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Abstract

In this paper we address the issue of finding an efficient and flexible numerical approach for calculating

survival/default probabilities and pricing Credit Default Swaps under advanced jump dynamics. We have

chosen to use the firm’s value approach, modeling the firm’s value by an exponential Lévy model. For this

approach the default event is defined as a first passage of a barrier and it is therefore possible to exploit

a numerical technique developed to price barrier options under Lévy models to calculate the default

probabilities. The method presented is based on the Fourier-cosine series expansion of the underlying

model’s density function.

Keywords: Lévy processes; Credit risk; Default probability; Credit Default Swaps; Fourier-cosine expansion

JEL subject category: C02, C15, C63, G12
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1 Introduction

Credit default swaps (CDSs), the basic building block of the credit risk market, offer investors the opportunity

to either buy or sell default protection on a reference entity. The protection buyer pays a premium periodically

for the possibility to get compensation if there is a credit event on the reference entity until maturity or the

default time, which ever is first. If there is a credit event the protection seller covers the losses by returning

the par value. The premium payments are based on the CDS spread.

The spread of CDSs depends on the default probability of the underlying reference entity and it is possible

to back out the market view of default probabilities for individual names from quoted market prices. It is

therefore essential to be able to use advanced models in credit default modeling.

Lately Lévy models have attracted attention in the field of credit risk, see e.g. [5], [6] and [18]. [6] price

CDSs using the structural approach with a Variance Gamma model driving the firm value. To calculate

the default probabilities they derive the partial integro-differential equation (PIDE) satisfied by the barrier

option price and solve the equation by adapting a numerical scheme developed by [11] for pricing American

options. If the driving Lévy process in the firm value model only has negative jumps, i.e., it is a single-sided

or spectrally negative Lévy process, then the default probabilities can be found by numerically performing

a double Fourier inversion as shown in [18]. To price path dependent options on assets driven by jump

diffusions with exponentially distributed Poissonian jumps with the use of fluctuation identities from the

theory of Lévy processes has been worked out in [17] and [15, 16]. The resulting price formulas are of

relatively simple explicit form when written as functions of the Laplace variable.

To price vanilla as well as exotic options on Credit Default Swaps can easily be set up in a structural

model. In [12], the single-sided firm value models were used to generate dynamic CDS spreads by mapping

the firm value paths to CDS spreads. In this way a Monte Carlo engine to price options on CDSs could

be set up to price (exotic) options on CDSs. Having a method to generate dynamic CDS spreads available,

it is also possible to value so called Constant Maturity CDSs, where the spread is reset periodically to the

market spread of a CDS with constant maturity tenor, as described in [13].

We take a structural approach towards the modeling of credit risk, following the same methodology as [3],

which defines the credit event to be the first time the value of the reference entity is below a predefined lower

barrier representing the total debt of the firm. In contrast to [3], which used a Geometric Brownian motion

to drive the firm value, we set up a firm value model driven by an exponential Lévy process. In particular,

we study the model developed by [7] (CGMY), and the Normal Inverse Gaussian (NIG) processes.

We will show that default probabilities can be efficiently recovered from the Fourier-cosine series expansion

of the underlying density, following the path of the COS method for European options in [9] and that for

Bermudan options and discretely monitored barrier options in [10]. We can price a single CDS within

fractions of a second and several CDSs in less than half a second with a high accuracy. Switching from one

underlying model to another is furthermore as easy as switching from one characteristic function to another.

This enables us to calibrate the Lévy models to market quotes of CDS prices easily and efficiently.

The paper is organized as follows. In Section 2 we present the mechanics and valuation of CDSs and

introduce the Lévy firm value model. The COS method for survival probabilities is described in Section 3. A

calibration study and some numerical examples are presented in Section 4. The paper ends with conclusions.
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2 Lévy Default Model and Valuation of CDSs

In this paper we follow the approach taken by [3] and model the default event of a firm as the first time the

firm value crosses a low barrier.

Let us denote the risk neutral value of a firm at time t as Vt, and assume that under an admissible pricing

measure, Q, it follows an exponential Lévy process, i.e.

Vt = V0 exp(Xt), t ≥ 0,

with Xt being a Lévy process, which has independent and stationary increments and is stochastically con-

tinuous.

The Lévy processes of our particular interest here are the CGMY and the NIG processes.

The CGMY-process was introduced in [7] as a generalization of the famous Variance Gamma (VG) model.

It is closely related to the KoBol process in [4]. The CGMY model has four parameters C, G, M and Y , and

the characteristic function reads

ϕCGMY (ω, t) = exp
(

tCΓ(−Y )
[

(M − iω)Y − MY + (G + iω)Y − GY
])

,

with C > 0, G ≥ 0, M ≥ 0, and Y < 2. The parameter C provides control over the kurtosis of the

distribution; G and M , respectively, control the rate of the exponential decay on the right and left of the

Lévy density. Parameter Y is particularly useful in controlling whether the process has finite or infinite

activity. When Y = 0, the model boils down to the VG process.

