Strategies for Self-Correcting Algebraic Multigrid Methods

Scott MacLachlan

Scott.MacLachlan@colorado.edu

Department of Applied Mathematics
University of Colorado at Boulder

Collaborators

- Steve McCormick
- Tom Manteuffel
- Rob Falgout
- Marian Brezina
- John Ruge

Basic Multigrid V-Cycle

- Relax on $A x=b$
- Restrict residual equation to coarser grid
- Solve coarse grid equation recursively
- Interpolate coarse grid correction and add to current approximation
- Relax on $A x=b$

Overall Goal

- Interested in applying algebraic multigrid methods to "more difficult" problems, such as systems (e.g. elasticity)

Overall Goal

- Interested in applying algebraic multigrid methods to "more difficult" problems, such as systems (e.g. elasticity)
- Develop an algebraic multigrid solver with increased robustness properties while not sacrificing optimality

Overall Goal

- Interested in applying algebraic multigrid methods to "more difficult" problems, such as systems (e.g. elasticity)
- Develop an algebraic multigrid solver with increased robustness properties while not sacrificing optimality
- Develop a solver which defaults to simplicity if given a simple problem

Basic Multigrid Properties

- Simple (Gauss-Seidel) Relaxation is inefficient for $A x=b$ on error components e that give relatively small residuals: $A e$ is "small" relative to e (e is said to be algebraically smooth)

Basic Multigrid Properties

- Simple (Gauss-Seidel) Relaxation is inefficient for $A x=b$ on error components e that give relatively small residuals: $A e$ is "small" relative to e (e is said to be algebraically smooth)
- Example: For s.p.d. matrices, Richardson iteration stalls iff the error e satisfies

$$
\langle A e, e\rangle \ll\|A\|\langle e, e\rangle
$$

Basic Multigrid Properties

- Simple (Gauss-Seidel) Relaxation is inefficient for $A x=b$ on error components e that give relatively small residuals: $A e$ is "small" relative to e (e is said to be algebraically smooth)
- Example: For s.p.d. matrices, Richardson iteration stalls iff the error e satisfies

$$
\langle A e, e\rangle \ll\|A\|\langle e, e\rangle
$$

- For efficient multigrid performance, relaxation and coarse grid correction must be complementary

Current Assumptions

- Coarse grids are predetermined and sufficient for full multigrid efficiency
- Currently choosing coarse grids based on geometric or "classical" AMG criteria
- Eventually hope to determine coarse grids adaptively as well (Compatible Relaxation)

Main Ideas

- Build a multigrid heirarchy such that slowly converging components of the method are incorporated as they are uncovered

Main Ideas

- Build a multigrid heirarchy such that slowly converging components of the method are incorporated as they are uncovered
- Complementarity of relaxation and coarse grid correction means that if relaxation is inefficient on a component then that component must be treated by coarse grid correction

Main Ideas

- Build a multigrid heirarchy such that slowly converging components of the method are incorporated as they are uncovered
- Complementarity of relaxation and coarse grid correction means that if relaxation is inefficient on a component then that component must be treated by coarse grid correction
- Components that are slow to converge for $A x=b$ will also be slow for $A x=0$

Details of the Method

- Relax on $A x=0$ with a random initial guess to quickly resolve a representative of the slow-to-converge components

Details of the Method

- Relax on $A x=0$ with a random initial guess to quickly resolve a representative of the slow-to-converge components or show that relaxation is sufficient for the problem

Details of the Method

- Relax on $A x=0$ with a random initial guess to quickly resolve a representative of the slow-to-converge components or show that relaxation is sufficient for the problem
- Define a 2-grid method by choosing a coarse grid and interpolation so that this component is in the range of interpolation (and using variational properties)

Details of the Method

- Relax on $A x=0$ with a random initial guess to quickly resolve a representative of the slow-to-converge components or show that relaxation is sufficient for the problem
- Define a 2-grid method by choosing a coarse grid and interpolation so that this component is in the range of interpolation (and using variational properties)
- Go to a multigrid method by recursion

Details ...

$$
\mathrm{x}_{1}^{(1)}:=\operatorname{rnd} \longmapsto \mathrm{x}_{1}^{(1)}, \mathrm{P}_{1}
$$

$$
x_{2}^{(1)}, A_{2} \quad x_{2}^{(1)} \longrightarrow x_{2}^{(1)}, P_{2}
$$

$$
\mathrm{x}_{3}^{(1)}, \mathrm{A}_{3} \quad \mathrm{x}_{3}^{(1)} \longmapsto \mathrm{x}_{3}^{(1)}
$$

Details ...

- Have developed a multigrid heirarchy, want to know if it is good enough

Details ...

- Have developed a multigrid heirarchy, want to know if it is good enough
- Test it on $A x=0$

Details ...

- Have developed a multigrid heirarchy, want to know if it is good enough
- Test it on $A x=0$
- If good enough, stop

Details ...

- Have developed a multigrid heirarchy, want to know if it is good enough
- Test it on $A x=0$
- If good enough, stop
- If not, define a new interpolation based on the error from this test AND the component from the first step

Details ...

- Have developed a multigrid heirarchy, want to know if it is good enough
- Test it on $A x=0$
- If good enough, stop
- If not, define a new interpolation based on the error from this test AND the component from the first step
- Iterate ...

