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Roadmap
• Why AMG?

I Background & motivation

• Adaptive multigrid
I Fewer assumptions
I Improved robustness

• Algebraic coarsening
I Heuristics and theory
I Compatible relaxation

• Current & future challenges
I New problems
I Theoretical questions
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Target Applications
• Heterogeneous

I Variations in material properties (porous media)
I Multi-physics/multi-model (fluid-structure)

• Stochastic & uncertain
I Kriging/geostatistics (porous media)
I Monte-Carlo (lattice QCD)

• Unstructured meshes
I Irregular geometry
I Local refinement

• New challenges
I Complex-valued systems (lattice QCD)
I Indefinite systems (Helmholtz)
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Starting Point
Discretization must represent important features of model

• preserve symmetry and/or definiteness

• small elements (to capture heterogeneity)

• irregular meshes

Look for efficient solvers for heterogeneous discrete models

• Large matrix sizes

• Large condition numbers

• Multiscale structure of operator
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Stationary Iterative Methods
• Want to improve approximation, x (0), to x = A−1b

• Residual, r (0), is a measure of the error

r (0) = b − Ax (0) = Ax − Ax (0) = A(x − x (0))

• Choose B−1 ≈ A−1

• Take x (1) = x (0) + B−1r (0)

Error propagation form: e(1) = (I − B−1A)e(0)
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Stationary Iterative Methods
• Want to improve approximation, x (0), to x = A−1b

• Residual, r (0), is a measure of the error
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Stationary Iterative Methods
• Want to improve approximation, x (0), to x = A−1b

• Residual, r (0), is a measure of the error

r (0) = b − Ax (0) = Ax − Ax (0) = A(x − x (0))

• Choose B−1 ≈ A−1

• Take x (1) = x (0) + B−1r (0)

Error propagation form: e(1) = (I − B−1A)e(0)

e(2) = (I − B−1A)2e(0)

...
e(n) = (I − B−1A)ne(0)
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Convergence of Stationary Iterations

Convergence depends on spectrum of I − B−1A
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Weighted Jacobi Iteration: e(n) = (I − 3
4
D−1A)ne(0)
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Convergence of Stationary Iterations

Convergence depends on spectrum of I − B−1A
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Gauss-Seidel Iteration: e(n) = (I − L−1A)ne(0)
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Failing in a Structured Way

Small B−1A-Rayleigh quotients cause trouble

λmax(I − B−1A) = 1−min
y

yTAy

yTBy

Can we use this to our advantage?
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Smoothing Property

Random initial error

Improving Robustness in Algebraic Multigrid- p.8



Smoothing Property

Error after 1 weighted Jacobi iteration
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Smoothing Property

Error after 2 weighted Jacobi iterations
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Smoothing Property

Error after 3 weighted Jacobi iterations
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Smoothing Property

Error after 4 weighted Jacobi iterations
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Smoothing Property

Error after 5 weighted Jacobi iterations
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Smoothing Property

Error after 6 weighted Jacobi iterations
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Smoothing Property

Error after 7 weighted Jacobi iterations
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Smoothing Property

Error after 8 weighted Jacobi iterations
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Smoothing Property

Error after 9 weighted Jacobi iterations
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Smoothing Property

Error after 10 weighted Jacobi iterations
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Complementarity
• Error after a few weighted Jacobi iterations has structure

• Instead of throwing out the method, look to complement
its failings

How can we best correct error modes that are slow to be
reduced by relaxation?

• Slow-to-converge errors for Poisson are smooth

• Smooth vectors can be easily represented using fewer
degrees of freedom
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Coarse-Grid Correction
• Smooth vectors can be accurately represented using fewer

degrees of freedom

• Idea: transfer job of resolving smooth components to a
coarser grid version of the problem

Need:

• Complementary process for resolving smooth components
of the error on the coarse grid

• Way to combine the results of the two processes
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Variational Coarsening
• Correct the approximation after relaxation, x (1), from an

auxiliary (coarse-grid) problem

• Need interpolation map, P , from coarse grid to fine grid

• Corrected approximation will be x (2) = x (1) + Pxc

What is the best xc for correction?
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A-norm and A-inner product
• Asking for the best solution implies a metric

• Symmetric and positive-definite matrix, A, defines an
inner product and a norm:

〈x , y〉A = yTAx and ‖x‖2
A = xTAx

• Best then means closest to the exact solution in norm

y ? = argmin
y

‖x − y‖A
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Variational Coarsening
• Want to correct the approximation after relaxation, x (1),

from a coarse-grid version of of the problem

• Need interpolation map, P , from coarse grid to fine grid

• Corrected approximation will be x (2) = x (1) + Pxc

What is the best xc for correction?

