Coarsening in Adaptive Algebraic Multigrid

Scott MacLachlan
maclach@cs.umn.edu

Department of Computer Science and Engineering, University of Minnesota

Target Applications

- Fluid flow in porous media

■ Highly heterogeneous media

- Interested in global properties of the solution
- Coupled fluid-elastic systems
- Multiple material regimes
- Different models require very different treatment
- Lattice quantum chromodynamics
- Highly heterogeneous operator
- Randomized heterogeneity within Monte Carlo process

Target Discrete Models

- Finite element models of elliptic formulations of PDEs
- Matrices are
- sparse
- symmetric
- positive definite

$$
\text { Solving } A x=b
$$

■ Sparsity with large bandwidth means that direct methods are not effective for these problems

Stationary Iterative Methods

- Given some approximation, $x^{(0)}$, want to improve it

■ Introduce residual, $r^{(0)}=b-A x^{(0)}$, as a measure of the error

- $r^{(0)}=b-A x^{(0)}=A x-A x^{(0)}=A\left(x-x^{(0)}\right)$
- Let B^{-1} be an approximation to A^{-1}

■ Take $x^{(1)}=x^{(0)}+B^{-1} r^{(0)}$

Error propagation form: $e^{(1)}=\left(I-B^{-1} A\right) e^{(0)}$

Stationary Iterative Methods

- Given some approximation, $x^{(0)}$, want to improve it

■ Introduce residual, $r^{(0)}=b-A x^{(0)}$, as a measure of the error

- $r^{(0)}=b-A x^{(0)}=A x-A x^{(0)}=A\left(x-x^{(0)}\right)$
- Let B^{-1} be an approximation to A^{-1}

■ Take $x^{(1)}=x^{(0)}+B^{-1} r^{(0)}$

Error propagation form: $e^{(n)}=\left(I-B^{-1} A\right)^{n} e^{(0)}$

Convergence of Stationary Iterative Methods

Convergence depends on spectrum of $I-B^{-1} A$

Weighted Jacobi Iteration: $e^{(n)}=\left(I-\frac{4}{3} D^{-1} A\right)^{n} e^{(0)}$

Convergence of Stationary Iterative Methods

Convergence depends on spectrum of $I-B^{-1} A$

Gauss-Seidel Iteration: $e^{(n)}=\left(I-L^{-1} A\right)^{n} e^{(0)}$
Errors with small $B^{-1} A$-Rayleigh Quotients are slowest to converge

Scalability

These methods fail when the problem size gets large enough!

Failing in a Structured Way

For all of these methods, low-energy modes of $B^{-1} A$ cause the most trouble

- For simple-enough B, these are the same as (or close to) the low-energy modes of A

Can we use this to our advantage?

Smoothing Property

Random initial error

Smoothing Property

Error after 1 weighted Jacobi iteration

Smoothing Property

Error after 2 weighted Jacobi iterations

Smoothing Property

Error after 3 weighted Jacobi iterations

Smoothing Property

Error after 4 weighted Jacobi iterations

Smoothing Property

Error after 5 weighted Jacobi iterations

Smoothing Property

Error after 6 weighted Jacobi iterations

Smoothing Property

Error after 7 weighted Jacobi iterations

Smoothing Property

Error after 8 weighted Jacobi iterations

Smoothing Property

Error after 9 weighted Jacobi iterations

Smoothing Property

Error after 10 weighted Jacobi iterations

Complementarity

- Error after a few weighted Jacobi iterations has structure
- Instead of throwing out the method, look to complement its failings

How can we best correct error modes that are slow to be reduced by relaxation?

Complementarity

- Error after a few weighted Jacobi iterations has structure

■ Instead of throwing out the method, look to complement its failings
How can we best correct error modes that are slow to be reduced by relaxation?

