Pricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching

Kees Oosterlee
Numerical analysis group, Delft University of Technology
Joint work with Coen Leentvaar, Ariel Almendral Vázquez

ECCOMAS 2004
Outline

- Discretization for Black-Scholes equation
 - use only a few grid points
- Discrete dividend
- American-style options

⇒ “PDE on a grid” is straightforward, some modeling questions remain
Black-Scholes option pricing

Point of Departure (here)

- The asset price follows the lognormal random walk.
- Interest rate r and volatility σ_c are known functions of t.
- Transaction costs for hedging are not included in the model.
- There are no arbitrage possibilities.

\Rightarrow Black-Scholes partial differential equation:
(for a European option)

$$\frac{\partial u}{\partial t} + \frac{1}{2} \sigma_c^2 S^2 \frac{\partial^2 u}{\partial S^2} + rS \frac{\partial u}{\partial S} - ru = 0$$

- The Black-Scholes equation is a parabolic partial differential equation
Options on dividend-paying equities

- At the time that a dividend is paid there will be a drop in the value of the stock.
- The price of an option on an dividend-paying asset is affected by these payments.
- Different structures are possible for the dividend payment (deterministic or stochastic with payments continuously or at discrete times).
- We consider discrete deterministic dividends, whose amount and timing are known.
- Arbitrage arguments require:

\[u(S, t_d^-) = u(S - D, t_d^+) \]
Final/Boundary conditions

- **European Call option:** Right to buy assets at maturity $t = T$ for exercise price K.
- **Final condition:** $u(S, T) = \max(S - K, 0)$
- **Boundary conditions** $S = 0$: $u(0, t) = 0$,
 for $S \to \infty$: $u(S_{\text{max}}, t) = S_{\text{max}} - Ke^{-r(T-t)} - De^{-r(t_d-t)}$ or $u_{ss} = 0$.
- **The strategy to solve the Black-Scholes equation numerically** is as follows
 - Start solving from $t = T$ to $t = t_d$ with the usual pay-off.
 - Apply an interpolation to calculate the new asset and option price on the grid discounted with D.
 - Restart the numerical process with the PDE from the interpolated price as final condition from t_d to $t = 0$.
Discretization

$$\frac{\partial u}{\partial t} + \frac{1}{2} \sigma c S^2 \frac{\partial^2 u}{\partial S^2} + r S \frac{\partial u}{\partial S} - ru = 0$$

- Grid in space and time with N and M points; mesh width $h = 1/N$, $k = 1/M$
- Finite differences, based on Taylor’s expansion
- $O(h^2 + k^2)$ is easily achieved by central differencing and Crank-Nicolson discretization
- Our aim: High accuracy with only a few grid points

\Rightarrow Grid stretching in space and 4th order discretizations in space and in time
Grid stretching

- A coordinate transformation that clusters points in the region of interest.
- Boundary at infinity: truncate the domain at a safe place (option value is not influenced) according to a well-known formula.
- An equidistant grid discretization can be used after the analytic transformation.
- Consider a general parabolic PDE with non-constant coefficients:

\[\frac{\partial v}{\partial t} = \alpha(s) \frac{\partial^2 v}{\partial s^2} + \beta(s) \frac{\partial v}{\partial s} + \gamma(s)v(s, t) \]

\[v(a, t) = L(t), \quad v(b, t) = R(t), \quad v(s, 0) = \phi(s). \]
Grid stretching

- Consider a coordinate transformation $y = \psi(s)$ (one-to-one), inverse $s = \varphi(y) = \psi^{-1}(y)$ and let $\hat{v}(y, t) := v(s, t)$.

- Chain rule, the first and second derivative:

$$\frac{\partial v}{\partial s} = \frac{1}{\varphi'(y)} \frac{\partial \hat{v}}{\partial y},$$ \hspace{1cm} (1)
$$\frac{\partial^2 v}{\partial s^2} = \frac{1}{(\varphi'(y))^2} \frac{\partial^2 \hat{v}}{\partial y^2} - \frac{\varphi''(y)}{(\varphi'(y))^3} \frac{\partial \hat{v}}{\partial y}. \hspace{1cm} (2)$$

Application changes the factors α, β and γ into:

$$\hat{\alpha}(y) = \frac{\alpha(\varphi(y))}{(\varphi'(y))^2}, \quad \hat{\beta}(y) = \frac{\beta(\varphi(y))}{\varphi'(y)} - \alpha(\varphi(y)) \frac{\varphi''(y)}{(\varphi'(y))^3}, \quad \hat{\gamma}(y) = \gamma(\varphi(y)). \hspace{1cm} (3)$$
Grid stretching

- Spatial transformation used for Black-Scholes [Clarke-Parrott, Tavella-Randall]:
 \[y = \psi(s) = \sinh^{-1}(\mu (s - K)) + \sinh^{-1}(\mu K). \]
 (4)

