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Target Applications

• Fluid flow in porous media
I Highly heterogeneous media
I Interested in global properties of the solution

• Coupled fluid-elastic systems
I Multiple material regimes
I Different models require very different treatment

• Lattice quantum chromodynamics
I Highly heterogeneous operator
I Randomized heterogeneity within Monte Carlo process
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Target Discrete Models

• Finite difference/element models of elliptic systems

• Matrices are
I sparse
I symmetric
I positive definite

Solving Ax = b

• Sparsity with large bandwidth means that direct methods
are not effective for these problems
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Algorithmic Goals

Efficient and robust solver for heterogeneous models

Efficient: Optimal scalability, both algorithmic and parallel

• Cost of solve linearly proportional to number of unknowns

• Natural parallelism; most calculations should be data-local

Robust: Consistent performance with few parameters

• Predictable performance based on simple characteristics

• Not expert software; no magic parameters
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Efficiency First

Heterogeneity is an added complication, but not fundamental

Still need techniques to handle
• Large problem sizes

• Large condition numbers

• Multiscale structure of operator

Robustness without efficiency is EASY!
Gaussian Elimination

• Start with an efficient solver for homogeneous models
I Geometric multigrid

• Look for where robustness and heterogeneity play a role
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Stationary Iterative Methods

• Want to improve approximation, x (0), to x = A−1b

• Residual, r (0), is a measure of the error

r (0) = b − Ax (0) = Ax − Ax (0) = A(x − x (0))

• Choose M−1 ≈ A−1

• Take x (1) = x (0) + M−1r (0)

Error propagation form: e(1) = (I −M−1A)e(0)
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Stationary Iterative Methods

• Want to improve approximation, x (0), to x = A−1b

• Residual, r (0), is a measure of the error

r (0) = b − Ax (0) = Ax − Ax (0) = A(x − x (0))

• Choose M−1 ≈ A−1

• Take x (1) = x (0) + M−1r (0)

Error propagation form: e(1) = (I −M−1A)e(0)

e(2) = (I −M−1A)2e(0)

...
e(n) = (I −M−1A)ne(0)
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Convergence of Stationary Iterations

Convergence depends on spectrum of I −M−1A
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Convergence of Stationary Iterations

Convergence depends on spectrum of I −M−1A
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Gauss-Seidel Iteration: e(n) = (I − L−1A)ne(0)
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Smoothing Property

Random initial error
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Smoothing Property

Error after 1 weighted Jacobi iteration
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Smoothing Property

Error after 2 weighted Jacobi iterations
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Smoothing Property

Error after 3 weighted Jacobi iterations
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Smoothing Property

Error after 4 weighted Jacobi iterations
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Smoothing Property

Error after 5 weighted Jacobi iterations
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Smoothing Property

Error after 6 weighted Jacobi iterations
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Smoothing Property

Error after 7 weighted Jacobi iterations
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Smoothing Property

Error after 8 weighted Jacobi iterations
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Smoothing Property

Error after 9 weighted Jacobi iterations
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Smoothing Property

Error after 10 weighted Jacobi iterations
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Complementarity

• Error after a few weighted Jacobi iterations has structure

• Instead of throwing out the method, look to complement
its failings

How can we best correct error modes that are slow to be
reduced by relaxation?

• Slow-to-converge errors are smooth

• Smooth vectors can be easily represented using fewer
degrees of freedom
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Coarse Grids

• Sine series representation:

f (x) =
∞∑

k=1

ck sin(kπx)

• Discrete problems can only approximate certain modes
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Coarse Grids

• Sine series representation:

f (x) =
∞∑

k=1

ck sin(kπx)

• Discrete problems can only approximate certain modes

Coarse grids accurately represent low-frequency modes
Natural complement to relaxation
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Complementarity

Use two complementary processes to efficiently damp all errors

Relaxation: Damp high-frequency error by stationary
iteration

Coarse-grid correction: Eliminate low-frequency error by
relaxation on coarse grids

Key realization: Solve for coarse-grid representation of error

• At any stage, error is reflected in residual:

r (k) = b − Ax (k) = Ax − Ax (k) = A(x − x (k))

• Don’t transfer Ax = b to coarse grid, transfer Ae = r
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The Details

• Correct the approximation after relaxation, x (1), from an
auxiliary (coarse-grid) problem

• Need interpolation map, P , from coarse grid to fine grid

• Corrected approximation will be x (2) = x (1) + Pxc

• Optimal xc satisfies PTAPxc = PT r
I Optimal means ‖x − x (2)‖A is minimal

Multigrid choices:

• Coarse grid

• Interpolation operator, P

• Restriction, coarse-grid operator given by optimality

• Restriction, coarse-grid operator given by physics

• Restriction, coarse-grid operator constrained by
computation
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0) (0)r-1+D