The Normal Inverse Gaussian (NIG) is a variance-mean mixture of a Gaussian distribution with an

inverse Gaussian. The pure jump characteristic function of the NIG model reads

ϕNIG(ω, t) = exp
(

tδ
(

√

α2 − β2 −
√

α2 − (β + iω)2
))

,

with α, δ > 0 and β ∈ (−α, α − 1). The α-parameter controls the steepness of the density in the sense that

the steepness of the density increases monotonically with increasing α. This has implications also for the tail

behavior: large values of α imply light tails, while smaller values of α imply heavier tails. β is a skewness

parameter: β > 0 implies a density skew to the right, β < 0 a density skew to the left, and β = 0 implies

the density is symmetric around 0. δ is a scale parameter in the sense that the rescaled parameters α → αδ

and β → βδ are invariant under location-scale changes of x ([1]).

In the calibration study, we add a diffusion part to the NIG model and we denote this extended model

NIG-BM. By doing this both the CGMY and the NIG-BM model are then having four parameters. More

details on the diffusion part are discussed later on in the paper. As a result, the dynamics of NIG-BM model

are driven by four parameters: [σ, α, β, δ], where σ is the volatility of the diffusion, and the characteristic

function reads

ϕNIG−BM (ω, t) = exp

(

tδ
(

√

α2 − β2 −
√

α2 − (β + iω)2
)

− σ2ω2

2
t

)

.

In what follows, we use ϕlevy to denote the characteristic functions of Lévy processes.
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2.1 Lévy Default Model

For a given recovery rate, R, default occurs the first time the firm’s value is below the “reference value”

RV0. In particular, the time of default is defined as

τdef := inf{t ≥ 0 : Vt ≤ RV0}.

If we focus on

Xs = ln(Vs/V0),

then the risk-neutral survival probability in the time period (0, t], Psurv(t) : PQ(τdef > t), satisfies

Psurv(t) = PQ (Xs > lnR, for all 0 ≤ s ≤ t)

= PQ

(

min
0≤s≤t

Xs > lnR

)

= EQ

[

1

(

min
0≤s≤t

Xs > lnR

)]

(1)

where the indicator function 1(A) equals 1 if the event A is true and zero otherwise, and the subindex Q

refers to the fact that we are working in a risk-neutral setting. Eq. (1) is nothing but the price of a Binary

Down-and-Out Barrier (BDOB) option without discounting. This is a key observation that we will exploit

in the remainder of this paper.

Different methods can be applied to find the default probabilities. For single-sided Lévy models, where

the firm value only has negative jumps, the default probabilities can be calculated using the Wiener-Hopf

factorization and a double Fourier inversion as shown in [18]. In case of VG, the default probabilities can be

calculated by solving a PIDE as described in [6].

In this paper we use a recent efficient method to compute the survival probabilities and thus the CDS

spreads under Lévy models. It is called the COS method and is based on the Fourier cosine-series expansion

of the underlying density ([9]).

2.2 Valuation of Credit Default Swaps

Given a time period, say, (0, τ ], we assume there are only a finite number of observing dates, T :=

{τ0, τ1, τ2, · · · , τM} with τm := m∆τ (m = 0, 1, · · · , M) and ∆τ := τ/M , τ = τM − τ0, on which the

firm value is monitored, such that

Psurv(τ) = EQ

[

1
(

Xτ1
∈ [ln R,∞)

)

· 1
(

Xτ2
∈ [lnR,∞)

)

· · ·1
(

XτM
∈ [lnR,∞)

)]

. (2)

This coincides with the pricing formula for discrete digital options without discounting.

Let fXτm+1
|Xτm

(·|·) denote the conditional probability density of Xτm+1
given Xτm

and define

p(x, τM ) :=

{

1, x > ln(R)

0, x ≤ ln(R),
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we then have the following recursive relation:

{

p(x, τm) :=
∫∞

ln R
fXτm+1

|Xτm
(y|x)p(y, τm+1) dy, m = M − 1, · · · , 2, 1, 0,

Psurv(τ) := p(x = 0, τ0),
(3)

where p is the value of the virtual digital option without discounting.

This is the starting point of the numerical method derived in the next section.

Let us denote by T the maturity of a CDS. The fair spread, C, of a CDS at the initialization date is the

spread that equalizes the present value of the premium leg and the present value of the protection leg, i.e.

C =
(1 − R)

(

∫ T

0 exp(−r(s)s)dPdef(s)
)

∫ T

0
exp(−r(s)s)Psurv(s)ds

, (4)

where r(t) is the default-free discount rate over the time period (0, t], and Pdef (t) and Psurv(t) are the

probability of default and the probability of survival, respectively, in the time period (0, t]. Note that in case

of a default event the protection buyer is receiving (1 − R) for every insured currency unit, R being the

recovery. Eq. (4) indicates that the price of a CDS depends on the survival probability (and of course on

the default probability) of the firm.

It is in principle possible to model a stochastic recovery rate, but in this paper we assume it to be

constant.