Details

Choosing Interpolation

- Seek to define interpolation to fit collection of algebraically smooth vectors

Choosing Interpolation

- Seek to define interpolation to fit collection of algebraically smooth vectors
- Algebraic smoothness means

$$
\begin{aligned}
(A x)_{i} & \approx 0 \\
\text { or } a_{i i} x_{i} & \approx-\sum_{j \in N_{i}} a_{i j} x_{j} \\
& =-\sum_{j \in C_{i}} a_{i j} x_{j}-\sum_{k \in F_{i}} a_{i k} x_{k}
\end{aligned}
$$

Choosing Interpolation

- Seek to define interpolation to fit collection of algebraically smooth vectors
- Algebraic smoothness means

$$
\begin{aligned}
(A x)_{i} & \approx 0 \\
\text { or } a_{i i} x_{i} & \approx-\sum_{j \in N_{i}} a_{i j} x_{j} \\
& =-\sum_{j \in C_{i}} a_{i j} x_{j}-\sum_{k \in F_{i}} a_{i k} x_{k}
\end{aligned}
$$

- To define interpolation, need to collapse connections from F_{i} to C_{i}

N_{i}, the neighbourhood of i

Fine Grid Points
Coarse Grid Points

Choosing Interpolation ...

- Seek to define interpolation to fit collection of algebraically smooth vectors

Choosing Interpolation ...

- Seek to define interpolation to fit collection of algebraically smooth vectors
- If $k \in F_{i}$ is connected to a set of $j \in C_{i}$, we want to write

$$
x_{k}=\sum_{j \in C_{i}} w_{k j} x_{j}
$$

Choosing Interpolation ...

- Seek to define interpolation to fit collection of algebraically smooth vectors
- If $k \in F_{i}$ is connected to a set of $j \in C_{i}$, we want to write

$$
x_{k}=\sum_{j \in C_{i}} w_{k j} x_{j}
$$

- Considering all representatively smooth vectors, this becomes the system

$$
X_{k}^{T}=X_{C_{i}}^{T} w_{k}
$$

Choosing Interpolation ...

- Seek to define interpolation to fit collection of algebraically smooth vectors
- If $k \in F_{i}$ is connected to a set of $j \in C_{i}$, we want to write

$$
x_{k}=\sum_{j \in C_{i}} w_{k j} x_{j}
$$

- Considering all representatively smooth vectors, this becomes the system

$$
X_{k}^{T}=X_{C_{i}}^{T} w_{k}
$$

- When we have accumulated enough vectors (more vectors to fit than points in C_{i}), we must solve this in a least-norm sense

Choosing Interpolation ...

- Once we have $w_{k j}$, we write

$$
x_{k}=\sum_{j \in C_{i}} w_{k j} x_{j}
$$

Choosing Interpolation ...

- Once we have $w_{k j}$, we write

$$
x_{k}=\sum_{j \in C_{i}} w_{k j} x_{j}
$$

- Then, using the definition of algebraic smoothness, we have

$$
\begin{aligned}
a_{i i} x_{i} & \approx-\sum_{j \in C_{i}} a_{i j} x_{j}-\sum_{k \in F_{i}} a_{i k} x_{k} \\
a_{i i} x_{i} & \approx-\sum_{j \in C_{i}} a_{i j} x_{j}-\sum_{k \in F_{i}} \sum_{j \in C_{i}} a_{i k} w_{k j} x_{j} \\
x_{i} & \approx-\sum_{j \in C_{i}} \frac{a_{i j}+\sum_{k \in F_{i}} a_{i k} w_{k j}}{a_{i i}} x_{j}
\end{aligned}
$$

Choosing Interpolation ...

So, we define interpolation to a fine grid point i as

$$
x_{i}=-\sum_{j \in C_{i}} \frac{a_{i j}+\sum_{k \in F_{i}} a_{i k} w_{k j}}{a_{i i}} x_{j}
$$

Summary

- Premise: AMG good, but need assumptions on smoothness

Summary

- Premise: AMG good, but need assumptions on smoothness
- Relieve method from these presumptions

Summary

- Premise: AMG good, but need assumptions on smoothness
- Relieve method from these presumptions
- Coarse grid correction must address errors which look (locally) like representatives

Summary

- Premise: AMG good, but need assumptions on smoothness
- Relieve method from these presumptions
- Coarse grid correction must address errors which look (locally) like representatives
- Get new representatives through method, so they must be distinct

Summary

- Premise: AMG good, but need assumptions on smoothness
- Relieve method from these presumptions
- Coarse grid correction must address errors which look (locally) like representatives
- Get new representatives through method, so they must be distinct
- Get new interpolation by maintaining performance on previous representatives while accounting for new representative

Preliminary Numerics

- $-\nabla \cdot D(x, y) \nabla u(x, y)=0$ on $[0,1]^{2}$
- Dirichlet boundary conditions
- Geometric choice of coarse grids
- Interpolation chosen as above, for 1 smooth vector

Preliminary Numerics ...

- $D(x, y)=1$ (Laplace)

size	convergence factor
32×32	0.096
64×64	0.14

- $D(x, y)=r_{1} * 10^{2 r_{2}} ; r_{1}, r_{2}$ random, uniform on $[0,1)$

size	convergence factor
32×32	0.30
64×64	0.50

Future Work

- Further investigation into choosing interpolation

Future Work

- Further investigation into choosing interpolation
- Adaptive choice of coarse grids

Future Work

- Further investigation into choosing interpolation
- Adaptive choice of coarse grids
- Can we do this effectively looking at $A x=b$, or is a "setup" phase necessary?

Future Work

- Further investigation into choosing interpolation
- Adaptive choice of coarse grids
- Can we do this effectively looking at $A x=b$, or is a "setup" phase necessary?
- Ensure optimal multigrid efficiency

Conclusions

- Have framework for self correcting multigrid solvers
- Preliminary numerics suggest this approach is feasible
- Method defaults to simple relaxation for problems where this is sufficient
- Much work still to be done

