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The Basics

Need a solver whose performance doesn’t significantly
degrade as problem size increases

Multigrid methods obtain optimal efficiency through
complementarity

Use a smoothing process (such as Gauss-Seidel) to
eliminate oscillatory errors

Use a coarse grid correction process to eliminate
smooth errors

Obtain optimal efficiency through recursion
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| mportance of Interpolation

# Complementarity is key in multigrid - error components
that are not quickly reduced by relaxation must be
reduced by coarse-grid correction

# A component can only be corrected from the
coarse-grid if it is properly interpolated from that grid

# Interpolation must be most accurate for components
that relaxation is slowest to resolve
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AMG Assumptions

Algebraic Multigrid methods attempt to mimic geometric
methods in their choices of interpolation operators and
coarse grids

Typically use a fixed, pointwise relaxation scheme

Classical (Ruge-Stueben) AMG assumes that
algebraically smooth error varies slowly along strong
connections

This Is equivalent to assuming that algebraically smooth
error is essentially (locally) constant
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AMG Weaknhesses

#® AMG assumes the slowest-resolved components are
near-constant

# For standard (e.g. finite difference, Galerkin FE)
discretizations of scalar differential operators this is
usually true

# |If discretizations are non-standard or the resulting
matrices are scaled, AMG cannot achieve good
performance
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Choosing I nterpolation

#® Seek to define interpolation to fit an algebraically
smooth vector

# Algebraic smoothness means

or a;;e; =~ — Z ;€
JEN;
== ) aijej = ) aire
jeC} keF;

# To define interpolation, need to collapse connections
from F; to C;
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Choosing I nterpolation ...

#® Seek to define interpolation to fit an algebraically
smooth vector

® |f £ € F;Is connected to a set of j € C;, we want to write
€L — Z fwkjej
j€C}

# Then, using the definition of algebraic smoothness, we

have
A€ = — Z az-jej — Z Q;LEL

1€C; keF;

A€ = — E az-jej — ;J ;J aikwkjej

1€l keF; jeC;
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Choosing wy;

» If we have a vector, z(1), such that (4z(1); ~ 0 and so

akkx,(cl) = — Z akng-l) — Z ak]w;-l)
jeCy 7¢C;

# Eliminate extra terms by replacing matrix entry a;; with

arbitrary dg;
1 1
dkkx( ) — — Z Clkj.CE; )
1€Ch
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Choosing wy; ...

# Taking the value of d;; given here, we can write

NUN

1€C;

Akj , (1)

_:E' —

dr 7

2

1€C;

(1)
kL, )
(1)
Z Ahej' L ji
3'eCh

# Use this formula to collapse all algebraically smooth

error

r=3

1€C;

\

Z Ak’ T

3'eCh

(1)

»
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Adaptive | nterpolation

So, we define interpolation to a fine grid point 7 as

A;j + Z QW

0: — :E:: ke F; p
i = j
7y

je€C;

ALy,
aji + E a;
1] vk (1)

keF; § : Q! L o

)3 <)
— — €
i ’

1€C;

Adapting Algebraic Multigrid — p.10



Relation to Ruge-Stueben

® Ruge-Stueben AMG takes z(1) =1
# Substituting this into our interpolation formula gives

a[ .
A5 + E ;L iz
Z akj/
7€’} )
e; = — g e;

7]

#® This is the same as the AMG strong-connection-only
interpolation formula
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Scaling Invariance

# Combining our interpolation with pointwise relaxation
leads to an algorithm that is nearly insensitive to any
diagonal scaling

# In particular, if A is scaled to DAD, and =Y is scaled to

D~z then we achieve the same convergence rates
for the scaled problem as for the unscaled problem

» Difficulty lies in generating the scaled vector D~ 1z(1)
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Deter mining =V

Choosing a good interpolation operator requires a good

approximation, z1), to the algebraically-smoothest
vector of a given matrix A

Such an approximation could be determined by
sufficient relaxation on a random initial guess with a
zero right-hand side

In practice, this requires too much computation to be
feasible

Instead, we use preliminary V-cycles to accelerate the
exposure of components for which Az ~ 0
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°

Determining =V ...

One relaxation on the fine grid costs 1 work unit

One relaxation on each grid of a 2D, full-coarsening
based V-cycle costs % work units

We chose to study a system where 2 preliminary

V-cycles are used to determine z(1), with interpolation
and coarse-grid operators computed only on the
downward side of the cycle

We perform 1 relaxations on the finest grid, then 2
V-cycles, with v; relaxations on the downward side and
o relaxations on the upward side of the cycle
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Determining =V ...

