Adaptive multigrid methods for heterogeneous problems

Scott MacLachlan

Department of Computer Science and Engineering, University of Minnesota

maclach@cs.umn.edu

June 21,2006

Target Applications

- Fluid flow in porous media
- Highly heterogeneous media
- Interested in global properties of the solution
- Coupled fluid-elastic systems
- Multiple material regimes
- Different models require different treatment
- Lattice quantum chromodynamics
- Highly heterogeneous operator
- Randomized heterogeneity within Monte Carlo process

Modelling Heterogeneity

Two important considerations:

1. Capturing relevant features of continuum model
2. Solver efficiency

We'll assume Step 1 has been taken care of
Focus on efficient solvers for heterogeneous discrete models

- Large problem sizes
- Large condition numbers
- Multiscale structure of operator

Solving Homogeneous Problems

Heterogeneity is an added complication, but not fundamental
Still need techniques to handle

- Large problem sizes
- Large condition numbers
- Multiscale structure of operator

Solving Homogeneous Problems

Heterogeneity is an added complication, but not fundamental
Still need techniques to handle

- Large problem sizes
- Large condition numbers
- Multiscale structure of operator

These features are present even in homogeneous problems

- Consider solution strategy for homogeneous models
- Geometric/Algebraic multigrid
- Look for where heterogeneity plays a role

Stationary Iterative Methods

- Want to improve approximation, $x^{(0)}$, to $x=A^{-1} b$
- Residual, $r^{(0)}$, is a measure of the error

$$
r^{(0)}=b-A x^{(0)}=A x-A x^{(0)}=A\left(x-x^{(0)}\right)
$$

- Choose $B^{-1} \approx A^{-1}$
- Take $x^{(1)}=x^{(0)}+B^{-1} r^{(0)}$

Error propagation form: $e^{(1)}=\left(I-B^{-1} A\right) e^{(0)}$

Stationary Iterative Methods

- Want to improve approximation, $x^{(0)}$, to $x=A^{-1} b$
- Residual, $r^{(0)}$, is a measure of the error

$$
r^{(0)}=b-A x^{(0)}=A x-A x^{(0)}=A\left(x-x^{(0)}\right)
$$

- Choose $B^{-1} \approx A^{-1}$
- Take $x^{(1)}=x^{(0)}+B^{-1} r^{(0)}$

Error propagation form: $e^{(1)}=\left(I-B^{-1} A\right) e^{(0)}$

$$
e^{(2)}=\left(I-B^{-1} A\right) e^{(1)}
$$

Stationary Iterative Methods

- Want to improve approximation, $x^{(0)}$, to $x=A^{-1} b$
- Residual, $r^{(0)}$, is a measure of the error

$$
r^{(0)}=b-A x^{(0)}=A x-A x^{(0)}=A\left(x-x^{(0)}\right)
$$

- Choose $B^{-1} \approx A^{-1}$
- Take $x^{(1)}=x^{(0)}+B^{-1} r^{(0)}$

Error propagation form: $e^{(1)}=\left(I-B^{-1} A\right) e^{(0)}$

$$
e^{(2)}=\left(I-B^{-1} A\right)^{2} e^{(0)}
$$

Stationary Iterative Methods

- Want to improve approximation, $x^{(0)}$, to $x=A^{-1} b$
- Residual, $r^{(0)}$, is a measure of the error

$$
r^{(0)}=b-A x^{(0)}=A x-A x^{(0)}=A\left(x-x^{(0)}\right)
$$

- Choose $B^{-1} \approx A^{-1}$
- Take $x^{(1)}=x^{(0)}+B^{-1} r^{(0)}$

Error propagation form: $e^{(1)}=\left(I-B^{-1} A\right) e^{(0)}$

$$
e^{(2)}=\left(I-B^{-1} A\right)^{2} e^{(0)}
$$

$$
e^{(n)}=\left(I-B^{-1} A\right)^{n} e^{(0)}
$$

Convergence of Stationary Iterations

Convergence depends on spectrum of $I-B^{-1} A$

Weighted Jacobi Iteration: $e^{(n)}=\left(I-\frac{4}{3} D^{-1} A\right)^{n} e^{(0)}$

Convergence of Stationary Iterations

Convergence depends on spectrum of $I-B^{-1} A$

Gauss-Seidel Iteration: $e^{(n)}=\left(I-L^{-1} A\right)^{n} e^{(0)}$

Failing in a Structured Way

Small $B^{-1} A$-Rayleigh quotients cause trouble

$$
\lambda_{\max }\left(I-B^{-1} A\right)=1-\min _{y} \frac{y^{\top} A y}{y^{\top} B y}
$$

For simple B, equivalent to small A-Rayleigh quotients

$$
\frac{y^{\top} A y}{y^{\top} B y}=\left(\frac{y^{\top} A y}{y^{\top} y}\right)\left(\frac{y^{\top} y}{y^{\top} B y}\right)
$$

Can we use this to our advantage?

