
Adapting Algebraic Multigrid
Scott MacLachlan

maclachl@colorado.edu

Department of Applied Mathematics, University of Colorado at Boulder

In collaboration with: Marian Brezina, Rob Falgout, Tom Manteuffel, Steve McCormick,

and John Ruge

Adapting Algebraic Multigrid – p.1



The Basics

Need a solver whose performance doesn’t significantly
degrade as problem size increases

Multigrid methods obtain optimal efficiency through
complementarity

Use a smoothing process (such as Gauss-Seidel) to
eliminate oscillatory errors

Use a coarse grid correction process to eliminate
smooth errors

Obtain optimal efficiency through recursion

Adapting Algebraic Multigrid – p.2



Importance of Interpolation

Complementarity is key in multigrid - error components
that are not quickly reduced by relaxation must be
reduced by coarse-grid correction

A component can only be corrected from the
coarse-grid if it is properly interpolated from that grid

Interpolation must be most accurate for components
that relaxation is slowest to resolve

Adapting Algebraic Multigrid – p.3



AMG Assumptions

Algebraic Multigrid methods attempt to mimic geometric
methods in their choices of interpolation operators and
coarse grids

Typically use a fixed, pointwise relaxation scheme

Classical (Ruge-Stueben) AMG assumes that
algebraically smooth error varies slowly along strong
connections

This is equivalent to assuming that algebraically smooth
error is essentially (locally) constant

Adapting Algebraic Multigrid – p.4



AMG Weaknesses

AMG assumes the slowest-resolved components are
near-constant

For standard (e.g. finite difference, Galerkin FE)
discretizations of scalar differential operators this is
usually true

If discretizations are non-standard or the resulting
matrices are scaled, AMG cannot achieve good
performance

Adapting Algebraic Multigrid – p.5



Choosing Interpolation

Seek to define interpolation to fit an algebraically
smooth vector

Algebraic smoothness means

� ��� ��� � �

or 	� � � � � 

� � ��

	� � � �

� 

� � � �

	� � � � 

� � ��

	� � � �

To define interpolation, need to collapse connections
from

�� to

��

Adapting Algebraic Multigrid – p.6



Choosing Interpolation . . .

Seek to define interpolation to fit an algebraically
smooth vector

If

� � �� is connected to a set of

� � �� , we want to write

� � �
� � � �

�� � � �

Then, using the definition of algebraic smoothness, we
have

	� � � � � 

� � � �

	� � � � 

� � ��

	� � � �

	� � � � � 

� � � �

	� � � � 

� � �� � � � �

	� � �� � � �

Adapting Algebraic Multigrid – p.7



Choosing ��

If we have a vector, � �� �

, such that

� � � �� � �� � �
and so

	� � �
�� �

� � 

� � � �

	� � �
� � �

� 

� � � � �

	� � �
� � �

�

Eliminate extra terms by replacing matrix entry 	� � with
arbitrary

�� �

�� � �
�� �

� � 

� � � �

	� � �
� � �

�

Adapting Algebraic Multigrid – p.8



Choosing � � . . .

Taking the value of

�� � given here, we can write

�
�� �

� � 

� � � �

	� �
�� �

�
� � �

� �
� � � �

	� � �
�� �

�

� � � � �
	� � � �

� � �
� �

�
�� �

�

Use this formula to collapse all algebraically smooth
error

� � �
� � � �

��
��
�

	� � �
� � �

�

� � � � �
	� � � �

�� �
� �

��
��
�

� � �
� � � �

�� � � �

Adapting Algebraic Multigrid – p.9



Adaptive Interpolation

So, we define interpolation to a fine grid point

�

as

� � � 

� � � �

	� � �
� � ��

	� � �� �

	� �

� �

� 

� � � �

	� � �
� � ��

	� �

��
��
�

	� � �
�� �

�

� � � � �
	� � � �

�� �
� �

��
��
�

	� �

� �

Adapting Algebraic Multigrid – p.10



Relation to Ruge-Stueben

Ruge-Stueben AMG takes � � � �
� �

Substituting this into our interpolation formula gives

� � � 

� � � �

	� � �
� � ��

	� �

��
��
�

	� �

� � � � �
	� � �

��
��
�

	� �

� �

This is the same as the AMG strong-connection-only
interpolation formula

Adapting Algebraic Multigrid – p.11



Scaling Invariance

Combining our interpolation with pointwise relaxation
leads to an algorithm that is nearly insensitive to any
diagonal scaling

