A Brief Tour of Computational Mathematics

Scott MacLachlan
Scott.MacLachlan@colorado.edu
Department of Applied Mathematics
University of Colorado at Boulder

Outline

- Computation and Science/Engineering
- Mathematical Models
- Computational Simulation
- Data Analysis
- Barriers to Efficiency
- Current Research

What is Computational Math?

- Using computers to solve mathematical problems

What is Computational Math?

- Using computers to solve mathematical problems
- Computers can perform only simple arithmetic add/subtract, multiply/divide

What is Computational Math?

- Using computers to solve mathematical problems
- Computers can perform only simple arithmetic add/subtract, multiply/divide
- Need algorithms to perform more complicated math differentiation, integration, root finding, etc.

What is Computational Math?

- Using computers to solve mathematical problems
- Computers can perform only simple arithmetic add/subtract, multiply/divide
- Need algorithms to perform more complicated math differentiation, integration, root finding, etc.
- Research in Computational Math is focused on developing and improving these algorithms

What is Computational Science?

- Using computers to solve scientific problems

What is Computational Science?

- Using computers to solve scientific problems
- Concerned with simulation of a physical processes
- Used to validate theories beyond laboratory scale

What is Computational Science?

- Using computers to solve scientific problems
- Concerned with simulation of a physical processes
- Used to validate theories beyond laboratory scale
- Need to describe the scientific problem in a framework a computer can handle

Grand Challenges

- Grand Challenges are "fundamental problems in science and engineering, with potentially broad social, political, and scientific impact, that could be advanced by applying high performance computing resources."
- Much of the effort in Computational Science is directed at these grand challenges, such as
- electronic structure of materials
- genome sequencing and structural biology
- global climate modeling
- pollution and dispersion

What is Computational Engineering?

- Using computational science and math to produce useful technology

What is Computational Engineering?

- Using computational science and math to produce useful technology
- Algorithms used in "consumer" devices must be efficient - they must be fast, concise, and require minimal resources

What is Computational Engineering?

- Using computational science and math to produce useful technology
- Algorithms used in "consumer" devices must be efficient - they must be fast, concise, and require minimal resources
- Common mathematical technologies are
- MRI, ultrasound and CAT scan imaging
- mp3 sound files
- gif and jpeg image files
- Nanotechnology

Mathematical Modeling

- In order to use computers in science or engineering, we must be able to describe a problem in terms a computer can understand
- Typically, this is done by posing the problem as a mathematical one
- Mathematical models can be either continuous or discrete
- If the model is continuous, it must also be discretized before using a computer

Continuous Modeling

- To describe physical situations which vary over the continuum, we use mathematical statements of physical laws

Continuous Modeling

- To describe physical situations which vary over the continuum, we use mathematical statements of physical laws
- $F=m a$

Continuous Modeling

- To describe physical situations which vary over the continuum, we use mathematical statements of physical laws
- $F=m a$
- Conservation of Mass, Momentum, Energy, ...

Continuous Modeling

- To describe physical situations which vary over the continuum, we use mathematical statements of physical laws
- $F=m a$
- Conservation of Mass, Momentum, Energy, ...
- Potentials

Continuous Modeling

- To describe physical situations which vary over the continuum, we use mathematical statements of physical laws
- $F=m a$
- Conservation of Mass, Momentum, Energy, ...
- Potentials
- To express these laws mathematically we can use either differential or integral equations

Differential Equations

- Differential Equations give us a relationship between a quantity and its derivatives

Differential Equations

- Differential Equations give us a relationship between a quantity and its derivatives
- Different derivatives give information about different physical quantities

