New Directions in Multigrid Homogenization

Scott MacLachlan, Steve McCormick, J. David Moulton

Scott.MacLachlan@colorado.edu

Department of Applied Mathematics, University of Colorado at Boulder

and

T-7, LANL

Porous Media Flow

- Interested in simulating flow in a reservoir
- Modeling saturated flow via Darcy's Law:

$$u(x, y) = -D(x, y)\nabla p(x, y)$$
$$\nabla \cdot u(x, y) = Q(x, y)$$

- Simulation domain may be on the order of 10³ meters in length
- Fine scale changes in material properties are on the order of 10^{-3} meters
- Naive discretizations require too many degrees of freedom (DOFs) to be computationally feasible

The Need for Upscaling

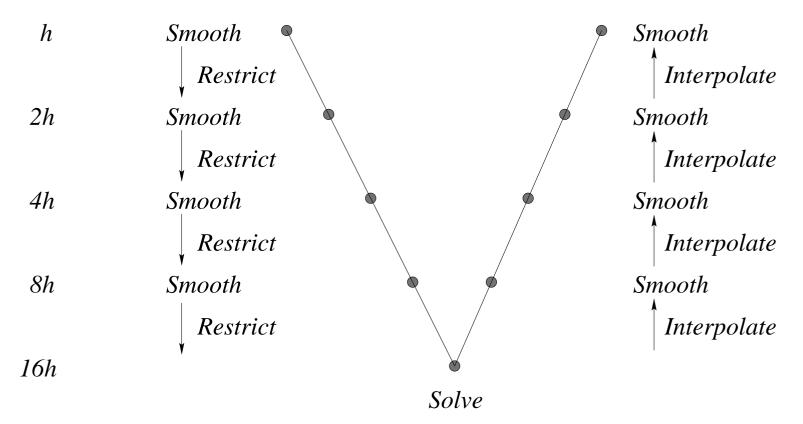
- We must accurately account for the influence of fine-scale variation in the material properties if we hope to obtain physically meaningful solutions
- In general, we cannot directly account for the influence of fine-scale variation in material properties in a coarse-scale discretization
- The goal of upscaling and homogenization techniques is to derive effective, coarse-scale material properties to use in coarse-scale models and discretizations
- "Black-box" multilevel solvers provide a natural setting for numerical upscaling

Multigrid Basics

- Need a solver whose performance doesn't significantly degrade as problem size increases
- Multigrid methods obtain optimal efficiency through complementarity
- Use a smoothing process (such as Gauss-Seidel) to eliminate oscillatory errors
- Use a coarse grid correction process to eliminate smooth errors
- Obtain optimal efficiency through recursion

The V-Cycle

Grid Spacing



Multigrid Operators

- Multigrid V-Cycle requires transfers of residuals and corrections from one grid to the next
- Accomplished through Interpolation (Prolongation) and Restriction operators
- Often pick a form of interpolation (P) and take restriction $R = P^T$ (theoretical benefits)
- Smoothing on coarse grids requires operators on those grids
- These operators must well-approximate the fine grid operator
- If present, we can often use geometric or physical information to choose these operators

Geometric vs. Algebraic Multigrid

- Smooth" error can be represented using fewer DOFs
- Choosing the set of coarse DOFs must be done so that the error left after relaxation can be accurately corrected by the form Pw
- If geometric information is known, can choose the coarse-grid based on removing points in a geometrically regular manner
- If geometry is unknown or complicated, choose the coarse-grid based on heuristics to ensure good algebraic correction

Variational Multigrid

- Multigrid with $R = P^T$ and $A_c = RAP$ is called a variational formulation
- Terminology comes from minimization form of Lu = f:

$$F(v) = \frac{1}{2} \langle Lv, v \rangle - \langle f, v \rangle$$
$$u = \arg\min_{v \in \mathcal{H}} F(v)$$

Given an approximation v to the solution on the fine level, it can be shown that the optimal coarse-grid correction Pw solves

$$(P^T A P)w = P^T (f - Lv)$$

Multilevel Flow Calculations

- Once we have created all of the components of a multigrid solver, we can use them to perform coarse-scale flow calculations
- By restricting the fine-scale sources to a given scale and solving the coarse-scale system $A_c p_c = f_c$, we get a coarse-scale representation of the pressure
- This pressure can then be interpolated to the fine-scale, where we can compute the flux
- Using operator-induced interpolation techniques allows accurate, coarse-scale flow calculations

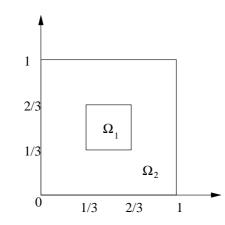
Numerical Results

- We consider the PDE $-\nabla \cdot D\nabla p = 0$ on $[0,1]^2$
- Discretization is by bilinear Finite Elements
- We impose no flow boundary conditions $(D\nabla p) \cdot n = 0$ on the top and bottom boundaries
- We impose pressures p = 1 at the left boundary and p = 0 at the right boundary
- Solve the system using the Black Box Multigrid Algorithm (BoxMG), developed by Dendy for discontinuous-coefficient diffusion problems
- BoxMG chooses interpolation in a manner which preserves the continuity of normal flux, and then uses a variational formulation for the rest of the multigrid operators