• Best means closest to the exact solution in norm

xc = argmin
yc

‖x − (x (1) + Pyc)‖A

• Best xc satisfies (PTAP)xc = PTA(x − x (1)) = PT r (1)
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0) (0)r-1+D

• Use a smoothing process (such as Jacobi or Gauss-Seidel)
to eliminate oscillatory errors

• Remaining error satisfies Ae(1) = r (1) = b − Ax (1)
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction

Relax: x(1)= x(0) (0)r-1+D

• Transfer residual to coarse grid

• Compute PT r (1)
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0)+D (0)r-1

• Use coarse-grid correction to eliminate smooth errors

• Best correction, xc , in terms of A-norm satisfies

PTAPxc = PT r (1)
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D

• Transfer correction to fine grid

• Compute x (2) = x (1) + Pxc
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D
Relax

• Relax once again to remove oscillatory error introduced in
coarse-grid correction
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Multigrid
Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D
Relax

Direct solution of coarse-grid problem isn’t practical
Recursion!

Apply same methodology to solve coarse-grid problem
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Geometric Multigrid

For homogeneous operators, relaxation is predictable

• Jacobi/Gauss-Seidel
relaxation

• Regular coarsening

• Linear interpolation

Fully explained by local mode (Fourier) analysis
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Algebraic Picture
On any level, for any A, error reduced by

1. Relaxation

2. Coarse-grid correction

Coarse-grid correction treats errors in Range(P)

• Range(P) must include errors for which relaxation is slow

• Relaxation must be effective on Range(P)⊥

Domain(A) = Range(P)⊕ Range(P)⊥
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“Smooth” Errors

Heterogeneity strongly influences performance of relaxation

Slowest to converge error for d
dx

(
σ du

dx

)
, for

σ =

{
10−8 x ≤ 3

8

1 x > 3
8
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“Smooth” Errors

Heterogeneity strongly influences performance of relaxation

Slowest to converge error for d
dx

(
σ du

dx

)
, for

σ =

{
10−8 x ≤ 3

8

1 x > 3
8

and linear interpolant from coarse grid
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“Smooth” Errors

Heterogeneity strongly influences performance of relaxation

• The abrupt change in character of slow-to-converge errors
is reflected in matrix entries

A =
1

h2



2× 10−8 −10−8

−10−8 2× 10−8 −10−8

−10−8 1 + 10−8 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2


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“Smooth” Errors

Heterogeneity strongly influences performance of relaxation

• The abrupt change in character of slow-to-converge errors
is reflected in matrix entries

• Idea: Use the entries in the matrix operator to help define
interpolation
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Algebraic Multigrid Interpolation1

• Assume a partition into fine (F ) and coarse (C ) grid sets

• Define interpolation based only on entries in A

• Start with assumption that errors left after relaxation
have small residuals: for i ∈ F ,

(Ae)i ≈ 0

aiiei = −
∑
j∈F

aijej −
∑
k∈C

aikek

• Use assumptions about slow-to-converge error to collapse
connections to j ∈ F onto k ∈ C ∩ {k : aik 6= 0}

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stüben, in Multigrid Methods, 1987
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Calibrating Interpolation2

What if we don’t know what to assume about
slow-to-converge errors?

A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003
M. Brezina et al., SISC 2004, 25:1896-1920
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Calibrating Interpolation2

What if we don’t know what to assume about
slow-to-converge errors?

Run relaxation to find out!

• Run relaxation on Ax = 0 with a random initial guess

• This exposes the local character of slow-to-converge errors

• Use resulting vector as a prototype of errors to be
corrected by interpolation within algebraic multigrid

A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003
M. Brezina et al., SISC 2004, 25:1896-1920
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Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

• Given matrix A, Relaxation operation B−1r

• Iterate on homogeneous problem, Ax = 0, with a random
initial guess

• Create AMG-style interpolation such that prototype of
slow-to-converge error is in its range

• Create coarse-grid problem and recurse
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Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

• Given matrix A, Relaxation operation B−1r

• Iterate on homogeneous problem, Ax = 0, with a random
initial guess

• Create AMG-style interpolation such that prototype of
slow-to-converge error is in its range

• Create coarse-grid problem and recurse

Relaxation can be anything,
even the multigrid method itself!

