Adaptive Algebraic Multigrid

Scott MacLachlan

maclachl@colorado.edu

Department of Applied Mathematics, University of Colorado at Boulder

Support and Collaboration

- This work has been supported by the DOE SciDAC TOPS program, the Center for Applied Scientific Computing at Lawrence Livermore National Lab, and Los Alamos National Laboratory.
- This work has been performed in collaboration with Steve McCormick, Tom Manteuffel, John Ruge, Marian Brezina, and James Brannick at CU-Boulder.

Recent Advances in Multilevel Methods

- Significant interest in simulating complex physical systems with features, and hence solutions, that vary on multiple scales
- Accuracy constraints are often driven by motivating applications, requiring efficient iterative methods to solve the resulting linear (and non-linear) systems
- Multiscale solution techniques, such as multigrid, are often most efficient approach
- Recent advances include
 - new multigrid techniques to broaden applicability of algebraic multigrid solvers/preconditioners
 - improvements in implementation and understanding of multigrid in (massively) parallel environments
 - new approaches to the application of multiscale/multilevel ideas in many application areas

Multigrid Methods achieve optimality through complementarity

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

 $\begin{array}{c} \text{Relax} \bullet \\ A^{(1)}v^{(1)} = f^{(1)} \end{array}$

Use a smoothing process (such as Gauss-Seidel) to eliminate oscillatory errors

Remaining error satisfies $A\mathbf{e} = \mathbf{r} \equiv \mathbf{f} - A\mathbf{v}$

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction

Transfer residual to coarse grid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Use coarse-grid correction to eliminate smooth errors

To solve for error on coarse grid, use residual equation

 $A^{(2)}\mathbf{e}^{(2)} = \mathbf{r}^{(2)}$

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation

Transfer correction to fine grid

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Relax once again to remove oscillatory error introduced in coarse-grid correction

Multigrid Methods achieve optimality through complementarity

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Obtain optimal efficiency through recursion

Algebraically Smooth Error

- Multigrid methods reduce error through
 - Relaxation (Jacobi, Gauss-Seidel)
 - Coarse-grid correction (variational)
- Error which is not efficiently reduced by relaxation is called *algebraically* smooth and must be reduced by coarse-grid correction
- Pointwise relaxation implies that algebraically smooth error, e, satisfies $Ae \approx 0$, relative to e
- If the origins of the matrix are known, so is character of algebraically smooth error

Algebraic Multigrid

- Assume no knowledge of grid geometry
- Interpolation and coarse grids chosen based only on the entries of the matrix
- Primary goal is to interpolate suitable corrections from the coarse grids
- Assume algebraically smooth error is locally constant
- Equivalently, assume global near null space is the constant vector

Classical AMG Coarsening

Strong Connections based on matrix entries:

$$S_i = \left\{ j : -a_{ij} \ge \theta \max_{k \neq i} \{-a_{ik}\} \right\}$$

Coarse grid chosen by maximal independent set heuristics

- H1: For each $i \in F$, every $j \in S_i$ should be either in C_i or should strongly depend on at least one point in C_i
- **H2:** The set, *C*, should be a maximal subset of the fine grid, such that no *C*-point strongly depends on another *C*-point

Weaknesses

Definition of strong connections based on "nice" M-matrix properties

Breaks down if near null space of A is far from the constant

Diagonal rescaling,

$$A \to DAD$$

Finite element anisotropy,

$$-u_{xx} - \epsilon u_{yy} \rightarrow \frac{1}{6} \begin{bmatrix} (-1-\epsilon) & (2-4\epsilon) & (-1-\epsilon) \\ (-4+2\epsilon) & (8+8\epsilon) & (-4+2\epsilon) \\ (-1-\epsilon) & (2-4\epsilon) & (-1-\epsilon) \end{bmatrix}$$

Even for simple problems, size of a_{ij} may not reflect true connection between *i* and *j*

What are Strong Connections?