• Use a smoothing process (such as Jacobi or Gauss-Seidel)
to eliminate oscillatory errors

• Remaining error satisfies Ae(1) = r (1) = b − Ax (1)
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction

Relax: x(1)= x(0) (0)r-1+D

• Transfer residual to coarse grid

• Compute PT r (1)
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0)+D (0)r-1

• Use coarse-grid correction to eliminate smooth errors

• Best correction, xc , in terms of A-norm satisfies

PTAPxc = PT r (1)
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D

• Transfer correction to fine grid

• Compute x (2) = x (1) + Pxc
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D
Relax

• Relax once again to remove oscillatory error introduced in
coarse-grid correction
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax: x(1)= x(0) (0)r-1+D
Relax

Direct solution of coarse-grid problem isn’t practical
Recursion!

Apply same methodology to solve coarse-grid problem
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Analysing Performance

For simple problems, Fourier analysis predicts performance

Analysis based on invariant subspaces
• Eigenvectors of simple relaxation are Fourier modes

• Aliased pairs make invariant subspaces of interpolation
and restriction

• Rediscretized CGO has same eigenvectors

Can directly compute convergence factor for two-level cycle
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Analysis and Heterogeneity

Fourier analysis only valid for operators with periodic character

Heterogeneity in A affects entire cycle

• Convergence properties of relaxation change

• Slowest-to-converge errors reflect heterogeneity

• Interpolation must adapt to fit these errors

• Coarse-grid operator must account for heterogeneity

Must ensure complementarity is not lost
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Types of Heterogeneity

Heterogeneity comes in several forms

Heterogeneity in the coefficients:
• multiphase flow, variations in material properties

• bubbles in water, oil-reservoir, aquifer modelling

Heterogeneity in the equations:

• coupled fluid-solid interactions, multiphysics

• blood flow in a vein, multi-species chemistry

Heterogeneity in the grid

• Local refinement, unstructured triangulation

• shock waves, irregular geometry

Aim for an algorithm that is robust to all of these
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Multigrid Without Grids1

The essence of multigrid has nothing to do with grids!

Complementarity is key:
• Fix choice of relaxation

• For any A, some errors are slow to converge

• These errors must be corrected some other way

Coarse-grid correction:

x ← x + PB−1
c Rr

e ← e − PB−1
c Rr

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stüben, in Multigrid Methods, 1987
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Variational Coarsening2

Coarse-grid correction,

I − PB−1
c RA,

can only correct errors in the range of P

Choosing R = PT and Bc = PTAP exactly eliminates errors
in this space.

Complementarity is key:

• Errors reduced by relaxation and coarse-grid correction

• Errors that relaxation reduces slowly must be in range(P)

R. Nicolaides, Math. Comp. 1977, 31:892-906
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Algebraically Smooth Error3

Slow to converge errors of relaxation replace smooth modes
within AMG

Design interpolation to accurately represent these modes
• Assume these errors give small residuals, Ae ≈ 0

• Expand residual equation:

aiiei = −
∑
j∈C

aijej −
∑
k /∈C

aikek

• Use assumption on character of these errors to eliminate
connections to k /∈ C

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stüben, in Multigrid Methods, 1987
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Graph-based coarsening4

Goal: Choose coarse-grid nodes to allow easy elimination of
fine-fine connections

• Filter to eliminate small matrix entries

• Create graph of filtered matrix

• Greedy algorithm to choose maximal independent subset

Maximal independent subset ensures

• every fine-fine connection is “close” to a coarse-grid point

• coarse grid is small, but not too small

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stüben, in Multigrid Methods, 1987
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Big Picture Convergence5

Convergence is a spectral property

Write error-propagation operator as a matrix:

(I −M−1A)(I − PB−1
c PTA)

Convergence factor is the spectral radius

ρMG = λmax

(
(I −M−1A)(I − PB−1

c PTA)
)

or ρMG =
∥∥(I −M−1A)(I − PB−1

c PTA)
∥∥

A

Expect: ρMG =
√

1− 1
k

for some k ≥ 1

Goal: Give an upper bound for k and, thus, ρMG

J. Ruge and K. Stüben, in Multigrid Methods, 1987
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Bounding ρMG
6

Abstract bounds on ρMG come from interaction of relaxation
and coarse-grid correction:

Define G = I −M−1A, T = I − P(PTAP)−1PTA,

Assume that ‖Ge‖2A ≤ ‖e‖2A − δ‖Te‖2A, then

ρMG ≤
√

1− δ

More commonly, we separate the assumptions:

Smoothing assumption: ‖Ge‖2A ≤ ‖e‖2A − α‖e‖2AD−1A

Approximation property: ‖Te‖2A ≤ β‖Te‖2AD−1A

Then ρMG ≤
√

1− α
β

J. Ruge and K. Stüben, in Multigrid Methods, 1987
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Smoothing Assumption7

Achieving bound on relaxation is “easy”:

Weighted Jacobi: For SPD A and γ0 ≥ ρ(D−1A), then if
0 < ω < 2

γ0
, α ≤ ω(2− ωγ0)

Gauss-Seidel: For SPD A, α ≤ 1
(1+γ−)(1+γ+)

, for

γ− =
∑
j<i

|aij |
aii

and γ+ =
∑
j>i

|aij |
aii

Kaczmarz: For any A, bound α as in Gauss-Seidel using
γ±(AAT )

A. Brandt, Appl. Math. Comput. 1986, 19:23-56
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Approximation Property8

Typically bound β indirectly:

β ≤ max
e 6=0

min
ec

‖e − Pec‖2D
‖e‖2A

This leads to the Brandt-McCormick principle:

For each eigenvector, v , of A, interpolation must represent v
with accuracy proportional to its eigenvalue

Challenge: How do we turn this into an algorithm?

• Partition grid

• Define interpolation coefficients

A. Brandt, Appl. Math. Comput. 1986, 19:23-56
S. McCormick and J. Ruge, SINUM 1985, 19:924-929
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Generalized Approximation Property9

Instead of considering

β ≤ max
e 6=0

min
ec

‖e − Pec‖2D
‖e‖2A

,

incorporate relaxation, I −M−1A, into bound:

K = max
e 6=0

min
ec

‖e − Pec‖2M(M+MT−A)−1MT

‖e‖2A

Then

ρMG ≤
(

1− 1

K

) 1
2

R. Falgout and P. Vassilevski, SIAM J. Numer. Anal. 2004, 42:1669-1693
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Bounding K 10

Let

• A =
[

Aff −Afc
−Acf Acc

]
• M be symmetric

• xTAx ≤ ωxTMx < 2xTMx

• ρf = ‖I −M−1
ff Aff ‖Aff

Then,

min
P

max
e 6=0

min
ec

‖e − Pec‖2M(M+MT−A)−1MT

‖e‖2A
≤ 1

(2− ω)(1− ρf )

For a given F/C partition, the best possible measure depends
on the equivalence between Mff and Aff

R. Falgout and P. Vassilevski, SIAM J. Numer. Anal. 2004, 42:1669-1693
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Compatible Relaxation11

“A general measure for the quality of the set of coarse
variables is the convergence rate of the compatible relaxation”

One approach:
• Run relaxation on tentative F -set

• Identify points where compatible relaxation is slow

• Choose subset of these points to add to C

This tells us about choosing C , but not about choosing P

A. Brandt, Elect. Trans. Numer. Anal. 2000, 10:1-20
O. Livne, Numer. Linear Algebra Appl. 2004, 2:205-227
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Reduction-Based AMG12

Suppose we can partition the grid, Ω = F ∪ C , so that

xT
f Mff xf ≤ xT

f Aff xf ≤ λmaxx
T
f Mff xf

and that
[

Mff −Afc
−Acf Acc

]
is positive semi-definite. Choose

Relaxation: I − 2
1+λmax

[
M−1

ff 0
0 0

]
A

Coarse-grid correction: variational with P =
[

M−1
ff Afc

I

]
Then

ρMG ≤

(
1−

(
2

λmax + 1

)2
) 1

2

M. Ries, U. Trottenberg, G. Winter, J. Lin. Alg. Applic., 1983
S. MacLachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006.

Algebraic Multigrid Coarsening from theory to practice- p.28



Putting It Together

Goal: Use convergence theory to design algorithm
Pieces:

• Smoothing assumption

• Approximation property

• Generalized approximation property

• Compatible relaxation
I Measure of quality of coarse-grid set

• AMGr
I Choice of interpolation given good coarse-grid set

Still need an algorithm for partitioning
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Additive Multigrid13

Theory for additive preconditioners has same limitations.

Let
• B =

[
I 0

−Acf M
−1
ff I

] [
Mff 0
0 S

] [
I −M−1

ff Afc

0 I

]
•
[

Mff −Afc
−Acf Acc

]
be positive semi-definite

• xT
f Mff xf ≤ λminx

T
f Mff xf ≤ xT

f Aff xf ≤ λmaxx
T
f Mff xf

• νminx
T
c Sxc ≤ xT

c (Acc − Acf A
−1
ff Afc)xc ≤ νmaxx

T
c Sxc

Then,

κ(B−
1
2 AB−

1
2 ) ≤

(
1 +

√
1− 1

λmax

)2
λ2

maxνmax

min(νmin, λmin)
.