• Allows for iterative improvement of a poorly performing
multigrid cycle
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Linear Elasticity
• Model displacement, u, of an elastic body under external

forces

−µ∆u − (λ + µ)∇∇ · u = f

• µ, λ are Lamé coefficients, defined as

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)

• Fix Poisson ratio, ν = 0.32 (steel)

• Let Young modulus, E , vary between 1 (nylon/polypro)
and 10σ (100 = titanium, 1000 = diamond)

• Know properties of slow-to-converge errors for small σ
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Numerical Results: Linear Elasticity3

3D cube, 201,720 DOFs, exponential distribution of E
Standard SA Adaptive SA

σ ρMG Itns CPU (s) ρMG Itns CPU (s)
2 0.115 9 26.0 0.214 12 267.7
3 0.247 14 35.7 0.310 16 275.6
4 0.395 20 50.0 0.404 21 289.4
5 0.556 32 73.6 0.497 27 381.2

M. Brezina et al., SISC 2004, 25:1896-1920
Improving Robustness in Algebraic Multigrid- p.22



Lattice Quantum Chromodynamics
• Modelling interactions between fermions on a lattice

• Goal: Solve H(u, ρ)f = b, for multiple source vectors, b,
at each step of a Monte Carlo simulation

• Difficulty: u is a complex unitary field defined on lattice
edges, phases chosen randomly based on parameter, β

• H is Hermitian, but indefinite, so solve normal equations

• As ρ approaches a critical value, H∗H becomes singular
(for any β)

• Structure of low-energy modes strongly depends on u
I When β →∞, u → 1, H∗H looks like a second-order

discrete differential operator
I For each state, new characterization of low-energy modes
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Numerical Results: Lattice QCD4

128× 128 periodic lattice
average residual reduction per iteration

Diagonal-PCG AdaptiveMG-PCG
ρ− ρcr 0.3 0.1 0.05 0.01 0.3 0.1 0.05 0.01

β = 2 0.85 0.94 0.96 0.99 0.31 0.31 0.31 0.33
β = 3 0.86 0.93 0.97 0.98 0.31 0.40 0.42 0.42
β = 5 0.83 0.92 0.96 0.99 0.28 0.29 0.31 0.31

Adaptive MG setup time: 13.7 seconds
Adaptive MG-PCG solve time: 0.8 seconds
Diagonal-PCG solve time: 4.7 seconds

J. Brannick et al., to appear in Proc. DD16, 2007
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Choosing Coarse Grids
• Difficult to say what best coarse grid is

I Enough coarse-grid points so that interpolation is
accurate for all slow-to-converge errors

I Significant reduction in number of grid points

• Interpolation chosen to complement failings of relaxation

• Galerkin coarse-grid operator must stay manageable

Coarse-grid selection must make this possible
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Maximal Independent Sets
• Want local interpolation operators

• Idea: Coarsen so that every fine-grid node has at least
one coarse-grid neighbor

Problem: not all connections are equal

−εuxx − uyy →


− 1

h2
y

− ε
h2

x

(
2ε
h2

x
+ 2

h2
y

)
− ε

h2
x

− 1
h2

y


• Really want every fine-grid node to be somehow strongly

coupled to at least one coarse-grid node
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AMG coarsening
• Classical AMG defines strong connections for each node

based directly on the matrix entries:

Si =

{
j : −aij ≥ θ max

k 6=i
{−aik}

}
• Coarse grid chosen as maximal independent set over

strong connections
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AMG coarsening
• Classical AMG defines strong connections for each node

based directly on the matrix entries:

Si =

{
j : −aij ≥ θ max

k 6=i
{−aik}

}
• Coarse grid chosen as maximal independent set over

strong connections

• Strong connections based on nice M-matrix properties

• Break down if near null space of A is oscillatory
I Diagonal rescaling, A → DAD
I Finite element anisotropy
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Compatible Relaxation5

Alternative: choose coarse grids so that we know that
interpolation can be chosen to complement relaxation

Principle of Compatible Relaxation:
If relaxation on fine-grid submatrix fast to converge

Then a good interpolation operator exists

Good means that resulting multigrid method has small
convergence factor

A. Brandt, ETNA 2000, 10:1-20
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Convergence Theory6

• Fine-grid relaxation: I − ωB−1
ff Aff is efficient if

c1〈Bff xf , xf 〉 ≤ 〈Aff xf , xf 〉 ≤ c2〈Bff xf , xf 〉

for reasonable ω,c1,c2

• Under right assumptions, can show multigrid convergence
is bounded less than 1, with bound dependent on c2

c1

R. Falgout and P. Vassilevski, SISC 2004, 42:1669-1693
S. MacLachlan, S. McCormick, & T. Manteuffel, NLAA 2006, 13:599-620
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Satisfying the Theory

Want to turn these results into a practical algorithm

Idea: Choose partition so that we know fine-grid
relaxation converges quickly

Know weighted Jacobi relaxation on Aff converges
quickly when Aff is diagonally dominant

We can guarantee good 2-level convergence factors by
choosing Aff to be diagonally-dominant
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NP-completeness
• Define θ-dominance of Aff as

aii ≥ θ
∑
j∈F

|aij |

• Theory can be satisfied as long as Aff is θ-dominant

Want Aff to be the largest submatrix of A that is θ-dominant
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NP-completeness
• Define θ-dominance of Aff as

aii ≥ θ
∑
j∈F

|aij |

• Theory can be satisfied as long as Aff is θ-dominant

Want Aff to be the largest submatrix of A that is θ-dominant
This is an NP-complete problem
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Greedy Algorithm Approach

