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Abstract

An important constraint on our ability to numerically simulate physi-
cal processes is our ability to solve the resulting linear systems. Multiscale
methods, such as multigrid, provide optimal or near optimal order solu-
tion techniques for a wide range of problems. The biggest drawback to
current multigrid methods (both geometric and algebraic) is their fragility.
Classical geometric multigrid methods are effective only in simple geome-
tries and only for a relatively small class of problems. Algebraic multigrid
methods are free from most constraints on geometry, but they are still
only effective for a relatively small class of problems. We seek to identify
current roadblocks to obtaining optimal multigrid efficiency and use this
knowledge to gain insight into the operation of current methods. We also
propose to investigate the construction of more robust multigrid methods.

1 Introduction

We are interested in the numerical solution of the partial differential equations
resulting from the mathematical modeling of physical systems. We assume that
these PDEs have already been discretized in a sensible manner through the use
of finite differences or finite elements [2], and our primary focus is on the efficient
solution of the linear systems that arise from such discretizations. These systems
are typically large (current problems of interest involve millions or even billions
of degrees of freedom (dofs)), sparse (a fixed number of non-zero entries per
row or column, regardless of problem size), and ill-conditioned (with condition
number approaching zero as problem size increases).

Classical linear solvers are quite impractical for these problems ([17], §1.4).
Consider, for example, a three-dimensional discretization of the Poisson Equa-
tion on a grid of size N = n x n x n. The matrix resulting from a trilinear finite
element discretization of this problem has up to 27 non-zero entries per row or
column, but a bandwidth of n2. Thus, full Gaussian Elimination would take
O(N3) = O(n®) operations, and Gaussian Elimination only within the band
still requires O(n”) = O(N 7) operations. For even moderately sized n, this cost
is obviously prohibitive. Stationary iterative methods, such as Jacobi, Gauss-
Seidel, and SOR are typically more efficient than Gaussian Elimination, but are
still prohibitively expensive. It can be shown that Jacobi and Gauss-Seidel for



the Poisson problem take O(n?) iterations to converge to a level of accuracy
proportional to discretization error, giving a total cost then of O(n%) = O(N%).
Choosing the optimal over-relaxation parameter w for SOR results in a method
that requires O(n*) = O(NV 3) operations once w is known. Krylov subspace
methods, such as the Conjugate Gradient Algorithm, are also typically more
efficient than Gaussian Elimination, with CG requiring O(n*) operations in its
simplest form. Preconditioning can be used to improve the performance of CG,
and some incomplete factorization based preconditioners can result in a cost as
low as O(n?%).

Because of the size of the problems we are interested in, we seek a linear
solver that is optimal in both computational cost (measured in total number of
operations) and storage (measured in the amount of memory needed during the
computation). The difference between a method that is O(N) or O(N log N)
and one that is O(N%) may seem slight, but it is very real. Consider, for
example, N = 108, then N3 = 108, and an O(N%) method requires 100 times
the number of operations that an O(N) method does and about 20 times more
than an O(N log N) method. When N = 10°, an O(NN'3) method requires 1000
times the number of operations that an O(NN) method would, and over 100 times
the number of operations as an O(N log N) method would. As we consider larger
and larger problems, this difference becomes more and more critical.

There are a number of different methods that offer nearly optimal efficiency,
all based on multiscale analysis. For problems with smooth solutions, Fast
Fourier Transform based methods offer O(N log N) algorithms for accurate so-
lution. For problems with more complex solutions, there are Multigrid [7],
Wavelet [9], Domain Decomposition, and Fast Multipole methods. Here, we
consider multigrid methods because of their proven effectiveness for finite ele-
ment discretizations [3]. These methods are based on the complementary use of
stationary linear iterations and coarse-grid correction to obtain what is known
as optimal multigrid efficiency. These methods, however, are not yet applicable
to every problem of interest. Indeed, the performance of multigrid methods
can be quite problem dependent and quite discretization dependent. Thus, a
multigrid algorithm that works well for one problem may not work at all for
a similar problem, although careful parameter tuning can result in acceptable
performance.

Overcoming this sensitivity is one of our primary research goals. We envision
an algorithm that is readily applicable to a large class of problems, without any
significant need for parameter tuning. We further hope to develop an algorithm
that is optimal in an even more general sense - an algorithm that does less
work if presented with a relatively simple problem. The development of such
algorithms is a major focus of the proposed thesis.

We are also interested in generating a better understanding of both the in-
dividual components of a multigrid algorithm and of their interaction, to help
in the development of our new algorithms and to increase our understanding of
currently existing algorithms. One potentially revealing tool is the homogeniza-
tion point of view. Homogenization theory [18] originates in the study of porous



media and composite materials, where one knows fine-scale information about
material properties and is asked to determine effective coarse-scale properties.
The determination of these effective properties is closely related to the determi-
nation of the coarse-grid operators in a multigrid setting. Through the study of
multigrid methods in the homogenization framework, we expect to gain valuable
insight into the interaction between relaxation and coarse-grid correction that
is fundamental to a multigrid algorithm.

2 Current Multigrid Algorithms

There are many different algorithms that fall into the class of multigrid meth-
ods. These methods range from algorithms designed for a specific problem to
those applicable in a much more general sense. In this section, we discuss some
of the main features of these methods. With a clear understanding of multi-
grid principles, the development of our new multigrid algorithm is more easily
understood.

The essential multigrid principle is one of complementarity. For sensible dis-
cretizations (e.g. Finite Difference or Finite Element) of elliptic PDEs, it can be
shown that the Jacobi and Gauss-Seidel iterations exhibit stalling behavior([7],
chapter 2). That is, these iterative schemes quickly and effectively reduce error
in particular subspaces, but are quite slow at reducing the error in the com-
plementary spaces. Thus the first few iterations of these schemes are quite
effective at reducing the overall error (as measured by a global £2 norm), but
further iterations are much less effective. Because of this stalling behavior, it
is reasonable to seek a way of reducing the problem we are considering to one
which only involves the subspace that relaxation did not effectively treat. For
elliptic problems, it can be shown that this subspace is the space of smooth
vectors ([7], chapter 2).

Geometric multigrid schemes are designed based on discretizations that are
geometrically regular. For such discretizations, the error left after relaxation
is smooth in a geometric sense - that is, it varies slowly between nearby grid-
points. In this case, it is natural to think about resolving the error using fewer
overall degrees of freedom - a coarser grid. In this setting, we see that many of
the components of a multigrid algorithm can come naturally from the geometry.

