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Exponential Lévy Processes

Xinzheng Huang

Delft Institute for Applied Mathematics
Delft University of Technology

Delft, the Netherlands

July, 2005



Supervisor: Dr. ir. Cornelis W. Oosterlee

MSc Committee : Prof. dr. Roger M. Cooke
Dr. ir. Cornelis W. Oosterlee
Dr. ir. J.A.M van der Weide



Preface

The valuation of American options is of practical importance because the majority
of exchange-traded options are American. We focus on numerical issues related to
American options since there are no closed form solutions available for American options.
We investigate the option price, the optimal exercise boundary and the Greeks (partial
derivatives of the option prices).

Two models for the dynamics of stock prices are considered: the Black-Scholes model
and the variance gamma model. The Black-Scholes model, which marks the beginning
of the modern era of financial derivatives and remains dominant in options trading,
assumes that the log-price of stocks follows a geometric Brownian motion. The variance
gamma model is a three parameter model that is obtained by evaluating a Brownian
motion at random times given by a gamma process.

We present accurate numerical solutions for option prices with only a few grid points.
Grid stretching in space by means of analytic coordinate transformations is implemented
and high order accuracy is achieved. This stretching can be time-dependent so as to
capture the optimal exercise boundary for American style options.

The thesis is organized as follows: Chapter 1 gives a brief introduction to the Black-
Scholes framework for option pricing and the formulation of the American option as a
free boundary problem. Chapter 2 introduces some elements of Lévy processes and gen-
eralizes the geometric Brownian motion model to an exponential Lévy model. Chapters
3 and 4 discuss issues of valuation of options under the Black-Scholes model and the
variance gamma model, respectively.

I’d like to express my sincere appreciation to my thesis advisor Dr. Kees Oosterlee for
offering me the opportunity to work on such exciting subjects and for his guidance and
valuable comments. Thanks to Dr. Ariel Almendral and Coenraad Leentvaar for their
generous support and helpful discussions.

I would also like to thank Dr. Hans van der Weide, who introduced me to the field of
financial mathematics. I benefited a lot from his lectures and instructions.

I also owe a great debt of gratitude to Prof. Roger Cooke for his care, kindness and
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Chapter 1

Introduction

1.1 Black-Scholes Framework

We assume a frictionless market that satisfies the no-arbitrage principle. We have a bank
account B = (Bt)t≥0 with constant interest rate r and stock S = (St)t≥0 with expected
rate of return on the stock µ and stock price volatility σ. Under the Black-Scholes
framework, the dynamics of B and S are given respectively by

dBt = rBtdt, (1.1)

dSt = µStdt + σStdW̃t, (1.2)

where W̃t is a standard Brownian motion on a probability space (Ω,F ,P).

Let V (t, S) be the value of a European option with underlying asset S and terminal
payoff Φ(ST ). Assuming that V (t, S) has suitable differentiability properties (specifically
V (·, ·) ∈ C1,2) , we can apply the Itô formula to V (t, S) to get

dV = (
∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
)dt +

∂V

∂S
dSt. (1.3)

It follows that we can construct an instantaneously risk free portfolio consisting of one
option and −∂V

∂S of the underlying asset. The value of the portfolio is

π = V − ∂V

∂S
S

with the dynamics

dπ = (
∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
)dt.

To avoid arbitrage the expected capital gain must equal rπdt. Then we reach the
following Black-Scholes equation:

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, (1.4)

subject to the final condition V (T, ST ) = Φ(ST ) and some suitable boundary conditions.

1



2 Introduction

By an application of the Feynman-Kac formula (see Øksendal [40]) we know the solution
to (1.4) is given by

V (t, S) = e−r(T−t)EQ[Φ(ST )|St = S], (1.5)

where

(i) Q is a probability equivalent to P, such that the discounted price e−rtV (t, S) is
a Q-martingale (therefore Q is called as equivalent martingale measure or risk
neutral measure), and

(ii) with Wt being a Brownian motion on the probability space (Ω,F ,Q), ST is given
by

ST = Ste
(r−σ2

2
)(T−t)+σ(WT−Wt),

and the Q-dynamics of S satisfies the equation

dSt = rStdt + σStdWt, (1.6)

We further note the partial derivative ∂V
∂S , commonly referred to as Delta(∆), is an

important parameter in the pricing and hedging of options. It is a measure of the rate
of change in the option price with respect to the price of the underlying asset. The
Gamma(Γ) of an option, ∂2V

∂S2 , is also of importance since it measures the rate of the
change of the option’s delta with respect to the price of the underlying asset.

1.2 American Options

In contrast to a European option, which can only be exercised on the maturity date T ,
an American option can be exercised at any time up to T . Consequently, identifying
the optimal exercise strategy is an integral part of the valuation problem.

Let V (t, S) be the value of an American option with payoff Φ(S) at exercise. The
possibility of early exercise requires

V (t, S) ≥ Φ(S), ∀ t ∈ [0, T ],

otherwise an arbitrage opportunity would arise.

The valuation of the American option is known as a free boundary problem. The
free boundary Sf (t), also called optimal exercise boundary or early exercise boundary,
divides the (t, S) half strip into two parts, namely the continuation region and the
stopping region. The continuation region {(t, S) ∈ [0, T ] × R+ : V (t, S) > Φ(S)} is the
set of points (t, S) at which the option is worth more alive. While in the stopping region
{(t, S) ∈ [0, T ]× R+ : V (t, S) = Φ(S)} early exercise is advisable.

Therefore under the Black-Scholes framework, the price V (t, S) satisfies either in the
continuation region

V (t, S) > Φ(S),
∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0;



1.3 Beyond the Black-Scholes Model 3

or in the stopping region

V (t, S) = Φ(S),
∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV < 0.

Additionally the boundary conditions at Sf (t) are that V and ∂V
∂S are continuous at

Sf (t):

V (t, Sf (t)) = Φ(Sf (t)),
∂V (t, Sf (t))

∂S
= Φ′(Sf (t)),

which is known as the smooth fit principle.

This leads to a linear complementarity problem formulated as follows

V (t, S) ≥ Φ(S), (1.7)

−
(∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV

)
≥ 0, (1.8)

(∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV

)(
V (t, S)− Φ(S)

)
= 0 (1.9)

with some final and boundary conditions. Solutions of linear complementarity problems
can be obtained by a variety of iterative methods, e.g., by the projected successive
overrelaxation (PSOR) method we are going to use. The optimal exercise boundary
Sf (t) is automatically captured by this formulation.

1.3 Beyond the Black-Scholes Model

While the Black-Scholes model is popular in practice, its pitfalls are also well docu-
mented, see for instance Fama [23], Eberlein and Keller [21], Bakshi, Cao and Chen [7].
Empirical studies on asset returns suggest significant departures from the properties of
geometric Brownian motion in the Black-Scholes model, e.g., leptokurtosis (high peak
and fat tails) and skewness of the return distribution instead of the normality assump-
tion. Evidence from the option market include (i) the volatility smile or skew, and (ii)
the underpricing by the Black-Scholes formula for short term out-of-money options.

Among the many extensions to the Black-Scholes model to resolve these empirical biases,
we concentrate on jump models in the sequel. Various jump processes have been pro-
posed in finance to model the dynamics of asset returns. They can be divided into two
types: (i) jump-diffusion models and (ii) pure jump processes. Merton’s jump-diffusion
model with Gaussian jumps [37] and Kou’s model with double exponential jumps [31]
are of the first type. Both are combinations of a Brownian motion and a compound
Poisson process with some given distribution of the jump sizes. Examples of the second
type include the normal inverse Gaussian (NIG) model of Barndorff-Nielsen [8], the gen-
eralized hyperbolic class of Eberlein, Keller, and Prause [22], the variance gamma (VG)
model of Madan and Milne [35] and Madan, Carr and Chang [36], its generalization to
the CGMY model of Carr, Geman, Madan and Yor [12], the finite moment log-stable
(LS) model of Carr and Wu [14] and the Meixner model of Schoutens [44].

All the models mentioned above, together with the drifted Brownian motion in the
Black-Scholes model, fall into the category of Lévy processes. In the next chapter, we
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give the definition and some properties of Lévy processes. We also introduce two Lévy
processes: Brownian motion and the variance gamma process. Finally, we generalize
the Black-Scholes framework to exponential Lévy models and reach a partial integro-
differential equation for the purpose of option pricing.