When the interest rate is assumed to be constant in [0, T ], (4) can be simplified, via integration-by-parts,

to

C = (1 − R)

(

1 − e−rT Psurv(T )
∫ T

0 e−rsPsurv(s)ds
− r

)

, (5)

where Psurv(t) = 1 − Pdef (t) is used, see also [6, 18].

The price of a CDS is based on a series of survival probabilities on different time intervals. To see this,

we discretize (5) using the composite trapezoidal rule, i.e.

Ctrap := (1 − R)

(

1 − e−rT Psurv(T )
∑J

j=0 wje−rtjPsurv(tj)∆t
− r

)

= C + ǫc, (6)

where ǫc denotes the discretization error of the numerical integration rule (discussed later), and wj = 1
2

for j = 0 and j = J and wj = 1 otherwise. Eq. (6) suggests that a CDS price depends on a sequence of

survival probabilities defined on the sequence of time intervals (0, t0], (0, t1], . . . , (0, tJ ], with tj := j∆t and

∆t := T/J . We will subsequently show that these survival probabilities can be approximated simultaneously

in (almost) linear complexity.

3 The COS Method

In this section, we show how to compute the survival probabilities using the COS method from [10].

The Fourier-cosine series coefficients of the density fXt|Xs
(y|x), with 0 ≤ s ≤ t, of a Lévy process are

related to the characteristic function, as follows (see [9]):

fXt|Xs
(y|x) =

2

b − a

∑′N−1

n=0
Re

{

ϕlevy

(

nπ

b − a
, t − s

)

einπ x−a
b−a

}

cos

(

nπ
y − a

b − a

)

+ ǫf , (7)
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for x, y ∈ [a, b] ⊂ R, and where
∑′ denotes that the first term in the summation is halved. The error

ǫf consists of the truncation errors related to the integration range and the series truncation. They have

been discussed in [9], where it is stated that, when [a, b] is sufficiently large, the series truncation error is

dominating. Furthermore, the solution converges exponentially in N for processes exhibiting smooth prob-

ability densities (in C∞[a, b] with nonzero derivatives) , or, equivalently, for rapidly decaying characteristic

functions. The interval [a, b] is found to be sufficiently large with the following definition:

[a, b] :=

[

c1 − L
√

c2 +
√

c4, c1 + L
√

c2 +
√

c4

]

and L ∈ [7.5, 10], (8)

where cj is the jth cumulant of Xt, fXt|Xs
(y|x) with x ∈ R\[a, b] is of the machine precision order. As such,

with the above truncation interval and for a small N , Eq. (7) produces a highly accurate approximation of

the underlying density fXt|Xs
(y|x).

3.1 The COS Formula of Survival Probability

With the same rule for the range of integration as in (8), Equation (3) can be rewritten as

p(x, τm) =

∫ b

ln R

fXτm+1
|Xτm

(y|x)p(y, τm+1)dy + ǫp, (9)

where error ǫp, due to the size of the integration interval, is negligible (as p(y, τm+1) > 0 and
∫

R
p(y, τm+1)dy =

1, error ǫp is of the same order as
∫

x∈R\[a,b] fXτm+1
|Xτm

(y|x)dy).

As a second step, we replace the conditional density in (9) by (7), so that

p(x, τm) =
∑′N−1

n=0
φn(x) · Pn(τm+1) + ǫcos, (10)

where ǫp is included in ǫcos, and for m = 0, 1, . . . , M − 1,

Pn(τm+1) :=
2

b − a

∫ b

lnR

cos

(

nπ
y − a

b − a

)

p(y, τm+1) dy, (11)

and

φn(x) := Re

{

ϕlevy

(

nπ

b − a
, ∆τ

)

einπ x−a
b−a

}

. (12)

Eq. (10) is in essence the COS formula for discrete barrier options (without discounting). By ǫcos we denote

the error in the COS formula, which is dominated by ǫf in (7).

Finally, the COS formula for the survival probability reads

{

Psurv(τ) = p(x = 0, τ0).

p(x, τ0) =
∑′N−1

n=0 φn(x) · Pn(τ1).
(13)

Equation (13) suggests that, to get the survival probability, one only needs {Pn(τ1)}N−1
n=0 , the cosine coeffi-

cients of p(x, τ1), which again only depend on {Pn(τ2)}N−1
n=0 in Equations (10) and (11), and so forth.

In what follows, we will demonstrate that {Pn(τm)}N−1
n=0 can be recovered from {Pn(τm+1)}N−1

n=0 in al-

most linear computational complexity, and that {Pn(τ1)}N−1
n=0 can therefore be recursively recovered from

{Pn(τM )}N−1
n=0 , the cosine coefficients of p(x, τM ) = 1, x > ln (R), p(x, τM ) = 0 otherwise.
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3.2 Backward Induction

Starting from the definition of Pn(τm) in (11), we replace p(y, τm) by (10) and insert (12) to obtain

Pn(τm) =
∑′N−1

k=0
Re

{

ϕlevy

(

kπ

b − a
, ∆τ

)

· ωn,k

}

Pk(τm+1), (14)

where n = 0, 1, · · · , N − 1, and

ωn,k :=
2

b − a

∫ b

ln R

eikπ
y−a

b−a cos

(

nπ
y − a

b − a

)

dy.

