Coarsening in Adaptive Algebraic Multigrid

Scott MacLachlan
maclach@cs.umn.edu

Department of Computer Science and Engineering, University of Minnesota
Target Applications

- Fluid flow in porous media
 - Highly heterogeneous media
 - Interested in global properties of the solution
- Coupled fluid-elastic systems
 - Multiple material regimes
 - Different models require very different treatment
- Lattice quantum chromodynamics
 - Highly heterogeneous operator
 - Randomized heterogeneity within Monte Carlo process
Target Discrete Models

- Finite element models of elliptic formulations of PDEs
- Matrices are
 - sparse
 - symmetric
 - positive definite

Solving $Ax = b$

- Sparsity with large bandwidth means that direct methods are not effective for these problems
Stationary Iterative Methods

- Given some approximation, $x^{(0)}$, want to improve it.
- Introduce residual, $r^{(0)} = b - Ax^{(0)}$, as a measure of the error.
- $r^{(0)} = b - Ax^{(0)} = Ax - Ax^{(0)} = A(x - x^{(0)})$.
- Let B^{-1} be an approximation to A^{-1}.
- Take $x^{(1)} = x^{(0)} + B^{-1}r^{(0)}$.

Error propagation form: $e^{(1)} = (I - B^{-1}A)e^{(0)}$.
Stationary Iterative Methods

- Given some approximation, \(x^{(0)} \), want to improve it
- Introduce residual, \(r^{(0)} = b - Ax^{(0)} \), as a measure of the error
- \(r^{(0)} = b - Ax^{(0)} = Ax - Ax^{(0)} = A(x - x^{(0)}) \)
- Let \(B^{-1} \) be an approximation to \(A^{-1} \)
- Take \(x^{(1)} = x^{(0)} + B^{-1}r^{(0)} \)

Error propagation form: \(e^{(n)} = (I - B^{-1}A)^n e^{(0)} \)
Convergence of Stationary Iterative Methods

Convergence depends on spectrum of $I - B^{-1}A$

Weighted Jacobi Iteration: $e^{(n)} = (I - \frac{4}{3}D^{-1}A)^n e^{(0)}$
Convergence of Stationary Iterative Methods

Convergence depends on spectrum of $I - B^{-1}A$

Gauss-Seidel Iteration: $e^{(n)} = (I - L^{-1}A)^n e^{(0)}$

Errors with small $B^{-1}A$-Rayleigh Quotients are slowest to converge
These methods fail when the problem size gets large enough!
Failing in a Structured Way

For all of these methods, low-energy modes of $B^{-1}A$ cause the most trouble.

- For simple-enough B, these are the same as (or close to) the low-energy modes of A.

Can we use this to our advantage?
Smoothing Property

Random initial error
Smoothing Property

Error after 1 weighted Jacobi iteration

Error after 1 weighted Jacobi iteration
Smoothing Property

Error after 2 weighted Jacobi iterations
Smoothing Property

Error after 3 weighted Jacobi iterations

Error after 3 weighted Jacobi iterations
Smoothing Property

Error after 4 weighted Jacobi iterations

Error after 4 weighted Jacobi iterations
Smoothing Property

Error after 5 weighted Jacobi iterations
Smoothing Property

Error after 6 weighted Jacobi iterations
Smoothing Property

Error after 7 weighted Jacobi iterations
Smoothing Property

Error after 8 weighted Jacobi iterations
Smoothing Property

Error after 9 weighted Jacobi iterations

Error $E(x,y)$ after 9 weighted Jacobi iterations.
Smoothing Property

Error after 10 weighted Jacobi iterations
Complementarity

- Error after a few weighted Jacobi iterations has structure
- Instead of throwing out the method, look to complement its failings

How can we best correct error modes that are slow to be reduced by relaxation?
Complementarity

- Error after a few weighted Jacobi iterations has structure
- Instead of throwing out the method, look to complement its failings

 How can we best correct error modes that are slow to be reduced by relaxation?

