Algebraic Multigrid Methods for Complex-Valued Systems

Scott MacLachlan and Kees Oosterlee

Delft Institute of Applied Mathematics, TU-Delft and Centrum voor Wiskunde en Informatica. Amsterdam

scott.maclachlan@gmail.com

March 22, 2007

Complex-Valued Systems

Many applications lead to complex-valued linear systems

• Fourier-domain wave propagation

$$u_{tt} + \alpha u_t = c^2 \Delta u \Rightarrow -c^2 \Delta \hat{u} + \iota \alpha k \hat{u} - k^2 \hat{u} = 0$$

Complex-Valued Systems

Many applications lead to complex-valued linear systems

• Fourier-domain wave propagation

$$u_{tt} + \alpha u_t = c^2 \Delta u \Rightarrow -c^2 \Delta \hat{u} + i \alpha k \hat{u} - k^2 \hat{u} = 0$$

- Schrödinger equation
- Quantum dynamics
- Maxwell equations
- Conformal mapping
- Structural dynamics

Complex-Valued Systems

Many applications lead to complex-valued linear systems

• Fourier-domain wave propagation

$$u_{tt} + \alpha u_t = c^2 \Delta u \Rightarrow -c^2 \Delta \hat{u} + i \alpha k \hat{u} - k^2 \hat{u} = 0$$

- Schrödinger equation
- Quantum dynamics
- Maxwell equations
- Conformal mapping
- Structural dynamics

How do we solve these problems efficiently?

Krylov Techniques

Core numerical linear algebra easily extends to complex case

- Orthogonality conditions still apply
- Hermitian PD matrices give inner products and norms

Major Krylov methods extend trivially

- GMRES
- BiCG/CGS/BiCGStab
- CG (for Hermitian PD systems)

Other techniques specifically aimed at complex systems

• QMR

Freund, SISC 1992, 13:425:448

What About Preconditioning?

Simple preconditioners extend easily

- Diagonal Scaling
- ILU

What About Preconditioning?

Simple preconditioners extend easily

- Diagonal Scaling
- ILU

Some focused effort in extending effective preconditioners

- Geometric MG
- MG & DD for Helmholtz equation
- MG for Maxwell's equations

What About Preconditioning?

Simple preconditioners extend easily

- Diagonal Scaling
- ILU

Some focused effort in extending effective preconditioners

- Geometric MG
- MG & DD for Helmholtz equation
- MG for Maxwell's equations

What about AMG?

Equivalent Real Forms

Rewrite the complex system $A\mathbf{u} = \mathbf{b}$ as

$$\begin{bmatrix} A^{(R)} & -A^{(I)} \\ A^{(I)} & A^{(R)} \end{bmatrix} \begin{bmatrix} \mathbf{u}^{(R)} \\ \mathbf{u}^{(I)} \end{bmatrix} = \begin{bmatrix} \mathbf{b}^{(R)} \\ \mathbf{b}^{(I)} \end{bmatrix}.$$

Now apply standard algebraic preconditioner to real form

- ILU
- Smoothed Aggregation

Day & Heroux, SISC 2001, **23**:480-498 Vaněk, Mandel, Brezina, Contemp. Math. 1998, **218**:349-356 Brannick et al., *Proc. DD16*, 2007 M. Adams, Comp. Mech. 2007, **39**:497-507

Equivalent Real Forms

Rewrite the complex system $A\mathbf{u} = \mathbf{b}$ as

$$\begin{bmatrix} A^{(R)} & -A^{(I)} \\ A^{(I)} & A^{(R)} \end{bmatrix} \begin{bmatrix} \mathbf{u}^{(R)} \\ \mathbf{u}^{(I)} \end{bmatrix} = \begin{bmatrix} \mathbf{b}^{(R)} \\ \mathbf{b}^{(I)} \end{bmatrix}.$$

Now apply standard algebraic preconditioner to real form

- ILU
- Smoothed Aggregation

Disadvantages:

- Extra cost (double dimension and nnz)
- Lose structure

Day & Heroux, SISC 2001, **23**:480-498 Vaněk, Mandel, Brezina, Contemp. Math. 1998, **218**:349-356 Brannick et al., *Proc. DD16*, 2007 M. Adams, Comp. Mech. 2007, **39**:497-507

Real AMG For Complex-Valued Problems

For many problems, real-valued part is dominant

 $-\Delta u + \imath k^2 u = f$

Question: Why not ignore complex part?

