0.068 0.070-j ge -j g

0.070 0.070j � -fe j � -

0.070 0.070�� - he �� - h

0.070 0.070
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PiecewiseConstant a
Dirichlet BCs on left and right, Neumann BCs on top
and bottom

X � � � / \
 � ��  � � / \
 L ^ � 	/  	 `  �

otherwise

X � � / \
 � � � � \ k � �
otherwise

size

X � � � / \
 X � � / \


d - e d -

0.078 0.060

g he g h

0.094 0.067

� -i e � -i

0.081 0.069

-j ge -j g

0.106 0.070

j � - e j � -

0.169 0.070

�� - he �� - h

0.384 0.070
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otherwise

X � � / \
 � � � � \ k � �
otherwise

size

X � � � / \
 X � � / \


d - e d -

0.078

0.060g he g h

0.094

0.067� -i e � -i

0.081

0.069-j ge -j g

0.106

0.070j � - e j � -

0.169

0.070�� - he �� - h

0.384

0.070

Improving Robustness in Multigrid Methods – p.36/59



PiecewiseConstant a
Dirichlet BCs on left and right, Neumann BCs on top
and bottom

X � � � / \
 � ��  � � / \
 L ^ � 	/  	 `  �

otherwise

X � � / \
 � � � � \ k � �
otherwise

size

X � � � / \
 X � � / \


d - e d -

0.078 0.060g he g h
0.094 0.067� -i e � -i
0.081 0.069-j ge -j g
0.106 0.070j � - e j � -
0.169 0.070�� - he �� - h

0.384 0.070

Improving Robustness in Multigrid Methods – p.36/59



ScaledLaplace

Scaling is done based on

� � / \
 -coordinates of each
node, � � l 56 �j h m#n � 
 l 56 � ho g n \
 � �� � 


size Dirichlet BCs Neumann BCsd -fe d -

0.058 0.064g he g h

0.066 0.067� -i e � -i

0.068 0.070-j ge -j g

0.070 0.070j � -fe j � -

0.070 0.070�� - he �� - h
0.070 0.070
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ScaledPW Constant a
size

X � � � / \
 X � � / \


d - e d -

0.078 0.060g he g h

0.091 0.067� -i e � -i

0.087 0.069-j ge -j g

0.348 0.070j � - e j � -

0.190 0.070�� - he �� - h

0.918 0.070
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PorousMedia Flow

Interested in simulating, for example, flow in a reservoir

Model saturated flow via Darcy’s Law:

] � � / \
 � � X � � / \
 Y<p � � / \


Y Z ] � � / \
 � q � � / \


Simulation domain is on the order of meters in
length in each dimension

Fine scale changes in material properties on the order
of meters

Range of scales is on the order of

Improving Robustness in Multigrid Methods – p.39/59



PorousMedia Flow

Interested in simulating, for example, flow in a reservoir

Model saturated flow via Darcy’s Law:

] � � / \
 � � X � � / \
 Y<p � � / \


Y Z ] � � / \
 � q � � / \

Simulation domain is on the order of

�� 	

meters in
length in each dimension

Fine scale changes in material properties on the order
of

� � � 	

meters

Range of scales is on the order of

�� r
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The Curseof Dimensionality

As we consider 2- and 3-dimensional simulations, cost
of resolution increases exponentially

For 1-D porous media flow, need s � � r
DOFs

For 2-D porous media flow, need DOFs

For 3-D porous media flow, need DOFs

Fully resolved 3-D simulation is still beyond the
capability of modern supercomputers (the fastest of
which performs floating point operations per
second)
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For 3-D porous media flow, need s � � �t
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d_u j e �� � 	
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The Needfor Upscaling

Naive discretizations require too many DOFs to be
computationally feasible

We must accurately account for the influence of
fine-scale variation in the material properties if we hope
to obtain physically meaningful solutions

In general, we cannot directly account for the influence
of fine-scale variation in material properties in a
coarse-scale discretization

The goal of upscaling and homogenization techniques
is to derive effective, coarse-scale material properties to
use in coarse-scale models and discretizations
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Durlofsky’sApproach

Based on a two-scale asymptotic analysis, and thus
strictly valid only for two-scale periodic media

Consider pressure which is locally of the form

p � pv � wZ � � � � v 
/
then the average flow through a local cell can be shown
to be . ] 1 � � x X Z wu

So, the local effective permeability can be recovered by
choosing boundary conditions to induce particular

w

and then calculating the average flow for that

w

Overall upscaling technique requires solution of 2
fine-scale problems over each macro-element (in 2D)
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Inter pretation of Multigrid CGOs

Consider a fine-scale discretization via finite elements

�> D � � 'D ��� > � y . X � � / \
 Y z> / Y zD 1 R {

Use of Galerkin coarsening means that the coarse grid
operator is equivalent to a finite element discretization
on that grid

� �( 
|> D � � % ' � %
> D � � % x� D 
 ' � � % x� > 


� �
� p �D � '� 
 � �
} p} > �} 


� ��~}
p �D p} > � � '� � �} 
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Inter pretation . . .

