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Roadmap
Why AMG?

» Background & motivation
Adaptive multigrid

» Fewer assumptions
» Improved robustness

Algebraic coarsening

» Heuristics and theory
» Compatible relaxation

Current & future challenges

» New problems
» Theoretical questions
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Target Applications

Heterogeneous

» Variations in material properties (porous media)
» Multi-physics/multi-model (fluid-structure)

Stochastic & uncertain

» Kriging/geostatistics (porous media)
» Monte-Carlo (lattice QCD)

Unstructured meshes

» lIrregular geometry
» Local refinement

New challenges

» Complex-valued systems (lattice QCD)
> Indefinite systems (Helmholtz)
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Starting Point

Discretization must represent important features of model
e preserve symmetry and/or definiteness
e small elements (to capture heterogeneity)
e irregular meshes

Look for efficient solvers for heterogeneous discrete models
e Large matrix sizes
e Large condition numbers

e Multiscale structure of operator
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Stationary lterative Methods

Want to improve approximation, x(9, to x = A~1h
Residual, r(®, is a measure of the error

r® = p— Ax® = Ax — AxO) = A(x — x19)

Choose B™1 ~ A1
Take x() = x(0) 1 B=1,(0)
Error propagation form: e) = (1 — B~ A)e(®
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Stationary lterative Methods
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Convergence of Stationary lterations

Convergence depends on spectrum of | — B~1A
1 T T .

0.5

El -05 0 05 1

Weighted Jacobi Iteration: el = (/ — 2D~1A)"e(®)
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Convergence of Stationary lterations

Convergence depends on spectrum of | — B~1A

7
L\

Gauss-Seidel Iteration: e(”) = l— L~ 1A) e(®
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Failing in a Structured Way

Small B~1A-Rayleigh quotients cause trouble

.
_ .y Ay

Amax(l — B71A) =1 —
( ) " yTBy

Can we use this to our advantage?
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Smoothing Property




Smoothing Property

Error after 1 weighted Jacobi iteration
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Smoothing Property

y X

Error after 2 weighted Jacobi iterations
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Smoothing Property

y X

Error after 3 weighted Jacobi iterations
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E(x.y)

Smoothing Property

0.5

y 00 X

Error after 4 weighted Jacobi iterations
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E(x.y)

Smoothing Property

0.5

y 00 X

Error after 5 weighted Jacobi iterations
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E(x.y)

Smoothing Property

0.5

y 00 X

Error after 6 weighted Jacobi iterations
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E(x.y)

Smoothing Property
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y 00 X

Error after 7 weighted Jacobi iterations
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E(x.y)

Smoothing Property

0.5

y 00 X

Error after 8 weighted Jacobi iterations
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E(x.y)

Smoothing Property

0.5

y 00 X

Error after 9 weighted Jacobi iterations
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E(x.y)

Smoothing Property

0.5

y 00 X

Error after 10 weighted Jacobi iterations
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Complementarity

o Error after a few weighted Jacobi iterations has structure

e Instead of throwing out the method, look to complement
its failings

How can we best correct error modes that are slow to be
reduced by relaxation?
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Complementarity

o Error after a few weighted Jacobi iterations has structure

e Instead of throwing out the method, look to complement
its failings

How can we best correct error modes that are slow to be
reduced by relaxation?

e Slow-to-converge errors for Poisson are smooth

e Smooth vectors can be easily represented using fewer
degrees of freedom
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Coarse-Grid Correction

e Smooth vectors can be accurately represented using fewer
degrees of freedom

e Idea: transfer job of resolving smooth components to a
coarser grid version of the problem
Need:

e Complementary process for resolving smooth components
of the error on the coarse grid

e Way to combine the results of the two processes
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Variational Coarsening

e Correct the approximation after relaxation, x(Y), from an
auxiliary (coarse-grid) problem

e Need interpolation map, P, from coarse grid to fine grid

e Corrected approximation will be x(®) = x(!) 4- Px_

What is the best x. for correction?