Smoothing Property

Smoothing Property

Error after 1 weighted Jacobi iteration

Smoothing Property

Error after 2 weighted Jacobi iterations

Smoothing Property

Error after 3 weighted Jacobi iterations

Smoothing Property

Error after 4 weighted Jacobi iterations

Smoothing Property

Error after 5 weighted Jacobi iterations

Smoothing Property

Error after 6 weighted Jacobi iterations

Smoothing Property

Error after 7 weighted Jacobi iterations

Smoothing Property

Error after 8 weighted Jacobi iterations

Smoothing Property

Error after 9 weighted Jacobi iterations

Smoothing Property

Error after 10 weighted Jacobi iterations

Complementarity

- Error after a few weighted Jacobi iterations has structure
- Instead of throwing out the method, look to complement its failings

How can we best correct error modes that are slow to be reduced by relaxation?

Complementarity

- Error after a few weighted Jacobi iterations has structure
- Instead of throwing out the method, look to complement its failings

How can we best correct error modes that are slow to be reduced by relaxation?

- Slow-to-converge errors are smooth
- Smooth vectors can be easily represented using fewer degrees of freedom

Coarse-Grid Correction

- Smooth vectors can be accurately represented using fewer degrees of freedom
- Idea: transfer job of resolving smooth components to a coarser grid version of the problem
- Need:
- Complementary process for resolving smooth components of the error on the coarse grid
- Way to combine the results of the two processes

Variational Coarsening

- Correct the approximation after relaxation, $x^{(1)}$, from an auxilliary (coarse-grid) problem
- Need interpolation map, P, from coarse grid to fine grid
- Corrected approximation will be $x^{(2)}=x^{(1)}+P x_{c}$

What is the best x_{c} for correction?

A-norm and A-inner product

- Asking for the best solution implies a metric
- Symmetric and positive-definite matrix, A, defines an inner product and a norm:

$$
\langle x, y\rangle_{A}=y^{\top} A x \quad \text { and } \quad\|x\|_{A}^{2}=x^{T} A x
$$

- Best then means closest to the exact solution in norm

$$
y^{\star}=\underset{y}{\operatorname{argmin}}\|x-y\|_{A}
$$

Variational Coarsening

- Want to correct the approximation after relaxation, $x^{(1)}$, from a coarse-grid version of of the problem
- Need interpolation map, P, from coarse grid to fine grid
- Corrected approximation will be $x^{(2)}=x^{(1)}+P x_{c}$

What is the best x_{c} for correction?

- Best means closest to the exact solution in norm

$$
x_{c}=\underset{\sim}{\operatorname{argmin}}\left\|x-\left(x^{(1)}+P y_{c}\right)\right\|_{A}
$$

- Best x_{c} satisfies $\left(P^{T} A P\right) x_{c}=P^{T} A\left(x-x^{(1)}\right)=P^{T} r^{(1)}$

Multigrid

Multigrid Components Relax: $x^{(1)}=.^{(0)}+D^{-1} r^{(0)}$
 - Relaxation

- Use a smoothing process (such as Jacobi or Gauss-Seidel) to eliminate oscillatory errors
- Remaining error satisfies $A e^{(1)}=r^{(1)}=b-A x^{(1)}$

Multigrid

Multigrid Components

- Relaxation
- Restriction

- Transfer residual to coarse grid
- Compute $P^{T} r^{(1)}$

Multigrid

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Use coarse-grid correction to eliminate smooth errors
- Best correction, x_{c}, in terms of A-norm satisfies

$$
P^{T} A P x_{c}=P^{T} r^{(1)}
$$

Multigrid

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation

- Transfer correction to fine grid
- Compute $x^{(2)}=x^{(1)}+P x_{c}$

Multigrid

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

- Relax once again to remove oscillatory error introduced in coarse-grid correction

