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Why Compute?

Interested in modeling physical processes

Diffusion (Heat, Energy, Chemical)

Fluid Flow

Particle Transport

Elastic Materials

Can describe these processes through differential equations (both ODEs

and PDEs)

Cannot write down closed form solutions

Need to find (approximate) solutions in other ways
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Scientific Computation

Significant interest in simulating complex physical systems with features,

and hence solutions, that vary on multiple scales

Accuracy constraints lead to discretizations with tens of millions, or even

billions, of degrees of freedom (DOFs)

3D Tsunami Model: 200 million cells

Transport: 500 million to 1 billion DOFs
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Properties of Discretizations

We consider discretizations of the underlying continuum models

(differential equations) via finite elements (or finite differences)

The matrices from these discretizations tend to be sparse and

ill-conditioned

The matrices inherit properties of the continuum model (e.g. symmetry,

definiteness)
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Classical Methods do not Suffice
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Porous Media Flow

Saturated flow in a reservoir can be modeled via Darcy’s Law:

u(x) = −K(x)∇p(x)

∇ · u(x) = Q(x)

Simulation domain: v 103 meters in each dimension

Material properties (K(x)) vary on millimeter scales

For 3-D, fully-resolved flow calculation, need v 1018 DOFs

Such a simulation is at the limits of the capability of modern

supercomputers (the fastest of which performs 3.5× 1013 floating point

operations per second)
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Scientific Computation

Significant interest in simulating complex physical systems with features,

and hence solutions, that vary on multiple scales

Accuracy constraints lead to discretizations with tens of millions, or even

billions, of degrees of freedom (DOFs)

3D Tsunami Model: 200 million cells

Transport: 500 million to 1 billion DOFs

Fully-resolved Porous Media Flow: 1018 DOFs

Without optimal methods, solving such problems can be prohibitively

expensive

Bottom Line:

Accuracy per
computational cost
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Stationary Iterative Methods

The Jacobi and Gauss-Seidel iterations do converge for FE

discretizations of elliptic operators, but require O(N 2) operations for 2-D

problems and O(N
5
3 ) operations for 3-D

These methods do, however, resolve some components much faster than

others

For the Laplacian operator, it is the geometrically smoothest components

of the solution that are the slowest to be resolved

For this reason, Jacobi and Gauss-Seidel are often called smoothers -

they smooth the error in the approximation
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Smoother Performance
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Multigrid

Multigrid Methods achieve optimality through complementarity
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)
Relax

Use a smoothing process (such as Gauss-Seidel) to eliminate oscillatory

errors

Remaining error satisfies Ae = r ≡ b−Ax
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Level

1

2

Relax

Restriction

Transfer residual to coarse grid
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction

Use coarse-grid correction to eliminate smooth errors

To solve for error on coarse grid, use residual equation

A(2)e(2) = r(2)
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation

Transfer correction to fine grid
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation

Relax once again to remove oscillatory error introduced in coarse-grid

correction
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation
Solve

Restrict

Relax

Restrict

Relax

Interpolate

Relax

Relax

Interpolate

Relax

Relax 1

Level

3

K

2

Obtain optimal efficiency through recursion
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Geometric Multigrid

When Ax = b comes from a geometrically regular discretization of a DE,

that information can be used in the coarse-grid problems

Coarse grids chosen by removing points from the fine grid in a

geometrically regular fashion

Restriction (R) and interpolation (P ) operators computed using geometric

locations

Coarse-grid operators determined by rediscretization on the reduced

space
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BoxMG

The Black Box Multigrid Algorithm (BoxMG) was developed by Dendy for

discontinuous coefficient operators, such as −∇ · K(x)∇

Coarsening is geometric

Interpolation is chosen to approximately preserve continuity of normal flux

Variational formulation

Improving Robustness in Multiscale Methods – p.14



Variational Multigrid

Multigrid with R = P T and Ac = RAP is called a variational formulation

Terminology comes from minimization form of Ax = b:

