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Complex-Valued Systems
Many applications lead to complex-valued linear systems

• Fourier-domain wave propagation

utt + αut = c2∆u ⇒ −c2∆û + ıαkû − k2û = 0
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Complex-Valued Systems
Many applications lead to complex-valued linear systems

• Fourier-domain wave propagation

utt + αut = c2∆u ⇒ −c2∆û + ıαkû − k2û = 0

• Schrödinger equation

• Quantum dynamics

• Maxwell equations

• Conformal mapping

• Structural dynamics

How do we solve these problems efficiently?
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Krylov Techniques1

Core numerical linear algebra easily extends to complex case

• Orthogonality conditions still apply

• Hermitian PD matrices give inner products and norms

Major Krylov methods extend trivially

• GMRES

• BiCG/CGS/BiCGStab

• CG (for Hermitian PD systems)

Other techniques specifically aimed at complex systems

• QMR

Freund, SISC 1992, 13:425:448
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What About Preconditioning?
Simple preconditioners extend easily

• Diagonal Scaling

• ILU
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Some focused effort in extending effective preconditioners

• Geometric MG

• MG & DD for Helmholtz equation

• MG for Maxwell’s equations
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What About Preconditioning?
Simple preconditioners extend easily

• Diagonal Scaling

• ILU

Some focused effort in extending effective preconditioners

• Geometric MG

• MG & DD for Helmholtz equation

• MG for Maxwell’s equations

What about AMG?
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Equivalent Real Forms2

Rewrite the complex system Au = b as[
A(R) −A(I )

A(I ) A(R)

] [
u(R)

u(I )

]
=

[
b(R)

b(I )

]
.

Now apply standard algebraic preconditioner to real form

• ILU

• Smoothed Aggregation

Day & Heroux, SISC 2001, 23:480-498
Vaněk, Mandel, Brezina, Contemp. Math. 1998, 218:349-356
Brannick et al., Proc. DD16, 2007
M. Adams, Comp. Mech. 2007, 39:497-507
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Equivalent Real Forms2

Rewrite the complex system Au = b as[
A(R) −A(I )

A(I ) A(R)

] [
u(R)

u(I )

]
=

[
b(R)

b(I )

]
.

Now apply standard algebraic preconditioner to real form

• ILU

• Smoothed Aggregation

Disadvantages:

• Extra cost (double dimension and nnz)

• Lose structure

Day & Heroux, SISC 2001, 23:480-498
Vaněk, Mandel, Brezina, Contemp. Math. 1998, 218:349-356
Brannick et al., Proc. DD16, 2007
M. Adams, Comp. Mech. 2007, 39:497-507
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Real AMG For Complex-Valued Problems3

For many problems, real-valued part is dominant

−∆u + ık2u = f

Question: Why not ignore complex part?

• Apply AMG coarsening to <(A)

• Build interpolation based on <(A)

• Coarsen A as before, Ac = PTAP

If a dominating real operator can be found, then
preconditioning can be effective

Lahaye et al., IEEE Trans. Magn. 2000, 36:1535-1538
Lahaye Ph.D. Thesis, KU-Leuven, 2001
Reitzinger et al., J. Comput. Appl. Math. 2003, 155:405-421
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Inherently Complex Operators

What if no dominating real matrix can be found?

Covariant Derivatives:

Dµψ(x) = e iω(x)∂µ

(
e−iω(x)ψ(x)

)
D2

µψ(x) = e iω(x)∂2
µ

(
e−iω(x)ψ(x)

)
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Inherently Complex Operators

What if no dominating real matrix can be found?

Covariant Derivatives:

Dµψ(x) = e iω(x)∂µ

(
e−iω(x)ψ(x)

)
D2

µψ(x) = e iω(x)∂2
µ

(
e−iω(x)ψ(x)

)
Extend individual AMG components to naturally handle

complex-valued systems
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Interpolation4

Expanding Au = b,[
A(R) −A(I )

A(I ) A(R)

] [
u(R)

u(I )

]
=

[
b(R)

b(I )

]
.