Multigrid

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Direct solution of coarse-grid problem isn't practical Recursion!
Apply same methodology to solve coarse-grid problem

Algebraic Picture

On any level, error reduced by

1. Relaxation
2. Coarse-grid correction

Coarse-grid correction treats errors in Range (P)

- Range (P) must include errors for which relaxation is slow
- Relaxation must be effective on Range $(P)^{\perp}$

$$
\operatorname{Domain}(A)=\operatorname{Range}(P) \oplus \operatorname{Range}(P)^{\perp}
$$

Assumptions on Interpolation

- Error after relaxation on Poisson's equation is smooth
- Low-order geometric interpolation accurate

Classical geometric multigrid defines interpolation based on

- grid geometry
- operator properties
- assumptions on performance of relaxation

Heterogeneity strongly influences performance of relaxation

"Smooth" Errors

- Linear interpolation can make $O(1)$ errors for problems with non-smooth coefficients

Slowest to converge error for $\frac{d}{d x}\left(\sigma \frac{d u}{d x}\right)$, for

$$
\sigma= \begin{cases}10^{-8} & x \leq \frac{3}{8} \\ 1 & x>\frac{3}{8}\end{cases}
$$

"Smooth" Errors

- Linear interpolation can make $\mathrm{O}(1)$ errors for problems with non-smooth coefficients

Slowest to converge error for $\frac{d}{d x}\left(\sigma \frac{d u}{d x}\right)$, for

$$
\sigma= \begin{cases}10^{-8} & x \leq \frac{3}{8} \\ 1 & x>\frac{3}{8}\end{cases}
$$

and linear interpolant from coarse grid

"Smooth" Errors

- Linear interpolation can make $\mathrm{O}(1)$ errors for problems with non-smooth coefficients
- The abrupt change in character of slow-to-converge errors is reflected in matrix entries

$$
A=\frac{1}{h^{2}}\left[\begin{array}{ccccccc}
2 \times 10^{-8} & -10^{-8} & & & & & \\
-10^{-8} & 2 \times 10^{-8} & -10^{-8} & & & & \\
& -10^{-8} & 1+10^{-8} & -1 & & & \\
& & -1 & 2 & -1 & & \\
& & & -1 & 2 & -1 & \\
& & & & -1 & 2 & -1 \\
& & & & & -1 & 2
\end{array}\right]
$$

"Smooth" Errors

- Linear interpolation can make $\mathrm{O}(1)$ errors for problems with non-smooth coefficients
- The abrupt change in character of slow-to-converge errors is reflected in matrix entries
- Idea: Use the entries in the matrix operator to help define interpolation

Algebraic Multigrid Interpolation

- Assume a partition into fine (F) and coarse (C) grid sets
- Define interpolation based only on entries in A
- Start with assumption that errors left after relaxation have small residuals: for $i \in F$,

$$
\begin{aligned}
(A e)_{i} & \approx 0 \\
a_{i i} e_{i} & =-\sum_{j \in F} a_{i j} e_{j}-\sum_{k \in C} a_{i k} e_{k}
\end{aligned}
$$

- Use assumptions about slow-to-converge error to collapse connections to $j \in F$ onto $k \in C \cap\left\{k: a_{i k} \neq 0\right\}$

[^0]
Calibrating Interpolation

What if we don't know what to assume about slow-to-converge errors?

A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003 M. Brezina et al., SISC 2004, 25:1896-1920

Calibrating Interpolation

What if we don't know what to assume about slow-to-converge errors?
 Run relaxation to find out!

- Run relaxation on $A x=0$ with a random initial guess
- This exposes the local character of slow-to-converge errors
- Use resulting vector as a prototype of errors to be corrected by interpolation within algebraic multigrid

[^1]
Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1} r$
- Iterate on homogeneous problem, $A x=0$, with a random initial guess
- Create AMG-style interpolation such that prototype of slow-to-converge error is in its range
- Create coarse-grid problem and recurse

Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1} r$
- Iterate on homogeneous problem, $A x=0$, with a random initial guess
- Create AMG-style interpolation such that prototype of slow-to-converge error is in its range
- Create coarse-grid problem and recurse

Relaxation can be anything

Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1} r$
- Iterate on homogeneous problem, $A x=0$, with a random initial guess
- Create AMG-style interpolation such that prototype of slow-to-converge error is in its range
- Create coarse-grid problem and recurse

Relaxation can be anything, even the multigrid method itself!

