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Target Applications

Fluid flow in porous media

Highly heterogeneous media

Interested in global properties of the solution

Coupled fluid-elastic systems

Multiple material regimes

Different models require very different treatment

Lattice quantum chromodynamics

Highly heterogeneous operator

Randomized heterogeneity within Monte Carlo process
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Target Discrete Models

Finite element models of elliptic formulations of PDEs

Matrices are

sparse

symmetric

positive definite

Solving Ax = b

Sparsity with large bandwidth means that direct methods are not effective

for these problems
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Stationary Iterative Methods

Given some approximation, x(0), want to improve it

Introduce residual, r(0) = b − Ax(0), as a measure of the error

r(0) = b − Ax(0) = Ax − Ax(0) = A(x − x(0))

Let B−1 be an approximation to A−1

Take x(1) = x(0) + B−1r(0)

Error propagation form: e(1) = (I − B−1A)e(0)
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Stationary Iterative Methods

Given some approximation, x(0), want to improve it

Introduce residual, r(0) = b − Ax(0), as a measure of the error

r(0) = b − Ax(0) = Ax − Ax(0) = A(x − x(0))

Let B−1 be an approximation to A−1

Take x(1) = x(0) + B−1r(0)

Error propagation form: e(n) = (I − B−1A)ne(0)
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Convergence of Stationary Iterative Methods

Convergence depends on spectrum of I − B−1A
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Convergence of Stationary Iterative Methods

Convergence depends on spectrum of I − B−1A
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Gauss-Seidel Iteration: e(n) = (I − L−1A)ne(0)

Errors with small B−1A-Rayleigh Quotients are slowest to converge

Coarsening in Adaptive Algebraic Multigrid – p.5



Scalability

These methods fail when the problem size gets large enough!
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Failing in a Structured Way

For all of these methods, low-energy modes of B−1A cause the most trouble

For simple-enough B, these are the same as (or close to) the low-energy

modes of A

Can we use this to our advantage?
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Smoothing Property

Random initial error
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Smoothing Property

Error after 1 weighted Jacobi iteration
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Smoothing Property

Error after 2 weighted Jacobi iterations
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Smoothing Property

Error after 3 weighted Jacobi iterations
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Smoothing Property

Error after 4 weighted Jacobi iterations
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Smoothing Property

Error after 5 weighted Jacobi iterations
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Smoothing Property

Error after 6 weighted Jacobi iterations
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Smoothing Property

Error after 7 weighted Jacobi iterations
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Smoothing Property

Error after 8 weighted Jacobi iterations
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Smoothing Property

Error after 9 weighted Jacobi iterations
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Smoothing Property

Error after 10 weighted Jacobi iterations
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Complementarity

Error after a few weighted Jacobi iterations has structure

Instead of throwing out the method, look to complement its failings

How can we best correct error modes that are slow to be reduced by

relaxation?
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Complementarity

Error after a few weighted Jacobi iterations has structure

Instead of throwing out the method, look to complement its failings

How can we best correct error modes that are slow to be reduced by

relaxation?

Slow-to-converge errors are smooth

Smooth vectors can be accurately represented using fewer degrees of

freedom
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Coarse Grids

Sine series representation:

f(x) =

∞
X

k=1

ck sin(kπx)

Discrete problems can only approximate certain modes
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Coarse Grids

Sine series representation:

f(x) =

∞
X

k=1

ck sin(kπx)

Discrete problems can only approximate certain modes
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Coarse Grids

Sine series representation:

f(x) =

∞
X

k=1

ck sin(kπx)

Discrete problems can only approximate certain modes
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Coarse-Grid Correction

Smooth vectors can be accurately represented using fewer degrees of

freedom

Idea: transfer job of resolving smooth components to a coarser grid

version of the problem

Need:

Complementary process for resolving smooth components of the

error on the coarse grid

Way to combine the results of the two processes
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Variational Coarsening

Idea is to correct the approximation after relaxation, x(1), from a

coarse-grid version of of the problem

Need interpolation map, P , from coarse grid to fine grid

Corrected approximation will be x(2) = x(1) + Pxc

What is the best xc for correction?
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A-norm and A-inner product

Asking for the best solution implies a metric

Symmetric and positive-definite matrix, A, defines an inner product and a

norm:

〈x, y〉A = y
T
Ax and ‖x‖2

A = x
T
Ax

Best then means closest to the exact solution in norm

y
? = argmin

y

‖x − y‖A
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Variational Coarsening

Want to correct the approximation after relaxation, x(1), from a

coarse-grid version of of the problem

Need interpolation map, P , from coarse grid to fine grid

Corrected approximation will be x(2) = x(1) + Pxc

What is the best xc for correction?