Apply heuristic for real matrices:

Choose P based on symmetric part of Â

• If A is Hermitian, Â is symmetric

• If A is complex-symmetric, base P on A(R)

Dendy, Appl. Math. Comp. 1983 13:261-283
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Interpolation4

Expanding Au = b,[
A(R) −A(I )

A(I ) A(R)

] [
u(R)

u(I )

]
=

[
b(R)

b(I )

]
.

Apply heuristic for real matrices:

Choose P based on symmetric part of Â

• If A is Hermitian, Â is symmetric

• If A is complex-symmetric, base P on A(R)

• If B = ıA, interpolate differently for A and B

Dendy, Appl. Math. Comp. 1983 13:261-283
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Another Point of View
Form of coarse-grid correction doesn’t change

e(new) = (I − PB−1
c RA)e(old)

Still need

• Complementary relaxation and coarse-grid correction

• Algebraically smooth errors in Range(P)
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Another Point of View
Form of coarse-grid correction doesn’t change

e(new) = (I − PB−1
c RA)e(old)

Still need

• Complementary relaxation and coarse-grid correction

• Algebraically smooth errors in Range(P)

Use classical AMG interpolation, just with complex values
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Restriction

Choice of R = PT (or R = P?) no longer automatic

• Hermitian problems ⇒ R = P?

• Complex-symmetric problems ⇒ R = PT

• Complex non-symmetric problems ⇒ R = ???

Can justify many things...
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Restriction

Choice of R = PT (or R = P?) no longer automatic

• Hermitian problems ⇒ R = P?

• Complex-symmetric problems ⇒ R = PT

• Complex non-symmetric problems ⇒ R = ???

Can justify many things...
But don’t want to stray too far from AMG
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Adjoints

A may not define a norm, but A?A does

Take T = (I −M−1
2 A)(I − PB−1

c RA)(I −M−1
1 A), then

‖T‖A?A = ‖(A?A)−1T ?(A?A)‖A?A

Define the cycle for A? by

T =
(
I − (M−1

1 )
?
A?

) (
I − R?(B−1

c )
?
P?A?

) (
I − (M−1

2 )
?
A?

)
= (A?)−1 T ?A?

Then ‖T‖A?A = ‖T‖2
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Adjoints

A may not define a norm, but A?A does

Take T = (I −M−1
2 A)(I − PB−1

c RA)(I −M−1
1 A), then

‖T‖A?A = ‖(A?A)−1T ?(A?A)‖A?A

Define the cycle for A? by

T =
(
I − (M−1

1 )
?
A?

) (
I − R?(B−1

c )
?
P?A?

) (
I − (M−1

2 )
?
A?

)
= (A?)−1 T ?A?

Then ‖T‖A?A = ‖T‖2

R? must be an effective interpolation operator for A?
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Special Cases
• If A = A?, then can choose R = P?

⇒ Variational Condition

• If A = AT , and interpolation preserves complex
conjugation

⇒ R = PT , also Variational

Otherwise, compute restriction separately from interpolation

We always use R = P?(A?)
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Coarse-Grid Selection
Still use strength-of-connection measure

Si = {j : |aij | ≥ θmax
k 6=i

|aik |}

Then

• Independent set over graph of strong connections

• Second pass to ensure good AMG interpolation possible

Easy to extend many coarsening schemes, but what makes
most sense?
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Relaxation5

A is an H-matrix if M(A) is an M-matrix,

(M(A))ij =

{
|aii | if i = j
−|aij | if i 6= j

,

If A is an H-matrix, then

• Jacobi converges for A at least as fast as for M(A)

• Weighted Jacobi converges for all ω ≤ 1

• SOR converges for all ω ≤ 1

Varga, Linear Algebra and Appl. 1976, 13:1-9
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What About Smoothing?

