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What is QCD?
Quantum Chromodynamics is the theory of the strong
interaction

� Part of the Standard model of particle physics

� Describes interactions between quarks and gluons

� Consistent with particle accelerator experiments

We generally believe QCD to be true,
but look to make consistent predictions to check it

� Accelerators measure particle masses, decay rates, . . .

� Use QCD theory to make predictions

� QCD not amenable to asymptotic analysis

� Need high-precision numerical simulations
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What’s a Quark?
Quarks are elementary particles

� Protons/Neutron composed of three quarks

� Each quark has a flavour
I Up, Down, Strange, Charm, Top, Bottom

� Quarks bound together by strong force
I Force between quarks grows as they move apart

We characterize quarks by their

� Spin (4 degrees of freedom)

� Colour (3 degrees of freedom)
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QCD Resources
Accelerators:

� Fermilab Tevatron: $120 million (in 1983)

� Large Hadron Collider: ¿2 billion (in 2007)

� International Linear Collider: est’d $6.65 billion

Computational:

� QCDOC: 3 systems at 10 Teraflops each

� APEnext: 7 TeraFlops

� Commodity clusters in USQCD: ∼ 10 Teraflops

� Blue Gene, Cray XT3
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The Continuum Challenge
Compute:

〈O(A, ψ, ψ)〉 =
1

Z

∫
O(A, ψ, ψ)e−Spg−SF dψdψdA

where

� 〈O〉 is the expected value of O
� A = Aµ(x) ∈ C3×3 is the gauge potential

� ψ(x), ψ(x) are Grassman-valued fermion fields

� Z =
∫

e−Spg−SF dψdψdA

� Spg = Spg (A) is the “pure gauge” action

� SF =
∫
x,y
ψ(x)M(A)ψ(y) is the fermionic action
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The Dirac Operator

M is block-structured in colour-spin

M(A) =
4∑

µ=1

(γµ ⊗ (I3∂µ − ıAµ))−mI12

where
� µ = 1, . . . , 4 represent space-time directions

� γµ are unitary 4× 4 matrices

� I3 and I12 are the 3× 3 and 12× 12 identities

� ∂µ is a regular partial derivative

� Aµ(x) ∈ C3×3 is the gauge potential

� m is a mass term
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Block Form
Writing Dµ = I3∂µ − ıAµ,

M =


−mI3 0 ıD3 − D4 ıD1 − D2

0 −mI3 ıD1 + D2 −ıD3 − D4

−ıD3 − D4 −ıD1 + D2 −mI3 0
−ıD1 − D2 ıD3 − D4 0 −mI3


Notice that Dµ

? = −Dµ, so
I3 0 0 0
0 I3 0 0
0 0 −I3 0
0 0 0 −I3

 M is a Hermitian operator
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Perturbative Methods

Early success in quantum field theory came from asymptotic
analysis

Quantum Electrodynamics (QED)
� Predictions accurate to 13 digits!

QCD resists this approach

Discretize

� Space-time becomes discrete lattice

� Gauge potential, Aµ, integrated over lattice links

Aµ(x)→ U(x, µ) = e−ıgAµ(xj )
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The Discrete Challenge
Compute:

〈O(U , ψ, ψ)〉 =
1

Z

∫
O(U , ψ, ψ)e−Spg−SF dψdψdU

where

� 〈O〉 is the expected value of O
� U(x, µ) = e−ıgAµ(x) is the lattice gauge field

� ψ(x), ψ(x) are Grassman-valued fermion fields

� Z =
∫

e−Spg−SF dψdψdU

� Spg = Spg (U) is the “pure gauge” action

� SF =
∑

x,y ψ(x)M(U)ψ(y) is the fermionic action
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Simplifying the integrals
“Easy” to simplify Z :

∫
e−SF dψdψ = det(M)

Z =

∫
det(M(U))e−Spg (U)dU =

∫
e−Seff

pg (U)dU

for Seff
pg = Spg (U) + Tr(log(M(U)))

Similar simplification for certain O(U , ψ, ψ):

