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Complex-Valued Systems

Many applications lead to complex-valued linear systems

e Fourier-domain wave propagation

U + auy = CAu = — A0+ ki — K20 =0
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Complex-Valued Systems

Many applications lead to complex-valued linear systems

e Fourier-domain wave propagation

U + auy = CAu = — A0+ ki — K20 =0

Schrodinger equation

Quantum dynamics

Maxwell equations

Conformal mapping

Structural dynamics
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Complex-Valued Systems

Many applications lead to complex-valued linear systems

e Fourier-domain wave propagation

U + auy = CAu = — A0+ ki — K20 =0

Schrodinger equation

Quantum dynamics

Maxwell equations

Conformal mapping

Structural dynamics

How do we solve these problems efficiently?
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Krylov Techniques

Core numerical linear algebra easily extends to complex case
e Orthogonality conditions still apply
e Hermitian PD matrices give inner products and norms
Major Krylov methods extend trivially
e GMRES
e BiCG/CGS/BiCGStab
e CG (for Hermitian PD systems)
Other techniques specifically aimed at complex systems
° QMR

Freund, SISC 1992, 13:425:448
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What About Preconditioning?

Simple preconditioners extend easily
e Diagonal Scaling
o LU
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What About Preconditioning?

Simple preconditioners extend easily
e Diagonal Scaling
o LU

Some focused effort in extending effective preconditioners

e Geometric MG
e MG & DD for Helmholtz equation
e MG for Maxwell's equations
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What About Preconditioning?

Simple preconditioners extend easily
e Diagonal Scaling
o LU

Some focused effort in extending effective preconditioners

e Geometric MG
e MG & DD for Helmholtz equation
e MG for Maxwell's equations

What about AMG?
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Equivalent Real Forms

Rewrite the complex system Au = b as
AR _A() u®) b(R)
A AR) u | | b |-
Now apply standard algebraic preconditioner to real form

e LU
e Smoothed Aggregation

Day & Heroux, SISC 2001, 23:480-498

Van&k, Mandel, Brezina, Contemp. Math. 1998, 218:349-356
Brannick et al., Proc. DD16, 2007

M. Adams, Comp. Mech. 2007, 39:497-507
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Equivalent Real Forms
Rewrite the complex system Au = b as
AR _A() u® b(R)
A AR) ud) | T | b |-
Now apply standard algebraic preconditioner to real form
e LU
e Smoothed Aggregation
Disadvantages:

e Extra cost (double dimension and nnz)

e Lose structure

Day & Heroux, SISC 2001, 23:480-498

Van&k, Mandel, Brezina, Contemp. Math. 1998, 218:349-356
Brannick et al., Proc. DD16, 2007

M. Adams, Comp. Mech. 2007, 39:497-507
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Real AMG For Complex-Valued Problems

For many problems, real-valued part is dominant
—Au+1kPu="f

Question: Why not ignore complex part?
e Apply AMG coarsening to R(A)
e Build interpolation based on R(A)
e Coarsen A as before, A. = PTAP

If a dominating real operator can be found, then
preconditioning can be effective

Lahaye et al., IEEE Trans. Magn. 2000, 36:1535-1538
Lahaye Ph.D. Thesis, KU-Leuven, 2001
Reitzinger et al., J. Comput. Appl. Math. 2003, 155:405-421
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Inherently Complex Operators

What if no dominating real matrix can be found?

Covariant Derivatives:

D,(x) = eiw(X)aﬂ (efiw(X)w(x))
Diz/J(x) = ei“(x)ﬁﬁ (e"“’(*’w(X))
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Inherently Complex Operators

What if no dominating real matrix can be found?

Covariant Derivatives:

D,(x) = eiw(X)au (efiw(X)w(x))
Diz/J(x) = ei“(x)ﬁﬁ (e"“’(*’w(X))

Extend individual AMG components to naturally handle
complex-valued systems
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Interpolation
Expanding Au = b,

AR _AD T u® b(R)
{ AD  AR) ] l u) ] = [ b }

Apply heuristic for real matrices:

Choose P based on symmetric part of A

e If Ais Hermitian, As symmetric

e If Ais complex-symmetric, base P on AR)

Dendy, Appl. Math. Comp. 1983 13:261-283
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Interpolation
Expanding Au = b,

AR _A() u® b(R)
A AR) ud) |~ | b |-
Apply heuristic for real matrices:
Choose P based on symmetric part of A
e If Ais Hermitian, As symmetric

e If Ais complex-symmetric, base P on AR)
e If B =1A, interpolate differently for A and B

Dendy, Appl. Math. Comp. 1983 13:261-283
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Another Point of View

Form of coarse-grid correction doesn't change
e = (I — PB_'RA)e?

Still need
e Complementary relaxation and coarse-grid correction

e Algebraically smooth errors in Range(P)
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Another Point of View

Form of coarse-grid correction doesn't change
e = (I — PB_'RA)e?