- Point i strongly depends on point j if
 - a change in the right-hand side at point j significantly changes the solution at point i.
 - a change in the residual at point j significantly changes the error at point i
- Good coarse-grid correction depends on identifying strong connections
 - Interpolation to i is most effective from points that it strongly depends on
 - Corrections from weakly connected points have little effect on the error at i

Inverse-based Strength

For the discrete linear system, Av = f, the inverse relates changes in f to changes in v

$$\mathbf{v} = (A)^{-1} \mathbf{f}$$

If a change in f_j causes a significant change in v_i , then $(A)_{ij}^{-1}$ must be large relative to other values of $(A)_{ik}^{-1}$

Measures of Strong Connections

- Strength of dependence of *i* on *j* depends on size of $(A)_{ij}^{-1}$
- How should we measure this size, relative to $(A)_{ik}^{-1}$?

Measures of Strong Connections

- Strength of dependence of *i* on *j* depends on size of $(A)_{ij}^{-1}$
- How should we measure this size, relative to $(A)_{ik}^{-1}$?
- L^2 measure: $(A)_{ij}^{-1} \ge \theta \max_{k \neq i} \{ (A)_{ik}^{-1} \}$

• Energy measure: Let $G_j^{(i)} = (A)_{ij}^{-1}$, $S_{ij} = \frac{\|\mathbf{G}^{(i)} - G_j^{(i)}\mathbf{I}^{(j)}\|_A}{\|\mathbf{G}^{(i)}\|_A}$

Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?

Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$

Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?

- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Weighted Jacobi, 1 step:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Weighted Jacobi, 2 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Weighted Jacobi, 3 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Weighted Jacobi, 4 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Weighted Jacobi, 5 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Weighted Jacobi, 6 steps:

Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?

- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Weighted Jacobi, 7 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Weighted Jacobi, 8 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Weighted Jacobi, 9 steps:

Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?

- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Weighted Jacobi, 10 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Weighted Jacobi, 50 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Jacobi-Preconditioned CG, 1 step:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Jacobi-Preconditioned CG, 2 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Jacobi-Preconditioned CG, 3 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Jacobi-Preconditioned CG, 4 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Jacobi-Preconditioned CG, 5 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Jacobi-Preconditioned CG, 6 steps:

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij} ?
- Apply (localized) relaxation to $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
- Jacobi-Preconditioned CG, 7 steps:

Choosing C

For point *i*, $\{S_{ij}\}$ are now measures of strengths of connection

• We now say *i* strongly depends on *j* if $(A)_{ij} \neq 0$ and

$$S_{ij} - 1 \ge \theta \max_{k \ne i} \left\{ S_{ik} - 1 \right\}$$

For now, $\theta = 0.25$ seems to work fine

Coarse grid selection now accomplished by taking a maximal independent subset of the graph of strong connections

 $-u_{xx} - u_{yy} = f$, Dirichlet BCs

- 32×32 bilinear finite element grid
- **2** Steps Weighted Jacobi to determine S_i

 $-u_{xx} - 0.01u_{yy} = f$, Dirichlet BCs

- 32×32 bilinear finite element grid
- **2** Steps Weighted Jacobi to determine S_i

 $-u_{xx} - u_{yy} = f$, Dirichlet BCs

■ 32×32 bilinear finite element grid, $A \rightarrow DAD$, $d_{ii} = 10^{5r_i}$

2 Steps Weighted Jacobi to determine S_i

 $-u_{xx} - 0.01u_{yy} = f$, Dirichlet BCs

■ 32×32 bilinear finite element grid, $A \rightarrow DAD$, $d_{ii} = 10^{5r_i}$

2 Steps Weighted Jacobi to determine S_i

Classical AMG Interpolation

- Once a coarse grid has been chosen, want to interpolate from strongly connected coarse-grid neighbours, $C_i = S_i \cap C$
- Interpolation must be accurate for algebraically smooth error components, so consider $(A\mathbf{e})_i \approx 0$:

$$a_{ii}e_i = -\sum_{j \in C_i} a_{ij}e_j - \sum_{k \notin C_i \cup \{i\}} a_{ik}e_k$$

