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Target Applications

• Fluid flow in porous media
I Highly heterogeneous media
I Interested in global properties of the solution

• Coupled fluid-elastic systems
I Multiple material regimes
I Different models require different treatment

• Lattice quantum chromodynamics
I Highly heterogeneous operator
I Randomized heterogeneity within Monte Carlo process
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Modelling Heterogeneity

Two important considerations:

1. Capturing relevant features of continuum model

2. Solver efficiency

We’ll assume Step 1 has been taken care of

Focus on efficient solvers for heterogeneous discrete models

• Large problem sizes

• Large condition numbers

• Multiscale structure of operator
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Solving Homogeneous Problems

Heterogeneity is an added complication, but not fundamental

Still need techniques to handle
• Large problem sizes

• Large condition numbers

• Multiscale structure of operator

These features are present even in homogeneous problems

• Consider solution strategy for homogeneous models
I Geometric/Algebraic multigrid

• Look for where heterogeneity plays a role
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Stationary Iterative Methods

• Want to improve approximation, x (0), to x = A−1b

• Residual, r (0), is a measure of the error

r (0) = b − Ax (0) = Ax − Ax (0) = A(x − x (0))

• Choose B−1 ≈ A−1

• Take x (1) = x (0) + B−1r (0)

Error propagation form: e(1) = (I − B−1A)e(0)
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Stationary Iterative Methods

• Want to improve approximation, x (0), to x = A−1b

• Residual, r (0), is a measure of the error

r (0) = b − Ax (0) = Ax − Ax (0) = A(x − x (0))

• Choose B−1 ≈ A−1

• Take x (1) = x (0) + B−1r (0)

Error propagation form: e(1) = (I − B−1A)e(0)

e(2) = (I − B−1A)2e(0)

...
e(n) = (I − B−1A)ne(0)
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Convergence of Stationary Iterations

Convergence depends on spectrum of I − B−1A
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Weighted Jacobi Iteration: e(n) = (I − 4
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D−1A)ne(0)
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Convergence of Stationary Iterations

Convergence depends on spectrum of I − B−1A
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Gauss-Seidel Iteration: e(n) = (I − L−1A)ne(0)
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Failing in a Structured Way

Small B−1A-Rayleigh quotients cause trouble

λmax(I − B−1A) = 1−min
y

yTAy

yTBy

For simple B , equivalent to small A-Rayleigh quotients

yTAy

yTBy
=

(
yTAy

yTy

) (
yTy

yTBy

)
Can we use this to our advantage?
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Smoothing Property

Random initial error
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Smoothing Property

Error after 1 weighted Jacobi iteration
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Smoothing Property

Error after 2 weighted Jacobi iterations
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Smoothing Property

Error after 3 weighted Jacobi iterations
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Smoothing Property

Error after 4 weighted Jacobi iterations
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Smoothing Property

Error after 5 weighted Jacobi iterations
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Smoothing Property

Error after 6 weighted Jacobi iterations
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Smoothing Property

Error after 7 weighted Jacobi iterations
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Smoothing Property

Error after 8 weighted Jacobi iterations
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Smoothing Property

Error after 9 weighted Jacobi iterations

Adaptive multigrid methods for heterogeneous problems- p.8



Smoothing Property

Error after 10 weighted Jacobi iterations
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Complementarity

• Error after a few weighted Jacobi iterations has structure

• Instead of throwing out the method, look to complement
its failings

How can we best correct error modes that are slow to be
reduced by relaxation?

• Slow-to-converge errors are smooth

• Smooth vectors can be easily represented using fewer
degrees of freedom
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Coarse-Grid Correction

• Smooth vectors can be accurately represented using fewer
degrees of freedom

• Idea: transfer job of resolving smooth components to a
coarser grid version of the problem

• Need:
I Complementary process for resolving smooth

components of the error on the coarse grid
I Way to combine the results of the two processes
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Variational Coarsening

• Correct the approximation after relaxation, x (1), from an
auxilliary (coarse-grid) problem

• Need interpolation map, P , from coarse grid to fine grid

• Corrected approximation will be x (2) = x (1) + Pxc

What is the best xc for correction?

Adaptive multigrid methods for heterogeneous problems- p.11



A-norm and A-inner product

• Asking for the best solution implies a metric

• Symmetric and positive-definite matrix, A, defines an
inner product and a norm:

〈x , y〉A = yTAx and ‖x‖2A = xTAx

• Best then means closest to the exact solution in norm

y ? = argmin
y
‖x − y‖A
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Variational Coarsening

• Want to correct the approximation after relaxation, x (1),
from a coarse-grid version of of the problem

• Need interpolation map, P , from coarse grid to fine grid

• Corrected approximation will be x (2) = x (1) + Pxc

What is the best xc for correction?

