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Abstract

We construct multi-currency models with stochastic volatility and correlated
stochastic interest rates with a full matrix of correlations. We first deal
with a foreign exchange (FX) model of Heston-type, in which the domestic
and foreign interest rates are generated by the short-rate process of Hull-
White [Hull and White, 1990]. We then extend the framework by modeling
the interest rate by a stochastic volatility displaced-diffusion Libor Market
Model [Andersen and Andreasen, 2002], which can model an interest rate smile.
We provide semi-closed form approximations which lead to efficient calibration of
the multi-currency models. Finally, we add a correlated stock to the framework
and discuss the construction, model calibration and pricing of equity-FX-interest
rate hybrid payoffs.
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1 Introduction

Since the financial crisis, investors tend to look for products with a long time horizon,
that are less sensitive to short-term market fluctuations. When pricing these exotic
contracts it is desirable to incorporate in a mathematical model the patterns present in
the market that are relevant to the product.

Due to the existence of complex FX products, like the Power-Reverse Dual-
Currency [Sippel and Ohkoshi, 2002], the Equity-CMS Chameleon or the Equity-Linked
Range Accrual TRAN swaps [Caps, 2007], that all have a long lifetime and are sensitive
to smiles or skews in the market, improved models with stochastic interest rates need
to be developed.

The literature on modeling foreign exchange (FX) rates is rich and many stochastic
models are available. An industrial standard is a model from [Frey and Sommer, 1996;
Sippel and Ohkoshi, 2002], where log-normally distributed FX dynamics are assumed
and Gaussian, one-factor, interest rates are used. This model gives analytic expressions
for the prices of basic products for at-the-money options. Extensions on the interest rate
side were presented in [Schlögl(b), 2002; Mikkelsen, 2001], where the short-rate model
was replaced by a Libor Market Model framework.

A Gaussian interest rate model was also used in [Piterbarg, 2006], in which a
local volatility model was applied for generating the skews present in the FX market.
In another paper, [Kawai and Jäckel, 2007], a displaced-diffusion model for FX was
combined with the interest rate Libor Market Model.
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Stochastic volatility FX models have also been investigated. For example,
in [Haastrecht and Pelsser, 2011] the Schöbel-Zhu model was applied for pricing FX
in combination with short-rate processes. This model leads to a semi-closed form
for the characteristic function. However, for a normally distributed volatility process
it is difficult to outperform the Heston model with independent stochastic interest
rates [Haastrecht and Pelsser, 2011].

Research on the Heston dynamics in combination with correlated interest rates
has led to some interesting models. In [Andreasen, 2006] and [Giese, 2006] an
indirectly imposed correlation structure between Gaussian short-rates and FX was
presented. The model is intuitively appealing, but it may give rise to very large
model parameters [Antonov et al., 2008]. An alternative model was presented
in [Antonov and Misirpashaev, 2006; Antonov et al., 2008], in which calibration
formulas were developed by means of Markov projection techniques.

In this article we present an FX Heston-type model in which the interest rates are
stochastic processes, correlated with the governing FX processes. We first discuss the He-
ston FX model with Gaussian interest rate (Hull-White model [Hull and White, 1990])
short-rate processes. In this model a full matrix of correlations is used.

This model, denoted by FX-HHW here, is a generalization of our work
in [Grzelak and Oosterlee, 2011], where we dealt with the problem of finding an
affine approximation of the Heston equity model with a correlated stochastic interest
rate. In this paper, we apply this technique in the world of foreign exchange.

Secondly, we extend the framework by modeling the interest rates by a
market model, i.e., by the stochastic volatility displaced-diffusion Libor Market
Model [Andersen and Andreasen, 2002; Piterbarg, 2005]. In this hybrid model, called
FX-HLMM here, we incorporate a non-zero correlation between the FX and the
interest rates and between the rates from different currencies. Because it is not possible
to obtain closed-form formulas for the associated characteristic function, we use a
linearization approximation, developed earlier, in [Grzelak and Oosterlee, 2010].

For both models we provide details on how to include a foreign stock in the multi-
currency pricing framework.

Fast model evaluation is highly desirable for FX options in practice,
especially during the calibration of the hybrid model. This is the
main motivation for the generalization of the linearization techniques
in [Grzelak and Oosterlee, 2011; Grzelak and Oosterlee, 2010] to the world of foreign
exchange. We will see that the resulting approximations can be used very well in the
FX context.

The present article is organized as follows. In Section 2 we discuss the extension of
the Heston model by stochastic interest rates, described by short-rate processes. We
provide details about some approximations in the model, and then derive the related
forward characteristic function. We also discuss the model’s accuracy and calibration
results. Section 3 gives the details for the cross-currency model with interest rates driven
by the market model and Section 4 concludes.

2 Multi-Currency Model with Short-Rate Interest

Rates

Here, we derive the model for the spot FX, ξ(t), expressed in units of domestic
currency, per unit of a foreign currency.

We start the analysis with the specification of the underlying interest rate processes,
rd(t) and rf (t). At this stage we assume that the interest rate dynamics are defined via
short-rate processes, which under their spot measures, i.e., Q−domestic and Z−foreign,
are driven by the Hull-White [Hull and White, 1990] one-factor model:

drd(t) = λd(θd(t) − rd(t))dt + ηddW
Q
d (t), (2.1)

drf (t) = λf (θf (t) − rf (t))dt + ηfdWZ
f (t), (2.2)
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where WQ
d (t) and WZ

f (t) are Brownian motions under Q and Z, respectively. Parameters
λd, λf determine the speed of mean reversion to the time-dependent term structure
functions θd(t), θf (t), and parameters ηd, ηf are the volatility coefficients.

These processes, under the appropriate measures, are linear in their state variables,
so that for a given maturity T (0 < t < T ) the zero-coupon bonds (ZCB) are known to
be of the following form:

Pd(t, T ) = exp (Ad(t, T ) +Bd(t, T )rd(t)) ,

Pf (t, T ) = exp (Af (t, T ) +Bf (t, T )rf (t)) ,
(2.3)

with Ad(t, T ), Af (t, T ) and Bd(t, T ), Bf (t, T ) analytically known quantities (see for
example [Brigo and Mercurio, 2007]). In the model the money market accounts are
given by:

dMd(t) = rd(t)Md(t)dt, and dMf(t) = rf (t)Mf (t)dt. (2.4)

By using the Heath-Jarrow-Morton arbitrage-free argument, [Heath et al., 1992], the
dynamics for the ZCBs, under their own measures generated by the money savings
accounts, are known and given by the following result:

Result 2.1 (ZCB dynamics under the risk-free measure). The risk-free dynamics of the
zero-coupon bonds, Pd(t, T ) and Pf (t, T ), with maturity T are given by:

dPd(t, T )

Pd(t, T )
= rd(t)dt−

(∫ T

t

Γd(t, s)ds

)
dWQ

d (t), (2.5)

dPf (t, T )

Pf (t, T )
= rf (t)dt−

(∫ T

t

Γf (t, s)ds

)
dWZ

f (t), (2.6)

where Γd(t, T ), Γf (t, T ) are the volatility functions of the instantaneous forward rates
fd(t, T ), ff (t, T ), respectively, that are given by:

dfd(t, T ) = Γd(t, T )

∫ T

t

Γd(t, s)ds+ Γd(t, T )dWQ
d (t), (2.7)

dff(t, T ) = Γf(t, T )

∫ T

t

Γf (t, s)ds+ Γf (t, T )dWZ
f (t). (2.8)

Proof. For the proof see [Musiela and Rutkowski, 1997].

The spot-rates at time t are defined by rd(t) ≡ fd(t, t), rf (t) ≡ ff (t, t).
By means of the volatility structures, Γd(t, T ), Γf (t, T ), one can define a number

of short-rate processes. In our framework the volatility functions are chosen to be
Γd(t, T ) = ηd exp (−λd(T − t)) and Γf (t, T ) = ηf exp (−λf (T − t)). The Hull-White
short-rate processes, rd(t) and rf (t) as in (2.1), (2.2), are then obtained and the term
structures, θd(t), θf (t), expressed in terms of instantaneous forward rates, are also
known. The choice of specific volatility determines the dynamics of the ZCBs:

dPd(t, T )

Pd(t, T )
= rd(t)dt+ ηdBd(t, T )dWQ

d (t),

dPf (t, T )

Pf (t, T )
= rf (t)dt+ ηfBf (t, T )dWZ

f (t), (2.9)

with Bd(t, T ) and Bf (t, T ) as in (2.3), given by:

Bd(t, T ) =
1

λd

(
e−λd(T−t) − 1

)
, Bf (t, T ) =

1

λf

(
e−λf (T−t) − 1

)
. (2.10)
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For a detailed discussion on short-rate processes, we refer to the analysis of Musiela and
Rutkowski in [Musiela and Rutkowski, 1997]. In the next subsection we define the FX
hybrid model.

2.1 The Model with Correlated, Gaussian Interest Rates

The FX-HHW model, with all processes defined under the domestic risk-neutral
measure, Q, is of the following form:

dξ(t)/ξ(t) = (rd(t) − rf (t)) dt+
√
v(t)dWQ

ξ (t), ξ(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWQ

v (t), v(0) > 0,

drd(t) = λd(θd(t) − rd(t))dt+ ηddW
Q
d (t), rd(0) > 0,

drf (t) =
(
λf (θf (t) − rf (t)) − ηfρξ,f

√
v(t)

)
dt+ ηfdWQ

f (t), rf (0) > 0.

(2.11)
Here, the parameters κ, λd, and λf determine the speed of mean reversion of the latter
three processes, their long term mean is given by v̄, θd(t), θf (t), respectively. The
volatility coefficients for the processes rd(t) and rf (t) are given by ηd and ηf and the
volatility-of-volatility parameter for process v(t) is γ.

In the model we assume a full matrix of correlations between the Brownian motions
W(t) =

[
WQ

ξ (t),WQ
v (t),WQ

d (t),WQ
f (t)

]T
:

dW(t)(dW(t))T =




1 ρξ,v ρξ,d ρξ,f

ρξ,v 1 ρv,d ρv,f

ρξ,d ρv,d 1 ρd,f

ρξ,f ρv,f ρd,f 1


dt. (2.12)

Under the domestic-spot measure the drift in the short-rate process, rf (t), gives rise to

an additional term, −ηfρξ,f

√
v(t). This term ensures the existence of martingales,

under the domestic spot measure, for the following prices (for more discussion,
see [Shreve, 2004]):

χ1(t) := ξ(t)
Mf (t)

Md(t)
and χ2(t) := ξ(t)

Pf (t, T )

Md(t)
,

where Pf (t, T ) is the price foreign zero-coupon bond (2.9), respectively, and the money
savings accounts Md(t) and Mf (t) are from (2.4).