■ Slow-to-converge errors are smooth
■ Smooth vectors can be accurately represented using fewer degrees of freedom

Coarse Grids

- Sine series representation:

$$
f(x)=\sum_{k=1}^{\infty} c_{k} \sin (k \pi x)
$$

■ Discrete problems can only approximate certain modes

Coarse Grids

- Sine series representation:

$$
f(x)=\sum_{k=1}^{\infty} c_{k} \sin (k \pi x)
$$

■ Discrete problems can only approximate certain modes

Coarse Grids

- Sine series representation:

$$
f(x)=\sum_{k=1}^{\infty} c_{k} \sin (k \pi x)
$$

■ Discrete problems can only approximate certain modes

Coarse-Grid Correction

- Smooth vectors can be accurately represented using fewer degrees of freedom

■ Idea: transfer job of resolving smooth components to a coarser grid version of the problem

- Need:
- Complementary process for resolving smooth components of the error on the coarse grid
- Way to combine the results of the two processes

Variational Coarsening

- Idea is to correct the approximation after relaxation, $x^{(1)}$, from a coarse-grid version of of the problem
- Need interpolation map, P, from coarse grid to fine grid

■ Corrected approximation will be $x^{(2)}=x^{(1)}+P x_{c}$
What is the best x_{c} for correction?

A-norm and A-inner product

- Asking for the best solution implies a metric

■ Symmetric and positive-definite matrix, A, defines an inner product and a norm:

$$
\langle x, y\rangle_{A}=y^{T} A x \quad \text { and } \quad\|x\|_{A}^{2}=x^{T} A x
$$

■ Best then means closest to the exact solution in norm

$$
y^{\star}=\underset{y}{\operatorname{argmin}}\|x-y\|_{A}
$$

Variational Coarsening

- Want to correct the approximation after relaxation, $x^{(1)}$, from a coarse-grid version of of the problem
- Need interpolation map, P, from coarse grid to fine grid
- Corrected approximation will be $x^{(2)}=x^{(1)}+P x_{c}$

What is the best x_{c} for correction?

- Best means closest to the exact solution in norm

$$
x_{c}=\underset{y_{c}}{\operatorname{argmin}}\left\|x-\left(x^{(1)}+P y_{c}\right)\right\|_{A}
$$

■ Best x_{c} satisfies $\left(P^{T} A P\right) x_{c}=P^{T} A\left(x-x^{(1)}\right)=P^{T} r^{(1)}$

Two-grid cycle

Two-grid cycle

Multigrid Components

$$
\text { Relax: } x^{(1)}=x^{(0)}+B^{-1} r^{(0)}
$$

- Relaxation

■ Use a smoothing process (such as Jacobi or Gauss-Seidel) to eliminate oscillatory errors

■ Remaining error satisfies $A e^{(1)}=r^{(1)}=b-A x^{(1)}$

Two-grid cycle

Multigrid Components

- Relaxation
- Restriction

Relax: $\mathrm{x}^{(1)}=\mathrm{x}^{(0)}+\mathrm{B}^{-1} \mathrm{r}^{(0)}$
Restriction

- Transfer residual to coarse grid
- Compute $P^{T} r^{(1)}$

Two-grid cycle

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction

Relax: $\mathrm{x}^{(1)}=\mathrm{x}^{(0)}+\mathrm{B}^{-1} \mathrm{r}^{(0)}$
Restriction
Solve: $\mathrm{P}^{\mathrm{T}} \mathrm{APx}_{\mathrm{c}}=\mathrm{P}^{\mathrm{T}} \mathrm{r}^{(1)}$

- Use coarse-grid correction to eliminate smooth errors
- Best correction, x_{c}, in terms of A-norm satisfies

$$
P^{T} A P x_{c}=P^{T} r^{(1)}
$$

Two-grid cycle

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation

Relax: $\mathrm{x}^{(1)}=\mathrm{x}^{(0)}+\mathrm{B}^{-1} \mathrm{r}^{(0)}$

Solve: $\mathrm{P}^{\mathrm{T}} \mathrm{APx}_{\mathrm{c}}=\mathrm{P}^{\mathrm{T}} \mathrm{r}^{(1)}$

- Transfer correction to fine grid

■ Compute $x^{(2)}=x^{(1)}+P x_{c}$

Two-grid cycle

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Solve: $\mathrm{P}^{\mathrm{T}} \mathrm{APx}_{\mathrm{c}}=\mathrm{P}^{\mathrm{T}} \mathrm{r}^{(1)}$