Chapter 2

Option Valuation under
Exponential Lévy Processes

2.1 Lévy Processes

Let X = (Xt)t≥0 be a stochastic process defined on a probability space (Ω,F ,P). We
say that it has independent increments if for each n ∈ N and each 0 ≤ t1 < t2 < · · · <
tn+1 < ∞ the random variables (Xtj+1 −Xtj , 1 ≤ j ≤ n) are mutually independent and
that it has stationary increments if each Xtj+1 −Xtj and Xtj+1−tj −X0 have the same
distribution.

Definition 1 (Lévy process) (Xt)t≥0 is a Lévy process if :

(i) X0 = 0 (a.s.);

(ii) X has independent and stationary increments;

(iii) X is stochastically continuous, i.e. for all ε > 0 and for all s > 0

lim
t→s

P (|Xt −Xs| > ε) = 0.

The law of a Lévy process is completely determined by its characteristic triplet (σ2, υ, γ),
where σ2 ∈ [0,∞) is called Gaussian variance since it is associated with the Brownian
motion, γ ∈ R is the drift term and Π is a Lévy measure, i.e., a Borel measure defined
on R\{0} which satisfies ∫

R
(|x|2 ∧ 1)Π(dx) < ∞.

The characteristic function of X can be computed from the triplet as follows.

Theorem 1 (Lévy-Khintchine representation) Let (Xt)t≥0 be a Lévy process on R
with characteristic triplet (σ2,Π, γ). Then

E[eizXt ] = etΨ(z), z ∈ R (2.1)

5



6 Option Valuation under Exponential Lévy Processes

with

Ψ(z) = −σ2

2
z2 + iγz +

∫

R
(eizx − 1− izx1{|x|≤1})Π(dx). (2.2)

Definition 2 (Subordinator) A subordinator is a one-dimensional Lévy process that
is non-decreasing (a.s.).

A subordinator thus must not have a diffusion component, but only positive jumps and a
non-negative drift (see [15]). Let St be a subordinator with characteristic triplet (0, ρ, b).
The moment generating function of St is

E[euSt ] = et l(u) ∀u ≤ 0, where l(u) = bu +
∫ ∞

0
(eux − 1)ρ(dx). (2.3)

The function l(u) is usually called the Laplace exponent of the subordinator.

Example 1 (Gamma subordinator) Let G(t; µ, ν) be a gamma process with mean
rate µ and variance rate ν. The density of the gamma process at time t is given by

f(g) =
(µ

ν

)µ2t
ν g

µ2t
ν
−1 exp(−µ

ν g)

Γ(µ2t
ν )

, g ≥ 0, (2.4)

where Γ(x) is the gamma function. Its moment generating function is given by

E[euSt ] =
( 1

1− u ν
µ

)µ2t
ν

with Laplace exponent l(u) = −µ2

ν
ln(1− u

ν

µ
).

It is easy to verify

l(u) =
∫ ∞

0
(eux − 1)

µ2exp(−µ
ν x)

νx
dx.

From this we see that G(t) is a subordinator with b = 0 and ρ(dx) = µ2exp(−µ
ν

x)

νx dx.

Subordinators can be used for “time changing” other Lévy processes. An example called
the variance gamma(VG) process will be presented later. Before that, we point out a
key result regarding subordination.

Theorem 2 (Subordination of a Lévy process) Let (Ω,F ,P) be a given probability
space, Xt be a Lévy process on R with characteristic exponent Ψ(u) and triplet (σ2, Π, γ)
and St be a subordinator with Laplace exponent l(u) and characteristic triplet (0, ρ, b).
Assume Xt and St are independent, then the process Yt defined for each ω ∈ Ω by
Y (t, ω) = X(S(t, ω), ω) is a Lévy process and its characteristic function is given by

E[eiuYt ] = etl(Ψ(u)). (2.5)

The complete proof of Theorem 2 can be found in Applebaum[5]. We only show here
that the formula (2.5) can be obtained by conditioning on FS :

E[eiuX(St)] = E{E[eiuX(St)|FS ] } = E[eStΨ(u)] = etl(Ψ(u)).
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2.2 Examples of Lévy Processes in Finance

The two models presented here are those we aim to solve numerically in later chapters.
For properties of other Lévy processes such as the Lévy measures and characteristic
exponents, see Schoutens [45].

2.2.1 Brownian Motion

The introduction of Brownian motion in finance can be traced back to Bachelier [6].
It is the process driving the log-price of an asset in Samuelson [43] and the celebrated
Black-Scholes model.

Definition 3 (Brownian motion) A (standard) Brownian motion in R is a Lévy pro-
cess (Wt)t≥0 for which

(i) W0 = 0 (a.s.);

(ii) Wt ∼ N(0, t) for each t ≥ 0;

(iii) W has continuous sample paths.

It follows immediately that the characteristic triplet of a standard Brownian motion
(Wt)t≥0 is (1, 0, 0).

A drifted Brownian motion bt can be constructed by

bt = θt + σWt; (2.6)

Then b is a Lévy process with each bt ∼ N(θt, σ2t). Its characteristic triplet is (σ2, 0, θ).

We note that (drifted) Brownian motion is the only Lévy process with continuous sample
paths and it is an infinite variation process.

2.2.2 The Variance Gamma Process

The variance gamma model was first introduced in Madan and Seneta [34] and extended
by Madan, Carr and Chang [36]. We follow the later and Carr, Geman, Madan and
Yor [12] very closely.

The VG process is a subordinated version of Brownian motion, in other words, it could
be interpreted as a Brownian motion in “business time” instead of calender time. Let
b(t; θ, σ) = θt + σW (t), where W (t) is a standard Brownian motion. Let G(t; 1, ν) be
a gamma process with mean rate unity and variance rate ν. Then the VG process is
defined by

X(t; σ, ν, θ) = b(G(t; 1, ν); θ, σ) = θG(t; 1, ν) + σW (G(t; 1, ν)). (2.7)

By an application of Theorem 2 we obtain its characteristic function as follows

φV G(u, t) = E{exp [iuXV G(t)]} =
( 1

1− iθνu + σ2νu2/2

)t/ν
. (2.8)
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The VG process can also be regarded as the difference of two independent gamma
processes. Observing that

1
1− iθνu + σ2νu2/2

= (
1

1− iηpu
)(

1
1 + iηnu

),

where ηp, ηn satisfy

ηp − ηn = θν and ηpηn =
σ2ν

2
.

It follows that ηp and −ηn are the roots of the equation

x2 − θνx− σ2ν/2 = 0,

whereby

ηp =

√
θ2ν2

4
+

σ2ν

2
+

θν

2
, and ηn =

√
θ2ν2

4
+

σ2ν

2
− θν

2

The two gamma processes may be denoted Gp(t;µp, νp) and Gn(t; µn, νn), with, respec-
tively, mean and variance rates µp, µn and νp, νn. For these gamma processes, we have
that µp = ηp/ν, µn = ηn/ν, while νp = µ2

pν, and νn = µ2
nν. We then have that

XV G(t;σ, ν, θ) = Gp(t; µp, νp)−Gn(t; µn, νn). (2.9)

and we may write the Lévy measure Π(dx) for Xt as

ΠV G(dx) =





µ2
n

νn

exp(−µn

νn
|x|)

|x| dx for x < 0

µ2
p

νp

exp(−µp

νp
x)

x dx for x > 0

(2.10)

We could also define the Lévy measure in terms of the original parameters (σ, ν, θ) as

ΠV G(dx) =
exp (θx/σ2)

ν|x| exp

(
−

√
2
ν + θ2

σ2

σ
|x|

)
dx. (2.11)

The parameters ν and θ play important roles in capturing the non normality of the asset
returns. Clearly when θ < 0, negative values of x receive a higher relative probability
than the corresponding positive values, which means that negative values of θ give rise
to a negative skewness. Meanwhile large values of ν yields lower decay rate of the Lévy
measure, and therefore raise tail probability and kurtosis.

The Lévy measure in (2.11) also tells us that the VG process is of infinite activity
and finite variation since Π integrates to infinity on the real line and |x| is integrable
with respect to Π.1 An infinite activity jump process has infinite number of jumps
(mostly small) in any finite interval, which is versatile enough to include both small
jumps to mimic a Brownian component and large jumps. Consequently, unlike the

1For more details on infinite activity Lévy processes and finite variation Lévy processes, see Cont
and Tankov [15].
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jump-diffusion model, a Brownian part is no longer necessary. Being of finite variation,
the price process can be decomposed into the difference of two increasing processes
representing the increase and decrease of the prices. Argued by Carr, Geman, Madan and
Yor [12] following their empirical investigation, the statistical and risk-neutral processes
for equity prices are pure jump processes of infinite activity and finite variation.