Consider the discretized problem in the form Ax = b. After relaxation, we
have an approximate solution Z. Notice that the error, e, in this approximation
satisfies the residual equation:

Ae=Alx—%)=b— Az =r.

The error itself lives in the subspace of geometrically smooth functions (vec-
tors), and so we can consider it (and the residual equation) on a coarser grid
by simply eliminating points (or dofs) in a judicious fashion. If we choose a
reasonable set of points to eliminate, very little information is actually lost by
this procedure. If, further, we eliminate these points in a geometrically regular
fashion (as depicted in Figure 1), then we could determine an operator on the



Figure 1: Typical Geometric Coarsening

reduced space simply by rediscretization of the original PDE. Finally, once we
have solved the residual equation, we need to interpolate the correction back
to the original (fine) grid. Using the fact that we have eliminated points in a
regular fashion, we see that interpolation could be done easily by simple linear
interpolation between points.

To obtain true efficiency, however, we must solve the coarse-grid system
in an efficient manner. Our procedure leads to coarse-grid equations whose
character is the same as the fine-grid equations, and so it is reasonable to employ
the same solution technique. That is, we solve the coarse-grid equations by
recursion. Thus, if we use coarsening as indicated in Figure 1, our algorithm
can be depicted pictorially as in Figure 2.
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Figure 2: The V-Cycle algorithm



When our original discretization is not geometrically regular (for example,
because of accuracy concerns), we must use greater generality in designing our
algorithm. Algebraic Multigrid methods (such as Ruge-Stueben AMG [16])
make no assumptions regarding the geometry of the problem, rather they treat
it in a purely algebraic fashion. Point-wise relaxation is again used to smooth
the error, but now we do not have a geometric intuition into the resulting
smoothness. Instead, we use the idea of algebraic smoothness - that after a few
sweeps of relaxation (Ae); ~ 0 at each point 7. We then seek to restrict this
algebraically smooth error to a coarser space (i.e. a space with fewer degrees of
freedom). More importantly, we wish to determine a coarse-grid system whose
solution, when interpolated back to the fine-grid, provides a good correction to
the algebraically smooth components of the fine-grid solution.

Consider the goal of interpolating algebraically smooth functions. For such
a smooth vector, e, we have that

(Ae),» ~0
and so
;€ ~ — Z aij€j. (1)
J#i

Further, suppose that we have chosen a coarse-grid (the process for which we
discuss shortly), and so the fine-grid degrees of freedom can be partitioned into
two (disjoint) sets, {1,2,...,N} = C U F (where C is the set of coarse-grid
points and F' is all the remaining points (i.e. the points that exist only on the
fine-grid)). Since the matrix A is sparse, we also introduce additional notation:
Ni ={j:a;; #0}, C; = CNN;, and F; = FN N;. Then, we can rewrite

Equation 1 as

Qi€ X — Z aij€5 — Z AiL€k- (2)

JEC; kEF;
Now, to derive an interpolation formula that takes e on the coarse grid to
e on the whole (fine) grid, we seek to collapse the connections from point i
to points k € F; onto the points j € C;. The Ruge-Stueben algorithm for
doing this involves a classification of the points in F; into strong and weak
connections. We do not need this distinction, and thus omit the details, which
are described in [16]. The main assumption needed to collapse the stencil is one
of representability of the fine-grid portion of a function. That is, functions in
the range of interpolation must be representable in terms of their coarse-grid
values. Writing
ek ~ Z Wkj€j + Wki€;
JjEC;

for any k € Fj, this assumption says that for any k € F; we can find a set of
weights {wg; } such that for the error we seek to eliminate through coarse-grid
correction a good approximation can be made. In classical AMG algorithms,
{wy;} are given as functions of {a;;} and {ax;} and are based on the assump-
tion that the global smooth vectors are locally non-oscillatory [16](i.e. globally
smooth vectors look like constant vectors on local neighborhoods).



The selection of the coarse-grid points is of primary importance to the success
of an algebraic multigrid method. Fundamentally, the coarse-grid must be one
such that algebraically smooth error can be accurately approximated on it and
interpolated from it. As well, it must have significantly fewer points than the
fine-grid, for it is the reduction in degrees of freedom from one grid to the next
that gives multigrid its efficiency. The algorithm used in Ruge-Stueben AMG
[16] concerns itself with strong and weak dependence and influence, as these
concepts are central both in the definition of interpolation and in a measure of
adequacy for the coarse grid.

Once we have chosen a coarse-grid and an interpolation operator, we must
still choose a restriction operator to move the residual on a fine-level to the
coarse-level and a coarse-grid operator (CGO) on that level. A common tech-
nique (and one that we use) relies on what are known as the variational prop-
erties. These properties are that we take restriction (commonly denoted R) as
the transpose of interpolation (P), and the CGO as the product 4. = PTAP
(called the Galerkin condition). These choices arise naturally from the consid-
eration of Finite Element discretizations posed as minimization problems. The
variational properties are a result of choosing R and A, such that the coarse-
grid correction is the correction in the range of interpolation that minimizes a
fine-grid functional ([7], chapter 10).

AMG is, and was conceived of as, a generalization of classical, geometric
multigrid methods. It is an efficient solver for many problems, including those
involving discretizations on stretched or irregular grids, or discretizations of
many problems with anisotropic or variable coefficients. There are, however,
still many problems for which AMG is not an effective solver [8]. These include
problems with highly anisotropic or highly variable coefficients, and problems
coming from the discretization of systems of PDEs (such as elasticity). Simply
put, the further the algebraically smooth components of a problems are from
the single constant vector, the poorer the performance of AMG is.

3 The Self-Correcting (Algebraic) Multigrid Al-
gorithm

Our goal in developing a new type of multigrid method was to move away from
the weaknesses of classical AMG schemes. Thus, we first concerned ourselves
with generalizing the definition of interpolation in AMG. Our guiding principles
for this generalization come from basic properties of all multigrid algorithms:

e Simple relaxation is inefficient for solving Az = b on error components €
such that Ae is small relative to e [4], and

o Efficient multigrid performance is dependent on the appropriate comple-
mentarity of relaxation and coarse-grid correction.

In developing the new interpolation procedure, we consider the case of purely
algebraic coarsening; however, for practical reasons we chose to first implement



the algorithm in the case of regular, geometric coarsening. The numerical results
presented in Section 5 are from this implementation in the case of a scalar PDE.
We discuss our overall intent for coarsening in Section 7.