- Relax once again to remove oscillatory error introduced in coarse-grid correction

Two-grid cycle

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Solve: $\mathrm{P}^{\mathrm{T}} \mathrm{APx}_{\mathrm{c}}=\mathrm{P}^{\mathrm{T}} \mathrm{r}^{(1)}$

Direct solution of coarse-grid problem isn't practical

Two-grid cycle

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Solve: $\mathrm{P}^{\mathrm{T}} \mathrm{APx}_{\mathrm{c}}=\mathrm{P}^{\mathrm{T}} \mathrm{r}^{(1)}$

Direct solution of coarse-grid problem isn't practical
Use an iterative method!

Two-grid cycle

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Solve: $\mathrm{P}^{\mathrm{T}} \mathrm{APx}_{\mathrm{c}}=\mathrm{P}^{\mathrm{T}} \mathrm{r}^{(1)}$

Recursion!

Apply same methodology to solve coarse-grid problem

The Multigrid V-cycle

Properties of Effective Cycles

- Fast convergence
- Effective reduction of all error components
- On each level, coarse-grid correction must effectively reduce exactly those errors that are slow to be reduced by relaxation alone
- Hierarchy of coarse-grid operators resolves relevant physics at each scale
- Low iteration cost
- Simple relaxation scheme (cheap computation of $B^{-1} r$ on all levels)

■ Sparse coarse-grid operators (cheap computation of residuals on all levels)

- Sparse interpolation/restriction operations

What Haven't I Told You?

■ How do we choose P ?

- Number of columns
- Sparsity structure
- Non-zero values

■ Often consider these independently, but there are dependencies
■ These choices must be informed by properties of relaxation

Geometric Interpolation

- For Poisson's equation, error left after relaxation is smooth

■ Low-order geometric interpolation is accurate for smooth functions

Geometric Interpolation

- For Poisson's equation, error left after relaxation is smooth
- Low-order geometric interpolation is accurate for smooth functions

Geometric Interpolation

- For Poisson's equation, error left after relaxation is smooth

■ Low-order geometric interpolation is accurate for smooth functions

Geometric Interpolation

- For Poisson's equation, error left after relaxation is smooth

■ Low-order geometric interpolation is accurate for smooth functions

Geometric Interpolation

- For Poisson's equation, error left after relaxation is smooth
- Low-order geometric interpolation is accurate for smooth functions

■ Linear interpolation works well for problems with smooth, isotropic coefficients when grid geometry is known

- May not know grid geometry
- Linear interpolation can make $O(1)$ errors for problems with non-smooth coefficients

Operator-Induced Interpolation

- Linear interpolation can make $\mathrm{O}(1)$ errors for problems with non-smooth coefficients
Slowest to converge error for $\frac{d}{d x}\left(\sigma \frac{d u}{d x}\right)$, for $\sigma= \begin{cases}10^{-8} & x \leq \frac{3}{8} \\ 1 & x>\frac{3}{8}\end{cases}$

Operator-Induced Interpolation

- Linear interpolation can make $\mathrm{O}(1)$ errors for problems with non-smooth coefficients
Slowest to converge error for $\frac{d}{d x}\left(\sigma \frac{d u}{d x}\right)$, for $\sigma= \begin{cases}10^{-8} & x \leq \frac{3}{8} \\ 1 & x>\frac{3}{8}\end{cases}$ and linear interpolant from coarse grid

Operator-Induced Interpolation

- Linear interpolation can make $\mathrm{O}(1)$ errors for problems with non-smooth coefficients

■ The abrupt change in character of slow-to-converge errors is reflected in matrix entries

$$
A=\frac{1}{h^{2}}\left[\begin{array}{ccccccc}
2 \times 10^{-8} & -10^{-8} & & & & & \\
-10^{-8} & 2 \times 10^{-8} & -10^{-8} & & & & \\
& -10^{-8} & 1+10^{-8} & -1 & & & \\
& & -1 & 2 & -1 & & \\
& & & -1 & 2 & -1 & \\
& & & & -1 & 2 & -1 \\
& & & & & -1 & 2
\end{array}\right]
$$

