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Big Picture

AMG is a nice algorithm

• Efficiently solves many problems

• Good algorithmic and parallel scalability

• Somewhat mature technology

AMG isn’t perfect

• Sensitive to parameter choices

• Requires some expert knowledge

• Convergence isn’t well understood

When AMG works, it is often the best solver
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Target Applications

• Fluid flow in porous media
I Highly heterogeneous media
I Interested in global properties of the solution

• Coupled fluid-elastic systems
I Multiple material regimes
I Different models require very different treatment

• Lattice quantum chromodynamics
I Highly heterogeneous operator
I Randomized heterogeneity within Monte Carlo process
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Target Discrete Models

• Finite difference/element models of elliptic systems

• Matrices are
I sparse
I symmetric
I positive definite

Solving Ax = b

• Sparsity with large bandwidth means that direct methods
are not effective for these problems
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Algorithmic Goals

Efficient and robust solver for heterogeneous models

Efficient: Optimal scalability, both algorithmic and parallel

• Cost of solve linearly proportional to number of unknowns

• Natural parallelism; most calculations should be data-local

Robust: Consistent performance with few parameters

• Predictable performance based on simple characteristics

• Not expert software; no magic parameters
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Efficiency First

Heterogeneity is an added complication, but not fundamental

Still need techniques to handle
• Large problem sizes

• Large condition numbers

• Multiscale structure of operator

Robustness without efficiency is EASY!
Gaussian Elimination

• Start with an efficient solver for homogeneous models
I Geometric multigrid

• Look for where robustness and heterogeneity play a role
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Stationary Iterative Methods

• Want to improve approximation, x (0), to x = A−1b

• Residual, r (0), is a measure of the error

r (0) = b − Ax (0) = Ax − Ax (0) = A(x − x (0))

• Choose M−1 ≈ A−1

• Take x (1) = x (0) + M−1r (0)

Error propagation form: e(1) = (I −M−1A)e(0)
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Stationary Iterative Methods

• Want to improve approximation, x (0), to x = A−1b

• Residual, r (0), is a measure of the error

r (0) = b − Ax (0) = Ax − Ax (0) = A(x − x (0))

• Choose M−1 ≈ A−1

• Take x (1) = x (0) + M−1r (0)

Error propagation form: e(1) = (I −M−1A)e(0)

e(2) = (I −M−1A)2e(0)

...
e(n) = (I −M−1A)ne(0)
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Convergence of Stationary Iterations

Convergence depends on spectrum of I −M−1A
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Weighted Jacobi Iteration: e(n) = (I − 3
4
D−1A)ne(0)

Improving and Understanding Algebraic Multigrid Convergence- p.9



Convergence of Stationary Iterations

Convergence depends on spectrum of I −M−1A
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Gauss-Seidel Iteration: e(n) = (I − L−1A)ne(0)
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Smoothing Property

Random initial error
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Smoothing Property

Error after 1 weighted Jacobi iteration
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Smoothing Property

Error after 2 weighted Jacobi iterations
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Smoothing Property

Error after 3 weighted Jacobi iterations
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Smoothing Property

Error after 4 weighted Jacobi iterations
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Smoothing Property

Error after 5 weighted Jacobi iterations
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Smoothing Property

Error after 6 weighted Jacobi iterations
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Smoothing Property

Error after 7 weighted Jacobi iterations
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Smoothing Property

Error after 8 weighted Jacobi iterations
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Smoothing Property

Error after 9 weighted Jacobi iterations
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Smoothing Property

Error after 10 weighted Jacobi iterations
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Complementarity

• Error after a few weighted Jacobi iterations has structure

• Instead of throwing out the method, look to complement
its failings

How can we best correct error modes that are slow to be
reduced by relaxation?

