
Multiscale Methods in Scientific
Computation

or

How I Learned to StopWorrying
and LoveMultigrid

Scott MacLachlan

Scott.MacLachlan@colorado.edu

Department of Applied Mathematics

University of Colorado at Boulder

Multiscale Methods in Scientific Computation – p.1/32



Outline

Motivation for Scientific Computation

Differential Equations and Linear Algebra

Traditional Linear Solvers

Motivation for Multilevel Techniques

Overview of Multilevel Techniques

Multigrid

Multiscale Methods in Scientific Computation – p.2/32



Terminology

�

- Mesh spacing, typically small

� � � � �

- grid dimensions, typically large

�

- problem size, typically � � or � �

� 	 � 
 �

- a measure of smallness, for large �, an

� 	 � 
 �

quantity is very small

� 	 � 
 �

,

� 	 � 
 �

- a measure of largeness, for large �, an� 	 � 
 �

quantity is quite large


 �

- the class of functions which are square integrable

� �

- the class of square integrable functions with �

derivatives which are all square integrable
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Why Compute?

Interested in modelling physical processes

Diffusion (Heat, Energy, Chemical)
Fluid Flow
Particle Transport
Elastic Materials

Can describe these processes through differential
equations (both ODEs and PDEs)

Cannot write down closed form solutions

Need to find (approximate) solutions in other ways
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Why Compute?

Computers are good at arithmetic manipulation of large
amounts of data

Computers are good at visualization of complex
structures

Need to be able to rewrite a differential equation as a
problem that a computer can handle
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Discretization of Differ ential Equations

We are interested in rewriting a differential equation in a
way that a computer can solve it

Differential equations give relationships between points
that are infinitesimally close together

To discretize a differential equation, we consider points of
distance apart instead
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Finite Differ ences

To discretize a differential equation, need to
approximate derivatives

Taylor Series give us a way:

� 	�� � � � � � 	�� � � � � � 	�� � � � �
� � � � 	 � � � � �
� � � � � 	 � � � � 	 � � �

� 	 � � � � � � 	�� � � � � � 	 � � � � �
� � � � 	 � � �

� �
� � � � � 	 � � � � 	 � � �
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Finite Differ ences

So

� � 	 � � � � 	 � � � � � � 	 � �

� � � 	 � �

� � 	 � � � � 	 � � � �

� � � 	 � �

� � � 	 � � � � 	 � � � � � � � 	 � � � � 	 � � � �

� � � � 	 � � �

In a similar way, we can approximate higher order
derivatives

Also can do partial derivatives
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Finite Elements

Redefine what it means for a function to solve a
differential equation

Allows theory for differential equations to be used in
linear systems (e.g. existence and uniqueness)
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Properties of Discretizations

The matrices from discretizations tend to be
Sparse (number of nonzeros per row doesn’t change
with �)
Ill-conditioned
Symmetric (if DE is)
Positive-Definite (if DE is)
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Dimensionality

Systems become larger as we increase the number of
dimensions.

Suppose in 1 dimension we need � data points, then in
2 dimensions we’ll need � � � � � � and in 3 dimensions
we’ll need � � � � � � � �.
We’re interested in solving 3 dimensional problems!
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ClassicalMethods: GaussianElimination

Write down equations in order

Use first equation to eliminate first variable from all
other equations

Use second equation to eliminate second variable from
all other equations
...

Total cost for an

� � �
system:

� 	 � � �

Total cost for an � � � � � system:

� 	 � � �
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ClassicalMethods: Jacobi

Rewrite each equation:

	� � ��� � ��

 � � � � � �� �
! "$# �

 �! � !

Solve each equation for � � using values of � ! from
previous step

Cost per “sweep”:

� 	 � �
if system is sparse

Number of sweeps needed for convergence:

� 	 � � �

Total cost for an � � � � � system:

� 	 � % �
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ClassicalMethods: Gauss-Seidel

Rewrite each equation:

 � � � � � �� �
! "$# �

 �! � !
Solve each equation successively for � � using values of� ! from previous equations

Cost per “sweep”:

� 	 � �

if system is sparse

Number of sweeps needed for convergence:

� 	 � � � (but
fewer than Jacobi)

Total cost for an � � � � � system:

� 	 � % �
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ClassicalMethods: SOR

Rewrite each equation:

 � � &� � �� �
! "$# �

 �! � !
Solve each equation successively for &� using values of� ! from previous equations

Choose new � � to be an average of old � � and &� :

� new� � ' &� � 	 � � ' � � old�

Cost per “sweep”:
� 	 � �

if system is sparse

Number of sweeps needed for convergence:

� 	 � � with
optimal '
Total cost for an � � � � � system:

� 	 � � �
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Krylo v SubspaceMethods

Based on projections onto increasingly larger
subspaces of

( )

Cost depends on cost of evaluating

� � , which is low
(

� 	 � �

) for sparse matrices

Many steps often necessary to reach solution, however
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The Curseof Dimensionality

All of the above methods take a number of operations
proportional to

�

raised to some power � * �
We’re interested in problems where

� � � �

� 
 � � � 


or

� � 
 � � �+ 


If we want to use Gaussian elimination to solve a
3-dimensional problem with 100 gridpoints in each
direction, we’ll need on the order of

�, -.

operations!
Fastest computers perform about

� , - �

operations per
second, so this would take days

For 1000 gridpoints in each direction, need years!
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The Curseof Dimensionality

Jacobi and Gauss-Seidel also also scale poorly - an
increase of a factor of 10 gridpoints in each direction
results in an increase of

�, %

in computation time

SOR scales better, but need to compute optimal ' - this
is difficult for general problems (involves finding
eigenvalues of a matrix)
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What’ sWr ong?

