Scott MacLachlan

Delft Institute of Applied Mathematics, Delft University of Technology

s.p.maclachlan@ewi.tudelft.edu

December 12, 2006

Roadmap

- Why AMG?
 - Background & motivation
- Adaptive multigrid
 - Fewer assumptions
 - Improved robustness
- Algebraic coarsening
 - Heuristics and theory
 - Compatible relaxation
- Current & future challenges
 - New problems
 - Theoretical questions

Target Applications

- Heterogeneous
 - Variations in material properties (porous media)
 - Multi-physics/multi-model (fluid-structure)
- Stochastic & uncertain
 - Kriging/geostatistics (porous media)
 - Monte-Carlo (lattice QCD)
- Unstructured meshes
 - Irregular geometry
 - Local refinement
- New challenges
 - Complex-valued systems (lattice QCD)
 - Indefinite systems (Helmholtz)

Starting Point

Discretization must represent important features of model

- preserve symmetry and/or definiteness
- small elements (to capture heterogeneity)
- irregular meshes

Look for efficient solvers for heterogeneous discrete models

- Large matrix sizes
- Large condition numbers
- Multiscale structure of operator

- Want to improve approximation, $x^{(0)}$, to $x = A^{-1}b$
- Residual, $r^{(0)}$, is a measure of the error

$$r^{(0)} = b - Ax^{(0)} = Ax - Ax^{(0)} = A(x - x^{(0)})$$

- Choose $B^{-1} \approx A^{-1}$
- Take $x^{(1)} = x^{(0)} + B^{-1}r^{(0)}$

Error propagation form: $e^{(1)} = (I - B^{-1}A)e^{(0)}$

- Want to improve approximation, $x^{(0)}$, to $x = A^{-1}b$
- Residual, $r^{(0)}$, is a measure of the error

$$r^{(0)} = b - Ax^{(0)} = Ax - Ax^{(0)} = A(x - x^{(0)})$$

• Choose $B^{-1} \approx A^{-1}$

• Take
$$x^{(1)} = x^{(0)} + B^{-1}r^{(0)}$$

Error propagation form: $e^{(1)} = (I - B^{-1}A)e^{(0)}$ $e^{(2)} = (I - B^{-1}A)e^{(1)}$

- Want to improve approximation, $x^{(0)}$, to $x = A^{-1}b$
- Residual, $r^{(0)}$, is a measure of the error

$$r^{(0)} = b - Ax^{(0)} = Ax - Ax^{(0)} = A(x - x^{(0)})$$

• Choose $B^{-1} \approx A^{-1}$

• Take
$$x^{(1)} = x^{(0)} + B^{-1}r^{(0)}$$

Error propagation form: $e^{(1)} = (I - B^{-1}A)e^{(0)}$ $e^{(2)} = (I - B^{-1}A)^2 e^{(0)}$

- Want to improve approximation, $x^{(0)}$, to $x = A^{-1}b$
- Residual, $r^{(0)}$, is a measure of the error

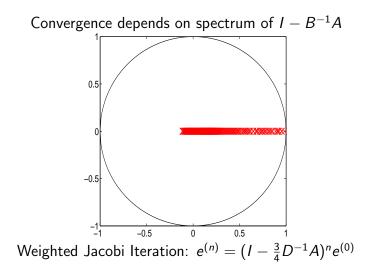
$$r^{(0)} = b - Ax^{(0)} = Ax - Ax^{(0)} = A(x - x^{(0)})$$

• Choose $B^{-1} \approx A^{-1}$

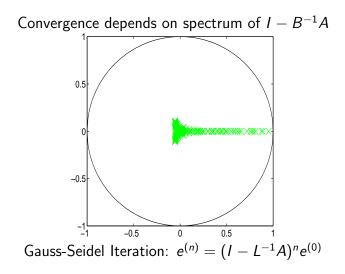
• Take
$$x^{(1)} = x^{(0)} + B^{-1}r^{(0)}$$