To see that the processes χ1(t) and χ2(t) are martingales, one can apply the Itô
product rule, which gives:

dχ1(t)

χ1(t)
=

√
v(t)dWQ

ξ (t), (2.13)

dχ2(t)

χ2(t)
=

√
v(t)dWQ

ξ (t) + ηfBf (t, T )dWQ
f (t). (2.14)

The change of dynamics of the underlying processes, from the foreign-spot to the
domestic-spot measure, also influences the dynamics for the associated bonds, which,
under the domestic risk-neutral measure, Q, with the money savings account considered
as a numéraire, have the following representations

dPd(t, T )

Pd(t, T )
= rd(t)dt+ ηdBd(t, T )dWQ

d (t), (2.15)

dPf (t, T )

Pf (t, T )
=

(
rf (t) − ρξ,fηfBf (t, T )

√
v(t)

)
dt+ ηfBf (t, T )dWQ

f (t), (2.16)

with Bd(t, T ) and Bf (t, T ) as in (2.10).

4



2.2 Pricing of FX Options

In order to perform efficient calibration of the model we need to be able to
price basic options on the FX rate, V (t,X(t)), for a given state vector, X(t) =
[ξ(t), v(t), rd(t), rf (t)]T:

V (t,X(t)) = EQ

(
Md(t)

Md(T )
max(ξ(T ) −K, 0)

∣∣∣F(t)

)
,

with

Md(t) = exp

(∫ t

0

rd(s)ds

)
.

Now, we consider a forward price, Π(t), such that:

EQ

(
max(ξ(T ) −K, 0)

Md(T )

∣∣∣F(t)

)
=
V (t,X(t))

Md(t)
=: Π(t).

By Itô’s lemma we have:

dΠ(t) =
1

Md(t)
dV (t) − rd(t)

V (t)

Md(t)
dt, (2.17)

with V (t) := V (t,X(t)). We know that Π(t) must be a martingale, i.e.: E(dΠ(t)) = 0.
Including this in (2.17) gives the following Fokker-Planck forward equation for V :

rdV =
1

2
η2

f

∂2V

∂r2f
+ ρd,fηdηf

∂2V

∂rd∂rf
+

1

2
η2

d

∂2V

∂r2d
+ ρv,fγηf

√
v
∂2V

∂v∂rf

+ρv,dγηd

√
v
∂2V

∂v∂rd
+

1

2
γ2v

∂2V

∂v2
+ ρξ,fηfξ

√
v
∂2V

∂ξ∂rf
+ ρx,dηdξ

√
v
∂2V

∂ξ∂rd

+ρξ,vγξv
∂2V

∂ξ∂v
+

1

2
ξ2v

∂2V

∂ξ2
+
(
λf (θf (t) − rf ) − ρξ,fηf

√
v
) ∂V
∂rf

+λd(θd(t) − rd)
∂V

∂rd
+ κ(v̄ − v)

∂V

∂v
+ (rd − rf )ξ

∂V

∂ξ
+
∂V

∂t
.

This 4D PDE contains non-affine terms, like square-roots and products. It is therefore
difficult to solve it analytically and a numerical PDE discretization, like finite differences,
needs to be employed. Finding a numerical solution for this PDE is therefore rather
expensive and not easily applicable for model calibration. In the next subsection we
propose an approximation of the model, which is useful for calibration.

2.2.1 The FX Model under the Forward Domestic Measure

To reduce the complexity of the pricing problem, we move from the spot measure,
generated by the money savings account in the domestic market, Md(t), to the forward
FX measure where the numéraire is the domestic zero-coupon bond, Pd(t, T ). As
indicated in [Musiela and Rutkowski, 1997; Piterbarg, 2006], the forward is given by:

FXT (t) = ξ(t)
Pf (t, T )

Pd(t, T )
, (2.18)

where FXT (t) represents the forward exchange rate under the T -forward measure, and
ξ(t) stands for foreign exchange rate under the domestic spot measure. The superscript
should not be confused with the transpose notation used at other places in the text.

By switching from the domestic risk-neutral measure, Q, to the domestic T -forward
measure, QT , the discounting will be decoupled from taking the expectation, i.e.:

Π(t) = Pd(t, T )ET
(
max

(
FXT (T ) −K, 0

)
|F(t)

)
. (2.19)
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In order to determine the dynamics for FXT (t) in (2.18), we apply Itô’s formula:

dFXT (t) =
Pf (t, T )

Pd(t, T )
dξ(t) +

ξ(t)

Pd(t, T )
dPf (t, T ) − ξ(t)

Pf (t, T )

P 2
d (t, T )

dPd(t, T )

+ξ(t)
Pf (t, T )

P 3
d (t, T )

(dPd(t, T ))
2
+

1

Pd(t, T )
(dξ(t)dPf (t, T ))

−Pf (t, T )

P 2
f (t, T )

(dPd(t, T )dξ(t)) − ξ(t)

P 2
d (t, T )

dPd(t, T )dPf (t, T ). (2.20)

After substitution of SDEs (2.11), (2.15) and (2.16) into (2.20), we arrive at the following
FX forward dynamics:

dFXT (t)

FXT (t)
= ηdBd(t, T )

(
ηdBd(t, T ) − ρξ,d

√
v(t) − ρd,fηfBf (t, T )

)
dt

+
√
v(t)dWQ

ξ (t) − ηdBd(t, T )dWQ
d (t) + ηfBf (t, T )dWQ

f (t). (2.21)

Since FXT (t) is a martingale under the T -forward domestic measure, i.e.,
Pd(t, T )ET (FXT (T )|F(t)) = Pd(t, T )FXT (t) =: Pf (t, T )ξ(t), the appropriate Brownian
motions under the T−forward domestic measure, dWT

ξ (t), dWT
v (t), dWT

d (t) and

dWT
f (t), need to be determined.
A change of measure from domestic-spot to domestic T -forward measure requires a

change of numéraire from money savings account, Md(t), to zero-coupon bond Pd(t, T ).
In the model we incorporate a full matrix of correlations, which implies that all processes
will change their dynamics by changing the measure from spot to forward. Lemma 2.2
provides the model dynamics under the domestic T -forward measure, QT .

Lemma 2.2 (The FX-HHW model dynamics under the QT measure). Under the T -
forward domestic measure, the model in (2.11) is governed by the following dynamics:

dFXT (t)

FXT (t)
=
√
v(t)dWT

ξ (t) − ηdBd(t, T )dWT
d (t) + ηfBf (t, T )dWT

f (t), (2.22)

where

dv(t) =
(
κ(v̄ − v(t)) + γρv,dηdBd(t, T )

√
v(t)

)
dt+ γ

√
v(t)dWT

v (t), (2.23)

drd(t) =
(
λd(θd(t) − rd(t)) + η2

dBd(t, T )
)
dt+ ηddW

T
d (t), (2.24)

drf (t) =
(
λf (θf (t) − rf (t)) − ηfρξ,f

√
v(t) + ηdηfρd,fBd(t, T )

)
dt+ ηfdWT

f (t),

(2.25)

with a full matrix of correlations given in (2.12), and with Bd(t, T ), Bf (t, T ) given
by (2.10).
The proof can be found in Appendix A.

From the system in Lemma 2.2 we see that after moving from the domestic-spot
Q-measure to the domestic T -forward QT measure, the forward exchange rate FXT (t)
does not depend explicitly on the short-rate processes rd(t) or rf (t). It does not contain
a drift term and only depends on dWT

d (t), dWT
f (t), see (2.22).

Remark. Since the sum of three correlated, normally distributed random variables,
Q = X+Y +Z, remains normal with the mean equal to the sum of the individual means
and the variance equal to

v2
Q = v2

X + v2
Y + v2

Z + 2ρX,Y vXvY + 2ρX,ZvXvZ + 2ρY,ZvY vZ ,
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we can represent the forward (2.22) as:

dFXT /FXT =
(
v + η2

dB
2
d + η2

fB
2
f − 2ρξ,dηdBd

√
v

+2ρξ,fηfBf

√
v − 2ρd,fηdηfBdBf

) 1

2 dWT
F . (2.26)

Although the representation in (2.26) reduces the number of Brownian motions in
the dynamics for the FX, one still needs to find the appropriate cross-terms, like
dWT

F (t)dWT
v (t), in order to obtain the covariance terms. For clarity we therefore prefer

to stay with the standard notation.

Remark. The dynamics of the forwards, FXT (t) in (2.22) or in (2.26), do not depend
explicitly on the interest rate processes, rd(t) and rf (t), and are completely described by
the appropriate diffusion coefficients. This suggests that the short-rate variables will not
enter the pricing PDE. Note, that this is only the case for models in which the diffusion
coefficient for the interest rate does not depend on the level of the interest rate.

In next section we derive the corresponding pricing PDE and provide model
approximations.

2.3 Approximations and the Forward Characteristic Function

As the dynamics of the forward foreign exchange, FXT (t), under the domestic forward
measure involve only the interest rate diffusions dWT

d (t) and dWT
f (t), a significant

reduction of the pricing problem is achieved.
In order to find the forward ChF we take, as usual, the log-transform of the forward

rate FXT (t), i.e.: xT (t) := log FXT (t), for which we obtain the following dynamics:

dxT (t) =
(
ζ(t,

√
v(t))−1

2
v(t)

)
dt+

√
v(t)dWT

ξ (t)−ηdBddW
T
d (t)+ηfBfdWT

f (t), (2.27)

with the variance process, v(t), given by:

dv(t) =
(
κ(v̄ − v(t)) + γρv,dηdBd

√
v(t)

)
dt+ γ

√
v(t)dWT

v (t), (2.28)

where we used the notation Bd := Bd(t, T ) and Bf := Bf (t, T ), and

ζ(t,
√
v(t)) = (ρx,dηdBd − ρx,fηfBf )

√
v(t) + ρd,fηdηfBdBf − 1

2

(
η2

dB
2
d + η2

fB
2
f

)
.

By applying the Feynman-Kac theorem we can obtain the characteristic function of the
forward FX rate dynamics. The forward characteristic function:

φT := φT (u,X(t), t, T ) = ET
(
eiuxT (T )

∣∣F(t)
)
,

with final condition, φT (u,X(T ), T, T ) = eiuxT (T ), is the solution of the following
Kolmogorov backward partial differential equation:

−∂φ
T

∂t
=

(
κ(v̄ − v) + ρv,dγηd

√
vBd(t, T )

) ∂φT

∂v
+

(
1

2
v − ζ(t,

√
v)

)(
∂2φT

∂x2
− ∂φT

∂x

)

+
(
ρx,vγv − ρv,dγηd

√
vBd(t, T ) + ρv,fγηf

√
vBf (t, T )

) ∂2φT

∂x∂v
+

1

2
γ2v

∂2φT

∂v2
.