- Slow-to-converge errors are smooth
- Smooth vectors can be accurately represented using fewer degrees of freedom
Coarse Grids

- Sine series representation:

\[f(x) = \sum_{k=1}^{\infty} c_k \sin(k\pi x) \]

- Discrete problems can only approximate certain modes
Coarse Grids

- Sine series representation:

\[f(x) = \sum_{k=1}^{\infty} c_k \sin(k\pi x) \]

- Discrete problems can only approximate certain modes
Coarse Grids

- Sine series representation:

\[f(x) = \sum_{k=1}^{\infty} c_k \sin(k\pi x) \]

- Discrete problems can only approximate certain modes

![Graphical representation of \(\sin(\pi x) \)]
Coarse-Grid Correction

- Smooth vectors can be accurately represented using fewer degrees of freedom
- Idea: transfer job of resolving smooth components to a coarser grid version of the problem
- Need:
 - Complementary process for resolving smooth components of the error on the coarse grid
 - Way to combine the results of the two processes
Variational Coarsening

- Idea is to correct the approximation after relaxation, $x^{(1)}$, from a coarse-grid version of the problem.
- Need interpolation map, P, from coarse grid to fine grid.
- Corrected approximation will be $x^{(2)} = x^{(1)} + Px_c$.

What is the best x_c for correction?
A-norm and A-inner product

- Asking for the *best* solution implies a metric

- Symmetric and positive-definite matrix, A, defines an inner product and a norm:

 \[\langle x, y \rangle_A = y^T A x \quad \text{and} \quad \|x\|^2_A = x^T A x \]

- *Best* then means closest to the exact solution in norm

 \[y^* = \arg\min_y \|x - y\|_A \]
Variational Coarsening

- Want to correct the approximation after relaxation, $x^{(1)}$, from a coarse-grid version of the problem.
- Need interpolation map, P, from coarse grid to fine grid.
- Corrected approximation will be $x^{(2)} = x^{(1)} + Px_c$

What is the best x_c for correction?

- $Best$ means closest to the exact solution in norm

$$x_c = \text{argmin}_{y_c} \| x - (x^{(1)} + Py_c) \|_A$$

- $Best$ x_c satisfies $(P^TAP)x_c = P^TA(x - x^{(1)}) = P^Tr^{(1)}$
Two-grid cycle
Two-grid cycle

Multigrid Components

- Relaxation

Relax: $x^{(1)} = x^{(0)} + B^{-1}r^{(0)}$

- Use a smoothing process (such as Jacobi or Gauss-Seidel) to eliminate oscillatory errors

- Remaining error satisfies $Ae^{(1)} = r^{(1)} = b - Ax^{(1)}$
Two-grid cycle

Multigrid Components

- Relaxation
- Restriction

Relax: \(x^{(1)} = x^{(0)} + B^{-1}r^{(0)} \)

Transfer residual to coarse grid

Compute \(P^T r^{(1)} \)
Two-grid cycle

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction

Relax: \(x^{(1)} = x^{(0)} + B^{-1} r^{(0)} \)

Restriction

Solve: \(P^T A P x_c = P^T r^{(1)} \)

- Use coarse-grid correction to eliminate smooth errors
- Best correction, \(x_c \), in terms of \(A \)-norm satisfies

\[
P^T A P x_c = P^T r^{(1)}
\]
Two-grid cycle

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation

Relax: \(x^{(1)} = x^{(0)} + B^{-1} r^{(0)} \)

Restriction Interpolation

Solve: \(P^T A P x_c = P^T r^{(1)} \)

- Transfer correction to fine grid
- Compute \(x^{(2)} = x^{(1)} + P x_c \)
Two-grid cycle

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Relax: \(x^{(1)} = x^{(0)} + B^{-1}r^{(0)} \)

Relax once again to remove oscillatory error introduced in coarse-grid correction

Solve: \(P^TAPx_c = P^Tr^{(1)} \)
Two-grid cycle

Multigrid Components
- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Relax: $x^{(1)} = x^{(0)} + B^{-1}r^{(0)}$

Restriction Interpolation

Solve: $P^TAPx_c = P^Tr^{(1)}$

Direct solution of coarse-grid problem isn’t practical
Two-grid cycle

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Relax: $x^{(1)} = x^{(0)} + B^{-1}r^{(0)}$

Solve: $P^T A P x_c = P^T r^{(1)}$

Restriction Interpolation

Relax

Direct solution of coarse-grid problem isn’t practical
Use an iterative method!
Two-grid cycle

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

Relax: \(x^{(1)} = x^{(0)} + B^{-1}r^{(0)} \)

Restriction

Interpolation

Solve: \(P^T A P x_c = P^T r^{(1)} \)

Recursion!