- The grid is refined around \(s = K \), i.e. the nondifferentiability in the final condition.
- Parameter \(\mu \) determines the rate of stretching; keep \(\mu K \) constant
- Stretching is possible at several places: grid is defined numerically
Discretization

• Fourth order in space (long stencils):

\[
\frac{\partial \hat{v}_i}{\partial t} = \frac{1}{12h^2} \hat{\alpha}_i (-\hat{v}_{i+2} + 16\hat{v}_{i+1} - 30\hat{v}_i + 16\hat{v}_{i-1} - \hat{v}_{i-2}) + \\
+ \frac{1}{12h} \hat{\beta}_i (-\hat{v}_{i+2} + 8\hat{v}_{i+1} - 8\hat{v}_{i-1} + \hat{v}_{i-2}) + \hat{\gamma}_i \hat{v}_i + O(h^4), \quad 2 \leq i \leq N - 2.
\]

(5)

• Fourth order in time: BDF4 scheme (preceded by CN, BDF3). BDF4 reads

\[
\left(\frac{25}{12} I - kL \right) u^{j+1} = 4u^j - 3u^{j-1} + \frac{4}{3}u^{j-2} + \frac{1}{4}u^{j-3},
\]

(6)

• No stability complications observed

• Well-suited for linear complementarity problems (for American options)
Accuracy

European option pricing experiment, no dividend

- Error in u_h and hedge parameters Δ_h, Γ_h
- $K = 15, \ s_0 = K, \ \sigma_c = 0.3, \ r = 0.05, \ D = 0.03, \ T = 0.5.$

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Grid</th>
<th>$|u - u_{ex}|_\infty$</th>
<th>c_∞</th>
<th>$|\Delta - \Delta_{ex}|_\infty$</th>
<th>c_∞</th>
<th>$|\Gamma - \Gamma_{ex}|_\infty$</th>
<th>c_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(h^4 + k^4)$</td>
<td>10 × 10</td>
<td>1.1×10^{-2}</td>
<td>2.4 × 10^{-2}</td>
<td>6.3 × 10^{-3}</td>
<td>1.3 × 10^{-3}</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 × 20</td>
<td>1.1×10^{-3}</td>
<td>3.1 × 10^{-3}</td>
<td>7.6</td>
<td>1.3 × 10^{-3}</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 × 40</td>
<td>9.4×10^{-5}</td>
<td>2.9 × 10^{-4}</td>
<td>9.7</td>
<td>9.7 × 10^{-5}</td>
<td>13.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Grid</th>
<th>$|u - u_{ex}|_\infty$</th>
<th>c_∞</th>
<th>$|\Delta - \Delta_{ex}|_\infty$</th>
<th>c_∞</th>
<th>$|\Gamma - \Gamma_{ex}|_\infty$</th>
<th>c_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu = 12$</td>
<td>10 × 10</td>
<td>2.7×10^{-1}</td>
<td>1.7 × 10^{-1}</td>
<td>4.2</td>
<td>4.2 × 10^{-2}</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>stretching</td>
<td>20 × 20</td>
<td>1.5×10^{-2}</td>
<td>1.5 × 10^{-2}</td>
<td>4.2</td>
<td>4.2 × 10^{-3}</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>$O(h^4 + k^4)$</td>
<td>40 × 40</td>
<td>9.1×10^{-4}</td>
<td>1.7 × 10^{-3}</td>
<td>5.3</td>
<td>9.9 × 10^{-4}</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 × 80</td>
<td>5.7×10^{-5}</td>
<td>1.5 × 10^{-4}</td>
<td>4.2</td>
<td>4.2 × 10^{-5}</td>
<td>12.7</td>
<td></td>
</tr>
</tbody>
</table>
Accuracy

European option pricing experiment
Example European option

Multiple discrete dividends

- Multiple discrete dividends: analytic solution not available
- Parameters: $s_0 = K = 100$, $r = 0.06$, $\sigma_c = 0.25$, multiple dividends of 4 (ex-dividend date is each half year), $T = 1, 2, 3, 4, 5, 6$. Grid: $s_{max} = RK(3 \leq R \leq 7)$, $\mu = 0.15$

<table>
<thead>
<tr>
<th>Grid</th>
<th>$T = 1$</th>
<th>Grid</th>
<th>$T = 2$</th>
<th>Grid</th>
<th>$T = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20×20</td>
<td>10.660</td>
<td>20×40</td>
<td>15.202</td>
<td>20×80</td>
<td>18.607</td>
</tr>
<tr>
<td>40×40</td>
<td>10.661</td>
<td>40×80</td>
<td>15.201</td>
<td>40×160</td>
<td>18.600</td>
</tr>
<tr>
<td>Lewis (Wilmott Mag. 2003)</td>
<td>10.661</td>
<td>15.199</td>
<td>18.598</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grid</th>
<th>$T = 4$</th>
<th>Grid</th>
<th>$T = 5$</th>
<th>Grid</th>
<th>$T = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20×80</td>
<td>21.370</td>
<td>20×100</td>
<td>23.697</td>
<td>20×120</td>
<td>25.710</td>
</tr>
<tr>
<td>40×160</td>
<td>21.362</td>
<td>40×200</td>
<td>23.691</td>
<td>40×240</td>
<td>25.698</td>
</tr>
<tr>
<td>Lewis</td>
<td>21.364</td>
<td>23.697</td>
<td>25.710</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example European option