In particular, if

�

is scaled to

� � �

, and � �� �

is scaled to

��� � � �� �

, then we achieve the same convergence rates
for the scaled problem as for the unscaled problem

Difficulty lies in generating the scaled vector

� � � � �� �

Adapting Algebraic Multigrid – p.12



Determining

� � �

Choosing a good interpolation operator requires a good
approximation, � �� �

, to the algebraically-smoothest
vector of a given matrix

�

Such an approximation could be determined by
sufficient relaxation on a random initial guess with a
zero right-hand side

In practice, this requires too much computation to be
feasible

Instead, we use preliminary V-cycles to accelerate the
exposure of components for which

� � � �

Adapting Algebraic Multigrid – p.13



Determining

� � �

. . .

One relaxation on the fine grid costs 1 work unit

One relaxation on each grid of a 2D, full-coarsening
based V-cycle costs

�
� work units

We chose to study a system where 2 preliminary
V-cycles are used to determine � �� �

, with interpolation
and coarse-grid operators computed only on the
downward side of the cycle

We perform �� relaxations on the finest grid, then 2
V-cycles, with �� relaxations on the downward side and

�� relaxations on the upward side of the cycle

Adapting Algebraic Multigrid – p.14



Determining

� � �

. . .

ν0

ν1

ν1

ν1

ν1

ν1
ν

2

ν
2

ν
2

ν
2

ν
2 ν1

ν1

ν1

ν1

In 2D, total cost of relaxation can then be approximated
by �� � �

� �� �
�

� �� work units

Adapting Algebraic Multigrid – p.15



Test Problems

We start with 2 test problems on

� �
�

� � �

, both from
bilinear FE discretizations

Problem 1 is Poisson with pure Dirichlet Boundary
Conditions

Problem 2 is 
 ��� � � � � � � ��� � � � � � � �
with Dirichlet BCs

on the left and right and Neumann BCs on top and
bottom, and

� � � � � � �

� � � � � � � � � � �
� �

�
�

� �

�

otherwise

Adapting Algebraic Multigrid – p.16



Test Problems

The second pair of problems come from diagonally
scaling Problems 1 and 2

To scale, we use the node-wise scaling function

� ��� � � �� � ��� �� �� � � � �	 
 � �� � � � �� �

This function gives variable scaling on each node, but
does not change its character with

�

Adapting Algebraic Multigrid – p.17



Numerical Results

Coarse grids are chosen geometrically, based on
full-coarsening

Coarse grid operators are determined by the Galerkin
condition.

Cost of relaxation in setup is then approximated as

�� � �
� �� � �
� �� work units

Compute asymptotic convergence factor, then use this
to estimate number of V(1,1)-cycles needed to reduce
error by

� �� �

From number and cost of cycles (

�
� work units), can

estimate total cost of solution stage

Adapting Algebraic Multigrid – p.18



AMG-Equivalent Results

By fixing � � � �
� �

, we can generate results indicative of
AMG’s performance

Work Units for standard AMG

�

Problem 1 Problem 2 Problem 3 Problem 4

� � ��

12.9 14.5 1297 59.4

� � 
 �

13.4 15.6 4075 112.1

� � � � �

13.6 14.9 6122 218.7

� � � � 


13.8 16.4 6122 430.6

� �� � �

13.9 15.2 7350 858.6

� � � �� �

13.9 16.7 7350 1656

Adapting Algebraic Multigrid – p.19



Setup Choices

Having chosen a 2 V-cycle setup procedure, two
choices are needed
1. The distribution of the relaxation effort between � � ,