Since the success of our methods depends on the complementarity of relax-
ation and coarse-grid correction, we see that a good starting point for defining
interpolation would be to consider a vector, e, that is not well treated by relax-
ation. Using a simple (point-wise) relaxation scheme, such as Gauss-Seidel, this
also means that Ae =~ 0, or

aiiei%—g aije; — E Ak €L,
J€C; kEF;

as in Equation 2, assuming we already have a splitting of N; into C; and F;.
Again writing

er N E Wgje; + Wki€;,
JeCi

we come up with a general interpolation formula for a point i € F,

aij + E ik Wy

kEF;
€; = — E < €. (3)
ai; + E Qik Wi

JEC;
ke F;

The difference between our interpolation and the interpolation used in classical
AMG [16] is that we choose {wy;} to depend on both the entries in the matrix
A and some algebraically smooth vector, (1), which we treat as a representative
of a number of algebraically smooth components.

One way of looking at the choice of {wg;} is to consider the idea of twice
removed interpolation. Suppose we have a point ¢, whose neighbors have been
partitioned into the two sets C; and F;. The problem of collapsing the fine-fine
connections is equivalent to that of determining a way to interpolate to a point
k € F; from points j € C; (or, more generally, j € C; U {i}). That is, we seek

to write (as before)
ek =Y wijej. (4)
JEC:

If we have a particular vector, z(!), which we want in the range of interpo-
lation, we ask that Equation 4 hold for (). For this interpolation problem,
we have many choices for the {wy;}. We choose to take this interpolation to
F; of the form —D~'A;. (where Ay, is the matrix of connections between F
and C, and D is an arbitrary diagonal matrix - this choice is motivated by the
discussion in [6]). That is, we write

dkkx](cl) = — Z aijg-l). (5)
JEC;



And so,

=3 e

JEC;
o =——m

Choosing wg; = d;klakj, we get the interpolation formula

== e (6)

jeC;
(1)

aijk
= (7)

]EC

=) wye; (8)

JEC;
Interpolation to ¢ € F' is then given by Equation 3 and has the particular form

(1)
QR
azg-l-Zazk Ik

keF; Z ak]:x )
Ci
e = — Z A ej. 9)

Qi

Treating the interpolation operator, P as an operator from C to F'U C, we see
that it has the form

| w

| T

where W is the matrix of coefficients as in Equations 3 and 9.

Another way of looking at the twice-removed interpolation is to consider
how it relates to the interpolation used in its place in Ruge-Stueben AMG. For
strongly connected points, AMG uses interpolation of the form

Z @i

One of the primary assumptions of AMG is that the global smoothest error
component is the constant vector [16], and thus it must be in the range of
interpolation. In our terms, AMG assumes that z(!) = 1. Looking at our
interpolation formula, we see that it reduces to the classical AMG strong in-
terpolation formula in this case. So, we can look at the scAMG interpolation
formula as a simple generalization of the classical AMG formula for the case
where the smoothest error component (and thus one that needs to be in the
range of interpolation) is any known vector.

wkj



The above ideas for interpolation can also be generalized to systems of PDEs.
Consider discretizing a system so that the degrees of freedom in the system are
located on the same grid, i.e. there are d degrees of freedom co-located at each
node. Since we seek to generalize the ideas from the scalar case, we will start
by generalizing the notation: Aj; becomes the matrix of connections between
the dofs located at nodes k& and those located at node j, Dy becomes a matrix
instead of a scalar, z(!) remains a single vector (“bad guy”), but we also make
use of (2 ... 2(9 and use the matrix X(V = [z() ... 2(?] and its restriction
to the d dofs at node k, X,gl).

The analogue of Equation 5 is then

Dka,ﬁ” =- Z Aij]Q),
Jj€C;
which gives us
-1
D == | 3 4uxf" | (x7)
JEC;

The corresponding equations to Equations 6-8 are then

_ -1
€k = — Z Dy, Arje;

Jj€C;
-1
= Z (X,gl)) Z Akle](,l) Akjej
JjeC; J'€C
= Z ijej.
jeC;

We can then derive the new nodal interpolation operator for ¢ € F' as

Ajiei=— > (Aij +> Aikaj> €js

JjeC; kEF;

or, as

e; = —Ai_z-l Z (Aij + Z Aikaj> €;.

JjeC; kEF;

Successful implementation of these schemes for interpolation thus rely upon
having an appropriate vector, 21), (or vectors X)) to put in the range of
interpolation. Since we need the complementarity of relaxation and coarse-grid
correction, it follows that the best choice for z(!) would be a representative of
the vectors for which relaxation is inefficient. Thus, a straight-forward method
for generating this vector would be to start with a vector (or vectors) equally
rich in all components (i.e. eigenvectors of symmetric A), relax on Az = b



for some b, and then determine the error in the approximate solution after a
sufficient number of relaxations.

To generate a vector rich in all components is, of course, difficult to do
explicitly as it requires knowing what these components are. Instead, we choose
to start with a vector generated at random (elements are taken from a uniform
distribution on [0,1)). While a vector generated like this is, in general, not
equally rich in all components, in practice it is sufficiently rich such that after
relaxation we can get a good representative of the slow to converge components.

Getting the representative vector is then easy if we choose the right side
for our relaxation properly. We are interested in the error after a number of
relaxations on a problem Az = b. Clearly this error is easiest to calculate if we
choose b in a manner such that we know the true solution. This is easily done
by choosing a solution x and then calculating the appropriate right side, b, but
we can make this problem even easier by choosing x = 0, so that b = 0. Then,
starting with any initial guess and relaxing on Az = 0, we can identify the error
in the solution after relaxation as simply being the current approximation, since
the true solution is 0. So, starting with a random initial guess and performing
relaxation on Az = 0 generates a vector z(!) representative of the slow to
converge components that we can then use in the interpolation formula.

In practice, however, it requires (in our opinion) too many relaxation sweeps
to generate a suitable representative. Thus, to improve performance, we have
implemented a multilevel scheme to quickly generate a vector z() such that
Az® a0, and so point-wise relaxation is slow to resolve this vector. To do
this, we start with a random guess on the fine grid and perform a few relaxation
sweeps to generate a tentative z(1). From this, we generate an interpolation
operator (as above) and form the CGO using the Galerkin condition. We use
injection (direct restriction of the values on the C-points) to form a coarse-
grid initial guess and recurse to the coarsest level. From this coarsest level, we
interpolate the vector all the way to the finest level and repeat this process using
that vector as an overall initial guess. As we discuss in Section 5, this procedure
has led to grid independent convergence factors all the way to 1024 x 1024 grids
for many scalar problems.