• Slow-to-converge errors are smooth

• Smooth vectors can be easily represented using fewer
degrees of freedom
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Coarse Grids

• Sine series representation:

f (x) =
∞∑

k=1

ck sin(kπx)

• Discrete problems can only approximate certain modes
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Coarse Grids
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Error in coarse-grid representation of sin(πx)
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Coarse Grids

• Sine series representation:

f (x) =
∞∑

k=1

ck sin(kπx)

• Discrete problems can only approximate certain modes

Coarse grids accurately represent low-frequency modes
Natural complement to relaxation
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Complementarity

Use two complementary processes to efficiently damp all errors

Relaxation: Damp high-frequency error by stationary
iteration

Coarse-grid correction: Eliminate low-frequency error by
relaxation on coarse grids

Key realization: Solve for coarse-grid representation of error

• At any stage, error is reflected in residual:

r (k) = b − Ax (k) = Ax − Ax (k) = A(x − x (k))

• Don’t transfer Ax = b to coarse grid, transfer Ae = r
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

+DRelax: x
(1)

= x
(0) (0)

r
−1

• Use a smoothing process (such as Jacobi or Gauss-Seidel)
to eliminate oscillatory errors

• Remaining error satisfies Ae(1) = r (1) = b − Ax (1)
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

+D

Restriction

Relax: x
(1)

= x
(0) (0)

r
−1

• Transfer residual to coarse grid

• Compute Rr (1)
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

c

Restriction

Solve: B  x = R r(1)

Relax: x(1)= x(0)+D (0)r−1

c

• Use coarse-grid correction to eliminate smooth errors

Bcxc = Rr (1)
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation

c

Restriction Interpolation

Solve: c= R r(1)

Relax: x(1)= x(0) (0)r−1+D

B  x

• Transfer correction to fine grid

• Compute x (2) = x (1) + Pxc

Improving and Understanding Algebraic Multigrid Convergence- p.14



Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation c

Restriction Interpolation

Solve: B  xc= R r(1)

Relax: x(1)= x(0) (0)r−1+D
Relax

• Relax once again to remove oscillatory error introduced in
coarse-grid correction
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Multigrid

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid Correction

• Interpolation

• Relaxation c

Restriction Interpolation

Solve: B  xc= R r(1)

Relax: x(1)= x(0) (0)r−1+D
Relax

Direct solution of coarse-grid problem isn’t practical
Recursion!

Apply same methodology to solve coarse-grid problem
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Key to Success

Effective multigrid comes from complementarity

• Fixed relaxation effectively reduces certain types of error

• Coarse-grid correction must properly damp all
complementary modes
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Knowledge of problem leads to good multigrid performance
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Geometric Multigrid

For homogeneous operators, relaxation is predictable

• Jacobi/Gauss-Seidel
relaxation

• Regular coarsening

• Linear interpolation

Fully explained by local mode (Fourier) analysis
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Limitations of Geometric Approach

Geometric multigrid requires several assumptions on

• Problem geometry

• Form of operator

• Performance of relaxation

These assumptions may be difficult to satisfy

• Heterogeneous coefficients

• Unstructured geometry

• Time-dependence

• Monte-Carlo simulations

Try to generalize algorithm to allow for heterogeneous
coefficients and unstructured grids
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Multigrid Without Grids1

The essence of multigrid has nothing to do with grids!

Complementarity is key:
• Fix choice of relaxation

• For any A, some errors are slow to converge

• These errors must be corrected some other way

Coarse-grid correction:

x ← x + PB−1
c Rr

e ← e − PB−1
c Rr

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stüben, in Multigrid Methods, 1987
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Variational Coarsening2

Coarse-grid correction,

I − PB−1
c RA,

can only correct errors in the range of P

Choosing R = PT and Bc = PTAP exactly eliminates errors
in this space.

Complementarity is key:

• Errors reduced by relaxation and coarse-grid correction

• Errors that relaxation reduces slowly must be in range(P)

R. Nicolaides, Math. Comp. 1977, 31:892-906
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“Smooth” Errors

• Linear interpolation can make O(1) errors for problems
with non-smooth coefficients

Slowest to converge error for d
dx

(
σ du

dx

)
, for

σ =

{
10−8 x ≤ 3

8

1 x > 3
8
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Slowest to converge error for d
dx

(
σ du

dx

)
, for

σ =

{
10−8 x ≤ 3

8

1 x > 3
8

and linear interpolant from coarse grid
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“Smooth” Errors

• Linear interpolation can make O(1) errors for problems
with non-smooth coefficients

• The abrupt change in character of slow-to-converge errors
is reflected in matrix entries

A =
1

h2



2× 10−8 −10−8

−10−8 2× 10−8 −10−8

−10−8 1 + 10−8 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2


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“Smooth” Errors

• Linear interpolation can make O(1) errors for problems
with non-smooth coefficients