Apply same methodology to solve coarse-grid problem
The Multigrid V-cycle

Solve

Restrict

Relax

Restrict

Relax

Relax

Interpolate

Relax

Interpolate

Relax

Solve
Properties of Effective Cycles

- Fast convergence
 - Effective reduction of all error components
 - On each level, coarse-grid correction must effectively reduce exactly those errors that are slow to be reduced by relaxation alone
 - Hierarchy of coarse-grid operators resolves relevant physics at each scale

- Low iteration cost
 - Simple relaxation scheme (cheap computation of $B^{-1}r$ on all levels)
 - Sparse coarse-grid operators (cheap computation of residuals on all levels)
 - Sparse interpolation/restriction operations
What Haven’t I Told You?

- How do we choose P?
 - Number of columns
 - Sparsity structure
 - Non-zero values
- Often consider these independently, but there are dependencies
- These choices *must* be informed by properties of relaxation
For Poisson’s equation, error left after relaxation is smooth

- Low-order geometric interpolation is accurate for smooth functions
For Poisson’s equation, error left after relaxation is smooth

Low-order geometric interpolation is accurate for smooth functions
Geometric Interpolation

- For Poisson’s equation, error left after relaxation is smooth.
- Low-order geometric interpolation is accurate for smooth functions.

Interpolation Error for $\sin(\pi x)$
Geometric Interpolation

- For Poisson’s equation, error left after relaxation is smooth
- Low-order geometric interpolation is accurate for smooth functions

Interpolation Error for $\sin(\pi x)$
Geometric Interpolation

- For Poisson’s equation, error left after relaxation is smooth
- Low-order geometric interpolation is accurate for smooth functions
- Linear interpolation works well for problems with smooth, isotropic coefficients when grid geometry is known
 - May not know grid geometry
 - Linear interpolation can make $O(1)$ errors for problems with non-smooth coefficients
Linear interpolation can make $O(1)$ errors for problems with non-smooth coefficients.

Slowest to converge error for $\frac{d}{dx} (\sigma \frac{du}{dx})$, for $\sigma = \begin{cases} 10^{-8} & x \leq \frac{3}{8} \\ 1 & x > \frac{3}{8} \end{cases}$
Operator-Induced Interpolation

- Linear interpolation can make $O(1)$ errors for problems with non-smooth coefficients.

 Slowest to converge error for $\frac{d}{dx} (\sigma \frac{du}{dx})$, for $\sigma = \begin{cases} 10^{-8} & x \leq \frac{3}{8} \\ 1 & x > \frac{3}{8} \end{cases}$

and linear interpolant from coarse grid.
Operator-Induced Interpolation

- Linear interpolation can make $O(1)$ errors for problems with non-smooth coefficients.
- The abrupt change in character of slow-to-converge errors is reflected in matrix entries.

\[
A = \frac{1}{h^2} \begin{bmatrix}
2 \times 10^{-8} & -10^{-8} \\
-10^{-8} & 2 \times 10^{-8} & -10^{-8} \\
-10^{-8} & 1 + 10^{-8} & -1 \\
-1 & 2 & -1 \\
-1 & 2 & -1 \\
-1 & 2 \\
\end{bmatrix}
\]
Operator-Induced Interpolation

- Linear interpolation can make $O(1)$ errors for problems with non-smooth coefficients.
- The abrupt change in character of slow-to-converge errors is reflected in matrix entries.
- Idea: Use the entries in the matrix operator to help define interpolation.
Algebraic Multigrid Interpolation

- Assume a partition into fine \((F)\) and coarse \((C)\) grid sets
- No geometric information used in defining interpolation
- Start with small-residual assumption that errors left after relaxation have small residuals: for \(i \in F\),
 \[
 (Ae)_i \approx 0
 \]
 \[
 a_{ii}e_i = - \sum_{j \in F} a_{ij}e_j - \sum_{k \in C} a_{ik}e_k
 \]
- Use assumptions about slow-to-converge error to collapse connections to \(j \in F\) onto \(k \in C \cap \{k : a_{ik} \neq 0\}\)
Calibrating Interpolation

What if we don’t know what to assume about slow-to-converge errors?
Calibrating Interpolation

What if we don’t know what to assume about slow-to-converge errors?