Error propagation form: $e^{(1)} = (I - B^{-1}A)e^{(0)}$ $e^{(2)} = (I - B^{-1}A)^2 e^{(0)}$ \vdots $e^{(n)} = (I - B^{-1}A)^n e^{(0)}$

Convergence of Stationary Iterations



Convergence of Stationary Iterations

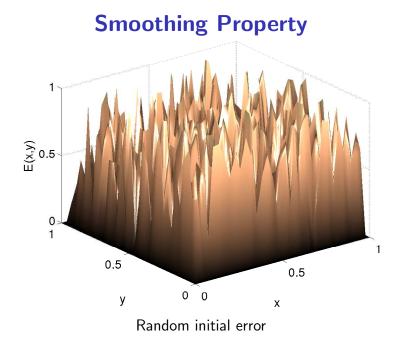


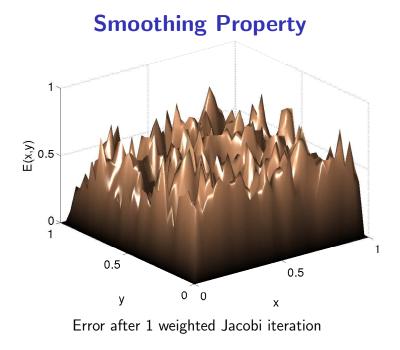
Failing in a Structured Way

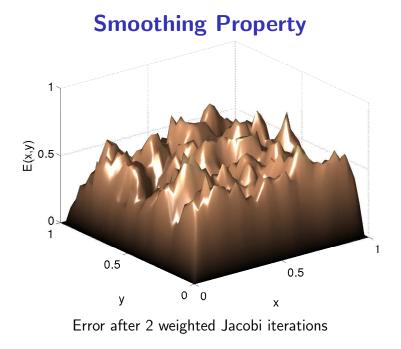
Small $B^{-1}A$ -Rayleigh quotients cause trouble

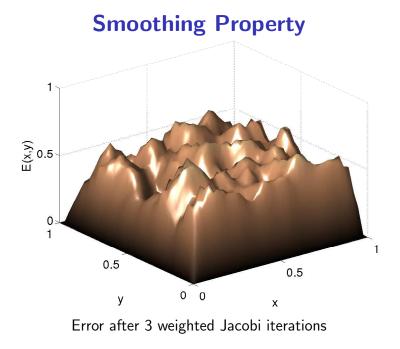
$$\lambda_{\max}(I - B^{-1}A) = 1 - \min_{y} \frac{y^{T}Ay}{y^{T}By}$$

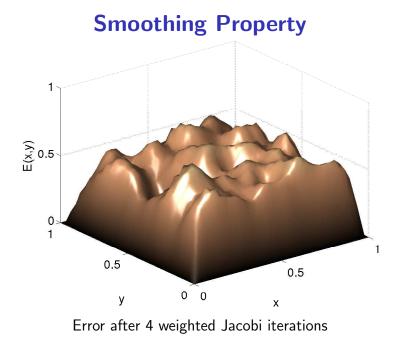
Can we use this to our advantage?