• The abrupt change in character of slow-to-converge errors
is reflected in matrix entries

• Idea: Use the entries in the matrix operator to help define
interpolation
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Algebraically Smooth Error3

Slow to converge errors of relaxation replace smooth modes
within AMG

Design interpolation to accurately represent these modes
• Assume these errors give small residuals, Ae ≈ 0

• Expand residual equation:

aiiei = −
∑
j∈C

aijej −
∑
k /∈C

aikek

• Use assumption on character of these errors to eliminate
connections to k /∈ C

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stüben, in Multigrid Methods, 1987
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Graph-based coarsening4

Goal: Choose coarse-grid nodes to allow easy elimination of
fine-fine connections

• Filter to eliminate small matrix entries

• Create graph of filtered matrix

• Greedy algorithm to choose maximal independent subset

Maximal independent subset ensures

• every fine-fine connection is “close” to a coarse-grid point

• coarse grid is small, but not too small

A. Brandt, S. McCormick, J. Ruge, in Sparsity and Its Applications, 1984
J. Ruge and K. Stüben, in Multigrid Methods, 1987
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AMG working well

Bilinear finite element discretizations of −∇ · K∇p

• Problem 1: K = 1, Dirichlet BCs

• Problem 2: K = 1, Neumann BCs

• Problem 3: K(x) =

{
10−8 x ∈ [1

3
, 2

3
]2,

1 otherwise.

• Problem 4: K(x) = 10−8 on 20% of elements, chosen
randomly, K = 1 elsewhere

Asymptotic AMG V-cycle convergence factors
128× 128 256× 256 512× 512 1024× 1024

Problem 1 0.115 0.124 0.131 0.137
Problem 2 0.069 0.070 0.071 0.071
Problem 3 0.122 0.130 0.136 0.141
Problem 4 0.212 0.233 0.290 0.375
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AMG working badly

Same matrices, but symmetrically diagonally scaled by matrix,
D, where

dii = 105ri

for {ri} uniformly distributed on [0, 1]

Asymptotic AMG V-cycle convergence factors
128× 128 256× 256 512× 512 1024× 1024

Problem 1r 0.997 0.996 0.996 0.996
Problem 2r 0.993 0.993 0.993 0.992
Problem 3r 0.997 0.996 0.996 0.996
Problem 4r 0.996 0.996 0.996 0.995
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Calibrating Interpolation5

What if we don’t know what to assume about
slow-to-converge errors?

A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003
M. Brezina et al., SISC 2004, 25:1896-1920; SISC 2006, 27:1261-1286
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Calibrating Interpolation5

What if we don’t know what to assume about
slow-to-converge errors?

Run relaxation to find out!

• Run relaxation on Ax = 0 with a random initial guess

• This exposes the local character of slow-to-converge errors

• Use resulting vector as a prototype of errors to be
corrected by interpolation within algebraic multigrid

A. Brandt and D. Ron, in Multilevel Optimization in VLSICAD, 2003
M. Brezina et al., SISC 2004, 25:1896-1920; SISC 2006, 27:1261-1286
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Adaptive Multigrid6

Automatic probing of relaxation and algebraic coarsening

• Given matrix A, Relaxation operation B−1r

• Iterate on homogeneous problem, Ax = 0, with a random
initial guess

• Create AMG-style interpolation such that prototype of
slow-to-converge error is in its range

• Create coarse-grid problem and recurse

M. Brezina et al., SISC 2004, 25:1896-1920; SISC 2006, 27:1261-1286
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Adaptive Multigrid6

Automatic probing of relaxation and algebraic coarsening

• Given matrix A, Relaxation operation B−1r

• Iterate on homogeneous problem, Ax = 0, with a random
initial guess

• Create AMG-style interpolation such that prototype of
slow-to-converge error is in its range

• Create coarse-grid problem and recurse

Relaxation can be anything,
even the multigrid method itself!