Run relaxation to find out!

- Run relaxation on $Ax = 0$ with a random initial guess
- This exposes the local character of slow-to-converge errors
- Use resulting vector as a prototype of errors to be corrected by interpolation within algebraic multigrid
Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1}r$
- Iterate on homogeneous problem, $Ax = 0$, with a random initial guess
- Create interpolation such that prototype of slow-to-converge error is in its range
- Create coarse-grid problem and recurse
Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1}r$
- Iterate on homogeneous problem, $Ax = 0$, with a random initial guess
- Create interpolation such that prototype of slow-to-converge error is in its range
- Create coarse-grid problem and recurse

Relaxation can be anything
Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

- Given matrix A, Relaxation operation $B^{-1}r$
- Iterate on homogeneous problem, $Ax = 0$, with a random initial guess
- Create interpolation such that prototype of slow-to-converge error is in its range
- Create coarse-grid problem and recurse

 Relaxation can be anything, even the multigrid method itself!

- Allows for iterative improvement of a poorly performing multigrid cycle
Adaptive Cycling

- Suppose we probe relaxation, design the best interpolation we know how, and the resulting MG cycle still doesn’t work.
 - Interpolation was based on a single prototype of slow-to-converge errors
 - May not have enough information to complement all slow-to-converge modes
 - How can we identify a new prototype, distinct from the previous?

 Apply the adaptive principles to the multigrid method itself
Controlling Adaptation

- Two possible sources of slow adaptive MG convergence
 - Prototype is a bad representative error
 - Prototype is good, but there is distinct slow-to-converge error
- Want a measure to distinguish cause of bad performance

Use estimates of \(\|I - B^{-1}A\|\) to measure both performance and quality of prototype sets

- Estimate \(\|B^{-1}A\|\) using Rayleigh Quotients
Algorithm Overview

- while $\| I - B_{MG}^{-1}A \|_{est}$ is large
 - if $\| I - B_{rel}^{-1}A \|_{est}$ is increasing
 - iterate on $Ax = 0$ with “relaxation”, $x \leftarrow (I - B_{rel}^{-1}A)x$
 - recalibrate interpolation based on new x
 - recompute coarse-grid operator
 - restrict x to coarse grid and cycle there
 - interpolate further improved x after coarse-grid cycle
 - else
 - Replace “relaxation” with multigrid cycle: $B_{rel} \leftarrow B_{MG}$
Testing Adaptation

- 2-D Finite Element Shifted Laplacian, Dirichlet BCs, 512×512 grid

\[-\Delta u - 2\pi^2 (1 - 2^{-15}) u = 0\]

- $\lambda_{\text{min}} = 6.64 \times 10^{-4}$, random $x^{(0)}$

<table>
<thead>
<tr>
<th>Iteration</th>
<th>$| I - B_{\text{rel}}^{-1} A |_{\text{est}}$</th>
<th>$| I - B_{\text{MG}}^{-1} A |_{\text{est}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.87</td>
<td>0.99999998</td>
</tr>
<tr>
<td>2</td>
<td>0.996</td>
<td>0.999985</td>
</tr>
<tr>
<td>3</td>
<td>0.99988</td>
<td>0.9996</td>
</tr>
<tr>
<td>4</td>
<td>0.999997</td>
<td>0.986</td>
</tr>
<tr>
<td>5</td>
<td>0.9999993</td>
<td>0.622</td>
</tr>
<tr>
<td>6</td>
<td>0.99999997</td>
<td>0.078</td>
</tr>
<tr>
<td>7</td>
<td>0.99999998</td>
<td>0.071</td>
</tr>
</tbody>
</table>
Linear Elasticity

- Model displacement, u, of an elastic body under external forces

$$-\mu \Delta u - (\lambda + \mu) \nabla \nabla \cdot u = f$$

- μ, λ are Lamé coefficients, related to Poisson Ratio, ν, and Young modulus, E

$$\lambda = \frac{E \nu}{(1 + \nu)(1 - 2\nu)} \quad \text{and} \quad \mu = \frac{E}{2(1 + \nu)}$$

- Fix $\nu = 0.32$ (steel)

- Let E vary between 1 (nylon/polypro) and 10^σ ($100 = \text{titanium}, \ 1000 = \text{diamond}$)

