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°

Porous M edia Flow

Interested in simulating flow in a reservoir
Modeling saturated flow via Darcy’s Law:

u(z,y) = —D(z,y)Vp(z,y)
V- u(a:,y) — Q(xay)

Simulation domain may be on the order of 103 meters in
length

Fine scale changes in material properties are on the
order of 10~ meters

Naive discretizations require too many degrees of
freedom (DOFs) to be computationally feasible
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The Need for Upscaling

We must accurately account for the influence of
fine-scale variation in the material properties if we hope
to obtain physically meaningful solutions

In general, we cannot directly account for the influence
of fine-scale variation in material properties in a
coarse-scale discretization

The goal of upscaling and homogenization techniques
IS to derive effective, coarse-scale material properties to
use in coarse-scale models and discretizations

“Black-box” multilevel solvers provide a natural setting
for numerical upscaling
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Multigrid Basics

Need a solver whose performance doesn’t significantly
degrade as problem size increases

Multigrid methods obtain optimal efficiency through
complementarity

Use a smoothing process (such as Gauss-Seidel) to
eliminate oscillatory errors

Use a coarse grid correction process to eliminate
smooth errors

Obtain optimal efficiency through recursion
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TheV-Cycle

Grid Spacing
h Smooth Smooth
L Restrict { Interpolate
2h Smooth Smooth
L Restrict { |nter polate
4h Smooth Smooth
L Restrict { Inter polate
8h Smooth Smooth
L Restrict { Inter polate
16h

Solve
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Multigrid Operators

Multigrid V-Cycle requires transfers of residuals and
corrections from one grid to the next

Accomplished through Interpolation (Prolongation) and
Restriction operators

Often pick a form of interpolation (P) and take
restriction R = P! (theoretical benefits)

Smoothing on coarse grids requires operators on those
grids

These operators must well-approximate the fine grid
operator

If present, we can often use geometric or physical
iInformation to choose these operators
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Geometric vs. Algebraic Multigrid

°

“*Smooth” error can be represented using fewer DOFs

Choosing the set of coarse DOFs must be done so that
the error left after relaxation can be accurately
corrected by the form Pw

If geometric information is known, can choose the
coarse-grid based on removing points in a
geometrically regular manner

If geometry is unknown or complicated, choose the
coarse-grid based on heuristics to ensure good
algebraic correction
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Variational Multigrid

® Multigrid with R = PT and A, = RAP is called a
variational formulation

# Terminology comes from minimization form of Lu = f:

1
F(U) — §<LU,’U> - <fvv>
— in F
u = arg min (v)
# Given an approximation v to the solution on the fine
level, it can be shown that the optimal coarse-grid

correction Pw solves

(PTAP)w = PT(f — Lv)
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Multilevel Flow Calculations

Once we have created all of the components of a
multigrid solver, we can use them to perform
coarse-scale flow calculations

By restricting the fine-scale sources to a given scale
and solving the coarse-scale system A.p. = f., we get a
coarse-scale representation of the pressure

This pressure can then be interpolated to the fine-scale,
where we can compute the flux

Using operator-induced interpolation techniques allows
accurate, coarse-scale flow calculations
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Numerical Results

We consider the PDE —V - DVp = 0 on [0, 1]°
Discretization is by bilinear Finite Elements

We impose no flow boundary conditions (DVp) -n =0
on the top and bottom boundaries

We impose pressures p = 1 at the left boundary and
p = 0 at the right boundary

Solve the system using the Black Box Multigrid
Algorithm (BoxMG), developed by Dendy for
discontinuous-coefficient diffusion problems

BoxMG chooses interpolation in a manner which
preserves the continuity of normal flux, and then uses a
variational formulation for the rest of the multigrid
operators
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Sand/Shale Problem

#® \We choose a piecewise constant D(z,y) to simulate a
sand/shale problem

# Start with a box-in-a-box example with

10 (z,y) € [3,3]?
1 otherwise

D(z,y) = {

2/3

13

Y
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Sand/Shale Problem

#® \We choose a piecewise constant D(z,y) to simulate a
sand/shale problem

#® Then create a 3x3 tiling to simulate finer structure
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Sand/Shale Problem Fluxes

# Flux integrated along line x =0.5fromy=0toy =1

® Flux computed from solving system with 15362 elements
is 1.21073 (compared to 1.21083 for 5122 elements)