This PDE contains however non-affine
√
v-terms so that it is nontrivial to find

the solution. Recently, in [Grzelak and Oosterlee, 2011], we have proposed two
methods for linearization of these non-affine 1 square-roots of the square root pro-

1According to [Duffie et al., 2000] the n-dimensional system of SDEs:

dX(t) = µ(X(t))dt + v(X(t))dW(t),

7



cess [Cox et al., 1985]. The first method is to project the non-affine square-root terms
on their first moments. This is also the approach followed here 2.

The approximation of the non-affine terms in the corresponding PDE is then done
as follows. We assume:

√
v(t) ≈ E

(√
v(t)

)
=: ϕ(t), (2.29)

with the expectation of the square root of v(t) given by:

E

(√
v(t)

)
=
√

2c(t)e−ω(t)/2
∞∑

k=0

1

k!
(ǫ(t)/2)k

Γ
(

1+ℓ
2 + k

)

Γ( ℓ
2 + k)

, (2.30)

and

c(t) =
1

4κ
γ2(1 − e−κt), ℓ =

4κv̄

γ2
, ǫ(t) =

4κv(0)e−κt

γ2(1 − e−κt)
. (2.31)

Γ(k) is the gamma function defined by:

Γ(k) =

∫ ∞

0

tk−1e−tdt.

Although the expectation in (2.30) is a closed form expression, its evaluation is rather
expensive. One may prefer to use a proxy, for example,

E(
√
v(t)) ≈ β1 + β2e

−β3t, (2.32)

in which the constant coefficients β1, β2 and β3 can be determined by asymptotic equality
with (2.30) (see [Grzelak and Oosterlee, 2011] for details).

Projection of the non-affine terms on their first moments allows us to derive the
corresponding forward characteristic function, φT , which is then of the following form:

φT (u,X(t), t, T ) = exp(A(u, τ) +B(u, τ)xT (t) + C(u, τ)v(t)),

where τ = T−t, and the functions A(τ) := A(u, τ), B(τ) := B(u, τ) and C(τ) := C(u, τ)
are given by:

B′(τ) = 0,

C′(τ) = −κC(τ) + (B2(τ) −B(τ))/2 + ρx,vγB(τ)C(τ) + γ2C2(τ)/2,

A′(τ) = κv̄C(τ) + ρv,dγηdϕ(τ)Bd(τ)C(τ) − ζ(τ, ϕ(τ))
(
B2(τ) −B(τ)

)

+ (−ρv,dηdγϕ(τ)Bd(τ) + ρv,fγηfϕ(τ)Bf (τ))B(τ)C(τ),

with ϕ(t) = E(
√
v(t)), andBi(τ) = λ−1

i

(
e−λiτ − 1

)
for i = {d, f}. The initial conditions

are: B(0) = iu, C(0) = 0 and A(0) = 0.
With B(τ) = iu, the complex-valued function C(τ) is of the Heston-

type, [Heston, 1993], and its solution reads:

C(τ) =
1 − e−dτ

γ2(1 − ge−dτ )
(κ− ρx,vγiu− d) , (2.33)

with d =
√

(ρx,vγiu− κ)2 − γ2iu(iu− 1), g =
κ− γρx,viu− d
κ− γρx,viu+ d

.

is of the affine form if:

µ(X(t)) = a0 + a1X(t), for any (a0, a1) ∈ Rn × Rn×n,

v(X(t))v(X(t))T = (c0)ij + (c1)
T
ijX(t), for arbitrary (c0, c1) ∈ Rn×n × Rn×n×n,

r(X(t)) = r0 + rT
1 X(t), for (r0, r1) ∈ R × Rn,

for i, j = 1, . . . , n, with r(X(t)) being an interest rate component.
2Since the moments of the square-root process under the T -forward measure are difficult to determine

for
√

v(t) we have set ρv,d = 0 or, in other words, the expectation is calculated under measure Q.
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The parameters κ, γ, ρx,v are given in (2.11).
Function A(τ) is given by:

A(τ) =

∫ τ

0

(
κv̄ + ρv,dγηdϕ(s)Bd(s) − ρv,dηdγϕ(s)Bd(s)iu

+ρv,fγηfϕ(s)Bf (s)iu
)
C(s)ds+ (u2 + iu)

∫ τ

0

ζ(s, ϕ(s))ds, (2.34)

with C(s) in (2.33). It is most convenient to solve A(τ) numerically with, for example,
Simpson’s quadrature rule. With correlations ρv,d, ρv,f equal to zero, a closed-form
expression for A(τ) would be available [Grzelak and Oosterlee, 2011].

We denote the approximation, by means of linearization, of the full-scale FX-HHW
model by FX-HHW1. It is clear that efficient pricing with Fourier-based methods can
be done with FX-HHW1, and not with FX-HHW.

By the projection of
√
v(t) on its first moment in (2.29) the corresponding PDE is

affine in its coefficients, and reads:

− ∂φT

∂t
= (κ(v̄ − v) + Ψ1)

∂φT

∂v
+

(
1

2
v − ζ(t, ϕ(t))

)(
∂2φT

∂x2
− ∂φT

∂x

)

+ (ρx,vγv − Ψ2)
∂2φT

∂x∂v
+

1

2
γ2v

∂2φT

∂v2
, with: (2.35)

φT (u,X(T ), T, T ) = ET
(
eiuxT (T )

∣∣F(T )
)

= eiuxT (T ),

and ζ(t, ϕ(t)) = Ψ3 + ρd,fηdηfBd(t, T )Bf (t, T ) − 1
2

(
η2

dB
2
d(t, T ) + η2

fB
2
f (t, T )

)
.

The three terms, Ψ1, Ψ2, and Ψ3, in the PDE (2.35) contain the function ϕ(t):

Ψ1 := ρv,dγηdBd(t, T )ϕ(t),

Ψ2 := (ρv,dγηdBd(t, T )− ρv,fγηfBf (t, T ))ϕ(t),

Ψ3 := (ρx,dηdBd(t, T ) − ρx,fηfBf (t, T ))ϕ(t).

When solving the pricing PDE for t→ T , the terms Bd(t, T ) and Bf (t, T ) tend to zero,
and all terms that contain the approximation vanish. The case t → 0 is furthermore

trivial, since
√
v(t)

t→0−→ E(
√
v(0)).

Under the T -forward domestic FX measure, the projection of the non-affine terms
on their first moments is expected to provide high accuracy. In Section 2.5 we perform
a numerical experiment to validate this.

It is worth mentioning that also an alternative approximation for the non-affine
terms

√
v(t) is available, see [Grzelak and Oosterlee, 2011]. This alternative approach

guarantees that the first two moments are exact. In this article we stay, however, with
the first representation.

2.4 Pricing a Foreign Stock in the FX-HHW Model

Here, we focus our attention on pricing a foreign stock, Sf (t), in a domestic market.
With this extension we can in principle price equity-FX-interest rate hybrid products.

With an equity smile/skew present in the market, we assume that Sf (t) is given by
the Heston stochastic volatility model:

dSf (t)/Sf (t) = rf (t)dt+
√
ω(t)dWZ

Sf
(t),

dω(t) = κf(ω̄ − ω(t))dt+ γf

√
ω(t)dWZ

ω (t),

drf (t) = λf (θf (t) − rf (t)))dt+ ηfdWZ
f (t),

(2.36)

where Z indicates the foreign-spot measure and the model parameters, κf , γf , λf , θf (t)
and ηf , are as before.
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Before deriving the stock dynamics in domestic currency, the model has to be
calibrated in the foreign market to plain vanilla options. This can be efficiently done
with the help of a fast pricing formula.

With the foreign short-rate process, rf (t), established in (2.11) we need to determine
the drifts for Sf (t) and its variance process, ω(t), under the domestic spot measure. The
foreign stock, Sf (t), can be expressed in domestic currency by multiplication with the
FX, ξ(t), and by discounting with the domestic money savings account, Md(t). Such
a stock is a tradable asset, so the price ξ(t)Sf (t)/Md(t) (with ξ(t) in (2.11), Sf (t)
from (2.36) and the domestic money-saving account Md(t) in (2.4)) needs to be a
martingale.

By applying Itô’s lemma to ξ(t)Sf (t)/Md(t), we find

d
(
ξ(t)

Sf (t)
Md(t)

)

ξ(t)
Sf (t)
Md(t)

= ρξ,Sf

√
v(t)

√
ω(t)dt+

√
v(t)dWQ

ξ (t) +
√
ω(t)dWZ

Sf
, (2.37)

where Q and Z indicate the domestic-spot and foreign-spot measures, respectively. To
make process ξ(t)Sf (t)/Md(t) a martingale we set:

dWZ
Sf

(t) = dWQ
Sf

− ρξ,Sf

√
v(t)dt,

where v(t) is the variance process of FX defined in (2.11).
Under the change of measure, from foreign to domestic-spot, Sf (t) has the following

dynamics:

dSf (t)/Sf (t) = rf (t)dt +
√
ω(t)dWZ

Sf
(t)

=
(
rf (t) − ρξ,Sf

√
v(t)

√
ω(t)

)
dt+

√
ω(t)dWQ

Sf
(t). (2.38)

The variance process is correlated with the stock and by the Cholesky decomposition
we find:

dω(t) = κf (ω̄ − ω(t))dt+ γf

√
ω(t)

(
ρSf ,ωdW̃Z

Sf
(t) +

√
1 − ρ2

Sf ,ωdW̃Z
ω (t)

)

=
(
κf (ω̄ − ω(t)) − ρSf ,ωρSf ,ξγf

√
ω(t)

√
v(t)

)
dt+ γf

√
ω(t)dWQ

ω (t). (2.39)

Sf(t) in (2.38) and ω(t) in (2.39) are governed by several non-affine terms. Assuming
that the foreign stock, Sf (t), is already calibrated to market data, we only need to
simulate the foreign stock dynamics in the domestic market. Monte Carlo simulation
of the foreign stock under domestic measure can be done as, for example, presented
in [Andersen, 2007]. The outstanding property of Andersen’s QE Monte Carlo scheme is
that the Heston model can be accurately simulated when the Feller condition is satisfied
as well as when this condition is violated.

2.5 Numerical Experiment for the FX-HHW Model

In this section we check the errors resulting from the various approximations of the
FX-HHW1 model. We use the set-up from [Piterbarg, 2006], which means that the
interest rate curves are modeled by ZCBs defined by Pd(t = 0, T ) = exp(−0.02T ) and
Pf (t = 0, T ) = exp(−0.05T ). Furthermore,

ηd = 0.7%, ηf = 1.2%, λd = 1%, λf = 5%.