Operator-Induced Interpolation

- Linear interpolation can make $\mathrm{O}(1)$ errors for problems with non-smooth coefficients
- The abrupt change in character of slow-to-converge errors is reflected in matrix entries
- Idea: Use the entries in the matrix operator to help define interpolation

Algebraic Multigrid Interpolation

- Assume a partition into fine (F) and coarse (C) grid sets
- No geometric information used in defining interpolation
- Start with small-residual assumption that errors left after relaxation have small residuals: for $i \in F$,

$$
\begin{aligned}
& (A e)_{i} \approx 0 \\
& a_{i i} e_{i}=-\sum_{j \in F} a_{i j} e_{j}-\sum_{k \in C} a_{i k} e_{k}
\end{aligned}
$$

■ Use assumptions about slow-to-converge error to collapse connections to $j \in F$ onto $k \in C \cap\left\{k: a_{i k} \neq 0\right\}$

Calibrating Interpolation

What if we don't know what to assume about slow-to-converge errors?

Calibrating Interpolation

What if we don't know what to assume about slow-to-converge errors?
Run relaxation to find out!

- Run relaxation on $A x=0$ with a random initial guess

■ This exposes the local character of slow-to-converge errors
■ Use resulting vector as a prototype of errors to be corrected by interpolation within algebraic multigrid

Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1} r$
- Iterate on homogeneous problem, $A x=0$, with a random initial guess
- Create interpolation such that prototype of slow-to-converge error is in its range
- Create coarse-grid problem and recurse

Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1} r$
- Iterate on homogeneous problem, $A x=0$, with a random initial guess
- Create interpolation such that prototype of slow-to-converge error is in its range

■ Create coarse-grid problem and recurse
Relaxation can be anything

Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1} r$
- Iterate on homogeneous problem, $A x=0$, with a random initial guess

■ Create interpolation such that prototype of slow-to-converge error is in its range

- Create coarse-grid problem and recurse

Relaxation can be anything, even the multigrid method itself!

■ Allows for iterative improvement of a poorly performing multigrid cycle

Adaptive Cycling

- Suppose we probe relaxation, design the best interpolation we know how, and the resulting MG cycle still doesn't work.
- Interpolation was based on a single prototype of slow-to-converge errors

■ May not have enough information to complement all slow-to-converge modes

- How can we identify a new prototype, distinct from the previous?

Apply the adaptive principles to the multigrid method itself

Controlling Adaptation

- Two possible sources of slow adaptive MG convergence
- Prototype is a bad representative error
- Prototype is good, but there is distinct slow-to-converge error

■ Want a measure to distinguish cause of bad performance
Use estimates of $\left\|I-B^{-1} A\right\|$ to measure both performance and quality of prototype sets

■ Estimate $\left\|B^{-1} A\right\|$ using Rayleigh Quotients

Algorithm Overview

- while $\left\|I-B_{\mathrm{MG}}^{-1} A\right\|_{\text {est }}$ is large

■ if $\left\|I-B_{\text {rel }}^{-1} A\right\|_{\text {est }}$ is increasing

- iterate on $A x=0$ with "relaxation", $x \leftarrow\left(I-B_{\text {rel }}^{-1} A\right) x$
- recalibrate interpolation based on new x
- recompute coarse-grid operator
- restrict x to coarse grid and cycle there
- interpolate further improved x after coarse-grid cycle
- else
- Replace "relaxation" with multigrid cycle: $B_{\text {rel }} \leftarrow B_{\mathrm{MG}}$

Testing Adaptation

■ 2-D Finite Element Shifted Laplacian, Dirichlet BCs, 512×512 grid

$$
-\Delta u-2 \pi^{2}\left(1-2^{-15}\right) u=0
$$

- $\lambda_{\text {min }}=6.64 \times 10^{-4}$, random $x^{(0)}$

Iteration	$\left\\|I-B_{\text {rel }}^{-1} A\right\\|_{\text {est }}$	$\left\\|I-B_{\mathrm{MG}}^{-1} A\right\\|_{\text {est }}$
1	0.87	0.9999998
2	0.996	0.999985
3	0.99988	0.9996
4	0.999997	0.986
5	0.99999993	0.622
6	0.999999997	0.078
7	0.999999998	0.071