One important benefit of generating the initial representative vector in a
multilevel fashion is the ability to implement a graceful degradation to simplic-
ity in the algorithm. That is, since we begin by relaxing on a random vector
(assumed to be rich in all components), we can easily tell if relaxation is suffi-
cient to solve either the fine grid problem or one of the generated coarse grid
problems. If this is indeed the case, then we need not invest any additional
labor in designing an algorithm as we already have an efficient solver.

For systems, an added wrinkle is the need to generate multiple representa-
tive vectors. We expect that a technique similar to the one described above
can generate the components to a sufficient degree of accuracy to result in an
acceptable scheme, but need to further investigate the initial guesses. One pos-
sible strategy is to simply choose the initial guesses at random, over all degrees
of freedom, and expect that the resulting vectors do span a subspace of alge-
braically smooth components. Another strategy would be to take initial guesses

10



at random on each degree of freedom, but to be zero on all others (i.e. each dof
on a node is chosen to be nonzero for only one of the starting vectors). This
strategy seems more likely to lead to a rich subspace of algebraically smooth
components, but we must ensure that we are not harming ourselves by making
this choice. The extensions to systems is discussed again in Section 7.

4 Theoretical Properties

We have already seen one advantageous property of our algorithm, namely that
it reduces to a form of the classical Ruge-Stueben AMG algorithm in the case
when 2V = 1. We claim this property to be advantageous in that we can
reasonably expect our algorithm to perform well on the class of problems that
AMG performs well on (dependent, of course, on sufficient resolution of z(1)).
However, we believe that our choice of interpolation for z(!) # 1 leads to an
algorithm that is much more successful.

One situation that causes difficulty for AMG is when the matrix for a prob-
lem it is effective on is simply rescaled. In particular, consider taking the matrix
A and multiplying it by a diagonal scaling matrix on both the left and the right
sides (to preserve symmetry). That is, replace A with A = DAD for some diag-
onal matrix D. If Az =0, then A(D'z(!)) = 0, so the new near null-space
component is actually D—1z(1). If the diagonal entries of D have significant
variation in them, then D~'z() has a significantly different character than
(1. In the case of classical AMG, this can cause a significant deterioration in
convergence rates.

Our algorithm, however, is not as sensitive to this distinction. In fact, under
minimal assumptions, our algorithm can be shown to be unaffected by such
scaling. Let A and D have the forms

_ | Arr Age _|Ds O
A—[Acf Acc]andD—[ 0 D, |’

so that
i- [ DjAssDy DypAgeD, ] _
DcAchf DcAchc
Suppose that if the process for generating the representative vector generates
(1) when given the matrix A, then it generates 1) = D~1z(1) when given the
matrix A. Our choice for interpolation for the matrix A is then given by taking

~ (1)
ATy

~ ~(1
R
j'eC;
—1,.(1)
dkakjdjdk Z,
—1 (1
Z dkakj:dj/dj, $§,)
J'EC;

ey =

— 71 . .
= dy wy;d;,
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which gives us

ag; + E Ak Wi

i=- - i
(77}

JEC;

diai]-dj + Z diaikdkdlzlwkjdj

_ Z keF; e
-~ J
i d;a;;d;
i
aij + E ik Wk
_ kEF;
=-> d! - dje;
P
]EC; (1]

for s € F. For i € C, we simply take the value from the coarse-grid and assign
it as the value on the fine-grid. Thus, we get an interpolation operator P of the

form ~ .
= ]-[ 575 |-,

where P is the interpolation operator from the non-scaled case. Further, if we
consider the coarse-grid operators A, and A., we see that

A, =PTAP = (D.PTD ) (DAD)(D~'PD,) = D.PTAPD, = D A.D..

That is, the coarse-grid operator for the scaled problem is simply the scaled
version of the coarse-grid operator for the unscaled problem. Noticing that
standard relaxation techniques such as Gauss-Seidel or Jacobi (both point-wise
and block relaxations) are scaling invariant (that is, if we scale the matrix A
to DAD as above, scale the initial guess (® to D1 z(® and the initial right
side b to Db, then the approximation generated changes from z™) to D~1z(1)),
we see that the entire process is independent of any diagonal scaling. That is,
we expect to get similar convergence factors (measured in the energy norm) for
the diagonally scaled problem as we get for the unscaled problem.

The one assumption this result uses is that for the scaled problem we can
generate the scaled vector D~ 1z(1) just as easily as the unscaled vector z1). In
practice this is more difficult. If we do happen to know the scaling matrix D a
priori, then it is true that by scaling the initial guess we can ensure equivalence
between the two vectors. This is, of course, an unrealistic situation - if we knew
the scaling beforehand, we could simply unscale the problem. Starting with
the same initial guess for both the scaled and unscaled problems tends to give
slightly worse convergence rates for the unscaled problem (as is discussed in
Section 5), but not a significant performance hit.

The same analysis can also be performed for the extension to systems men-
tioned in Section 3. Replacing diagonal scaling by nodal scaling and point-wise
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relaxation by node-wise relaxation, we get the same invariance to the scaling.
This is particularly of interest for industrial problems, where matrices are of-
ten rescaled node-wise, destroying the physical interpretation of the degrees of
freedom in a problem.

5 Numerical Results

To examine the feasability of our approach, we have implemented our solver
for the special case of a rectangular grid in 2-dimensions with full coarsening
(as pictured in Figure 1). This restriction in generality has a notable effect on
the range of problems that we are able to reasonably consider (e.g. anisotropy
becomes much more difficult to account for in this setting). However, if we
examine problems outside of this range, we feel that we can get a good indication
of the performance of our ideas. The results presented here are preliminary and
are not intended to answer the overall question of determining if the added cost
results in proportionally added accuracy for these problems.

To test the algorithms, we have chosen a small test set, but one that we feel
is representative of a reasonable class of problems. All of the PDEs examined
were discretized using bilinear finite elements on a tensor-product grid over the
canonical unit square. Boundary conditions were implemented in such a way
that the resulting matrices are symmetric and positive-definite or positive-semi-
definite (in which case we project out the exact null space component on the
finest grid when measuring convergence). We provide convergence factor data,
that is the factor by which the energy norm (given a symmetric positive-definite
matrix A, the energy norm (or A-norm) of z is v/{Az, z)) of the error is reduced,
tested on problems with zero right sides.