• Allows for iterative improvement of a poorly performing
multigrid cycle

M. Brezina et al., SISC 2004, 25:1896-1920; SISC 2006, 27:1261-1286
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Controlling Adaptation

• Two possible sources of slow adaptive MG convergence
I Prototype is a bad representative error
I Prototype is good, but there is distinct slow-to-converge

error

• Want a measure to distinguish cause of bad performance

Use estimates of ‖I − B−1A‖ to measure both performance
and quality of prototype sets

• Estimate λmin(B
−1A) using Rayleigh Quotients
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Algorithm Overview

• while ‖I − B−1
MGA‖est is large

I if ‖I − B−1
rel A‖est is increasing

I iterate on Ax = 0 with “relaxation”, x ← (I − B−1
rel A)x

I recalibrate interpolation based on new x
I recompute coarse-grid operator
I restrict x to coarse grid and cycle there
I interpolate further improved x after coarse-grid cycle

I else
I Replace “relaxation” with multigrid cycle: Brel ← BMG
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Testing Adaptation

• 2-D Finite Element Shifted Laplacian, Dirichlet BCs,
512× 512 grid

−∆u − 2π2(1− 2−15)u = 0

• λmin = 6.64× 10−4, random x (0)

Iteration ‖I − B−1
rel A‖est ‖I − B−1

MGA‖est
1 0.87 0.9999998
2 0.996 0.999985
3 0.99988 0.9996
4 0.999997 0.986
5 0.99999993 0.622
6 0.999999997 0.078
7 0.999999998 0.071
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Linear Elasticity

• Model displacement, u, of an elastic body under external
forces

−µ∆u − (λ + µ)∇∇ · u = f

• µ, λ are Lamé coefficients, defined as

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)

• Fix Poisson ratio, ν = 0.32 (steel)

• Let Young modulus, E , vary between 1 (nylon/polypro)
and 10σ (100 = titanium, 1000 = diamond)

• Know properties of slow-to-converge errors for small σ
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Numerical Results: Linear Elasticity7

3D cube, 201,720 DOFs, exponential distribution of E
Standard SA Adaptive SA

σ ρMG Itns CPU (s) ρMG Itns CPU (s)
2 0.115 9 26.0 0.214 12 267.7
3 0.247 14 35.7 0.310 16 275.6
4 0.395 20 50.0 0.404 21 289.4
5 0.556 32 73.6 0.497 27 381.2

M. Brezina et al., SISC 2004, 25:1896-1920
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Lattice Quantum Chromodynamics

• Modelling interactions between fermions on a lattice

• Goal: Solve H(u, ρ)f = b, for multiple source vectors, b,
at each step of a Monte Carlo simulation

• Difficulty: u is a complex unitary field defined on lattice
edges, phases chosen randomly based on parameter, β

• H is Hermitian, but indefinite, so solve normal equations

• As ρ approaches a critical value, H∗H becomes singular
(for any β)

• Structure of low-energy modes strongly depends on u
I When β →∞, u → 1, H∗H looks like a second-order

discrete differential operator
I For each state, new characterization of low-energy modes
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Numerical Results: Lattice QCD8

2D Dirac-Wilson normal equations
128× 128 periodic lattice

average residual reduction per iteration
Diagonal-PCG AdaptiveMG-PCG

ρ− ρcr 0.3 0.1 0.05 0.01 0.3 0.1 0.05 0.01

β = 2 0.85 0.94 0.96 0.99 0.31 0.31 0.31 0.33
β = 3 0.86 0.93 0.97 0.98 0.31 0.40 0.42 0.42
β = 5 0.83 0.92 0.96 0.99 0.28 0.29 0.31 0.31

Adaptive MG setup time: 13.7 seconds
Adaptive MG-PCG solve time: 0.8 seconds
Diagonal-PCG solve time: 4.7 seconds

J. Brannick et al., Proc. DD16, 2007
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Why does it work?

In principle, adaptive AMG is obvious:

• Fix relaxation, coarse-grid correction must complement

• Find out how relaxation fails, then build appropriate
hierarchy

In practice, difficult to analyse

• Adaptive AMG interpolation depends nonlinearly on
prototype

• Very dependent on coarse/fine partition
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Simplifying AMG

Analyse simpler algorithm than full-blown AMG

• Ignore partition (assume properties of partition)