- Algebraically smooth error characterised by
 - H3: Algebraically smooth error varies slowly in the direction of strong connections

Weaknesses

- Assumption on algebraically smooth error based on "nice" M-matrix properties
- Breaks down if near null space of A is far from the constant
 - Diagonal rescaling,

 $A \rightarrow DAD$

Finite element anisotropy,

$$-u_{xx} - \epsilon u_{yy} \rightarrow \frac{1}{6} \begin{bmatrix} (-1-\epsilon) & (2-4\epsilon) & (-1-\epsilon) \\ (-4+2\epsilon) & (8+8\epsilon) & (-4+2\epsilon) \\ (-1-\epsilon) & (2-4\epsilon) & (-1-\epsilon) \end{bmatrix}$$

- Even for simple problems,
 - Algebraically smooth error difficult to categorise
 - Strong connections difficult to identify

What is Algebraically Smooth Error?

- By definition, any error not efficiently reduced by relaxation
- Easily exposed by relaxation on homogeneous problem, Ax = 0, with a random initial guess
- Use this error to characterise variation in general algebraically smooth errors along strong connections

$$e_i = -\sum_{j \in C_i} \frac{a_{ij} + \sum_{k \notin C_i \cup \{i\}} a_{ik} \left(\frac{a_{kj} x_k}{\sum_{j' \in C_i} a_{kj'} x_{j'}}\right)}{a_{ii}} e_j$$

- Need only a local approximation of the variation in algebraically smooth error
- In practice, relax only enough to expose local character, then form interpolation and restrict problem to coarse grid

Algorithm

- Given A,f
- Relax ν_0 times on $A\mathbf{x} = \mathbf{0}$ with a random initial guess
- On each level
 - Determine local strong connections by μ relaxations on $A\mathbf{G}^{(i)} = \mathbf{I}^{(i)}$
 - Choose coarse grid by colouring algorithm
 - Relax ν_1 times on $A\mathbf{x} = \mathbf{0}$ to improve representation of algebraically smooth error
 - Form interpolation, P, based on \mathbf{x}
 - Compute $A_c = P^T A P$, inject $\mathbf{x}_c = (\mathbf{x})_c$
- Examples have fixed $\nu_0 = \nu_1 = 15$, $\mu = 2$

Numerical Results

Convergence	Factors	of Resulting	V(1,1)	Cycles
-------------	---------	--------------	--------	--------

grid	Laplace	Scaled Laplace	Anisotropic	Scaled Anisotropic
32×32	0.06	0.06	0.10	0.10
64×64	0.07	0.07	0.10	0.10
128×128	0.07	0.07	0.10	0.10
256×256	0.07	0.07	0.10	0.10
512×512	0.07	0.07	0.10	0.10

Current Research

- Integrated implementation very new
- Computing the strength measures is very computationally intensive
 - Main goal is to improve robustness:

Get it right, then make it efficient

- Significant structure to approximations computed for {G⁽ⁱ⁾}, must take advantage of it
- Integration of information computed for coarse-grid selection
 - Computing local low-energy components
 - Computing an approximate inverse for A
- Rigorous testing of algorithm and its parameters
 - What are the "right" choices for θ , μ , ν_0 , ν_1 ?
 - What new problems can we solve?

Summary

- Classical AMG algorithms rely on M-matrix assumptions
- These assumptions can be effectively replaced by probing performance of relaxation
- Algebraic measure of strength of connection
- Relaxation-induced definition of interpolation
- Current work: fully study efficiencies and cost implications
- Future work: develop more efficient AMG algorithms for systems of PDEs