In form of matrix-vector-product, (14) becomes

P(τm) = Re {Ω Λ} P(τm+1), (15)

where we use bold-faced letters to denote vectors, e.g. P(τm) is the vector (P0(τm), P1(τm), . . . , PN−1(τm))T .

“Ω Λ” denotes a matrix-matrix multiplication with Ω being a matrix filled with {ωn,k}N−1
n,k=0 and Λ being

a diagonal matrix filled by
{

ϕlevy

(

kπ
b−a

, ∆τ
)}N−1

k=0
. Applying (15) recursively, i.e. backwards in time, we

obtain the induction formula for P(τ1):

P(τ1) = (Re {Ω Λ})M−1
P(τM ) (16)

with P(τM ) admitting an analytic solution since, for n = 0, 1, · · · , N − 1,

Pn(τM ) :=
2

b − a

∫ b

lnR

cos

(

nπ
y − a

b − a

)

dy.

Straight-forward computation of (16) is time-consuming. However, fortunately an efficient valuation

technique exists.

From their definition, we know that the Fourier-cosine coefficients of real-valued functions are also real-

valued, so that we can expand (16) into a recursive matrix-vector-product. For example, if there are 3

monitoring dates, we need to compute

P(τ1) = Re {Ω [Λ Re {Ω [Λ Re {Ω [Λ P(t3)]} ]} ]} .

Note that “Λ times vector P(t3)” can be transformed into an element-wise multiplication of two vectors as

Λ is a diagonal matrix. Similarly, for M monitoring dates, we have

P(τ1) = Re {Ω [Λ · · · Re {Ω [Λ Re {Ω [Λ P(tM )]} ]} ]} . (17)

Furthermore, matrix Ω has a special structure, see [10]:

Ω = H + T,
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where

H =



















w0 w1 w2 · · · wN−1

w1 w2 · · · · · · wN

...
...

wN−2 wN−1 · · · w2N−3

wN−1 · · · w2N−3 w2N−2



















N×N

, (18)

is a Hankel matrix, and T is a Toeplitz matrix:

T =



















w0 w1 · · · wN−2 wN−1

w−1 w0 w1 · · · wN−2

...
. . .

...

w2−N · · · w−1 w0 w1

w1−N w2−N · · · w−1 w0



















N×N

, (19)

with

wj :=















(x2 − x1)
b − a

j = 0,

− i
π ·

exp

(

ij
(x2 − a)π

b − a

)

− exp

(

ij
(x1 − a)π

b − a

)

j j 6= 0.

(20)

It is well-known that matrix-vector products with the matrix being either a Hankel or a Toeplitz matrix can

be transformed into a circular convolution of two vectors. Therefore, the FFT algorithm can be applied, and

thus the recursive matrix-vector products in (17) can be computed in (M − 1)N log2(N) operations.

Remark 3.1. Computational effort can be saved further if we compute several survival probabilities simul-

taneously, in one computation. For example, suppose that we have two time intervals (0, t1] ⊂ (0, t2]. We

can then define the time partitioning on (0, t2] in such a way that t1 is exactly on the grid, e.g., t1 = λt2/M

with λ being a positive integer less than M . We now find that

P(τ1; t1) ≡ P(τM−λ+1; t2).

Thus, the Fourier-cosine coefficients of the survival probability on (0, t1] can be recovered at no cost during

the computation of Psurv(t2).

4 Choice of Parameters and Error Analysis

To use (13) for CDS spreads, we need to determine three relevant parameters: N , the number of terms of

the cosine series expansion; M , the number of monitoring dates and J , the number of quadrature points to

discretize the integrals in (4). These parameter values are based on the following insights.

4.1 Local Error Convergence

The choice of N is comparatively simple, as N is only related to the error convergence of the COS re-

construction of the underlying probability density, which is directly related to the convergence rate of its

Fourier-cosine series expansion. One can find a detailed error analysis of ǫcos in (10) from [9] and for the

error propagation in the recursive induction in [10].
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For example, as Figure 1 suggests, the convergence speed of the absolute errors is exponential, and with

N = 210 the errors are substantially smaller than 1 basis point.
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NIG
CGMY

Figure 1: Convergence of Psurv(∆τ = 1/48) w.r.t. the number of terms in the cosine series expansion (N)
for NIG-BM and CGMY; Parameters are given in Table 1.

4.2 Number of Monitoring Dates and Integration Points

From a practical point of view, all CDSs should be monitored daily, i.e. the mesh size in time, ∆τ , has to be

1/252 years if there are 252 working days per year. This is equivalent to setting M = 2520 for a CDS which

matures in 10 years. Such values for M make the overall computation expensive for calibration purposes.

However, one can employ larger values of ∆τ at the cost of some accuracy. In [14] the convergence of the

price of discrete barrier options with m monitoring dates to the price of the equivalent continuous barrier

option was presented within the Black-Scholes model. A similar proof of convergence under Lévy processes is

not available, however, via various numerical experiments under these processes, we have observed a regular

convergence pattern in the prices of discrete barrier options w.r.t. the number of monitoring dates. We

observed that the survival probabilities computed with a coarser time step converge to that with ∆τ = 1/252.