O. Axelsson, Iterative Solution Methods, 1994
Y. Saad and B. Suchomel, Numer. Linear Algebra Appl. 2002, 9:359-378
Y. Notay, Numer. Linear Algebra Appl. 2005, 12:419-451
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Coarse-grid Selection

Key to success in these bounds is in the partitioning of A

A =

[
Aff −Afc

−Acf Acc

]
Need: Good approximation, Mff , to Aff

Need: Cheap computation of M−1
ff rf and M−1

ff Afc

Need: Dimension of Acc much smaller than A
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Two Observations14

1. Cost of M−1
ff rf depends on sparsity structure of Mff

I Cheapest when Mff is diagonal

S. MacLachlan, Y. Saad, SISC, to appear
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Two Observations14

1. Cost of M−1
ff rf depends on sparsity structure of Mff

I Cheapest when Mff is diagonal

2. Diagonally dominant Aff can be approximated by its
diagonal

I More diagonally dominant → better approximation

Aff is called θ-dominant if, for each i ∈ F ,

aii ≥ θ
∑
j∈F

|aij |

Coarsening Goal: Find largest set F such that Aff is
θ-dominant.

S. MacLachlan, Y. Saad, SISC, to appear
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Optimality, Robustness, Complexity15

Optimality:

• Choosing diagonal Mff ensures efficient relaxation

• Maximizing |F | so that Aff is θ-dominant minimizes
iteration cost

Robustness:

• Fixing θ guarantees λmax ≤ 1
2θ−1

, bounds ρMG

Complexity:

Finding max{|F | : Aff is θ-dominant}, is NP-complete.

• Constrained 0-1 integer programming problem

• Decision variables, fi , are indicators of F/C partition

• Constraint function is row-wise θ-dominance criterion

S. MacLachlan, Y. Saad, SISC, to appear
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Greedy Algorithm16

Instead,

• Initialize U = {1, . . . , n}, F = C = ∅
• For each point in U , compute θ̂i = aii∑

j∈F∪U

|aij |

• Whenever θ̂i ≥ θ, i → F

• If U 6= ∅, then pick j = argmini∈U{θ̂i}
I j → C
I Update θ̂i for all i ∈ U with aji 6= 0

Guarantee: Aff is θ-dominant

Look for: largest Aff possible in linear time

S. MacLachlan, Y. Saad, SISC, to appear
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A Challenge

AMGr theory requires P =
[

M−1
ff Afc

I

]
and

[
Mff −Afc
−Acf Acc

]
be SPSD

K grid cA ρMG

constant 2048× 2048 1.33 0.41
smooth 2048× 2048 1.33 0.41
binary 2048× 2048 1.98 0.91

anisotropic 32× 32 48.16 0.98989

Finite-element discretizations of −∇K∇p

In practice: Use greedy coarsening algorithm in combination
with classical AMG interpolation
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Numerical Results

K Grid cA ρ
512× 512 1.33 0.13

constant 1024× 1024 1.33 0.14
2048× 2048 1.33 0.14
512× 512 1.33 0.13

smooth 1024× 1024 1.33 0.14
2048× 2048 1.33 0.14
512× 512 2.06 0.35

binary 1024× 1024 2.08 0.40
2048× 2048 2.10 0.46
512× 512 2.39 0.13

anisotropic 1024× 1024 2.41 0.20
2048× 2048 2.43 0.20
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Time-Harmonic Maxwell Equations

Maxwell Equations:

∇× H = J +
∂D

∂t
, ∇ · D = ρ,

∇× E = −∂B

∂t
, ∇ · B = 0,

Reduce system by assuming:

• linear constitutive laws

B = µH , D = εE , J = σE

• low-frequency excitation

• Constant 2D cross-section
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Induction Motor17

Find Fourier-domain potential, Â = (0, 0, Âz)
T , by solving

−∇ ·
(

1

µ
∇Âz

)
+ ıωσÂz = Ĵs,z

Lahaye et al., IEEE Trans. Magn. 2000, 36:1535-1538
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AMG Performance
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Summary

• Multigrid methods provide effective large-scale solvers

• Algebraic multigrid effective for heterogeneous systems

• Complementarity is key
I Relaxation and coarse-grid correction

• Convergence theory separates smoothing and
approximation

• Compatible relaxation evaluates quality of coarse-grid set

• AMGr defines interpolation based on dominance principles

• Greedy algorithm puts these together
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Limitations and Outlook

Predictive AMG theory is very limited

AMGr & Greedy coarsening:
• In some cases, works as well as classical AMG

• Only guaranteed to be effective with diagonal dominance

Goal: push both ways

• Find new algorithms based on old bounds

• Find new, predictive bounds on AMG theory

Algebraic Multigrid Coarsening from theory to practice- p.41