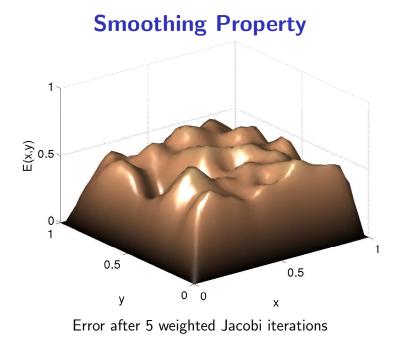


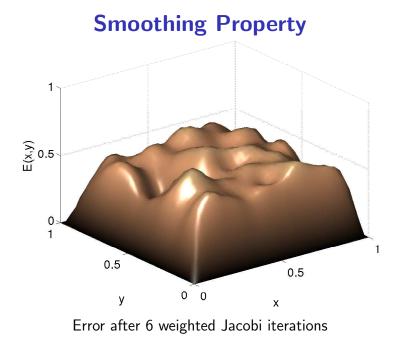


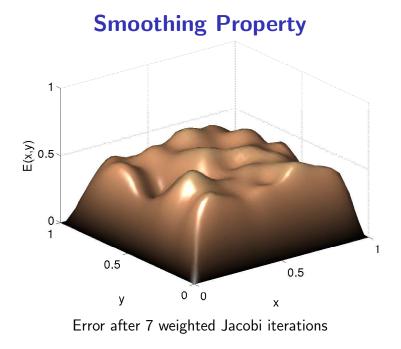


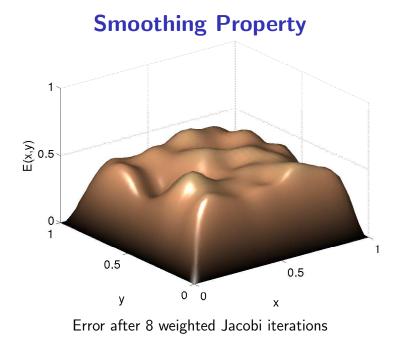


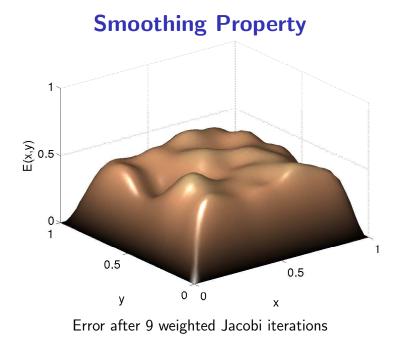


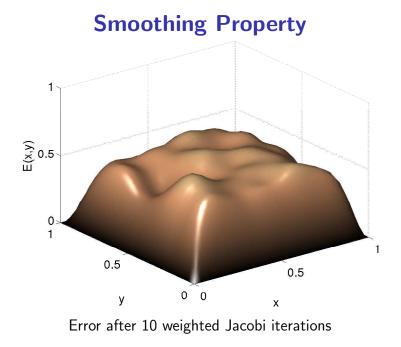












Complementarity

- Error after a few weighted Jacobi iterations has structure
- Instead of throwing out the method, look to complement its failings

How can we best correct error modes that are slow to be reduced by relaxation?

Complementarity

- Error after a few weighted Jacobi iterations has structure
- Instead of throwing out the method, look to complement its failings

How can we best correct error modes that are slow to be reduced by relaxation?

- Slow-to-converge errors for Poisson are smooth
- Smooth vectors can be easily represented using fewer degrees of freedom

Coarse-Grid Correction

- Smooth vectors can be accurately represented using fewer degrees of freedom
- Idea: transfer job of resolving smooth components to a coarser grid version of the problem

Need:

- Complementary process for resolving smooth components of the error on the coarse grid
- Way to combine the results of the two processes

Variational Coarsening

- Correct the approximation after relaxation, $x^{(1)}$, from an auxiliary (coarse-grid) problem
- Need interpolation map, P, from coarse grid to fine grid
- Corrected approximation will be $x^{(2)} = x^{(1)} + Px_c$

What is the *best* x_c for correction?

A-norm and A-inner product

- Asking for the best solution implies a metric
- Symmetric and positive-definite matrix, *A*, defines an inner product and a norm:

$$\langle x, y \rangle_A = y^T A x$$
 and $||x||_A^2 = x^T A x$

• Best then means closest to the exact solution in norm $y^{\star} = \underset{v}{\operatorname{argmin}} \|x - y\|_{A}$

Variational Coarsening

- Want to correct the approximation after relaxation, $x^{(1)}$, from a coarse-grid version of the problem
- Need interpolation map, P, from coarse grid to fine grid
- Corrected approximation will be $x^{(2)} = x^{(1)} + Px_c$

What is the *best* x_c for correction?