We choose 3:

κ = 0.5, γ = 0.3, v̄ = 0.1, v(0) = 0.1. (2.40)

3The model parameters do not satisfy the Feller condition, γ2 > 2κv̄.
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The correlation structure, defined in (2.12), is given by:



1 ρξ,v ρξ,d ρξ,f

ρξ,v 1 ρv,d ρv,f

ρξ,d ρv,d 1 ρd,f

ρξ,f ρv,f ρd,f 1


 =




100% −40% −15% −15%
−40% 100% 30% 30%
−15% 30% 100% 25%
−15% 30% 25% 100%


 . (2.41)

The initial spot FX rate (Dollar, $, per Euro, e) is set to 1.35. For the FX-HHW model
we compute a number of FX option prices with many expiries and strikes, using two
different pricing methods.

The first method is the plain Monte Carlo method, with 50.000 paths and 20Ti steps,
for the full-scale FX-HHW model, without any approximations.

For the second pricing method, we have used the ChF, based on the approximations
in the FX-HHW1 model in Section 2.3. Efficient pricing of plain vanilla products is
then done by means of the COS method [Fang and Oosterlee, 2008], based on a Fourier
cosine series expansion of the probability density function, which is recovered by the
ChF with 500 Fourier cosine terms.

We also define the experiments as in [Piterbarg, 2006], with expiries given by
T1, . . . , T10, and the strikes are computed by the formula:

Kn(Ti) = FXTi(0) exp
(
0.1δn

√
Ti

)
, with (2.42)

δn = {−1.5, −1.0, −0.5, 0, 0.5, 1.0, 1.5},

and FXTi(0) as in (2.18) with ξ(0) = 1.35. This formula for the strikes is convenient,
since for n = 4, strikes K4(Ti) with i = 1, . . . , 10 are equal to the forward FX rates for
time Ti. The strikes and maturities are presented in Table B.1 in Appendix B.

The option prices resulting from both models are expressed in terms of the implied
Black volatilities. The differences between the volatilities are tabulated in Table 2.1. The
approximation FX-HHW1 appears to be highly accurate for the parameters considered.
We report a maximum error of about 0.1% volatility for at-the-money options with a
maturity of 30 years and less than 0.07% for the other options.

Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m -0.03 % -0.02 % 0.00 % 0.02 % 0.03 % 0.04 % 0.05 %
1y -0.01 % -0.01 % -0.01 % -0.01 % -0.01 % -0.01 % -0.01 %
3y 0.05 % 0.04 % 0.02 % -0.01 % -0.03 % -0.06 % -0.09 %
5y 0.06 % 0.04 % 0.02 % 0.00 % -0.03 % -0.07 % -0.10 %
7y 0.08 % 0.06 % 0.04 % 0.03 % 0.01 % -0.01 % -0.03 %
10y -0.02 % -0.03 % -0.03 % -0.05 % -0.07 % -0.09 % -0.12 %
15y -0.12 % -0.10 % -0.09 % -0.09 % -0.09 % -0.09 % -0.10 %
20y 0.09 % 0.09 % 0.09 % 0.08 % 0.08 % 0.07 % 0.06 %
25y -0.15 % -0.11 % -0.08 % -0.06 % -0.05 % -0.04 % -0.04 %
30y 0.10 % 0.11 % 0.12 % 0.12 % 0.12 % 0.12 % 0.12 %

Table 2.1: Differences, in implied volatilities, between the FX-HHW and FX-HHW1
models. The corresponding FX option prices and the standard deviations are tabulated
in Table B.5. Strike K4(Ti) is the at-the-money strike.

Given that the exchange rate is defined in units of domestic currency per unit of
foreign currency, it is also plausible to assume positive correlation between the exchange
rate and foreign interest rates. Similar results in terms of accuracy are obtained when
the correlations ρξ,d and ρξ,f are positive (see Table B.3 in Appendix B).

In the next subsection the calibration results to FX market data are presented.

2.5.1 Calibration to Market Data

We discuss the calibration of the FX-HHW model to FX market data. In the
simulation the reference market implied volatilities are taken from [Piterbarg, 2006] and
are presented in Table B.2 in Appendix B. In the calibration routine the approximate
model FX-HHW1 was applied. The correlation structure is as in (2.41). In Figure 2.1
some of the calibration results are presented.
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Figure 2.1: Comparison of implied volatilities from the market and the FX-HHW1
model for FX European call options for maturities of 1, 10 and 20 years. The strikes
are provided in Table B.1 in Appendix B. ξ(0) = 1.35.

Our experiments show that the model can be well calibrated to the market data. For
long maturities and for deep-in-the money options some discrepancy is present. This is
however typical when dealing with the Heston model (not related to our approximation),
since the skew/smile pattern in FX does not flatten for long maturities. This was
sometimes improved by adding jumps to the model (Bates’ model). In Appendix B in
Table B.4 the detailed calibration results are tabulated.

Short-rate interest rate models can typically provide a satisfactory fit to at-the-
money interest rate products. They are therefore not used for pricing derivatives that
are sensitive to the interest rate skew. This is a drawback of the short-rate interest rate
models. In the next section an extension of the framework, so that interest rate smiles
and skews can be modeled as well, is presented.

3 Multi-Currency Model with Interest Rate Smile

In this section we discuss a second extension of the multi-currency model, in which
an interest rate smile is incorporated. This hybrid model models two types of smiles, the
smile for the FX rate and the smiles in the domestic and foreign fixed income markets.
We abbreviate the model by FX-HLMM. It is especially interesting for FX products
that are exposed to interest rate smiles. A description of such FX hybrid products can
be found in the handbook by Hunter [Hunter and Picot, 2005].

A first attempt to model the FX by stochastic volatility and interest rates driven by a
market model was proposed in [Takahashi and Takehara, 2008], assuming independence
between log-normal-Libor rates and FX. In our approach we define a model with non-
zero correlation between FX and interest rate processes.

As in the previous sections, the stochastic volatility FX is of the Heston type, which
under domestic risk-neutral measure, Q, follows the following dynamics:

dξ(t)/ξ(t) = (. . . )dt+
√
v(t)dWQ

ξ (t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWQ

v (t), v(0) > 0,
(3.1)

with the parameters as in (2.11). Since we consider the model under the forward measure
the drift in the first SDE does not need to be specified (the dynamics of domestic-forward
FX ξ(t)Pf (t, T )/Pd(t, T ) do not contain a drift term).

In the model we assume that the domestic and foreign currencies are independently
calibrated to interest rate products available in their own markets. For simplicity, we
also assume that the tenor structure for both currencies is the same, i.e., Td ≡ Tf =
{T0, T1, . . . , TN ≡ T } and τk = Tk − Tk−1 for k = 1 . . .N. For t < Tk−1 we define the
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forward Libor rates Ld,k(t) := Ld(t, Tk−1, Tk) and Lf,k(t) := Lf(t, Tk−1, Tk) as

Ld,k(t) :=
1

τk

(
Pd(t, Tk−1)

Pd(t, Tk)
− 1

)
, Lf,k(t) :=

1

τk

(
Pf (t, Tk−1)

Pf (t, Tk)
− 1

)
. (3.2)

For each currency we choose the DD-SV Libor Market Model from [Andersen and Andreasen, 2002]
for the interest rates, under the T -forward measure generated by the numéraires Pd(t, T )
and Pf (t, T ), given by:

dLd,k(t) = vd,kφd,k(t)
√
vd(t)

(
µd(t)

√
vd(t)dt+ dW d,T

k (t)
)
,

dvd(t) = λd(vd(0) − vd(t))dt + ηd

√
vd(t)dW

d,T
v (t),

(3.3)

and

dLf,k(t) = vf,kφf,k(t)
√
vf (t)

(
µf (t)

√
vf (t)dt+ dŴ f,T

k (t)

)
,

dvf (t) = λf (vf (0) − vf (t))dt + ηf

√
vf (t)dŴ f,T

v (t),

(3.4)

with

µd(t) = −
N∑

j=k+1

τjφd,j(t)vd,j

1 + τjLd,j(t)
ρd

k,j , µf (t) = −
N∑

j=k+1

τjφf,j(t)vf,j

1 + τjLf,j(t)
ρf

k,j , (3.5)

where

φd,k = βd,kLd,k(t) + (1 − βd,k)Ld,k(0),

φf,k = βf,kLf,k(t) + (1 − βf,k)Lf,k(0).

The Brownian motion, dW d,T
k , corresponds to the k-th domestic Libor rate, Ld,k(t),

under the T -forward domestic measure, and the Brownian motion, dŴ f,T
k relates to the

k-th foreign market Libor rate, Lf,k(t) under the terminal foreign measure T .
In the model vd,k(t) and vf,k(t) determine the level of the interest rate volatility

smile, the parameters βd,k(t) and βf,k(t) control the slope of the volatility smile,
and λd, λf determine the speed of mean-reversion for the variance and influence
the speed at which the interest rate volatility smile flattens as the swaption expiry
increases [Piterbarg, 2005]. Parameters ηd, ηf determine the curvature of the interest
rate smile.

The following correlation structure is imposed 4, between

FX and its variance process, v(t): dWT
ξ (t)dWT

v (t) = ρξ,vdt,

FX and domestic Libors, Ld,j(t): dWT
ξ (t)dW d,T

j (t) = ρd
ξ,jdt,

FX and foreign Libors, Lf,j(t): dWT
ξ (t)dŴ f,T

j (t) = ρf
ξ,jdt,

Libors in domestic market: dW d,T
k (t)dW d,T

j (t) = ρd
k,jdt,

Libors in foreign market: dŴ f,T
k (t)dŴ f,T

j (t) = ρf
k,jdt,

Libors in domestic and foreign markets: dW d,T
k (t)dŴ f,T

j (t) = ρd,f
k,j dt.

(3.6)

We prescribe a zero correlation between the remaining processes, i.e., between

Libors and their variance process,

dW d,T
k (t)dW d,T

v (t) = 0, dŴ f,T
k (t)dŴ f,T

v (t) = 0,

4As it is insightful to relate the covariance matrix with the necessary model approximations, the
correlation structure is introduced here by means of instantaneous correlation of the scalar diffusions.
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Libors and the FX variance process,

dW d,T
k (t)dWT

v (t) = 0, dŴ f,T
k (t)dWT

v (t) = 0,

all variance processes,

dWT
v (t)dW d,T

v (t) = 0, dWT
v (t)dŴ f,T

v (t) = 0, dW d,T
v (t)dŴ f,T

v (t) = 0,

FX and the Libor variance processes,

dWT
ξ (t)dW d,T

v (t) = 0, dWT
ξ (t)dŴ f,T

v (t) = 0.

The correlation structure is graphically displayed in Figure 3.1.