F (v) =
1

2
〈Av, v〉 − 〈b, v〉

x = arg min
v∈H

F (v)

Given an approximation, v, to the solution on the fine level, it can be

shown that the optimal coarse grid correction, Pw, solves

(PTAP )w = PT (b−Av)
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Coarse-Scale Models

Quality of coarse-grid corrections depends on representation of

fine-scale details in coarse-scale operator

Rediscretization requires explicit averaging of fine-scale structures

Variational coarsening allows multiscale information to be encoded in the

coarse-grid operators

Coarse-scale operator needs to reflect information about the fine-scale

operator relating to the low-energy modes for which a coarse-scale

correction is being computed.

Practical interest is in coarse-scale properties, such as total net flux
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The Need for Coarse-Scale Models

Fine-scale discretization requires too many DOFs

Coarse-scale properties are influenced by fine-scale variations

Need physically-meaningful solutions

Cannot directly (explicitly) capture effect of fine-scale variations in a

coarse-scale discretization

Goal: derive effective, coarse-scale models
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Interpretation of Multigrid CGOs

Fine-scale, finite-element discretization of porous-media problem:

Aij = eTj Aei =

∫

Ω

〈K(x)∇φi,∇φj〉dΩ

Variational coarsening gives finite-element discretizations on coarse

grids:

(Ac)ij = (PTAP )ij = (P êj)
TA(P êi)

=

∫

Ω

〈
K(x)∇

(∑

l

pliφl

)
,∇
(∑

k

pkjφk

)〉
dΩ

=

∫

Ω

〈K(x)∇φ̂i,∇φ̂j〉dΩ

Coarse-grid basis functions are linear combinations of fine-grid basis

functions (weighted by the interpolation operators)
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Sample Basis Functions

Periodic permeability field, K(x), with jump of 103
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Sample Basis Functions

Bilinear basis function on 4× 4 grid
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Sample Basis Functions

8× 8 grid multiscale basis function
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Sample Basis Functions

16× 16 grid multiscale basis function
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Sample Basis Functions

32× 32 grid multiscale basis function
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Sample Basis Functions

64× 64 grid multiscale basis function
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Sample Basis Functions

Geostatistical permeability field, K(x), with range of [10−2, 102]

(Black pixels correspond to K = 10−2)
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Sample Basis Functions

8× 8 grid multiscale basis function

Improving Robustness in Multiscale Methods – p.20



Sample Basis Functions

16× 16 grid multiscale basis function

Improving Robustness in Multiscale Methods – p.20



Sample Basis Functions

32× 32 grid multiscale basis function

Improving Robustness in Multiscale Methods – p.20



Sample Basis Functions

64× 64 grid multiscale basis function
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Multiscale Goals

Capture macro-scale properties of fine-scale operator

Modeling flow, so compute net flux through domain of interest

Boundary conditions: p = 1 on left, p = 0 on right, no-flow

(Neumann) on top and bottom

Integrate (K∇p) · n along outflow

Linear model is a simplification of unsaturated/multi-phase flow where

K = K(p,x)

Local pressure fluctuations important

Seek to match local maxima and minima of p
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Periodic Theory Approach

Two-scale asymptotic analysis to compute homogenized permeability

Upscaled equation, −∇ · K̂∇p0(x) = Q(x), arises from solvability

conditions with periodic BCs

Upscaled permeability, K̂, given in terms of particular solutions of

fine-scale problem over averaging subdomain

Coarse-scale model created by rediscretization on that scale

We’ve shown equivalence between this approach and that of Durlofsky
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Flux Calculations

Multigrid upscaling procedure

Discretize on fine scale

Use BoxMG to coarsen to given coarse scale

Solve coarse-scale problem

Interpolate solution to fine scale

Compute Outflow Flux

Periodic theory approach

Discretize on fine scale

Solve two fine-scale problems per coarse-scale element to get K̂
Rediscretize on coarse scale