Improving Robustness in Algebraic Multigrid- p.11



A-norm and A-inner product

e Asking for the best solution implies a metric

e Symmetric and positive-definite matrix, A, defines an
inner product and a norm:

x,y)a=y Ax and ||x||5 = x"Ax

e Best then means closest to the exact solution in norm

y* = argmin [|x — y||a
y
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Variational Coarsening

Want to correct the approximation after relaxation, x(),
from a coarse-grid version of of the problem

Need interpolation map, P, from coarse grid to fine grid

Corrected approximation will be x(?) = x(1) + Px.

What is the best x. for correction?

Best means closest to the exact solution in norm

x. = argmin ||x — (xM + Py.)|a

Ye

Best x, satisfies (PTAP)x. = PTA(x — x(V) = pT 1)
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Multigrid
Multigrid Components  Relax: xXV=x%D"®
e Relaxation

e Use a smoothing process (such as Jacobi or Gauss-Seidel)
to eliminate oscillatory errors

e Remaining error satisfies Ae(V) = r(t) = p — Ax()
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Multigrid
Multigrid Components  Reax: xX?= X%+D?
e Relaxation

e Restriction
Restriction

e Transfer residual to coarse grid
e Compute P r()
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Multigrid
Multigrid Components  Reax: xX?= X%+D¥?
e Relaxation

e Restriction

e Coarse-Grid Correction Restriction

Solve: PAPx.= P'r%

e Use coarse-grid correction to eliminate smooth errors

e Best correction, x., in terms of A-norm satisfies

PTAPx. = P/
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Multigrid
Multigrid Components  Reax: xX?= X%+D¥?
e Relaxation

Restriction

Coarse-Grid Correction Restriction Interpolation

Interpolation
Solve: PAPx = P'r®

Transfer correction to fine grid
Compute x(@ = x(1) 4+ Px_
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Multigrid Components  Reax: xX?= X%+D¥?

Multigrid

Relaxation Relax
Restriction

Coarse-Grid Correction Restriction Interpolation
Interpolation

Relaxation Solve: PAPx = PT®

Relax once again to remove oscillatory error introduced in
coarse-grid correction
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Multigrid

Multigrid Components  Reax: xX?= X%+D¥?

Relax
e Relaxation
e Restriction
e Coarse-Grid Correction Restriction Interpolation
e Interpolation
e Relaxation Solve: PAPx = P’

Direct solution of coarse-grid problem isn't practical
Recursion!
Apply same methodology to solve coarse-grid problem
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Geometric Multigrid

For homogeneous operators, relaxation is predictable

e Jacobi/Gauss-Seidel
relaxation

e Regular coarsening

e Linear interpolation

Fully explained by local mode (Fourier) analysis
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Algebraic Picture

On any level, for any A, error reduced by
1. Relaxation

2. Coarse-grid correction

Coarse-grid correction treats errors in Range(P)

e Range(P) must include errors for which relaxation is slow

e Relaxation must be effective on Range(P)*

Domain(A) = Range(P) @ Range(P)™*
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“Smooth” Errors

Heterogeneity strongly influences performance of relaxation

Slowest to converge error for £ (o2¢), for
X

1078 x<3 -
- { 1 X > g
1
0.8f
0.6
0.4+
0.2f

0 02 04 06 08 1
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“Smooth” Errors

Heterogeneity strongly influences performance of relaxation

Slowest to converge error for £ (o2¢), for
dx dx

[ 1078 xg§
o 1 X > 8
and linear interpolant from coarse grid

1 : :
0.8t
0.6/
0.4t
0.2t

0 02 04 06 08 1
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“Smooth” Errors

Heterogeneity strongly influences performance of relaxation

e The abrupt change in character of slow-to-converge errors
is reflected in matrix entries

[ 2x 1078 —10°%
-10% 2x10®% -10°%
-1078% 1+10°% -1

A= — -1 2 -1

-1 2 -1
-1 2 -1
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“Smooth” Errors