Differential Equations

- Differential Equations give us a relationship between a quantity and its derivatives
- Different derivatives give information about different physical quantities
- If $x(t)$ is the position of an object at time $t, \frac{d x}{d t}$ is its velocity, $\frac{d^{2} x}{d t^{2}}$ is its acceleration
- If forces depend on position, $F=m a$ becomes

$$
F(x, t)=m \frac{d^{2} x}{d t^{2}}
$$

Differential Equations

- Differential Equations give us a relationship between a quantity and its derivatives
- Different derivatives give information about different physical quantities
- If $x(t)$ is the position of an object at time $t, \frac{d x}{d t}$ is its velocity, $\frac{d^{2} x}{d t^{2}}$ is its acceleration
- If forces depend on position, $F=m a$ becomes
$F(x, t)=m \frac{d^{2} x}{d t^{2}}$
- Curls $(\nabla \times)$ tell about rotations and circulations
- Divergences ($\nabla \cdot$) tell about loss or gain of matter

Discretization of Differential Equations

- We are interested in rewriting a differential equation in a way that a computer can solve it

Discretization of Differential Equations

- We are interested in rewriting a differential equation in a way that a computer can solve it
- Differential equations give relationships between points that are infinitesimally close together

Discretization of Differential Equations

- We are interested in rewriting a differential equation in a way that a computer can solve it
- Differential equations give relationships between points that are infinitesimally close together
- To discretize a differential equation, we consider points of distance h apart instead

Finite Differences

- To discretize a differential equation, need to approximate derivatives
- Taylor Series give us a way:

$$
\begin{aligned}
& u(x+h)=u(x)+h u^{\prime}(x)+\frac{h^{2}}{2} u^{\prime \prime}(x)+\frac{h^{3}}{3} u^{\prime \prime \prime}(x)+O\left(h^{4}\right) \\
& u(x-h)=u(x)-h u^{\prime}(x)+\frac{h^{2}}{2} u^{\prime \prime}(x)-\frac{h^{3}}{3} u^{\prime \prime \prime}(x)+O\left(h^{4}\right)
\end{aligned}
$$

Finite Differences

- So

$$
\begin{aligned}
u^{\prime}(x) & =\frac{u(x+h)-u(x)}{h}+O(h) \\
& =\frac{u(x)-u(x-h)}{h}+O(h) \\
u^{\prime \prime}(x) & =\frac{u(x-h)-2 u(x)+u(x+h)}{h^{2}}+O\left(h^{2}\right)
\end{aligned}
$$

- In a similar way, we can approximate higher order derivatives
- Also can do partial derivatives

Finite Elements

- Redefine what it means for a function to solve the differential equation $L u=f$:

$$
\begin{aligned}
L u \cdot v & =f \cdot v \\
\int_{\Omega} L u \cdot v d x & =\int_{\Omega} f \cdot v d x
\end{aligned}
$$

- Now we can integrate by parts to come up with an equivalent statement of the PDE: Find u such that for all v,

$$
\int_{\Omega} L_{1} u \cdot L_{2} v d x=\int_{\Omega} f \cdot v d x
$$

Finite Elements

- Now ask that u and v belong to a finite-dimensional subspace
- Picking a basis for this space, we can express both u and v as linear combinations of the basis vectors.
- Then, problem becomes finding $u=\sum_{i=0}^{n} c_{i} \phi_{i}(x)$ such that for all $\phi_{j}(x)$,

$$
\int_{\Omega} L_{1} u \cdot L_{2} \phi_{j} d x=\int_{\Omega} f \cdot \phi_{j} d x
$$

- Allows theory for differential equations to be used in linear systems (e.g. existence and uniqueness)

Computational Simulation

- Computational simulation is done for two main purposes: to examine the validity of a model and to simulate an experiment that is physically intractable

Computational Simulation

- Computational simulation is done for two main purposes: to examine the validity of a model and to simulate an experiment that is physically intractable
- To determine if a mathematical model is valid, we compare the results of a simulation with the results of an experiment
- Once we have a correct model, we can begin to ask questions about more complicated experiments

Computational Simulation

- Computational simulation is done for two main purposes: to examine the validity of a model and to simulate an experiment that is physically intractable
- To determine if a mathematical model is valid, we compare the results of a simulation with the results of an experiment
- Once we have a correct model, we can begin to ask questions about more complicated experiments
- If an experimental apparatus is impossible to create (because of scale, cost, etc), computational simulation of a valid model can give information about the experiment considered