For this stage of testing, we have chosen four problems for which we expect
differing degrees of success. Our first two problems are Laplace’s equation, with
Dirichlet boundary conditions (Problem 1) and Neumann boundary conditions
(Problem 2). Our second two problems come from porous media flow problems
(which we discuss in Section 6), and come from the PDE

=V - D(z,y)Vp(z,y) =0

for discontinuous D(z,y). We choose the boundary conditions for both problems
to be Dirichlet along the East and West boundaries and Neumann along the
North and South boundaries. For Problem 3, we take

_ [ 10% (z,y) €[5, 3]
D(z,y) = { 1 otherwise ’
and for Problem 4, we take
_ 100 y<3
D(z,y) = { 1 otherwise

Our first series of tests are for the matrices straight from these discretizations
(i.e. unscaled) on a series of grids, ranging from 32 x 32 to 1024 x 1024. These
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results are summarized in Table 1. For Problems 1,2, and 4, we see excellent
results - the convergence factors are bounded above by 0.07 regardless of mesh-
size. The results for Problem 3, however, appear somewhat disappointing. The
main feature in Problem 3 is the interior square, which is not grid-aligned.
Our studies thus far indicate that results are much-improved if the feature is
grid-aligned, and the cause of the discrepancy is a question of interest to us.

Problem Size | Problem 1 | Problem 2 | Problem 3 | Problem 4
32 x 32 0.058 0.064 0.078 0.060
64 x 64 0.065 0.067 0.094 0.067

128 x 128 0.068 0.070 0.081 0.069
256 x 256 0.070 0.070 0.106 0.070
512 x 512 0.070 0.070 0.169 0.070
1024 x 1024 0.070 0.070 0.384 0.070

Table 1: Convergence Factors for the Unscaled Matrices

As discussed in Section 4, one of the advantages that our definition of inter-
polation has over classical AMG is the invariance to diagonal scaling. We have,
of course, many options for the scaling of the matrix. One which we chose to
examine was choosing it based on the (x, y) position of the gridpoint in question,
and we took as a scaling function

1 + sin(5477x) sin(4967y) + 1077,

This function was chosen as for the values of h we are considering (ranging from
35 t0 1o57 it looks like a random scaling on each node in the range [1077,2 +
10~7]. If we scale the matrix in this way, and scale our initial guesses in the
same manner, we get convergence factors that are unchanged from the unscaled

matrices, and are shown in Table 2.

Problem Size | Problem 1 | Problem 2 | Problem 3 | Problem 4
32 x 32 0.058 0.064 0.078 0.060
64 x 64 0.065 0.067 0.094 0.067

128 x 128 0.068 0.070 0.081 0.069
256 x 256 0.070 0.070 0.106 0.070
512 x 512 0.070 0.070 0.169 0.070
1024 x 1024 0.070 0.070 0.384 0.070

Table 2: Convergence Factors for the Scaled Matrices with Scaled Initial Guesses

The scaling of the initial guess is, of course, only of interest to validate the
earlier theoretical results. In practice, we would not have the scaling factor
readily available, and so a more realistic comparison is obtained by considering
the performance of the algorithm on the scaled matrices without scaling the
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initial guess. These results are presented in Table 3. Of particular interest is
that the convergence rates are nearly unchanged for the three problems that
previously performed well. For Problem 3, however, our difficulties continue.

Problem Size | Problem 1 | Problem 2 | Problem 3 | Problem 4
32 x 32 0.058 0.064 0.078 0.060
64 x 64 0.066 0.067 0.091 0.067

128 x 128 0.068 0.070 0.087 0.069
256 x 256 0.070 0.070 0.348 0.070
512 x 512 0.070 0.070 0.190 0.070
1024 x 1024 0.070 0.070 0.918 0.070

Table 3: Convergence Factors for the Scaled Matrices with Unscaled Initial
Guesses

To ensure a complete comparison, we also investigated the use of scaling
of the form +/r110%"2 where 1,72 were chosen from a uniform distribution on
[0,1]. Results for this scaling are presented in Table 4. Most notably, we see
some degradation in the results for large meshes. This suggests that we are not
doing a good enough job generating interpolation operators for these meshes.
We believe the primary responsibility for this is in our procedure for generating a
representatively smooth vector. If we increase the number of relaxations done on
each level or the number of cycles we perform to form the initial representative
vector (and so generate a smoother vector), we can reduce these convergence
factors to the previous levels. In Table 5, we use a third cycle to generate
the representative vector and do, indeed, recover better convergence factors. A
similar phenomenon may be at work in Problem 3, where we interpolate across
the feature boundary on the finest grid. If we do not properly resolve this
boundary in the representative vector, we cannot hope to accurately account
for it in our interpolation operator. These results indicate that further study
of the determination of the representative vector are necessary for us to obtain
the full efficiency we seek.

Problem Size | Problem 1 | Problem 2 | Problem 3 | Problem 4
32 x 32 0.057 0.065 0.076 0.060
64 x 64 0.066 0.067 0.095 0.066

128 x 128 0.068 0.069 0.134 0.068
256 x 256 0.070 0.070 0.303 0.070
512 x 512 0.070 0.132 0.908 0.108
1024 x 1024 0.119 0.182 0.783 0.159

Table 4: Convergence Factors for the Randomly Scaled Matrices with Unscaled
Initial Guesses
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Problem Size | Problem 1 | Problem 2 | Problem 3 | Problem 4
32 x 32 0.058 0.065 0.079 0.060
64 x 64 0.065 0.067 0.095 0.066

128 x 128 0.068 0.069 0.083 0.068
256 x 256 0.070 0.070 0.106 0.070
512 x 512 0.070 0.070 0.676 0.070
1024 x 1024 0.070 0.070 0.125 0.070

Table 5: Convergence Factors for the Randomly Scaled Matrices with Unscaled
Initial Guesses Based on the Improved Cycling

6 The Homogenization Viewpoint

Numerical homogenization (or upscaling) is a process for reducing the number
of degrees of freedom in a computational simulation. One common application
of these techniques is in porous media flow [18], where the governing equations
are Darcy’s Law and conservation of mass:

—D(2)Vp(x) = u(a) (10)
V-u(z) = (), (11)

where p(x) represents the pressure, D(z) is a spatially varying permeability
coefficient, possibly tensor-valued (although it must be symmetric and positive-
definite at every point), u(z) is the Darcy velocity, and f(z) represents mass
sources and sinks in the domain of interest. Thus, Equation 10 says the Darcy
velocity is proportional to the pressure gradient while Equation 11 states that
changes in the overall quantity of fluid are due to external sources or sinks.