Finally, we would like to mention that the VG process is a special case of the so-called
CGMY process. The CGMY Lévy density has 4 parameters C, G, M and Y and is given
by

ΠCGMY (dx) =





C
exp(−G|x|)
|x|1+Y dx for x < 0

C
exp(−M |x|)
|x|1+Y dx for x > 0

(2.12)

where C > 0, G ≥ 0, M ≥ 0 and Y < 2. The VG process is the case where Y = 0,
C = 1/ν, G = 1/ηn and M = 1/ηp.

2.3 Partial Integro-differential Equations

An exponential Lévy model is formulated by simply replacing the drifted Brownian
motion in the Black-Scholes model of asset prices by a Lévy process:

St = S0 exp (Xt), (2.13)

where X is a Lévy process with characteristic triplet (σ2, Π̃, γ̃) under measure P and
satisfies some integrability condition. From the perspective of no-arbitrage2 there must
exist an equivalent martingale measure Q, under which X has the characteristic triplet
(σ2, Π, γ) and satisfies EQ[exp (Xt)] = ert, i.e., the expected return on stock S is the
same as that from a money account. This amounts to

σ2

2
+ γ +

∫

R
(ex − 1− x1{|x|≤1})Π(dx) = r, (2.14)

which is a consequence of Lévy-Khintchine formula.

In models with jumps the market is incomplete: there are many possible choices for
the equivalent martingale measure. A convenient way to achieve the above change of
measure is the Esscher transform, which is defined as follows.

Definition 4 (Esscher Transform) Let X be a Lévy process on the probability space
(Ω,F ,P). Then the Esscher transform is any change of P by the process Xt and a
constant θ to an equivalent probability measure Q such that

dQ
dP

∣∣∣Ft =
exp(θXt)

E[exp(θXt)]
. (2.15)

2More precisely, No Free Lunch with Vanishing Risk(NFLVR), see Delbaen and Schachermayer [19,
20].
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If such an Esscher transformed martingale measure Q exists, we should have γ =
γ̃ + θσ2 +

∫ 1
−1 x(eθx − 1)Π(dx), and Π(dx) = eθxΠ̃(dx). For more details on Esscher

transforms, see Gerber and Liu [25].

Let V (t, S) again be the value of a European option with underlying asset S and terminal
payoff Φ(ST ). Under risk neutral probability Q, we have

V (t, S) = e−r(T−t)EQ[Φ(ST )|St = S] = e−r(T−t)EQ[Φ(SeXT−t)]. (2.16)

Making the change of variables x = lnS and τ = T − t, we define

u(τ, x) = V (t, S) = e−rτEQ[Φ(ex+Xτ )]

and differentiate u(τ, x) with respect to τ to obtain the following partial integro-differential
equation(PIDE):

∂u

∂τ
= Lu(x), (2.17)

where the operator L is defined by the following proposition.

Proposition 1 (Infinitesimal generator of a Lévy process) Let (Xt)t≥0 be a Lévy
process on R with characteristic triplet (σ2, Π, γ). Then the infinitesimal generator of
X is defined for any f ∈ C2

0 (R) as

Lf(x) =
1
2
σ2 ∂2f

∂x2
(x) + γ

∂f

∂x
(x) +

∫

R

(
f(x + y)− f(x)− y

∂f

∂x
(x)1{|y|≤1}

)
Π(dy), (2.18)

where C2
0 (R) is the set of twice continuously differentiable functions, vanishing at infin-

ity.

By further applying condition (2.14) we come to the following PIDE:

∂u

∂τ
=

σ2

2
∂2u

∂x2
(τ, x) + (r − σ2

2
)
∂u

∂x
(τ, x)− ru(τ, x) +

+
∫

R

(
u(τ, x + y)− u(τ, x)− (ey − 1)

∂u

∂x
(τ, x)

)
Π(dy). (2.19)

Using again a change of variable we could obtain a similar equation for V (t, S):

∂V

∂t
+rS

∂V

∂S
+

σ2S2

2
∂2V

∂S2
−rV (t, S)+

∫

R

(
V (t, Sey)−V (t, S)−S(ey−1)

∂V

∂S
(t, S)

)
Π(dy) = 0.

(2.20)

Under the Black-Scholes model, the Lévy measure is 0 and the above equation reduces
to the Black-Scholes PDE (1.4). While in the case of a finite variation Lévy process,
the second order term vanishes and the derivative term under the integral can be taken
out. Equation (2.20) reduces to a first order PIDE:

∂V

∂t
+ (r + ζ)S

∂V

∂S
− rV +

∫

R
[V (t, Sey)− V (t, S)]Π(dy) = 0, (2.21)

where ζ =
∫

(1− ey)Π(dy).



Chapter 3

The Black-Scholes Model

This chapter is a continuation to the article “Pricing options with discrete dividends
by high order finite differences and grid stretching” by C.W. Oosterlee, C.C. Leentvaar
and A. Almendral, appeared in ECCOMAS 2004, P. Neittaanmäki, et al, eds. Proc.
Jyväskylä, Finland, 24-28, 2004.

3.1 Introduction

We consider option valuation under the Black-Scholes model in this chapter.

Adding a continuous dividend q to the underlying stock S, the Black-Scholes equation
changes to

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0. (3.1)

Boundary conditions arise naturally from financial arguments: The left boundary con-
dition for a call is V (t, 0) = 0 for all t, and a possible choice for the right-side boundary
condition at a truncated boundary Smax (as an approximation for S →∞) is

V (t, Smax) = Smaxe−rd(T−t) −Ke−r(T−t).

The payoff at maturity is known and determines the final condition at t = T . For a
European call, it reads:

V (T, S) = max(S −K, 0). (3.2)

With a simple transformation we change the equation that is backward in time into
an equation forward in time and the final condition becomes initial condition. In the
remaining of this chapter, we let t denote time to maturity and t0 be the initial time.
To avoid confusion, we further replace V, S by u, s respectively and rewrite the Black-
Scholes equation as

−∂u

∂t
+

1
2
σ2s2 ∂2u

∂s2
+ (r − q)s

∂u

∂s
− ru = 0. (3.3)

11
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3.2 Grid Transformation and Discretization

We aim for an efficient and accurate procedure for obtaining the option value and the
Greeks(∆,Γ) by solving the Black-Scholes equation numerically. In order to cluster grid
points in the region of interest, e.g., near the exercise price K and initial asset price s0,
an analytic grid transformation is applied. Such a transformation modifies all coefficients
in the equation, but discretization can take place on an equidistant grid. Fourth order
finite differences in space and time are chosen for handling this transformed equation.

3.2.1 Spatial Grid

The accuracy of a finite difference approximation depends on the existence of several
derivatives in the Taylor’s expansion, but in option pricing the final condition is not
differentiable (or even discontinuous in the case of a digital option). Therefore, local
grid refinement seems a logical choice to retain a satisfactory accuracy. It is well-known
that local grid refinement near sharp corners in the domain or near singularities in
an equation often improves the overall discretization accuracy drastically. By an h-
refinement in the vicinity of a singularity the discretization error is locally decreased,
due to the smaller h, and the global accuracy is not spoiled by the well-known pollution
effect, as it is encountered for elliptic or parabolic equations.

The principle of local refinement is simple: Place more points in the neighborhood of
the grid point where the non-differentiable condition occurs. This can be done by adap-
tive grid refinement for some regions, based on an error indicator, or by an analytic
coordinate transformation, which results in an a-priori stretching of the grid. A coordi-
nate transformation is the most elegant way in our applications as the region of interest
is known beforehand. An equidistant grid discretization can be used after the analytic
transformation, as only the coefficients in front of the derivatives change. We explain the
principle for a general parabolic PDE with non-constant coefficients, Dirichlet boundary
conditions and an initial condition:

∂u

∂t
= α(s)

∂2u

∂s2
+ β(s)

∂u

∂s
+ γ(s)u(s, t) (3.4)

u(a, t) = L(t), u(b, t) = R(t), u(s, 0) = φ(s). (3.5)

Consider a coordinate transformation y = ψ(s), which must be one-to-one, with inverse
s = ϕ(y) = ψ−1(y) and let û(y, t) := u(s, t) (unknowns with “hat” live on the trans-
formed grid). By the chain rule, the first and second derivative with respect to s of
u(s, t) will become:

∂u

∂s
=

∂û

∂y

dy

ds
=

∂û

∂y

(
ds

dy

)−1

=
1

ϕ′(y)
∂û

∂y
, (3.6)

∂2u

∂s2
=

(
ds

dy

)−1 ∂

∂y

((
ds

dy

)−1 ∂û

∂y

)
=

1
(ϕ′(y))2

∂2û

∂y2
− ϕ′′(y)

(ϕ′(y))3
∂û

∂y
. (3.7)

Application of (3.6) and (3.7) to (3.4) changes the factors α, β and γ into:

α̂(y) =
α(ϕ(y))
(ϕ′(y))2

, β̂(y) =
β(ϕ(y))
ϕ′(y)

− α(ϕ(y))
ϕ′′(y)

(ϕ′(y))3
, γ̂(y) = γ(ϕ(y)). (3.8)
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The boundary points a and b are also transformed into ψ(a) and ψ(b), respectively. The
equidistant grid size for the transformed equation is h = (ψ(b) − ψ(a))/N , assuming
function ψ to be a monotonically increasing function.

