Adaptive Algebraic Multigrid

Scott MacLachlan

maclachl@colorado.edu

Department of Applied Mathematics, University of Colorado at Boulder

Support and Collaboration

- This work has been supported by the DOE SciDAC TOPS program, the Center for Applied Scientific Computing at Lawrence Livermore National Lab, and Los Alamos National Laboratory.
- This work has been performed in collaboration with Steve McCormick, Tom Manteuffel, John Ruge, Marian Brezina, James Brannick at CU-Boulder, and Rob Falgout at CASC.

Multiscale/Multiphysics problems

- Significant interest in simulating complex physical systems with features, and hence solutions, that vary on multiple scales
- Accuracy constraints are often driven by motivating applications, requiring efficient iterative methods to solve the resulting linear (and non-linear) systems
- Multiscale solution techniques, such as multigrid, are often most efficient approach
- Need simulation tools that can accurately detect non-standard behavior in the model and adapt to account for it

Multigrid Methods achieve optimality through complementarity

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

 $\begin{array}{c} \text{Relax} \bullet \\ A^{(1)}v^{(1)} = f^{(1)} \end{array}$

Use a smoothing process (such as Gauss-Seidel) to eliminate oscillatory errors

Remaining error satisfies $Ae = r \equiv f - Av$

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction

Transfer residual to coarse grid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Use coarse-grid correction to eliminate smooth errors

To solve for error on coarse grid, use residual equation

$$A^{(2)}e^{(2)} = r^{(2)}$$

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation

Transfer correction to fine grid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Relax once again to remove oscillatory error introduced in coarse-grid correction

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Obtain optimal efficiency through recursion

Algebraically Smooth Error

- Multigrid methods reduce error through
 - Relaxation (Jacobi, Gauss-Seidel)
 - Coarse-grid correction (variational)
- Error which is not efficiently reduced by relaxation is called *algebraically* smooth and must be reduced by coarse-grid correction
- Pointwise relaxation implies that algebraically smooth error, e, satisfies $Ae \approx 0$, relative to e
- If the origins of the matrix are known, so is character of algebraically smooth error

Algebraic Multigrid

- Assume no knowledge of grid geometry
- Interpolation and coarse grids chosen based only on the entries of the matrix
- Primary goal is to interpolate suitable corrections from the coarse grids
- Assume algebraically smooth error is locally constant
- Equivalently, assume global near null space is the constant vector

Adaptive Multigrid

If we don't know what algebraically smooth error looks like, can we still develop an effective multigrid method?

Adaptive Multigrid

- If we don't know what algebraically smooth error looks like, can we still develop an effective multigrid method? Yes!
- Use relaxation on Av = 0 to expose algebraic smoothness
- Fine-grid relaxation quickly exposes local character of algebraic smoothness
- Use this representation to determine interpolation
- Interpolation weights are chosen through a local collapsing of the operator done to fit the prototypical algebraically smooth error
- Apply these ideas recursively, using relaxation to expose appropriate components of the error on each level of the multigrid hierarchy

Adaptive Cycling

- Suppose the resulting cycle is ineffective this indicates that relaxation and coarse-grid correction are not yet sufficiently complementary
- A representative of components that the current cycle does not quickly resolve can be found by applying it to the homogeneous problem
- This representative can then be used in conjunction with the existing prototype of algebraically smooth error to determine a better multigrid hierarchy
- Keep adapting the multigrid cycle until acceptable performance is achieved

Cost of Adaptivity

- Adaptation of multigrid components is quite expensive
- Recomputing interpolation at any level in the V-cycle requires recomputing operators at all coarser levels
- Added cost for each prototype to be fit is significant
- Need strategy and measures to ensure adaptations are performed as efficiently as possible

Choosing to Adapt

- Only want to adapt if further improvement in convergence is needed
- Need to measure performance of current solver, ||I BA|| \Rightarrow power method: iterate on Av = 0 with a random initial guess
- A few iterations on the homogeneous problem quickly exposes poor performance

How to Adapt

- Adding additional prototypes results in a more expensive method
- Want to ensure that each prototype is as good as possible before choosing to add more
- Measure strength of prototype as a representative of slowly-converging error: slowest converging error is

$$\underset{v}{\operatorname{argmax}} \frac{\|(I - BA)v\|}{\|v\|}$$

Estimate of solver performance also gives measure of how to adapt

Algorithm Overview

• while $||I - BA||_{est}$ is large

- if $||I B^{(old)}A||_{est}$ is increasing
 - iterate on Av = 0 with old solver, $v \leftarrow (I B^{(old)}A)v$

 \blacksquare recalibrate interpolation based on new v

- recompute coarse-grid operator
- restrict v to coarse grid and cycle there
- interpolate further improved *v* after coarse-grid cycle
- else

 $\blacksquare B^{(\mathsf{old})} \leftarrow B$

Numerical Results

2-D Finite Element Shifted Laplacian, Dirichlet BCs, 512×512 grid

$$-\Delta u - 2\pi^2 (1 - 2^{-15})u = 0$$

■ $\lambda_{\min} = 6.64 \times 10^{-4}$, random $v^{(0)}$, RQ $(v^{(0)}) = 2.06 \times 10^{5}$

Iteration	$\ I - B^{(\text{old})}A\ _{\text{est}}$	RQ(v)	$\ I - BA\ _{est}$
1	0.87	1.18×10^4	0.9999998
2	0.996	1.07×10^3	0.999985
3	0.99988	3.62×10^1	0.9996
4	0.999997	8.21×10^{-1}	0.986
5	0.99999993	1.72×10^{-2}	0.622
6	0.999999997	1.02×10^{-3}	0.078
7	0.999999998	6.72×10^{-4}	0.071

Multiple Prototypes

- In principle, need prototypes of slowly converging modes of relaxation
- Difficult to distinguish when there are multiple modes converging at same rate
- Instead, always look for slowest converging mode of current solver
 - It represents exactly the error that this solver is missing
 - Must also be a slowly converging mode of relaxation
- When developed carefully, each prototype will represent distinct slowly converging error types, and all must be accounted for in interpolation

Conclusions

- Efficient multigrid performance can be recovered, even if character of algebraically smooth error is not known
- Needed adaptivity is, however, quite expensive, and so should be performed with care
- Improve each prototype as much as possible, as it is exposed, before introducing more
- Estimates of performance key in making informed decisions about adaptivity
- Many open questions in how best to design adaptive process, answers are often objective-dependent