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Algebraic Multigrid for Real-World
Applications

Fast solvers for real problems

Applications include

• Markov-chain processes (Google)

• Maxillo-facial surgery

• Quantum Chromodynamics

Challenges include

• Higher-order and discontinuous finite elements

• Multiple scales

• Extreme heterogeneity
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What is Algebraic Multigrid?

Algebraic Multigrid (AMG) is a family of techniques

Properties:
• Multigrid/Multilevel structure

I Hierarchy of models on increasingly coarser scales

• Inexpensive processing on each scale
I Jacobi/Gauss-Seidel/ILU iteration

• Additive/multiplicative coarse-grid correction

Coarse-grid models created algebraically

• System structure inferred from matrix entries

• Geometric/PDE information replaced by simple measures

• No/limited assumptions on problem origin
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Gaussian Elimination

Goal is to factor A = LDU

First step: partition A:

A =

[
a1,1 a1,?

a?,1 A(2)

]
,

then factor the first row and column:

A =

[
1 0

a−1
1,1a?,1 I

] [
a1,1 0
0 A(2) − a?,1a

−1
1,1a1,?

] [
1 a−1

1,1a1,?

0 I

]
Apply this step recursively to Â(2) = A(2) − a?,1a

−1
1,1a1,?
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Block Factorization

Can also do this elimination in blocks

Partition

Ax =

[
Aff −Afc

−Acf Acc

](
xf

xc

)
=

(
bf

bc

)
= b,

then A can be block factored as

A =

[
I 0

−Acf A
−1
ff I

] [
Aff 0

0 Âcc

] [
I −A−1

ff Afc

0 I

]
,

where Âcc = Acc − Acf A
−1
ff Afc .
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Block Factorization Solve

Easy to write inverse of block-factored form, so that(
xf

xc

)
=

[
I A−1

ff Afc

0 I

] [
A−1

ff 0

0 Â−1
cc

] [
I 0

Acf A
−1
ff I

](
bf

bc

)
.

Algorithm: solve Ax = b by

1. yf = A−1
ff bf

2. yc = bc + Acf yf

3. Solve Âccxc = yc

4. xf = yf + A−1
ff Afcxc
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Block Factorization Preconditioners1

Idea: precondition A using

M =

[
I 0

−Acf D
−1
ff I

] [
Dff 0
0 S

] [
I −D−1

ff Afc

0 I

]
.

Approximation to block factorization of A with

• Dff ≈ Aff

• S ≈ Acc − Acf A
−1
ff Afc

If Dff and S are easy to invert, then computing M−1r is cheap

M−1r =

[
I D−1

ff Afc

0 I

] [
D−1

ff 0
0 S−1

] [
I 0

Acf D
−1
ff I

](
rf
rc

)

O. Axelsson, Iterative Solution Methods, 1994
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Algebraic Recursive Multilevel Solver2

Approximate Aff by its ILU factors, Aff ≈ Dff = LU .

Preconditioner is

M =

[
I 0

−Acf U
−1L−1 I

] [
LU 0
0 S

] [
I −U−1L−1Afc

0 I

]
,

where S ≈ Acc − Acf U
−1L−1Afc .

Approximate Schur complement, S ,

• computed using fill/truncation techniques as in ILU

• solved recursively

Y. Saad and B. Suchomel, Numer. Linear Algebra Appl. 2002, 9:359-378
M. Bollhöfer and Y. Saad, SISC 2006, 27:1627-1650
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Additive Coarse-Grid Correction

Defining P =

[
D−1

ff Afc

I

]
, we can write

I −M−1A = I − PS−1PTA−
(

D−1
ff 0
0 0

)
A.

Two ways of reducing errors:

•
(

I −
(

D−1
ff 0
0 0

)
A

)
only reduces ef

•
(
I − PS−1PTA

)
reduces errors only in Range(P)

Block factorization naturally defines an additive correction
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Reduction-based AMG3

Multiplicative variant of block factorization

I −M−1
AMGA =

(
I − PS−1PTA

)(
I − ω

(
D−1

ff 0
0 0

)
A

)
Error partitioned into two subspaces:

M. Ries, U. Trottenberg, G. Winter, J. Lin. Alg. Applic., 1983
S. MacLachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006.
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Reduction-based AMG3