The spatial transformation used for Black-Scholes equation originates from Clark and
Parrot [16] and is also presented in Tavella and Randall [46]:

y = ψ(s) =
sinh−1 (ξ (s− κ))− c1

c2 − c1
, (3.9)

where c1 = sinh−1(ξ(a−κ)) and c2 = sinh−1(ξ(b−κ)). The grid is refined around s = κ.
Usually κ is set to be K. Parameter ξ determines the rate of stretching. In the analytic
function (3.9) the combination ξκ appears. For satisfactory accuracy, also on coarse
grids, it appears advantageous to keep this quantity constant. ξκ = 15, for example, has
proven to be an appropriate choice over a variety of option pricing parameters. Figure
3.1 shows the stretching around κ = 15 for ξ = 1 (ξκ = 15) and ξ = 12 (ξκ = 180) and
a corresponding grid. The difference in the number of points per s-interval with ξ = 1
and ξ = 12 is depicted in Figure 3.2. The number of points per interval is displayed
for three grid sizes of 20, 40 and 80 points with different colors (from light to dark in
Fig. 3.2). Thus, larger ξ means fewer points in the outer regions while when ξ decreases
the grid approaches an equidistant one. Note that with the linear pricing rule of vanilla
options, we could always normalize the strike price K to 1.
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Figure 3.1: Left: Transformation function (3.9), κ = 15, (a): ξ = 1, (b): ξ = 12; Right:
Example of European call option values on the stretched grid.

For transformation (3.9), the inverse and the first two derivatives are:

ϕ(y) =
1
ξ

sinh (c2y + c1(1− y)) + κ, (3.10)

J(y) =
c2 − c1

ξ
cosh (c2y + c1(1− y)) , (3.11)

H(y) =
(c2 − c1)2

ξ
sinh (c2y + c1(1− y)) , (3.12)
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Figure 3.2: Number of grid points in an interval on the S-axis for ξ = 1 (left) and ξ = 12
(right). The total number of points is 20, 40 and 80 for the different colors from light
to dark.

where J(y), Jacobian, is the first derivative of ϕ(y) and H(y), Hessian, denotes the
second derivative. Applying the transformation (3.10) to the final condition gives:

û(y, T ) = max
(

1
ξ

sinh (c2y + c1(1− y)) + κ−K, 0
)

. (3.13)

The sharp edge in the final condition of a European option does, thus, not disappear;
the condition is not differentiable.

3.2.2 Time Grid

We aim for an implicit discretization of fourth order on an equidistant grid with time
step k. A well-known family of implicit schemes with nice properties is the family of
backward differentiation formulae, BDF, of which the O(k2) BDF2 [24, 27] is known
best. The O(k4)-scheme, BDF4, is the basis for the time discretization employed. It
reads (

25
12

I − kL

)
uj+1 = 4uj − 3uj−1 +

4
3
uj−2 +

1
4
uj−3, (3.14)

with k the time step, I the identity matrix, L a discrete version of operator L such that

Lu =
1
2
σ2s2 ∂2u

∂s2
+ (r − q)s

∂u

∂s
− ru.

Superscript j on discrete unknown uj represents the iteration in time.

This method needs three initialization steps. The combination of two Crank-Nicolson
and one BDF3 step (O(k3)) form the initialization for BDF4 here. BDF2 is known
to be unconditionally stable, whereas BFD3 and BDF4 have stability regions. For our
applications so far, however, the stability constraints are not problematic.
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3.2.3 High Order Accuracy

A fourth order “long stencil” finite difference discretization in space based on Taylor’s
expansion is given by

∂ûi

∂t
=

1
12h2

α̂i (−ûi+2 + 16ûi+1 − 30ûi + 16ûi−1 − ûi−2)+

+
1

12h
β̂i (−ûi+2 + 8ûi+1 − 8ûi−1 + ûi−2) + γ̂iûi + O(h4), 2 ≤ i ≤ N − 2.

(3.15)

Subscript i refers to grid point yi = ih on the transformed grid. First derivatives are
discretized by central differences. This is an appropriate choice as long as the equation is
not convection dominating. For the fourth order approximation, interior point y1 needs
a special treatment at the left-side boundary as well as point yN−1 at the right-side
boundary.

An approach for the first (and last) grid point is to use backward or one-sided differences,
with difference scheme:

∂û1

∂y
=
−3û0 − 10û1 + 18û2 − 6û3 + û4

12h
+ O(h4), (3.16)

∂2û1

∂y2
=

10û0 − 15û1 − 4û2 + 14û3 − 6û4 + û5

12h2
+ O(h4). (3.17)

and similarly for yN−1.

We also compute numerically two hedge parameters, Delta (∆) and Gamma (Γ):

∆s =
∂u

∂s
, Γs =

∂2u

∂s2
. (3.18)

With a fourth order accurate scheme, we find

∆y
i =

∂û

∂y
=
−ûi+2 + 8ûi+1 − 8ûi−1 + ûi−2

12h
, (3.19)

Γy
i =

∂2û

∂y2
=
−ûi+2 + 16ûi+1 − 30ûi + 16ûi−1 − ûi−2

12h2
. (3.20)

On the s-grid the approximate derivatives read (3.6),(3.7):

∆s
i =

(
dϕ

dy

)−1

i

∆y
i , Γs

i =
(

dϕ

dy

)−2

i

Γy
i −

(
d2ϕ

dy2

)

i

(
dϕ

dy

)−3

i

∆y
i . (3.21)

3.3 Numerical Results with a European Option

Before we proceed to the American options, we first compute a European vanilla call
to gain some insight in the properties of the numerical techniques. For the basic Black-
Scholes equation closed form solutions exist. The analytic solutions serve as a reference
for the numerical option prices and Greeks. Since the Greeks are often obtained by a
numerical differentiation of the primary unknown u, the accuracy of these derivatives is
not obvious beforehand. Theoretically, numerical differentiation reduces the accuracy
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by one order. These are, however, statements on the asymptotic behavior for grid size
h → 0. With highly accurate discretizations, however, we expect a reasonable accuracy
of the hedging parameters.

The parameters we use here are:

K = 15, σ = 0.3, r = 0.05, q = 0.03, T = 0.5. (3.22)

We measure the error of u,∆,Γ at initial time to the analytic solution in the infinity
norm1. Next to this, the tables below present the error reduction factors c∞, defined as:

c∞ =
‖w2h − wex‖∞
‖wh − wex‖∞ ,

for some vector w, where wh and wex denote the solution on mesh size h and the exact
solution, respectively. We aim for accuracy with only a few grid points, therefore the
grids are typically not finer than 40× 40. The outer boundary smax has been placed at
3 times the exercise price, according to the formula in Kangro and Nicolaides [30].

Table 3.1 presents results obtained on an equidistant grid for a second order scheme
(O(h2) finite differences and Crank-Nicolson) and the fourth order scheme proposed.
The second order scheme is the basis for many of the existing Black-Scholes based
software. It is shown in Table 3.1 that second order accuracy is indeed achieved on
these coarse grids, whereas the fourth order method is not performing better than second
order. This is due to the lack of smoothness of the final condition. The convergence of
the Greeks is satisfactorily.