# In 2D, total cost of relaxation can then be approximated
by v + 511 + 315 work units
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Test Problems

» We start with 2 test problems on [0, 1]2, both from
bilinear FE discretizations

# Problem 1 is Poisson with pure Dirichlet Boundary
Conditions

® Problem 2is —V - D(x,y)Vp(x,y) = 0 with Dirichlet BCs
on the left and right and Neumann BCs on top and
bottom, and

D(CL‘ y) _ 102 (CE,y) S [%7 %]2
’ 1  otherwise
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Test Problems

The second pair of problems come from diagonally
scaling Problems 1 and 2

To scale, we use the node-wise scaling function
1 + sin(5477;) sin(496my;) + 1077

This function gives variable scaling on each node, but
does not change its character with A

Adapting Algebraic Multigrid — p.17



Numerical Results

Coarse grids are chosen geometrically, based on
full-coarsening

Coarse grid operators are determined by the Galerkin
condition.

Cost of relaxation in setup is then approximated as
Vo + %l/l + %VQ work units

Compute asymptotic convergence factor, then use this
to estimate number of V(1,1)-cycles needed to reduce

error by 1079

From number and cost of cycles (% work units), can
estimate total cost of solution stage
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AM G-Equivalent Results

® By fixing 2(!) = 1, we can generate results indicative of
AMG’s performance

Work Units for standard AMG

h Problem 1 | Problem 2 | Problem 3 | Problem 4
1/32 12.9 14.5 1297 59.4
1/64 13.4 15.6 4075 112.1
1/128 13.6 14.9 6122 218.7
1/256 13.8 16.4 6122 430.6
1/512 13.9 15.2 7350 858.6

1/1024 13.9 16.7 7350 1656
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Setup Choices

# Having chosen a 2 V-cycle setup procedure, two
choices are needed

1. The distribution of the relaxation effort between vy,
V1, and 9

2. How much relaxation is necessary for a robust
algorithm
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Distributing Relaxation

® To choose how to distribute relaxation, we fix the
number of work units allotted to the relaxation in the
setup phase
8

4
— —1y = 12
Vo-|—3V1—|— 3V2

#® Best results were achieved for vy = 4,1 = 2,9 = 2, with
good results also seen for vy = 4,11 = 3,15 = 0 and
0 24,V1 — 1,V2 =1

#® Poor results were achieved with vy = 0,1 = 3,9 = 3
and v =4,vy1 =0, =6
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Wor k unitsfor solution

VQZO,I/1:3,V2:3

h Problem 1 | Problem 2 | Problem 3 | Problem 4
1/32 12.9 14.8 12.9 14.7
1/64 13.4 15.6 13.5 15.3
1/128 13.6 14.7 13.8 15.4
1/256 13.8 16.4 13.9 30.3
1/512 13.9 24.0 13.9 25.8

1/1024 749.0 026.1 103.7 977.2
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Wor k unitsfor solution

V0:4,I/1:2,V2:2

h Problem 1 | Problem 2 | Problem 3 | Problem 4
1/32 12.9 14.7 12.9 14.7
1/64 13.4 15.6 13.5 15.4
1/128 13.6 14.9 13.7 14.7
1/256 13.9 16.4 13.9 25.2
1/512 13.9 15.8 13.9 16.4

1/1024 13.9 23.2 13.9 25.6
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Wor k unitsfor solution

VQZG,I/1:3,V2:3

h Problem 1 | Problem 2 | Problem 3 | Problem 4
1/32 12.9 14.9 12.9 14.9
1/64 13.4 15.6 13.5 15.3
1/128 13.6 15.2 13.7 15.3
1/256 13.8 16.4 13.8 16.4
1/512 13.9 15.2 13.9 15.2

1/1024 13.9 16.7 13.9 16.8
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Asymptotic Convergence Factor

Convergence Factors

Convergence Factor vs 1/h
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Conclusions

Cost of classical AMG cannot be beat for problems
where z(1) =1

Our interpolation formula does offer an improvement on
classical AMG

Proper distribution and amount of relaxation during
setup is crucial to achieving a robust algorithm

Cost of robustness is not prohibitive
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L

Future Work

Extension to systems is straight-forward
Fully algebraic code is under development

Seek to include more advanced coarsening (e.g.
compatible relaxation)

Consider altering construction to take advantage of
more robust smoothing
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