Best means closest to the exact solution in norm

xc = argmin
yc

‖x − (x(1) + Pyc)‖A

Best xc satisfies (P T AP )xc = P T A(x − x(1)) = P T r(1)
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Two-grid cycle
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Two-grid cycle

Multigrid Components

Relaxation

Relax: x(1)= x(0)+B (0)r-1

Use a smoothing process (such as Jacobi or Gauss-Seidel) to eliminate

oscillatory errors

Remaining error satisfies Ae(1) = r(1) = b − Ax(1)
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Two-grid cycle

Multigrid Components

Relaxation

Restriction

Relax: x(1)= x(0)+B (0)r-1

Restriction

Transfer residual to coarse grid

Compute P T r(1)
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Two-grid cycle

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Relax: x(1)= x(0)+B (0)r-1

Restriction

Solve: PTAPxc= PTr(1)

Use coarse-grid correction to eliminate smooth errors

Best correction, xc, in terms of A-norm satisfies

P
T
APxc = P

T
r
(1)

Coarsening in Adaptive Algebraic Multigrid – p.15



Two-grid cycle

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relax: x(1)= x(0)+B (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Transfer correction to fine grid

Compute x(2) = x(1) + Pxc
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Two-grid cycle

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

Relax: x(1)= x(0)+B (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

Relax once again to remove oscillatory error introduced in coarse-grid

correction
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Two-grid cycle

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

Relax: x(1)= x(0)+B (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

Direct solution of coarse-grid problem isn’t practical
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Two-grid cycle

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

Relax: x(1)= x(0)+B (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

Direct solution of coarse-grid problem isn’t practical

Use an iterative method!
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Two-grid cycle

Multigrid Components

Relaxation

Restriction

Coarse-Grid Correction

Interpolation

Relaxation

Relax: x(1)= x(0)+B (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

Recursion!

Apply same methodology to solve coarse-grid problem
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The Multigrid V-cycle

Solve

Restrict

Relax

Restrict

Relax

Interpolate

Relax

Relax

Interpolate

Relax

Relax
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Properties of Effective Cycles

Fast convergence

Effective reduction of all error components

On each level, coarse-grid correction must effectively reduce exactly

those errors that are slow to be reduced by relaxation alone

Hierarchy of coarse-grid operators resolves relevant physics at each

scale

Low iteration cost

Simple relaxation scheme (cheap computation of B−1r on all levels)

Sparse coarse-grid operators (cheap computation of residuals on all

levels)

Sparse interpolation/restriction operations
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What Haven’t I Told You?

How do we choose P?

Number of columns

Sparsity structure

Non-zero values

Often consider these independently, but there are dependencies

These choices must be informed by properties of relaxation
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Geometric Interpolation

For Poisson’s equation, error left after relaxation is smooth

Low-order geometric interpolation is accurate for smooth functions
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Geometric Interpolation

For Poisson’s equation, error left after relaxation is smooth

Low-order geometric interpolation is accurate for smooth functions
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Geometric Interpolation

For Poisson’s equation, error left after relaxation is smooth

Low-order geometric interpolation is accurate for smooth functions
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Geometric Interpolation

For Poisson’s equation, error left after relaxation is smooth

Low-order geometric interpolation is accurate for smooth functions
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Geometric Interpolation

For Poisson’s equation, error left after relaxation is smooth

Low-order geometric interpolation is accurate for smooth functions

Linear interpolation works well for problems with smooth, isotropic

coefficients when grid geometry is known

May not know grid geometry

Linear interpolation can make O(1) errors for problems with

non-smooth coefficients
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Operator-Induced Interpolation