Linear Elasticity

■ Model displacement, u, of an elastic body under external forces

$$
-\mu \Delta u-(\lambda+\mu) \nabla \nabla \cdot u=f
$$

- μ, λ are Lamé coefficients, related to Poisson Ratio, ν, and Young modulus, E

$$
\lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)} \quad \text { and } \quad \mu=\frac{E}{2(1+\nu)}
$$

■ Fix $\nu=0.32$ (steel)
■ Let E vary between 1 (nylon/polypro) and $10^{\sigma}(100=$ titanium, $1000=$ diamond)

- Know properties of slow-to-converge errors for small σ

Numerical Results: Linear Elasticity

3D cube, 201,720 degrees of freedom, exponential distribution of E

				Fixed						
σ	$\left\\|I-B_{\mathrm{MG}}^{-1} A\right\\|$	Iterations	$\mathrm{CPU}(\mathrm{s})$	$\left\\|I-B_{\mathrm{MG}}^{-1} A\right\\|$	Iterations	$\mathrm{CPU}(\mathrm{s})$				
2	0.1146	9	25.99	0.2141	12	267.72				
3	0.2466	14	35.68	0.3095	16	275.62				
4	0.3948	20	49.99	0.4040	21	289.39				
5	0.5545	32	73.63	0.4966	27	381.16				

Lattice Quantum Chromodynamics

- Modelling strong interactions between fermions (quarks) on a lattice
- Goal: Solve $H(u, \rho) f=b$, for multiple fermionic source vectors, b, at each step of a Monte Carlo simulation
- Difficulty: u is a complex unitary field defined on the lattice edges, with phases chosen randomly based on system temperature parameter, β
- H is naturally Hermitian, but indefinite, so solve normal equations
- As ρ approaches a critical value, $H^{*} H$ becomes singular (at any temperature)
- Structure of low-energy modes strongly depends on u
- When $\beta \rightarrow \infty, u \rightarrow 1, H^{*} H$ looks like a second-order discrete differential operator

■ For each state, new characterization of low-energy modes

Numerical Results: Lattice QCD

128×128 periodic lattice, average residual reduction per iteration

	Diagonal-PCG				AdaptiveMG-PCG			
$\rho-\rho_{\text {cr }}$	0.3	0.1	0.05	0.01	0.3	0.1	0.05	0.01
$\beta=2$	0.85	0.94	0.96	0.99	0.31	0.31	0.31	0.33
$\beta=3$	0.86	0.93	0.97	0.98	0.31	0.40	0.42	0.42
$\beta=5$	0.83	0.92	0.96	0.99	0.28	0.29	0.31	0.31

Adaptive MG setup time:
13.7 seconds

Adaptive MG-PCG solve time: 0.8 seconds
Diagonal-PCG solve time: 4.7 seconds

Choosing Coarse Grids

- Difficult to say what best coarse grid is
- Want enough coarse-grid points so that interpolation is accurate for all slow-to-converge errors
- Want significantly fewer coarse-grid points than fine-grid points
- Interpolation designed to complement failings of relaxation
- Coarse-grid selection must make this possible

Maximal Independent Sets

- Want local interpolation operators

■ Idea: Coarsen so that every fine-grid node has at least one coarse-grid neighbour

Problem: not all connections are equal

- Really want every fine-grid node to be somehow strongly coupled to at least one coarse-grid node

Strong Connections - AMG

- Classical AMG defines the strong connections for each node based directly on the matrix entries:

$$
S_{i}=\left\{j:-a_{i j} \geq \theta \max _{k \neq i}\left\{-a_{i k}\right\}\right\}
$$

- Based on properties of finite difference discretizations
- Diagonally dominant M-matrices

Weaknesses

- Definition of strong connections based on "nice" M-matrix properties
- Breaks down if near null space of A is far from the constant