Still need
e Complementary relaxation and coarse-grid correction

e Algebraically smooth errors in Range(P)

Use classical AMG interpolation, just with complex values
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Restriction

Choice of R = PT (or R = P*) no longer automatic

e Hermitian problems = R = P~*
o Complex-symmetric problems = R = PT
e Complex non-symmetric problems = R = 777

Can justify many things...
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Restriction

Choice of R = PT (or R = P*) no longer automatic

e Hermitian problems = R = P~*
o Complex-symmetric problems = R = PT
e Complex non-symmetric problems = R = 777

Can justify many things...
But don’t want to stray too far from AMG
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Adjoints

A may not define a norm, but A*A does
Take T = (I — My*A)(I — PBZ*RA)(I — M 'A), then
T |laxa = [I(A“A) 7 T*(A*A)||a<a
Define the cycle for A* by
T=(— (M)A (I = R(BZY) P A*) (I — (My 1) A%)
— (A A

Then ||T A*A = HTH2
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Adjoints

A may not define a norm, but A*A does
Take T = (I — My*A)(I — PBZ*RA)(I — M 'A), then
T |laxa = [I(A“A) 7 T*(A*A)||a<a
Define the cycle for A* by
T=(— (M)A (I = R(BZY) P A*) (I — (My 1) A%)
— (A A

Then ||T A*A = HTH2
R* must be an effective interpolation operator for A*
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Special Cases

e |f A= A*, then can choose R = P*
= Variational Condition

e If A= AT, and interpolation preserves complex
conjugation

= R =P, also Variational

Otherwise, compute restriction separately from interpolation

We always use R = P*(A")
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Coarse-Grid Selection

Still use strength-of-connection measure

Si=1j:laj| = eTif\aka

Then
¢ Independent set over graph of strong connections
e Second pass to ensure good AMG interpolation possible

Easy to extend many coarsening schemes, but what makes
most sense?
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Relaxation
Ais an H-matrix if M(A) is an M-matrix,

. |a,-,-| if 7 :_j
e, ={ 1y fig)
If Ais an H-matrix, then
e Jacobi converges for A at least as fast as for M(A)
e Weighted Jacobi converges for all w <'1
e SOR converges for all w <1

Varga, Linear Algebra and Appl. 1976, 13:1-9
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What About Smoothing?

Convergence theory says nothing about smoothing properties

Use local Fourier analysis (LFA) for —Au + au, a = k?, k*1
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Time-Harmonic Maxwell Equations

Reduce Maxwell's equations by assuming:
e linear constitutive laws
¢ low-frequency excitation

e 2D cross-section

1_ 4 ~ ~
= -V (;VAZ) +woA; = Js;

’

A ~

for Fourier-domain potential, A= (0,0, A,)"

Lahaye et al., IEEE Trans. Magn. 2000, 36:1535-1538
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Induction Motor

Solve .
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Lahaye et al., IEEE Trans. Magn. 2000, 36:1535-1538
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AMG Performance

Problem Solver Ca | tsetup | tsolve | 7 Iters.

real AMG 286 | 0.1 | 0.6 29

15302 nodes complex AMG 285| 0.2 | 0.7 32

nnz = 104926 | AMG-BiCGStab || 2.86 | 0.1 | 0.4 9

cAMG-BiCGStab || 2.85 | 0.2 | 0.3 8

real AMG 291 | 04 1.7 31

34555 nodes complex AMG 291 | 04 | 1.7 30

nnz = 239661 | AMG-BiCGStab || 291 | 04 | 1.0 8.5

cAMG-BiCGStab || 291 | 0.4 | 1.0 8.5

real AMG 287 | 1.0 4.5 31

75951 nodes complex AMG | 287 | 1.1 | 4.2 29

nnz = 529317 | AMG-BiCGStab || 2.87 | 1.0 | 2.6 8.5

cAMG-BIiCGStab || 2.87 | 1.1 25 8
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Lattice Gauge Theory

Gauge theories model physics at quantum scales

Lattice gauge theory is discrete form of standard model
e Model of interactions between elementary particles

e Includes electromagnetism, weak force, strong force

e Consistent with known particle accelerator experiments

Goal: Use simulation to predict behavior out of reach of
experiment
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Covariant Laplacian

Conservation laws play important role in gauge theory

e Derivatives are always covariant

Dutp(x) = €9, (e7*®y(x))
e Discretizations are always consistent
Model Problem: Covariant Laplacian
_ eiBo(x)

S0t = | ) a
7 e i80—(9))
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Shifted Covariant Laplacian

Two reasons to consider shifting

e As (3 increases, discrete problem becomes better
conditioned

e Physical operators always appear with negative-definite
shift

_eiBo(x)

Y Dip—m*y = e 0=(3) 42 i)
8 _eiosx=(2))
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Shifted Covariant Laplacian

Two reasons to consider shifting

e As (3 increases, discrete problem becomes better
conditioned

e Physical operators always appear with negative-definite
shift

_eiBo(x)

Y Dip—m*y = e 0=(3) 42 i)
8 _eiosx=(2))

Shifting changes energy but not form of algebraically smooth
errors
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Convergence histories
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Summary

Natural extension of AMG to complex arithmetic
Consistent choice of restriction for special cases
Local Fourier analysis confirms algorithmic choices

Performance similar to real AMG for complex problems
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Summary

Natural extension of AMG to complex arithmetic
Consistent choice of restriction for special cases
Local Fourier analysis confirms algorithmic choices

Performance similar to real AMG for complex problems

Future Work

Better understand coarse-grid selection (real and
complex)

Extend to systems, distributed relaxation

Provide solvers for quantum dynamical simulation
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