〈ψ(y)ψ(x)f (U)〉 =
1

Z

∫
e−Seff

pg (U)f (U)M−1(y, x)dU

In general, integrate out fermion fields:

〈O(U , ψ, ψ)〉 =
1

Z

∫
e−Seff

pg Oeff (U ,M−1(U))dU
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Integrating over U

Use Monte-Carlo to integrate over U :

� Assume we can generate gauge fields with given
probability

P(Uk) =
1

Z
e−Seff

pg (Uk )

Then,

〈O(U , ψ, ψ)〉 ≈ 1

N

N∑
k=1

Oeff (Uk ,M
−1(Uk))

Two challenges:

� How do we pick {Uk}Nk=1?

� How do we evaluate Oeff (Uk ,M
−1(Uk))?
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Discretization

Discretization of M must preserve several properties for
consistency within Monte-Carlo scheme

Several choices for Dµ = I3∂µ − ıAµ:

Dµψ
ν(x) ≈ 1

h
(U(x, µ)ψν(x + hµ̂)− ψν(x))

≈ 1

h
(ψν(x)− U?(x− hµ̂, µ)ψν(x− hµ̂))

≈ 1

2h
(U(x, µ)ψν(x + hµ̂)− U?(x− hµ̂, µ)ψν(x− hµ̂))

where µ̂ is the unit-vector in the µ-direction
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Wilson Matrix

Choosing central differences for Dµψ
ν(x) leads to instability

(Analogy: Nodal vs. staggered discretizations of Stokes)

Modify M by adding

−h

2

∑
µ

D2
µψ

ν(x) ≈ 1

2h

∑
µ

(−U(x + hµ̂, µ)ψν(x + hµ̂) + 2ψν(x)

−U?(x− hµ̂, µ)ψν(x− hµ̂))

to its diagonal, M → M̃

Stabilized matrix, M̃ , is known as the Dirac-Wilson operator
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Quark Propagators

M−1 is called a quark propagator

Typically, approximating Oeff (Uk ,M
−1(Uk)) requires

computing several/many entries in M̃−1(Uk)
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Quark Propagators

M−1 is called a quark propagator

Typically, approximating Oeff (Uk ,M
−1(Uk)) requires

computing several/many entries in M̃−1(Uk)

After discretization, M̃ has dimension 12n3
xnt

� nx × nx × nx spatial lattice

� nt points in time (4th space dimension)

� 3 colour indices per lattice point

� 4 spin indices per colour/lattice point
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Numerical Linear Algebra Challenge

Solve M̃ψj = ηj for some collection, {ηj}

Size of {ηj} varies with application

� May be only a few RHS

� May want all (or most) of M̃−1

Our interest: when {ηj} is small enough that iterative
methods are appropriate, but large enough that multigrid
setup costs may be amortized
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Challenges in Lattice QCD
Numerical challenges arise because

� Need large nx , nt for physical accuracy

� M̃ is large, 12n3
xnt degrees of freedom

� Gauge field, U , is very disordered
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Challenges in Lattice QCD
Numerical challenges arise because

� Need large nx , nt for physical accuracy

� M̃ is large, 12n3
xnt degrees of freedom

� Gauge field, U , is very disordered

Assets in Lattice QCD

Opportunity for fast solvers exists because

� M̃ is sparse, 108 nonzeros per row

� M̃ is easily permuted to be Hermitian

� Many right-hand sides for each realization of U
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Extreme Simplification
Consider

� 2D spatial lattice, instead of 4D space-time

� Single colour/spin per lattice site (⇒ scalar U)

� “Cold” Gauge field, U(x, µ) ≡ 1

� Mass term, m = 0

Result:
2D Poisson equation:

M̃ →

 −1
h2

−1
h2

4
h2

−1
h2

−1
h2



Start search for good QCD solver with good Poisson solver

Multigrid solvers for quantum dynamics - a first look- p.18



Extreme Simplification
Consider

� 2D spatial lattice, instead of 4D space-time

� Single colour/spin per lattice site (⇒ scalar U)

� “Cold” Gauge field, U(x, µ) ≡ 1

� Mass term, m = 0

Result:
2D Poisson equation:

M̃ →

 −1
h2

−1
h2

4
h2

−1
h2

−1
h2



Start search for good QCD solver with good Poisson solver

Multigrid solvers for quantum dynamics - a first look- p.18



Extreme Simplification
Consider

� 2D spatial lattice, instead of 4D space-time

� Single colour/spin per lattice site (⇒ scalar U)

� “Cold” Gauge field, U(x, µ) ≡ 1

� Mass term, m = 0

Result:
2D Poisson equation:

M̃ →

 −1
h2

−1
h2

4
h2

−1
h2

−1
h2



Start search for good QCD solver with good Poisson solver

Multigrid solvers for quantum dynamics - a first look- p.18



Scalability
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Stationary Iterative Methods
� Want to improve approximation, x (0), to x = A−1b

� Residual, r (0), is a measure of the error

r (0) = b − Ax (0) = Ax − Ax (0) = A(x − x (0))

� Choose B−1 ≈ A−1

� Take x (1) = x (0) + B−1r (0)

Error propagation form: e(1) = (I − B−1A)e(0)
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Convergence of Stationary Iterations

Convergence depends on spectrum of I − B−1A

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Weighted Jacobi Iteration: e(n) = (I − 3
4
D−1A)ne(0)
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Convergence of Stationary Iterations

Convergence depends on spectrum of I − B−1A
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Gauss-Seidel Iteration: e(n) = (I − L−1A)ne(0)
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Smoothing Property

Random initial error
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Smoothing Property

Error after 1 weighted Jacobi iteration
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Smoothing Property

Error after 2 weighted Jacobi iterations
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Smoothing Property

Error after 3 weighted Jacobi iterations
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Smoothing Property

Error after 4 weighted Jacobi iterations
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Smoothing Property

Error after 5 weighted Jacobi iterations
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Smoothing Property

Error after 6 weighted Jacobi iterations
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Smoothing Property

Error after 7 weighted Jacobi iterations
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Smoothing Property

Error after 8 weighted Jacobi iterations
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Smoothing Property

Error after 9 weighted Jacobi iterations
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Smoothing Property

Error after 10 weighted Jacobi iterations
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Complementarity
� Error after a few weighted Jacobi iterations has structure

� Instead of throwing out the method, look to complement
its failings

How can we best correct error modes that are slow to be
reduced by relaxation?

� Slow-to-converge errors are smooth

� Smooth vectors can be easily represented using fewer
degrees of freedom
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Coarse-Grid Correction
� Smooth vectors can be accurately represented using fewer

degrees of freedom

� Idea: transfer job of resolving smooth components to a
coarser grid version of the problem

� Need:
I Complementary process for resolving smooth

components of the error on the coarse grid
I Way to combine the results of the two processes

Multigrid solvers for quantum dynamics - a first look- p.24



Variational Coarsening
� Correct the approximation after relaxation, x (1), from an

auxilliary (coarse-grid) problem

� Need interpolation map, P , from coarse grid to fine grid

� Corrected approximation will be x (2) = x (1) + Pxc

What is the best xc for correction?
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A-norm and A-inner product
� Asking for the best solution implies a metric

� Hermitian and positive-definite matrix, A, defines an inner
product and a norm:

〈x , y〉A = y ?Ax and ‖x‖2A = x?Ax

� Best then means closest to the exact solution in norm

y opt = argmin
y
‖x − y‖A
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Variational Coarsening
� Want to correct the approximation after relaxation, x (1),

from a coarse-grid version of of the problem

� Need interpolation map, P , from coarse grid to fine grid

� Corrected approximation will be x (2) = x (1) + Pxc

What is the best xc for correction?