■ Diagonal rescaling,

$$
A \rightarrow D A D
$$

- Finite element anisotropy,

$$
-u_{x x}-\epsilon u_{y y} \rightarrow \frac{1}{6}\left[\begin{array}{ccc}
(-1-\epsilon) & (2-4 \epsilon) & (-1-\epsilon) \\
(-4+2 \epsilon) & (8+8 \epsilon) & (-4+2 \epsilon) \\
(-1-\epsilon) & (2-4 \epsilon) & (-1-\epsilon)
\end{array}\right]
$$

■ Even for simple problems, size of $a_{i j}$ may not reflect true connection between i and j

What are Strong Connections?

- Point i strongly depends on point j if
- a change in the right-hand side at point j significantly changes the solution at point i.
- a change in the residual at point j significantly changes the error at point i

■ Good coarse-grid correction depends on identifying strong connections

- Interpolation to i is most effective from points that it strongly depends on
- Corrections from weakly connected points have little effect on the error at i

Inverse-based Strength

- For the discrete linear system, $A x=b$, the inverse relates changes in b to changes in x

$$
x=(A)^{-1} b
$$

- If a change in b_{j} causes a significant change in x_{i}, then $(A)_{i j}^{-1}$ must be large relative to other values of $(A)_{i k}^{-1}$

Columns of inverse of Isotropic and Anisotropic Poisson Operators

Measures of Strong Connections

- Strength of dependence of i on j depends on size of $(A)_{i j}^{-1}$
- How should we measure this size, relative to $(A)_{i k}^{-1}$?

Measures of Strong Connections

- Strength of dependence of i on j depends on size of $(A)_{i j}^{-1}$
- How should we measure this size, relative to $(A)_{i k}^{-1}$?
- L^{2} measure: $(A)_{i j}^{-1} \geq \theta \max _{k \neq i}\left\{(A)_{i k}^{-1}\right\}$

■ Energy measure: Let $G_{j}^{(i)}=(A)_{i j}^{-1}, S_{i j}=\frac{\left\|G^{(i)}-G_{j}^{(i)} e^{(j)}\right\|_{A}}{\left\|G^{(i)}\right\|_{A}}$

Strength measures for Isotropic and Anisotropic Poisson Operators

Approximating $S_{i j}$

- Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
- Apply (localized) relaxation to $A G^{(i)}=e^{(i)}$

Approximating $S_{i j}$

■ Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?
■ Apply (localized) relaxation to $A G^{(i)}=e^{(i)}$

Approximate $S_{i j}$ after 1 weighted Jacobi Relaxation for Isotropic and Anisotropic Poisson Operators

Approximating $S_{i j}$

■ Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?

- Apply (localized) relaxation to $A G^{(i)}=e^{(i)}$

Approximate $S_{i j}$ after 2 weighted Jacobi Relaxation for Isotropic and Anisotropic Poisson Operators

Approximating $S_{i j}$

■ Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?

- Apply (localized) relaxation to $A G^{(i)}=e^{(i)}$

Approximate $S_{i j}$ after 3 weighted Jacobi Relaxation for Isotropic and Anisotropic Poisson Operators

Approximating $S_{i j}$

■ Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?

- Apply (localized) relaxation to $A G^{(i)}=e^{(i)}$

Approximate $S_{i j}$ after 4 weighted Jacobi Relaxation for Isotropic and Anisotropic Poisson Operators

Approximating $S_{i j}$

■ Can we get useful, local approximations to $(A)_{i j}^{-1}$ and, thus, $S_{i j}$?

