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Recent Advances in Multilevel Methods

Significant interest in simulating complex physical systems with features,

and hence solutions, that vary on multiple scales

Accuracy constraints are often driven by motivating applications,

requiring efficient iterative methods to solve the resulting linear (and

non-linear) systems

Multiscale solution techniques, such as multigrid, are often most efficient

approach

Recent advances include

new multigrid techniques to broaden applicability of algebraic

multigrid solvers/preconditioners

improvements in implementation and understanding of multigrid in

(massively) parallel environments

new approaches to the application of multiscale/multilevel ideas in

many application areas
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Multigrid

Multigrid Methods achieve optimality through complementarity
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)v(1)=f (1)
Relax

Use a smoothing process (such as Gauss-Seidel) to eliminate oscillatory

errors

Remaining error satisfies Ae = r ≡ f −Av
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)v(1)=f (1)

Level

1

2

Relax

Restriction

Transfer residual to coarse grid
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)v(1)=f (1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction

Use coarse-grid correction to eliminate smooth errors

To solve for error on coarse grid, use residual equation

A(2)e(2) = r(2)
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)v(1)=f (1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation

Transfer correction to fine grid
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

A(1)v(1)=f (1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation

Relax once again to remove oscillatory error introduced in coarse-grid

correction
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Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation
Solve

Restrict

Relax

Restrict

Relax

Interpolate

Relax

Relax

Interpolate

Relax

Relax 1

Level

3

K

2

Obtain optimal efficiency through recursion
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Algebraically Smooth Error

Multigrid methods reduce error through

Relaxation (Jacobi, Gauss-Seidel)

Coarse-grid correction (variational)

Error which is not efficiently reduced by relaxation is called algebraically

smooth and must be reduced by coarse-grid correction

Pointwise relaxation implies that algebraically smooth error, e, satisfies

Ae ≈ 0, relative to e

If the origins of the matrix are known, so is character of algebraically

smooth error
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Algebraic Multigrid

Assume no knowledge of grid geometry

Interpolation and coarse grids chosen based only on the entries of the

matrix

Primary goal is to interpolate suitable corrections from the coarse grids

Assume algebraically smooth error is locally constant

Equivalently, assume global near null space is the constant vector
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Classical AMG Coarsening

Strong Connections based on matrix entries:

Si =


j : −aij ≥ θmax

k 6=i
{−aik}

ff

Coarse grid chosen by maximal independent set heuristics

H1: For each i ∈ F , every j ∈ Si should be either in Ci or should strongly

depend on at least one point in Ci

H2: The set, C, should be a maximal subset of the fine grid, such that no

C-point strongly depends on another C-point
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Weaknesses

Definition of strong connections based on “nice” M-matrix properties

Breaks down if near null space of A is far from the constant

Diagonal rescaling,

A→ DAD

Finite element anisotropy,

−uxx − εuyy → 1

6

2
6664

(−1− ε) (2− 4ε) (−1− ε)
(−4 + 2ε) (8 + 8ε) (−4 + 2ε)

(−1− ε) (2− 4ε) (−1− ε)

3
7775

Even for simple problems, size of aij may not reflect true connection

between i and j
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What are Strong Connections?

Point i strongly depends on point j if

a change in the right-hand side at point j significantly changes the

solution at point i.

a change in the residual at point j significantly changes the error at

point i

Good coarse-grid correction depends on identifying strong connections

Interpolation to i is most effective from points that it strongly depends

on

Corrections from weakly connected points have little effect on the

error at i
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Inverse-based Strength

For the discrete linear system, Av = f , the inverse relates changes in f

to changes in v

v = (A)−1 f

If a change in fj causes a significant change in vi, then (A)−1
ij must be

large relative to other values of (A)−1
ik
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Measures of Strong Connections

Strength of dependence of i on j depends on size of (A)−1
ij

How should we measure this size, relative to (A)−1
ik ?