Experiments give some evidence that this convergence is found for extreme parameter settings as well.

An example can be found in the Series 8 iTraxx quotes for any component company (during the credit crunch

of early 2008). In Table 1 the calibrated parameters for “ABN AMRO” on date 2-20-2008 under NIG-BM

and CGMY are given.

Table 1: Calibrated parameters for “ABN AMRO Bank” on date 2-20-2008

Model R T r σ Other Parameters

NIG-BM 0.4 1 0.04 0.206 α = 3.043, β = −2.38, δ = 0.044

CGMY 0.4 1 0.04 0 C = 0.038, G = 0.60, M = 11.10, Y = 1.32
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Figure 2: Convergence of the 1-year survival probability w.r.t. ∆τ with parameters given in Table 1.

The convergence of the survival probabilities for the example in Table 1 is displayed in Figure 2. One

can see that the difference between the weekly-monitored survival probabilities (∆τ = 1/48) and the daily-

monitored versions (∆τ = 1/252) is at most 2 basis points. This difference is smaller when the parameter

values are less extreme. Therefore, we use ∆τ = 1/48, or M = 48T , in the calibration to follow.

To get an idea on how fast Psurv converges w.r.t. M , we need to examine the structure of the matrices

Ω and Λ in (17). According to its definition, Ω is a constant matrix that does not depend on the underlying

model, nor on its parameters, whereas the diagonal matrix Λ does. The elements on the diagonal of Λ are

defined as ϕlevy(kπ/(b− a), ∆τ), so that the convergence rate of Psurv w.r.t. M solely depends on how fast

the characteristic function decays.

For the number of points used in the trapezoidal rule (J) in (6), we find that the computed CDS spreads

are not very sensitive to the size of J . Therefore, we use, in the calibration to follow, J = M/4, which

gives only small differences (less than 0.1 basis point as shown in Figures 3 and 4) to the results computed

with J = M integration points. The second order convergence of the trapezoidal rule is confirmed in the

righthand side pictures of the Figures 3 and 4.
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Figure 3: Convergence of the CDS spreads w.r.t. the number of points used in the trapezoidal rule (J) under
NIG, with parameters given in Table 1.
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Figure 4: Convergence of the CDS spreads w.r.t. the number of points used in the trapezoidal rule (J) under
CGMY, with parameters given in Table 1.

5 Calibration

We investigate the performance of the proposed numerical scheme to calculate the CDS spreads by calibrating

the NIG-BM and the CGMY models to a set of CDS prices.

5.1 Calibration Setting

The data sets are the weekly quotes from iTraxx Series 7 (S7) and 8 (S8). We have chosen to calibrate the

models to spreads for CDSs with maturity 1, 3, 5, 7, and 10 years. This study makes use of 106 firms that

are common to both series.

As the risk-free discount rate we have used the averaged EURIBOR swap rates.

We deal with the well-known ill-posedness of the inverse problem in the calibration framework (see, for

example, [8]) by defining the objective function to be the root mean square error (RMSE) plus a regularization

term, i.e.

Fobj = RMSE + γ · ||X2 − X1||2,
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where

RMSE =

√

∑

CDS

(market CDS spread − model CDS spread)2

number of CDSs on each day
,

|| · ||2 denotes the L2–norm, and X2 and X1 are the parameter vectors of two data sets. This kind of objective

function also gives parameter consistency over time.

By the weighting factor γ, the regularization term influences the difference between two measures on

two consecutive dates. This parameter can also be defined as a vector of the same length as X2 and X1, if

the sensitivities of the CDS values to the component parameters differ significantly in magnitude. In that

case, “·” denotes the inner product of two vectors. With the objective function above, we aim to define a

satisfactory measure, which fits the market data well and is – more or less – time-invariant.

Note that the choice of γ in the objective function has a significant impact on the quality of the calibration

fit. If the weighting on the regularization term is too high, the RMSE increases; If the weighting is too

small, the parameter values are not stable over time. We use γ = [2, 0.5, 0.5, 0.5] for the NIG-BM model,

corresponding to the set [σ, α, β, δ]. More weight is then assigned to σ because the initial calibration revealed

that the CDSs are more sensitive to σ than to the other three parameters. As for the CGMY models, we

employ γ = [2, 0.5, 0.5, 2] corresponding to the set [C, G, M, Y ]. More weighting is assigned to C and Y

because with these two one has a significant influence on the shape of the densities, compared to G and M .

5.2 Calibration Results

Our first observation is that both the NIG-BM and the CGMY models give rise to a very good fit to the

market data. A summary of the RMSE results for all the 106 companies that are present in both S7 and S8

of iTraxx is presented in Table 2.