• Best means closest to the exact solution in norm

xc = argmin
yc

‖x − (x (1) + Pyc)‖A

• Best xc satisfies (PTAP)xc = PTA(x − x (1)) = PT r (1)
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0) (0)r-1+D

• Use a smoothing process (such as Jacobi or Gauss-Seidel)
to eliminate oscillatory errors

• Remaining error satisfies Ae(1) = r (1) = b − Ax (1)
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction

Relax: x(1)= x(0) (0)r-1+D

• Transfer residual to coarse grid

• Compute PT r (1)
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0)+D (0)r-1

• Use coarse-grid correction to eliminate smooth errors

• Best correction, xc , in terms of A-norm satisfies

PTAPxc = PT r (1)
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D

• Transfer correction to fine grid

• Compute x (2) = x (1) + Pxc
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D
Relax

• Relax once again to remove oscillatory error introduced in
coarse-grid correction
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D
Relax

Direct solution of coarse-grid problem isn’t practical
Recursion!

Apply same methodology to solve coarse-grid problem
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Algebraic Picture

On any level, error reduced by

1. Relaxation

2. Coarse-grid correction

Coarse-grid correction treats errors in Range(P)

• Range(P) must include errors for which relaxation is slow

• Relaxation must be effective on Range(P)⊥

Domain(A) = Range(P)⊕ Range(P)⊥
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Assumptions on Interpolation

• Error after relaxation on Poisson’s equation is smooth
I Low-order geometric interpolation accurate

Classical geometric multigrid defines interpolation based on

• grid geometry

• operator properties

• assumptions on performance of relaxation

Heterogeneity strongly influences performance of relaxation
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“Smooth” Errors

• Linear interpolation can make O(1) errors for problems
with non-smooth coefficients

Slowest to converge error for d
dx

(
σ du

dx

)
, for

σ =

{
10−8 x ≤ 3

8

1 x > 3
8
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Slowest to converge error for d
dx

(
σ du

dx

)
, for

σ =

{
10−8 x ≤ 3

8

1 x > 3
8

and linear interpolant from coarse grid
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“Smooth” Errors

• Linear interpolation can make O(1) errors for problems
with non-smooth coefficients

• The abrupt change in character of slow-to-converge errors
is reflected in matrix entries

A =
1

h2



2× 10−8 −10−8

−10−8 2× 10−8 −10−8

−10−8 1 + 10−8 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2
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“Smooth” Errors

• Linear interpolation can make O(1) errors for problems
with non-smooth coefficients

• The abrupt change in character of slow-to-converge errors
is reflected in matrix entries

• Idea: Use the entries in the matrix operator to help define
interpolation
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Algebraic Multigrid Interpolation1

• Assume a partition into fine (F ) and coarse (C ) grid sets

• Define interpolation based only on entries in A

• Start with assumption that errors left after relaxation
have small residuals: for i ∈ F ,

(Ae)i ≈ 0

aiiei = −
∑
j∈F

aijej −
∑
k∈C

aikek

• Use assumptions about slow-to-converge error to collapse
connections to j ∈ F onto k ∈ C ∩ {k : aik 6= 0}

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stüben, in Multigrid Methods, 1987
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Calibrating Interpolation2

What if we don’t know what to assume about
slow-to-converge errors?

A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003
M. Brezina et al., SISC 2004, 25:1896-1920
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Calibrating Interpolation2

What if we don’t know what to assume about
slow-to-converge errors?

Run relaxation to find out!

• Run relaxation on Ax = 0 with a random initial guess

• This exposes the local character of slow-to-converge errors

• Use resulting vector as a prototype of errors to be
corrected by interpolation within algebraic multigrid

A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003
M. Brezina et al., SISC 2004, 25:1896-1920
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Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

• Given matrix A, Relaxation operation B−1r

• Iterate on homogeneous problem, Ax = 0, with a random
initial guess

• Create AMG-style interpolation such that prototype of
slow-to-converge error is in its range

• Create coarse-grid problem and recurse
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Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

• Given matrix A, Relaxation operation B−1r

• Iterate on homogeneous problem, Ax = 0, with a random
initial guess

• Create AMG-style interpolation such that prototype of
slow-to-converge error is in its range

• Create coarse-grid problem and recurse

Relaxation can be anything,
even the multigrid method itself!

• Allows for iterative improvement of a poorly performing
multigrid cycle
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Controlling Adaptation

• Two possible sources of slow adaptive MG convergence
I Prototype is a bad representative error
I Prototype is good, but there is distinct slow-to-converge

error

• Want a measure to distinguish cause of bad performance

Use estimates of ‖I − B−1A‖ to measure both performance
and quality of prototype sets

• Estimate λmin(B
−1A) using Rayleigh Quotients
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Algorithm Overview

• while ‖I − B−1
MGA‖est is large

I if ‖I − B−1
rel A‖est is increasing

I iterate on Ax = 0 with “relaxation”, x ← (I − B−1
rel A)x

I recalibrate interpolation based on new x
I recompute coarse-grid operator
I restrict x to coarse grid and cycle there
I interpolate further improved x after coarse-grid cycle

I else
I Replace “relaxation” with multigrid cycle: Brel ← BMG
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Testing Adaptation

• 2-D Finite Element Shifted Laplacian, Dirichlet BCs,
512× 512 grid

−∆u − 2π2(1− 2−15)u = 0

• λmin = 6.64× 10−4, random x (0)