- Know properties of slow-to-converge errors for small σ
Numerical Results: Linear Elasticity

3D cube, 201,720 degrees of freedom, exponential distribution of E

<table>
<thead>
<tr>
<th>σ</th>
<th>$|I - B_{\text{MG}}^{-1}A|$</th>
<th>Iterations</th>
<th>CPU (s)</th>
<th>$|I - B_{\text{MG}}^{-1}A|$</th>
<th>Iterations</th>
<th>CPU (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.1146</td>
<td>9</td>
<td>25.99</td>
<td>0.2141</td>
<td>12</td>
<td>267.72</td>
</tr>
<tr>
<td>3</td>
<td>0.2466</td>
<td>14</td>
<td>35.68</td>
<td>0.3095</td>
<td>16</td>
<td>275.62</td>
</tr>
<tr>
<td>4</td>
<td>0.3948</td>
<td>20</td>
<td>49.99</td>
<td>0.4040</td>
<td>21</td>
<td>289.39</td>
</tr>
<tr>
<td>5</td>
<td>0.5545</td>
<td>32</td>
<td>73.63</td>
<td>0.4966</td>
<td>27</td>
<td>381.16</td>
</tr>
</tbody>
</table>
Lattice Quantum Chromodynamics

- Modelling strong interactions between fermions (quarks) on a lattice
- Goal: Solve $H(u, \rho)f = b$, for multiple fermionic source vectors, b, at each step of a Monte Carlo simulation
- Difficulty: u is a complex unitary field defined on the lattice edges, with phases chosen randomly based on system temperature parameter, β.
- H is naturally Hermitian, but indefinite, so solve normal equations.
- As ρ approaches a critical value, H^*H becomes singular (at any temperature).
- Structure of low-energy modes strongly depends on u.
 - When $\beta \to \infty$, $u \to 1$, H^*H looks like a second-order discrete differential operator.
 - For each state, new characterization of low-energy modes.
Numerical Results: Lattice QCD

128×128 periodic lattice, average residual reduction per iteration

<table>
<thead>
<tr>
<th>$\rho - \rho_{cr}$</th>
<th>Diagonal-PCG</th>
<th>AdaptiveMG-PCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>0.01</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>$\beta = 2$</td>
<td>0.85</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>0.96</td>
<td>0.99</td>
</tr>
<tr>
<td>$\beta = 3$</td>
<td>0.86</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>0.97</td>
<td>0.98</td>
</tr>
<tr>
<td>$\beta = 5$</td>
<td>0.83</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>0.96</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Adaptive MG setup time: 13.7 seconds
Adaptive MG-PCG solve time: 0.8 seconds
Diagonal-PCG solve time: 4.7 seconds
Choosing Coarse Grids

- Difficult to say what *best* coarse grid is
 - Want enough coarse-grid points so that interpolation is accurate for all slow-to-converge errors
 - Want significantly fewer coarse-grid points than fine-grid points
- Interpolation designed to complement failings of relaxation
 - Coarse-grid selection must make this possible
Maximal Independent Sets

- Want local interpolation operators
- Idea: Coarsen so that every fine-grid node has at least one coarse-grid neighbour

Problem: not all connections are equal

- Really want every fine-grid node to be somehow strongly coupled to at least one coarse-grid node
Strong Connections - AMG

- Classical AMG defines the strong connections for each node based directly on the matrix entries:

\[S_i = \left\{ j : -a_{ij} \geq \theta \max_{k \neq i} \{-a_{ik}\} \right\} \]

- Based on properties of finite difference discretizations
 - Diagonally dominant M-matrices
Weaknesses

- Definition of strong connections based on “nice” M-matrix properties
- Breaks down if near null space of A is far from the constant
 - Diagonal rescaling,
 \[
 A \rightarrow DAD
 \]
 - Finite element anisotropy,
 \[
 -u_{xx} - \epsilon u_{yy} \rightarrow \frac{1}{6} \begin{bmatrix}
 -1 - \epsilon & 2 - 4\epsilon & -1 - \epsilon \\
 -4 + 2\epsilon & 8 + 8\epsilon & -4 + 2\epsilon \\
 -1 - \epsilon & 2 - 4\epsilon & -1 - \epsilon
 \end{bmatrix}
 \]
- Even for simple problems, size of a_{ij} may not reflect true connection between i and j
What are Strong Connections?