• Best means closest to the exact solution in norm

$$x_c = \underset{y_c}{\operatorname{argmin}} \|x - (x^{(1)} + Py_c)\|_A$$

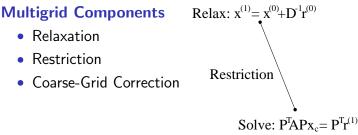
• Best x_c satisfies $(P^T A P) x_c = P^T A(x - x^{(1)}) = P^T r^{(1)}$

Multigrid Components Relax: $x^{(1)} = x^{(0)} + D^{1}r^{(0)}$

• Relaxation

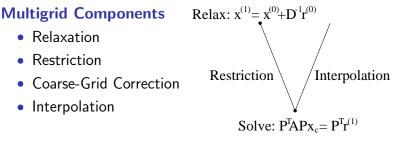
- Use a smoothing process (such as Jacobi or Gauss-Seidel) to eliminate oscillatory errors
- Remaining error satisfies $Ae^{(1)} = r^{(1)} = b Ax^{(1)}$

- Transfer residual to coarse grid
- Compute $P^T r^{(1)}$

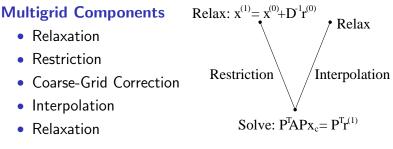


- Use coarse-grid correction to eliminate smooth errors
- Best correction, x_c , in terms of A-norm satisfies

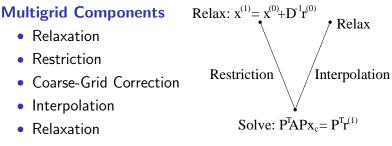
$$P^{T}APx_{c} = P^{T}r^{(1)}$$



- Transfer correction to fine grid
- Compute $x^{(2)} = x^{(1)} + Px_c$



Relax once again to remove oscillatory error introduced in coarse-grid correction



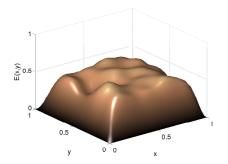
Direct solution of coarse-grid problem isn't practical Recursion!

Apply same methodology to solve coarse-grid problem

Geometric Multigrid

For homogeneous operators, relaxation is predictable

- Jacobi/Gauss-Seidel relaxation
- Regular coarsening
- Linear interpolation



Fully explained by local mode (Fourier) analysis

Algebraic Picture

On any level, for any A, error reduced by

- 1. Relaxation
- 2. Coarse-grid correction

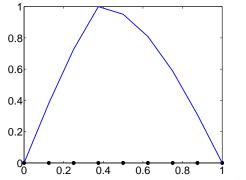
Coarse-grid correction treats errors in Range(P)

- Range(P) must include errors for which relaxation is slow
- Relaxation must be effective on $\operatorname{Range}(P)^{\perp}$

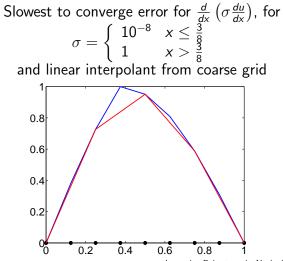
 $Domain(A) = Range(P) \oplus Range(P)^{\perp}$

Heterogeneity strongly influences performance of relaxation

Slowest to converge error for
$$\frac{d}{dx} \left(\sigma \frac{du}{dx} \right)$$
, for $\sigma = \begin{cases} 10^{-8} & x \leq \frac{3}{8} \\ 1 & x > \frac{3}{8} \end{cases}$



