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Multiscale Simulation

Efficient simulation of multiscale phenomena requires multiscale approaches

Multigrid is a rich multiscale technology for solving a large class of linear

(and nonlinear) systems

New developments in fundamental multigrid theory are expanding the

range of applicability

Useful multiscale information is encoded in the coarse-scale operators of

a robust variational multigrid method

Algorithmic goal: maximize accuracy per computational cost

⇒ Previously intractable simulations become feasible
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Classical Methods do not Suffice
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Stationary Iterative Methods

The Jacobi and Gauss-Seidel iterations are not scalable solvers for

elliptic operators
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Fine-Scale View: Multigrid

Multigrid Methods achieve optimality through complementarity
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Fine-Scale View: Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)
Relax

Use a smoothing process (such as Gauss-Seidel) to eliminate oscillatory

errors

Remaining error satisfies Ae = r ≡ b−Ax
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Fine-Scale View: Multigrid

Multigrid Methods achieve optimality through complementarity
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Fine-Scale View: Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation
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Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction

Use coarse-grid correction to eliminate smooth errors

To solve for error on coarse grid, use residual equation

A(2)e(2) = r(2)
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Fine-Scale View: Multigrid

Multigrid Methods achieve optimality through complementarity
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Fine-Scale View: Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level
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Restriction Interpolation

Relax once again to remove oscillatory error introduced in coarse-grid

correction
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Fine-Scale View: Multigrid

Multigrid Methods achieve optimality through complementarity
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Variational Multigrid

Multigrid with R = P T and Ac = RAP is called a variational formulation

Terminology comes from minimization form of Ax = b:

F (v) =
1

2
〈Av, v〉 − 〈b, v〉

x = arg min
v∈H

F (v)

Given an approximation, v, to the fine-level solution, the optimal

coarse-grid correction, Pw, solves

(PTAP )w = PT (b−Av)
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Coarse-Scale Models

Multigrid methods reduce error through relaxation and coarse-grid

correction

Error that is not efficiently reduced by relaxation is called algebraically

smooth and must be reduced by coarse-grid correction

Many relaxation schemes leave algebraically smooth error that is also

low energy:

eTAe� ‖A‖eT e

Variational coarsening encodes multiscale information in the coarse-grid

operators through scale-transfer (interpolation) operators

Coarse-scale operators must reflect information about the low-energy

modes of the fine-scale operator
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Adaptive Algebraic Multigrid

If we don’t know what algebraically smooth error looks like, can we still

develop an effective multigrid method?

Yes!

Use relaxation on Ax = 0 to expose algebraic smoothness

Fine-grid relaxation quickly exposes local character of algebraic

smoothness

Use this representation to determine interpolation

Interpolation weights are chosen through a local collapsing of the

operator done to fit the prototypical algebraically smooth error

Apply these ideas recursively, using relaxation to expose appropriate

components of the error on each level of the multigrid hierarchy
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Test Problems

−∇ · K(x)∇p(x) = 0 on [0, 1]2

Problem 1:

K(x) = 1 (Laplace), Full Dirichlet BCs

Problem 2:

K(x) = 10−8 on 20% of elements chosen randomly,

K(x) = 1 otherwise

Dirichlet BCs on left and right, Neumann on top and bottom

Bilinear FE stiffness matrix diagonally scaled

(scaled nodally by 105r, where r is chosen uniformly between 0 and 1)

Report asympototic convergence factor of V(1,1) cycles

Geometric choice of coarse grids
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Convergence Factors

Asymptotic convergence factors of resulting V(1,1) cycles

Problem 1 Problem 2

h Standard AMG Adaptive AMG Standard AMG Adaptive AMG

1/64 0.991 0.069 0.996 0.187

1/128 0.997 0.078 0.996 0.212

1/256 0.996 0.077 0.996 0.235

1/512 0.996 0.078 0.996 0.292

1/1024 0.996 0.079 0.995 0.383
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Multiscale View: Upscaling

Multigrid incorporates useful fine-scale information in coarse-scale

operators

Solutions of coarse-scale models are relevant to features of the fine-scale

In a variational setting, multiscale information is recursively encoded

through the operator-dependence of interpolation

Robust multigrid methods naturally create effective multiscale basis

functions

Can select relevant accuracy from operators in multigrid hierarchy
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Interpretation of Multigrid CGOs

Fine-scale, finite-element discretization of porous-media problem:

Aij = eTj Aei =

Z

Ω

〈K(x)∇φi,∇φj〉dΩ

Variational coarsening gives finite-element discretizations on coarse

grids:

(Ac)ij = (PTAP )ij = (P êj)
TA(P êi)

=

Z

Ω

*
K(x)∇

 X

l

pliφl

!
,∇
 X

k

pkjφk

!+
dΩ

=

Z

Ω

〈K(x)∇φ̂i,∇φ̂j〉dΩ

Coarse-grid basis functions are linear combinations of fine-grid basis

functions (weighted by the interpolation operators)
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Sample Basis Functions

Periodic permeability field, K(x), with jump of 103
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Sample Basis Functions

Bilinear basis function on 4× 4 grid
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Sample Basis Functions

8× 8 grid multiscale basis function
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Sample Basis Functions

16× 16 grid multiscale basis function
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Sample Basis Functions

32× 32 grid multiscale basis function
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Sample Basis Functions

64× 64 grid multiscale basis function
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Sample Basis Functions

Geostatistical permeability field, K(x), with range of [10−2, 102]

(Black pixels correspond to K = 10−2)
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Sample Basis Functions

Bilinear basis function on 4× 4 grid
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Sample Basis Functions

8× 8 grid multiscale basis function
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Sample Basis Functions

16× 16 grid multiscale basis function
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Sample Basis Functions

32× 32 grid multiscale basis function
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Sample Basis Functions

64× 64 grid multiscale basis function
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Summary

Variational multigrid approach allows coarse-scale models to be viewed

through multiscale basis functions

Adaptive multigrid process creates accurate coarse-scale models through

careful exposure of algebraically smooth error

Solutions to variational coarse-scale problems accurately predict

fine-scale behavior

Multigrid methods are still evolving
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