Creating Coarse-Scale Models with Robust Multigrid Methods

Scott MacLachlan

maclachl@colorado.edu

Department of Applied Mathematics, University of Colorado at Boulder

Creating Coarse-Scale Models with Robust Multigrid Methods - p.1

Support and Collaboration

- This work has been supported by
 - DOE SciDAC TOPS program
 - Center for Applied Scientific Computing at Lawrence Livermore National Lab
 - Los Alamos National Laboratory
 - Sandia National Laboratory
- This work has been performed in collaboration with
 - Steve McCormick, Tom Manteuffel, John Ruge, Marian Brezina in Applied Math at CU-Boulder
 - J. David Moulton in Mathematical Modeling and Analysis at LANL
 - Rob Falgout in CASC at LLNL.

Multiscale Simulation

Efficient simulation of multiscale phenomena requires multiscale approaches

- Multigrid is a rich multiscale technology for solving a large class of linear (and nonlinear) systems
- New developments in *fundamental multigrid theory* are expanding the range of applicability
- Useful multiscale information is encoded in the coarse-scale operators of a robust variational multigrid method

Algorithmic goal: maximize accuracy per computational cost

 \Rightarrow Previously intractable simulations become feasible

Classical Methods do not Suffice

Stationary Iterative Methods

The Jacobi and Gauss-Seidel iterations are not scalable solvers for elliptic operators

Multigrid Methods achieve optimality through complementarity

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

 $\begin{array}{c} \text{Relax} \bullet \\ A^{(1)}x^{(1)} = b^{(1)} \end{array}$

- Use a smoothing process (such as Gauss-Seidel) to eliminate oscillatory errors
- Remaining error satisfies $Ae = r \equiv b Ax$

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction

Transfer residual to coarse grid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Use coarse-grid correction to eliminate smooth errors

To solve for error on coarse grid, use residual equation

 $A^{(2)}e^{(2)} = r^{(2)}$

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation

Transfer correction to fine grid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Relax once again to remove oscillatory error introduced in coarse-grid correction

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Obtain optimal efficiency through recursion

Variational Multigrid

• Multigrid with $R = P^T$ and $A_c = RAP$ is called a *variational formulation*

Terminology comes from minimization form of Ax = b:

$$F(v) = \frac{1}{2} \langle Av, v \rangle - \langle b, v \rangle$$
$$x = \arg\min_{v \in \mathcal{H}} F(v)$$

Given an approximation, v, to the fine-level solution, the optimal coarse-grid correction, Pw, solves

$$(P^T A P)w = P^T (b - Av)$$

Coarse-Scale Models

- Multigrid methods reduce error through relaxation and coarse-grid correction
- Error that is not efficiently reduced by relaxation is called *algebraically* smooth and must be reduced by coarse-grid correction
- Many relaxation schemes leave algebraically smooth error that is also low energy:

$$\mathbf{e}^T A \mathbf{e} \ll \|A\| \mathbf{e}^T \mathbf{e}$$

- Variational coarsening encodes multiscale information in the coarse-grid operators through scale-transfer (interpolation) operators
- Coarse-scale operators must reflect information about the *low-energy* modes of the fine-scale operator

Adaptive Algebraic Multigrid

If we don't know what algebraically smooth error looks like, can we still develop an effective multigrid method?

Adaptive Algebraic Multigrid

- If we don't know what algebraically smooth error looks like, can we still develop an effective multigrid method? Yes!
- Use relaxation on Ax = 0 to expose algebraic smoothness
- Fine-grid relaxation quickly exposes *local character* of algebraic smoothness
- Use this representation to determine interpolation
- Interpolation weights are chosen through a *local collapsing* of the operator done to fit the *prototypical* algebraically smooth error
- Apply these ideas recursively, using relaxation to expose appropriate components of the error on each level of the multigrid hierarchy

Test Problems

 $-\nabla \cdot \mathcal{K}(\mathbf{x}) \nabla p(\mathbf{x}) = 0 \text{ on } [0,1]^2$

Problem 1:

• $\mathcal{K}(\mathbf{x}) = 1$ (Laplace), Full Dirichlet BCs

Problem 2:

• $\mathcal{K}(\mathbf{x}) = 10^{-8}$ on 20% of elements chosen randomly,

 $\mathcal{K}(\mathbf{x}) = 1$ otherwise

Dirichlet BCs on left and right, Neumann on top and bottom

- Bilinear FE stiffness matrix diagonally scaled (scaled nodally by 10^{5r} , where r is chosen uniformly between 0 and 1)
- Report asympototic convergence factor of V(1,1) cycles
- Geometric choice of coarse grids

Convergence Factors

Asymptotic convergence factors of resulting V(1,1) cycles

	Problem 1		Problem 2	
h	Standard AMG	Adaptive AMG	Standard AMG	Adaptive AMG
1/64	0.991	0.069	0.996	0.187
1/128	0.997	0.078	0.996	0.212
1/256	0.996	0.077	0.996	0.235
1/512	0.996	0.078	0.996	0.292
1/1024	0.996	0.079	0.995	0.383

Multiscale View: Upscaling

- Multigrid incorporates useful fine-scale information in coarse-scale operators
- Solutions of coarse-scale models are relevant to features of the fine-scale
- In a variational setting, multiscale information is recursively encoded through the operator-dependence of interpolation
- Robust multigrid methods naturally create effective multiscale basis functions
- Can select relevant accuracy from operators in multigrid hierarchy

Interpretation of Multigrid CGOs

Fine-scale, finite-element discretization of porous-media problem:

$$A_{ij} = \mathbf{e}_j^T A \mathbf{e}_i = \int_{\Omega} \langle \mathcal{K}(\mathbf{x}) \nabla \phi_i, \nabla \phi_j \rangle d\Omega$$

Variational coarsening gives finite-element discretizations on coarse grids:

$$(A_c)_{ij} = (P^T A P)_{ij} = (P \hat{\mathbf{e}}_j)^T A (P \hat{\mathbf{e}}_i)$$
$$= \int_{\Omega} \left\langle \mathcal{K}(\mathbf{x}) \nabla \left(\sum_l p_{li} \phi_l \right), \nabla \left(\sum_k p_{kj} \phi_k \right) \right\rangle d\Omega$$
$$= \int_{\Omega} \left\langle \mathcal{K}(\mathbf{x}) \nabla \hat{\phi}_i, \nabla \hat{\phi}_j \right\rangle d\Omega$$

Coarse-grid basis functions are linear combinations of fine-grid basis functions (weighted by the interpolation operators)

Periodic permeability field, $\mathcal{K}(\mathbf{x})$, with jump of 10^3

Bilinear basis function on $4\times 4~{\rm grid}$

 8×8 grid multiscale basis function

 16×16 grid multiscale basis function

 32×32 grid multiscale basis function

 64×64 grid multiscale basis function

Geostatistical permeability field, $\mathcal{K}(\mathbf{x})$, with range of $[10^{-2}, 10^2]$ (Black pixels correspond to $\mathcal{K} = 10^{-2}$)

Bilinear basis function on 4×4 grid

 8×8 grid multiscale basis function

 16×16 grid multiscale basis function

 32×32 grid multiscale basis function

 64×64 grid multiscale basis function

Summary

- Variational multigrid approach allows coarse-scale models to be viewed through multiscale basis functions
- Adaptive multigrid process creates accurate coarse-scale models through careful exposure of algebraically smooth error
- Solutions to variational coarse-scale problems accurately predict fine-scale behavior
- Multigrid methods are still evolving