Adaptive Algebraic Multigrid

Scott MacLachlan
maclachl@colorado.edu

Department of Applied Mathematics, University of Colorado at Boulder

Support and Collaboration

- This work has been supported by the DOE SciDAC TOPS program, the Center for Applied Scientific Computing at Lawrence Livermore National Lab, and Los Alamos National Laboratory.
- This work has been performed in collaboration with Steve McCormick, Tom Manteuffel, John Ruge, Marian Brezina, and James Brannick at CU-Boulder.

Recent Advances in Multilevel Methods

- Significant interest in simulating complex physical systems with features, and hence solutions, that vary on multiple scales

■ Accuracy constraints are often driven by motivating applications, requiring efficient iterative methods to solve the resulting linear (and non-linear) systems

- Multiscale solution techniques, such as multigrid, are often most efficient approach
- Recent advances include
- new multigrid techniques to broaden applicability of algebraic multigrid solvers/preconditioners
- improvements in implementation and understanding of multigrid in (massively) parallel environments
- new approaches to the application of multiscale/multilevel ideas in many application areas

Multigrid

Multigrid Methods achieve optimality through complementarity

Multigrid

Multigrid Methods achieve optimality through complementarity
Multigrid Components

- Relaxation

$$
\underset{\left.\operatorname{sel}^{(1)}\right)^{(1)}-f^{(1)}}{\bullet}
$$

■ Use a smoothing process (such as Gauss-Seidel) to eliminate oscillatory errors

■ Remaining error satisfies $A \mathbf{e}=\mathbf{r} \equiv \mathbf{f}-A \mathbf{v}$

Multigrid

Multigrid Methods achieve optimality through complementarity
Multigrid Components

- Relaxation
- Restriction

- Transfer residual to coarse grid

Multigrid

Multigrid Methods achieve optimality through complementarity
Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction

- Use coarse-grid correction to eliminate smooth errors
- To solve for error on coarse grid, use residual equation

$$
A^{(2)} \mathbf{e}^{(2)}=\mathbf{r}^{(2)}
$$

Multigrid

Multigrid Methods achieve optimality through complementarity Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation

- Transfer correction to fine grid

Multigrid

Multigrid Methods achieve optimality through complementarity
Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation

- Relaxation
- Relax once again to remove oscillatory error introduced in coarse-grid correction

Multigrid

Multigrid Methods achieve optimality through complementarity
Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Obtain optimal efficiency through recursion

Algebraically Smooth Error

- Multigrid methods reduce error through
- Relaxation (Jacobi, Gauss-Seidel)
- Coarse-grid correction (variational)
- Error which is not efficiently reduced by relaxation is called algebraically smooth and must be reduced by coarse-grid correction
- Pointwise relaxation implies that algebraically smooth error, e, satisfies $A \mathbf{e} \approx 0$, relative to e
- If the origins of the matrix are known, so is character of algebraically smooth error

Algebraic Multigrid

- Assume no knowledge of grid geometry
- Interpolation and coarse grids chosen based only on the entries of the matrix
- Primary goal is to interpolate suitable corrections from the coarse grids
- Assume algebraically smooth error is locally constant
- Equivalently, assume global near null space is the constant vector

Classical AMG Coarsening

- Strong Connections based on matrix entries:

$$
S_{i}=\left\{j:-a_{i j} \geq \theta \max _{k \neq i}\left\{-a_{i k}\right\}\right\}
$$

- Coarse grid chosen by maximal independent set heuristics

H1: For each $i \in F$, every $j \in S_{i}$ should be either in C_{i} or should strongly depend on at least one point in C_{i}

H2: The set, C, should be a maximal subset of the fine grid, such that no C-point strongly depends on another C-point

Weaknesses

- Definition of strong connections based on "nice" M-matrix properties
- Breaks down if near null space of A is far from the constant

■ Diagonal rescaling,

$$
A \rightarrow D A D
$$

- Finite element anisotropy,

$$
-u_{x x}-\epsilon u_{y y} \rightarrow \frac{1}{6}\left[\begin{array}{ccc}
(-1-\epsilon) & (2-4 \epsilon) & (-1-\epsilon) \\
(-4+2 \epsilon) & (8+8 \epsilon) & (-4+2 \epsilon) \\
(-1-\epsilon) & (2-4 \epsilon) & (-1-\epsilon)
\end{array}\right]
$$

- Even for simple problems, size of $a_{i j}$ may not reflect true connection between i and j

What are Strong Connections?