Heterogeneity strongly influences performance of relaxation

e The abrupt change in character of slow-to-converge errors
is reflected in matrix entries

e |dea: Use the entries in the matrix operator to help define
interpolation
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Algebraic Multigrid Interpolation

Assume a partition into fine (F) and coarse (C) grid sets

Define interpolation based only on entries in A

Start with assumption that errors left after relaxation
have small residuals: for i € F,

(Ae),- ~0

ajie = — E a,-jej— E Aik €k

JjEF keC

Use assumptions about slow-to-converge error to collapse
connections to j € F onto k € CN {k : ay # 0}

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stiiben, in Multigrid Methods, 1987
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Calibrating Interpolation

What if we don’'t know what to assume about
slow-to-converge errors?

A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003
M. Brezina et al., SISC 2004, 25:1896-1920
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Calibrating Interpolation

What if we don’'t know what to assume about
slow-to-converge errors?
Run relaxation to find out!

¢ Run relaxation on Ax = 0 with a random initial guess
e This exposes the local character of slow-to-converge errors

e Use resulting vector as a prototype of errors to be
corrected by interpolation within algebraic multigrid

A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003
M. Brezina et al., SISC 2004, 25:1896-1920

Improving Robustness in Algebraic Multigrid- p.19



Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

Given matrix A, Relaxation operation B~1r

Iterate on homogeneous problem, Ax = 0, with a random
initial guess

Create AMG-style interpolation such that prototype of
slow-to-converge error is in its range

Create coarse-grid problem and recurse
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Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

e Given matrix A, Relaxation operation B~!r

e |terate on homogeneous problem, Ax = 0, with a random
initial guess

e Create AMG-style interpolation such that prototype of
slow-to-converge error is in its range

e Create coarse-grid problem and recurse

Relaxation can be anything,
even the multigrid method itself!

e Allows for iterative improvement of a poorly performing
multigrid cycle
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Linear Elasticity

Model displacement, u, of an elastic body under external
forces

—pAu— AN+ p)VV-u=f

i, A are Lamé coefficients, defined as

Ev E

A arna-y ™ T aa

Fix Poisson ratio, v = 0.32 (steel)

Let Young modulus, E, vary between 1 (nylon/polypro)
and 107 (100 = titanium, 1000 = diamond)

Know properties of slow-to-converge errors for small o
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Numerical Results: Linear Elasticity

3D cube, 201,720 DOFs, exponential distribution of E
Standard SA Adaptive SA
pme | Itns | CPU (s) || pme | Itns | CPU (s)
0.115| 9 26.0 0.214 | 12 267.7
0.247 | 14 35.7 0.310 | 16 275.6
0.395 | 20 50.0 0.404 | 21 289.4
0.556 | 32 73.6 0.497 | 27 381.2

o~ w N9

M. Brezina et al., SISC 2004, 25:1896-1920
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Lattice Quantum Chromodynamics

Modelling interactions between fermions on a lattice
Goal: Solve H(u, p)f = b, for multiple source vectors, b,
at each step of a Monte Carlo simulation

Difficulty: v is a complex unitary field defined on lattice
edges, phases chosen randomly based on parameter, (3
H is Hermitian, but indefinite, so solve normal equations
As p approaches a critical value, H*H becomes singular
(for any 3)

Structure of low-energy modes strongly depends on u

» When 8 — oo, u — 1, H*H looks like a second-order
discrete differential operator
» For each state, new characterization of low-energy modes
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Numerical Results: Lattice QCD

128 x 128 periodic lattice
average residual reduction per iteration

Diagonal-PCG AdaptiveMG-PCG

p—pe | 03] 01 [0.05][00L] 03] 0.1 ]0.05]0.01

B=21085|094 096|099 0.31]0.31|0.31|0.33
#=3 1086|093 |097|0.98 | 0.31|0.40|0.42|0.42
#=5083]092]096 099 028|029 031|031

Adaptive MG setup time: 13.7 seconds
Adaptive MG-PCG solve time: 0.8 seconds
Diagonal-PCG solve time: 4.7 seconds