Scheme Grid ‖u− uex‖∞ c∞ ‖∆−∆ex‖∞ c∞ ‖Γ− Γex‖∞ c∞
10× 10 1.3× 10−1 9.7× 10−2 2.1× 10−2

O(h2 + k2) 20× 20 3.3× 10−2 4.0 9.6× 10−3 10.1 6.2× 10−3 3.4
40× 40 6.4× 10−3 5.2 1.7× 10−3 5.6 1.9× 10−3 3.3
10× 10 9.4× 10−2 3.0× 10−2 1.9× 10−2

O(h4 + k4) 20× 20 1.6× 10−2 6.1 9.9× 10−3 3.0 3.1× 10−3 6.3
40× 40 4.1× 10−3 3.8 1.2× 10−3 8.2 3.6× 10−4 8.5

Table 3.1: Comparison of error and accuracy in u, ∆ and Γ at t0 on equidistant grids.

Table 3.2 shows results where the second and fourth order discretization are applied to
the Black-Scholes equation with ξ = 1 (ξκ = 15). The accuracy of the results in u,∆ and
Γ is nicely improved, especially with the fourth order discretization. We do not observe
the 4th order error reduction on these coarse moderately stretched grids, but the error
for 20× 20 points is already less than one cent (e 0.01) with the transformation. This
is a satisfactory result.

The asymptotic fourth order convergence rate is observed for larger values of ξ, i.e.,
with a severe stretching around the kink in the payoff. Table 3.3 confirms this for the

1Use of the relative error in the infinite norm, ‖(u−uex)/uex‖∞, was suggested. However we consider
it not suitable for measuring the global accuracy, because uex → 0 when s → 0. An alternative can be the
point-wise relative error |(u− uex)/uex|. Some more numerical experiments show that the convergence
of price and Greeks measured in this relative error at s = K, which is of most interest, is similar to that
in terms of the absolute error in infinite norm.
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Scheme Grid ‖u− uex‖∞ c∞ ‖∆−∆ex‖∞ c∞ ‖Γ− Γex‖∞ c∞
10× 10 6.6× 10−2 1.1× 10−1 8.5× 10−3

O(h2 + k2) 20× 20 1.8× 10−2 3.8 2.6× 10−2 4.0 3.7× 10−3 2.3
40× 40 4.3× 10−3 4.1 6.5× 10−3 4.0 8.5× 10−4 4.3
10× 10 1.1× 10−2 2.4× 10−2 6.3× 10−3

O(h4 + k4) 20× 20 1.1× 10−3 10.0 3.1× 10−3 7.6 1.3× 10−3 4.8
40× 40 9.4× 10−5 11.2 2.9× 10−4 10.8 9.7× 10−5 13.6

Table 3.2: Comparison of error and accuracy in u, ∆ and Γ at t0 on the stretched grid,
ξ = 1.

option value uh and ξ = 12. The convergence for ∆ and Γ is also satisfactory. However,
the error on the coarser grids with ξ = 12 is significantly larger than that obtained for
ξ = 1 in Table 3.2. This justifies the suggested condition ξκ = 15. The stretched grid,
the solution and Greeks for ξ = 1 and ξ = 12 are displayed in Figure 3.3.

Scheme Grid ‖u− uex‖∞ c∞ ‖∆−∆ex‖∞ c∞ ‖Γ− Γex‖∞ c∞
10× 10 2.7× 10−1 1.7× 10−1 4.2× 10−2

ξ = 12 20× 20 1.5× 10−2 18.1 1.5× 10−2 11.5 4.2× 10−3 10.0
stretching 40× 40 9.1× 10−4 16.5 1.7× 10−3 8.6 5.3× 10−4 8.0
O(h4 + k4) 80× 80 5.7× 10−5 16.0 1.5× 10−4 11.6 4.2× 10−5 12.7

160× 160 3.7× 10−6 15.1 1.2× 10−5 12.4 4.2× 10−6 9.6

Table 3.3: Comparison of error and accuracy in u, ∆ and Γ at t0 on the stretched grid,
ξ = 12.

3.4 American Options

In this section we give three different numerical examples. We consider an American
call with a continuous dividend, two American puts with one discrete dividend and an
American butterfly spread. In the mean time two extensions to the grid transformation
scheme are introduced.

3.4.1 American Calls with a Continuous Dividend

An American style option test case has been presented in Wallner and Wystrup [48].
In the test the continuous dividend q is set such that a free boundary appears for the
American call. Results were obtained on extremely fine grids with 1130 grid points in
spatial and time-wise direction. Their results with finite differences were not completely
convincing. The evaluation has been performed in Wallner and Wystrup [48] with the
following set:

K = 0.9, σ = 0.1, r = 0.02, q = 0.035, T = 0.25. (3.23)
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We aim for satisfactorily accuracy in 40 - 80 grid points in both directions. With K = 0.9
we set stretching parameter ξ = 16 in (3.9). The outer boundary is placed at 3K. The
option value has converged on the stretched grid in fewer than 32 grid points; on the
equidistant grid convergence is obtained in about 64 grid points.

We then focus on the determination of optimal exercise boundary sf (t), which is an
integral part of the valuation problem. It is known that for an American call the free
boundary sf (t) is a continuous, increasing function of time to maturity t. We note that,
in order to get accurate sf (t) the grid is not necessarily refined at strike K, but at
max(K, r

qK) for an American call and min(K, r
qK) for an American put at t = T (see

Kwok [32]). Figure 3.4 compares the results obtained on a fixed stretched grid to those
obtained on an equidistant grid. Although it’s obvious that the stretched grid gives far
better approximations than the equidistant grid (evidence can also be found in Table
3.4), we get only crude step functions for sf (t) with 40-80 grid points.

A more accurate representation of the free boundary may be achieved by applying a
time-dependent grid stretching (hereafter called TDGS). Instead of staying with a fixed
κ in transformation (3.9) for the whole duration of the option, we attempt to move
κ in a way such that the grid is refined in the vicinity of the free boundary for all
t. This handles especially well the case that the free boundary sf (t) runs out of the
region of refinement of a fixed grid stretching (hereafter FGS) discussed before, which
occurs constantly in the case of long maturity and high volatility. Since there’s so
far no tractable formula how the free boundary sf (t) evolves with respect to time to
maturity t, we propose simply to extract information from the free boundary sf (t) that
we get from FGS. Thus we obtain an improved free boundary sTDGS

f (t) by imitating
the predictor-corrector scheme:

(i) predictor: Apply FGS with constant κ, which can be regarded as a step of pre-
processing. We find sFGS

f (t) and the grid point s′f (t) immediately next to sFGS
f (t)

that satisfies u(s) > Φ(s) .

(ii) corrector: Apply TDGS with κ(t) equal to the midpoint of sFGS
f (t) and s′f (t).2

Unlike computing the option prices, when the objective is to find accurate approxima-
tions of sf (t), we only pursue local accuracy. Thus the condition ξκ = 15 can be relaxed
in the corrector step. By choosing a large enough ξ , we can calculate sTDGS

f (t) on a
grid that clusters almost all grid points in the region of interest. This is justified by the
numerical results presented hereafter.

To assess the accuracies of schemes in computing the free boundary sf (t), we choose a
640 points grid in spatial and time-wise directions with FGS κ = 0.9 and ξ = 16 as our
benchmark. The error measure we report is Root Mean Square(RMS) absolute error,
which is defined by

RMS =

√√√√ 1
m

m∆t∑

t=∆t

(sf (t)− sREF
f (t))2, where m = T/∆t

2Assuming the error of the finite difference method is small enough and inaccuracy in determining
the free boundary comes from the spatial discretization, for an American call(put) option sFGS

f (t) is
indeed an upper(lower) bound of the true free boundary and s′f (t) is a lower(upper) bound. Choosing
the midpoints is therefore a satisfactory way of compromise.
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and sREF
f (t) is the “true” free boundary estimated from our benchmark grid.

Table 3.4 compares the RMS error in the free boundary sf (t) for different schemes,
especially for 40 and 80 points TDGS with different ξ. We see that TDGS outperforms
FGS. Furthermore we observe that higher ξ in TDGS yields higher accuracy in sf (t).
A few more experiments show that with ξ = 16 the TDGS reduces the RMS error by
a factor of 1.4 only, while the RMS error in sf (t) on a 40-point-grid with ξ = 256 is
almost as small as on a 320-point-grid with ξ = 16. This pattern is also illustrated in
Figure 3.5.