- Apply (localized) relaxation to $A G^{(i)}=e^{(i)}$

Approximate $S_{i j}$ after 5 weighted Jacobi Relaxation for Isotropic and Anisotropic Poisson Operators

Choosing C

- For point $i,\left\{S_{i j}\right\}$ are now measures of strengths of connection

■ We now say i strongly depends on j if $(A)_{i j} \neq 0$ and

$$
S_{i j}-1 \geq \theta \max _{k \neq i}\left\{S_{i k}-1\right\}
$$

■ For now, $\theta=0.25$ seems to work fine

- Coarse grid selection now accomplished by taking a maximal independent subset of the graph of strong connections

Choices of coarse grids

■ $-u_{x x}-u_{y y}=f$, Dirichlet BCs

- 32×32 bilinear finite element grid

■ 2 Steps Weighted Jacobi to determine $S_{i j}$

Choices of coarse grids

■ $-u_{x x}-0.01 u_{y y}=f$, Dirichlet BCs

- 32×32 bilinear finite element grid

■ 2 Steps Weighted Jacobi to determine S_{i}

Choices of coarse grids

■ $-u_{x x}-u_{y y}=f$, Dirichlet BCs

- 32×32 bilinear finite element grid, $A \rightarrow D A D, d_{i i}=10^{5 r_{i}}$

■ 2 Steps Weighted Jacobi to determine S_{i}

Choices of coarse grids

■ $-u_{x x}-0.01 u_{y y}=f$, Dirichlet BCs

- 32×32 bilinear finite element grid, $A \rightarrow D A D, d_{i i}=10^{5 r_{i}}$

■ 2 Steps Weighted Jacobi to determine S_{i}

Algorithm

- Given A, b
- Relax ν_{0} times on $A \mathbf{x}=\mathbf{0}$ with a random initial guess
- On each level
- Determine local strong connections by μ relaxations on $A \mathbf{G}^{(i)}=\mathbf{I}^{(i)}$
- Choose coarse grid by colouring algorithm
- Relax ν_{1} times on $A \mathrm{x}=\mathbf{0}$ to improve representation of algebraically smooth error
- Form interpolation, P, based on x
- Compute $A_{c}=P^{T} A P$, inject $\mathbf{x}_{c}=(\mathbf{x})_{c}$

■ Examples have fixed $\nu_{0}=\nu_{1}=15, \mu=2$

Numerical Results

Convergence Factors of Resulting V(1,1) Cycles

grid	Laplace	Scaled Laplace	Anisotropic	Scaled Anisotropic
32×32	0.06	0.06	0.10	0.10
64×64	0.07	0.07	0.10	0.10
128×128	0.07	0.07	0.10	0.10
256×256	0.07	0.07	0.10	0.10
512×512	0.07	0.07	0.10	0.10

Good convergence factors, but setup cost is now high

Compatible Relaxation

- Heuristics seem to work well and can be made robust
- Alternative: choose coarse grids so that we know that interpolation can be chosen to complement relaxation

Theory of Compatible Relaxation says that if relaxation on the fine-grid submatrix is fast to converge, then there is an interpolation operator which yields a multigrid method with small convergence factor

Compatible Relaxation

- Heuristics seem to work well and can be made robust
- Alternative: choose coarse grids so that we know that interpolation can be chosen to complement relaxation

Theory of Compatible Relaxation says that if relaxation on the fine-grid submatrix is fast to converge, then there is an interpolation operator which yields a multigrid method with small convergence factor
\square Fine-grid relaxation: $I-\omega B_{f f}^{-1} A_{f f}$ is efficient if

$$
c_{1}\left\langle B_{f f} x_{f}, x_{f}\right\rangle \leq\left\langle A_{f f} x_{f}, x_{f}\right\rangle \leq c_{2}\left\langle B_{f f} x_{f}, x_{f}\right\rangle
$$

for reasonable c_{1}, c_{2}

- Under right assumptions, can show multigrid convergence is bounded less than 1 , with bound dependent on $\frac{c_{2}}{c_{1}}$

Satisfying the Theory

- Want to turn these results into a practical algorithm
- Idea: Choose partition so that we know fine-grid relaxation converges quickly
- Weighted Jacobi relaxation on $A_{f f}$ converges quickly when $A_{f f}$ is diagonally dominant

We can guarantee good 2-level convergence factors by choosing $A_{f f}$ to be diagonally-dominant