Figure 3.1: The correlation structure for the FX-HLMM model. Arrows indicate non-
zero correlations. SV is Stochastic Volatility.

Throughout this article we assume that the DD-SV model in (3.3) and (3.4) is already
in the effective parameter framework as developed in [Piterbarg, 2005]. This means
that approximate time-homogeneous parameters are used instead of the time-dependent
parameters, i.e., βk(t) ≡ βk and vk(t) ≡ vk.

With this correlation structure, we derive the dynamics for the forward FX, given
by:

FXT (t) = ξ(t)
Pf (t, T )

Pd(t, T )
, (3.7)

(see also (2.18)) with ξ(t) the spot exchange rate and Pd(t, T ) and Pf (t, T ) zero-coupon
bonds. Note that the bonds are not yet specified.

When deriving the dynamics for (3.7), we need expressions for the zero-coupon bonds,
Pd(t, T ) and Pf (t, T ). With Equation (3.2) the following expression for the final bond
can be obtained:

1

Pi(t, T )
=

1

Pi(t, Tm(t))

N∏

j=m(t)+1

(1 + τjLi,j(t)) , for i = {d, f}, (3.8)

with T = TN and m(t) = min(k : t ≤ Tk) (empty products in (3.8) are defined to
be equal to 1). The bond Pi(t, TN ) in (3.8) is fully determined by the Libor rates
Li,k(t), k = 1, . . . , N and the bond Pi(t, Tm(t)). Whereas the Libors Li,k(t) are defined
by System (3.3) and (3.4), the bond Pi(t, Tm(t)) is not yet well-defined in the current
framework.

To define continuous time dynamics for a zero-coupon bond, interpolation
techniques are available (see, for example, [Schlögl(a), 2002; Piterbarg, 2004;
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Davis and Mataix-Pastor, 2009; Beveridge and Joshi, 2009]). We consider here
the linear interpolation scheme, proposed in [Schlögl(a), 2002], which reads:

1

Pi(t, Tm(t))
= 1 + (Tm(t) − t)Li,m(t)(Tm(t)−1), for Tm(t)−1 < t < Tm(t). (3.9)

In our previous work, [Grzelak and Oosterlee, 2010], this basic interpolation technique
was very satisfactory for the calibration. By combining (3.9) with (3.8), we find for the
domestic and foreign bonds:

1

Pd(t, T )
=

(
1 + (Tm(t) − t)Ld,m(t)(Tm(t)−1)

) N∏

j=m(t)+1

(1 + τjLd(t, Tj−1, Tj)) ,

1

Pf (t, T )
=

(
1 + (Tm(t) − t)Lf,m(t)(Tm(t)−1)

) N∏

j=m(t)+1

(1 + τjLf (t, Tj−1, Tj)) .

When deriving the dynamics for FXT (t) in (3.7) we will not encounter any dt-terms (as
FXT (t) has to be a martingale under the numéraire Pd(t, T )).

For each zero-coupon bond, Pd(t, T ) or Pf (t, T ), the dynamics are determined under
the appropriate T -forward measures (for Pd(t, T ) the domestic T -forward measure, and
for Pf (t, T ) the foreign T -forward measure). The dynamics for the zero-coupon bonds,
driven by the Libor dynamics in (3.3) and (3.4), are given by:

dPd(t, T )

Pd(t, T )
= (. . . )dt−

√
vd(t)

N∑

j=m(t)+1

τjvd,jφd,j(t)

1 + τjLd,j(t)
dW d,T

j (t), (3.10)

dPf (t, T )

Pf (t, T )
= (. . . )dt−

√
vf (t)

N∑

j=m(t)+1

τjvf,jφf,j(t)

1 + τjLf,j(t)
dŴ f,T

j (t), (3.11)

and the coefficients were defined in (3.3) and (3.4).
By changing the numéraire from Pf (t, T ) to Pd(t, T ) for the foreign bond, only the

drift terms will change. Since FXT (t) in (3.7) is a martingale under the Pd(t, T ) measure,
it is not necessary to determine the appropriate drift correction.

By taking Equation (2.20) for the general dynamics of (3.7) and neglecting all the
dt-terms we get

dFXT (t)

FXT (t)
=

√
v(t)dWT

ξ (t) +
√
vd(t)

N∑

j=m(t)+1

τjvd,jφd,j(t)

1 + τjLd,j(t)
dW d,T

j (t)

−
√
vf (t)

N∑

j=m(t)+1

τjvf,jφf,j(t)

1 + τjLf,j(t)
dW f,T

j (t). (3.12)

Note that the hat in Ŵ , disappeared from the Brownian motion dW f,T
j (t) in (3.12) which

is an indication for the change of measure from the foreign to the domestic measure for
the foreign Libors.

Since the stochastic volatility process, v(t), for FX is independent of the domestic
and foreign Libors, Ld,k(t) and Lf,k(t), the dynamics under the Pd(t, T )-measure do not
change 5 and are given by:

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWT

v (t). (3.13)

5In [Grzelak and Oosterlee, 2010] the proof for this statement is given when a single yield curve is
considered.
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The model given in (3.12) with the stochastic variance in (3.13) and the correlations
between the main underlying processes is not affine. In the next section we discuss a
linearization.

3.1 Linearization and Forward Characteristic Function

The model in (3.12) is not of the affine form, as it contains terms like
φi,j(t)/(1 + τi,jLi,j(t)) with φi,j = βi,jLi,j(t) + (1 − βi,j)Li,j(0) for i = {d, f}.
In order to derive a characteristic function, we freeze the Libor rates, which is
standard practice (see for example [Glasserman and Zhao, 1999; Hull and White, 2000;
Jäckel and Rebonato, 2000]), i.e.:

Ld,j(t) ≈ Ld,j(0) ⇒ φd,j ≡ Ld,j(0),

Lf,j(t) ≈ Lf,j(0) ⇒ φf,j ≡ Lf,j(0). (3.14)

This approximation gives the following FXT (t)-dynamics:





dFXT (t)

FXT (t)
≈
√
v(t)dWT

ξ (t) +
√
vd(t)

∑

j∈A

ψd,jdW
d,T
j (t) −

√
vf (t)

∑

j∈A

ψf,jdW
f,T
j (t),

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWT

v (t),

dvi(t) = λi(vi(0) − vi(t))dt+ ηi

√
vi(t)dW

i,T
v (t),

with i = {d, f}, A = {m(t) + 1, . . .N}, the correlations are given in (3.6) and

ψd,j :=
τjvd,jLd,j(0)

1 + τjLd,j(0)
, ψf,j :=

τjvf,jLf,j(0)

1 + τjLf,j(0)
. (3.15)

We derive the dynamics for the logarithmic transformation of FXT (t), xT (t) =
log FXT (t), for which we need to calculate the square of the diffusion coefficients 6.

With the notation,

a :=
√
v(t)dWT

ξ (t), b :=
√
vd(t)

∑

j∈A

ψd,jdW
d,T
j (t), c :=

√
vf (t)

∑

j∈A

ψf,jdW
f,T
j (t),

(3.16)

we find, for the square diffusion coefficient (a+ b− c)2 = a2 + b2 + c2 + 2ab− 2ac− 2bc.
So, the dynamics for the log-forward, xT (t) = log FXT (t), can be expressed as:

dxT (t) ≈ −1

2
(a+ b− c)

2
+
√
v(t)dWT

ξ (t) +
√
vd(t)

∑

A

ψd,jdW
d,T
j (t)

−
√
vf (t)

∑

A

ψf,jdW
f,T
j (t), (3.17)

with the coefficients a, b and c given in (3.16). Since

( N∑

j=1

xj

)2
=

N∑

j=1

x2
j +

∑

i,j=1,...,N
i6=j

xixj , for N > 0,

6As in the standard Black-Scholes analysis for dS(t) = vS(t)dW (t), the log-transform gives
d log S(t) = − 1

2
v2dt + vdW (t).
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we find:

a2 = v(t)dt,

b2 = vd(t)

(∑

j∈A

ψ2
d,j +

∑

i,j∈A
i6=j

ψd,iψd,jρ
d
i,j

)
dt =: vd(t)Ad(t)dt, (3.18)

c2 = vf (t)

(∑

j∈A

ψ2
f,j +

∑

i,j∈A
i6=j

ψf,iψf,jρ
f
i,j

)
dt, =: vf (t)Af (t)dt, (3.19)

ab =
√
v(t)

√
vd(t)

∑

j∈A

ψd,jρ
d
j,xdt,

ac =
√
v(t)

√
vf (t)

∑

j∈A

ψf,jρ
f
j,xdt,

bc =
√
vd(t)

√
vf (t)

∑

j∈A

ψd,j

∑

k∈A

ψf,kρ
d,f
j,k dt,

with ρd
j,x, ρf

j,x the correlation between the FX and j-th domestic and foreign Libor,

respectively. The correlation between the k-th domestic and j-th foreign Libor is ρd,f
k,j .

By setting f
(
t,
√
v(t),

√
vd(t),

√
vf (t)

)
:= (2ab− 2ac− 2bc)/dt, we can express the

dynamics for dxT (t) in (3.17) by:

dxT (t) ≈ −1

2

(
v(t) +Ad(t)vd(t) +Af (t)vf (t) + f

(
t,
√
v(t),

√
vd(t),

√
vf (t)

))
dt

+
√
v(t)dWT

ξ (t) +
√
vd(t)

∑

A

ψd,jdW
d,T
j (t) −

√
vf (t)

∑

A

ψf,jdW
f,T
j (t).

The coefficients ψd,j , ψf,j , Ad and Af in (3.15), (3.18), and (3.19) are deterministic and
piecewise constant.

In order to make the model affine, we linearize the non-affine terms in the drift in
f(t,

√
v(t),

√
vd(t),

√
vf (t)) by a projection on the first moments, i.e.,

f
(
t,
√
v(t),

√
vd(t),

√
vf (t)

)
≈ f

(
t,E(

√
v(t)),E(

√
vd(t)),E(

√
vf (t))

)
=: f(t). (3.20)

The variance processes v(t), vd(t) and vf (t) are independent CIR-type
processes [Cox et al., 1985], so the expectation of their products equals the product
of the expectations. Function f(t) can be determined with the help of the formula
in (2.30).