J. Brannick et al., to appear in Proc. DD16, 2007
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Choosing Coarse Grids

e Difficult to say what best coarse grid is

» Enough coarse-grid points so that interpolation is
accurate for all slow-to-converge errors
» Significant reduction in number of grid points

e Interpolation chosen to complement failings of relaxation

e Galerkin coarse-grid operator must stay manageable

Coarse-grid selection must make this possible
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Maximal Independent Sets

e Want local interpolation operators
e |dea: Coarsen so that every fine-grid node has at least
one coarse-grid neighbor

Problem: not all connections are equal
€ 2¢ 2
Tl — Uy = |~z (h_2 + %>

e Really want every fine-grid node to be somehow strongly
coupled to at least one coarse-grid node
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AMG coarsening

e (Classical AMG defines strong connections for each node
based directly on the matrix entries:

S = {j L —ay > Grr;i}{—afk}}

e Coarse grid chosen as maximal independent set over
strong connections
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AMG coarsening

Classical AMG defines strong connections for each node
based directly on the matrix entries:

S = {j L —ay > Grgi}{—afk}}

Coarse grid chosen as maximal independent set over
strong connections

Strong connections based on nice M-matrix properties
Break down if near null space of A is oscillatory

» Diagonal rescaling, A — DAD
» Finite element anisotropy
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Compatible Relaxation

Alternative: choose coarse grids so that we know that
interpolation can be chosen to complement relaxation

Principle of Compatible Relaxation:
If relaxation on fine-grid submatrix fast to converge

Then a good interpolation operator exists

Good means that resulting multigrid method has small
convergence factor

A. Brandt, ETNA 2000, 10:1-20
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Convergence Theory

e Fine-grid relaxation: /| — wB,;lAff is efficient if
ci(Bexe, xe) < (Agxe, Xe) < 2 Barxe, Xr)

for reasonable w,c;, ¢

e Under right assumptions, can show multigrid convergence

is bounded less than 1, with bound dependent on 2

R. Falgout and P. Vassilevski, SISC 2004, 42:1669-1693
S. MaclLachlan, S. McCormick, & T. Manteuffel, NLAA 2006, 13:599-620
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Satisfying the Theory

Want to turn these results into a practical algorithm

Idea: Choose partition so that we know fine-grid
relaxation converges quickly

Know weighted Jacobi relaxation on Ag converges
quickly when Ag is diagonally dominant

We can guarantee good 2-level convergence factors by
choosing As to be diagonally-dominant
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NP-completeness

e Define -dominance of Ag as

2i 20 |a]

jeF
e Theory can be satisfied as long as Ay is 6-dominant

Want Ag to be the largest submatrix of A that is 6-dominant
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NP-completeness

e Define -dominance of Ag as

2i 20 |a]

jeF
e Theory can be satisfied as long as Ay is 6-dominant

Want Ag to be the largest submatrix of A that is #-dominant
This is an NP-complete problem
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Greedy Algorithm Approach

Want an O(n) (not NP) coarse-grid selection algorithm

e Initialize all points to be in U; F, C to be empty
e For each point i/, compute diagonal dominance measure

If 9,- > 6, put i into F, remove it from U
e While U is non-empty
» Find j = argminé,-
ey
» Remove j from U, put itin C
» For each neighboring point i of j, update 6;
If §; > 6, put / into F, remove it from U
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Test Problems

Test problems based on finite element discretizations of
~V - K(x,y)Vp(x,y)

e Laplace equation, K(x,y) =1

e Smooth coefficient, K(x,y) = 1078 4+ 10(x? + y?)