• Linearise dependence of adaptivity on prototype

• Directly link relaxation and interpolation

Start with partitioned matrix,

A =

[
Aff Afc

Acf Acc

]
,

derive and analyse AMG variant, then adaptivity

Improving and Understanding Algebraic Multigrid Convergence- p.35



Reduction-Based AMG9

Suppose we can partition the grid, Ω = F ∪ C , so that

xT
f Mff xf ≤ xT

f Aff xf ≤ λmaxx
T
f Mff xf

and that
[

Mff −Afc
−Acf Acc

]
is positive semi-definite. Choose

Relaxation: I − 2
1+λmax

[
M−1

ff 0
0 0

]
A

Coarse-grid correction: variational with P =
[

M−1
ff Afc

I

]
Then

ρMG ≤

(
1−

(
2

λmax + 1

)2
) 1

2

M. Ries, U. Trottenberg, G. Winter, J. Lin. Alg. Applic., 1983
S. MacLachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006.
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Additive Multigrid10

Theory for additive preconditioners has similar conditions.

Let
• B =

[
I 0

−Acf M
−1
ff I

] [
Mff 0
0 S

] [
I −M−1

ff Afc

0 I

]
•
[

Mff −Afc
−Acf Acc

]
be positive semi-definite

• xT
f Mff xf ≤ λminx

T
f Mff xf ≤ xT

f Aff xf ≤ λmaxx
T
f Mff xf

• νminx
T
c Sxc ≤ xT

c (Acc − Acf A
−1
ff Afc)xc ≤ νmaxx

T
c Sxc

Then,

κ(B− 1
2 AB− 1

2 ) ≤
(

1 +

√
1− 1

λmax

)2
λ2

maxνmax

min(νmin, λmin)
.

O. Axelsson, Iterative Solution Methods, 1994
Y. Saad and B. Suchomel, Numer. Linear Algebra Appl. 2002, 9:359-378
Y. Notay, Numer. Linear Algebra Appl. 2005, 12:419-451
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Adaptive AMGr11

• Key to success in AMGr is spectral equivalence

xT
f Mff xf ≤ xT

f Aff xf ≤ λmaxx
T
f Mff xf

• Control cycle cost by controlling sparsity in Mff

Adaptive AMGr:

• Fix sparsity of Mff ; e.g., take Mff to be diagonal

• Adaptively choose entries in Mff to ensure equivalence
I Upper bound is easy (Gerschgorin)
I Lower bound is difficult (algebraic smoothness)

S. MacLachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006.
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Adaptive setup algorithm12

Adaptive stage in AMGr aims to compute lowest energy mode

• Multigrid approximation property says interpolation must
be very accurate for this mode

• Good match needed for good spectral equivalence

Setup Algorithm:

1. Relax on Ax = 0

2. Define P such that Pxc = x

3. Compute x (new) = P
(
argminyc

RQ(Pyc)
)
.

S. MacLachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006.
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Adaptive Convergence13

Adaptive iteration is nonlinear, so global theory is complicated

• Special case: nc = 2, uniform global convergence
I Convergence dependent on initial guess

• General case:

Suppose Afc 6= 0, Aff dominated by diagonal Mff , SPSD A has
one-dimensional null space, r .

Define Λ such that Λ−1Afcxf = A−1
ff Afcxf , use P =

[
Λ−1Afc

I

]
plus exact coarse-grid RQ minimization.

Then adaptive setup map is a contraction in a neighbourhood
of x = r .

S. MacLachlan, T. Manteuffel, S. McCormick, Numer. Linear Algebra
Appl. 2006.

Improving and Understanding Algebraic Multigrid Convergence- p.40



Summary

• Effective multigrid arises by complementing relaxation
with appropriate coarse-grid correction

• For simple problems, use simple corrections

• When details are complicated or unknown, AMG often
helps

• AMG implicitly assumes certain properties of relaxation

• When these assumptions are wrong, adaptive AMG can
restore good performance

• Good performance for difficult problems

• AMGr is a new theoretical framework
I simpler than AMG
I allows analysis of adaptive process
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Current directions
• AMGr is nice, but it isn’t AMG

I Extend AMGr-type theory to AMG itself, or closer
variants

• Use insight from AMGr to improve coarsening/relaxation
in AMG

I Adaptive AMG focuses on interpolation, but theory gives
other good insights

• Apply and tune adaptive AMG for specific applications
I QCD application challenges even best adaptive solvers

• Bring adaptive and algebraic ideas back to simpler
multigrid solvers

I Can we get the benefits without the costs?
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