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Multilevel Solvers

Performance shouldn't degrade with increased problem size
Stationary iterative methods:
e Norm of / — B~'A must be bounded uniformly below one

Preconditioned Krylov methods,

e Condition number, m(B*%AB*%), must be uniformly
bounded

Multilevel techniques achieve this uniformity by exploiting
multiscale structure
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Block Factorization

Partition

| Ar Ak xr\ [ bs)
Ax_|:_Acf Acc:|<xc)_(bc)_b’

then block factor,
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where Acc = Acc — AgAZ Are.
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Algebraic Recursive Multilevel Solver

Approximate Ag by its ILUT factors, AF ~ LU.
Preconditioner is

/ O} { LU O } { I —ULtA,

B = —AsUILY 0 S||o0 / ’

where S ~ A.c — AU L 1A,
Coarse-grid problems
e computed using techniques akin to [LUT

e solved recursively

Y. Saad and B. Suchomel, Numer. Linear Algebra Appl. 2002, 9:359-378
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Multigrid
Multigrid Components  Relax: xXV=x%D"®
e Relaxation

e Use a smoothing process (such as Jacobi or Gauss-Seidel)
to eliminate oscillatory errors

e Remaining error satisfies Ae(V) = r(t) = p — Ax()
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Multigrid
Multigrid Components  Reax: xX?= X%+D?
e Relaxation

e Restriction
Restriction

e Transfer residual to coarse grid
e Compute P r()
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Multigrid
Multigrid Components  Reax: xX?= X%+D¥?
e Relaxation

e Restriction

e Coarse-Grid Correction Restriction

Solve: PAPx.= P'r%

e Use coarse-grid correction to eliminate smooth errors

e Best correction, x., in terms of A-norm satisfies

PTAPx. = P/
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Multigrid
Multigrid Components  Reax: xX?= X%+D¥?
e Relaxation

Restriction

Coarse-Grid Correction Restriction Interpolation

Interpolation
Solve: PAPx = P'r®

Transfer correction to fine grid
Compute x(@ = x(1) 4+ Px_
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Multigrid

Multigrid Components  Reax: xX?= X%+D¥?

: Relax
e Relaxation
e Restriction o |
e Coarse-Grid Correction Restriction Interpolation
e Interpolation
e Relaxation Solve: PAPx = P’

e Relax once again to remove oscillatory error introduced in
coarse-grid correction
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Multigrid

Multigrid Components  Reax: xX?= X%+D¥?

Relax
e Relaxation
e Restriction
e Coarse-Grid Correction Restriction Interpolation
e Interpolation
e Relaxation Solve: PAPx = P’

Direct solution of coarse-grid problem isn't practical
Recursion!
Apply same methodology to solve coarse-grid problem
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Algebraic Multigrid (AMG)

e Goal of coarsening is to complement fixed relaxation
e Variational formulation
» Coarse-grid correction is optimal in A-norm
» Algebraically smooth error must be in range of
interpolation
e Choose coarse-grid, C, and interpolation, P,

» using only algebraic information
» with knowledge of (assumed) algebraically smooth errors

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stiiben, in Multigrid Methods, 1987
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Partitioning

Choice of partition in

ARMS: affects sparsity in ILU
controls size of Schur complement

AMG: influences sparsity in P
determines size of CGO

Good partitioning
e adequately reduces dimension of coarse-scale problem

e allows sparse choices of P or LU without sacrificing
accuracy

e enables recursive solve for coarse-scale problem

Goal of partitioning is to enable efficient resolution of
coarse-scale errors
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Two-level Theory

e Goal is to use theory to inform algorithmic choices

e Solution on a given level depends only on quality of
solution on next coarser level

e Multilevel theory can be intricate

Partition

| Ar A xr\ [ bs)
Ax= |: _Acf Acc Xc N bc =b
Use two-level analysis to make choices within a multilevel
scheme
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ARMS Analysis

Let

_ / O [Dg O | —D;Ag
° B—[—Ach,?/Mo s o

Dy —As . . ..
. [7Acf 4] be positive semi-definite

T T T T
o X¢ Dexe < AinXg Darxe < Xp Agrxe < AmaxXs Derxs
® Vminx;-rsxc < XIACCXC < Vmaxx;rsxc

Then,

2
1 1 1 )\2 max
k(B72AB72) < (1 +4/1— ) max”

)\max min(Vmina )\min).

