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Multilevel Solvers

Performance shouldn’t degrade with increased problem size

Stationary iterative methods:
• Norm of I − B−1A must be bounded uniformly below one

Preconditioned Krylov methods,

• Condition number, κ(B− 1
2 AB− 1

2 ), must be uniformly
bounded

Multilevel techniques achieve this uniformity by exploiting
multiscale structure
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Block Factorization
Partition

Ax =

[
Aff −Afc

−Acf Acc

](
xf

xc

)
=

(
bf

bc

)
= b,

then block factor,

A =

[
I 0

−Acf A
−1
ff I

] [
Aff 0

0 Âcc

] [
I −A−1

ff Afc

0 I

]
,

where Âcc = Acc − Acf A
−1
ff Afc .
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Algebraic Recursive Multilevel Solver1

Approximate Aff by its ILUT factors, Aff ≈ LU .
Preconditioner is

B =

[
I 0

−Acf U
−1L−1 I

] [
LU 0
0 S

] [
I −U−1L−1Afc

0 I

]
,

where S ≈ Acc − Acf U
−1L−1Afc .

Coarse-grid problems

• computed using techniques akin to ILUT

• solved recursively

Y. Saad and B. Suchomel, Numer. Linear Algebra Appl. 2002, 9:359-378
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0) (0)r-1+D

• Use a smoothing process (such as Jacobi or Gauss-Seidel)
to eliminate oscillatory errors

• Remaining error satisfies Ae(1) = r (1) = b − Ax (1)
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction

Relax: x(1)= x(0) (0)r-1+D

• Transfer residual to coarse grid

• Compute PT r (1)
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0)+D (0)r-1

• Use coarse-grid correction to eliminate smooth errors

• Best correction, xc , in terms of A-norm satisfies

PTAPxc = PT r (1)
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D

• Transfer correction to fine grid

• Compute x (2) = x (1) + Pxc
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D
Relax

• Relax once again to remove oscillatory error introduced in
coarse-grid correction
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D
Relax

Direct solution of coarse-grid problem isn’t practical
Recursion!

Apply same methodology to solve coarse-grid problem
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Algebraic Multigrid (AMG)2

• Goal of coarsening is to complement fixed relaxation

• Variational formulation
I Coarse-grid correction is optimal in A-norm
I Algebraically smooth error must be in range of

interpolation

• Choose coarse-grid, C , and interpolation, P ,
I using only algebraic information
I with knowledge of (assumed) algebraically smooth errors

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stüben, in Multigrid Methods, 1987
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Partitioning
Choice of partition in

ARMS: affects sparsity in ILU
controls size of Schur complement

AMG: influences sparsity in P
determines size of CGO

Good partitioning

• adequately reduces dimension of coarse-scale problem

• allows sparse choices of P or LU without sacrificing
accuracy

• enables recursive solve for coarse-scale problem

Goal of partitioning is to enable efficient resolution of
coarse-scale errors
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Two-level Theory
• Goal is to use theory to inform algorithmic choices

• Solution on a given level depends only on quality of
solution on next coarser level

• Multilevel theory can be intricate

Partition

Ax =

[
Aff −Afc

−Acf Acc

](
xf

xc

)
=

(
bf

bc

)
= b

Use two-level analysis to make choices within a multilevel
scheme
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ARMS Analysis3

Let

• B =
[

I 0
−Acf D

−1
ff I

] [
Dff 0
0 S

] [
I −D−1

ff Afc

0 I

]
•
[

Dff −Afc
−Acf Acc

]
be positive semi-definite

• xT
f Dff xf ≤ λminxT

f Dff xf ≤ xT
f Aff xf ≤ λmaxxT

f Dff xf

• νminxT
c Sxc ≤ xT

c Âccxc ≤ νmaxxT
c Sxc

Then,

κ(B− 1
2 AB− 1

2 ) ≤
(

1 +

√
1− 1

λmax

)2
λ2

maxνmax

min(νmin, λmin)
.

Y. Notay, Numer. Linear Algebra Appl. 2005, 12:419-451
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Generalized AMG Measure4

Let

• Relaxation be given by I − D−1A

• Q be a projection onto the range of P

• µ(Q, e) = 〈D(D+DT−A)−1DT (I−Q)e,(I−Q)e〉
〈Ae,e〉 ≤K for e 6= 0

• MG2 be a two-grid V(0,1)-cycle

Then,

‖MG2‖A ≤
(

1− 1

K

) 1
2

R. Falgout and P. Vassilevski, SIAM J. Numer. Anal. 2004, 42:1669-1693
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Compatible Relaxation5

“A general measure for the quality of the set of coarse
variables is the convergence rate of the compatible relaxation”

One approach:
• Run relaxation on tentative F -set

• Identify points where compatible relaxation is slow

• Choose subset of these points to add to C

A. Brandt, Elect. Trans. Numer. Anal. 2000, 10:1-20
O. Livne, Numer. Linear Algebra Appl. 2004, 2:205-227
J. Brannick, Wednesday 11:00
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Compatible Relaxation6

Let

• D be symmetric

• 2D − A be positive definite

• xTAx ≤ ωxTDx

• ρf = ‖I − D−1
ff Aff ‖Aff

Then,

min
P

max
e 6=0

µ(Q, e) ≤ 1

(2− ω)(1− ρf )

For a given F/C partition, the best possible measure depends
on the equivalence between Dff and Aff

R. Falgout and P. Vassilevski, SIAM J. Numer. Anal. 2004, 42:1669-1693
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Reduction-based AMG7