Heterogeneity strongly influences performance of relaxation



Heterogeneity strongly influences performance of relaxation

• The abrupt change in character of slow-to-converge errors is reflected in matrix entries

$$A = \frac{1}{h^2} \begin{bmatrix} 2 \times 10^{-8} & -10^{-8} & & \\ -10^{-8} & 2 \times 10^{-8} & -10^{-8} & & \\ & -10^{-8} & 1 + 10^{-8} & -1 & & \\ & & -1 & 2 & -1 & & \\ & & & -1 & 2 & -1 & \\ & & & & -1 & 2 & -1 \\ & & & & & -1 & 2 & -1 \\ & & & & & -1 & 2 & -1 \\ & & & & & & -1 & 2 \end{bmatrix}$$

Heterogeneity strongly influences performance of relaxation

- The abrupt change in character of slow-to-converge errors is reflected in matrix entries
- Idea: Use the entries in the matrix operator to help define interpolation

Algebraic Multigrid Interpolation

- Assume a partition into fine (F) and coarse (C) grid sets
- Define interpolation based only on entries in A
- Start with assumption that errors left after relaxation have small residuals: for *i* ∈ *F*,

$$(Ae)_i pprox 0 \ a_{ii}e_i = -\sum_{j\in F} a_{ij}e_j - \sum_{k\in C} a_{ik}e_k$$

Use assumptions about slow-to-converge error to collapse connections to *j* ∈ *F* onto *k* ∈ *C* ∩ {*k* : *a_{ik}* ≠ 0}

A. Brandt, S. McCormick, J. Ruge, in *Sparsity and Its Applications*, 1984 J. Ruge and K. Stüben, in *Multigrid Methods*, 1987

Improving Robustness in Algebraic Multigrid- p.18

Calibrating Interpolation

What if we don't know what to assume about slow-to-converge errors?

A. Brandt and D. Ron, in *Multilevel Optimization in VLSICAD*, 2003
M. Brezina et al., SISC 2004, 25:1896-1920

Calibrating Interpolation

What if we don't know what to assume about slow-to-converge errors? Run relaxation to find out!

- Run relaxation on Ax = 0 with a random initial guess
- This exposes the local character of slow-to-converge errors
- Use resulting vector as a prototype of errors to be corrected by interpolation within algebraic multigrid

A. Brandt and D. Ron, in *Multilevel Optimization in VLSICAD*, 2003
M. Brezina et al., SISC 2004, 25:1896-1920

Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1}r$
- Iterate on homogeneous problem, Ax = 0, with a random initial guess
- Create AMG-style interpolation such that prototype of slow-to-converge error is in its range
- Create coarse-grid problem and recurse

Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1}r$
- Iterate on homogeneous problem, Ax = 0, with a random initial guess
- Create AMG-style interpolation such that prototype of slow-to-converge error is in its range
- Create coarse-grid problem and recurse

Relaxation can be anything

Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1}r$
- Iterate on homogeneous problem, Ax = 0, with a random initial guess
- Create AMG-style interpolation such that prototype of slow-to-converge error is in its range
- Create coarse-grid problem and recurse

Relaxation can be anything, even the multigrid method itself!

• Allows for iterative improvement of a poorly performing multigrid cycle

Linear Elasticity

• Model displacement, *u*, of an elastic body under external forces

$$-\mu\Delta u - (\lambda + \mu)\nabla\nabla \cdot u = f$$

• μ , λ are Lamé coefficients, defined as

$$\lambda = rac{E
u}{(1+
u)(1-2
u)}$$
 and $\mu = rac{E}{2(1+
u)}$

- Fix Poisson ratio, $\nu = 0.32$ (steel)
- Let Young modulus, *E*, vary between 1 (nylon/polypro) and 10^σ (100 = titanium, 1000 = diamond)
- Know properties of slow-to-converge errors for small σ

