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Overview

Need a solver whose performance doesn’t significantly
degrade as problem size increases

Multigrid methods obtain optimal efficiency through
complementarity

Krylov methods accelerate this performance

The interaction between Krylov and adaptive multigrid
methods may be exploited to attempt to reduce the
overall time-to-solution or improve black-box
performance
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Multigrid

Multigrid Methods achieve optimality through complementarity
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)
Relax

Use a smoothing process (such as Gauss-Seidel) to
eliminate oscillatory errors

Remaining error satisfies Ae = r
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Level

1

2

Relax

Restriction

Transfer residual to coarse grid

Adaptive AMG as a Preconditioner – p.3



Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction

Use coarse-grid correction to eliminate smooth errors

To solve for error on coarse grid, use residual equation

A(2)e(2) = r(2)
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation

Transfer correction to fine grid
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation

Relax once again to remove oscillatory error introduced
in coarse-grid correction
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation
Solve

Restrict

Relax

Restrict

Relax

Interpolate

Relax

Relax

Interpolate

Relax

Relax 1

Level

3

K

2

Obtain optimal efficiency through recursion
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Algebraic Multigrid

In the absence of geometric information, choices must
be made based on algebraic information

Interpolation and coarse grids must be chosen based
on the ability to interpolate a suitable correction

Classical AMG assumes point-wise relaxation is slow to
resolve errors that are locally constant
(algebraically-smooth error)

Interpolation must then be chosen so that it is accurate
for such error

Efficiency of multigrid comes in the coarse-grid
correction step where all errors with similar local
character are effectively reduced as well.
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Algebraic Multigrid Interpolation

Point-wise relaxation stalls on errors with small
residuals - when Ae ≈ 0

Given a fine/coarse splitting Ω = F ∪ C, this means

aiiei ≈ −
∑

k∈Ci
aikek −

∑

j∈Fi
aijej

Interpolation defined by rewriting ej for j ∈ Fi in terms of
ei and ek, for k ∈ Ci
Assumption on algebraically-smooth error suggests

ej ≈

∑

k∈Ci
ajkek

∑

k∈Ci
ajk
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Adaptive Multigrid Interpolation

Seek to eliminate the assumption on the character of
algebraically-smooth error

Replace the weighted average used in collapsing strong
F-F connections with one that also accounts for a
prototype of algebraically-smooth error
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Adaptive Multigrid Interpolation

Seek to eliminate the assumption on the character of
algebraically-smooth error

Replace the weighted average used in collapsing strong
F-F connections with one that also accounts for a
prototype of algebraically-smooth error

ej ≈

∑

k∈Ci
ajkek

∑

k∈Ci
ajk

→ ej ≈

∑

k∈Ci
ajkvjek

∑

k∈Ci
ajkvk
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Model Problems

Consider bilinear FE discretization of
−∇ · K(x, y)∇p = f on [0, 1]2

Problem 1: K(x, y) = 1 (Laplace) with Dirichlet BCs

Problem 2: K(x, y) = 10−8 on 20% of elements
(chosen randomly) and K(x, y) = 1 otherwise.
Neumann BCs along y = 0 and y = 1, Dirichlet BCs
along x = 0 and x = 1

Also consider scaled versions of these matrices,
Ã = DAD, where dii = 10r, for r chosen randomly
between 0 and 5 (Problems 1r and 2r)
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Calibrated AMG performance
Asymptotic Convergence Factor

grid Prob 1 Prob 1r Prob 2 Prob 2r
642 0.07 0.07 0.19 0.19
1282 0.07 0.07 0.20 0.21
2562 0.08 0.08 0.24 0.24
5122 0.08 0.08 0.29 0.29

Total Time to Solution
642 0.04s 0.03s 0.03s 0.05s
1282 0.25s 0.22s 0.31s 0.27s
2562 0.89s 0.91s 1.09s 1.22s
5122 3.52s 3.64s 4.84s 5.35s
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Calibrated AMG tuning

These results are achieved because of hand-tuning of
the number of relaxations performed on each level to
determine the approximation of algebraically-smooth
error used in the definition of interpolation

Pre-relaxations on Finest Grid and Coarse Grids
grid Prob 1 Prob 1r Prob 2 Prob 2r
642 4 2 8 4 4 2 11 5
1282 4 2 10 5 5 3 18 9
2562 6 3 15 7 8 4 27 14
5122 9 4 22 11 12 6 43 21
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Adaptive approach

Do a small, fixed number of relaxations on the finest
grid to expose algebraically-smooth error

Form interpolation, inject smooth-error approximation
and relax on coarse-grid problem