Scheme 320 points 40 points 80 points
Equidistant 3.3× 10−3 5.8× 10−2 1.7× 10−2

FGS 7.0× 10−4 6.4× 10−3 2.8× 10−3

ξ = 16 - 5.2× 10−3 2.0× 10−3

ξ = 32 - 2.6× 10−3 1.0× 10−3

TDGS ξ = 64 - 1.3× 10−3 6.6× 10−4

ξ = 128 - 1.0× 10−3 5.6× 10−4

ξ = 256 - 8.9× 10−4 5.0× 10−4

Table 3.4: Comparison of RMS error in sf (t) from different schemes

We further point out that the gain of TDGS strongly depends on the volatility σ. Table
3.5 presents the RMS in sf (t) for different σ. We again adopt the parameters in (3.23)
but vary σ in the range from 0.05 to 0.4. ξ is fixed at 16. TDGS is more advantageous
as σ increases: the RMS errors are reduced significantly when σ = 0.2− 0.4. Figure 3.6
shows that when σ = 0.4 the accuracy in sf (t) from an 80-point-TDGS-grid is nearly
comparable to that of a 320-point-FGS-grid. Whereas when σ is as small as 0.05, the
accuracy from 80 points FGS is already satisfactory and the improvement in accuracy
from TDGS is negligible. This is in accordance with our expectation.

σ 80 points FGS 80 points TDGS 320 points FGS
0.05 2.3× 10−3 2.2× 10−3 5.4× 10−4

0.1 2.8× 10−3 2.0× 10−3 7.0× 10−4

0.2 5.0× 10−3 1.9× 10−3 1.3× 10−3

0.3 7.7× 10−3 2.4× 10−3 2.0× 10−3

0.4 1.1× 10−2 4.1× 10−3 2.8× 10−3

Table 3.5: Comparison of RMS error in sf (t) with different σ

We now investigate the Greeks. ∆ and Γ obtained on equidistant grids with different
resolution, from 402 to 3202 points (in space and time) are presented in Figure 3.7. ∆
is not accurate for 40 equidistant points, so Γ with 40 points is not displayed. Γ is not
yet resolved well in 80 equidistant grid points.

Results from a fixed stretched grid are more favorable. Figure 3.8 presents ∆ and Γ on
FGS grids with ξ = 16. We also zoom in on ∆ and Γ near the free boundary in the
figure. In the pictures it is shown that ∆ and Γ are well captured on grids with 80 grid
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points. On the 40 points grid both Greeks are also well resolved except maybe at the
free boundary, as the zoomed picture displays.

Improved accuracy in hedge parameters near the early exercise boundary sf (T ), espe-
cially in Γ, which is discontinuous at sf (T ), is automatically achieved by the application
of TDGS. We report a similar pattern as shown before, that is TDGS is more powerful
when σ is large. We illustrate the improvements in accuracy of Γ on an 80 points grid
with σ = 0.1 and σ = 0.4 in Figure 3.9.

Another issue for accurate representation, especially of Γ near the early exercise bound-
ary is to use one-sided and backward differences (as in (3.16),(3.17)) that do not need
values across the free boundary. This way one can avoid local overshoots in Γ at the
free boundary.

Figure 3.10 presents the grid convergence of the less known Greeks, Rho (ur), Vega
(uσ), Volga (uσσ) and Vanna (usσ) on stretched grids varying from 402 to 3202 points.
In Wallner and Wystrup [48] uneconomical oscillations were observed in these Greeks
for second order finite differences on coarse equidistant grids. Here, we do not observe
any uneconomical oscillation in either of these Greeks, not even on grids with only
40 points. Figure 3.10 indicates that solely one peak in the Volga parameter is not
accurately captured on the 402-grid.

3.4.2 American Puts with Discrete Dividends

We examine in this section the early exercise boundary of American puts with one
discrete dividend. The case of an American call with discrete dividends is relatively
easier than the put and we refer to Kwok [32].

Suppose td (calender time) is the time point immediately before the dividend payment.
In the case of fixed dividend rate ρ, the slope of the early exercise boundary is given by

lim
t↓T−td

s′f (t) = rK/ρ, (3.24)

which is independent of the volatility σ. While when the dividend is paid at a given
amount D, the early exercise boundary will disappear for a period of

δt = ln(1 + D/K)/r (3.25)

before the ex-dividend date td, which is again not dependent on σ. For more details, see
Appendix A or Meyer [38].

Figure 3.11 and 3.12 show the numerical results with a dividend rate ρ = 0.02 with
FGS and TDGS. The parameters are K = 1, r = 0.08, q = 0, T = 0.5, td = 0.3, σ =
0.4. As shown in Figure 3.11, FGS only gives stairs as a representation of the free
boundary when the free boundary drops to 0 at td and remains outside of the region
of its refinement, while TDGS generates a curve with exactly the slope as given by
(3.24). TDGS is certainly the better choice in this situation. We also confirm that
the slope is independent of the volatility σ by the numerical results in Figure 3.12.
The numerical results with a fixed dividend payment D = 0.02 are also coherent with
the analytic results according to (3.25): δt ≈ 0.2475 given the above parameters and
δt remains constant with varying σ. This is demonstrated in Figure 3.13 and 3.14. In
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either case the discrete dividend does not pose any specific problem and TDGS improves
the accuracy in the free boundary. We further show how the s-grid evolves in time under
TDGS in Figure 3.15. Every dot in the graph denotes a time-spatial grid point.

3.4.3 American Butterfly Spreads

A butterfly option has the payoff (S −K1)+ + (S −K2)+ − 2(S −K3)+, which can be
thought of as a portfolio consisting of a long position in two calls with strikes K1 and K2

respectively and a short position in two calls with the middle strike K3 = (K1 + K2)/2.

A brief introduction to European butterfly spreads can be found in Appendix B. For
an American butterfly, it is advisable to stretch the grid at all three strike prices, where
the payoff is not smooth. This is achieved by defining a global Jacobian that combines
the individual Jacobians for each strike price. Following Tavella and Randall [46], we
use the following harmonic squared average for the combination, which yields a very
smooth transformation:

Jk(y) =
[
(

1
ξk

)2 + (ϕk(y)− κk)2
] 1

2

(3.26)

and

J(y) = A

[
n∑

k=1

Jk(y)−2

]− 1
2

, (3.27)

where A is a normalization constant that must be calculated iteratively. Near each place
of stretching, the global Jacobian J(y) is dominated by the behavior of the local Jk(y).
The global transformation s = ϕ(y) is then obtained by numerically integrating the
global Jacobian.

The only place that needs to be taken care of is the vicinity of K3. To attain minimal
interference between the numerical solutions on grid points that lie at different sides of
K3, we choose the following lower order discretization stencils in the vicinity of K3:

∂ûi

∂y
=

ûi+1 − ûi−1

2h
+ O(h2), (3.28)

∂2ûi

∂y2
=

ûi+1 − 2ûi + ûi−1

h2
+ O(h2). (3.29)

Figure 3.16 shows the option prices with the parameters K1 = 0.5, K2 = 1.5, σ =
0.1, r = 0.02, q = 0.015, T = 3. It can also be observed that the grid has three refinement
positions: K1, K2 and K3. With this set of parameters we observe the occurrence of
two free boundaries, one lies at left to K3 and one at right, see Figure 3.17.

We note although it is still possible to employ TDGS to improve accuracy in the free
boundaries, as also demonstrated in Figure 3.17, the combination of numerical trans-
formation and TDGS has a serious disadvantage. If with TDGS a new numerically
transformed grid is generated at each time step, it is very time-consuming compared to
the analytic transformation due to the iterative solver for A and numerical integration
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for the s-grid. This significantly degrades the speed of the program. However, it may
not be necessary to update the grid each time step. After the predictor step, it can be
decided whether or not to update the grid at a time step.

