
Abstract

Substantial effort has recently focused on developing meth-

ods capable of solving very large linear systems that arise

from discretizing partial differential equations, especially on

unstructured grids. Algebraic multigrid (AMG) is of particular

interest because of its promise of optimal performance with-

out the need for explicit knowledge of the problem’s origin.

We introduce an extension of AMG based on an adaptive

process that achieves good convergence on a broader class

of problems than the original algorithm.
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Model Problem

We consider, as a model problem, the steady-state diffusion
equation

� ��� � ��� � �
	 ��� � � � ��� �
plus boundary conditions, discretized via (bilinear) Finite El-

ements. We will consider the special case

� ��� �  �

, the

Poisson Equation. The matrices resulting from these prob-

lems are symmetric and positive definite (when

� ��� �

is).
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Multigrid Basics

The efficiency of multigrid for large linear systems comes

from identifying and exploiting the weaknesses of simple so-

lution techniques. The coupling of simple stationary iterative

methods, such as Jacobi or Gauss-Seidel, with corrections

interpolated from a coarse-scale problem yields an optimal-

order recursive solution technique.
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Smoothing and Coarse-Grid Correction

The Jacobi iteration for solving the discretized Poisson equa-

tion takes the form of an averaging operation. Thus, errors

which vary slowly between neighboring gridpoints are slow

to be resolved. These errors, however, can be represented

using fewer degrees of freedom and can thus be transferred

to a coarser grid for resolution. Applying this idea recursively

leads to a fast solution technique.
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Geometric Coarsening

When we know the problem geometry, we can choose a
coarser grid by eliminating points in a geometrically-regular
pattern.

Given a correction computed on a coarse-grid, we use it to

refine our fine-grid solution by interpolating the correction

with a nearest-neighbor averaging (full weighting).
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Algebraic Multigrid

In the absence of geometric information, choices must be

based on algebraic information. Smoothing still occurs, but

it cannot necessarily be interpreted geometrically. A vector

is said to be algebraically smooth if it is slow to be resolved

by relaxation. Algebraic multigrid methods look to choose

coarse grids and intergrid transfer operators based on this

sense of smoothness.

Robust Algebraic Multigrid – p.6



Algebraic Connection

Classical AMG chooses the
coarse grid as a subset of the
fine grid. Considering each
point,

�

, the coarse grid is cho-
sen so that

�

is connected to
at least one coarse grid point
which can be used to

Coarse Grid Points

Fine Grid Points

accurately interpolate a value to
�

. An algebraic connection

( �� �) is said to be strong if � � � � � � ��
	
� ��� 	 � . For our model

problem we can see that algebraically smooth error varies

slowly along strong connections, and thus we choose the

coarse grid so that each point has at least one strong

connection to a coarse-grid point.
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Variations

Smoothed Aggregation uses a collection of aggregates of
fine-grid points as coarse-grids. Columns of interpolation
are chosen by smoothing known near-nullspace vectors on
each aggregate.
Element-based AMG (AMGe) chooses interpolation based
on access to the local finite element stiffness matrices.

Black Box Multigrid (BoxMG) chooses coarse grids geomet-

rically, but uses an algebraic interpolation definition that can

be shown to preserve the continuity of normal flux.

Robust Algebraic Multigrid – p.8



Weaknesses of Classical AMG

Classical AMG methods are based on the assumption that

smooth components (both algebraic and geometric) are

near-constant. This assumption is appropriate for matrices

that comes from simple discretizations of our model prob-

lems, but is not robust enough to handle all situations of in-

terest. For scalar problems, some discretization methods do

not yield matrices for which the discrete nullspace is near-

constant. For systems of PDEs, inter-variable coupling often

results in components which relaxation is slow to resolve,

but which are not near-constant (e.g. elasticity).
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Adaptive AMG ( AMG)

Multigrid methods achieve their efficiency through the com-

plementarity of smoothing and coarse-grid correction. We

consider the framework where relaxation is fixed and seek

to construct coarsening to quickly eliminate algebraically

smooth components. This means that if smoothing is inef-

ficient on a component, we must determine interpolation so

that coarse-grid correction can provide an accurate correc-

tion for that component.