Sand/Shale Problem

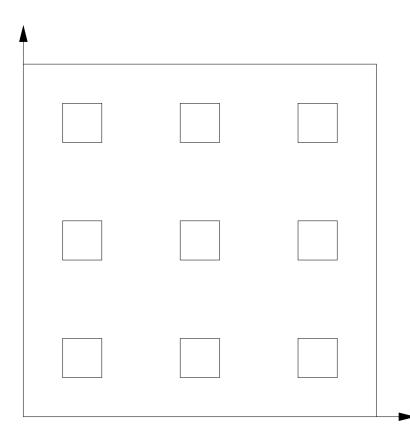
- We choose a piecewise constant D(x, y) to simulate a sand/shale problem
- Start with a box-in-a-box example with

$$D(x,y) = \begin{cases} 10 & (x,y) \in \left[\frac{1}{3}, \frac{2}{3}\right]^2\\ 1 & \text{otherwise} \end{cases}$$



Sand/Shale Problem

- We choose a piecewise constant D(x, y) to simulate a sand/shale problem
- Then create a 3x3 tiling to simulate finer structure

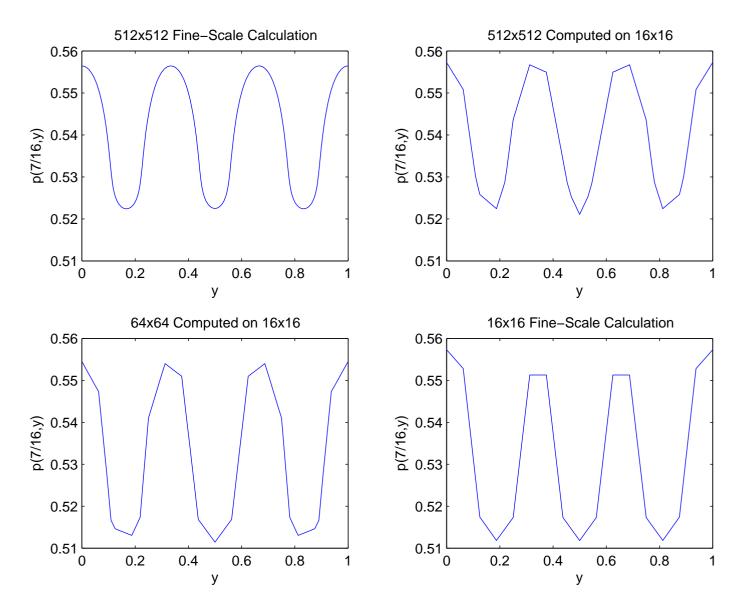


Sand/Shale Problem Fluxes

- Flux integrated along line x = 0.5 from y = 0 to y = 1
- Flux computed from solving system with 1536² elements is 1.21073 (compared to 1.21083 for 512² elements)

	4^{2}	82	16^{2}	32^{2}	64^{2}	128^{2}	256^{2}	512^{2}
4^{2}	1.586							
82	1.154	1.133						
16^{2}	1.310	1.281	1.295					
32^{2}	1.131	1.176	1.190	1.191				
64^{2}	1.135	1.188	1.226	1.233	1.230			
128^{2}	1.090	1.143	1.159	1.209	1.207	1.206		
256^{2}	1.101	1.151	1.168	1.219	1.218	1.217	1.217	
512^2	1.097	1.146	1.163	1.213	1.212	1.211	1.211	1.211

Sand/Shale Problem Pressures



Random Problem

- We choose an isotropic, random permeability field to simulate a geostatistically determined field
- Given ζ uniformly distributed in (0, 1), we choose $D(x, y) = \zeta^{-\ln(10)}$
- Theoretically, the resulting field has isotropic homogenized permeability of the geometric mean, so $\hat{D} = 10$
- Our finite realization will introduce some unavoidable error

Random Problem Fluxes

• Flux integrated along line x = 0.5 from y = 0 to y = 1

	4^{2}	8^2	16^{2}	32^{2}	64^{2}	128^{2}	256^{2}	512^{2}
4^{2}	9.098							
82	8.033	7.473						
16^{2}	10.392	8.851	9.100					
32^{2}	9.260	7.614	7.698	7.016				
64^{2}	8.918	8.826	8.535	9.280	9.150			
128^{2}	7.832	7.703	7.257	7.004	8.389	8.664		
256^{2}	7.458	7.348	7.676	8.072	9.237	8.374	8.610	
512^{2}	7.728	7.713	7.701	7.711	7.715	7.910	8.706	8.765