42 82 162 322 642 1282 | 2562 | 5122
42 1.586
82 1.154 | 1.133
162 | 1.310 | 1.281 | 1.295
322 | 1.131 | 1.176 | 1.190 | 1.191
642 | 1.135 | 1.188 | 1.226 | 1.233 | 1.230
1282 | 1.090 | 1.143 | 1.159 | 1.209 | 1.207 | 1.206
2562 | 1.101 | 1.151 | 1.168 | 1.219 | 1.218 | 1.217 | 1.217
5122 | 1.097 | 1.146 | 1.163 | 1.213 | 1.212 | 1.211 | 1.211 | 1.211
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Sand/Shale Problem Pressures

p(7/16,y)
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Random Problem

We choose an isotropic, random permeability field to
simulate a geostatistically determined field

Given ¢ uniformly distributed in (0, 1), we choose
D(z,y) = ¢~ 10

Theoretically, the resulting field has isotropic
homogenized permeability of the geometric mean, so

D =10

Our finite realization will introduce some unavoidable
error

New Directions in Multigrid Homogenization — p.15



Random Problem Fluxes

# Flux integrated along line x =0.5fromy=0toy =1

42 82 162 322 642 1282 | 2562 | 5122
42 9.098
82 8.033 | 7.473
162 | 10.392 | 8.851 | 9.100
322 9.260 | 7.614 | 7.698 | 7.016
642 | 8.918 | 8.826 | 8.535 | 9.280 | 9.150
1282 | 7.832 | 7.703 | 7.257 | 7.004 | 8.389 | 8.664
2562 | 7.458 | 7.348 | 7.676 | 8.072 | 9.237 | 8.374 | 8.610
5122 | 7.728 | 7.713 | 7.701 | 7.711 | 7.715 | 7.910 | 8.706 | 8.765
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|nter pretation of Multigrid CGOs

® Consider a fine-scale discretization via finite elements
Ajj = e?Aei = /Q<D(x,y)v¢i, V,;)dS)

# Use of Galerkin coarsening means that the coarse grid
operator is equivalent to a finite element discretization
on that grid

(Ac)ij = (PTAP);; = (Pé;)" A(Pé;)
= (Z szjeg)A(ZPlz‘@l)
k [

=) prjpuler, Aey)
iy
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|nterpretation ...

® SO,

’L] — Zpk]plz/ x y)ngl, v¢k>

_ /Q <D(x,y)V <§l:pli¢l> ,v @;p’” ¢k> > "

- /Q (D(,y)Vdi, Vo)A

# Basis functions on coarse grids come from summing
the fine grid basis functions (weighted by the
Interpolation/restriction operators)
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oar se-Grid Basis Functions

Basis function for Piecewise Constant Permeability Basis function for Isotropic Random Permeability

o(x.y)
o(x.y)
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Reinterpretation of Multigrid CGOs

Consider a bilinear discretization in 2-D

°

# Using a full-coarsening multigrid algorithm (such as
BoxMG) results in 9-point operators on all coarse grids

# Any 9-point operator can be written as a linear
combination of the bilinear FE operators for
Ia 8337 ayv a:l’:a’:a 8yya axy1 axxya axyya axxyy

o If we start with a symmetric, zero row-sum operator,
Galerkin coarsening guarantees that the coarse grid
operator will also have these properties

# This forces the coarse grid operator to be a linear

combination of 9,5, Oyy, Ouy, Opayy
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Reinterpretation ...

#® The coarse grid operator can thus be interpreted as the
coarse grid discretization of

—V - (DVu) + Oy (2, y)Opyu = f

# Itis possible to recover piecewise constant

approximations of the effective D and E based on the
stencil entries

# That is, we can recover the homogenized permeability
tensor directly from the coarse grid operator
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Effects on Upscaling

# Accounting for the regularization term has allowed us to
(in some instances) accurately recover the
homogenized permeabilities for model problems

# This allows the extension of the work of Dendy, Hyman,
and Moulton from periodic BCs to Neumann BCs

# This term also suggests a relationship between
Multigrid Homogenization and the closures used in the
method of moments approach to ensemble averaging
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The Algebraic Connection

These techniques and ideas are all applicable in the
case of algebraic multigrid methods

Algebraic multigrid (AMG) has been demonstrated to be
an efficient solver for many problems, including Darcy
law flow

AMG does not, however, consider the underlying
physics of the discretized PDE

Recently, there have been significant advances in
algebraic multigrid methods, particularly in improving
their robustness
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Conclusions and Future Directions

# Improved coarse-scale flux calculations are possible
using modern multigrid (multilevel) methods

#® Accurately accounting for regularization term can lead
to a more reliable numerical homogenization algorithm

#® Accurate recovery of coarse-scale properties can be
used to improve performance for other discretizations,
such as Finite Volumes

# Algebraic multigrid methods show promise both for the
ability to handle both rapidly changing coefficients and
non-structured discretizations
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