3.5 Conclusions

In this chapter we have solved the Black-Scholes equation for European and American
style options with only a few grid points. Fourth order accurate space and time dis-
cretizations have been employed, using spatial grid stretching by means of an analytical
coordinate transformation. With the proper choices of grid and stretching parameters,
the fourth order accuracy can be achieved. Important for our applications is, however,
a small discretization error with only a few grid points. This can been achieved by the
techniques proposed and a moderate grid stretching. Furthermore, we have observed
a satisfactory accuracy of the hedge parameters. For the European reference problem,
20 to 40 space- and time-steps are sufficient to get an accuracy of less than one cent
(e 0.01). The Greeks for an American call can be accurately resolved in 40-80 grid
points. The optimal exercise boundary is also well captured in 40-80 grid points. Op-
tions on assets paying discrete dividends fit naturally in this framework and do not pose
specific problems. Also more complicated strategies, like an American butterfly option,
can be handled within this framework.
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Figure 3.3: Plots of numerical option price u, ∆ and Γ of a European call, K = 15, σ =
0.3, d = 0.03, r = 0.05, T = 0.5, versus the analytic solution with the 20 points stretched
grids.
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Figure 3.4: The (discrete) free boundary sf as a function of time to maturity t. Param-
eters are K = 0.9, σ = 0.1, r = 0.02, q = 0.035, T = 0.25.
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Figure 3.5: The discrete free boundary sf as a function of time to maturity t. Parameters
are K = 0.9, σ = 0.1, r = 0.02, q = 0.035, T = 0.25.
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Figure 3.6: The discrete free boundary sf as a function of time to maturity t. Parameters
are K = 0.9, σ = 0.4, r = 0.02, q = 0.035, T = 0.25.
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Figure 3.7: ∆ and Γ for an American call on equidistant grids of different resolution (in
the right figure the 40 points curve is omitted). Parameters are K = 0.9, σ = 0.1, r =
0.02, q = 0.035, T = 0.25.
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Figure 3.11: The free boundary sf of an American put with one discrete dividend
payment ρ·s. Parameters are K = 1, σ = 0.4, r = 0.08, q = 0, T = 0.5, td = 0.3, ρ = 0.02.
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Figure 3.12: Influence of σ on the free boundary sf of an American put with one
discrete dividend payment ρ · s, TDGS. Other parameters are K = 1, r = 0.08, q =
0, T = 0.5, td = 0.3, ρ = 0.02.



30 The Black-Scholes Model

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

320 points FGS

80 points FGS

80 points TDGS

t

s
f

Figure 3.13: The free boundary sf of an American put with one discrete dividend
payment D. Parameters are K = 1, σ = 0.4, r = 0.08, q = 0, T = 0.5, td = 0.3, D = 0.02.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ=0.1

σ=0.4

σ=0.8

t

s
f

Figure 3.14: Influence of σ on the free boundary sf of an American put with one discrete
dividend payment D, TDGS. Other parameters are K = 1, r = 0.08, q = 0, T = 0.5, td =
0.3, D = 0.02.
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Chapter 4

The Variance Gamma Model

This chapter draws heavily from the article “Highly accurate evaluation of European
and American options under the variance gamma process” by A. Almendral and C.W.
Oosterlee.

4.1 Introduction

This chapter develops efficient procedures for option pricing when the underlying asset
is driven by the variance gamma process, which is a three parameter infinite activity,
finite variation pure jump process.

Following §2.3, the log-price x = ln(S) of a European put under the Variance Gamma
model satisfies the following PIDE:

wt + (q − r − ζ)wx + rw =
∫

R
[w(x + y, t)− w(x, t)]k(y)dy, (4.1)

with initial condition
Φ(x) := w(x, 0) = (K − ex)+, (4.2)

where

(i) q and r are the continuous dividend yield and the interest rate respectively;

(ii) k(y)dy = Π(dy), where k(y) is called the Lévy density associated to the Variance
Gamma process. We adopt here the representation as in (2.12):

k(y) = C

(
e−M |y|

|y| 1{y>0} +
e−G|y|

|y| 1{y<0}

)
. (4.3)

(iii) For ζ we have the following expression

ζ =
∫

R
(1− ey)k(y)dy = C ln[(1 + 1/G)(1− 1/M)].1 (4.4)

1In order for ζ to be defined, M > 1 must be satisfied.

33
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(iv) t denotes the time to expiration, that is, the equation is written forward in time.

Let α = q − r − ζ, the convection term in (4.1) may be removed by using the following
change of variables

u(x, t) = w(x + αt, t). (4.5)

Then ut = wt + αwx and u satisfies the equation

ut + ru =
∫

R
[u(x + y, t)− u(x, t)]k(y)dy, (4.6)

which does not contain the convection term.

Let I(u) denote the integral term on the right-hand side of (4.6). The price of an Amer-
ican put option is then given as the solution to the following Linear Complementarity
Problem in terms of u:





ut + ru ≥ I(u) in (0, T ]× R,

u ≥ Φ(x + αt) in [0, T ]× R,

(ut + ru− I(u)) (u− Φ(x + αt)) = 0 in (0, T ]× R,

u(x, 0) = Φ(x).

(4.7)

4.2 Grid Transformation and Discretization

4.2.1 Spatial Grid

Similar to the idea in §3.2.1, we employ a convenient non-linear change of variable to
smooth the payoff function at the point of singularity lnK. We again call it FGS. Grid
stretching with the spatial transformation function

ϕ(a) = κ + sgn(a− κ)|a− κ|m, m ≥ 1. (4.8)

to an equidistant grid in the variable a is applied. The new grid is refined at κ and the
parameter m controls the degree of stretching. The transformed payoff function Φ(ϕ(a))
is displayed in Figure 4.1 for different degrees of stretching.

The advantage of this transformation is two-fold: on one hand, more points are situated
around the kink of the payoff, and on the other hand, fewer points describe the growth
at infinity. As a consequence, the integral is now localized on a smaller interval.

4.2.2 Evaluation of the Integral Term

The convolution form of the integral term of (4.1), though convenient for FFT purposes,
does not easily allow the change of variables from the grid stretching. An alternative
form is preferable, so we first change to the variable z = x+y, and then we set z = ϕ(b),
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Figure 4.1: Transformed payoff function for different values of m.

x = ϕ(a). Thus, the a-grid will be the computational grid and the b-grid is used for the
integration. This yields

∫ +∞

−∞
[u(x + y)− u(x)]k(y)dy

=
∫ +∞

−∞
[u(z)− u(x)]k(z − x)dz

=
∫ +∞

−∞
[v(b)− v(a)]k(ϕ(b)− ϕ(a))ϕ′(b)db

=
∫ a

−∞
Ga(b)k1(a, b)db +

∫ ∞

a
Ga(b)k1(a, b)db (4.9)

where v(b) := u(ϕ(b)) and we have introduced the functions

Ga(b) :=
v(b)− v(a)

b− a
and k1(a, b) := k(ϕ(b)− ϕ(a))ϕ′(b)(b− a). (4.10)

For ease of notation, we sometimes omit the variable t in v(a, t). The reason for the
splitting at b = a is because the integrand changes sign at this point. Note that each
term in (4.9) has now the form of a Volterra integral operator of the first kind, as the
variable a appears in the integration limit. The corresponding integral equations have
been studied numerically, see for example Brunner and van der Houwen [11]. For the
discretization of these operators we use a direct quadrature method, see §4.2.4 below.

4.2.3 Truncating the integral

In this section we determine a bound for the error when truncating the integrals (4.9) to
a finite domain. To this goal, we restrict the domain of variable x to a bounded interval
of the form Ω∗ρ = [B∗

0 + ρ, B∗
1 − ρ], for a certain ρ > 0, and consider the error

ε(x) :=
∫

R/Ω∗
(u(z)− u(x))k(z − x)dz, (4.11)
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where Ω∗ is the enlarged interval Ω∗ := [B∗
0 , B∗

1 ]. Our objective is to show that this
error may be bounded uniformly for x belonging to Ω∗ρ.

We carry out the reasoning for the positive semiaxis, (for the negative semiaxis the
reasoning goes similarly), using the fact that the VG European option in log-prices
satisfies the inequality

|u(z)− u(x)| ≤ Ke−rt|z − x|, ∀z, x ∈ R. (4.12)

This is a consequence of the mean value theorem combined with the fact that the absolute
value of the Delta is bounded everywhere by Ke−rt; see Appendix C for a proof. This
yields

|ε(x)| = C

∫ +∞

B∗1

|u(z)− u(x)|
|z − x| e−M(z−x)dz

≤ Ke−rtCeMx

∫ ∞

B∗1
e−Mzdz

= Ke−rtC
eM(x−B∗1 )

M

≤ Ke−rtC
e−Mρ

M
, ∀x ∈ Ω∗ρ.

That is, we find a bound that holds uniformly in the x variable, and that depends on
the parameter ρ: the larger ρ, the better the approximation by truncation. However, a
better estimate may be obtained in the new variable a that exploits the fact that the
transformed integrand is more ’localized’. Define the interval Ωδ := [B0 + δ,B1 − δ], for
a given number δ > 0 and write x = ϕ(a) and B∗

1 = ϕ(B1). By the mean value theorem,
one obtains the following lower bound

B∗
1 − x = ϕ(B1)− ϕ(a) ≥ ϕ(B1)− ϕ(B1 − δ) ≥ ϕ′(B1 − δ)δ. (4.13)

provided ϕ′ is increasing (which is the case for ϕ given in (4.8)). We arrive at the error
estimate

|ε(a)| ≤ Ke−rtC
e−Mϕ′(B1−δ)δ

M
. (4.14)

Observe that this upper bound decreases rapidly for values of m between 2 and 4, which
we typically use in our computations.

