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Fully Adaptive Multigrid Framework

Want to solve new problems in an algebraic multigrid setting

Design a setup cycle that, given an arbitrary matrix, A, designs an

effective multigrid V-cycle

No parameter tuning (if possible)

Generalizing classical AMG:

More general techniques for more general problems

Will be more expensive, but also more robust
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FAlosophy

Ask: If the AMG setup cycle was “free”, how would we design the ideal

multigrid algorithm?

What are the real goals of coarsening?

What are the ideal properties of coarse grids?

How do we measure these?

Once we’ve figured out the ideal case, then ask if we can make it practical
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Classical AMG Coarsening

Strong Connections based on matrix entries:

Si =


j : −aij ≥ θmax

k 6=i
{−aik}

ff

Coarse grid chosen by maximal independent set heuristics

H1: For each i ∈ F , every j ∈ Si should be either in Ci or should strongly

depend on at least one point in Ci

H2: The set, C, should be a maximal subset of the fine grid, such that no

C-point strongly depends on another C-point

Fully Adaptive AMG – p.5



Weaknesses

Definition of strong connections based on “nice” M-matrix properties

Breaks down if near null space of A is far from the constant

Diagonal rescaling,

A→ DAD

Finite element anisotropy,

−uxx − εuyy → 1

6

2
6664

(−1− ε) (2− 4ε) (−1− ε)
(−4 + 2ε) (8 + 8ε) (−4 + 2ε)

(−1− ε) (2− 4ε) (−1− ε)

3
7775

Even for simple problems, size of aij may not reflect true connection

between i and j
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What are Strong Connections?

Point i strongly depends on point j if

a change in the right-hand side at point j significantly changes the

solution at point i.

a change in the residual at point j significantly changes the error at

point i

Good coarse-grid correction depends on identifying strong connections

Interpolation to i is most effective from points that it strongly depends

on

Corrections from weakly connected points have little effect on the

error at i
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Green’s Functions

Given a PDE, Lu = f , the Green’s function, GL relates u and f :

u(x) =

Z

Ω

GL(x,y)f(y)dy

If a change in f(xj) affects a significant change in u(xi), then GL(xi,xj)

must be large

xi strongly depends on xj if GL(xi,xj) is large compared to other values

of GL(xi,x)
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Discrete Green’s Function

For the discrete linear system, Ahuh = fh, the equivalent of the Green’s

function is the inverse

uh =
“
Ah
”−1

fh

If a change in fhj causes a significant change in uhi , then (Ah)−1
ij must be

large relative to other values of (Ah)−1
ik
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Measures of Strong Connections

Strength of dependence of i on j depends on size of (Ah)−1
ij

How should we measure this size, relative to (Ah)−1
ik ?

L2 measure:
`
Ah
´−1

ij
≥ θmax

k 6=i

“
Ah
”−1

ik

ff

Energy measure: Let G(i)
j = (Ah)−1

ij , Sij =
‖G(i) −G(i)

j e(j)‖Ah
‖G(i)‖Ah
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Approximating Sij

Can we get useful, local approximations to (Ah)−1
ij and, thus, Sij?

Apply (localized) relaxation to AhG(i) = e(i)
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Approximating Sij

Can we get useful, local approximations to (Ah)−1
ij and, thus, Sij?

Apply (localized) relaxation to AhG(i) = e(i)

Weighted Jacobi, 5 steps:
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Approximating Sij

Can we get useful, local approximations to (Ah)−1
ij and, thus, Sij?

Apply (localized) relaxation to AhG(i) = e(i)

Weighted Jacobi, 8 steps:

Fully Adaptive AMG – p.11



Approximating Sij

Can we get useful, local approximations to (Ah)−1
ij and, thus, Sij?

Apply (localized) relaxation to AhG(i) = e(i)

Weighted Jacobi, 9 steps:
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Approximating Sij

Can we get useful, local approximations to (Ah)−1
ij and, thus, Sij?

Apply (localized) relaxation to AhG(i) = e(i)

Weighted Jacobi, 10 steps:
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Approximating Sij

Can we get useful, local approximations to (Ah)−1
ij and, thus, Sij?

Apply (localized) relaxation to AhG(i) = e(i)

Weighted Jacobi, 50 steps:
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Approximating Sij

Can we get useful, local approximations to (Ah)−1
ij and, thus, Sij?

Apply (localized) relaxation to AhG(i) = e(i)

Jacobi-Preconditioned CG, 1 step:
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Approximating Sij

Can we get useful, local approximations to (Ah)−1
ij and, thus, Sij?