Numerical Results: Linear Elasticity

3D cube, 201,720 DOFs, exponential distribution of E

	St	andar	d SA	Adaptive SA			
σ	$ ho_{MG}$	ltns	CPU (s)	$ ho_{MG}$	ltns	CPU (s)	
2	0.115	9	26.0	0.214	12	267.7	
3	0.247	14	35.7	0.310	16	275.6	
4	0.395	20	50.0	0.404	21	289.4	
5	0.556	32	73.6	0.497	27	381.2	

M. Brezina et al., SISC 2004, 25:1896-1920

Lattice Quantum Chromodynamics

- · Modelling interactions between fermions on a lattice
- Goal: Solve $H(u, \rho)f = b$, for multiple source vectors, b, at each step of a Monte Carlo simulation
- Difficulty: u is a complex unitary field defined on lattice edges, phases chosen randomly based on parameter, β
- *H* is Hermitian, but indefinite, so solve normal equations
- As ρ approaches a critical value, H^*H becomes singular (for any β)
- Structure of low-energy modes strongly depends on *u*
 - ▶ When $\beta \to \infty$, $u \to 1$, H^*H looks like a second-order discrete differential operator
 - ▶ For each state, new characterization of low-energy modes

Numerical Results: Lattice QCD

128×128 periodic lattice

average residual reduction per iteration

	Diagonal-PCG				AdaptiveMG-PCG			
$\rho - \rho_{\rm cr}$	0.3	0.1	0.05	0.01	0.3	0.1	0.05	0.01
$\beta = 2$	0.85	0.94	0.96	0.99	0.31	0.31	0.31	0.33
$\beta = 3$	0.86	0.93	0.97	0.98	0.31	0.40	0.42	0.42
$\beta = 5$	0.83	0.92	0.96	0.99	0.28	0.29	0.31	0.31

Adaptive MG setup time: Adaptive MG-PCG solve time: 0.8 seconds Diagonal-PCG solve time: 4.7 seconds

13.7 seconds

J. Brannick et al., to appear in Proc. DD16, 2007

Choosing Coarse Grids

- Difficult to say what best coarse grid is
 - Enough coarse-grid points so that interpolation is accurate for all slow-to-converge errors
 - Significant reduction in number of grid points
- Interpolation chosen to complement failings of relaxation
- Galerkin coarse-grid operator must stay manageable

Coarse-grid selection must make this possible

Maximal Independent Sets

- Want local interpolation operators
- Idea: Coarsen so that every fine-grid node has at least one coarse-grid neighbor

Problem: not all connections are equal

$$-\epsilon u_{xx} - u_{yy} \rightarrow \begin{bmatrix} -\frac{1}{h_y^2} \\ -\frac{\epsilon}{h_x^2} & \left(\frac{2\epsilon}{h_x^2} + \frac{2}{h_y^2}\right) & -\frac{\epsilon}{h_x^2} \\ & -\frac{1}{h_y^2} \end{bmatrix}$$

• Really want every fine-grid node to be somehow strongly coupled to at least one coarse-grid node

AMG coarsening

• Classical AMG defines strong connections for each node based directly on the matrix entries:

$$S_i = \left\{ j : -a_{ij} \ge \theta \max_{k \neq i} \{-a_{ik}\} \right\}$$

• Coarse grid chosen as maximal independent set over strong connections

AMG coarsening

• Classical AMG defines strong connections for each node based directly on the matrix entries:

$$S_i = \left\{ j : -a_{ij} \ge \theta \max_{k \neq i} \{-a_{ik}\} \right\}$$

- Coarse grid chosen as maximal independent set over strong connections
- Strong connections based on nice M-matrix properties
- Break down if near null space of A is oscillatory
 - Diagonal rescaling, $A \rightarrow DAD$
 - Finite element anisotropy

Compatible Relaxation

Alternative: choose coarse grids so that we know that interpolation can be chosen to complement relaxation

Principle of Compatible Relaxation:

If relaxation on fine-grid submatrix fast to converge Then a good interpolation operator exists