- Point i strongly depends on point j if
- a change in the right-hand side at point j significantly changes the solution at point i.
- a change in the residual at point j significantly changes the error at point i
- Good coarse-grid correction depends on identifying strong connections
- Interpolation to i is most effective from points that it strongly depends on
- Corrections from weakly connected points have little effect on the error at i

Inverse-based Strength

■ For the discrete linear system, $A \mathbf{v}=\mathbf{f}$, the inverse relates changes in \mathbf{f} to changes in \mathbf{v}

$$
\mathbf{v}=(A)^{-1} \mathbf{f}
$$

- If a change in f_{j} causes a significant change in v_{i}, then $(A)_{i j}^{-1}$ must be large relative to other values of $(A)_{i k}^{-1}$

Measures of Strong Connections

- Strength of dependence of i on j depends on size of $(A)_{i j}^{-1}$
- How should we measure this size, relative to $(A)_{i k}^{-1}$?

Measures of Strong Connections

- Strength of dependence of i on j depends on size of $(A)_{i j}^{-1}$
- How should we measure this size, relative to $(A)_{i k}^{-1}$?
- L^{2} measure: $(A)_{i j}^{-1} \geq \theta \max _{k \neq i}\left\{(A)_{i k}^{-1}\right\}$
\square Energy measure: Let $G_{j}^{(i)}=(A)_{i j}^{-1}, S_{i j}=\frac{\left\|\mathbf{G}^{(i)}-G_{j}^{(i)} \mathbf{I}^{(j)}\right\|_{A}}{\left\|\mathbf{G}^{(i)}\right\|_{A}}$

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?

■ Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

- Weighted Jacobi, 1 step:

Jacobi-S((17,17),(i,j)), w=8/9

Jacobi-S((17,17),(i,j)), w=2/3

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$
- Weighted Jacobi, 2 steps:

Jacobi-S((17,17),(i,j)), w=8/9

Jacobi-S((17,17),(i,j)), w=2/3

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$
- Weighted Jacobi, 3 steps:

Jacobi-S((17,17),(i,j)), w=8/9

Jacobi-S((17,17),(i,j)), w=2/3

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

■ Weighted Jacobi, 4 steps:

Jacobi-S((17,17),(i,j)), w=8/9

Jacobi-S((17,17),(i,j)), w=2/3

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

■ Weighted Jacobi, 5 steps:

Jacobi-S((17,17),(i,j)), w=8/9

Jacobi-S((17,17),(i,j)), w=2/3

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$
- Weighted Jacobi, 6 steps:

Jacobi-S((17,17),(i,j)), w=8/9

Jacobi-S((17,17),(i,j)), w=2/3

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$
- Weighted Jacobi, 7 steps:

Jacobi-S((17,17),(i,j)), w=8/9

Jacobi-S((17,17),(i,j)), w=2/3

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

■ Weighted Jacobi, 8 steps:

Jacobi-S((17,17),(i,j)), w=8/9

Jacobi-S((17,17),(i,j)), w=2/3

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

■ Weighted Jacobi, 9 steps:

Jacobi-S((17,17),(i,j)), w=8/9

Jacobi-S((17,17),(i,j)), w=2/3

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$
- Weighted Jacobi, 10 steps:

Jacobi-S((17,17),(i,j)), w=8/9

Jacobi-S((17,17),(i,j)), w=2/3

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$
- Weighted Jacobi, 50 steps:

Jacobi-S((17,17),(i,j)), w=8/9

Jacobi-S((17,17),(i,j)), w=2/3

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?

■ Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

- Jacobi-Preconditioned CG, 1 step:

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

■ Jacobi-Preconditioned CG, 2 steps:

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

■ Jacobi-Preconditioned CG, 3 steps:

Jacobi-CG-S((17,17),(i,j))

Jacobi-CG-S((17,17),(i,j))

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

■ Jacobi-Preconditioned CG, 4 steps:

Jacobi-CG-S((17,17),(i,j))

Jacobi-CG-S((17,17),(i,j))

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

■ Jacobi-Preconditioned CG, 5 steps:

Jacobi-CG-S((17,17),(i,j))

Jacobi-CG-S((17,17),(i,j))

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

■ Jacobi-Preconditioned CG, 6 steps:

Jacobi-CG-S((17,17),(i,j))

Jacobi-CG-S((17,17),(i,j))

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$

■ Jacobi-Preconditioned CG, 7 steps:

Jacobi-CG-S((17,17),(i,j))

Jacobi-CG-S((17,17),(i,j))

Choosing C

For point $i,\left\{S_{i j}\right\}$ are now measures of strengths of connection

- We now say i strongly depends on j if $(A)_{i j} \neq 0$ and

$$
S_{i j}-1 \geq \theta \max _{k \neq i}\left\{S_{i k}-1\right\}
$$

- For now, $\theta=0.25$ seems to work fine
- Coarse grid selection now accomplished by taking a maximal independent subset of the graph of strong connections

Choices of coarse grids

■ $-u_{x x}-u_{y y}=f$, Dirichlet BCs

- 32×32 bilinear finite element grid
- 2 Steps Weighted Jacobi to determine S_{i}