Linear interpolation can make O(1) errors for problems with non-smooth

coefficients

Slowest to converge error for d
dx
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Operator-Induced Interpolation

Linear interpolation can make O(1) errors for problems with non-smooth

coefficients

Slowest to converge error for d
dx

`

σ du
dx

´

, for σ =

8

<

:

10−8 x ≤ 3
8

1 x > 3
8

and linear interpolant from coarse grid
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Operator-Induced Interpolation

Linear interpolation can make O(1) errors for problems with non-smooth

coefficients

The abrupt change in character of slow-to-converge errors is reflected in

matrix entries
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Operator-Induced Interpolation

Linear interpolation can make O(1) errors for problems with non-smooth

coefficients

The abrupt change in character of slow-to-converge errors is reflected in

matrix entries

Idea: Use the entries in the matrix operator to help define interpolation
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Algebraic Multigrid Interpolation

Assume a partition into fine (F ) and coarse (C) grid sets

No geometric information used in defining interpolation

Start with small-residual assumption that errors left after relaxation have

small residuals: for i ∈ F ,

(Ae)i ≈ 0

aiiei = −
X

j∈F

aijej −
X

k∈C

aikek

Use assumptions about slow-to-converge error to collapse connections to

j ∈ F onto k ∈ C ∩ {k : aik 6= 0}

Coarsening in Adaptive Algebraic Multigrid – p.21



Calibrating Interpolation

What if we don’t know what to assume about slow-to-converge errors?
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Calibrating Interpolation

What if we don’t know what to assume about slow-to-converge errors?

Run relaxation to find out!

Run relaxation on Ax = 0 with a random initial guess

This exposes the local character of slow-to-converge errors

Use resulting vector as a prototype of errors to be corrected by

interpolation within algebraic multigrid
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Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

Given matrix A, Relaxation operation B−1r

Iterate on homogeneous problem, Ax = 0, with a random initial guess

Create interpolation such that prototype of slow-to-converge error is in its

range

Create coarse-grid problem and recurse
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Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

Given matrix A, Relaxation operation B−1r

Iterate on homogeneous problem, Ax = 0, with a random initial guess

Create interpolation such that prototype of slow-to-converge error is in its

range

Create coarse-grid problem and recurse

Relaxation can be anything
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Adaptive Multigrid

Automatic probing of relaxation and algebraic coarsening

Given matrix A, Relaxation operation B−1r

Iterate on homogeneous problem, Ax = 0, with a random initial guess

Create interpolation such that prototype of slow-to-converge error is in its

range

Create coarse-grid problem and recurse

Relaxation can be anything,

even the multigrid method itself!

Allows for iterative improvement of a poorly performing multigrid cycle
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Adaptive Cycling

Suppose we probe relaxation, design the best interpolation we know how,

and the resulting MG cycle still doesn’t work.

Interpolation was based on a single prototype of slow-to-converge

errors

May not have enough information to complement all

slow-to-converge modes

How can we identify a new prototype, distinct from the previous?

Apply the adaptive principles to the multigrid method itself
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Controlling Adaptation

Two possible sources of slow adaptive MG convergence

Prototype is a bad representative error

Prototype is good, but there is distinct slow-to-converge error

Want a measure to distinguish cause of bad performance

Use estimates of ‖I − B−1A‖ to measure both performance and quality of

prototype sets

Estimate ‖B−1A‖ using Rayleigh Quotients
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Algorithm Overview

while ‖I − B−1
MGA‖est is large

if ‖I − B−1
rel A‖est is increasing

iterate on Ax = 0 with “relaxation”, x ← (I − B−1
rel A)x

recalibrate interpolation based on new x

recompute coarse-grid operator

restrict x to coarse grid and cycle there

interpolate further improved x after coarse-grid cycle

else

Replace “relaxation” with multigrid cycle: Brel ← BMG
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Testing Adaptation

2-D Finite Element Shifted Laplacian, Dirichlet BCs, 512 × 512 grid

−∆u − 2π
2(1 − 2−15)u = 0

λmin = 6.64 × 10−4, random x(0)