Good means that resulting multigrid method has small convergence factor

A. Brandt, ETNA 2000, 10:1-20

Convergence Theory

• Fine-grid relaxation: $I - \omega B_{\rm ff}^{-1} A_{\rm ff}$ is efficient if

$$c_1 \langle B_{\rm ff} x_f, x_f \rangle \leq \langle A_{\rm ff} x_f, x_f \rangle \leq c_2 \langle B_{\rm ff} x_f, x_f \rangle$$

for reasonable ω , c_1 , c_2

• Under right assumptions, can show multigrid convergence is bounded less than 1, with bound dependent on $\frac{c_2}{c_1}$

 R. Falgout and P. Vassilevski, SISC 2004, 42:1669-1693
 S. MacLachlan, S. McCormick, & T. Manteuffel, NLAA 2006, 13:599-620 Improving Robustness in Algebraic Multigrid- p.29

Satisfying the Theory

Want to turn these results into a practical algorithm

- Idea: Choose partition so that we know fine-grid relaxation converges quickly
- **Know** weighted Jacobi relaxation on A_{ff} converges quickly when A_{ff} is diagonally dominant

We can guarantee good 2-level convergence factors by choosing A_{ff} to be diagonally-dominant

NP-completeness

• Define θ -dominance of A_{ff} as

$$\mathsf{a}_{ii} \geq heta \sum_{j \in \mathsf{F}} \left| \mathsf{a}_{ij} \right|$$

• Theory can be satisfied as long as A_{ff} is θ -dominant

Want A_{ff} to be the largest submatrix of A that is θ -dominant

NP-completeness

• Define θ -dominance of A_{ff} as

$$\mathsf{a}_{ii} \geq heta \sum_{j \in \mathsf{F}} \left| \mathsf{a}_{ij} \right|$$

• Theory can be satisfied as long as $A_{\rm ff}$ is heta-dominant

Want A_{ff} to be the largest submatrix of A that is θ -dominant This is an NP-complete problem

Greedy Algorithm Approach

Want an O(n) (not NP) coarse-grid selection algorithm

- Initialize all points to be in U; F, C to be empty
- For each point *i*, compute diagonal dominance measure

$$\hat{\theta}_i = \frac{|\boldsymbol{a}_{ii}|}{\sum_{j \in F \cup U} |\boldsymbol{a}_{ij}|}$$

If $\hat{\theta}_i \geq \theta$, put *i* into *F*, remove it from *U*

- While *U* is non-empty
 - Find $j = \underset{i \in U}{\operatorname{argmin}} \hat{\theta}_i$
 - Remove j from U, put it in C
 - For each neighboring point *i* of *j*, update θ̂_i If θ̂_i ≥ θ, put *i* into *F*, remove it from *U*

Test Problems

Test problems based on finite element discretizations of $-\nabla \cdot K(x, y) \nabla p(x, y)$

- Laplace equation, K(x, y) = 1
- Smooth coefficient, $K(x, y) = 10^{-8} + 10(x^2 + y^2)$
- Randomly chosen coefficient, $K(x, y) = 10^{-8}$ on 20% of the cells, chosen randomly, K(x, y) = 1 otherwise
- Anisotropic coefficient, $K(x, y) = \begin{bmatrix} 1 & 0 \\ 0 & 0.01 \end{bmatrix}$

Algorithm:

- Greedy algorithm to select coarse grids
- Classical AMG to define interpolation
- Usual AMG-V(1,1) cycles with Gauss-Seidel relaxation