L2 measure: (A)−1
ij ≥ θmax

k 6=i

˘
(A)−1

ik

¯

Energy measure: Let G(i)
j = (A)−1

ij , Sij =
‖G(i) −G(i)

j I(j)‖A
‖G(i)‖A
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = I(i)
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = I(i)

Weighted Jacobi, 1 step:
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = I(i)

Weighted Jacobi, 5 steps:
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = I(i)

Weighted Jacobi, 6 steps:
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = I(i)

Weighted Jacobi, 7 steps:
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = I(i)

Weighted Jacobi, 8 steps:
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = I(i)

Weighted Jacobi, 9 steps:
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = I(i)

Weighted Jacobi, 10 steps:
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = I(i)

Weighted Jacobi, 50 steps:
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = I(i)

Jacobi-Preconditioned CG, 1 step:
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Approximating Sij
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ij and, thus, Sij?
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?
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Choosing C

For point i, {Sij} are now measures of strengths of connection

We now say i strongly depends on j if (A)ij 6= 0 and

Sij − 1 ≥ θmax
k 6=i
{Sik − 1}

For now, θ = 0.25 seems to work fine

Coarse grid selection now accomplished by taking a maximal

independent subset of the graph of strong connections
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Choices of coarse grids

−uxx − uyy = f , Dirichlet BCs

32× 32 bilinear finite element grid

2 Steps Weighted Jacobi to determine Si

5 10 15 20 25 30

5

10

15

20

25

30

x

y
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Choices of coarse grids

−uxx − 0.01uyy = f , Dirichlet BCs

32× 32 bilinear finite element grid
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Choices of coarse grids

−uxx − uyy = f , Dirichlet BCs

32× 32 bilinear finite element grid, A→ DAD, dii = 105ri
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Classical AMG Interpolation

Once a coarse grid has been chosen, want to interpolate from strongly

connected coarse-grid neighbours, Ci = Si ∩ C

Interpolation must be accurate for algebraically smooth error

components, so consider (Ae)i ≈ 0:

aiiei = −
X

j∈Ci

aijej −
X

k/∈Ci∪{i}
aikek

Algebraically smooth error characterised by

H3: Algebraically smooth error varies slowly in the direction of strong

connections
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Weaknesses

Assumption on algebraically smooth error based on “nice” M-matrix

properties

Breaks down if near null space of A is far from the constant

Diagonal rescaling,

A→ DAD

Finite element anisotropy,

−uxx − εuyy → 1

6

2
6664

(−1− ε) (2− 4ε) (−1− ε)
(−4 + 2ε) (8 + 8ε) (−4 + 2ε)

(−1− ε) (2− 4ε) (−1− ε)

3
7775

Even for simple problems,

Algebraically smooth error difficult to categorise

Strong connections difficult to identify
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What is Algebraically Smooth Error?

By definition, any error not efficiently reduced by relaxation

Easily exposed by relaxation on homogeneous problem, Ax = 0, with a

random initial guess

Use this error to characterise variation in general algebraically smooth

errors along strong connections

ei = −
X

j∈Ci

aij +
X

k/∈Ci∪{i}
aik

0
BBB@

akjxkX

j′∈Ci

akj′xj′

1
CCCA

aii
ej

Need only a local approximation of the variation in algebraically smooth

error

In practice, relax only enough to expose local character, then form

interpolation and restrict problem to coarse grid
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Algorithm

Given A,f

Relax ν0 times on Ax = 0 with a random initial guess

On each level

Determine local strong connections by µ relaxations on AG(i) = I(i)

Choose coarse grid by colouring algorithm

Relax ν1 times on Ax = 0 to improve representation of algebraically

smooth error

Form interpolation, P , based on x

Compute Ac = PTAP , inject xc = (x)c

Examples have fixed ν0 = ν1 = 15, µ = 2
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Numerical Results

Convergence Factors of Resulting V(1,1) Cycles

grid Laplace Scaled Anisotropic Scaled
Laplace Anisotropic

32× 32 0.06 0.06 0.10 0.10

64× 64 0.07 0.07 0.10 0.10

128× 128 0.07 0.07 0.10 0.10

256× 256 0.07 0.07 0.10 0.10

512× 512 0.07 0.07 0.10 0.10
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Current Research

Integrated implementation very new

Computing the strength measures is very computationally intensive

Main goal is to improve robustness:

Get it right, then make it efficient

Significant structure to approximations computed for {G(i)}, must

take advantage of it

Integration of information computed for coarse-grid selection

Computing local low-energy components

Computing an approximate inverse for A

Rigorous testing of algorithm and its parameters

What are the “right” choices for θ, µ, ν0, ν1?

What new problems can we solve?
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Summary

Classical AMG algorithms rely on M-matrix assumptions

These assumptions can be effectively replaced by probing performance

of relaxation

Algebraic measure of strength of connection

Relaxation-induced definition of interpolation

Current work: fully study efficiencies and cost implications

Future work: develop more efficient AMG algorithms for systems of PDEs
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