The approximation in (3.20) linearizes all non-affine terms in the corresponding PDE.
As before, the forward characteristic function, φT := φT (u,X(t), t, T ), is defined as the
solution of the following backward PDE:

0 =
∂φT

∂t
+

1

2
(v +Ad(t)vd +Af (t)vf + f(t))

(
∂2φT

∂x2
− ∂φT

∂x

)

+λd(vd(0) − vd)
∂φT

∂vd
+ λf (vf (0) − vf )

∂φT

∂vf
+ κ(v̄ − v)

∂φT

∂v

+
1

2
η2

dvd
∂2φT

∂v2
d

+
1

2
η2

fvf
∂2φT

∂v2
f

+
1

2
γ2v

∂2φT

∂v2
+ ρx,vγv

∂2φT

∂x∂v
, (3.21)
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with the final condition φT (u,X(T ), T ) = eiuxT (T ). Since all coefficients in this PDE are
linear, the solution is of the following form:

φT (u,X(t), t, T ) = exp
(
A(u, τ) +B(u, τ)xT (t) + C(u, τ)v(t)

+Dd(u, τ)vd(t) +Df (u, τ)vf (t)
)
, (3.22)

with τ := T − t. Substitution of (3.22) in (3.21) gives us the following system of ODEs
for the functions A(τ) := A(u, τ), B(τ) := B(u, τ), C(τ) := C(u, τ), Dd(τ) := Dd(u, τ)
and Df (τ) := Df (u, τ):

A′(τ) = f(t)(B2(τ) −B(τ))/2 + λdvd(0)D1(τ) + λfvf (0)D2(τ) + κv̄C(τ),

B′(τ) = 0,

C′(τ) = (B2(τ) −B(τ))/2 + (ρx,vγB(τ) − κ)C(τ) + γ2C2(τ)/2,

D′
d(τ) = Ad(t)(B

2(τ) −B(τ))/2 − λdDd(τ) + η2
dD

2
d(τ)/2,

D′
f(τ) = Af (t)(B2(τ) −B(τ))/2 − λfDf (τ) + η2

fD
2
f (τ)/2,

with initial conditions A(0) = 0, B(0) = iu, C(0) = 0, Dd(0) = 0, Df (0) = 0 with Ad(t)
and Af (t) from (3.18), (3.19), respectively, and f(t) as in (3.20).

WithB(τ) = iu, the solution for C(τ) is analogous to the solution for the ODE for the
FX-HHW1 model in Equation (2.33). As the remaining ODEs involve the piecewise con-
stant functions Ad(t), Af (t) the solution must be determined iteratively, like for the pure
Heston model with piecewise constant parameters in [Andersen and Andreasen, 2000].
For a given grid 0 = τ0 < τ1 < · · · < τN = τ , the functions Dd(u, τ), Df (u, τ) and
A(u, τ) can be expressed as:

Dd(u, τj) = Dd(u, τj−1) + χd(u, τj),

Df (u, τj) = Df(u, τj−1) + χf (u, τj),

for j = 1, . . . , N , and

A(u, τj) = A(u, τj−1) + χA(u, τj) − 1

2
(u2 + u)

∫ τj

τj−1

f(s)ds,

with f(s) in (3.20) and analytically known functions χk(u, τj), for k = {d, f} and
χA(u, τj):

χk(u, τj) :=
(
λk − δk,j − η2

kDk(u, τj−1)
)
(1 − e−δk,jsj )

/
(η2

k(1 − ℓk,je
−δk,jsj )),

and

χA(u, τj) =
κv̄

γ2

(
(κ− ρx,vγiu− dj)sj − 2 log

(
(1 − gje

−djsj )
/
(1 − gj)

))

+vd(0)
λd

η2
d

(
(λd − δd,j)sj − 2 log

(
(1 − ℓd,je

−δd,jsj )
/

(1 − ℓd,j)
))

+vf(0)
λf

η2
f

(
(λf − δf,j)sj − 2 log

(
(1 − ℓf,je

−δf,jsj )
/

(1 − ℓf,j)
))
,

where

dj =
√

(ρx,vγiu− κ)2 + γ2(iu+ u2), gj =
(κ− ρx,vγiu)− dj − γ2C(u, τj−1)

(κ− ρx,vγiu) + dj − γ2C(u, τj−1)
,

δk,j =
√
λ2

k + η2
kAk(t)(u2 + iu), ℓk,j =

λk − δk,j − η2
kDk(u, τj−1)

λk + δk,j − η2
kDk(u, τj−1)

,

with sj = τj − τj−1, j = 1, . . . , N , Ad(t) and Af (t) are from (3.18) and (3.19).
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The resulting approximation of the full-scale FX-HLMM model is called FX-LMM1
here.

3.2 Foreign Stock in the FX-HLMM Framework

We also consider a foreign stock, Sf (t), driven by the Heston stochastic volatility
model, with the interest rates driven by the market model. The stochastic processes
of the stock model are assumed to be of the same form as the FX (with one, foreign,
interest rate curve) with the dynamics, under the forward foreign measure, given by:

dST
f (t)

ST
f (t)

=
√
ω(t)dW f,T

Sf
(t) +

√
vf (t)

N∑

j=m(t)+1

τjvf,jφf,j(t)

1 + τjLf,j(t)
dW f,T

j (t),

dω(t) = κf (ω̄ − ω(t))dt+ γf

√
ω(t)dW f,T

ω (t). (3.23)

Variance process, ω(t), is correlated with forward stock ST (t).
We move to the domestic-forward measure. The forward stock, ST

f , and forward

foreign exchange rate, FXT (t), are defined by

ST
f (t) =

Sf (t)

Pf (t, T )
, FXT (t) = ξ(t)

Pf (t, T )

Pd(t, T )
. (3.24)

The quantity

ST
f (t)FXT (t) =

Sf (t)

Pf (t, T )
ξ(t)

Pf (t, T )

Pd(t, T )
=

Sf (t)

Pd(t, T )
ξ(t), (3.25)

is therefore a tradable asset. So, foreign stock exchanged by a foreign exchange rate and
denominated in the domestic zero-coupon bond is a tradable quantity, which implies
that ST

f (t)FXT (t) is a martingale. By Itô’s lemma, one finds:

d
(
ST

f (t)FXT (t)
)

ST
f (t)FXT (t)

=
dFXT (t)

FXT (t)
+

dST
f (t)

ST
f (t)

+

(
dFXT (t)

FXT (t)

)(
dST

f (t)

ST
f (t)

)
. (3.26)

The two first terms at the RHS of (3.26) do not contribute to the drift. The last term
involves all dt-terms, that, by a change of measure, will enter the drift of the variance
process dω(t) in (3.23).

3.3 Numerical Experiments with the FX-HLMM Model

We here focus on the FX-HLMM model covered in Section 3 and consider the errors
generated by the various approximations that led to the model FX-HLMM1. We have
performed basically two linearization steps to define FX-HLMM1: We have frozen
the Libors at their initial values and projected the non-affine covariance terms on a
deterministic function. We check, by a numerical experiment, the size of the errors of
these approximations.

We have chosen the following interest rate curves Pd(t = 0, T ) =
exp(−0.02T ), Pf (t = 0, T ) = exp(−0.05T ), and, as before, for the FX stochastic
volatility model we set:

κ = 0.5, γ = 0.3, v̄ = 0.1, v(0) = 0.1. (3.27)

In the simulation we have chosen the following parameters for the domestic and foreign
markets:

βd,k = 95%, vd,k = 15%, λd = 100%, ηd = 10%, (3.28)

βf,k = 50%, vf,k = 25%, λf = 70%, ηf = 20%. (3.29)
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In the correlation matrix a number of correlations need to be specified. For the correla-
tions between the Libor rates in each market, we prescribe large positive values, as fre-
quently observed in fixed income markets (see for example [Brigo and Mercurio, 2007]),

ρd
i,j = 90%, ρf

i,j = 70%, for i, j = 1, . . . , N (i 6= j). In order to generate skew for FX,

we prescribe a negative correlation between FXT (t) and its stochastic volatility process,
v(t), i.e., ρξ,v = −40%. The correlation between the FX and the domestic Libors is
set as ρd

ξ,k = −15%, for k = 1, . . . , N , and the correlation between FX and the foreign

Libors is ρf
ξ,k = −15%. The correlation between the domestic and foreign Libors is

ρd,f
i,j = 25% for i, j = 1, . . . , N (i 6= j). The following block correlation matrix results:

C =




Cd Cd,f Cξ,d

CT
d,f Cf Cξ,f

CT
ξ,d CT

ξ,f 1


 , (3.30)

with the domestic Libor correlations given by

Cd =




1 ρd
1,2 . . . ρd

1,N

ρd
1,2 1 . . . ρd

2,N

...
...

. . .
...

ρd
1,N

ρd
2,N

. . . 1




=




1 90% . . . 90%
90% 1 . . . 90%

..

.
..
.

. . .
..
.

90% 90% . . . 1




N×N

, (3.31)

the foreign Libors correlations given by:

Cf =




1 ρ
f
1,2 . . . ρ

f
1,N

ρ
f
1,2 1 . . . ρ

f
2,N

.

..
.
..

. . .
.
..

ρ
f
1,N

ρ
f
2,N

. . . 1




=




1 70% . . . 70%
70% 1 . . . 70%

...
...

. . .
...

70% 70% . . . 1




N×N

, (3.32)

the correlation between Libors from the domestic and foreign markets given by:

Cdf =




1 ρ
d,f
1,2 . . . ρ

d,f
1,N

ρ
d,f
1,2 1 . . . ρ

d,f
2,N

.

..
.
..

. . .
.
..

ρ
d,f
1,N

ρ
d,f
2,N

. . . 1




=




1 25% . . . 25%
25% 1 . . . 25%

...
...

. . .
...

25% 25% . . . 1




N×N

, (3.33)

and the vectors Cξ,d and Cξ,f as used in [Piterbarg, 2006] are given by:

Cξ,d =




ρd
ξ,1

ρd
ξ,2

..

.
ρd

ξ,N




=




−15%
−15%

..

.
−15%




N×1

,Cξ,f =




ρ
f

ξ,1

ρ
f
ξ,2

...

ρ
f
ξ,N




=




−15%
−15%

..

.
−15%




N×1

. (3.34)

Since in both markets the Libor rates are assumed to be independent of their variance
processes, we can neglect these correlations here.

Now we find the prices of plain vanilla options on FX in (3.7). The simulation is
performed in the same spirit as in Section 2.5 where the FX-HHW model was considered.
In Table 3.1 we present the differences, in terms of the implied volatilities between the
models FX-HLMM and FX-HLMM1. While the prices for the FX-HLMM were obtained
by Monte-Carlo simulation (20.000 paths and 20 intermediate points between the dates
Ti−1 and Ti for i = 1, . . . , N), the prices for FX-HLMM1 were obtained by the Fourier-
based COS method [Fang and Oosterlee, 2008] with 500 Fourier series terms.

The FX-HLMM1 model performs very well, as the maximum difference in terms of
implied volatilities is about 0.2% − 0.5%.