Multiplicative variant of block factorization

I −M−1
AMGA =

(
I − PS−1PTA

)(
I − ω

(
D−1

ff 0
0 0

)
A

)
Error partitioned into two subspaces:

• Errors in R = Range

([
A−1

ff Afc

I

])
, must be reduced by

coarse-grid correction

• Errors in (R)⊥, should be reduced by (fine-grid) relaxation

M. Ries, U. Trottenberg, G. Winter, J. Lin. Alg. Applic., 1983
S. MacLachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006.
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Classical Algebraic Multigrid4

“Generalization” of AMGr:

• Full-grid relaxation using Jacobi or Gauss-Seidel

• Interpolation chosen to fit algebraically smooth errors
I Assumption on errors that relaxation is slow to reduce

• Coarse grid chosen based on M-matrix properties

• Coarse-grid equations solved by recursion

Idea: Error-propagation, (I − PS−1PTA)(I − D−1A)

• requires complementarity

• choose P to complement known properties of D

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stüben, in Multigrid Methods, 1987
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What About Convergence?

There is no single AMG convergence theory!

Two questions:
• Given a method, how does it perform?

• Given a class of problems, how do we design a method?

Ideal theory is predictive:

Computable: A priori information on expected performance

Sharp: Prediction is accurate
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Goals

Aim for an algebraic theory for algebraic multigrid

Stay away from the PDEs
• Lots of theory for multigrid based on elliptic PDEs

• We apply AMG for a much larger class of problems

• Conditions on convergence should be from linear algebra

Convergence theory typically takes the form of a bound:

K
(
M− 1

2 AM− 1
2

)
≤ K or ‖I −M−1A‖A ≤ 1− 1

K
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Upper and Lower Bounds

Upper convergence bounds give worst-case performance

Consider K
(
M− 1

2 AM− 1
2

)
≤ K and ‖I −M−1A‖A ≤ 1− 1

K
,

K determines iterations needed to guarantee accuracy

What about lower bounds?
• Indicate sharpness, potential problems

• Useful in algorithm development

Large lower bounds on K
(
M− 1

2 AM− 1
2

)
do not guarantee bad

CG convergence!

Practical aspects of theoretical bounds on algebraic multigrid- p.14



Upper and Lower Bounds

Upper convergence bounds give worst-case performance

Consider K
(
M− 1

2 AM− 1
2

)
≤ K and ‖I −M−1A‖A ≤ 1− 1

K
,

K determines iterations needed to guarantee accuracy

What about lower bounds?
• Indicate sharpness, potential problems

• Useful in algorithm development

Large lower bounds on K
(
M− 1

2 AM− 1
2

)
do not guarantee bad

CG convergence!

Practical aspects of theoretical bounds on algebraic multigrid- p.14



Additive Convergence Theory5

Let A be symmetric and positive definite

•
[

Dff −Afc
−Acf Acc

]
be positive semi-definite

• xT
f Dff xf ≤ λminxT

f Dff xf ≤ xT
f Aff xf ≤ λmaxxT

f Dff xf

• νminxT
c Sxc ≤ xT

c Âccxc ≤ νmaxxT
c Sxc

Then,

κ(M− 1
2 AM− 1

2 ) ≤
(

1 +

√
1− 1

λmax

)2
λ2

maxνmax

min(νmin, λmin)
.

and
λmax

λmin
≤ κ(M− 1

2 AM− 1
2 )

Y. Notay, Numer. Linear Algebra Appl. 2005, 12:419-451
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AMGr Convergence6

Let A be symmetric and positive-definite

•
[

Dff −Afc
−Acf Acc

]
be positive semi-definite

• xT
f Dff xf ≤ xT

f Aff xf ≤ λmaxxT
f Dff xf

• Choose relaxation as I − 2
λmax+1

D−1
ff Aff

• Take P =
[

D−1
ff Afc

I

]
, S = PTAP

Then

‖I −M−1
AMGA‖A ≤

(
1−

(
2

λmax + 1

)2
) 1

2

S. MacLachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006.
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Lower Bounds for AMG

Is a small λmax(D
−1
ff Aff ) necessary for good AMG performance?

Consider A = (n + 1)I − 11T =


n −1 · · · −1
−1 n · · · −1
...

. . . . . .
...