Let

• Relaxation be fine-grid only, I − 2
λmax+1

D−1
ff Aff

• P =
[

D−1
ff Afc

I

]
• xT

f Dff xf ≤ xT
f Aff xf ≤ λmaxxT

f Dff xf

•
[

Dff −Afc
−Acf Acc

]
be positive semi-definite

Then

‖MG2‖A ≤

(
1

λmax

(
λmax − 1 +

(
λmax − 1

λmax + 1

)2
)) 1

2

S. MacLachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006, to appear
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Coarsening

All three bounds depend on equivalence of Dff and Aff

Good partition allows
• effective reduction, |C | � |F |
• efficient computation of D−1

ff yf or D−1
ff Afc

• good equivalence, λmax small

A new approach to Compatible Relaxation

• Identify a property of Aff that guarantees good
equivalence

• Choose F so that this is always true
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Diagonal Dominance

Jacobi on Aff converges if it is diagonally dominant
Stronger dominance → faster convergence

Aff is θ-dominant if, for each i ∈ F ,

aii ≥ θ
∑
j∈F

|aij |

Coarsening Goal: Find largest set F such that Aff is
θ-dominant.
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Complexity
The problem, max{|F | : Aff is θ-dominant}, is NP-complete.
Instead,

• Initialize U = {1, . . . , n}, F = C = ∅
• For each point in U , compute θ̂i = aii∑

j∈F∪U

|aij |

• Whenever θ̂i ≥ θ, i → F

• If U 6= ∅, then pick j = argmini∈U{θ̂i}
I j → C
I Update θ̂i for all i ∈ U with aji 6= 0
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Solvers
Two-level analysis gives uniform spectral equivalence of Aff

with its diagonal, Dff .

For multilevel solvers,

ARMS: Dff is sparsest possible ILU of Aff

AMG: D−1
ff Afc is very simple AMG interpolation operator

Combination of dominance-based partitioning and classical
algebraic coarsening leads to robust, efficient multilevel solvers

AMG: V(1,1) cycles, Full Gauss-Seidel, greedy
coarsening with second pass, classical AMG
interpolation

ARMS: symmetrized ILU, fixed drop and fill thresholds,
preconditioned GMRES
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PDE Test Problems
Two-dimensional bilinear finite element discretizations of

−∇ · K (x , y)∇p(x , y) = 0.

Problem 1: K (x , y) = 1

Problem 2: K (x , y) = 10−8 + 10(x2 + y 2)

Problem 3: K (x , y) = 10−8 on 20% of the cells, chosen
randomly; K (x , y) = 1 otherwise

Problem 4: K (x , y) = [ 1 0
0 0.01 ]
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AMG Results

Prob. Grid cA tsetup tsolve # iters. ρ
512× 512 1.33 1.3 0.7 5 0.13

1 1024× 1024 1.33 5.1 2.5 5 0.14
2048× 2048 1.33 21.9 10.5 5 0.14
512× 512 1.33 1.3 0.6 5 0.13

2 1024× 1024 1.33 5.1 2.5 5 0.14
2048× 2048 1.33 21.7 10.4 5 0.14
512× 512 2.06 2.3 1.2 6 0.35

3 1024× 1024 2.08 9.6 4.8 6 0.40
2048× 2048 2.10 41.0 19.8 6 0.46
512× 512 2.39 1.5 1.0 5 0.13

4 1024× 1024 2.41 6.2 4.1 5 0.20
2048× 2048 2.43 25.8 17.7 5 0.20
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ARMS Results

Prob. Grid cB tsetup tsolve # iters.
128× 128 2.65 0.2 0.3 28

1 256× 256 2.67 1.3 2.2 44
512× 512 2.68 11.0 22.5 82
128× 128 2.39 0.2 0.3 31

2 256× 256 2.35 0.8 2.9 56
512× 512 2.32 3.0 28.2 97
128× 128 1.40 0.2 0.3 30

3 256× 256 1.42 0.7 2.2 45
512× 512 1.42 3.0 22.9 83
128× 128 1.61 0.2 0.3 26

4 256× 256 1.62 0.8 2.0 42
512× 512 1.63 3.2 16.2 65
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General ARMS Tests8

• Test set from Rutherford-Appleton Labs

• 22 Selected problems, from 120K to 3.6M non-zeros

• Compared to ILUTP, fill factors adjusted to match ARMS
preconditioner complexities

Results:

• ARMS converged in available memory (2GB + 1 GB
swap) on 21 problems

• ILUTP converged for 13 problems, limited to memory or
2× ARMS iteration count

• ILUTP needed fewer iterations for 7 problems

• Equal performance for 4

• ARMS faster for 10

N. Gould and J. Scott, ACM Trans. Math. Softw. 2004, 30:300-325
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Nonsymmetric ARMS9

Näıve Approach

• Choose row or column diagonal dominance

• Updates for row dominance require transpose

Nonsymmetric Permutations

• Choose offdiagonals as pivots to maximize dominance

• Simultaneously aim for row and column dominance

Results

• Test problems from earlier paper

• Näıve approach easily solves 31 of 45 problems

• Nonsymmetric permutation approach solves 43 of 45

Y. Saad, SIAM J. Sci. Comp. 2006, 27:1032-1057
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Summary10

• Theoretical motivation: fine-scale spectral equivalence

• Choose partition to guarantee good equivalence

• Diagonal dominance is simple, but effective

• Multilevel results show robustness and efficiency

Future Directions

• Symmetric ARMS with IC/MIC versus ILU

• Further explore non-symmetric ARMS

• More complicated measures

http://www.cs.umn.edu/~maclach/research/selection.pdf
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