- Allows for iterative improvement of a poorly performing multigrid cycle

Controlling Adaptation

- Two possible sources of slow adaptive MG convergence
- Prototype is a bad representative error
- Prototype is good, but there is distinct slow-to-converge error
- Want a measure to distinguish cause of bad performance

Use estimates of $\left\|I-B^{-1} A\right\|$ to measure both performance and quality of prototype sets

- Estimate $\lambda_{\min }\left(B^{-1} A\right)$ using Rayleigh Quotients

Algorithm Overview

- while $\left\|I-B_{M G}^{-1} A\right\|_{\text {est }}$ is large
- if $\left\|I-B_{\text {rel }}^{-1} A\right\|_{\text {est }}$ is increasing
- iterate on $A x=0$ with "relaxation", $x \leftarrow\left(I-B_{\text {rel }}^{-1} A\right) x$
- recalibrate interpolation based on new x
- recompute coarse-grid operator
- restrict x to coarse grid and cycle there
- interpolate further improved x after coarse-grid cycle
- else
- Replace "relaxation" with multigrid cycle: $B_{\text {rel }} \leftarrow B_{\mathrm{MG}}$

Testing Adaptation

- 2-D Finite Element Shifted Laplacian, Dirichlet BCs, 512×512 grid

$$
-\Delta u-2 \pi^{2}\left(1-2^{-15}\right) u=0
$$

- $\lambda_{\text {min }}=6.64 \times 10^{-4}$, random $x^{(0)}$

Iteration	$\left\\|I-B_{\text {rel }}^{-1} A\right\\|_{\text {est }}$	$\left\\|I-B_{\text {MG }}^{-1} A\right\\|_{\text {est }}$
1	0.87	0.9999998
2	0.996	0.999985
3	0.99988	0.9996
4	0.999997	0.986
5	0.99999993	0.622
6	0.999999997	0.078
7	0.999999998	0.071

Flow in Porous Media

- Model pressure, p, of single-phase steady-state saturated flow in media with conductivity, K,

$$
-\nabla \cdot k \nabla p=f
$$

- Problem 1:

$$
K(x, y)= \begin{cases}10^{-8} & \text { if }(x, y) \in\left[\frac{1}{3}, \frac{2}{3}\right]^{2} \\ 1 & \text { otherwise }\end{cases}
$$

- Problem 2:

$$
K(x, y)= \begin{cases}10^{-8} & \text { on } 20 \% \text { of elements, chosen randomly } \\ 1 & \text { otherwise }\end{cases}
$$

Numerical Results: Porous Media

2D square, fixed coarsening, 10^{10} residual reduction

			Classical AMG			Adaptive AMG		
	h	ρ_{MG}	Itns	CPU (s)	$\rho_{\text {MG }}$	Itns	CPU (s)	
1	$\frac{1}{256}$	0.130	9	0.9	0.081	8	0.9	
	$\frac{1}{512}$	0.136	9	3.4	0.110	8	3.6	
	$\frac{1}{1024}$	0.141	9	13.2	0.103	8	14.6	
	$\frac{1}{256}$	0.233	11	1.0	0.243	11	1.1	
	$\frac{1}{512}$	0.290	13	4.4	0.288	13	4.8	
	$\frac{1}{1024}$	0.375	14	17.6	0.376	16	22.1	

Relationship to Modelling

As interpolation is adapted, better resolution of physical problem appears on the coarse scales

Tiling of periodic inclusion of $K=10^{3}$ (black), $K=1$ in background

Relationship to Modelling

As interpolation is adapted, better resolution of physical problem appears on the coarse scales

Tiling of periodic inclusion of $K=10^{3}$ (black), $K=1$ in background

Relationship to Modelling

As interpolation is adapted, better resolution of physical problem appears on the coarse scales

Interpolant of $\delta_{\left(\frac{1}{2}, \frac{1}{2}\right)}$ after 1 cycle, $\quad \rho_{\mathrm{MG}}=0.973$

Relationship to Modelling

As interpolation is adapted, better resolution of physical problem appears on the coarse scales

Interpolant of $\delta_{\left(\frac{1}{2}, \frac{1}{2}\right)}$ after 2 cycles, $\rho_{\mathrm{MG}}=0.851$