Blood Circulation

- Describing blood circulation in the human body is a complex problem

Blood Circulation

- Describing blood circulation in the human body is a complex problem
- The flow is driven by the heart

Blood Circulation

- Describing blood circulation in the human body is a complex problem
- The flow is driven by the heart
- Blood is a viscous fluid

Blood Circulation

- Describing blood circulation in the human body is a complex problem
- The flow is driven by the heart
- Blood is a viscous fluid
- Veins and Arteries are elastic, with anisotropic material properties

Blood Circulation

- Describing blood circulation in the human body is a complex problem
- The flow is driven by the heart
- Blood is a viscous fluid
- Veins and Arteries are elastic, with anisotropic material properties
- Simulating this flow can be very important, however

Blood Circulation

- Describing blood circulation in the human body is a complex problem
- The flow is driven by the heart
- Blood is a viscous fluid
- Veins and Arteries are elastic, with anisotropic material properties
- Simulating this flow can be very important, however
- Can predict effects of changing circulation system

Blood Circulation

- Describing blood circulation in the human body is a complex problem
- The flow is driven by the heart
- Blood is a viscous fluid
- Veins and Arteries are elastic, with anisotropic material properties
- Simulating this flow can be very important, however
- Can predict effects of changing circulation system
- Cannot easily image full flow

Blood Circulation

- Describing blood circulation in the human body is a complex problem
- The flow is driven by the heart
- Blood is a viscous fluid
- Veins and Arteries are elastic, with anisotropic material properties
- Simulating this flow can be very important, however
- Can predict effects of changing circulation system
- Cannot easily image full flow
- Cannot easily construct an equivalent apparatus

Transport

- Interested in the (diffusive) transport of heat, energy, particles, or fluid in natural and industrial processes

Transport

- Interested in the (diffusive) transport of heat, energy, particles, or fluid in natural and industrial processes
- Want to predict behavior of devices before their (expensive) production
- Accurate simulation can lead to improved designs

Transport

- Interested in the (diffusive) transport of heat, energy, particles, or fluid in natural and industrial processes
- Want to predict behavior of devices before their (expensive) production
- Accurate simulation can lead to improved designs
- Want to predict behavior of systems that cannot be directly observed or tested

Nanotechnology

- Miniaturizing electronics leads to interesting complications

Nanotechnology

- Miniaturizing electronics leads to interesting complications
- Need to ensure that electric and magnetic fields do not interfere with operation

Nanotechnology

- Miniaturizing electronics leads to interesting complications
- Need to ensure that electric and magnetic fields do not interfere with operation
- Devices are so small that quantum effects must be included in potential equations

Nanotechnology

- Miniaturizing electronics leads to interesting complications
- Need to ensure that electric and magnetic fields do not interfere with operation
- Devices are so small that quantum effects must be included in potential equations
- Must model complex geometries required by miniaturization

Data Analysis and Processing

- Many problems involve the processing of significant amounts of data

Data Analysis and Processing

- Many problems involve the processing of significant amounts of data
- All information stored on a computer is numerical data

Data Analysis and Processing

- Many problems involve the processing of significant amounts of data
- All information stored on a computer is numerical data
- Data analysis can be made significantly more efficient through the use of advanced mathematical algorithms

Data Analysis and Processing

- Many problems involve the processing of significant amounts of data
- All information stored on a computer is numerical data
- Data analysis can be made significantly more efficient through the use of advanced mathematical algorithms
- Data storage can be greatly reduced through efficient data compression

Seismic Processing

- Seismic surveys collect data from a large number of similar experiments to try and determine composition of a volume of earth

Seismic Processing

- Seismic surveys collect data from a large number of similar experiments to try and determine composition of a volume of earth
- Data comes in the form of travel times for waves moving from a source to a receiver