Iteration ‖I − B−1
rel A‖est ‖I − B−1

MGA‖est

1 0.87 0.9999998

2 0.996 0.999985

3 0.99988 0.9996

4 0.999997 0.986

5 0.99999993 0.622

6 0.999999997 0.078

7 0.999999998 0.071
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Linear Elasticity

Model displacement, u, of an elastic body under external forces

−µ∆u − (λ + µ)∇∇ · u = f

µ, λ are Lamé coefficients, related to Poisson Ratio, ν, and Young

modulus, E

λ =
Eν

(1 + ν)(1 − 2ν)
and µ =

E

2(1 + ν)

Fix ν = 0.32 (steel)

Let E vary between 1 (nylon/polypro) and 10σ (100 = titanium, 1000 =

diamond)

Know properties of slow-to-converge errors for small σ
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Numerical Results: Linear Elasticity

3D cube, 201,720 degrees of freedom, exponential distribution of E

Fixed Adaptive

σ ‖I − B−1
MGA‖ Iterations CPU (s) ‖I − B−1

MGA‖ Iterations CPU (s)

2 0.1146 9 25.99 0.2141 12 267.72

3 0.2466 14 35.68 0.3095 16 275.62

4 0.3948 20 49.99 0.4040 21 289.39

5 0.5545 32 73.63 0.4966 27 381.16
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Lattice Quantum Chromodynamics

Modelling strong interactions between fermions (quarks) on a lattice

Goal: Solve H(u, ρ)f = b, for multiple fermionic source vectors, b, at

each step of a Monte Carlo simulation

Difficulty: u is a complex unitary field defined on the lattice edges, with

phases chosen randomly based on system temperature parameter, β

H is naturally Hermitian, but indefinite, so solve normal equations

As ρ approaches a critical value, H∗H becomes singular (at any

temperature)

Structure of low-energy modes strongly depends on u

When β → ∞, u → 1, H∗H looks like a second-order discrete

differential operator

For each state, new characterization of low-energy modes
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Numerical Results: Lattice QCD

128 × 128 periodic lattice, average residual reduction per iteration

Diagonal-PCG AdaptiveMG-PCG

ρ − ρcr 0.3 0.1 0.05 0.01 0.3 0.1 0.05 0.01

β = 2 0.85 0.94 0.96 0.99 0.31 0.31 0.31 0.33

β = 3 0.86 0.93 0.97 0.98 0.31 0.40 0.42 0.42

β = 5 0.83 0.92 0.96 0.99 0.28 0.29 0.31 0.31

Adaptive MG setup time: 13.7 seconds

Adaptive MG-PCG solve time: 0.8 seconds

Diagonal-PCG solve time: 4.7 seconds
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Choosing Coarse Grids

Difficult to say what best coarse grid is

Want enough coarse-grid points so that interpolation is accurate for

all slow-to-converge errors

Want significantly fewer coarse-grid points than fine-grid points

Interpolation designed to complement failings of relaxation

Coarse-grid selection must make this possible
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Maximal Independent Sets

Want local interpolation operators

Idea: Coarsen so that every fine-grid node has at least one coarse-grid

neighbour

Problem: not all connections are equal

Really want every fine-grid node to be somehow strongly coupled to at

least one coarse-grid node
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Strong Connections - AMG

Classical AMG defines the strong connections for each node based

directly on the matrix entries:

Si =



j : −aij ≥ θ max
k 6=i

{−aik}

ff

Based on properties of finite difference discretizations

Diagonally dominant M-matrices
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Weaknesses

Definition of strong connections based on “nice” M-matrix properties

Breaks down if near null space of A is far from the constant

Diagonal rescaling,

A → DAD

Finite element anisotropy,

−uxx − εuyy →
1

6

2

6

6

6

4

(−1 − ε) (2 − 4ε) (−1 − ε)

(−4 + 2ε) (8 + 8ε) (−4 + 2ε)

(−1 − ε) (2 − 4ε) (−1 − ε)

3

7

7

7

5

Even for simple problems, size of aij may not reflect true connection

between i and j
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What are Strong Connections?