Want an O(n) (not NP) coarse-grid selection algorithm

• Initialize all points to be in U ; F , C to be empty

• For each point i , compute diagonal dominance measure

θ̂i =
|aii |∑

j∈F∪U

|aij |

If θ̂i ≥ θ, put i into F , remove it from U

• While U is non-empty
I Find j = argmin

i∈U
θ̂i

I Remove j from U, put it in C
I For each neighboring point i of j , update θ̂i

If θ̂i ≥ θ, put i into F , remove it from U
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Test Problems

Test problems based on finite element discretizations of
−∇ · K (x , y)∇p(x , y)

• Laplace equation, K (x , y) = 1

• Smooth coefficient, K (x , y) = 10−8 + 10(x2 + y 2)

• Randomly chosen coefficient, K (x , y) = 10−8 on 20% of
the cells, chosen randomly, K (x , y) = 1 otherwise

• Anisotropic coefficient, K (x , y) = [ 1 0
0 0.01 ]

Algorithm:

• Greedy algorithm to select coarse grids

• Classical AMG to define interpolation

• Usual AMG-V(1,1) cycles with Gauss-Seidel relaxation
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Multilevel AMG results
Coefficient Grid cA tsetup tsolve # iters. ρ

5122 1.33 1.3 0.7 5 0.13
K (x , y) = 1 10242 1.33 5.1 2.5 5 0.14

20482 1.33 21.9 10.5 5 0.14
5122 1.33 1.3 0.6 5 0.13

smooth 10242 1.33 5.1 2.5 5 0.14
20482 1.33 21.7 10.4 5 0.14
5122 2.06 2.3 1.2 6 0.35

random 10242 2.08 9.6 4.8 6 0.40
20482 2.10 41.0 19.8 6 0.46
5122 2.39 1.5 1.0 5 0.13

anisotropic 10242 2.41 6.2 4.1 5 0.20
20482 2.43 25.8 17.7 5 0.20
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QCD Revisited

Brannick et al. was a brute-force approach

• Complex system converted to equivalent real form

• Expensive adaptive smoothed aggregation technique

Want an AMG algorithm that naturally handles

• Complex-valued operators

• Hermitian, complex-symmetric, non-symmetric operators

• Strong heterogeneity
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Complex Helmholtz7

Time-harmonic simplification of Maxwell’s equations yields

−∆u + ıωu = f

Differentially dominant terms occur in real part

• Use systems approach
I Base coarse grids, interpolation on dominant term

• Apply AMG coarsening to real part (−∆u)

• Galerkin product based on complex matrix

D. Lahaye et al., IEEE Trans. Magn. 2000, 36:1535-1538
S. Reitzinger et al., J. Comp. App. Math., 155:405-421
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Gauge Laplacian
Simplified model from lattice QCD gives

ui ,j−κ
(
eıβθi,j ui−1,j + eıβφi,j ui ,j−1

+eıβθi+1,j ui+1,j + eıβφi,j+1ui ,j+1

)
= fij ,

where

• κ ≈ 0.25

• β ≥ 0

• {θij}, {φij} chosen from given probability distribution

Real part no longer dominates
Need AMG based on full complex operator
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Acoustic Wave Equation8

Fourier transform in time yields

−∇ · 1

ρ(x)
∇p̂(x)− ω2

K
p̂(x) = f (x)

For constant density, precondition with geometric multigrid for

−∇ · ∇p̂(x)− ω2

c2
(1 + ıα)p̂(x) = f (x)

New challenges:

• Multigrid for variable-density problems

• AMG for indefinite matrices

Erlangga, Oosterlee, Vuik, SISC 2006, 27:1471-1492
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Practical Theory for AMG

Most AMG theory is neither computable nor sharp

Typically,
• Many conditions or idealized algorithm

• Only an upper bound is given

• Upper bound depends on solution of eigenvalue problem

Practical theory would give

• Bound dependent on easily computed properties

• Bound achieved for some data & initial guess

• Insight into choices to be made within AMG
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Summary
• Heterogeneity & uncertainty add new complications to

linear solvers

• Algebraic picture of multigrid gives insight

• Adaptive framework replaces assumptions on relaxation

• Added expense can be recovered for some applications
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Summary
• Heterogeneity & uncertainty add new complications to

linear solvers

• Algebraic picture of multigrid gives insight

• Adaptive framework replaces assumptions on relaxation

• Added expense can be recovered for some applications

• New coarsening approaches show promise

• Principles of compatible relaxation offer alternative to
heuristics

• New applications leading to new challenges

• Better theoretical tools leading to better computational
tools
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