� Best means closest to the exact solution in norm

xc = argmin
yc

‖x − (x (1) + Pyc)‖A

� Best xc satisfies (P?AP)xc = P?A(x − x (1)) = P?r (1)
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Multigrid
Multigrid Components

� Relaxation

� Restriction

� Coarse-Grid Correction

� Interpolation

� Relaxation

+DRelax: x
(1)

= x
(0) (0)

r
−1

� Use a smoothing process (such as Jacobi or Gauss-Seidel)
to eliminate oscillatory errors

� Remaining error satisfies Ae(1) = r (1) = b − Ax (1)
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Multigrid
Multigrid Components

� Relaxation

� Restriction

� Coarse-Grid Correction

� Interpolation

� Relaxation

+D

Restriction

Relax: x
(1)

= x
(0) (0)

r
−1

� Transfer residual to coarse grid

� Compute P?r (1)
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Multigrid
Multigrid Components

� Relaxation

� Restriction

� Coarse-Grid Correction

� Interpolation

� Relaxation

−1

Restriction

Solve: P
*
APx c= P

*
r

(1)

Relax: x
(1)

= x
(0)

+D
(0)

r

� Use coarse-grid correction to eliminate smooth errors

� Best correction, xc , in terms of A-norm satisfies

P?APxc = P?r (1)
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Multigrid
Multigrid Components

� Relaxation

� Restriction

� Coarse-Grid Correction

� Interpolation

� Relaxation

+D

Restriction Interpolation

Solve: P
*
APx c= P

*
r

(1)

Relax: x
(1)

= x
(0) (0)

r
−1

� Transfer correction to fine grid

� Compute x (2) = x (1) + Pxc
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Multigrid
Multigrid Components

� Relaxation

� Restriction

� Coarse-Grid Correction

� Interpolation

� Relaxation
*

Restriction Interpolation

Solve: P APx c= P r
(1)

Relax: x
(1)

= x
(0) (0)

r
−1

+D
Relax

*

� Relax once again to remove oscillatory error introduced in
coarse-grid correction
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Multigrid
Multigrid Components

� Relaxation

� Restriction

� Coarse-Grid Correction

� Interpolation

� Relaxation
*

Restriction Interpolation

Solve: P APx c= P r
(1)

Relax: x
(1)

= x
(0) (0)

r
−1

+D
Relax

*

Direct solution of coarse-grid problem isn’t practical
Recursion!

Apply same methodology to solve coarse-grid problem
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Performance
� Uniform grid coarsening

� Bilinear Interpolation

� V(2,2) cycles, with under-relaxed Jacobi

grid 642 1282 2562 5122

ρMG 0.164 0.165 0.165 0.165

Now relax simplifications:

� Allow U(x, µ) to take physical (scalar) values
I “Gauge Laplacian”

grid 642 1282 2562 5122

ρMG 0.689 0.762 0.776 0.736
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Accounting for Heterogeneity

Poor performance results from ignoring heterogeneity

Error after relaxation on Poisson’s equation is smooth

� Low-order geometric interpolation is accurate

Geometric multigrid defines interpolation based on

� grid geometry

� assumptions on performance of relaxation

Heterogeneity strongly influences performance of relaxation
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“Smooth” Errors
� Linear interpolation can make O(1) errors for problems

with non-smooth coefficients

Slowest to converge error for d
dx

(
σ du

dx

)
, for

σ =

{
10−8 x ≤ 3

8

1 x > 3
8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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“Smooth” Errors
� Linear interpolation can make O(1) errors for problems

with non-smooth coefficients

Slowest to converge error for d
dx

(
σ du

dx

)
, for

σ =

{
10−8 x ≤ 3

8

1 x > 3
8

and linear interpolant from coarse grid
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“Smooth” Errors
� Linear interpolation can make O(1) errors for problems

with non-smooth coefficients

� The abrupt change in character of slow-to-converge errors
is reflected in matrix entries

A =
1

h2



2× 10−8 −10−8

−10−8 2× 10−8 −10−8

−10−8 1 + 10−8 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2
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“Smooth” Errors
� Linear interpolation can make O(1) errors for problems

with non-smooth coefficients

� The abrupt change in character of slow-to-converge errors
is reflected in matrix entries

� Idea: Use the entries in the matrix operator to help define
interpolation
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Algebraic Multigrid Interpolation1

� Assume a partition into fine (F ) and coarse (C ) grid sets

� Define interpolation based only on entries in A

� Start with assumption that errors left after relaxation
have small residuals: for i ∈ F ,