Interpretation of Multigrid CGOs

Consider a fine-scale discretization via finite elements

$$A_{ij} = e_j^T A e_i = \int_{\Omega} \langle D(x, y) \nabla \phi_i, \nabla \phi_j \rangle d\Omega$$

Use of Galerkin coarsening means that the coarse grid operator is equivalent to a finite element discretization on that grid

$$(A_c)_{ij} = (P^T A P)_{ij} = (P\hat{e}_j)^T A (P\hat{e}_i)$$
$$= (\sum_k p_{kj} e_k^T) A (\sum_l p_{li} e_l)$$
$$= \sum_{k,l} p_{kj} p_{li} (e_k^T A e_l)$$

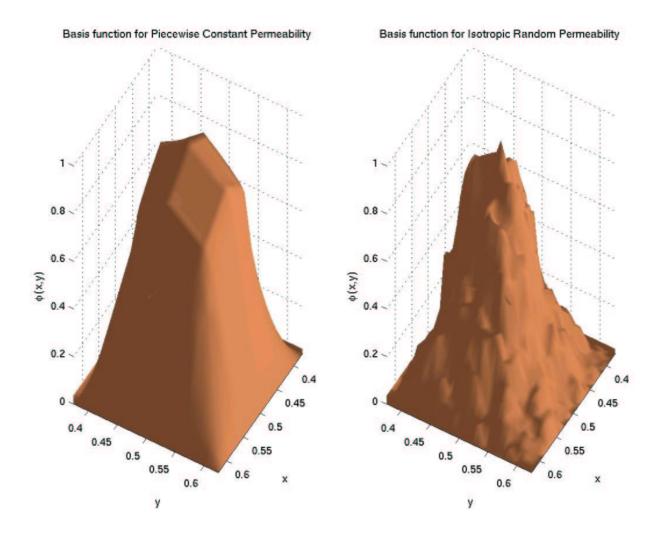
Interpretation ...

• So,

$$\begin{aligned} (A_c)_{ij} &= \sum_{k,l} p_{kj} p_{li} \int_{\Omega} \langle D(x,y) \nabla \phi_l, \nabla \phi_k \rangle d\Omega \\ &= \int_{\Omega} \left\langle D(x,y) \nabla \left(\sum_l p_{li} \phi_l \right), \nabla \left(\sum_k p_{kj} \phi_k \right) \right\rangle d\Omega \\ &= \int_{\Omega} \langle D(x,y) \nabla \hat{\phi_i}, \nabla \hat{\phi_j} \rangle d\Omega \end{aligned}$$

 Basis functions on coarse grids come from summing the fine grid basis functions (weighted by the interpolation/restriction operators)

Coarse-Grid Basis Functions



Reinterpretation of Multigrid CGOs

- Consider a bilinear discretization in 2-D
- Using a full-coarsening multigrid algorithm (such as BoxMG) results in 9-point operators on all coarse grids
- Any 9-point operator can be written as a linear combination of the bilinear FE operators for $I, \partial_x, \partial_y, \partial_{xx}, \partial_{yy}, \partial_{xy}, \partial_{xxy}, \partial_{xyy}, \partial_{xxyy}$
- If we start with a symmetric, zero row-sum operator, Galerkin coarsening guarantees that the coarse grid operator will also have these properties
- This forces the coarse grid operator to be a linear combination of $\partial_{xx}, \partial_{yy}, \partial_{xy}, \partial_{xxyy}$

Reinterpretation ...

The coarse grid operator can thus be interpreted as the coarse grid discretization of

$$-\nabla \cdot (\hat{D}\nabla u) + \partial_{xy} E(x, y) \partial_{xy} u = \hat{f}$$

- It is possible to recover piecewise constant approximations of the effective \hat{D} and E based on the stencil entries
- That is, we can recover the homogenized permeability tensor directly from the coarse grid operator

Effects on Upscaling

- Accounting for the regularization term has allowed us to (in some instances) accurately recover the homogenized permeabilities for model problems
- This allows the extension of the work of Dendy, Hyman, and Moulton from periodic BCs to Neumann BCs
- This term also suggests a relationship between Multigrid Homogenization and the closures used in the method of moments approach to ensemble averaging

The Algebraic Connection

- These techniques and ideas are all applicable in the case of algebraic multigrid methods
- Algebraic multigrid (AMG) has been demonstrated to be an efficient solver for many problems, including Darcy law flow
- AMG does not, however, consider the underlying physics of the discretized PDE
- Recently, there have been significant advances in algebraic multigrid methods, particularly in improving their robustness

Conclusions and Future Directions

- Improved coarse-scale flux calculations are possible using modern multigrid (multilevel) methods
- Accurately accounting for regularization term can lead to a more reliable numerical homogenization algorithm
- Accurate recovery of coarse-scale properties can be used to improve performance for other discretizations, such as Finite Volumes
- Algebraic multigrid methods show promise both for the ability to handle both rapidly changing coefficients and non-structured discretizations