Zero interest rate

- Case $r = 0$, the ex-dividend date t_d should not matter for the option price.
- Black-Scholes does not satisfy this market principle.
- Correction of volatility in Black-Scholes:

$$dS = \mu Sdt + (S - De^{-rt_d})dW \quad t \in [0, t_d]$$

$$\sigma(S, t, D) = \begin{cases}
\sigma_c \frac{S - D \exp(-rt_d)}{S} & t \in [0, t_d] \\
\sigma_c & t \in [t_d, T]
\end{cases}$$

<table>
<thead>
<tr>
<th></th>
<th>$t_d = 0$</th>
<th>$t_d = 3$ months</th>
<th>$t_d = 6$ months</th>
<th>$t_d = 9$ months</th>
<th>$t_d = 12$ months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-Scholes</td>
<td>8.3386</td>
<td>8.5522</td>
<td>8.7590</td>
<td>8.9587</td>
<td>9.1511</td>
</tr>
<tr>
<td>Vol. correction</td>
<td>8.3386</td>
<td>8.3386</td>
<td>8.3386</td>
<td>8.3386</td>
<td>8.3386</td>
</tr>
</tbody>
</table>

European Call, $K = 100$, $D = 7$, $r = 0$, $T = 1$, $\sigma = 0.3$
American Options

Linear Complementarity

- American options are contracts that may be exercised early. This right to exercise is valuable: The American option cannot be worth less than the equivalent European.

- The problem we need to solve for an American call option contract reads:

\[
Au := \frac{\partial u}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 u}{\partial S^2} + r S \frac{\partial u}{\partial S} - ru \leq 0
\]

\[
u(S, T) = \max (S - K, 0), \quad u(S, t_d) = \max \{S - Ke^{r(T-t_d)} - D, S - K\},
\]

\[
u(S, t) \geq \text{final condition}
\]

\[
\frac{\partial u}{\partial S} \quad \text{continuous}
\]

\[
u(S_{max}, t) = \max \{S_{max} - Ke^{r(T-t)} - De^{r(t_d-t)}, S_{max} - Ke^{r(t_d-t)}\}, \quad t < t_d
\]

- Early exercise valuable only if \(D > K(1 - e^{-r(T-t_d)}) \), just before the asset goes ex-dividend [Kwok].

- Reformulation of the obstacle problem into a linear complementarity problem:
American Put with one Discrete Dividend

- $K = 100, T = 0.5, d = 2.0, t_d = 0.3, \sigma_c = 0.4, r = 0.08, \mu = 0.15, s_{\text{max}} = 3K$

<table>
<thead>
<tr>
<th>Grid</th>
<th>$u_h(80, t = 0)$</th>
<th>$u_h(100, t = 0)$</th>
<th>$u_h(120, t = 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 x 20</td>
<td>0.223</td>
<td>0.105</td>
<td>0.043</td>
</tr>
<tr>
<td>40 x 40</td>
<td>0.223</td>
<td>0.105</td>
<td>0.043</td>
</tr>
<tr>
<td>Meyer (J. C. Fin. 2001):</td>
<td>0.223</td>
<td>0.105</td>
<td>0.043</td>
</tr>
</tbody>
</table>

- $d = 0$ (black line), $d = 2$ (blue line) vs. $d = 0.98S$ (red line)
American Call with one Dividends

- Problem parameters: \(K = 100, \sigma_c = 0.3, r = 0.05, t_d = 51 \text{ weeks}, D_1 = 4, T = 50 \text{ weeks versus } T=1 \text{ year} \)

<table>
<thead>
<tr>
<th>(t_d = 51 \text{ weeks, } T=50 \text{ weeks})</th>
<th>Vorst</th>
<th>Haug</th>
<th>Black Scholes</th>
<th>Vol. correction</th>
<th>Eur. corr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.63</td>
<td>13.64</td>
<td>14.08</td>
<td>13.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- American price is lower than European
- One should maybe (but this will not happen in practice !) adapt the European price to avoid this contradiction with the volatility correction
Conclusions

- Accurate option values with grid stretching in space and 4th order discretization in space and time
- Option price and hedge parameters are accurate with 20 - 40 points
- Multiple discrete dividend payment can be included in a straightforward way
- American style early exercise does not pose any problems
⇒ Discrete dividends lead to interesting modeling issues.