Seismic Processing

- Seismic surveys collect data from a large number of similar experiments to try and determine composition of a volume of earth
- Data comes in the form of travel times for waves moving from a source to a receiver
- Mathematical models of behavior of waves in solids describes forward problem: Given a particular composition, how long would waves take to travel from a source to a receiver

Seismic Processing

- Seismic surveys collect data from a large number of similar experiments to try and determine composition of a volume of earth
- Data comes in the form of travel times for waves moving from a source to a receiver
- Mathematical models of behavior of waves in solids describes forward problem: Given a particular composition, how long would waves take to travel from a source to a receiver
- Inverse problem of determining composition from travel times is much more difficult, but also done mathematically

Medical Imaging

- Similar to seismics, medical imaging involves determining composition from indirect measurements

Medical Imaging

- Similar to seismics, medical imaging involves determining composition from indirect measurements
- Electrical currents in Electrical Impedance Tomography

Medical Imaging

- Similar to seismics, medical imaging involves determining composition from indirect measurements
- Electrical currents in Electrical Impedance Tomography
- Magnetic fields in Magnetic Resonance Imaging

Medical Imaging

- Similar to seismics, medical imaging involves determining composition from indirect measurements
- Electrical currents in Electrical Impedance Tomography
- Magnetic fields in Magnetic Resonance Imaging
- Echos of high-frequency sounds in Ultrasound Imaging

Medical Imaging

- Similar to seismics, medical imaging involves determining composition from indirect measurements
- Electrical currents in Electrical Impedance Tomography
- Magnetic fields in Magnetic Resonance Imaging
- Echos of high-frequency sounds in Ultrasound Imaging
- Information in medical situations often has interpretations related to frequencies from which we seek to recover spatial information

Data Compression

- Information stored on a computer must be numerical

Data Compression

- Information stored on a computer must be numerical
- Images and sounds can be represented by matrices giving position, composition, and intensity

Data Compression

- Information stored on a computer must be numerical
- Images and sounds can be represented by matrices giving position, composition, and intensity
- Changes in basis can greatly affect the size of the matrix elements

Data Compression

- Information stored on a computer must be numerical
- Images and sounds can be represented by matrices giving position, composition, and intensity
- Changes in basis can greatly affect the size of the matrix elements
- Compression algorithms (.gif, .jpg, .mp3) make use of local basis changes to reduce number of significant coefficients

Data Compression

- Information stored on a computer must be numerical
- Images and sounds can be represented by matrices giving position, composition, and intensity
- Changes in basis can greatly affect the size of the matrix elements
- Compression algorithms (.gif, .jpg, .mp3) make use of local basis changes to reduce number of significant coefficients
- These compression schemes are lossy - Information is lost, but it is below the threshold of human observation

Speed, Efficiency, and Accuracy

- These mathematical problems are well-defined
- In principle, we can design algorithms to solve them in many ways

Speed, Efficiency, and Accuracy

- These mathematical problems are well-defined
- In principle, we can design algorithms to solve them in many ways
- Many simulations require solution of large linear systems
- Many data processing applications require analysis of large quantities of data

Speed, Efficiency, and Accuracy

- These mathematical problems are well-defined
- In principle, we can design algorithms to solve them in many ways
- Many simulations require solution of large linear systems
- Many data processing applications require analysis of large quantities of data
- We're interested in developing algorithms which are fast, efficient, and as accurate as necessary

Fast Algorithms

- Speed is often the primary concern when developing an algorithm
- When considering large data sets, inefficient algorithms can make a problem intractable

Fast Algorithms

- Speed is often the primary concern when developing an algorithm
- When considering large data sets, inefficient algorithms can make a problem intractable
- We say an algorithm is scalable or fast if its runtime is proportional to the number of unknowns, n, or is bounded by $c n \log n$
- This says that if, for example, we double the number of unknowns in a problem, we at most double the total computation time.

