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Multiscale/Multiphysics problems

Significant interest in simulating complex physical systems with features,

and hence solutions, that vary on multiple scales

Accuracy constraints are often driven by motivating applications,

requiring efficient iterative methods to solve the resulting linear (and

non-linear) systems

Multiscale solution techniques, such as multigrid, are often most efficient

approach

Need simulation tools that can accurately detect non-standard behavior

in the model and adapt to account for it
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Multigrid

Multigrid Methods achieve optimality through complementarity
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)v(1)=f (1)
Relax

Use a smoothing process (such as Gauss-Seidel) to eliminate oscillatory

errors

Remaining error satisfies Ae = r ≡ f −Av

Adaptive Algebraic Multigrid – p.4



Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)v(1)=f (1)

Level

1

2

Relax

Restriction

Transfer residual to coarse grid
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)v(1)=f (1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction

Use coarse-grid correction to eliminate smooth errors

To solve for error on coarse grid, use residual equation

A(2)e(2) = r(2)
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)v(1)=f (1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation

Transfer correction to fine grid
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)v(1)=f (1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation

Relax once again to remove oscillatory error introduced in coarse-grid

correction
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation
Solve

Restrict

Relax

Restrict

Relax

Interpolate

Relax

Relax

Interpolate

Relax

Relax 1

Level

3

K

2

Obtain optimal efficiency through recursion
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Algebraically Smooth Error

Multigrid methods reduce error through

Relaxation (Jacobi, Gauss-Seidel)

Coarse-grid correction (variational)

Error which is not efficiently reduced by relaxation is called algebraically

smooth and must be reduced by coarse-grid correction

Pointwise relaxation implies that algebraically smooth error, e, satisfies

Ae ≈ 0, relative to e

If the origins of the matrix are known, so is character of algebraically

smooth error
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Algebraic Multigrid

Assume no knowledge of grid geometry

Interpolation and coarse grids chosen based only on the entries of the

matrix

Primary goal is to interpolate suitable corrections from the coarse grids

Assume algebraically smooth error is locally constant

Equivalently, assume global near null space is the constant vector
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Adaptive Multigrid

If we don’t know what algebraically smooth error looks like, can we still

develop an effective multigrid method?

Yes!

Use relaxation on Av = 0 to expose algebraic smoothness

Fine-grid relaxation quickly exposes local character of algebraic

smoothness

Use this representation to determine interpolation

Interpolation weights are chosen through a local collapsing of the

operator done to fit the prototypical algebraically smooth error

Apply these ideas recursively, using relaxation to expose appropriate

components of the error on each level of the multigrid hierarchy
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If we don’t know what algebraically smooth error looks like, can we still

develop an effective multigrid method? Yes!
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Adaptive Cycling

Suppose the resulting cycle is ineffective - this indicates that relaxation

and coarse-grid correction are not yet sufficiently complementary

A representative of components that the current cycle does not quickly

resolve can be found by applying it to the homogeneous problem

This representative can then be used in conjunction with the existing

prototype of algebraically smooth error to determine a better multigrid

hierarchy

Keep adapting the multigrid cycle until acceptable performance is

achieved
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Cost of Adaptivity

Adaptation of multigrid components is quite expensive

Recomputing interpolation at any level in the V-cycle requires

recomputing operators at all coarser levels

Added cost for each prototype to be fit is significant

Need strategy and measures to ensure adaptations are performed as

efficiently as possible
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Choosing to Adapt

Only want to adapt if further improvement in convergence is needed

Need to measure performance of current solver, ‖I −BA‖
⇒ power method: iterate on Av = 0 with a random initial guess

A few iterations on the homogeneous problem quickly exposes poor

performance
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How to Adapt

Adding additional prototypes results in a more expensive method

Want to ensure that each prototype is as good as possible before

choosing to add more

Measure strength of prototype as a representative of slowly-converging

error: slowest converging error is

argmax
v

‖(I −BA)v‖
‖v‖

Estimate of solver performance also gives measure of how to adapt
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Algorithm Overview

while ‖I −BA‖est is large

if ‖I −B(old)A‖est is increasing

iterate on Av = 0 with old solver, v ← (I −B(old)A)v

recalibrate interpolation based on new v

recompute coarse-grid operator

restrict v to coarse grid and cycle there

interpolate further improved v after coarse-grid cycle

else

B(old) ← B
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Numerical Results

2-D Finite Element Shifted Laplacian, Dirichlet BCs, 512× 512 grid

−∆u− 2π2(1− 2−15)u = 0

λmin = 6.64× 10−4, random v(0), RQ(v(0)) = 2.06× 105

Iteration ‖I −B(old)A‖est RQ(v) ‖I −BA‖est

1 0.87 1.18× 104 0.9999998

2 0.996 1.07× 103 0.999985

3 0.99988 3.62× 101 0.9996

4 0.999997 8.21× 10−1 0.986

5 0.99999993 1.72× 10−2 0.622

6 0.999999997 1.02× 10−3 0.078

7 0.999999998 6.72× 10−4 0.071
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Multiple Prototypes

In principle, need prototypes of slowly converging modes of relaxation

Difficult to distinguish when there are multiple modes converging at same

rate

Instead, always look for slowest converging mode of current solver

It represents exactly the error that this solver is missing

Must also be a slowly converging mode of relaxation

When developed carefully, each prototype will represent distinct slowly

converging error types, and all must be accounted for in interpolation
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Conclusions

Efficient multigrid performance can be recovered, even if character of

algebraically smooth error is not known

Needed adaptivity is, however, quite expensive, and so should be

performed with care

Improve each prototype as much as possible, as it is exposed, before

introducing more

Estimates of performance key in making informed decisions about

adaptivity

Many open questions in how best to design adaptive process, answers

are often objective-dependent
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