Multilevel AMG results

Coefficient	Grid	CA	t _{setup}	t _{solve}	# iters.	ρ
	512 ²	1.33	1.3	0.7	5	0.13
K(x,y)=1	1024 ²	1.33	5.1	2.5	5	0.14
	2048 ²	1.33	21.9	10.5	5	0.14
	512 ²	1.33	1.3	0.6	5	0.13
smooth	1024 ²	1.33	5.1	2.5	5	0.14
	2048 ²	1.33	21.7	10.4	5	0.14
	512 ²	2.06	2.3	1.2	6	0.35
random	1024 ²	2.08	9.6	4.8	6	0.40
	2048 ²	2.10	41.0	19.8	6	0.46
	512 ²	2.39	1.5	1.0	5	0.13
anisotropic	1024 ²	2.41	6.2	4.1	5	0.20
	2048 ²	2.43	25.8	17.7	5	0.20

QCD Revisited

Brannick et al. was a brute-force approach

- Complex system converted to equivalent real form
- Expensive adaptive smoothed aggregation technique

Want an AMG algorithm that naturally handles

- Complex-valued operators
- Hermitian, complex-symmetric, non-symmetric operators
- Strong heterogeneity

Complex Helmholtz

Time-harmonic simplification of Maxwell's equations yields

 $-\Delta u + \imath \omega u = f$

Differentially dominant terms occur in real part

- Use systems approach
 - Base coarse grids, interpolation on dominant term
- Apply AMG coarsening to real part $(-\Delta u)$
- Galerkin product based on complex matrix

D. Lahaye et al., IEEE Trans. Magn. 2000, **36**:1535-1538

S. Reitzinger et al., J. Comp. App. Math., 155:405-421

Gauge Laplacian

Simplified model from lattice QCD gives

$$\begin{aligned} u_{i,j} - \kappa \left(e^{i\beta\theta_{i,j}} u_{i-1,j} + e^{i\beta\phi_{i,j}} u_{i,j-1} \right. \\ \left. + e^{i\beta\theta_{i+1,j}} u_{i+1,j} + e^{i\beta\phi_{i,j+1}} u_{i,j+1} \right) &= f_{ij}, \end{aligned}$$

where

- $\kappa \approx 0.25$
- β ≥ 0
- $\{\theta_{ij}\}, \{\phi_{ij}\}$ chosen from given probability distribution

Real part no longer dominates Need AMG based on full complex operator

Acoustic Wave Equation

Fourier transform in time yields

$$-\nabla \cdot \frac{1}{\rho(x)} \nabla \hat{p}(x) - \frac{\omega^2}{\kappa} \hat{p}(x) = f(x)$$

For constant density, precondition with geometric multigrid for

$$-\nabla \cdot \nabla \hat{p}(x) - \frac{\omega^2}{c^2}(1 + i\alpha)\hat{p}(x) = f(x)$$

New challenges:

- Multigrid for variable-density problems
- AMG for indefinite matrices

Erlangga, Oosterlee, Vuik, SISC 2006, 27:1471-1492

Practical Theory for AMG

Most AMG theory is neither computable nor sharp

Typically,

- Many conditions or idealized algorithm
- Only an upper bound is given
- Upper bound depends on solution of eigenvalue problem

Practical theory would give

- Bound dependent on easily computed properties
- Bound achieved for some data & initial guess
- Insight into choices to be made within AMG

Summary

- Heterogeneity & uncertainty add new complications to linear solvers
- Algebraic picture of multigrid gives insight
- Adaptive framework replaces assumptions on relaxation
- Added expense can be recovered for some applications

Summary

- Heterogeneity & uncertainty add new complications to linear solvers
- Algebraic picture of multigrid gives insight
- Adaptive framework replaces assumptions on relaxation
- Added expense can be recovered for some applications
- New coarsening approaches show promise
- Principles of compatible relaxation offer alternative to heuristics

Summary

- Heterogeneity & uncertainty add new complications to linear solvers
- Algebraic picture of multigrid gives insight
- Adaptive framework replaces assumptions on relaxation
- Added expense can be recovered for some applications
- New coarsening approaches show promise
- Principles of compatible relaxation offer alternative to heuristics
- New applications leading to new challenges
- Better theoretical tools leading to better computational tools