Table 2: Summary of calibration results (in basis points) of all 106 firms in iTraxx

RMSE NIG-BM in S7 CGMY in S7 NIG-BM in S8 CGMY in S8

Average (bp.) 0.89 0.79 1.65 1.54

Min. (bp.) 0.22 0.29 0.27 0.46

Max. (bp.) 2.29 1.97 4.27 3.52

From this we can see that the RMSE of both Lévy models for the Series 7 data are less than 1.0 basis

point, and from those for the Series 8 they are less than 2.0 basis points. Detailed information about the

RMSE for each individual company is summarized in the tables in Appendix A.

Because the S7 and S8 CDS spreads data starts from March 2007 and ends at March 2008, i.e., including

part of the credit crunch period, the CDS spreads all increase in time. Furthermore, the strong fluctuations

in the CDS curves are an indication for the increasing volatility in the credit market.

A typical example from our calibration results is given in Figure 5, where we plotted the NIG-BM and

CGMY results for ABN AMRO CDS spreads. Note that nearly 80% of all the companies have a very similar

CDS evolution. The highly satisfactory match of the computed CDSs to the market CDSs of both Lévy

models can be seen.

Even in the extreme case, where the CDS spreads have very high values, the data are still fitted very

well, see for example Figure 6, where the NIG-BM and the CGMY model fit the DSG International PLC

CDS spreads, even though the CDSs went to nearly 500 basis points.

13



March−21−2007 Sep−19−2007 Jan−2−2008 March−19−2008
0

20

40

60

80

100

120
Evolution of CDSs of   ABN Amro Bank NV   with maturity T = 1 year

C
D

S
 s

pr
ea

ds

 

 

March−21−2007 Sep−19−2007 Jan−2−2008 March−19−2008
0

50

100

150

200
Evolution of CDSs of   ABN Amro Bank NV   with maturity T = 5 year

C
D

S
 s

pr
ea

ds

 

 

March−21−2007 Sep−19−2007 Jan−2−2008 March−19−2008
0

50

100

150

200
Evolution of CDSs of   ABN Amro Bank NV   with maturity T = 10 year

C
D

S
 s

pr
ea

ds

 

 

Market CDSs
CGMY calibration results
NIG calibration results

Market CDSs
CGMY calibration results
NIG calibration results

Market CDSs
CGMY calibration results
NIG calibration results

Figure 5: Calibration fit to ABN AMRO Bank CDS spreads for the CGMY and the NIG-BM models. Market
CDS spreads ‘- -’, CGMY CDS spreads ‘o’, and NIG-BM CDS spreads ‘+’.

In Figure 7, the evolution of the parameters of the CGMY and NIG-BM densities for ABN AMRO are

plotted. We note the parameters are in reasonable range and that they evolve quite “smooth” over time.

The jump in the parameters around September 19, 2007, reflects the jump in the CDS spreads in this period

(cf. Figure 5). Recall from Table 2 that the average RMSE results for both models are small. It is also

worth noting that the value of the σ parameter in the NIG-BM model is in the range of 0.1 to 0.2, indicating

that the Brownian Motion contributes to the overall behavior of the model. In Figure 8, the evolution of

the NIG-BM density is given. Here we can see that the density is more peaked in the beginning of Series 7

and then flattens out in the end of Series 8.

The CPU times for computing 1-, 3-, 5-, 7- and 10-year CDSs are summarized in Table 3. The calibration

routine was implemented in MATLABr and the computer used for the calibration has an Intelr Core(TM)2

Duo CPU @ 2.20GHz, with 2048 KB Cache. In less than 0.5 seconds, the 5 CDSs for one company are

computed, independent of the specific type of the underlying process. Although we use N = 211 in the
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Figure 6: Calibration fit to DSG International PLC CDS spreads for the CGMY and the NIG-BM models.
Market CDS spreads ‘- -’, CGMY CDS spreads ‘o’, and NIG-BM CDS spreads ‘+’.

calibration, a value of N = 210 is usually sufficient for the NIG-BM model, see for example Table 3.

It is worth mentioning that the calibrated Y values in CGMY often approach their upper limit, Y = 2.

Whereas this gives rise to significant convergence difficulties for various numerical methods, it is not a

problem for the COS method. In fact, since larger values of Y decrease the densities’ peakedness, the COS

method converges slightly faster, compared to lower values of Y , as explained in [9].

From a numerical point of view, we would like to point out that for smooth density functions we need

fewer terms in the Fourier-cosine expansion than for highly-peaked functions. As a result, the number of the

cosine series terms (N) can be kept relatively small.

5.3 Default Probability Term Structure

It is interesting see how the default probability term structure generated by the models look like. In Figure 9,

we give an example of the term structure for DSG International PLC under the NIG-BM model. As expected
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Figure 7: Evolution of the parameters of the CGMY and NIG-BM densities, respectively, for ABN AMRO.
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Figure 8: Evolution of the NIG-BM density for ABN AMRO.

Table 3: CPU times in computing 1-, 3-, 5-, 7- and 10-year CDSs with the COS method; Parameters are given in Table 1 and
reference values are obtained by N = 213.