- Point i strongly depends on point j if
 - a change in the right-hand side at point j significantly changes the solution at point i.
 - a change in the residual at point j significantly changes the error at point i.

- Good coarse-grid correction depends on identifying strong connections
 - Interpolation to i is most effective from points that it strongly depends on.
 - Corrections from weakly connected points have little effect on the error at i.
For the discrete linear system, $Ax = b$, the inverse relates changes in b to changes in x

$$x = (A)^{-1} b$$

If a change in b_j causes a significant change in x_i, then $(A)^{-1}_{ij}$ must be large relative to other values of $(A)^{-1}_{ik}$.
Measures of Strong Connections

- Strength of dependence of \(i \) on \(j \) depends on size of \((A)_{i,j}^{-1}\)

- How should we measure this size, relative to \((A)_{i,k}^{-1}\)?
Measures of Strong Connections

- Strength of dependence of \(i \) on \(j \) depends on size of \((A)_{ij}^{-1} \)
- How should we measure this size, relative to \((A)_{ik}^{-1} \)?
- \(L^2 \) measure: \((A)_{ij}^{-1} \geq \theta_{\max} \max_{k \neq i} \{(A)_{ik}^{-1}\} \)
- Energy measure: Let \(G_j^{(i)} = (A)_{ij}^{-1} \), \(S_{ij} = \frac{\|G^{(i)} - G_j^{(i)} e^{(j)}\|_A}{\|G^{(i)}\|_A} \)

Strength measures for Isotropic and Anisotropic Poisson Operators
Approximating S_{ij}

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij}?
- Apply (localized) relaxation to $AG^{(i)} = e^{(i)}$
Approximating S_{ij}

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij}?
- Apply (localized) relaxation to $AG^{(i)} = e^{(i)}$

Approximate S_{ij} after 1 weighted Jacobi Relaxation for Isotropic and Anisotropic Poisson Operators
Approximating S_{ij}

- Can we get useful, local approximations to $(A)^{-1}_{ij}$ and, thus, S_{ij}?
- Apply (localized) relaxation to $AG^{(i)} = e^{(i)}$

Approximate S_{ij} after 2 weighted Jacobi Relaxation for Isotropic and Anisotropic Poisson Operators
Approximating S_{ij}

- Can we get useful, local approximations to $(A)_{ij}^{-1}$ and, thus, S_{ij}?
- Apply (localized) relaxation to $AG^{(i)} = e^{(i)}$

Approximate S_{ij} after 3 weighted Jacobi Relaxation for Isotropic and Anisotropic Poisson Operators
Approximating S_{ij}

- Can we get useful, local approximations to $(A)^{-1}_{ij}$ and, thus, S_{ij}?
- Apply (localized) relaxation to $AG^{(i)} = e^{(i)}$

Approximate S_{ij} after 4 weighted Jacobi Relaxation for Isotropic and Anisotropic Poisson Operators
Approximating S_{ij}

- Can we get useful, local approximations to $(A)^{-1}_{ij}$ and, thus, S_{ij}?
- Apply (localized) relaxation to $AG^{(i)} = e^{(i)}$

Approximate S_{ij} after 5 weighted Jacobi Relaxation for Isotropic and Anisotropic Poisson Operators
Choosing C

- For point i, $\{S_{ij}\}$ are now measures of strengths of connection
- We now say i strongly depends on j if $(A)_{ij} \neq 0$ and
 \[
 S_{ij} - 1 \geq \theta \max_{k \neq i} \{S_{ik} - 1\}
 \]
- For now, $\theta = 0.25$ seems to work fine
- Coarse grid selection now accomplished by taking a maximal independent subset of the graph of strong connections
Choices of coarse grids

- \(-u_{xx} - u_{yy} = f\), Dirichlet BCs
- \(32 \times 32\) bilinear finite element grid
- 2 Steps Weighted Jacobi to determine \(S_{ij}\)
Choices of coarse grids

- $-u_{xx} - 0.01u_{yy} = f$, Dirichlet BCs
- 32×32 bilinear finite element grid
- 2 Steps Weighted Jacobi to determine S_i
Choices of coarse grids