- Apply AMG coarsening to $\Re(A)$
- Build interpolation based on $\Re(A)$
- Coarsen A as before, $A_c = P^T A P$

If a dominating real operator can be found, then preconditioning can be effective

Lahaye et al., IEEE Trans. Magn. 2000, **36**:1535-1538 Lahaye Ph.D. Thesis, KU-Leuven, 2001 Reitzinger et al., J. Comput. Appl. Math. 2003, **155**:405-421 Algebraic Multigrid Methods for Complex-Valued Systems- p.6

Inherently Complex Operators

What if no dominating real matrix can be found?

Covariant Derivatives:

$$egin{aligned} D_{\mu}\psi(\mathbf{x}) &= e^{i\omega(\mathbf{x})}\partial_{\mu}\left(e^{-i\omega(\mathbf{x})}\psi(\mathbf{x})
ight)\ D^{2}_{\mu}\psi(\mathbf{x}) &= e^{i\omega(\mathbf{x})}\partial^{2}_{\mu}\left(e^{-i\omega(\mathbf{x})}\psi(\mathbf{x})
ight) \end{aligned}$$

Inherently Complex Operators

What if no dominating real matrix can be found?

Covariant Derivatives:

$$egin{aligned} D_{\mu}\psi(\mathbf{x}) &= e^{i\omega(\mathbf{x})}\partial_{\mu}\left(e^{-i\omega(\mathbf{x})}\psi(\mathbf{x})
ight)\ D^{2}_{\mu}\psi(\mathbf{x}) &= e^{i\omega(\mathbf{x})}\partial^{2}_{\mu}\left(e^{-i\omega(\mathbf{x})}\psi(\mathbf{x})
ight) \end{aligned}$$

Extend individual AMG components to naturally handle complex-valued systems

Interpolation

Expanding $A\mathbf{u} = \mathbf{b}$,

$$\begin{bmatrix} A^{(R)} & -A^{(I)} \\ A^{(I)} & A^{(R)} \end{bmatrix} \begin{bmatrix} \mathbf{u}^{(R)} \\ \mathbf{u}^{(I)} \end{bmatrix} = \begin{bmatrix} \mathbf{b}^{(R)} \\ \mathbf{b}^{(I)} \end{bmatrix}$$

Apply heuristic for real matrices:

Choose P based on symmetric part of \hat{A}

- If A is Hermitian, \hat{A} is symmetric
- If A is complex-symmetric, base P on $A^{(R)}$

Dendy, Appl. Math. Comp. 1983 13:261-283

Interpolation

Expanding $A\mathbf{u} = \mathbf{b}$,

$$\begin{bmatrix} A^{(R)} & -A^{(I)} \\ A^{(I)} & A^{(R)} \end{bmatrix} \begin{bmatrix} \mathbf{u}^{(R)} \\ \mathbf{u}^{(I)} \end{bmatrix} = \begin{bmatrix} \mathbf{b}^{(R)} \\ \mathbf{b}^{(I)} \end{bmatrix}$$

Apply heuristic for real matrices:

Choose P based on symmetric part of \hat{A}

- If A is Hermitian, \hat{A} is symmetric
- If A is complex-symmetric, base P on $A^{(R)}$
- If B = iA, interpolate differently for A and B

Dendy, Appl. Math. Comp. 1983 13:261-283

Another Point of View

Form of coarse-grid correction doesn't change

$$\mathbf{e}^{(\mathsf{new})} = (I - PB_c^{-1}RA)\mathbf{e}^{(\mathsf{old})}$$

Still need

- Complementary relaxation and coarse-grid correction
- Algebraically smooth errors in Range(P)

Another Point of View

Form of coarse-grid correction doesn't change

$$\mathbf{e}^{(\mathsf{new})} = (I - PB_c^{-1}RA)\mathbf{e}^{(\mathsf{old})}$$

Still need

- Complementary relaxation and coarse-grid correction
- Algebraically smooth errors in Range(P)

Use classical AMG interpolation, just with complex values

Restriction

Choice of $R = P^{T}$ (or $R = P^{\star}$) no longer automatic

- Hermitian problems $\Rightarrow R = P^{\star}$
- Complex-symmetric problems $\Rightarrow R = P^T$
- Complex non-symmetric problems $\Rightarrow R = ???$

Can justify many things...