The need for a reduction in the number of degrees of freedom comes from
the significant disparity between the scale of variation of the permeability and
the size of the domain. Typical problems have material properties (such as per-
meability) that vary on the scale of millimeters, with an overall domain several
kilometers across. Thus, a fully resolved three-dimensional simulation would
call for a number of degrees of freedom on the order of 10'® - much more than
even the most powerful modern supercomputer can support. Numerical homog-
enization techniques are used to seek a coarser discretization that preserves the
effects of the fine-scale variation in the fully resolved problem.

For arbitrary permeability tensors, it is insufficient to generate the coarse-
scale material properties by taking simple averages. While it can be shown
that the homogenized permeability in a given direction is bounded below by the
harmonic average and above by the arithmetic average [13], these averages alone
are insufficient to accurately capture the full effects of the fine-scale variation.
In particular, these bounds may approach zero or infinity in some limiting cases
[1] and thus are not practical for defining an equivalent medium. For two-
scale periodic media, a two-scale asymptotic analysis is possible to generate
the homogenized problem [12], but we typically expect the permeability field
to vary on more than 2 scales, indeed, it may vary on infinitely many (fractal)
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scales. Rather than use these analytical techniques artificially (that is, outside
their range of validity), we seek to determine the homogenized permeabilities
numerically.

Many numerical methods have been devised to compute the effective per-
meabilities. Additive methods are based on direct local averaging of the perme-
ability [18]. One significant disadvantage of these methods is that the computed
effective permeabilities are naturally diagonal tensors, and thus it is difficult to
capture any non-grid aligned global permeability without knowing of it before-
hand. Laplacian methods involve solving localized PDEs over each region for
which the effective permeability is to be calculated and then using the solutions
to infer this permeability. A typical Laplacian method [11] considers the solu-
tion of the PDE restricted to the region for which the effective permeability is
to be calculated under a series of boundary conditions chosen to induce given
(constant) pressure gradients. From the solutions of these PDEs, the average
flow can be calculated and by comparison with the pressure gradient, the com-
ponents of the effective permeability tensor can be recovered. These methods
are based on the two-scale asymptotic analysis mentioned above, and thus are
strictly valid only for two-scale periodic media.

In seeking a more efficient algorithm, one can consider how multigrid meth-
ods create their own versions of the coarsened problem in the multigrid hier-
archy. A truly effective (robust) multilevel solver must somehow capture the
effects of the multiple-scale features present in the fine-scale discretization of
a PDE. Multigrid Homogenization is based on the idea that if the multigrid
coarsening strategy is based on physically relevant criteria, then the coarse-grid
operators should preserve the effects of the fine-scale physics. Recovering the
effective material properties from these coarse-scale problems should then give
good approximations to the true effective material properties.

An example of a multigrid code based on physically relevant criteria is
Dendy’s Black Box Multigrid (BoxMG) [10]. As shown in [15], the operator-
induced interpolation used in BoxMG can be derived by approximately enforcing
the continuity of normal flux across fine-grid boundaries of a bilinear finite ele-
ment discretization. Based on this physical motivation, we hope to be able to
accurately recover a good approximation to the coarse-scale material properties
from the multigrid coarse-grid operators. Indeed, in [15] this was shown to be
the case both analytically and numerically for periodic problems under certain
assumptions on the variation of the coefficients in the coarse-grid operator. It
has also been shown [14] that if the coarse-grid operator is constant over the
grid then the coarse-grid operator is equivalent to the bilinear finite element
discretization of . . .

V- DVp+ 8,y Edyyp = f (12)

for some E, constant on a given grid.

We have considered the same problem subject to Neumann boundary con-
ditions and obtained similar results. With Neumann BCs, similar terms again
appear and provide a necessary regularization to the coarse-grid problem. In
2D, the regularization term takes the same form as for the constant-operator
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case. In 3D, there are six fourth-order terms and one sixth-order term that ap-
pear to perform the same task (although we have not numerically investigated
the 3D problem as yet). By accounting for the fourth-order regularization term,
we have been able to numerically recover the effective material properties in
some example problems.

Discretizing Equations 10 and 11 on a given rectangular grid subject to
Neumann boundary conditions results in a symmetric, zero row-sum operator.
Galerkin coarsening preserves these properties, and so all coarse-grid problems
will also be symmetric and have a zero row-sum. If we coarsen in a regular
fashion, such as by full- or semi-coarsening, the coarse-grid operator is also an
operator on a rectangular grid. If we seek to interpret the coarse-grid opera-
tors as bilinear FE discretizations on those grids, then the operator must be a
linear combination of the symmetric, zero row-sum bilinear FE operators. In
2D, this means that the coarse grid operators are linear combinations of the
Ozz, Ozy, Oyy, and Oggyy bilinear FE operators, and that the coarse-grid opera-
tor can be treated as a discretization of Equation 12 with Neumann boundary
conditions. Following Moulton et. al. [15] and Knapek [14], we assume that the
effective coarse-grid material properties are constant on.e%ch elementA, ’and' de—
note them on the element centered at (xi+% , yH%) by Dit2:9+2 and E*t2:7+2,
where At .+ A sdHE

Ditits = 1?141:; 1?}-2:;
D122J 3 D222J 3
At a node (4,j), we will denote the operator in stencil form
NW N NE
—Ss‘av SSO’J —i*é
_gsW _gs. _gdk

With this setup, we can easily recover the off-diagonal component of f), by
noticing that

Lhy sitdjrd | Lhe nipljrd 1 aipl gt 1 141

S — CUD 2:JT3 D 2:JT3 — ZpD'reITa i+ 35,5+ 5
B = G *6h, 312 Tty

1hy ~ipljrt  1hy ~spljrt 1oyl il 1 sip1ip1

SNE ?JD 3.0+3 — D 3.0+3 D 3.J+3 _ Eitaits
o =gp P g P Talty

and so f)i’f”*i =SNE - SNV,
To recover the diagonal components of ﬁ we begin by determining a re-
lationship between them valid on any given element Adding SNV i+1,; and S,AQE

gives us

hy ~ i+1 j+1 h i+1 4+1 2 A1 g1
JVE Y v sJ T sJ i+1,5+1
S +Sz 1,5 (_D112 2+ D222 2 — —F bR 2,

hzhy
and so we have

lh D1+27]+2_ 1 Fit5.i+s 1
6 hy hghy 2




Now, we have that

Lhy (pitditd | pitdi—3\ _ 1he (aitdi+d | pitdi—3
SlE,ngh_z(D 2 2+D112 2)___‘”(D222 2+D222 2)

and so

1h +1541 i+1 1 1 h + ji+1

E ? 3] K J— NE K sJ

Si,j = __z <D 2 2 + _D 2 ) - 5 (Si,j SZ 1 ]) y_D 2 2
].