Choices of coarse grids

- $-u_{x x}-0.01 u_{y y}=f$, Dirichlet BCs
- 32×32 bilinear finite element grid
- 2 Steps Weighted Jacobi to determine S_{i}

Choices of coarse grids

- $-u_{x x}-u_{y y}=f$, Dirichlet BCs
- 32×32 bilinear finite element grid, $A \rightarrow D A D, d_{i i}=10^{5 r_{i}}$
- 2 Steps Weighted Jacobi to determine S_{i}

Choices of coarse grids

- $-u_{x x}-0.01 u_{y y}=f$, Dirichlet BCs

■ 32×32 bilinear finite element grid, $A \rightarrow D A D, d_{i i}=10^{5 r_{i}}$

- 2 Steps Weighted Jacobi to determine S_{i}

Classical AMG Interpolation

- Once a coarse grid has been chosen, want to interpolate from strongly connected coarse-grid neighbours, $C_{i}=S_{i} \cap C$
- Interpolation must be accurate for algebraically smooth error components, so consider $(A \mathbf{e})_{i} \approx 0$:

$$
a_{i i} e_{i}=-\sum_{j \in C_{i}} a_{i j} e_{j}-\sum_{k \notin C_{i} \cup\{i\}} a_{i k} e_{k}
$$

- Algebraically smooth error characterised by

H3: Algebraically smooth error varies slowly in the direction of strong connections

Weaknesses

- Assumption on algebraically smooth error based on "nice" M-matrix properties
- Breaks down if near null space of A is far from the constant

■ Diagonal rescaling,

$$
A \rightarrow D A D
$$

- Finite element anisotropy,

$$
-u_{x x}-\epsilon u_{y y} \rightarrow \frac{1}{6}\left[\begin{array}{ccc}
(-1-\epsilon) & (2-4 \epsilon) & (-1-\epsilon) \\
(-4+2 \epsilon) & (8+8 \epsilon) & (-4+2 \epsilon) \\
(-1-\epsilon) & (2-4 \epsilon) & (-1-\epsilon)
\end{array}\right]
$$

- Even for simple problems,
- Algebraically smooth error difficult to categorise
- Strong connections difficult to identify

What is Algebraically Smooth Error?

- By definition, any error not efficiently reduced by relaxation

■ Easily exposed by relaxation on homogeneous problem, $A \mathrm{x}=\mathbf{0}$, with a random initial guess

■ Use this error to characterise variation in general algebraically smooth errors along strong connections

$$
e_{i}=-\sum_{j \in C_{i}} \frac{a_{i j}+\sum_{k \notin C_{i} \cup\{i\}} a_{i k}\left(\frac{a_{k j} x_{k}}{\sum_{j^{\prime} \in C_{i}} a_{k j^{\prime}} x_{j^{\prime}}}\right)}{a_{i i}} e_{j}
$$

■ Need only a local approximation of the variation in algebraically smooth error

- In practice, relax only enough to expose local character, then form interpolation and restrict problem to coarse grid

Algorithm

- Given A,f
- Relax ν_{0} times on $A \mathbf{x}=\mathbf{0}$ with a random initial guess
- On each level
- Determine local strong connections by μ relaxations on $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$
- Choose coarse grid by colouring algorithm
- Relax ν_{1} times on $A \mathrm{x}=\mathbf{0}$ to improve representation of algebraically smooth error
- Form interpolation, P, based on x
\square Compute $A_{c}=P^{T} A P$, inject $\mathbf{x}_{c}=(\mathbf{x})_{c}$
- Examples have fixed $\nu_{0}=\nu_{1}=15, \mu=2$

Numerical Results

Convergence Factors of Resulting V(1,1) Cycles

grid	Laplace	Scaled Laplace	Anisotropic	Scaled Anisotropic
32×32	0.06	0.06	0.10	0.10
64×64	0.07	0.07	0.10	0.10
128×128	0.07	0.07	0.10	0.10
256×256	0.07	0.07	0.10	0.10
512×512	0.07	0.07	0.10	0.10

Current Research

■ Integrated implementation very new

- Computing the strength measures is very computationally intensive
- Main goal is to improve robustness:

Get it right, then make it efficient

- Significant structure to approximations computed for $\left\{\mathbf{G}^{(i)}\right\}$, must take advantage of it
- Integration of information computed for coarse-grid selection
- Computing local low-energy components

■ Computing an approximate inverse for A

- Rigorous testing of algorithm and its parameters
- What are the "right" choices for $\theta, \mu, \nu_{0}, \nu_{1}$?
- What new problems can we solve?

Summary

- Classical AMG algorithms rely on M-matrix assumptions
- These assumptions can be effectively replaced by probing performance of relaxation
- Algebraic measure of strength of connection
- Relaxation-induced definition of interpolation
- Current work: fully study efficiencies and cost implications
- Future work: develop more efficient AMG algorithms for systems of PDEs