Restriction

Choice of $R = P^{T}$ (or $R = P^{\star}$) no longer automatic

- Hermitian problems $\Rightarrow R = P^{\star}$
- Complex-symmetric problems $\Rightarrow R = P^T$
- Complex non-symmetric problems $\Rightarrow R = ???$

Can justify many things... But don't want to stray too far from AMG

Adjoints

A may not define a norm, but A^*A does

Take
$$T = (I - M_2^{-1}A)(I - PB_c^{-1}RA)(I - M_1^{-1}A)$$
, then
 $\|T\|_{A^*A} = \|(A^*A)^{-1}T^*(A^*A)\|_{A^*A}$

Define the cycle for A^* by

$$\overline{T} = (I - (M_1^{-1})^* A^*) (I - R^* (B_c^{-1})^* P^* A^*) (I - (M_2^{-1})^* A^*)$$

= $(A^*)^{-1} T^* A^*$

Then $||T||_{A^*A} = ||\overline{T}||_2$

Adjoints

A may not define a norm, but A^*A does

Take
$$T = (I - M_2^{-1}A)(I - PB_c^{-1}RA)(I - M_1^{-1}A)$$
, then
 $\|T\|_{A^*A} = \|(A^*A)^{-1}T^*(A^*A)\|_{A^*A}$

Define the cycle for A^* by

$$\overline{T} = (I - (M_1^{-1})^* A^*) (I - R^* (B_c^{-1})^* P^* A^*) (I - (M_2^{-1})^* A^*) = (A^*)^{-1} T^* A^*$$

Then $||T||_{A^*A} = ||\overline{T}||_2$ R^* must be an effective interpolation operator for A^*

Special Cases

• If $A = A^*$, then can choose $R = P^*$

 \Rightarrow Variational Condition

• If $A = A^{T}$, and interpolation preserves complex conjugation

$$\Rightarrow R = P^T$$
, also Variational

Otherwise, compute restriction separately from interpolation

We always use $R = P^*(A^*)$

Coarse-Grid Selection

Still use strength-of-connection measure

$$S_i = \{j : |a_{ij}| \ge \theta \max_{k \neq i} |a_{ik}|\}$$

Then

- Independent set over graph of strong connections
- Second pass to ensure good AMG interpolation possible

Easy to extend many coarsening schemes, but what makes most sense?

Relaxation

A is an H-matrix if $\mathcal{M}(A)$ is an M-matrix,

$$(\mathcal{M}(A))_{ij} = \left\{ egin{array}{cc} |a_{ii}| & ext{if } i=j \ -|a_{ij}| & ext{if } i
eq j \end{array}
ight.,$$

If A is an H-matrix, then

- Jacobi converges for A at least as fast as for $\mathcal{M}(A)$
- Weighted Jacobi converges for all $\omega \leq 1$
- SOR converges for all $\omega \leq 1$

Varga, Linear Algebra and Appl. 1976, 13:1-9

What About Smoothing?

Convergence theory says nothing about smoothing properties

Use local Fourier analysis (LFA) for $-\Delta u + \alpha u$, $\alpha = k^2, k^2 i$

Time-Harmonic Maxwell Equations

Reduce Maxwell's equations by assuming:

- linear constitutive laws
- low-frequency excitation
- 2D cross-section

$$\Rightarrow -\nabla \cdot \left(\frac{1}{\mu} \nabla \hat{A}_z\right) + \imath \omega \sigma \hat{A}_z = \hat{J}_{s,z}$$

for Fourier-domain potential, $\hat{A} = (0,0,\hat{A}_z)^{\mathcal{T}}$

Lahaye et al., IEEE Trans. Magn. 2000, **36**:1535-1538

Induction Motor

Solve

$$-\nabla \cdot \left(\frac{1}{\mu} \nabla \hat{A}_z\right) + \imath \omega \sigma \hat{A}_z = \hat{J}_{s,z}$$