Y. Notay, Numer. Linear Algebra Appl. 2005, 12:419-451
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Generalized AMG Measure

Let
e Relaxation be given by /| — DA
e @ be a projection onto the range of P

o 1(Q,e) = <D(D+DT7A)—<Z;§FO)e,(/—o)e> <K fore #0

e MG, be a two-grid V(0,1)-cycle

Then,
1\ 2
MGl < (1- &)

R. Falgout and P. Vassilevski, SIAM J. Numer. Anal. 2004, 42:1669-1693
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Compatible Relaxation

“A general measure for the quality of the set of coarse
variables is the convergence rate of the compatible relaxation”

One approach:
e Run relaxation on tentative F-set

e Identify points where compatible relaxation is slow
e Choose subset of these points to add to C

A. Brandt, Elect. Trans. Numer. Anal. 2000, 10:1-20
O. Livne, Numer. Linear Algebra Appl. 2004, 2:205-227
J. Brannick, Wednesday 11:00
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Compatible Relaxation

Let
e D be symmetric
e 2D — A be positive definite
o x"Ax < wx' Dx
o pr = |l = Dz Ag | a,

Then,
1

2- )1 p)

i <
min max 4(Q, e) <

For a given F/C partition, the best possible measure depends
on the equivalence between Dy and Ag

R. Falgout and P. Vassilevski, SIAM J. Numer. Anal. 2004, 42:1669-1693
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Reduction-based AMG

Let
¢ Relaxation be fine-grid only, | — ﬁD;lAff
oo
o x/ Dgxr < X[ Agxs < AmaxX/ Dirxy
o [ % %] be positive semi-definite
Then

1
1 Amax — 1)) )
MG <[ —— [ Anax — 1 Zmax -~
H QHA_<AW( +(Am+1>>)

S. Maclachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006, to appear
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Coarsening

All three bounds depend on equivalence of Dg and Ag

Good partition allows
o effective reduction, |C| < |F|

o efficient computation of D;lyf or Df}lAfc

e good equivalence, Apax small

A new approach to Compatible Relaxation

e Identify a property of As# that guarantees good
equivalence

e Choose F so that this is always true

A Greedy Strategy for Coarse-Grid Selection- p.14



Diagonal Dominance

Jacobi on Ag converges if it is diagonally dominant
Stronger dominance — faster convergence

Ag is B-dominant if, for each i € F,
ai 20 |ay]

JeF

Coarsening Goal: Find largest set F such that Ag is
f-dominant.
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Complexity
The problem, max{|F| : Ag is #-dominant}, is NP-complete.
Instead,
e Initialize U={1,...,n}, F=C=1

e For each point in U, compute ; = ii

> lajl
JEFUU
e Whenever 9A,- >0,i— F
o If U0, then pick j = argmin,_,{f;}
> j— C
> Update 6; for all i € U with a;; # 0
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Solvers

Two-level analysis gives uniform spectral equivalence of Ag
with its diagonal, Dy.

For multilevel solvers,
ARMS: Dy is sparsest possible ILU of Az
AMG: D, 'Ay is very simple AMG interpolation operator
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Solvers

Two-level analysis gives uniform spectral equivalence of Ag
with its diagonal, Dy.

For multilevel solvers,
ARMS: Dy is sparsest possible ILU of Az
AMG: D, 'Ay is very simple AMG interpolation operator

Combination of dominance-based partitioning and classical
algebraic coarsening leads to robust, efficient multilevel solvers

AMG: V(1,1) cycles, Full Gauss-Seidel, greedy
coarsening with second pass, classical AMG
interpolation

ARMS: symmetrized ILU, fixed drop and fill thresholds,
preconditioned GMRES
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PDE Test Problems

Two-dimensional bilinear finite element discretizations of
—V - K(x,y)Vp(x,y) = 0.

Problem 1: K(x,y)=1

Problem 2: K(x,y) = 1078 + 10(x? + y?)