So,

� �( 
|> D � �~}
p �D p} > y . X � � / \
 Y z} / Y z � 1 R {

� y X � � / \
 Y
} p} > z} / Y
� p �D z � R {

� y . X � � / \
 Y xz> / Y xzD 1 R {

Basis functions on coarse grids come from summing
the fine grid basis functions (weighted by the
interpolation/restriction operators)
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BoxMG

The Black Box Multigrid Algorithm (BoxMG) was
developed by Dendy for diffusion problems with
discontinuous coefficients

Coarsening is done in a geometrically regular fashion

BoxMG chooses interpolation in a manner which
preserves the continuity of normal flux

BoxMG uses a variational formulation, and is thus quite
robust

In 2-D, if initial operator is 5-point or 9-point, then all
coarse grid operators are 9-point operators
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Reinterpretation of Multigrid CGOs

Consider a bilinear discretization in 2-D

Using a full-coarsening multigrid algorithm (such as
BoxMG) results in 9-point operators on all coarse grids

Any 9-point operator can be written as a linear
combination of the bilinear FE operators for�/ �)�/ �)�/ � � �/ �� �/ � � � , �)� � �/ � � � �/ �)� � � �
If we start with a symmetric, zero row-sum operator,
BoxMG coarsening guarantees that the coarse grid
operator will also have these properties

This forces the coarse grid operator to be a linear
combination of

� � �/ �� �/ � � �/ �)� � � �
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Reinterpretation . . .

The coarse grid operator can thus be interpreted as the
coarse grid discretization of

� Y Z � x X Y<] 
 � �)� � x�� � � / \
 �)� � ] � x��

It is possible to recover piecewise constant
approximations of the effective

x X
and

x �
based on the

stencil entries

That is, we can recover the homogenized permeability
tensor directly from the coarse grid operator
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Numerical Homogenization

Moulton et al and Knapek examine similar results for
periodic BCs

We have derived the needed relations to determine the
effective material properties given a coarse-grid stencil
in the case of Neumann BCs

Consider Darcy Flow problem on
^�_/ � `  

with full
Neumann BCs
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Numerical Homogenization . . .

Consider the domain

Ω2

Ω1

1

1

1/6 1/2 5/6

1/6

1/2

5/6

0

With

X � � / \
 � �� � � / \
 L { ��
otherwise

Improving Robustness in Multigrid Methods – p.49/59



Numerical Homogenization . . .

The asymptotic computation of Bourgat gives

� u o �j � � u �� �

� � u �� � � u o �j � q - u � � g �

� � u i � h q '/

where

q

is the orthonormal matrix

�
- � � �
� �

On a grid of

m gi e m gi
gridpoints, we can recover

x X � � u o d d o � � u �j d -

� � u �j d - � u o d d o � q - u � i m � �

� � u mi � m q '
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Insight into Multigrid

Accounting for the regularization term also explains the
performance of multigrid on certain problems

Consider, for example, the region

^�_/ � `  
, with

X � � / \
 � �

if \ � � � u � �
if \ � � 

Can show that the homogenized permeability is
anisotropic

x X � � u j � j �

� � u � � o i

Improving Robustness in Multigrid Methods – p.51/59



Insight . . .

If we directly discretize the homogenized problem and
use pointwise relaxation (such as Gauss-Seidel), we
expect an inefficient algorithm

Pointwise relaxation is inherently inefficient in
anisotropic problems

But . . . we get good results!

The regularization term makes the coarse scale
problem effectively isotropic, while maintaining the
coarse-scale effective permeability

Improving Robustness in Multigrid Methods – p.52/59



Insight . . .

If we directly discretize the homogenized problem and
use pointwise relaxation (such as Gauss-Seidel), we
expect an inefficient algorithm

Pointwise relaxation is inherently inefficient in
anisotropic problems

But . . . we get good results!

The regularization term makes the coarse scale
problem effectively isotropic, while maintaining the
coarse-scale effective permeability

Improving Robustness in Multigrid Methods – p.52/59



Insight . . .

If we directly discretize the homogenized problem and
use pointwise relaxation (such as Gauss-Seidel), we
expect an inefficient algorithm

Pointwise relaxation is inherently inefficient in
anisotropic problems

But . . . we get good results!

The regularization term makes the coarse scale
problem effectively isotropic, while maintaining the
coarse-scale effective permeability

Improving Robustness in Multigrid Methods – p.52/59



Summary - scAMG

Relax on

��� � � to find a representative vector of those
that are slow to converge

Determine multigrid interpolation operator based on
matrix entries and this vector

Multigrid algorithm obtained is invariant to diagonal
scaling of

�
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Summary - Homogenization

Can recover effective material properties from multigrid
coarse-grid operators

Actual coarsening introduces a regularization term into
the CGO

Understanding of regularization term provides insight
into multigrid performance
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Futur eWork - scAMG

Want a more efficient scheme to determine a suitable
representative vector

Choose a better starting guess than a random vector
and use current procedure
Iterate on the eigenproblem to find low eigenmodes
of

�

Consider iterating on problem
�� � �

to develop solver,
instead of working on

��� � �
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Futur eWork - scAMG

Want to extend class of problems for which algorithm
performs well - particularly to include systems of PDEs

May need to allow for more than one vector to be
considered in interpolation

If we know the problem is a system, we can extend
the definition of interpolation to include more vectors
and retain its properties
May also look at updating interpolation to fit new
vectors as they are determined
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Futur eWork - scAMG

Remove need for geometric coarsening in algorithm
Choose coarse grid based on algebraic criteria
For example, Compatible Relaxation which uses the
efficiency of relaxation on the resulting fine-grid to
choose the coarse-grid
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Futur eWork - Homogenization

Complete analysis of regularization term

Complete MGH library

Investigate use of homogenized permeabilities in Finite
Volume discretizations and multigrid

Investigate effect of regularization term in other
multilevel solvers (AMG, scAMG)
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Conclusions

Have framework for self correcting multigrid solvers

Self correcting ideas increase range of applicability of
existing multigrid methods

Multigrid coarse grid operators can be used to solve
homogenization problem

Homogenization can also provide significant insight into
multigrid behavior

Much work still to be done
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