Solve coarse-scale problem

Compute flux with coarse-scale permeability and pressure
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Flux Calculations

Computed Flux for 512× 512 element discretization is 2.229

Coarse Grid Multilevel Upscaling Periodic Theory

Flux % Error Flux % Error

32× 32 2.430 9.0% 2.319 4.0%

16× 16 2.558 14.8% 3.482 56.2%

8× 8 2.599 16.6% 4.923 120.8%

4× 4 2.493 11.8% 3.124 40.1%
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Fine-Scale Structure

Accurate reconstruction of fine-scale structure needed to address

nonlinearities in unsaturated and multi-phase flows
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Accuracy of Coarse-Scale Models

Performance of multilevel upscaling technique comes from accuracy of

coarse-scale model

In variational multigrid setting, good coarse-scale models come from

good choices in interpolation

Good interpolation must complement relaxation
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Algebraically-Smooth Error

Multigrid methods reduce error through

Relaxation (Jacobi, Gauss-Seidel)

Coarse-grid correction (variational)

Error which is not efficiently reduced by relaxation is called algebraically

smooth and must be reduced by coarse-grid correction

Pointwise relaxation implies that algebraically-smooth error, e, satisfies

Ae ≈ 0, relative to e

If the origins of the matrix are known, so is character of

algebraically-smooth error
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Algebraic Multigrid

Assume no knowledge of grid geometry

Interpolation and coarse grids chosen based only on the entries of the

matrix

Primary goal is to interpolate suitable corrections from the coarse grids

Assume algebraically-smooth error is locally constant

Equivalently, assume global near null space is the constant vector

Improving Robustness in Multiscale Methods – p.28



Adaptive Multigrid

If we don’t know what algebraically-smooth error looks like, can we still

develop an effective multigrid method?

Yes!

Use relaxation on Ax = 0 to expose algebraic smoothness

Fine-grid relaxation quickly exposes local character of algebraic

smoothness

Use this representation to determine interpolation
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Adapting Interpolation

AMG and BoxMG choose interpolation by a fixed formula

Now need interpolation that depends on both the matrix, A, and the

prototypical algebraically-smooth error, v

Algebraic smoothness still means that Ae ≈ 0, or

aiiei ≈ −
∑

k∈Ci

aikek −
∑

j∈Fi

aijej

Approximate ej by values in Ci ∩ Cj , weighted by ajk and vk
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Scaling Property

If we scale A→ DAD for diagonal matrix D, adaptive AMG performance

need not suffer

If Av = 0, then DAD(D−1v) = 0

Replacing v with D−1v, the coarse-grid matrices for DAD are

diagonally-rescaled versions of those for A

Pointwise relaxation is also invariant to such scaling

If we could generate D−1v as easily v, overall performance wouldn’t

degrade
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Test Problems

−∇ · K(x)∇p(x) = 0 on [0, 1]2

Problem 1:

K(x) = 1 (Laplace), Full Dirichlet BCs

Problem 2:

K(x) = 10−8 on 20% of elements chosen randomly,

K(x) = 1 otherwise

Dirichlet BCs on left and right, Neumann on top and bottom

Setup Phase: Single V-cycle, # pre-relaxations chosen for optimal

performance

Solution Phase: V(1,1) cycles until residual reduced by 1010 or 200

iterations

Geometric choice of coarse grids
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Numerical Results - Solution Time

Total time to setup MG method and reduce residual by 1010

Problem 1 Problem 2

h Standard AMG Adapted AMG Standard AMG Adapted AMG

1/64 0.04s 0.04s 0.05s 0.03s

1/128 0.22s 0.25s 0.28s 0.31s

1/256 0.91s 0.89s 1.04s 1.09s

1/512 3.32s 3.52s 4.40s 4.84s

1/1024 13.13s 14.70s 17.64s 22.06s
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Numerical Results - Convergence Factors