Problem 3: K(x,y) =107 on 20% of the cells, chosen
randomly; K(x,y) = 1 otherwise

Problem 4: K(x,y) =[3§0%]
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AMG Results

Prob. Grid CaA | tsetup | Lsolve | 7 iters. | p

512 x 512 1.33| 1.3 0.7 5 0.13

1 1024 x 1024 || 1.33 | 5.1 2.5 5 0.14
2048 x 2048 || 1.33 | 21.9 | 10.5 5 0.14

512 x 512 133 13 0.6 5 0.13

2 1024 x 1024 || 1.33 | 5.1 2.5 5 0.14
2048 x 2048 || 1.33 | 21.7 | 10.4 5 0.14

512 x 512 206 | 2.3 1.2 6 0.35

3 1024 x 1024 || 2.08 | 9.6 4.8 6 0.40
2048 x 2048 || 2.10 | 41.0 | 19.8 6 0.46

512 x 512 239 | 15 1.0 5 0.13

4 1024 x 1024 || 2.41 | 6.2 4.1 5 0.20
2048 x 2048 || 2.43 | 25.8 | 17.7 5 0.20
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ARMS Results

Prob. Grid CB | tsetup | Lsolve | FF iters.

128 x 128 || 2.65| 0.2 | 0.3 28
1 256 x 256 || 2.67 | 1.3 | 2.2 44
512 x 512 || 2.68 | 11.0 | 22.5 82

128 x 128 || 2.39 | 0.2 | 0.3 31
2 256 x 256 || 2.35| 0.8 | 2.9 56
512 x 512 | 232 | 3.0 | 28.2 97

128 x 128 | 1.40 | 0.2 | 0.3 30
3 2560 x 256 || 1.42 | 0.7 | 2.2 45
512 x 512 || 1.42 | 3.0 | 22.9 83

128 x 128 || 1.61 | 0.2 | 0.3 26
4 256 x 256 || 1.62 | 0.8 | 2.0 42
512 x 512 || 1.63 | 3.2 | 16.2 65
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General ARMS Tests

e Test set from Rutherford-Appleton Labs
e 22 Selected problems, from 120K to 3.6M non-zeros

e Compared to ILUTP, fill factors adjusted to match ARMS
preconditioner complexities

N. Gould and J. Scott, ACM Trans. Math. Softw. 2004, 30:300-325
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General ARMS Tests

e Test set from Rutherford-Appleton Labs
e 22 Selected problems, from 120K to 3.6M non-zeros

e Compared to ILUTP, fill factors adjusted to match ARMS
preconditioner complexities

Results:

e ARMS converged in available memory (2GB + 1 GB
swap) on 21 problems

ILUTP converged for 13 problems, limited to memory or
2x ARMS iteration count

ILUTP needed fewer iterations for 7 problems

Equal performance for 4
ARMS faster for 10

N. Gould and J. Scott, ACM Trans. Math. Softw. 2004, 30:300-325
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Nonsymmetric ARMS
Naive Approach

e Choose row or column diagonal dominance

e Updates for row dominance require transpose
Nonsymmetric Permutations

e Choose offdiagonals as pivots to maximize dominance

e Simultaneously aim for row and column dominance
Results

e Test problems from earlier paper

¢ Naive approach easily solves 31 of 45 problems

e Nonsymmetric permutation approach solves 43 of 45

Y. Saad, SIAM J. Sci. Comp. 2006, 27:1032-1057
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Summary

Theoretical motivation: fine-scale spectral equivalence

Choose partition to guarantee good equivalence

Diagonal dominance is simple, but effective

Multilevel results show robustness and efficiency

http://www.cs.umn.edu/ "maclach/research/selection.pdf
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Summary

Theoretical motivation: fine-scale spectral equivalence

Choose partition to guarantee good equivalence

Diagonal dominance is simple, but effective

Multilevel results show robustness and efficiency
Future Directions

e Symmetric ARMS with IC/MIC versus ILU

e Further explore non-symmetric ARMS

e More complicated measures

http://www.cs.umn.edu/ maclach/research/selection.pdf
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