Apply (localized) relaxation to AhG(i) = e(i)

Jacobi-Preconditioned CG, 6 steps:
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Approximating Sij
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ij and, thus, Sij?

Apply (localized) relaxation to AhG(i) = e(i)
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Approximating Sij

Can we get useful, local approximations to (Ah)−1
ij and, thus, Sij?

Apply (localized) relaxation to AhG(i) = e(i)

Gauss-Seidel, 1 step:
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Approximating Sij
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ij and, thus, Sij?
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Approximating Sij

Can we get useful, local approximations to (Ah)−1
ij and, thus, Sij?

Apply (localized) relaxation to AhG(i) = e(i)

Weighted Line-Jacobi, 1 step:
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Choosing C

For point i, {Sij} are now measures of strengths of connection

We now say i strongly depends on j if (Ah)ij 6= 0 and

Sij − 1 ≥ θmax
k 6=i
{Sik − 1}

For now, θ = 0.25 seems to work fine

Coarse grid selection now accomplished by taking a maximal

independent subset of the graph of strong connections
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Choices of coarse grids

−uxx − uyy = f , Dirichlet BCs

32× 32 bilinear finite element grid

5 Steps Jacobi-Preconditioned CG to determine Si
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Choices of coarse grids
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Choices of coarse grids

−uxx − uyy = f , Dirichlet BCs

32× 32 bilinear finite element grid

2 Steps Line-Jacobi to determine Si

5 10 15 20 25 30

5

10

15

20

25

30

x

y

Fully Adaptive AMG – p.13



Choices of coarse grids

−uxx − 0.01uyy = f , Dirichlet BCs

32× 32 bilinear finite element grid

2 Steps Line-Jacobi to determine Si

5 10 15 20 25 30

5

10

15

20

25

30

x

y

Fully Adaptive AMG – p.13



Choices of coarse grids

−uxx − uyy = f , Dirichlet BCs

32× 32 bilinear finite element grid, Ah → DAhD, dii = 105ri

2 Steps Line-Jacobi to determine Si

5 10 15 20 25 30

5

10

15

20

25

30

x

y

Fully Adaptive AMG – p.13



Choices of coarse grids

−uxx − 0.01uyy = f , Dirichlet BCs

32× 32 bilinear finite element grid, Ah → DAhD, dii = 105ri

2 Steps Line-Jacobi to determine Si

5 10 15 20 25 30

5

10

15

20

25

30

x

y

Fully Adaptive AMG – p.13



Influence of Relaxation

Stronger relaxation (GS, Block Relaxation) exposes connections faster

Strong connections needed for coarsening change with block relaxation

Want to resolve strength for relaxation applied to Ah

i strongly depends on j if (Ah)−1
ij is large compared to (Ah)−1

ik

If relaxation is I −M−1Ah, want

(M−1Ah)−1
ij large compared to (M−1Ah)−1

ik

Compute ith row of (M−1Ah)−1

ith column of (M−1Ah)−T

MT (Ah)−1e(i) = MTG(i)
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Relaxation-induced Sij

Use relaxation to compute G(i)

Apply transpose of relaxation: Ĝ(i) = MTG(i)

Compute Sij =
‖Ĝ(i) − Ĝ(i)

j e(j)‖Ah
‖Ĝ(i)‖Ah
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Relaxation-induced Sij

Use relaxation to compute G(i)

Apply transpose of relaxation: Ĝ(i) = MTG(i)

Compute Sij =
‖Ĝ(i) − Ĝ(i)

j e(j)‖Ah
‖Ĝ(i)‖Ah

Jacobi, 10 steps:
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Relaxation-induced Sij

Use relaxation to compute G(i)

Apply transpose of relaxation: Ĝ(i) = MTG(i)

Compute Sij =
‖Ĝ(i) − Ĝ(i)

j e(j)‖Ah
‖Ĝ(i)‖Ah

Jacobi-Preconditioned CG, 5 steps:
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Relaxation-induced Sij

Use relaxation to compute G(i)

Apply transpose of relaxation: Ĝ(i) = MTG(i)

Compute Sij =
‖Ĝ(i) − Ĝ(i)

j e(j)‖Ah
‖Ĝ(i)‖Ah

Gauss-Seidel, 5 steps:
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j e(j)‖Ah
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Weighted Line-Jacobi, 5 steps:
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Summary

Fully Adaptive framework aims to improve robustness of AMG-based

algorithms

FAlosophy: get it right, then make it efficient

New algebraic measure of strength of connection

Current work: incorporating relaxation into measure

Future work: fully study efficiencies and cost implications

Future work: combine with adaptive AMG for systems of PDEs
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