Relationship to Modelling

As interpolation is adapted, better resolution of physical problem appears on the coarse scales

Interpolant of $\delta_{\left(\frac{1}{2}, \frac{1}{2}\right)}$ after 3 cycles, $\rho_{\mathrm{MG}}=0.375$

Relationship to Modelling

As interpolation is adapted, better resolution of physical problem appears on the coarse scales

Interpolant of $\delta_{\left(\frac{1}{2}, \frac{1}{2}\right)}$ after 4 cycles, $\rho_{\mathrm{MG}}=0.100$

Linear Elasticity

- Model displacement, u, of an elastic body under external forces

$$
-\mu \Delta u-(\lambda+\mu) \nabla \nabla \cdot u=f
$$

- μ, λ are Lamé coefficients, defined as

$$
\lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)} \quad \text { and } \quad \mu=\frac{E}{2(1+\nu)}
$$

- Fix Poisson ratio, $\nu=0.32$ (steel)
- Let Young modulus, E, vary between 1 (nylon/polypro) and $10^{\sigma}(100=$ titanium, $1000=$ diamond $)$
- Know properties of slow-to-converge errors for small σ

Numerical Results: Linear Elasticity

3D cube, 201,720 DOFs, exponential distribution of E

	Standard SA			Adaptive SA		
σ	ρ_{MG}	Itns	CPU (s)	ρ_{MG}	Itns	CPU (s)
2	0.115	9	26.0	0.214	12	267.7
3	0.247	14	35.7	0.310	16	275.6
4	0.395	20	50.0	0.404	21	289.4
5	0.556	32	73.6	0.497	27	381.2

Lattice Quantum Chromodynamics

- Modelling interactions between fermions on a lattice
- Goal: Solve $H(u, \rho) f=b$, for multiple source vectors, b, at each step of a Monte Carlo simulation
- Difficulty: u is a complex unitary field defined on lattice edges, phases chosen randomly based on parameter, β
- H is Hermitian, but indefinite, so solve normal equations
- As ρ approaches a critical value, $H^{*} H$ becomes singular (for any β)
- Structure of low-energy modes strongly depends on u
- When $\beta \rightarrow \infty, u \rightarrow 1, H^{*} H$ looks like a second-order discrete differential operator
- For each state, new characterization of low-energy modes

Numerical Results: Lattice QCD

128×128 periodic lattice average residual reduction per iteration

	Diagonal-PCG				AdaptiveMG-PCG			
$\rho-\rho_{\text {cr }}$	0.3	0.1	0.05	0.01	0.3	0.1	0.05	0.01
$\beta=2$	0.85	0.94	0.96	0.99	0.31	0.31	0.31	0.33
$\beta=3$	0.86	0.93	0.97	0.98	0.31	0.40	0.42	0.42
$\beta=5$	0.83	0.92	0.96	0.99	0.28	0.29	0.31	0.31

Adaptive MG setup time: Adaptive MG-PCG solve time: Diagonal-PCG solve time:
13.7 seconds
0.8 seconds
4.7 seconds
J. Brannick et al., to appear in Proc. DD16, 2006

Summary

- Heterogeneity adds new complication to linear solvers
- Algebraic picture of multigrid gives insight
- Adaptive framework replaces assumptions on relaxation
- Adaptive cycling allows iterative improvement of solver
- Added expense can be recovered for some applications

Future Directions

- Coupled systems (e.g., fluid-elastic)
- New application areas
- Hybrid smoothers

Support and Collaboration

- Research supported by the DOE SciDAC TOPS program, the Center for Applied Scientific Computing at Lawrence Livermore National Lab, and Los Alamos National Laboratory.
- Adaptive AMG/SA development in collaboration with Steve McCormick, Tom Manteuffel, John Ruge, Marian Brezina at CU-Boulder, and Rob Falgout from CASC-LLNL.
- Basis functions for porous media in collaboration with David Mounton from LANL
- QCD problem in collaboration with James Brannick, Marian Brezina, Tom Manteuffel, Steve McCormick, John Ruge at CU-Boulder, David Keyes from Columbia, Oren Livne from Univ. Utah, Irene Livshits from Ball State U, and L. Zikatanov from Penn. State U

[^0]: A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984 J. Ruge and K. Stüben, in Multigrid Methods, 1987

[^1]: A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003 M. Brezina et al., SISC 2004, 25:1896-1920