1 i+3.+3
2(sNE1+Sz+1] 1) 6h'!/D 2 2

Gathering terms, we get
PRI RIS SRS B | h 1
AERAEEY MR (S’EJ 5 (877 + SNT) + 2 (Sijza + Si- 1)) '

Now, for given (4,7), this gives us relations between the value of Di1 on the
element centered at (z; 1Y +%) and its northern and southern neighbors. For

this to be most useful for us, we now need expressions for D11 on the southern-
most or nothern-most elements. Since the matrix is zero row-sum, we conclude
that the effective boundary conditions are the natural boundary conditions, and
we get

Aitl,l h 1
Dite: =92 (Sﬁo + - (5707 + s 0))
(SzEny +3 (SzjvnEyfl + Sz+1 nyl))

A similar procedure can be undertaken for the (2,2) component of D. Omit-
ting the computational details, which are quite similar to the (1,1) component
case, we get

PR R | Al iyl h

Db 4 DR o (504 3 (SIP 4 SHU) + 5 (SXE, + 8.
T

with conditions

ALl a1 h
D2227-7+2 = 2h— (SO, (S +S]_,] ))

Na,J na—1,7 NasJ

and Dy 1+E = ol (sN + 5 (SNE SNW))
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With all the values in Di*2++2 recovered, we can easily recover Ei+2:3+3 from,
for example, the equation for S}

We have implemented this algorithm using Dendy’s BoxMG to do the multi-
grid coarsening, and have investigated its performance on a number of standard
homogenization test problems. Given a permeability distribution on [0, 1]%, we
create a k x k tiling of it by scaling [0,1]? to [0, ]* and extending periodically).
For these problems, we begin with a fine-grid problem on a grid of k2P x k2P
elements and coarsen to a grid of k x k elements so that each coarse-grid ele-
ment corresponds to a full coarsening of the given permeability. We have chosen
k = 3, to ensure that we have at least one coarse-grid cell that is isolated from
any potential boundary effects. We have chosen as examples, a subset of those
examined in [15] and use those results (for periodic boundary conditions) to
validate our algorithm.

Our first example is based on the square inhomogeneity depicted in Figure
3. In this case, the permeability coefficient on the fine-grid is scalar-valued, and
given by L o

A T,Y) €l3,3
D(z,y) = { 1 gthegwis% 4 )

We report our results for the values of D and E in the center cell of the coarse-
grid for A\ = 10, as well as the results of Moulton et. al. [15] (denoted by DM
in Table 6). For this example, D was a scalar to machine precision, and so we
only report the single component. We see that our results for this problem are
the same as those of [15]. For the periodic problem, Bourgat [1] computes the
homogenized permeability to be comparable with our results on the fine grids.
The L-shaped inhomogeneity pictured in Figure 4 with fine-grid permeability

— A (l’,y) € Q1
D(z,y) = { 1 otherwise

is interesting because despite its scalar fine-grid permeability, the homogenized
permeability is tensor-valued. Bourgat computes the homogenized permeability

213

/3
Q,

0 3 23 1

Figure 3: Square Inhomogeneity
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Problem Size | D E DM
12 x 12 1.5979 | -0.0708 | 1.5979
24 x 24 1.1243 | -0.0190 | 1.1243
48 x 48 1.2897 | -0.0437 | 1.2897
96 x 96 1.1934 | -0.0294 | 1.1934

192 x 192 | 1.2372 | -0.0360 | 1.2372
384 x 384 | 1.2143 | -0.0325 | 1.2143
768 x 768 | 1.2254 | -0.0342 | 1.2254

Table 6: Recovered coefficients for Square Inhomogeneity

to be
1.915 -0.101 2.016 0
|-o| o

—0.101 1.915 0 1.814

where () is the orthonormal matrix

RS

Vel 1 1|
@ actually defines the principal axes of the diffusion being considered, and in
this case corresponds to a rotation by 45°. Results for this problem for A = 10
are shown in Table 7. It is interesting to note that while we do not recover the

same diagonal coefficients as in [15], we do recover the same off-diagonal value.
Further, if we take our result for the 768 x 768 grid, we have

~ [ 19339 —-0.1532 | _ 2.0871 0 T
D= —0.1532  1.9339 ]_Q[ 0 1.7807 @

Thus, we see that we have recovered the principal axes exactly (as is done
in [15]), and have errors in the scaling in the directions of diffusion of 3.5% and
1.8%, where we are more accurate than the results of [15] in the z-direction,
but less accurate in the y-direction.

5/6 Q,

172

1/6

0 16 12 61

Figure 4: L-shaped Inhomogeneity
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Problem Size -Dll = _D22 ﬁ12 E D{VII B%
12 x 12 1.5649 -0.0853 | -0.0338 | 1.4972 | -0.0853
24 x 24 2.0864 -0.1760 | -0.2631 | 2.3766 | -0.1760
48 x 48 1.8619 -0.1401 | -0.0903 | 1.8280 | -0.1401
96 x 96 1.9719 -0.1588 | -0.1662 | 2.0515 | -0.1588

192 x 192 1.9207 -0.1509 | -0.1234 | 1.9316 | -0.1509
384 x 384 1.9467 -0.1552 | -0.1437 | 1.9887 | -0.1552
768 x 768 1.9339 -0.1532 | -0.1332 | 1.9594 | -0.1532

Table 7: Recovered coefficients for L-shaped Inhomogeneity

Another classical homogenization problem is one of layered media, such as
that pictured in Figure 5. For this problem, the fine-grid permeability is given
by

[ M oy<s
D(z,y) = { A2 otherwise ’
and the fully homogenized permeability is known to be
R A1+A2 0
D= (2) 2X1 )2 :|
A1t+A2

Moulton et. al. [15] show that they can successfully recover the homogenized
permeability in a similar problem with error proportional to h. We have con-
sidered this problem with A; = 1072 and Ay = 1. For all mesh sizes considered,
we recover the (2,2) component of D to machine accuracy. However, we do
not recover a good approximation to the (1,1) component of D. Rather, along
the southern boundary, we recover Dy; = 102, the permeability from the fine-
grid cells along that boundary. Using the relations derived above, this gives us

f)i’lg = 1, and then an alternating behavior from this point onwards. We recover
E alternating between —1.634 x 103 and —1.634 x 10—, respectively. It is also
interesting to note that the actual homogenized permeability for this problem
satisfies our interior equations, but not our boundary equations for Dy;. This
inconsistency along the boundary is a question for future investigation.