e Randomly chosen coefficient, K(x,y) = 1078 on 20% of
the cells, chosen randomly, K(x,y) = 1 otherwise

e Anisotropic coefficient, K(x,y) =[&,%;]
Algorithm:
e Greedy algorithm to select coarse grids
e Classical AMG to define interpolation
e Usual AMG-V(1,1) cycles with Gauss-Seidel relaxation
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Multilevel AMG results

Coefficient | Grid Ca | tsetup | tsolve | FF iters. p
5122 [ 1.33| 1.3 | 0.7 5 0.13
K(x,y)=11]1024%2 | 1.33| 5.1 | 25 5 0.14
20482 | 1.33| 21.9 | 105 5 0.14
512° [ 1.33| 1.3 | 0.6 5 0.13
smooth 10242 || 1.33 | 5.1 | 25 5 0.14
20482 | 1.33 | 21.7 | 10.4 5 0.14
5122 || 2.06 | 23 | 1.2 6 0.35
random 10242 || 2.08 | 9.6 | 4.8 6 0.40
20482 || 2.10 | 41.0 | 19.8 6 0.46
5122 || 239 | 15 1.0 5 0.13
anisotropic | 10242 || 2.41 | 6.2 | 4.1 5 0.20
20482 || 2.43 | 25.8 | 17.7 5 0.20
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QCD Reuvisited

Brannick et al. was a brute-force approach

e Complex system converted to equivalent real form

e Expensive adaptive smoothed aggregation technique

Want an AMG algorithm that naturally handles
e Complex-valued operators
e Hermitian, complex-symmetric, non-symmetric operators

e Strong heterogeneity
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Complex Helmholtz

Time-harmonic simplification of Maxwell’s equations yields
—Auv+wu="f

Differentially dominant terms occur in real part
e Use systems approach
» Base coarse grids, interpolation on dominant term
e Apply AMG coarsening to real part (—Au)
e Galerkin product based on complex matrix

D. Lahaye et al., IEEE Trans. Magn. 2000, 36:1535-1538
S. Reitzinger et al., J. Comp. App. Math., 155:405-421

Improving Robustness in Algebraic Multigrid- p.36



Gauge Laplacian
Simplified model from lattice QCD gives
uij—kK (elﬂei’j Ui—1,j + ezﬁd)’d Uij—1
+ezﬁ0i+1,j Uity + elﬁ¢i,j+1 Ui,j+1) — f;'j

where
e k~0.25
e 20
e {0;}, {¢;} chosen from given probability distribution

Real part no longer dominates
Need AMG based on full complex operator
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Acoustic Wave Equation

Fourier transform in time yields

1 R w* ~ iy
V5V - bl = £()

For constant density, precondition with geometric multigrid for
2

—V - Vh(x) = S(1+1a)p(x) = F(x)

New challenges:
e Multigrid for variable-density problems
e AMG for indefinite matrices

Erlangga, Oosterlee, Vuik, SISC 2006, 27:1471-1492
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Practical Theory for AMG

Most AMG theory is neither computable nor sharp

Typically,
e Many conditions or idealized algorithm

e Only an upper bound is given

e Upper bound depends on solution of eigenvalue problem
Practical theory would give

e Bound dependent on easily computed properties

e Bound achieved for some data & initial guess

e Insight into choices to be made within AMG
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Summary

Heterogeneity & uncertainty add new complications to
linear solvers

Algebraic picture of multigrid gives insight
Adaptive framework replaces assumptions on relaxation

Added expense can be recovered for some applications
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Summary

Heterogeneity & uncertainty add new complications to
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Added expense can be recovered for some applications
New coarsening approaches show promise

Principles of compatible relaxation offer alternative to
heuristics
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Summary

Heterogeneity & uncertainty add new complications to
linear solvers

Algebraic picture of multigrid gives insight
Adaptive framework replaces assumptions on relaxation
Added expense can be recovered for some applications
New coarsening approaches show promise

Principles of compatible relaxation offer alternative to
heuristics

New applications leading to new challenges

Better theoretical tools leading to better computational
tools
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