Efficiency

- The problems we consider are so large that optimal efficiency is necessary to have any hope of success
- Efficiency can be measured both in terms of time and storage
- Often need to trade-off one for the other
- Particular trade-off is determined by particular system requirements

Accuracy

- Significant performance improvements can be had by being frugal with accuracy

Accuracy

- Significant performance improvements can be had by being frugal with accuracy
- When data is collected from an experiment, it has a certain level of noise

Accuracy

- Significant performance improvements can be had by being frugal with accuracy
- When data is collected from an experiment, it has a certain level of noise
- There is no point in solving the problem to a finer accuracy than this, as you're just resolving the noise
- In practice, solve all problems to the level of measurement error or to the level of discretization error

Real Time Mathematics

- Consumer devices require mathematical computations to be done almost instantaneously
- We don't want to wait 10 minutes for an MP3 player to play a 2 minute song

Real Time Mathematics

- Consumer devices require mathematical computations to be done almost instantaneously
- We don't want to wait 10 minutes for an MP3 player to play a 2 minute song
- The specialized hardware and software designed for these applications must be such that results are nearly instantaneous
- This requires fast algorithms specialized to a specific task - these are often the most efficient algorithms

Research Efforts - Speed

- Almost all commonly used algorithms are fast in the sense that their execution time is bounded by $c n \log n$

Research Efforts - Speed

- Almost all commonly used algorithms are fast in the sense that their execution time is bounded by $c n \log n$
- But, in practice, c can be very large, so even "fast algorithms" can be slow

Research Efforts - Speed

- Almost all commonly used algorithms are fast in the sense that their execution time is bounded by $c n \log n$
- But, in practice, c can be very large, so even "fast algorithms" can be slow
- Improving computer performance speeds up all algorithms

Research Efforts - Speed

- Almost all commonly used algorithms are fast in the sense that their execution time is bounded by $c n \log n$
- But, in practice, c can be very large, so even "fast algorithms" can be slow
- Improving computer performance speeds up all algorithms
- Also look for ways to reduce the needed number of operations

Research Efforts - Speed

- Almost all commonly used algorithms are fast in the sense that their execution time is bounded by $c n \log n$
- But, in practice, c can be very large, so even "fast algorithms" can be slow
- Improving computer performance speeds up all algorithms
- Also look for ways to reduce the needed number of operations
- Approximation
- Truncation

Research Efforts - Speed

- Almost all commonly used algorithms are fast in the sense that their execution time is bounded by $c n \log n$
- But, in practice, c can be very large, so even "fast algorithms" can be slow
- Improving computer performance speeds up all algorithms
- Also look for ways to reduce the needed number of operations
- Approximation
- Truncation
- Algorithmic improvements
- Use of Cache

Research Efforts - Accuracy

- As data-collection efforts improve, the allowable amount of error in calculation decreases
- This is most important in imaging, particularly diagnostic (medical) imaging
- Modern algorithms are designed with tunable accuracy - if given highly-accurate data, they can give highly-accurate answers

Research Efforts - Robustness

- It is relatively easy to design an algorithm which solves one instance of a problem quickly
- More difficult is to create a method which can solve many problems, but is still efficient
- Look to generalize methods which work on "simple" problems so that they work on more difficult ones
- Goal is often to create a black box solution technique

Summary

- Have a physical problem interested in simulating or solving

Summary

- Have a physical problem interested in simulating or solving
- Develop a mathematical model

Summary

- Have a physical problem interested in simulating or solving
- Develop a mathematical model
- Discretize the model

Summary

- Have a physical problem interested in simulating or solving
- Develop a mathematical model
- Discretize the model
- Look at existing algorithms for similar problems

Summary

- Have a physical problem interested in simulating or solving
- Develop a mathematical model
- Discretize the model
- Look at existing algorithms for similar problems
- Develop a solution strategy

Summary

- Have a physical problem interested in simulating or solving
- Develop a mathematical model
- Discretize the model
- Look at existing algorithms for similar problems
- Develop a solution strategy
- Generalize/Specialize as needed