- $-u_{xx} - u_{yy} = f$, Dirichlet BCs
- 32×32 bilinear finite element grid, $A \rightarrow DAD$, $d_{ii} = 10^{5r_i}$
- 2 Steps Weighted Jacobi to determine S_i
- \(u_{xx} - 0.01u_{yy} = f \), Dirichlet BCs
- \(32 \times 32 \) bilinear finite element grid, \(A \rightarrow DAD \), \(d_{ii} = 10^{5r_i} \)
- 2 Steps Weighted Jacobi to determine \(S_i \)
Algorithm

- Given \(A, b \)
- Relax \(\nu_0 \) times on \(Ax = 0 \) with a random initial guess
- On each level
 - Determine local strong connections by \(\mu \) relaxations on \(A G^{(i)} = I^{(i)} \)
 - Choose coarse grid by colouring algorithm
 - Relax \(\nu_1 \) times on \(Ax = 0 \) to improve representation of algebraically smooth error
 - Form interpolation, \(P \), based on \(x \)
 - Compute \(A_c = P^T A P \), inject \(x_c = (x)_c \)
- Examples have fixed \(\nu_0 = \nu_1 = 15, \mu = 2 \)
Numerical Results

Convergence Factors of Resulting $V(1,1)$ Cycles

<table>
<thead>
<tr>
<th>grid</th>
<th>Laplace</th>
<th>Scaled Laplace</th>
<th>Anisotropic</th>
<th>Scaled Anisotropic</th>
</tr>
</thead>
<tbody>
<tr>
<td>32×32</td>
<td>0.06</td>
<td>0.06</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>64×64</td>
<td>0.07</td>
<td>0.07</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>128×128</td>
<td>0.07</td>
<td>0.07</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>256×256</td>
<td>0.07</td>
<td>0.07</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>512×512</td>
<td>0.07</td>
<td>0.07</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Good convergence factors, but setup cost is now high.
Compatible Relaxation

- Heuristics seem to work well and can be made robust
- Alternative: choose coarse grids so that we know that interpolation can be chosen to complement relaxation

Theory of Compatible Relaxation says that if relaxation on the fine-grid submatrix is fast to converge, then there is an interpolation operator which yields a multigrid method with small convergence factor.
Compatible Relaxation

- Heuristics seem to work well and can be made robust
- Alternative: choose coarse grids so that we know that interpolation can be chosen to complement relaxation

Theory of Compatible Relaxation says that if relaxation on the fine-grid submatrix is fast to converge, then there is an interpolation operator which yields a multigrid method with small convergence factor

- Fine-grid relaxation: \(I - \omega B_f^{-1} A_f \) is efficient if

\[
c_1 \langle B_f x_f, x_f \rangle \leq \langle A_f x_f, x_f \rangle \leq c_2 \langle B_f x_f, x_f \rangle
\]

for reasonable \(c_1, c_2 \)

- Under right assumptions, can show multigrid convergence is bounded less than 1, with bound dependent on \(\frac{c_2}{c_1} \)
Satisfying the Theory

- Want to turn these results into a practical algorithm
 - Idea: Choose partition so that we know fine-grid relaxation converges quickly
 - Weighted Jacobi relaxation on A_{ff} converges quickly when A_{ff} is diagonally dominant

We can guarantee good 2-level convergence factors by choosing A_{ff} to be diagonally-dominant
NP-completeness

- Define θ-dominance of A_{ff} as

$$a_{ii} \geq \theta \sum_{j \in F} |a_{ij}|$$

- Know theory can be satisfied as long as A_{ff} is θ-dominant

- So, choose A_{ff} to be the largest submatrix of A that is θ-dominant
NP-completeness

- Define \(\theta \)-dominance of \(A_{ff} \) as

\[
a_{ii} \geq \theta \sum_{j \in F} |a_{ij}|
\]

- Know theory can be satisfied as long as \(A_{ff} \) is \(\theta \)-dominant

- So, choose \(A_{ff} \) to be the largest submatrix of \(A \) that is \(\theta \)-dominant

This is an **NP-complete** problem
Greedy Algorithm Approach

- Want an \(O(n) \) coarse-grid selection algorithm, not an NP-complete one
- Initialize all points to be in \(U \); \(F \), \(C \) to be empty
- For each point \(i \), compute diagonal dominance measure

\[
\hat{\theta}_i = \frac{|a_{ii}|}{\sum_{j \in F \cup U} |a_{ij}|}
\]