�� , and ��

2. How much relaxation is necessary for a robust
algorithm

Adapting Algebraic Multigrid – p.20



Distributing Relaxation

To choose how to distribute relaxation, we fix the
number of work units allotted to the relaxation in the
setup phase

�� �

�
�

�� �

�
�

�� � � �

Best results were achieved for � � � �
� �� � �
� �� � �

, with
good results also seen for �� � �

� �� � �
� �� � �

and

�� � �
� �� � �
� �� � �

Poor results were achieved with � � � �
� �� � �
� �� � �

and �� � �
� �� � �
� �� � 


Adapting Algebraic Multigrid – p.21



Work units for solution

�� � �
� �� � �
� �� � �

�

Problem 1 Problem 2 Problem 3 Problem 4

� � ��

12.9 14.8 12.9 14.7

� � 
 �

13.4 15.6 13.5 15.3

� � � � �

13.6 14.7 13.8 15.4

� � � � 


13.8 16.4 13.9 30.3

� �� � �

13.9 24.0 13.9 25.8

� � � �� �

749.0 926.1 103.7 977.2

Adapting Algebraic Multigrid – p.22



Work units for solution

�� � �
� �� � �
� �� � �

�

Problem 1 Problem 2 Problem 3 Problem 4

� � ��

12.9 14.7 12.9 14.7

� � 
 �

13.4 15.6 13.5 15.4

� � � � �

13.6 14.9 13.7 14.7

� � � � 


13.9 16.4 13.9 25.2

� �� � �

13.9 15.8 13.9 16.4

� � � �� �

13.9 23.2 13.9 25.6

Adapting Algebraic Multigrid – p.23



Work units for solution

�� � 

� �� � �
� �� � �

�

Problem 1 Problem 2 Problem 3 Problem 4

� � ��

12.9 14.9 12.9 14.9

� � 
 �

13.4 15.6 13.5 15.3

� � � � �

13.6 15.2 13.7 15.3

� � � � 


13.8 16.4 13.8 16.4

� �� � �

13.9 15.2 13.9 15.2

� � � �� �

13.9 16.7 13.9 16.8

Adapting Algebraic Multigrid – p.24



Convergence Factors

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1/h

A
sy

m
pt

ot
ic

 C
on

ve
rg

en
ce

 F
ac

to
r

Convergence Factor vs 1/h

AMG Laplace
α AMG Laplace
AMG Diffusion
α AMG Diffusion

Adapting Algebraic Multigrid – p.25



Conclusions

Cost of classical AMG cannot be beat for problems
where � �� �

� �

Our interpolation formula does offer an improvement on
classical AMG

Proper distribution and amount of relaxation during
setup is crucial to achieving a robust algorithm

Cost of robustness is not prohibitive

Adapting Algebraic Multigrid – p.26



Future Work

Extension to systems is straight-forward

Fully algebraic code is under development

Seek to include more advanced coarsening (e.g.
compatible relaxation)

Consider altering construction to take advantage of
more robust smoothing

Adapting Algebraic Multigrid – p.27


	The Basics
	Importance of Interpolation
	AMG Assumptions
	AMG Weaknesses
	Choosing Interpolation
	Choosing Interpolation ldots 
	Choosing $w_{kj}$
	Choosing $w_{kj}$ ldots 
	Adaptive Interpolation
	Relation to Ruge-Stueben
	Scaling Invariance
	Determining $x^{(1)}$
	Determining $x^{(1)}$
ldots 
	Determining $x^{(1)}$
ldots 
	Test Problems
	Test Problems
	Numerical Results
	AMG-Equivalent Results
	Setup Choices
	Distributing Relaxation
	Work units for solution
	Work units for solution
	Work units for solution
	Convergence Factors
	Conclusions
	Future Work