N 29 210 211

NIG-BM
CPU times (sec.) 0.121 0.218 0.418

max. abs. err. in bp. 0.28 7.93e-03 7.32e-06

CGMY
CPU times (sec.) 0.122 0.220 0.423

max. abs. err. in bp. 6.89 1.07 2.94e-02

the evolution of the default probability term structure resembles closely the evolution of the CDS spreads in

Figure 6, that is, the CDS spreads increase over time, which is reflected in higher default probabilities. The

CGMY model gives a similar default probability term structure.
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Figure 9: Default probability term structure of DSG International PLC under the NIG-BM model given by
calibrating the model to the CDS weekly quotes from March 21, 2007 to February 6, 2008.

6 Conclusion

In this paper we introduced an efficient and flexible numerical method, called the COS method, for calculating

survival/default probabilities for pricing single name Credit Default Swaps.

We take a structural approach where the firm’s value is modeled by an exponential Lévy process, focusing

on two well known Lévy models: the NIG-BM (a NIG model extended with a Brownian Motion) model and

the CGMY model.

The main idea is to relate the credit default spreads to a series of survival/default probabilities with

different maturities, and to exploit the relationship between these survival probabilities and the price of

Binary Down-and-Out Barrier options. To rapidly evaluate these option prices, and thus, the survival

probabilities, we generalized the option pricing method based on the Fourier-cosine series expansion of the

underlying density introduced in [9, 10]. In less than half a second, the 1-, 3-, 5, 7- and 10-year default

probabilities were computed with very satisfactory accuracy. We also checked the convergence of survival

probabilities w.r.t. the number of monitoring dates.

The method’s potential was demonstrated via calibration of the NIG-BM and the CGMY Lévy models

on the quotes of the constituents of the iTraxx Series 7 and Series 8. Both models give very good fit to the

market quotes. The average Root Mean Square Error is less than 1.0 basis point for both Lévy models with

respect to the Series 7 data, and is less than 2.0 basis points with respect to the Series 8 data. We have

presented in the paper the evolution of the CDS market quotes and the related model prices over the year

covered by the two iTraxx series. What can be seen is that the models and the method manage to reproduce

the market prices of CDSs even at those times when there are dramatic changes in the prices. The evolution

of the model parameters, resulting from the calibration, show reasonable behavior, staying quite stable over
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time unless there are large changes in the market CDS spreads. The default probability term structures

extracted from the market quotes mirror the change of the market CDS spreads over time.

From a numerical point-of-view, we saw that in many experiments we could use a smaller number of

cosine series terms for the NIG-BM model than for the CGMY model as the former has a smoother density

due to the diffusion part, making the COS method to converge faster.
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A RMSE Results of All Companies of iTraxx

Table 4: RMSE in basis points of the computed CDSs to market CDSs (part 1)

company name
RMSE in S7 RMSE in S8

NIG-BM CGMY NIG-BM CGMY

ABN AMRO Bank NV 0.61 0.55 1.33 1.60

Aegon NV 0.92 0.81 2.34 2.18

Allianz SE 0.76 0.71 0.89 1.13

Assicurazione Generali SPA 0.51 0.43 0.77 0.84

Aviva PLC 0.58 0.51 1.94 2.08

AXA 0.79 0.65 1.35 1.49

Banca Monte dei Paschi di Siena SPA 0.65 0.71 1.62 1.82

Banco Bilbao Vizcaya Argentaria SA 0.60 0.46 1.49 1.46

Banco Espirito Santo SA 0.70 0.66 1.09 1.23

Banco Santander Central Hispano SA 0.70 0.64 1.17 1.34

Barclays Bank PLC 0.48 0.46 1.22 1.32

BNP Paribas 0.38 0.30 1.04 1.07

Capitalia SPA 1.29 1.35 1.44 2.07

Commerzbank AG 0.84 0.62 1.06 1.13

Deutsche Bank AG 0.89 0.77 1.21 1.30

Hannover Rueckversicherung AG 0.61 0.62 1.59 1.61

Intesa Sanpaolo 0.40 0.44 0.27 0.46

Muenchener Rueckversicherung AG 0.59 0.71 0.99 0.95

Swiss Reinsurance Company 1.00 0.87 2.70 2.38

Unicredito Italiano SPA 0.57 0.53 1.33 1.63

Bayerische Motorenwerke AG 0.54 0.55 0.95 1.30

Compagnie Financiere Michelin 0.83 0.97 3.67 2.02

Continental AG 1.63 1.10 1.44 1.54

DaimlerChrysler AG 0.76 0.75 1.10 1.12

GKN Holdings PLC 2.19 1.50 2.53 2.17

Peugeot SA 0.74 0.64 1.72 2.28

Renault 0.80 0.64 2.73 2.56

Valeo 1.32 1.01 1.67 1.43

Volkswagen AG 0.78 0.82 2.86 1.67

Accor 0.83 0.89 2.57 2.07

Aktiebolaget Electrolux 0.69 0.35 1.79 2.20

Altadis SA 1.83 1.45 1.60 1.51

British American Tobacco PLC 0.67 0.29 1.55 1.60

Cadbury Schweppes PLC 0.62 0.55 1.60 1.59

Carrefour 0.71 0.68 1.35 0.90

Compass Group PLC 0.78 0.66 1.55 0.99

Deutsche Lufthansa AG 0.89 0.68 1.61 1.83

Diageo PLC 0.32 0.32 1.49 1.16

DSG International PLC 0.93 0.72 4.27 3.33

Gallaher Group PLC 0.41 0.52 1.07 0.57

Groupe Auchan 0.44 0.46 1.51 0.90

Experian Finance PLC 0.71 0.52 1.82 1.70

Henkel KGaA 0.74 0.73 1.57 1.32

Kingfisher PLC 1.17 0.70 3.58 3.30

Koninklijke Philips Electronics NV 0.81 0.69 1.40 1.47
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Table 5: RMSE in basis points of the computed CDSs to market CDSs (part 2)