Robust Algebraic Multigrid – p.10



Main Ideas

Smoothing on

�� � �

with a random initial guess
quickly exposes errors that are slow to be resolved.

The coarse-grid and interpolation operator are then
chosen so that this error can be accurately corrected
from the coarse-grid.

The coarse-grid operator is formed using the Galerkin
condition (

��
� � � � � �

).

The full algorithm is then specified by recursion.
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Systems of PDEs

Systems of PDEs are somewhat more difficult as their near-

nullspaces have dimension higher than one, so we must

base interpolation on multiple, distinct, slow-to-converge

components. In the context of smoothed aggregation this

is natural - we simply add columns to the interpolation oper-

ator. In the context of classical AMG, this can be achieved

by determining interpolation to fit multiple vectors.
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Numerical Results

We have implemented two versions of this method. Adap-

tive Smoothed Aggregation ( � � �

) (submitted to SISC) employs

these ideas in a Smoothed Aggregation context and is appli-

cable to two- and three-dimensional problems for both scalar

PDEs and systems of PDEs. Adaptive AMG ( � � �

) is in

an earlier stage of development and is applicable to two-

dimensional, scalar PDEs. The current implementation of

� � �

determines interpolation in an algebraic fashion, but

relies on a geometric choice of coarse-grids.
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2D Laplace

Consider the Poisson equa-
tion on the unit square in two-
dimensions, with pure Dirich-
let boundary conditions. If
we impose the full-coarsening
used by � � �

on classi-
cal

� �

, we achieve conver-
gence factors bounded above
by 0.07 as

�

varies from

�
�� to 10
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�
�� � � . Allocating 12 work units to initial relaxations, we were

able to recover these rates for � � �

.
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2D Diffusion

Consider the model prob-
lem with piecewise constant� ��

�

�
�

chosen to be 100 in
the square

� �
� �

�
�

� �

, with Dirich-
let boundary conditions on
the left and right boundaries
and Neumann boundary con-
ditions on the top and bottom.
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Imposing the same full-coarsening, we achieve convergence

factors bounded above by 0.11 as

�

varies from

�
�� to

�
�� � �

for both AMG and � � �

with 18 work units allocated to

initial relaxation.
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Scaled Matrices

To test the robustness of

� � �

, we multiplied the ma-
trices from the previous two
examples by a diagonal ma-
trix with entries ranging from

� � �
�

to 2. This causes AMG
performance to significantly
degrade, however � � �

per-
formance does not suffer. 10
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2D Elasticity

The � � �

algorithm can be quite effective in solving elasticity

problems. For a 2D elasticity problem with 181,202 degrees

of freedom, standard Smoothed Aggregation required 23 it-

erations to reduce the residual by a factor of

� � �
� �

. When

the degrees of freedom were rotated by random angles, over

5,000 iterations were required. � � �

required 18 iterations on

the non-rotated problem (although took about 3 times more

CPU time), and was able to solve the rotated problem in 18

iterations, taking only 2.66 times longer than standard SA on

the non-rotated problem.
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3D Elasticity

For a 3D problem with 201,720 degrees of freedom, stan-

dard Smoothed Aggregation required 16 iterations for the

same residual reduction. After performing a nodal rotation in

all 3 dimensions, 739 iterations were required. � � �

required

17 iterations to solve the non-rotated problem (and took 6

times longer). To solve the rotated problem, � � �

took only

15 iterations, requiring 6 times more CPU time than standard

Smoothed Aggregation for the non-rotated problem, but over

6 times less CPU time than standard SA on the rotated prob-

lem.
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Other Algorithms

Similar methods and similar algorithms are currently being
studied in a number of research groups.

Achi Brandt and Oren Livne have investigated adaptivity
in the context of AMG and compatible relaxation.

Tim Chartier is investigating adaptivity in the context of
AMGe and spectral AMGe.

We have active collaborations with both of these projects.
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Conclusions

The framework developed for Adaptive Multigrid Methods

has been demonstrated to yield improved results for a num-

ber of “difficult” problems. While we cannot hope to improve

upon the optimal performance exhibited by classical Multi-

grid, AMG, and Smoothed Aggregation for problems with

known near-nullspaces, we have demonstrated that, when

the near-nullspace is not known a priori, we can recover the

desired performance.
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