on annular geometry

Lahaye et al., IEEE Trans. Magn. 2000, **36**:1535-1538

AMG Performance

Problem	Solver	CA	t _{setup}	t _{solve}	# Iters.
	real AMG	2.86	0.1	0.6	29
15302 nodes	complex AMG	2.85	0.2	0.7	32
<i>nnz</i> = 104926	AMG-BiCGStab	2.86	0.1	0.4	9
	cAMG-BiCGStab	2.85	0.2	0.3	8
	real AMG	2.91	0.4	1.7	31
34555 nodes	complex AMG	2.91	0.4	1.7	30
<i>nnz</i> = 239661	AMG-BiCGStab	2.91	0.4	1.0	8.5
	cAMG-BiCGStab	2.91	0.4	1.0	8.5
	real AMG	2.87	1.0	4.5	31
75951 nodes	complex AMG	2.87	1.1	4.2	29
<i>nnz</i> = 529317	AMG-BiCGStab	2.87	1.0	2.6	8.5
	cAMG-BiCGStab	2.87	1.1	2.5	8

Lattice Gauge Theory

Gauge theories model physics at quantum scales

Lattice gauge theory is discrete form of standard model

- Model of interactions between elementary particles
- Includes electromagnetism, weak force, strong force
- Consistent with known particle accelerator experiments

Goal: Use simulation to predict behavior out of reach of experiment

Covariant Laplacian

Conservation laws play important role in gauge theory

• Derivatives are always covariant

$$D_{\mu}\psi(\mathbf{x}) = e^{i\omega(\mathbf{x})}\partial_{\mu}\left(e^{-i\omega(\mathbf{x})}\psi(\mathbf{x})\right)$$

• Discretizations are always consistent

Model Problem: Covariant Laplacian

$$\sum_{\mu} D^2_{\mu} \psi(\mathbf{x}) \Rightarrow \left[\begin{array}{cc} -e^{i\beta\phi(\mathbf{x})} \\ -e^{-i\beta\theta(\mathbf{x}-\begin{pmatrix} 1\\0 \end{pmatrix})} & 4 & -e^{i\beta\theta(\mathbf{x})} \\ & -e^{-i\beta\phi(\mathbf{x}-\begin{pmatrix} 0\\1 \end{pmatrix})} \end{array} \right]$$

Convergence

Shifted Covariant Laplacian

Two reasons to consider shifting

- As β increases, discrete problem becomes better conditioned
- Physical operators always appear with negative-definite shift

$$\sum_{\mu} D^{2}_{\mu} \psi - m^{2} \psi \Rightarrow \begin{bmatrix} -e^{-i\beta\theta(\mathbf{x} - \begin{pmatrix} 1 \\ 0 \end{pmatrix})} & 4 - m^{2} \\ -e^{-i\beta\phi(\mathbf{x} - \begin{pmatrix} 0 \\ 1 \end{pmatrix})} & -e^{i\beta\theta(\mathbf{x})} \end{bmatrix}$$

Shifted Covariant Laplacian

Two reasons to consider shifting

- As β increases, discrete problem becomes better conditioned
- Physical operators always appear with negative-definite shift

$$\sum_{\mu} D^{2}_{\mu} \psi - m^{2} \psi \Rightarrow \begin{bmatrix} -e^{-i\beta\theta(\mathbf{x} - \begin{pmatrix} 1 \\ 0 \end{pmatrix})} & 4 - m^{2} \\ -e^{-i\beta\phi(\mathbf{x} - \begin{pmatrix} 0 \\ 1 \end{pmatrix})} & -e^{i\beta\theta(\mathbf{x})} \end{bmatrix}$$

Shifting changes energy but not form of algebraically smooth errors

Convergence histories

Convergence histories

Summary

- Natural extension of AMG to complex arithmetic
- Consistent choice of restriction for special cases
- Local Fourier analysis confirms algorithmic choices
- Performance similar to real AMG for complex problems

Summary

- Natural extension of AMG to complex arithmetic
- Consistent choice of restriction for special cases
- Local Fourier analysis confirms algorithmic choices
- Performance similar to real AMG for complex problems

Future Work

- Better understand coarse-grid selection (real and complex)
- Extend to systems, distributed relaxation
- Provide solvers for quantum dynamical simulation