Iteration ‖I − B−1
rel A‖est ‖I − B−1

MGA‖est
1 0.87 0.9999998
2 0.996 0.999985
3 0.99988 0.9996
4 0.999997 0.986
5 0.99999993 0.622
6 0.999999997 0.078
7 0.999999998 0.071
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Flow in Porous Media

• Model pressure, p, of single-phase steady-state saturated
flow in media with conductivity, K ,

−∇ · K∇p = f

• Problem 1:

K (x , y) =

{
10−8 if(x , y) ∈ [1

3
, 2

3
]2

1 otherwise

• Problem 2:

K (x , y) =

{
10−8 on 20% of elements, chosen randomly
1 otherwise
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Numerical Results: Porous Media3

2D square, fixed coarsening, 1010 residual reduction
Classical AMG Adaptive AMG

h ρMG Itns CPU (s) ρMG Itns CPU (s)
1

256
0.130 9 0.9 0.081 8 0.9

1 1
512

0.136 9 3.4 0.110 8 3.6
1

1024
0.141 9 13.2 0.103 8 14.6

1
256

0.233 11 1.0 0.243 11 1.1

2 1
512

0.290 13 4.4 0.288 13 4.8
1

1024
0.375 14 17.6 0.376 16 22.1

M. Brezina et al., SISC 2006, 27:1261-1286
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Relationship to Modelling

As interpolation is adapted, better resolution of physical
problem appears on the coarse scales

Tiling of periodic inclusion of K = 103 (black), K = 1 in
background
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Relationship to Modelling

As interpolation is adapted, better resolution of physical
problem appears on the coarse scales

Interpolant of δ( 1
2
, 1
2
) after 1 cycle, ρMG = 0.973
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Relationship to Modelling

As interpolation is adapted, better resolution of physical
problem appears on the coarse scales

Interpolant of δ( 1
2
, 1
2
) after 2 cycles, ρMG = 0.851
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Relationship to Modelling

As interpolation is adapted, better resolution of physical
problem appears on the coarse scales

Interpolant of δ( 1
2
, 1
2
) after 3 cycles, ρMG = 0.375
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Relationship to Modelling

As interpolation is adapted, better resolution of physical
problem appears on the coarse scales

Interpolant of δ( 1
2
, 1
2
) after 4 cycles, ρMG = 0.100
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Linear Elasticity

• Model displacement, u, of an elastic body under external
forces

−µ∆u − (λ + µ)∇∇ · u = f

• µ, λ are Lamé coefficients, defined as

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)

• Fix Poisson ratio, ν = 0.32 (steel)

• Let Young modulus, E , vary between 1 (nylon/polypro)
and 10σ (100 = titanium, 1000 = diamond)

• Know properties of slow-to-converge errors for small σ
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Numerical Results: Linear Elasticity4

3D cube, 201,720 DOFs, exponential distribution of E
Standard SA Adaptive SA

σ ρMG Itns CPU (s) ρMG Itns CPU (s)
2 0.115 9 26.0 0.214 12 267.7
3 0.247 14 35.7 0.310 16 275.6
4 0.395 20 50.0 0.404 21 289.4
5 0.556 32 73.6 0.497 27 381.2

M. Brezina et al., SISC 2004, 25:1896-1920
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Lattice Quantum Chromodynamics

• Modelling interactions between fermions on a lattice

• Goal: Solve H(u, ρ)f = b, for multiple source vectors, b,
at each step of a Monte Carlo simulation

• Difficulty: u is a complex unitary field defined on lattice
edges, phases chosen randomly based on parameter, β

• H is Hermitian, but indefinite, so solve normal equations

• As ρ approaches a critical value, H∗H becomes singular
(for any β)

• Structure of low-energy modes strongly depends on u
I When β →∞, u → 1, H∗H looks like a second-order

discrete differential operator
I For each state, new characterization of low-energy modes
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Numerical Results: Lattice QCD5

128× 128 periodic lattice
average residual reduction per iteration

Diagonal-PCG AdaptiveMG-PCG
ρ− ρcr 0.3 0.1 0.05 0.01 0.3 0.1 0.05 0.01

β = 2 0.85 0.94 0.96 0.99 0.31 0.31 0.31 0.33
β = 3 0.86 0.93 0.97 0.98 0.31 0.40 0.42 0.42
β = 5 0.83 0.92 0.96 0.99 0.28 0.29 0.31 0.31

Adaptive MG setup time: 13.7 seconds
Adaptive MG-PCG solve time: 0.8 seconds
Diagonal-PCG solve time: 4.7 seconds

J. Brannick et al., to appear in Proc. DD16, 2006
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Summary

• Heterogeneity adds new complication to linear solvers

• Algebraic picture of multigrid gives insight

• Adaptive framework replaces assumptions on relaxation

• Adaptive cycling allows iterative improvement of solver

• Added expense can be recovered for some applications

Future Directions

• Coupled systems (e.g., fluid-elastic)

• New application areas

• Hybrid smoothers
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