Asymptotic convergence factors of resulting V(1,1) cycles

Problem 1 Problem 2

h Standard AMG Adapted AMG Standard AMG Adapted AMG

1/64 0.104 0.067 0.209 0.194

1/128 0.115 0.073 0.212 0.202

1/256 0.124 0.079 0.233 0.243

1/512 0.131 0.080 0.290 0.288

1/1024 0.137 0.079 0.375 0.376
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Test Problems - Scaling

Standard AMG does fine on these problems

Break assumption on local character of algebraically-smooth error

Scale problems nodally by 105r, where r is chosen uniformly between 0

and 1 for each node
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Numerical Results - Solution Time

Total time to setup MG method and then reduce residual by 1010

or residual reduction after 200 iterations

Problem 1 Problem 2

h Standard AMG Adapted AMG Standard AMG Adapted AMG

1/64 * 0.03s * 0.05s

1/128 * 0.22s * 0.27s

1/256 * 0.91s * 1.22s

1/512 * 3.64s * 5.35s

1/1024 * 15.64s * 28.27s
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Numerical Results - Solution Time

Total time to setup MG method and then reduce residual by 1010

or residual reduction after 200 iterations

Problem 1 Problem 2

h Standard AMG Adapted AMG Standard AMG Adapted AMG

1/64 3.3× 10−5 0.03s 4.5× 10−5 0.05s

1/128 3.6× 10−5 0.22s 2.5× 10−5 0.27s

1/256 2.5× 10−5 0.91s 1.7× 10−5 1.22s

1/512 1.8× 10−5 3.64s 1.2× 10−5 5.35s

1/1024 1.3× 10−5 15.64s 9.3× 10−6 28.27s
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Numerical Results - Convergence Factors

Asymptotic convergence factors of resulting V(1,1) cycles

Problem 1 Problem 2

h Standard AMG Adapted AMG Standard AMG Adapted AMG

1/64 0.991 0.069 0.996 0.187

1/128 0.997 0.078 0.996 0.212

1/256 0.996 0.077 0.996 0.235

1/512 0.996 0.078 0.996 0.292

1/1024 0.996 0.079 0.995 0.383
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Theoretical Results

Questions:

Convergence of adaptive process

Convergence of the resulting V-cycle

Approached theory in a 2-level, reduction-based AMG setting

Convergence of solution phase based on A-orthogonal decomposition

Show convergence of 2-level adaptive process in reducing Rayleigh

Quotient of near-null-space approximation
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Summary - Upscaling

Robust variational multigrid methods define useful coarse-scale models

Solution of these models accurately approximates fine-scale solution

Net outflow flux

Fine-scale structure of pressure

Accurate recovery of coarse-scale material properties

Coarse-scale model is accurate with multiscale basis function, but

includes regularization term with coarse-scale basis interpretation
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Future Work - Upscaling

Compare with multiscale finite element method (Hou et al.)

Coarsen using AMG or adaptive AMG

Extend to three dimensions

Apply techniques to nonlinear problem

Reconcile averaging theory with numerical results
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Summary - Adaptive Multigrid

Assumptions on knowledge of algebraic smoothness in classical

algebraic multigrid methods can be relaxed

Additional work in setup to expose prototypical algebraically-smooth error

results in improved convergence behavior

Prove resulting algorithm is invariant to diagonal scalings

Theory supports convergence of adaptive process
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Future Work - Adaptive Multigrid

Apply adaptive framework to systems of PDEs

Extend AMG interpolation to fit multiple prototypes

Adaptive smoothed aggregation performs well on linear elasticity

Adaptive choice of coarse grid

Improve and extend theory
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Conclusions

Effective multiscale basis functions created naturally in variational

multigrid

Solutions to variational coarse-scale problems accurately predict

fine-scale behavior

Adaptive process creates accurate coarse-scale models through

exposure of algebraically-smooth error

Resulting V-cycle outperforms classical AMG on many problems

Many interesting questions remain
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