(Ae)i ≈ 0

aiiei = −
∑
j∈F

aijej −
∑
k∈C

aikek

� Use assumptions about slow-to-converge error to collapse
connections to j ∈ F onto k ∈ C ∩ {k : aik 6= 0}

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stüben, in Multigrid Methods, 1987
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Complex-Valued AMG2

Gauge Laplacian is a Hermitian H-matrix

� A is an H-matrix ifM(A) is an M-matrix,

(M(A))ij =

{
|aii | if i = j
−|aij | if i 6= j

,

� Jacobi/Gauss-Seidel converge for H-matrices

� Fourier analysis confirms (algebraic) smoothing properties

� Interpolation based on classical AMG

� Restriction as adjoint of interpolation

� Galerkin coarse-grid operators

S. MacLachlan and K. Oosterlee, submitted, 2007
Varga, Linear Algebra and Appl. 1976, 13:1-9
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Solving the Gauge Laplacian

Convergence Factors
grid 642 1282 2562 5122

ρMG 0.689 0.762 0.776 0.736
ρAMG 0.277 0.378 0.404 0.390

Operator Complexities
grid 642 1282 2562 5122

CMG 1.63 1.62 1.61 1.60
CAMG 2.68 2.59 2.55 2.52

Convergence factor per matvec equivalent
grid 642 1282 2562 5122

ρeff
MG 0.944 0.959 0.961 0.953

ρeff
AMG 0.887 0.910 0.915 0.911
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Shifted Gauge Laplacian

Now take realistic values of U(x, µ) and m

M̃ →

 −U(x, ( 0
1 ))

−U?(x− ( h
0 ) , ( 1

0 )) 4−m −U(x, ( 1
0 ))

−U?(x− ( 0
h ) , ( 0

1 ))


� |U(x, µ)| = 1 for all x, µ

� For “physical” fields U(x, µ) and m = 0, λmin(M̃) > 0.

� Choose m > 0 so that λmin(M̃)→ 0
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Effect of Shifting

AMG Convergence Factors

λmin(M̃) 642 1282 2562 5122

1.0 0.040 0.051 0.049 0.047
10−1 0.475 0.598 0.579 0.563
10−2 0.893 0.934 0.932 0.911
10−3 0.988 0.993 0.993 0.990
10−4 0.9988 0.9993 0.9993 0.9990
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Algebraically Smooth Error

Slow-to-converge errors must be in range of interpolation

� AMG treats heterogeneity in coarse-grid correction

� Heterogeneity in M̃ affects performance of relaxation

� As λmin(M̃)→ 0, performance of relaxation degrades

� As λmin(M̃)→ 0, accuracy of interpolation must increase

AMG process makes assumptions on relaxation for generality

� AMG assumptions are violated as λmin(M̃)→ 0
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Krylov Acceleration

If only one bad eigenvalue, then CG acceleration should be
effective

PCG Iterations so that ‖r(k)‖/‖r(0)‖ < 10−10

λmin(M̃) 642 1282 2562 5122

no shift 9 10 10 10

May solve 1000+ RHS in each Monte-Carlo step
Can amortize expensive setup, if it pays off in solve phase
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Calibrating Interpolation3

AMG based on assumptions about slow-to-converge errors

What if we don’t know what to assume?

A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003
M. Brezina et al., SISC 2004, 25:1896-1920; SISC 2006, 27:1261-1286
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Calibrating Interpolation3

AMG based on assumptions about slow-to-converge errors

What if we don’t know what to assume?
Run relaxation to find out!