If \(\hat{\theta}_i \geq \theta \), put \(i \) into \(F \), remove it from \(U \)

- While \(U \) is non-empty
 - Find \(j = \arg\min_{i \in U} \hat{\theta}_i \)
 - Remove \(j \) from \(U \), put it in \(C \)
 - For each neighbouring point \(i \) of \(j \), update \(\hat{\theta}_i \)
 - If \(\hat{\theta}_i \geq \theta \), put \(i \) into \(F \), remove it from \(U \)
Test Problems

- Test problems based on finite element discretizations of
 \[- \nabla \cdot K(x, y) \nabla p(x, y)\]
 - Laplace equation, $K(x, y) = 1$
 - Smooth coefficient, $K(x, y) = 10^{-8} + 10(x^2 + y^2)$
 - Randomly chosen coefficient, $K(x, y) = 10^{-8}$ on 20% of the cells, chosen randomly, $K(x, y) = 1$ otherwise
 - Anisotropic coefficient, $K(x, y) = \begin{bmatrix} 1 & 0 \\ 0 & 0.01 \end{bmatrix}$

- Algorithm:
 - Greedy algorithm to select coarse grids
 - Classical AMG to define interpolation
 - Usual AMG-V(1,1) cycles with Gauss-Seidel relaxation
Multilevel AMG results

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Grid</th>
<th>c_A</th>
<th>t_{setup}</th>
<th>t_{solve}</th>
<th># iters.</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K(x, y) = 1$</td>
<td>512×512</td>
<td>1.33</td>
<td>1.3</td>
<td>0.7</td>
<td>5</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>1024×1024</td>
<td>1.33</td>
<td>5.1</td>
<td>2.5</td>
<td>5</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>2048×2048</td>
<td>1.33</td>
<td>21.9</td>
<td>10.5</td>
<td>5</td>
<td>0.14</td>
</tr>
<tr>
<td>smooth $K(x, y)$</td>
<td>512×512</td>
<td>1.33</td>
<td>1.3</td>
<td>0.6</td>
<td>5</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>1024×1024</td>
<td>1.33</td>
<td>5.1</td>
<td>2.5</td>
<td>5</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>2048×2048</td>
<td>1.33</td>
<td>21.7</td>
<td>10.4</td>
<td>5</td>
<td>0.14</td>
</tr>
<tr>
<td>random $K(x, y)$</td>
<td>512×512</td>
<td>2.06</td>
<td>2.3</td>
<td>1.2</td>
<td>6</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>1024×1024</td>
<td>2.08</td>
<td>9.6</td>
<td>4.8</td>
<td>6</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>2048×2048</td>
<td>2.10</td>
<td>41.0</td>
<td>19.8</td>
<td>6</td>
<td>0.46</td>
</tr>
<tr>
<td>anisotropic $K(x, y)$</td>
<td>512×512</td>
<td>2.39</td>
<td>1.5</td>
<td>1.0</td>
<td>5</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>1024×1024</td>
<td>2.41</td>
<td>6.2</td>
<td>4.1</td>
<td>5</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>2048×2048</td>
<td>2.43</td>
<td>25.8</td>
<td>17.7</td>
<td>5</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Summary

* Single-level iterative methods slow to resolve low-energy modes of $B^{-1}A$
* Structure of these modes allows definition of efficient multigrid solvers
* If slow-to-converge error cannot be characterized beforehand, adaptive multigrid techniques can recover good performance at cost of extra setup
* Better heuristics allow more robust coarse-grid selection, but cost questions are important
* Theoretically motivated coarsening gives encouraging results
 * Competitive algorithmic cost
 * Good experimental results
 * Robustness and parallelism questions
Support and Collaboration

- Initial work was supported by the DOE SciDAC TOPS program, the Center for Applied Scientific Computing at Lawrence Livermore National Lab, and Los Alamos National Laboratory.
 - Adaptive AMG in collaboration with Steve McCormick, Tom Manteuffel, John Ruge, Marian Brezina at CU-Boulder, and Rob Falgout from CASC-LLNL.
 - Energy-based coarsening in collaboration with Steve McCormick, Tom Manteuffel, John Ruge, Marian Brezina, and James Brannick from CU-Boulder
 - Theoretically driven coarsening in collaboration with Yousef Saad at UMN, supported by NSF-ACIR