NP-completeness

- Define θ-dominance of $A_{f f}$ as

$$
a_{i i} \geq \theta \sum_{j \in F}\left|a_{i j}\right|
$$

- Know theory can be satisfied as long as $A_{f f}$ is θ-dominant

■ So, choose $A_{f f}$ to be the largest submatrix of A that is θ-dominant

NP-completeness

- Define θ-dominance of $A_{f f}$ as

$$
a_{i i} \geq \theta \sum_{j \in F}\left|a_{i j}\right|
$$

- Know theory can be satisfied as long as $A_{f f}$ is θ-dominant
- So, choose $A_{f f}$ to be the largest submatrix of A that is θ-dominant

This is an NP-complete problem

Greedy Algorithm Approach

- Want an $O(n)$ coarse-grid selection algorithm, not an NP-complete one

■ Initialize all points to be in $U ; F, C$ to be empty
■ For each point i, compute diagonal dominance measure

$$
\hat{\theta}_{i}=\frac{\left|a_{i i}\right|}{\sum_{j \in F \cup U}\left|a_{i j}\right|}
$$

If $\hat{\theta}_{i} \geq \theta$, put i into F, remove it from U

- While U is non-empty
- Find $j=\underset{i \in U}{\operatorname{argmin}} \hat{\theta}_{i}$
- Remove j from U, put it in C
- For each neighbouring point i of j, update $\hat{\theta}_{i}$

If $\hat{\theta}_{i} \geq \theta$, put i into F, remove it from U

Test Problems

- Test problems based on finite element discretizations of
$-\nabla \cdot K(x, y) \nabla p(x, y)$
- Laplace equation, $K(x, y)=1$

■ Smooth coefficient, $K(x, y)=10^{-8}+10\left(x^{2}+y^{2}\right)$

- Randomly chosen coefficient, $K(x, y)=10^{-8}$ on 20% of the cells, chosen randomly, $K(x, y)=1$ otherwise
\square Anisotropic coefficient, $K(x, y)=\left[\begin{array}{cc}1 & 0 \\ 0 & 0.01\end{array}\right]$
- Algorithm:
- Greedy algorithm to select coarse grids
- Classical AMG to define interpolation

■ Usual AMG-V(1,1) cycles with Gauss-Seidel relaxation

Multilevel AMG results

Coefficient	Grid	c_{A}	$t_{\text {setup }}$	$t_{\text {solve }}$	\# iters.	ρ
$K(x, y)=1$	512×512	1.33	1.3	0.7	5	0.13
	1024×1024	1.33	5.1	2.5	5	0.14
	2048×2048	1.33	21.9	10.5	5	0.14
smooth $K(x, y)$	512×512	1.33	1.3	0.6	5	0.13
	1024×1024	1.33	5.1	2.5	5	0.14
	2048×2048	1.33	21.7	10.4	5	0.14
random $K(x, y)$	1024×1024	2.08	9.6	4.8	6	0.40
	2048×2048	2.10	41.0	19.8	6	0.46
	1024×1024	2.41	6.2	4.1	5	0.20
	2048×2048	2.43	25.8	17.7	5	0.20

Summary

■ Single-level iterative methods slow to resolve low-energy modes of $B^{-1} A$

- Structure of these modes allows definition of efficient multigrid solvers
- If slow-to-converge error cannot be characterized beforehand, adaptive multigrid techniques can recover good performance at cost of extra setup
- Better heuristics allow more robust coarse-grid selection, but cost questions are important
- Theoretically motivated coarsening gives encouraging results
\square Competitive algorithmic cost
- Good experimental results
- Robustness and parallelism questions

Support and Collaboration

■ Initial work was supported by the DOE SciDAC TOPS program, the Center for Applied Scientific Computing at Lawrence Livermore National Lab, and Los Alamos National Laboratory.

- Adaptive AMG in collaboration with Steve McCormick, Tom Manteuffel, John Ruge, Marian Brezina at CU-Boulder, and Rob Falgout from CASC-LLNL.
- Energy-based coarsening in collaboration with Steve McCormick, Tom Manteuffel, John Ruge, Marian Brezina, and James Brannick from CU-Boulder
- Theoretically driven coarsening in collaboration with Yousef Saad at UMN, supported by NSF-ACIR