−1 −1 · · · n


Choose:

• Aff to be upper (n − 1)× (n − 1) block

• Dff = I

• Full-grid Richardson relaxation

• P =
[

D−1
ff Afc

I

]
, S = PTAP

λmax = n + 1, but ‖I −M−1
AMGA‖A ≤ 1

2
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Theory and Algorithms

AMGr theory not predictive for classical AMG

Can we design a complete algorithm for which it is predictive?
• Given A

• Choose partition, A =
[

Aff −Afc
−Acf Acc

]
• Choose splitting, Aff = Dff − Rff

• Estimate λmax

• Use AMGr to guarantee convergence
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Coarse-grid Selection

Key to success in AMGr is in the partitioning of A

A =

[
Aff −Afc

−Acf Acc

]
Need: Good approximation, Dff , to Aff

Need: Cheap computation of D−1
ff rf , D−1

ff Afc

Need: Dimension of Acc much smaller than A
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Two Observations7

1. Cost of D−1
ff rf depends on sparsity structure of Dff

I Cheapest when Dff is diagonal

S. MacLachlan, Y. Saad, SISC, to appear
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ff rf depends on sparsity structure of Dff
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2. Diagonally dominant Aff can be approximated by its
diagonal

I More diagonally dominant → better approximation

Aff is called θ-dominant if, for each i ∈ F ,

aii ≥ θ
∑
j∈F

|aij |

Coarsening Goal: Find largest set F such that Aff is
θ-dominant.

S. MacLachlan, Y. Saad, SISC, to appear
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Complexity8

The problem, max{|F | : Aff is θ-dominant}, is NP-complete.
Instead,

• Initialize U = {1, . . . , n}, F = C = ∅
• For each point in U , compute θ̂i = aii∑

j∈F∪U

|aij |

• Whenever θ̂i ≥ θ, i → F

• If U 6= ∅, then pick j = argmini∈U{θ̂i}
I j → C
I Update θ̂i for all i ∈ U with aji 6= 0

S. MacLachlan, Y. Saad, SISC, to appear
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Choosing Dff
9

Several ways to choose Dff to bound λmax

Greedy coarsening algorithm guarantees aii ≥ θ
∑

j∈F |aij |
• Dff = (2− 1

θ
)diag(Aff )

• (Dff )ii = (2− 1
θi
)aii

In general, guarantee λmax ≤ 1
2θ−1

Bound on error-reduction per cycle by

‖I −M−1
AMGA‖A ≤

(
2θ − 1

θ2

) 1
2

S. MacLachlan, Y. Saad, SISC, to appear
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Similar Approach10

Coarsen based on compatible relaxation

• If ‖I − D−1
ff Aff ‖Aff

is small, then there is a P that gives
good AMG performance

• Choose coarse grid by testing convergence of relaxation,
I − D−1

ff Aff

Fix stencil of interpolation, P
Interpolate based on minimizing trace of PTAP

• Unconstrained minimization leads to PTAP = Âcc

• Ensure stability of coarse-scale problem, but control
iteration costs

R. Falgout and P. Vassilevski, SIAM J. Numer. Anal. 2004, 42:1669-1693
J. Brannick and L. Zikatanov, in Proc. DD16, 2007
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Sharp and Two-Sided Bounds11

Many different bounds on AMG performance are possible

Sharp two-level bound, ‖I −M−1
AMGA‖A = 1− 1

K
, for

K = max
v

vT M̃P(PT M̃P)−1PT M̃v

vTAv

• Bound is sharp, but depends on eigenvalue problem

More recently, Zikatanov has shown lower bounds on K that
can be used to gain lower bounds on AMG convergence

R. Falgout, P. Vassilevski, L. Zikatanov, Num. Linear Algebra Appl. 2005,
12:471-494
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Summary

• AMG is a family of algebraic multilevel solvers

• Coarse-grid corrections may be additive or multiplicative

• Want sharp, predictive theory for AMG performance

• Want AMG algorithms designed to satisfy theory

• Theory links performance to fine-grid spectral equivalence

• Couple coarse-grid selection and interpolation to bound
convergence
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Sharpness, Computability, Algorithms

Sharpness:

• Sharp convergence theory is a spectral theory

• Good convergence bounds require (sharp) eigenvalue
bounds

Computability:

• Predictive theory is a useful tool

• Convergence bound must depend on easily calculated
quantities

Algorithms:

• Classical algorithms motivated by heuristics

• More recently, use theory to motivate algorithms

• Limited success, but both algorithms and bounds
improving
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