Point i strongly depends on point j if

a change in the right-hand side at point j significantly changes the

solution at point i.

a change in the residual at point j significantly changes the error at

point i

Good coarse-grid correction depends on identifying strong connections

Interpolation to i is most effective from points that it strongly depends

on

Corrections from weakly connected points have little effect on the

error at i
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Inverse-based Strength

For the discrete linear system, Ax = b, the inverse relates changes in b to

changes in x

x = (A)−1
b

If a change in bj causes a significant change in xi, then (A)−1
ij must be

large relative to other values of (A)−1
ik

Columns of inverse of Isotropic and Anisotropic Poisson Operators
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Measures of Strong Connections

Strength of dependence of i on j depends on size of (A)−1
ij

How should we measure this size, relative to (A)−1
ik ?
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Measures of Strong Connections

Strength of dependence of i on j depends on size of (A)−1
ij

How should we measure this size, relative to (A)−1
ik ?

L2 measure: (A)−1
ij ≥ θ max

k 6=i

˘

(A)−1
ik

¯

Energy measure: Let G
(i)
j = (A)−1

ij , Sij =
‖G(i) − G

(i)
j e(j)‖A

‖G(i)‖A

Strength measures for Isotropic and Anisotropic Poisson Operators
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = e(i)
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = e(i)

Approximate Sij after 1 weighted Jacobi Relaxation for Isotropic and

Anisotropic Poisson Operators
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = e(i)

Approximate Sij after 2 weighted Jacobi Relaxation for Isotropic and

Anisotropic Poisson Operators
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = e(i)

Approximate Sij after 3 weighted Jacobi Relaxation for Isotropic and

Anisotropic Poisson Operators
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = e(i)

Approximate Sij after 4 weighted Jacobi Relaxation for Isotropic and

Anisotropic Poisson Operators
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Approximating Sij

Can we get useful, local approximations to (A)−1
ij and, thus, Sij?

Apply (localized) relaxation to AG(i) = e(i)

Approximate Sij after 5 weighted Jacobi Relaxation for Isotropic and

Anisotropic Poisson Operators
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Choosing C

For point i, {Sij} are now measures of strengths of connection

We now say i strongly depends on j if (A)ij 6= 0 and

Sij − 1 ≥ θ max
k 6=i

{Sik − 1}

For now, θ = 0.25 seems to work fine

Coarse grid selection now accomplished by taking a maximal

independent subset of the graph of strong connections
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Choices of coarse grids

−uxx − uyy = f , Dirichlet BCs

32 × 32 bilinear finite element grid

2 Steps Weighted Jacobi to determine Sij
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Choices of coarse grids

−uxx − 0.01uyy = f , Dirichlet BCs

32 × 32 bilinear finite element grid
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Choices of coarse grids

−uxx − uyy = f , Dirichlet BCs

32 × 32 bilinear finite element grid, A → DAD, dii = 105ri

2 Steps Weighted Jacobi to determine Si
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Choices of coarse grids

−uxx − 0.01uyy = f , Dirichlet BCs

32 × 32 bilinear finite element grid, A → DAD, dii = 105ri
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Algorithm

Given A,b

Relax ν0 times on Ax = 0 with a random initial guess

On each level

Determine local strong connections by µ relaxations on AG
(i) = I

(i)

Choose coarse grid by colouring algorithm

Relax ν1 times on Ax = 0 to improve representation of algebraically

smooth error

Form interpolation, P , based on x

Compute Ac = P T AP , inject xc = (x)c

Examples have fixed ν0 = ν1 = 15, µ = 2
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Numerical Results

Convergence Factors of Resulting V(1,1) Cycles

grid Laplace Scaled Anisotropic Scaled
Laplace Anisotropic

32 × 32 0.06 0.06 0.10 0.10

64 × 64 0.07 0.07 0.10 0.10

128 × 128 0.07 0.07 0.10 0.10

256 × 256 0.07 0.07 0.10 0.10

512 × 512 0.07 0.07 0.10 0.10

Good convergence factors, but setup cost is now high
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Compatible Relaxation

Heuristics seem to work well and can be made robust

Alternative: choose coarse grids so that we know that interpolation can

be chosen to complement relaxation

Theory of Compatible Relaxation says that if relaxation on the fine-grid

submatrix is fast to converge, then there is an interpolation operator which

yields a multigrid method with small convergence factor
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Compatible Relaxation