3.3.1 Sensitivity to the Interest Rate Skew

Approximation FX-HLMM1 was based on freezing the Libor rates. By freezing the
Libors, i.e.: Ld,k(t) ≡ Ld,k(0) and Lf,k(t) ≡ Lf,k(0) we have

φd,k(t) = βd,kLd,k(t) + (1 − βd,k)Ld,k(0) = Ld,k(0), (3.35)

φf,k(t) = βf,kLf,k(t) + (1 − βf,k)Lf,k(0) = Lf,k(0). (3.36)
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Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

2y 0.19 % 0.14 % 0.09 % 0.05 % 0.00 % -0.05 % -0.10 %
3y 0.29 % 0.25 % 0.21 % 0.16 % 0.11 % 0.06 % 0.02 %
5y 0.32 % 0.28 % 0.23 % 0.17 % 0.10 % 0.05 % 0.00 %
7y 0.30 % 0.28 % 0.25 % 0.21 % 0.18 % 0.14 % 0.10 %
10y 0.39 % 0.32 % 0.25 % 0.18 % 0.12 % 0.05 % -0.03 %
15y 0.38 % 0.29 % 0.21 % 0.13 % 0.05 % -0.04 % -0.14 %
20y 0.02 % -0.09 % -0.18 % -0.27 % -0.34 % -0.40 % -0.44 %
25y 0.08 % 0.04 % -0.14 % -0.25 % -0.34 % -0.40 % -0.46 %
30y 0.11 % 0.07 % 0.00 % -0.09 % -0.18 % -0.21 % -0.24 %

Table 3.1: Differences, in implied Black volatilities, between the FX-HLMM and FX-
LMM1 models. The corresponding strikesK1(Ti), . . . ,K7(Ti) are tabulated in Table B.1.
The prices and associated standard deviations are presented in Table B.6.

In the DD-SV models for the Libor rates Ld,k(t) and Lf,k(t) for any k, the parameters
βd,k, βf,k control the slope of the interest rate volatility smiles. Freezing the Libors to
Ld,k(0) and Lf,k(0) is equivalent to setting βd,k = 0 and βf,k = 0 in (3.35) and (3.36)
in the approximation FX-HLMM1.

By a Monte Carlo simulation, we obtain the FX implied volatilities from the full
scale FX-HLMM model for different values of β and by comparing them to those from
FX-HLMM1 iwith β = 0 we check the influence of the parameters βd,k and βf,k on
the FX. In Table 3.2 the implied volatilities for the FX European call options for FX-
HLMM and FX-HLMM1 are presented. The experiments are performed for different
combinations of the interest rate skew parameters, βd and βf .

FX-HLMM (Monte Carlo simulation) FX-HLMM1 (Fourier)
strike βf = 0.5 βd = 0.5 βd = 0

(2.42) βd = 0 βd = 0.5 βd = 1 βf = 0 βf = 1 βf = 0

0.6224 31.98 % 31.91 % 31.98 % 31.99 % 31.96 % 31.56 %
(0.20) (0.17) (0.17) (0.15) (0.18)

0.7290 31.49 % 31.43 % 31.48 % 31.51 % 31.46 % 31.12 %
(0.21) (0.16) (0.19) (0.15) (0.18)

0.8538 31.02 % 30.96 % 31.01 % 31.04 % 30.97 % 30.69 %
(0.21) (0.17) (0.20) (0.15) (0.18)

1.0001 30.58 % 30.53 % 30.56 % 30.61 % 30.52 % 30.30 %
(0.21) (0.17) (0.22) (0.15) (0.17)

1.1714 30.16 % 30.11 % 30.15 % 30.20 % 30.08 % 29.93 %
(0.20) (0.17) (0.24) (0.15) (0.16)

1.3721 29.77 % 29.73 % 29.77 % 29.82 % 29.68 % 29.60 %
(0.22) (0.16) (0.26) (0.16) (0.17)

1.6071 29.41 % 29.38 % 29.43 % 29.48 % 29.31 % 29.30 %
(0.24) (0.17) (0.28) (0.17) (0.18)

Table 3.2: Implied volatilities of the FX options from the FX-HLMM and FX-HLMM1
models, T = 10 and parameters were as in Section 3.3. The numbers in parentheses
correspond to the standard deviations (the experiment was performed 20 times with
20T time steps).

The experiment indicates that there is only a small impact of the different βd,k−
and βf,k−values on the FX implied volatilities, implying that the approximate model,
FX-HLMM1 with βd,k = βf,k = 0, is useful for the interest rate modelling, for the
parameters studied. With βd,k 6= 0 and βf,k 6= 0 the implied volatilities obtained by the
FX-HLMM model appear to be somewhat higher than those obtained by FX-HLMM1,
a difference of approximately 0.1% − 0.15%, which is considered highly satisfactory.

4 Conclusion

In this article we have presented two FX models with stochastic volatility and
correlated stochastic interest rates. Both FX models were based on the Heston FX
model and differ with respect to the interest rate processes.

In the first model we considered a model in which the domestic and foreign interest
rates were driven by single factor Hull-White short-rate processes. This model enables
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pricing of FX-interest rate hybrid products that are not exposed to the smile in the fixed
income markets.

For hybrid products sensitive to the interest rate skew a second model was presented
in which the interest rates were driven by the stochastic volatility Libor Market Model.

For both hybrid models we have developed approximate models for the pricing of
European options on the FX. These pricing formulas form the basis for highly efficient
model calibration strategies.

The approximate models are based on the linearization of the non-affine terms
in the corresponding pricing PDE, in a very similar way as in our previous arti-
cle [Grzelak and Oosterlee, 2011] on equity-interest rate options. The approximate
models perform very well in the world of foreign exchange.

These models can also be used to obtain an initial guess when the full-scale models
are used.
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A Proof of Lemma 2.2

Since the domestic short rate process, rd(t), is driven by one source of uncertainty
(only one Brownian motion dWQ

d (t)), it is convenient to change the order of the

state variables, from dX(t) = [dFXT (t)/FXT (t), dv(t), drd(t), drf (t)]T to dX∗(t) =

[drd(t), drf (t), dv(t), dFXT (t)/FXT (t)]T and express the model in terms of the inde-

pendent Brownian motions dW̃Q(t) = [dW̃d(t), dW̃f (t), dW̃v(t), dW̃ξ(t)]
T, i.e.:




drd
drf
dv

dFXT /FXT


 = µ(X∗)dt+




ηd 0 0 0
0 ηf 0 0
0 0 γ

√
v 0

−ηdBd ηfBf 0
√
v


H




dW̃Q
d

dW̃Q
f

dW̃Q
v

dW̃Q
ξ


 , (A.1)

which, equivalently, can be written as:

dX∗(t) = µ(X∗)dt+ AHdW̃Q(t), (A.2)

where µ(X∗) represents the drift for system dX∗(t) and H is the Cholesky lower-
triangular matrix of the following form:

H =




1 0 0 0
H2,1 H2,2 0 0
H3,1 H3,2 H3,3 0
H4,1 H4,2 H4,3 H4,4




∆
=




1 0 0 0
ρf,d H2,2 0 0
ρv,d H3,2 H3,3 0
ρξ,d H4,2 H4,3 H4,4


 . (A.3)

The representation presented above seems to be favorable, since the short-rate process
rd(t) can be considered independently of the other processes.

The matrix model representation in terms of orthogonal Brownian motions results
in the following dynamics for the domestic short rate rd(t) under measure Q:

drd(t) = λd(θd(t) − rd(t))dt+ ζ1(t)dW̃
Q(t),

and for the domestic ZCB:

dPd(t, T )

Pd(t, T )
= rd(t)dt+Bd(t, T )ζ1(t)dW̃

Q(t),

with ζk(t) being the k’th row vector resulting from multiplying the matrices A and H.
Note, that for the 1D Hull-White short rate processes ζ1(t) =

[
ηd, 0, 0, 0

]
.

Now, we derive the Radon-Nikodým derivative [Geman et al., 1996], ΛT
Q(t),:

ΛT
Q(t) =

dQT

dQ
=

Pd(t, T )

Pd(0, T )Md(t)
. (A.4)

By calculating the Itô derivative of Equation (A.4) we get:

dΛT
Q

ΛT
Q

= Bd(t, T )ζ1(t)dW̃
Q(t), (A.5)

which implies that the Girsanov kernel for the transition from Q to QT is given by
Bd(t, T )ζ1(t) which is the T -bond volatility given by ηdBd(t, T ), i.e.:

ΛT
Q = exp

(
−1

2

∫ T

0

B2
r (s, T )ζ2

1 (s)ds+

∫ T

0

Br(s, T )ζ1(s)dW̃
Q(s)

)
. (A.6)

So,

dW̃T (t) = −Bd(t, T )ζT
1 (t)dt + dW̃Q(t).
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Since the vector ζT
1 (t) is of scalar form, the Brownian motion under the T -forward

measure is given by:

dW̃Q(t) =
[
dW̃T

d (t) + ηdBd(t, T )dt, dW̃T
f (t), dW̃T

v (t), dW̃T
ξ (t)

]T
.

Now, from the vector representation (A.2) we get that:

HdW̃Q =




ηdBd+ dW̃T
d dt

ρd,fηdBddt+ ρd,fdW̃T
d + H2,2dW̃

T
f

ρv,dηdBddt+ ρv,ddW̃
T
d + H3,2dW̃

T
f + H3,3dW̃

T
ξ

ρξ,dηdBddt+ ρξ,ddW̃
T
d + H4,2dW̃

T
f + H4,3dW̃

T
ξ + H4,4dW̃

T
v



. (A.7)

Returning to the dependent Brownian motions under the T-forward measure, gives us:

dFXT (t)

FXT (t)
=

√
v(t)dWT

ξ (t) − ηdBd(t, T )dWT
d (t) + ηfBf (t, T )dWT

f (t),

dv(t) =
(
κ(v̄ − v(t)) + γρv,dηdBd(t, T )

√
v(t)

)
dt+ γ

√
v(t)dWT

v (t),

drd(t) =
(
λd(θd(t) − rd(t)) + η2

dBd(t, T )
)
dt+ ηddW

T
d (t),

drf (t) =
(
λf (θf (t) − rf (t)) − ηfρξ,f

√
v(t) + ηdηfρd,fBd(t, T )

)
dt+ ηfdWT

f (t),

with full matrix of correlations given in (2.12).

B Tables

In this appendix we present tables with details for the numerical experiments.

Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m 1.1961 1.2391 1.2837 1.3299 1.3778 1.4273 1.4787
1y 1.1276 1.1854 1.2462 1.3101 1.3773 1.4479 1.5221
3y 0.9515 1.0376 1.1315 1.2338 1.3454 1.4671 1.5999
5y 0.8309 0.9291 1.0390 1.1620 1.2994 1.4531 1.6250
7y 0.7358 0.8399 0.9587 1.0943 1.2491 1.4257 1.6274
10y 0.6224 0.7290 0.8538 1.0001 1.1714 1.3721 1.6071
15y 0.4815 0.5844 0.7093 0.8608 1.0447 1.2680 1.5389
20y 0.3788 0.4737 0.5924 0.7409 0.9265 1.1587 1.4491
25y 0.3012 0.3868 0.4966 0.6377 0.8188 1.0514 1.3500
30y 0.2414 0.3174 0.4174 0.5489 0.7218 0.9492 1.2482

Table B.1: Expiries and strikes of FX options used in the FX-HHW model. Strikes
Kn(Ti) were calculated as given in (2.42) with ξ(0) = 1.35.

Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m 11.41 % 10.49 % 9.66 % 9.02 % 8.72 % 8.66 % 8.68 %
1y 12.23 % 10.98 % 9.82 % 8.95 % 8.59 % 8.59 % 8.65 %
3y 12.94 % 11.35 % 9.89 % 8.78 % 8.34 % 8.36 % 8.46 %
5y 13.44 % 11.84 % 10.38 % 9.27 % 8.76 % 8.71 % 8.83 %
7y 14.29 % 12.68 % 11.23 % 10.12 % 9.52 % 9.37 % 9.43 %
10y 16.43 % 14.79 % 13.34 % 12.18 % 11.43 % 11.07 % 10.99 %
15y 20.93 % 19.13 % 17.56 % 16.27 % 15.29 % 14.65 % 14.29 %
20y 22.96 % 21.19 % 19.68 % 18.44 % 17.50 % 16.84 % 16.46 %
25y 23.97 % 22.31 % 20.92 % 19.80 % 18.95 % 18.37 % 18.02 %
30y 25.09 % 23.48 % 22.17 % 21.13 % 20.35 % 19.81 % 19.48 %

Table B.2: Market implied Black volatilities for FX options as given in [Piterbarg, 2006].
The strikes Kn(Ti) were tabulated in Table B.1.
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Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m 0.00 % 0.02 % 0.04 % 0.06 % 0.07 % 0.08 % 0.09 %
1y -0.05 % -0.03 % -0.02 % -0.01 % 0.00 % 0.01 % 0.01 %
3y 0.04 % 0.04 % 0.03 % 0.02 % 0.02 % 0.01 % 0.01 %
5y 0.10 % 0.09 % 0.07 % 0.05 % 0.03 % 0.00 % -0.02 %
7y 0.05 % 0.04 % 0.03 % 0.02 % 0.01 % 0.00 % -0.03 %
10y 0.14 % 0.13 % 0.12 % 0.11 % 0.10 % 0.08 % 0.07 %
15y -0.01 % 0.01 % 0.03 % 0.03 % 0.02 % 0.02 % 0.00 %
20y -0.08 % -0.04 % -0.02 % 0.00 % 0.02 % 0.02 % 0.02 %
25y -0.21 % -0.14 % -0.08 % -0.05 % -0.02 % -0.01 % 0.00 %
30y -0.13 % -0.07 % -0.03 % 0.01 % 0.03 % 0.05 % 0.06 %

Table B.3: Differences, in implied volatilities, between the FX-HHW and FX-HHW1
models. The parameters were chosen as in Section 2.5 except for the correlations:
ρξ,d = ρξ,f = +15%.

Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m 0.12 % -0.12 % -0.25 % -0.23 % -0.01 % 0.20 % 0.22 %
1y 0.13 % -0.08 % -0.18 % -0.09 % 0.14 % 0.16 % -0.14 %
3y 0.16 % -0.07 % -0.17 % -0.08 % 0.18 % 0.22 % -0.14 %
5y 0.11 % -0.06 % -0.12 % -0.07 % 0.10 % 0.13 % -0.14 %
7y 0.07 % -0.03 % -0.06 % -0.03 % 0.06 % 0.10 % -0.08 %
10y 0.04 % -0.01 % -0.01 % -0.02 % 0.02 % 0.05 % -0.02 %
15y 0.11 % -0.05 % -0.09 % -0.04 % 0.03 % 0.09 % -0.05 %
20y 0.94 % 0.39 % 0.02 % -0.19 % -0.24 % -0.16 % 0.02 %
25y 1.43 % 0.59 % -0.02 % -0.43 % -0.63 % -0.64 % -0.51 %
30y 1.65 % 0.70 % 0.00 % -0.48 % -0.74 % -0.82 % -0.74 %

Table B.4: The calibration results for the FX-HHW model, in terms of the differences
between the market (given in Table B.2) and FX-HHW model implied volatilities.
Strikes Kn(Ti) are given in Table B.1.

Ti method K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m MC 0.1907 0.1636 0.1382 0.1148 0.0935 0.0748 0.0585
std dev 0.0004 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004
COS 0.1908 0.1637 0.1382 0.1147 0.0934 0.0746 0.0583

1y MC 0.2566 0.2209 0.1870 0.1553 0.1264 0.1008 0.0785
std dev 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
COS 0.2567 0.2210 0.1870 0.1554 0.1265 0.1008 0.0786

3y MC 0.3768 0.3281 0.2805 0.2349 0.1923 0.1538 0.1200
std dev 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0014
COS 0.3765 0.3279 0.2804 0.2349 0.1926 0.1543 0.1207

5y MC 0.4216 0.3709 0.3205 0.2713 0.2246 0.1816 0.1432
std dev 0.0021 0.0021 0.0021 0.0020 0.0020 0.0019 0.0018
COS 0.4212 0.3706 0.3203 0.2713 0.2249 0.1822 0.1441

7y MC 0.4368 0.3878 0.3383 0.2895 0.2426 0.1986 0.1587
std dev 0.0018 0.0018 0.0018 0.0018 0.0018 0.0017 0.0016
COS 0.4362 0.3873 0.3380 0.2893 0.2425 0.1987 0.1590

10y MC 0.4310 0.3871 0.3420 0.2967 0.2521 0.2096 0.1702
std dev 0.0033 0.0033 0.0033 0.0033 0.0033 0.0031 0.0030
COS 0.4311 0.3873 0.3423 0.2971 0.2528 0.2106 0.1714

15y MC 0.3894 0.3553 0.3195 0.2826 0.2455 0.2092 0.1744
std dev 0.0038 0.0037 0.0037 0.0036 0.0036 0.0036 0.0035
COS 0.3900 0.3560 0.3202 0.2834 0.2463 0.2100 0.1754

20y MC 0.3362 0.3109 0.2838 0.2553 0.2260 0.1966 0.1677
std dev 0.0037 0.0037 0.0037 0.0037 0.0037 0.0036 0.0036
COS 0.3358 0.3104 0.2833 0.2548 0.2254 0.1960 0.1672

25y MC 0.2809 0.2626 0.2425 0.2211 0.1987 0.1757 0.1526
std dev 0.0048 0.0048 0.0048 0.0048 0.0047 0.0046 0.0045
COS 0.2814 0.2630 0.2429 0.2215 0.1990 0.1759 0.1529

30y MC 0.2322 0.2191 0.2046 0.1888 0.1720 0.1545 0.1367
std dev 0.0050 0.0050 0.0050 0.0050 0.0049 0.0048 0.0048
COS 0.2319 0.2188 0.2042 0.1883 0.1714 0.1539 0.1359

Table B.5: Average FX call option prices obtained by the FX-HHW model with 20
Monte-Carlo simulations, 50.000 paths and 20×Ti steps; MC stands for Monte Carlo and
COS for Fourier Cosine expansion technique ([Fang and Oosterlee, 2008]) for the FX-
HHW1 model with 500 expansion terms. The strikes Kn(Ti) are tabulated in Table B.1.
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Ti method K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

2y MC 0.3336 0.2889 0.2456 0.2046 0.1667 0.1327 0.1030
std dev 0.0008 0.0009 0.0010 0.0010 0.0011 0.0011 0.0012
COS 0.3326 0.2880 0.2450 0.2043 0.1667 0.1330 0.1037

3y MC 0.3786 0.3299 0.2823 0.2366 0.1939 0.1553 0.1213
std dev 0.0006 0.0007 0.0008 0.0009 0.0011 0.0012 0.0013
COS 0.3768 0.3282 0.2808 0.2354 0.1931 0.1548 0.1212

5y MC 0.4243 0.3738 0.3234 0.2743 0.2274 0.1843 0.1457
std dev 0.0012 0.0013 0.0014 0.0015 0.0016 0.0016 0.0016
COS 0.4222 0.3717 0.3215 0.2727 0.2265 0.1838 0.1457

7y MC 0.4399 0.3914 0.3424 0.2938 0.2470 0.2031 0.1631
std dev 0.0013 0.0014 0.0015 0.0016 0.0018 0.0019 0.0021
COS 0.4379 0.3893 0.3402 0.2918 0.2453 0.2017 0.1621

10y MC 0.4363 0.3928 0.3482 0.3031 0.2587 0.2162 0.1764
std dev 0.0012 0.0016 0.0019 0.0023 0.0026 0.0027 0.0028
COS 0.4338 0.3905 0.3461 0.3014 0.2576 0.2157 0.1767

15y MC 0.3964 0.3632 0.3280 0.2917 0.2550 0.2186 0.1834
std dev 0.0008 0.0010 0.0012 0.0014 0.0016 0.0019 0.0023
COS 0.3944 0.3613 0.3265 0.2907 0.2545 0.2190 0.1848

20y MC 0.3417 0.3171 0.2907 0.2629 0.2342 0.2052 0.1768
std dev 0.0010 0.0013 0.0015 0.0018 0.0021 0.0025 0.0030
COS 0.3416 0.3176 0.2918 0.2647 0.2367 0.2085 0.1806

25y MC 0.2886 0.2715 0.2525 0.2321 0.2107 0.1887 0.1664
std dev 0.0011 0.0014 0.0016 0.0019 0.0023 0.0027 0.0033
COS 0.2883 0.2715 0.2532 0.2335 0.2127 0.1913 0.1697

30y MC 0.2396 0.2281 0.2152 0.2011 0.1858 0.1699 0.1534
std dev 0.0012 0.0015 0.0018 0.0021 0.0024 0.0029 0.0035
COS 0.2393 0.2279 0.2152 0.2014 0.1866 0.1710 0.1548

Table B.6: Average FX call option prices obtained by the FX-HLMM model with 20
Monte-Carlo simulations, 50.000 paths and 20 × Ti steps; MC stands for Monte Carlo
and COS for the Fourier Cosine expansion technique ([Fang and Oosterlee, 2008]) for
the FX-HLMM1 model with 500 expansion terms. Values of the strikes Kn(Ti) are
tabulated in Table B.1.
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