Accounting for the regularization term has also given us insight into the
interaction between the Galerkin coarsening common in multigrid techniques
and coarse-grid relaxation. As discussed in the numerical results above, fine-
grid variation in the coefficients of the PDE may, in fact, result in coarse-scale
anisotropy of the discretization. If the coarse-grid operators produced by a
multigrid method reflected this anisotropy, the effectiveness of relaxation on the
coarse-grids would suffer, as would the overall convergence rates of the multigrid
algorithm. In practice, however, we see no such degradation in performance.
This can be attributed to the presence of the regularization term that allows
accurate representation of the coarse-grid anisotropy in the diffusion term by
providing a compensation so the overall coarse-grid operator is closer to an
isotropic one.
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Figure 5: Layered Inhomogeneity

The homogenization viewpoint provides a number of key insights into the
performance of multigrid methods. Proper understanding of the relation be-
tween scales can lead to improved choices of coarse-grids and of interpolation
and restriction operators. In combination, these can give improved coarse-grid
operators resulting in faster convergence rates. Of particular interest may be
the identification of coarse-grid anisotropies, which could be used to further
reduce the number of degrees of freedom present on coarse-grids. Aggressive
coarsening such as this would result in faster multigrid cycling and an overall
reduced operation count.

7 Future Work

Our numerical results indicate that our full-coarsening based version of the
scAMG algorithm does offer some advantages when compared to geometric
multigrid or classical AMG. The foci of our future work are improving and
extending this algorithm as well as understanding the theoretical roots of its
performance. There are many possible avenues for this investigation and we
hope that by careful study we will result at an algorithm offering significant
improvements in robustness over earlier methods without adding undue compu-
tational expense.

One major limitation of our current algorithm is the geometric coarsening
used. A simple problem for which this coarsening is insufficient is one with
fine-grid anisotropy, such as uz, + cuyy = f, where ¢ is small. To overcome this
barrier, we plan to investigate the use of more general coarsening algorithms.
While the coarsening heuristics used in classical AMG have shown to be suit-
able for a wide variety of problems, we would like to consider more adaptive
forms of coarsening. One candidate method we are particularly interested in is
Compatible Relaxation.

Compatible Relaxation is a technique in which the coarse-grid points are
chosen based on the effectiveness of relaxation on the fine-grid. As discussed
in [5], compatible relaxation can be implemented by choosing an initial coarse-
grid (using a priori information if available, or simply as the empty set) and
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then relaxing on the remaining dofs, taking the contributions from the coarse-
grid points to zero. If this fine-grid relaxation (F-relaxation) efficiently reduces
the error at every point in F', then the coarse-grid set is deemed sufficient. If,
however, there exist fine-grid points that do not show sufficient error reduction,
then a subset of these points can be added to the coarse-grid set, and the
sufficiency of the coarse-grid can be tested again by compatible relaxation.

To make the most efficient use of this method, we intend to experiment on
a set of test problems that expose the difficulty of other schemes. By analyzing
the effectiveness of compatible relaxation on anisotropic problems, stretched
grid problems, and eventually on systems of PDEs, we hope to get a good idea
of an appropriate threshold for the F-relaxation, and an effective algorithm for
adding points to the coarse-grid as needed. With such an implementation of this
coarsening procedure, we would be able to implement scAMG in a completely
algebraic context, not limited by assumptions on the geometry of the original
discretization.

Another extension of our work that we are very interested in is that to
systems of PDES. Problems such as two- and three-dimensional elasticity and
Maxwell’s equations, as well as the first-order systems arising from least-squares
finite element formulations, all require an efficient solver for their discretized
forms. While classical AMG is effective in some cases, its primary assumption
that the smoothest global vector is nearly constant results in an algorithm that
cannot be expected to accurately handle many systems. Elasticity is a prime
example where the differential operator (prior to the imposition of boundary
conditions) has null-space components corresponding to translations in each of
the coordinate directions and rotations in each of the coordinate planes (the
rigid-body modes). Indeed, in many systems problems the idea of smoothness
that is fundamental to our definition of interpolation can only be stated as a
relationship between the system variables.

While the extension to systems discussed in Sections 3 and 4 has many nice
properties, it is possible that it, too, will prove insufficient for these problems,
mainly because it only allows for d near null-space components to be accounted
for. Three-dimensional elasticity, for example, has six distinct near null-space
components, and so we expect some difficulty generating an efficient algorithm
by accounting for a subspace of them of dimension three. It is for this reason that
we expect to investigate the feasibility of adding information from additional
near null-space vectors to already existing interpolation operators.

There are many possible ways to implement the addition of this information.
Currently, we see one potentially effective way as choosing an update to the
current interpolation operator of minimal norm. That is, given a current C' — F'
interpolation operator, W, based on the collection of vectors z(1), ... z*k-1)
and a new vector z(*) (so we can write X = [z, ... z(®]), we choose a new
C — F interpolation operator of the form W + AW, such that at each point 4,
AW; is chosen to

min 1AW X7 + (W xXE, — X))l

such that [|[AW;|| is also minimized. This choice has the necessary property
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that it balances appropriate treatment of all vectors previously treated by the
interpolation, but also adds in the additional change necessary to treat the new
vector, z(¥). Important questions that must be addressed include deciding which
norms are appropriate for the minimization and also the computability of the
minimization.

Finally, we also intend to direct our efforts toward the development of a
theory explaining the behavior of both our existing code and its extensions. For
example, we are interested in exploring the initial generation of our representa-
tive vectors and would like to understand the level of accuracy needed in this
process to obtain sufficiently fast convergence rates. In general, we would like
to gain a better understanding of the barriers to optimal multigrid convergence,
so that we can develop our algorithm to appropriately overcome them.

While we are quite happy with our current results from the trial algorithm,
it is clear that there are quite a number of possible avenues for investigation
surrounding self-correcting Algebraic Multigrid methods. We hope that by a
thorough investigation of these possibilities we will develop an algorithm that
exhibits optimal multigrid convergence properties for a large range of problems
at a minimal increase in cost. With the improvements already demonstrated
and those to be investigated, we feel that the development of a more robust
class of multigrid methods can be successfully completed within the proposed
thesis research.
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