Heuristics seem to work well and can be made robust

Alternative: choose coarse grids so that we know that interpolation can

be chosen to complement relaxation

Theory of Compatible Relaxation says that if relaxation on the fine-grid

submatrix is fast to converge, then there is an interpolation operator which

yields a multigrid method with small convergence factor

Fine-grid relaxation: I − ωB−1
ff Aff is efficient if

c1〈Bffxf , xf 〉 ≤ 〈Affxf , xf 〉 ≤ c2〈Bffxf , xf 〉

for reasonable c1,c2

Under right assumptions, can show multigrid convergence is bounded

less than 1, with bound dependent on c2
c1
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Satisfying the Theory

Want to turn these results into a practical algorithm

Idea: Choose partition so that we know fine-grid relaxation converges

quickly

Weighted Jacobi relaxation on Aff converges quickly when Aff is

diagonally dominant

We can guarantee good 2-level convergence factors by choosing Aff to be

diagonally-dominant
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NP-completeness

Define θ-dominance of Aff as

aii ≥ θ
X

j∈F

|aij |

Know theory can be satisfied as long as Aff is θ-dominant

So, choose Aff to be the largest submatrix of A that is θ-dominant
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NP-completeness

Define θ-dominance of Aff as

aii ≥ θ
X

j∈F

|aij |

Know theory can be satisfied as long as Aff is θ-dominant

So, choose Aff to be the largest submatrix of A that is θ-dominant

This is an NP-complete problem
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Greedy Algorithm Approach

Want an O(n) coarse-grid selection algorithm, not an NP-complete one

Initialize all points to be in U ; F , C to be empty

For each point i, compute diagonal dominance measure

θ̂i =
|aii|

X

j∈F∪U

|aij |

If θ̂i ≥ θ, put i into F , remove it from U

While U is non-empty

Find j = argmin
i∈U

θ̂i

Remove j from U , put it in C

For each neighbouring point i of j, update θ̂i

If θ̂i ≥ θ, put i into F , remove it from U
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Test Problems

Test problems based on finite element discretizations of

−∇ · K(x, y)∇p(x, y)

Laplace equation, K(x, y) = 1

Smooth coefficient, K(x, y) = 10−8 + 10(x2 + y2)

Randomly chosen coefficient, K(x, y) = 10−8 on 20% of the cells,

chosen randomly, K(x, y) = 1 otherwise

Anisotropic coefficient, K(x, y) = [ 1 0
0 0.01 ]

Algorithm:

Greedy algorithm to select coarse grids

Classical AMG to define interpolation

Usual AMG-V(1,1) cycles with Gauss-Seidel relaxation
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Multilevel AMG results

Coefficient Grid cA tsetup tsolve # iters. ρ

512 × 512 1.33 1.3 0.7 5 0.13

K(x, y) = 1 1024 × 1024 1.33 5.1 2.5 5 0.14

2048 × 2048 1.33 21.9 10.5 5 0.14

512 × 512 1.33 1.3 0.6 5 0.13

smooth K(x, y) 1024 × 1024 1.33 5.1 2.5 5 0.14

2048 × 2048 1.33 21.7 10.4 5 0.14

512 × 512 2.06 2.3 1.2 6 0.35

random K(x, y) 1024 × 1024 2.08 9.6 4.8 6 0.40

2048 × 2048 2.10 41.0 19.8 6 0.46

512 × 512 2.39 1.5 1.0 5 0.13

anisotropic K(x, y) 1024 × 1024 2.41 6.2 4.1 5 0.20

2048 × 2048 2.43 25.8 17.7 5 0.20
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Summary

Single-level iterative methods slow to resolve low-energy modes of B−1A

Structure of these modes allows definition of efficient multigrid solvers

If slow-to-converge error cannot be characterized beforehand, adaptive

multigrid techniques can recover good performance at cost of extra setup

Better heuristics allow more robust coarse-grid selection, but cost

questions are important

Theoretically motivated coarsening gives encouraging results

Competitive algorithmic cost

Good experimental results

Robustness and parallelism questions
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