Convergence theory says nothing about smoothing properties

Use local Fourier analysis (LFA) for −∆u + αu, α = k2, k2ı

Jacobi Gauss-Seidel
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Time-Harmonic Maxwell Equations 6

Reduce Maxwell’s equations by assuming:

• linear constitutive laws

• low-frequency excitation

• 2D cross-section

⇒ −∇ ·
(

1

µ
∇Âz

)
+ ıωσÂz = Ĵs,z

for Fourier-domain potential, Â = (0, 0, Âz)
T

Lahaye et al., IEEE Trans. Magn. 2000, 36:1535-1538
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Induction Motor7

Solve

−∇ ·
(

1

µ
∇Âz

)
+ ıωσÂz = Ĵs,z

on annular geometry

Lahaye et al., IEEE Trans. Magn. 2000, 36:1535-1538
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AMG Performance

Problem Solver cA tsetup tsolve # Iters.
real AMG 2.86 0.1 0.6 29

15302 nodes complex AMG 2.85 0.2 0.7 32
nnz = 104926 AMG-BiCGStab 2.86 0.1 0.4 9

cAMG-BiCGStab 2.85 0.2 0.3 8

real AMG 2.91 0.4 1.7 31
34555 nodes complex AMG 2.91 0.4 1.7 30

nnz = 239661 AMG-BiCGStab 2.91 0.4 1.0 8.5
cAMG-BiCGStab 2.91 0.4 1.0 8.5

real AMG 2.87 1.0 4.5 31
75951 nodes complex AMG 2.87 1.1 4.2 29

nnz = 529317 AMG-BiCGStab 2.87 1.0 2.6 8.5
cAMG-BiCGStab 2.87 1.1 2.5 8
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Lattice Gauge Theory

Gauge theories model physics at quantum scales

Lattice gauge theory is discrete form of standard model
• Model of interactions between elementary particles

• Includes electromagnetism, weak force, strong force

• Consistent with known particle accelerator experiments

Goal: Use simulation to predict behavior out of reach of
experiment
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Covariant Laplacian

Conservation laws play important role in gauge theory

• Derivatives are always covariant

Dµψ(x) = e iω(x)∂µ

(
e−iω(x)ψ(x)

)
• Discretizations are always consistent

Model Problem: Covariant Laplacian

∑
µ

D2
µψ(x) ⇒

 −e iβφ(x)

−e−iβθ(x−( 1
0 )) 4 −e iβθ(x)

−e−iβφ(x−( 0
1 ))
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Convergence
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Shifted Covariant Laplacian
Two reasons to consider shifting

• As β increases, discrete problem becomes better
conditioned

• Physical operators always appear with negative-definite
shift

∑
µ

D2
µψ−m2ψ ⇒

 −e iβφ(x)

−e−iβθ(x−( 1
0 )) 4−m2 −e iβθ(x)

−e−iβφ(x−( 0
1 ))
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Shifted Covariant Laplacian
Two reasons to consider shifting

• As β increases, discrete problem becomes better
conditioned

• Physical operators always appear with negative-definite
shift

∑
µ

D2
µψ−m2ψ ⇒

 −e iβφ(x)

−e−iβθ(x−( 1
0 )) 4−m2 −e iβθ(x)

−e−iβφ(x−( 0
1 ))


Shifting changes energy but not form of algebraically smooth

errors
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Convergence histories
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Convergence histories
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Summary
• Natural extension of AMG to complex arithmetic

• Consistent choice of restriction for special cases

• Local Fourier analysis confirms algorithmic choices

• Performance similar to real AMG for complex problems
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Summary
• Natural extension of AMG to complex arithmetic

• Consistent choice of restriction for special cases

• Local Fourier analysis confirms algorithmic choices

• Performance similar to real AMG for complex problems

Future Work

• Better understand coarse-grid selection (real and
complex)

• Extend to systems, distributed relaxation

• Provide solvers for quantum dynamical simulation
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