Repeat until reach coarsest grid

On subsequent setup cycles, use current V-cycles
instead of relaxation to expose error not adequately
reduced by the current method

Form interpolation to fit this error (if necessary, in
addition to the error currently being fit)
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Adaptive AMG performance

Perform 5 iterations of the current solver on each level
of each setup cycle

On first cycle, this is Gauss-Seidel relaxation

On subsequent cycles, it is the current V-cycle

Setup Iteration Count and Total Time to Solution
grid Prob 1 Prob 1r Prob 2 Prob 2r
642 1 0.08s 1 0.07s 1 0.09s 2 0.11s
1282 1 0.32s 1 0.34s 1 0.41s 2 0.54s
2562 1 1.29s 2 1.82s 2 2.19s 2 1.96s
5122 1 5.46s 2 7.29s 2 8.16s 4 12.91s
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Setup vs Solution phases

This approach relies on the separation of a setup phase
of the algorithm from the solution of the linear system,
Ax = b, of interest

The costs of the setup phase include the computation
of the multigrid hierarchy, but also (possibly many)
relaxation sweeps

These relaxations are “lost” - they do not directly
contribute to the solution of Ax = b
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Preconditioning

Preconditioning Ax = b with an approximate inverse of
A, M−1, within CG gives a series of residuals, rk, and
generalized residuals, sk = M−1rk

The matrix, Sk = (s0, s1, . . . , sk), diagonalizes M and
tridiagonalizes A

Using relaxation as a preconditioner for CG applied to
Ax = b then also generates a simple system whose
eigenvalues are those of an orthogonal section of
M−

1
2AM−

1
2
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Lanczos as a Smoother

Solving SkASkv = λminSkMSkv gives the smoothest
vector relative to M−1A in the space spanned by {sj}kj=0

This vector, an approximation to the largest eigenmode
of I −M−1A, represents the component that is slowest
to be reduced by the preconditioner

That component can be used in the same way as the
algebraically-smooth error in the adaptive AMG
approach
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Adaptive Preconditioning

By allowing the preconditioner (MG), M−1, to vary, we
can adapt the overall solution process

Starting with a simple preconditioner,
Run a given number of PCG iterations
Find the smoothest vector in the Lanczos process
Adapt the preconditioner to better reduce this vector

Overall efficiency depends on both the performance of
the (adapted) preconditioner and the speed at which
the Lanczos process converges
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PCG-Lanczos Cycle

Start with no knowledge of algebraically-smooth error,
so use relaxation-preconditioned CG on Ax = b to
generate initial approximations to x and to the
algebraically-smooth error

Use the smooth-error approximation to create an
interpolation operator and coarse-grid problem

Recurse until sufficiently coarsened, interpolate and
add correction to fine-grid solution

Now, use the MG-preconditioned CG to solve Ax = b.
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Adaptive PCG-Lanczos Cycle

If performance is inadequate
Use Lanczos to extract new smooth vector (missed
by both relaxation and current coarse-grid
correction)
Readapt MG cycle to account for this error, using the
existing MG solver (instead of relaxation) on all
levels to expose error not currently being efficiently
reduced

Now test solver as MG-preconditioned CG on Ax = b
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Numerical Results

Increment the size of the space for Lanczos by 10
vectors

Adapt MG whenever a smoother vector (measured in
RQA) is available

Assume scalar PDE-based problem, so adaptation is
based only on the single smoothest vector available

Adaptation Count and Total Time to Solution
grid Prob 1 Prob 1r Prob 2 Prob 2r
642 2 0.11s 2 0.12s 2 0.13s 2 0.12s
1282 2 0.81s 2 0.82s 2 0.80s 2 0.68s
2562 3 4.31s 3 3.83s 5 6.65s 5 7.95s
5122 5 26.50s 4 20.98s 8 49.23s 7 41.68s
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Analysis

Preconditioning approach allows us to construct an
efficient multigrid preconditioner while we solve Ax = b

Significant cost is incurred by iterations of poor
preconditioners constructed along the way

In general, smoothing the residual of Ax = b takes more
work than smoothing the error in Ax = 0

Adaptations are most effective when preconditioner is
very bad - algebraically-smooth error is faster to be
resolved
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Conclusions

Hand-tuned setup phase in a calibrated MG algorithm
results in scalable solvers

Adaptive tuning yields a less-efficient algorithm, but still
scalable and better than no tuning

Preconditioning approach allows tuning while solving
Ax = b, but requires significantly more effort to properly
expose algebraically-smooth error in the space {sj}kj=0

For discretized systems of PDEs, such as linear
elasticity, an adaptive or preconditioning approach will
be crucial to development of a representative set of
algebraically-smooth components
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