Gaussian Elimination is expensive because it doesn’t
use any information about the system

Iterative methods use information about the system, but
are most effective at reducing only a certain portion of
the error

Most effort in iterative methods is devoted to resolving a
few components of the solution (more on this later)

McCormick-Brandt Conjecture: The amount of work an
algorithm does should be proportional to the amount of
error reduction it produces

“Stalling numerical processes must be wrong”
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Hints fr om Physics

From Physics (and Chemistry and Fluids and / / /): we
derive differential equations - equations which give
relations between points that are infinitesimally close
together

Finite propagation speeds mean that the influence of far
away points is somehow smaller than nearby points

Our numerical methods weight the influence of all
connected points the same

Physics seems to suggest that we need to spend more
time on the “local” scale than on the “global” scale

Our understanding of the universe in inherently
multiscale!
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Exact Multiscale Methods - Fourier

Given a differential equation, consider solution space

Typically this is either

� -

or

� �

, but for “nice”
boundaries and forcing, � 	 � �

is certainly in

 �

A basis for


 �

is

021 � 354 6

Write

� 	 � � �
+ 7

3 #8 7
9 31 � 3 4
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Exact Multiscale Methods - Fourier

This is an effective solution technique because (in
general) the different basis elements decouple

Communication between different frequencies in a
Fourier expansion is limited

Result is an efficient solution method
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Exact Multiscale Methods - Wavelets

:1 � 3 4 ;

is not the only basis for


 �

Main disadvantage is that while the Fourier basis
localizes in frequency, it does not in localize in space

Wavelets are types of orthonormal bases which localize
in space (and to various degrees in frequency)

Construct wavelets using a shift-and-scale approach -
all basis functions have the same profile
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Example - Haar Wavelets

Define

� 	�� � �
<

=
=?>

� � , @ � A , / B

� , / B A � @ �

,

else

Then take

�! 3 	 � � � �! C � � 	 �! � � D �

: �! 3 	 � � ;

forms a complete orthonormal basis for


 �

Since basis functions are orthonormal, also have
limited communication between scales
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The Truth

While

:1 � 354 ;

and

: �! 3 	 � � ;

form complete orthonormal
bases for


 �

, generally there is no closed form for the
coefficients of the basis expansion

Instead, use a finite sum to approximate infinite sum

Systems for the finite number of coefficients needed for
this approximation are generally “easy” to solve - can
be done in

� 	 � EGF H 	 � � �

time
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Another Way - Multigrid

Careful analysis of Jacobi and Gauss-Seidel iterations
reveal that not all error components are reduced at the
same rate

In particular, components which are geometrically
smooth are reduced at the slowest rate

That is, the global components of the solution are
slowest to resolve

These components, however, can be represented on a
coarser resolution

To speed up solution: Do simple iterations until they
stall, then transfer problem to a coarse grid and solve it
there

How do you solve the coarse grid problem? Recursion
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Multigrid Strategy

After relaxation remaining error in solution is
geometrically smooth

If � I

is the approximate solution after relaxation, then� � � I

is the smooth vector

But,

� 	 � � � I � � � � � � � I � � � � � I
, or

� 1 � J

Since 1 is smooth, we can represent it on a smaller
space and (approximately) solve for it there (cheaper
than doing this on the full space)

Then, a better approximation to the solution will be� I � 1
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Complementarity

We use 2 different processes to reduce error in
Multigrid: Relaxation and Coarse Grid Correction

Relaxation (Jacobi or Gauss-Seidel, not SOR)
effectively damps oscillitory error

Coarse Grid Correction effectively resolves smooth
error

By alternating between the two, we can quickly resolve
all components and drive the error to zero
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Multigrid Cost

Relaxation on a level with

�

unknowns cost
� 	 � �

operations

Transfer from a level with

�

unknowns to a level with� � D

unknowns and back costs

� 	 � �
operations

Cost per V-cycle is then

KMLN O )

! # P
9

�
D! @

7
! # P

9
�

D! � 9 �
� � � � D

Typically

D

is 2 in 1-D, 4 in 2-D, 8 in 3-D
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Multigrid Convergence

Theory applies to Multigrid using Finite Elements,
although it works just as well on finite differences

For finite element discretization of


 � � Q
, get weak

form  	 �SR T � � A QR T *

If  	 �SR T � is symmetric and

� -

-elliptic, then Multigrid will
reduce the error to a fixed tolerance in a finite number
of V-cycles (fixed for a given tolerance)

That is, Multigrid solves the finite element discretization
of


 � � Q

in

� 	 � �

operations
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Multigrid Variants

Algebraic Multigrid - for algebraic problems similar to
discretizations of scalar elliptic PDEs

Smoothed Aggregation Multigrid - for problems similar
to discretizations of some systems of elliptic PDEs
(linearized elasticity in particular)

Self-Correcting AMG - current research at CU-Boulder
in extending class of problems which multigrid methods
can handle

Multigrid for Hyperbolic PDEs - current research at
CU-Boulder in extending class of problems which
multigrid methods can handle
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Summary

Classical methods of solving linear systems arising
from discretized differential equations do not scale as
the problem size or number of dimensions increases

Multiscale methods require only

� 	 � E F H 	 � � �

or

� 	 � �

operations

Multiscale methods (much) more complicated to
construct

Particularly effective for elliptic problems, but class of
suitable problems is growing

Many varieties - best is often a hybrid tuned to a
particular problem
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