� Run relaxation on Ax = 0 with a random initial guess

� This exposes the local character of slow-to-converge errors

� Use resulting vector as a prototype of errors to be
corrected by interpolation within algebraic multigrid

Adapt AMG interpolation based on true performance of
relaxation

A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003
M. Brezina et al., SISC 2004, 25:1896-1920; SISC 2006, 27:1261-1286
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Controlling Adaptation
� Two possible sources of slow adaptive MG convergence

I Prototype is a bad representative error
I Prototype is good, but there is distinct slow-to-converge

error

� Want a measure to distinguish cause of bad performance

Use estimates of ‖I − B−1A‖ to measure both performance
and quality of prototype sets

� Estimate λmin(B
−1A) using Rayleigh Quotients
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Adaptive Algorithm
While ‖I − B−1

MGA‖est is large

� if ‖I − B−1
rel A‖est is increasing

I iterate on Ax = 0 with “relaxation”, x ← (I − B−1
rel A)x

I recalibrate interpolation based on new x
I recompute coarse-grid operator
I restrict x to coarse grid and cycle there
I interpolate further improved x after coarse-grid cycle

� else
I Replace “relaxation” with multigrid cycle: Brel ← BMG
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Effect of Adaptivity

AMG Convergence Factors

λmin(M̃) 642 1282 2562 5122

1.0 0.024 0.039 0.036 0.034
10−1 0.197 0.311 0.328 0.294
10−2 0.414 0.446 0.488 0.550
10−3 0.587 0.527 0.542 0.630
10−4 0.626 0.557 0.477 0.586
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Effect of Adaptivity

AMG-PCG Iteration Counts
λmin(M̃) 642 1282 2562 5122

no shift 6 7 7 7
10−1 7 8 8 8
10−2 10 11 11 12
10−3 13 13 12 13
10−4 14 14 11 13
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Cost of Adaptivity

Extra relaxations pay off with multiple RHS
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Optimising Adaptivity

Large parameter space to search

� Relaxation on Ax = 0 is cheap

� Constructing coarse grids is expense

� Ability of relaxation to improve prototype diminishes

� Coarse-grid correction significantly improves prototype

Relax until performance slows, then coarsen

Difficult to optimise due to problem-dependent behaviour
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Full Physics

Final challenge: attack full 4D system
− 1

2h
D2 −mI3 0 ıD3 − D4 ıD1 − D2

0 − 1
2h

D2 −mI3 ıD1 + D2 −ıD3 − D4

−ıD3 − D4 −ıD1 + D2 − 1
2h

D2 −mI3 0
−ıD1 − D2 ıD3 − D4 0 − 1

2h
D2 −mI3


where Dµ = I3∂µ − iAµ, D2 =

∑
µ D2

µ

Half step: 2D System:(
− 1

2h
D2 −mI3 ıD1 − D2

−ıD1 − D2 − 1
2h

D2 −mI3

)
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Brute Force Approach4

� Adaptive smoothed aggregation multigrid

� Solve equivalent real form of M̃?M̃

� 128× 128 periodic lattice

Average residual reduction per iteration
Diagonal-PCG AdaptiveMG-PCG

λmin(M̃) 0.3 0.1 0.05 0.01 0.3 0.1 0.05 0.01

β ≈ 0.2 0.83 0.92 0.96 0.99 0.28 0.29 0.31 0.31
β ≈ 0.3 0.86 0.93 0.97 0.98 0.31 0.40 0.42 0.42
β ≈ 0.5 0.85 0.94 0.96 0.99 0.31 0.31 0.31 0.33

Adaptive MG setup time: 13.7 seconds
Adaptive MG-PCG solve time: 0.8 seconds
Diagonal-PCG solve time: 4.7 seconds

J. Brannick et al., to appear in Proc. DD16, 2007
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Relaxation on MM?

Equivalent real form of M?M expensive:

� Real form doubles needed storage

� Real form hides complex structure

� M?M (or MM?) much denser than M

Advantage: Structure of MM? more amenable to multigrid

(MM?)jj = −D2 +

(
− 1

2h
D2 −mI3

)2

(MM?)jk → lower-order terms for j 6= k
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Hybrid approach
Implictly relax on MM?, but coarsen based on M

� Kaczmarz relaxation on M

� No need to compute or store MM?

� Slow to converge components dominated by D2

� Use adaptive AMG to design effective coarse-grid
correction
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Summary
� QCD attempts to explain strong force

� Numerical simulation requires many matrix solves

� Matrices are heterogeneous, but structured

� MG/AMG naturally handles some challenges

� Adaptive AMG key to addressing mass shift

� Key Question: most efficient setup approach

� Generalization to full physics underway
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