company name
RMSE in S7 RMSE in S8

NIG-BM CGMY NIG-BM CGMY

LVMH Moet Henessy Louis Vuitton 0.62 0.72 1.47 1.17

Marks and Spencer 1.15 0.89 1.76 2.22

Metro AG 0.52 0.60 1.10 1.18

PPR 1.48 0.78 1.92 1.97

Safeway Ltd 1.09 0.94 1.72 1.49

Sodexho Alliance 0.46 0.42 1.19 1.32

Svenska Cellulosa Aktiebolaget SCA 0.52 0.40 1.69 1.73

Tate & Lyle PLC 0.66 0.94 0.94 1.01

Tesco PLC 0.33 0.44 1.28 0.77

Unilever NV 0.52 0.48 1.50 0.51

Centrica PLC 0.80 1.15 2.14 1.23

Edison SPA 0.40 0.58 0.88 0.74

Enel SPA 0.76 0.75 2.96 3.00

Energie Baden-Wuerttemberg AG 0.46 0.52 1.60 0.99

Fortum Oyj 0.59 0.63 1.70 0.98

Gas Natural SDG SA 0.32 0.45 1.87 1.54

GAZ de France 0.25 0.41 1.43 1.00

Iberdrola SA 0.71 1.97 1.66 1.54

National Grid PLC 1.25 0.99 1.69 1.10

Repsol YPF SA 1.06 1.00 1.36 1.30

RWE AG 0.22 0.41 0.89 0.60

SUEZ 0.46 0.52 0.94 0.76

Union Fenosa SA 0.59 0.64 2.11 1.85

United Utilities PLC 0.32 0.90 0.97 0.88

Vattenfall Aktiebolag 0.36 0.52 1.25 0.80

Veolia Environnement 1.55 0.97 1.19 1.19

Adecco SA 0.63 0.31 1.71 2.06

Akzo Nobel NV 0.67 0.55 1.67 1.28

Arcelor Finance 0.66 0.38 1.71 1.96

Bayer AG 0.57 1.02 1.42 1.25

Ciba Specialty Chemicals Holding Inc. 1.71 0.74 1.96 2.26

Compagnie de Saint-Gobain 0.77 0.51 2.14 1.68

European Aeronautic Defence and Space Company EADS NV 0.65 0.45 1.42 1.03

Glencore International AG 2.29 1.17 2.55 3.52

Imperial Chemical Industries PLC 0.94 0.54 0.74 0.70

Koninklijke DSM NV 0.97 0.37 1.45 1.51

Lafarge 1.40 1.04 1.77 1.89

Linde AG 0.94 0.91 1.13 1.40

Sanofi-Aventis 0.45 0.45 1.16 0.83

Siemens AG 0.74 1.40 1.21 1.05

Solvay 0.48 1.27 0.95 1.04

ThyssenKrupp AG 1.53 0.84 2.23 2.08

UPM-Kymmene Oyj 1.31 1.06 3.06 2.99

VINCI 0.76 0.49 1.28 1.21

Bertelsmann AG 1.33 1.90 1.36 1.10
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Table 6: RMSE in basis points of the computed CDSs to market CDSs (part 3)

company name
RMSE in S7 RMSE in S8

NIG-BM CGMY NIG-BM CGMY

British Telecommunications PLC 1.56 1.20 1.62 1.65

Deutsche Telekom AG 1.16 1.24 2.19 1.51

France Telecom 1.31 1.77 1.48 1.38

Hellenic Telecommunications Organisation SA 1.44 1.05 3.54 2.79

Koninklijke KPN NV 2.29 0.64 1.90 3.17

Pearson PLC 1.80 0.81 1.68 1.43

Reuters Group PLC 0.87 1.15 1.12 1.04

STMicroelectronics NV 0.80 0.87 0.97 1.79

Telecom Italia SPA 1.82 1.58 2.55 2.46

Telefonica SA 1.20 0.96 1.59 1.59

Telekom Austria Aktiengesellschaft 0.99 0.77 1.59 1.27

Telenor ASA 0.57 0.90 0.85 0.93

TeliaSonera Aktiebolag 1.05 0.70 1.61 1.23

Vivendi 2.02 1.58 2.37 2.64

Vodafone Group PLC 1.27 1.94 2.02 1.69

Wolters Kluwer NV 1.51 1.43 1.45 1.19
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