We may now summarize the criterion. In order to determine the truncation interval Ωδ,
one decides first a certain margin δ and a tolerance ε. Thereafter, one computes the
integration limits B0 and B1 by solving the following two inequalities





Ke−rtC e−Mϕ′(B1−δ)δ

M < ε,

Ke−rtC e−Gϕ′(B0+δ)δ

G < ε.

(4.15)

4.2.4 Simpson’s Rule

We dedicate this part to explain how Simpson’s rule may be applied to obtain a highly
accurate evaluation of the integrals in (4.9). Let f(x) be a smooth function in the
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interval [x0, x2n] and define the nodes xi = x0 + ih, for i = 0, 1, . . . , 2n and mesh width
h = (x2n − x0)/2n. The compound Simpson’s rule states that

∫ x2n

x0

f(x)dx =
h

3
[f0 + 4(f1 + f3 + · · ·+ f2n−1)

+ 2(f2 + f4 + · · ·+ f2n−2) + f2n] + εn (4.16)

and the error term εn = O(h4), provided f ∈ C4[x0, x2n]; see for example Davis and
Rabinowitz [18]. Note that an odd number of points x0, . . . , x2n is necessary to use this
rule.

We now apply Simpson’s rule to (4.9). Let amin := B0 and amax := B1 according to
the notation in §4.2.3. Next, consider a uniform grid for the variable a as follows: let
N be some integer and define the nodes ai = amin + (i − 2)h (i = 1, . . . , N + 2) where
h = (amax − amin)/N . In particular this means a1 = amin − h and a2 = amin. Once we
know the sampling points ai, we approximate the truncated integrals

Ji =
∫ ai

amin

v(b)− v(ai)
b− ai

k1(ai, b)db. (4.17)

We use for the integration variable b the same grid spacing, namely, bj = amin + jh
(j = 0, . . . ). Hence, to be able to apply Simpson’s rule, one has to choose even values of
the index i in (4.17), since the number of nodes bj in [amin, ai] has to be odd. In other
words, we cannot approximate (4.17) for i odd. A remedy to fill these gaps is to apply
Simpson’s rule on the integrals

Ji =
∫ ai

amin−h

v(b)− v(ai)
b− ai

k1(ai, b)db, i = 1, 3, . . . . (4.18)

Another strategy could be to use the composite Simpson’s 3/8 rule for i odd, see Brunner
and van der Houwen [11]. Special care should be taken at the end point b = ai, for each
i, since there is an avoidable singularity. To deal with this situation numerically, a
second-order one-sided discretization has been chosen.

The integrand is a continuous function in the closed interval [amin, ai] for the family of
functions (4.8). In the open interval (amin, ai) this integrand belongs to Cm−1, where
m is the degree of smoothness of the change of variable ϕ. This is a crucial observation
that confirms the accurate results in the next section.

An important remark is that the method outlined here is computationally intensive
since it requires O(N2) operations to compute all the integrals Ji. It is the subject
of current research to increase the speed of evaluation of these integral transforms, for
which methods like Multilevel integration in Brandt and Venner [10] or Hierarchical
matrices in Hackbusch [26] may be suitable.

4.2.5 A Deviation: Fast Convolution by Fast Fourier Transform(FFT)

The fast Fourier transform (FFT) is a discrete Fourier transform algorithm which reduces
the number of computations needed for N points from O(N2) to O(N log2 N). Unfor-
tunately it is only applicable to matrices resulting from equidistant grid discretization.
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We nevertheless include a brief introduction on the computation of convolutions by the
FFT since in the sequel we assess our grid stretching approach on the basis of solutions
obtained by FFT method2. For more general information on the FFT algorithms, see
van Loan [47].

The Discrete Fourier Transform(DFT) is defined as

Fn = Fk[{fk}N−1
k=0 ](n) =

N−1∑

k=0

fke
−2πink/N , n = 0, 1, ..., N.

Suppose {hk} and {gk} are two sequences with period N . The convolution of these two
sequences is another sequence {fk} defined by

fk =
N−1∑

n=0

gnhk−n. (4.19)

Let F , G and H denote the DFT of the sequence f , g and h respectively, we then have

Fn = Gn ·Hn.

The sequence fk then can be recovered by Inverse Discrete Fourier Transform(IDFT)

fk = F−1
n [{Fn}N−1

n=0 ](k) =
1
N

N−1∑

n=0

Fne2πikn/N , k = 0, 1, ..., N

The computation of f0,...,fN−1 in (4.19) corresponds to the product of an N -by-N
circular matrix and an N -dimensional vector. For example, suppose N=3,




f0

f1

f2


 =




h0 h2 h1

h1 h0 h2

h2 h1 h0







g0

g1

g2


 . (4.20)

Another matrix/vector product that can be similarly handled is with a Toeplitz matrix,
which is constant along its diagonals. The matrix representation of the integral term to
be evaluated in (4.6), ∫

R
u(x + y)k(y)dy,

falls into this type.

Assuming the components of matrices are indexed from zero, it is possible to construct
a M -by-M circular matrix C, with M ≥ 2N−1, from a N -by-N Toeplitz matrix T such
that T = C(0 : N − 1, 0 : N − 1). For example, the following Toeplitz matrix




u1 u0 u−1

u2 u1 u0

u3 u2 u1


 (4.21)

2This FFT method is not the one from either Carr and Madan [13] or Lewis [33], FFT is only used
for fast evaluation of the convolution. For more details on the procedures, we refer to Almendral and
Oosterlee [3].
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can be embedded in the circular matrix3




u1 u0 u−1 u3 u2

u2 u1 u0 u−1 u3

u3 u2 u1 u0 u−1

u−1 u3 u2 u1 u0

u0 u−1 u3 u2 u1




. (4.22)

Let k̃ =
[
k
0

]
and J̃ = Ck̃, then the product J of Toeplitz matrix T and vector k is given

by
J = Tk = C(0 : N − 1, 0 : N − 1)k = C(0 : N − 1, :)k̃ = J̃(0 : N − 1).

In this way fast evaluation of Ck̃ permits fast evaluation of Tk.

4.2.6 Time Integration

We evaluate the explicit BDF2 method to solve (4.6) and (4.7), with initial condition
(4.2). It is observed that the equation is not stiff and therefore an explicit method is
appropriate.

First, we rewrite (4.6) in terms of the new function v(a, t) = u(ϕ(a), t):

vt + rv =
∫ ∞

−∞

v(b, t)− v(a, t)
b− a

k1(a, b)db. (4.23)

We denote now by J (v) the integral operator on the right hand side of (4.23). The
approximation of the integral operator described in §4.2.4 is denoted by J(v). Let
vj
i ≈ v(ai, t

j) be an approximation to the solution at times tj = jk (j = 0, . . . , L) and
spatial points ai. By vj we mean the vector of spatial unknowns (vj

i ). Likewise, a stands
for the vector (ai).

For the European option under the VG process, the explicit BDF2 method reads

3
2
vj − 2vj−1 +

1
2
vj−2 + krvj = kJ(v̄j), where v̄j = 2vj−1 − vj−2. (4.24)

This leads to a simple iteration of the form vj = Ĵ(vj−1, vj−2). The first input to this
iteration is the payoff v0 and the second, v1, is the result of one explicit Euler iteration.
Note that the update v̄j is obtained by linear extrapolation.

The discrete solution to the American case is also straightforward, since for BDF2 the
corresponding discrete LCP may be written as





vj ≥ Ĵ(vj−1, vj−2)

vj ≥ Φ(ϕ(a) + αtj)

〈vj − Ĵ(vj−1, vj−2), vj − Φ(ϕ(a) + αtj)〉 = 0

v0 = Φ(ϕ(a)).

(4.25)

3Usually M is chosen to be power of 2 to fully exploit the computational efficiency of the FFT
algorithm.
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Here 〈·, ·〉 is the standard inner product in Rd. The solution of this problem is simply
vj = max(Ĵ(vj−1, vj−2), Φ(ϕ(a) + αtj)).

4.3 Numerical Results with a European Option

We proceed with some numerical experiments on a European put option, with the
following parameters:

K = 1, r = 0.1, q = 0, C = 1, G = 5, M = 5, T = 0.5. (4.26)

The effect of the stretching factor is tested by comparing m = 1, 2, 3. We take B0 = −3,
B1 = 3, irrespective of the transform parameter m. κ is set to be lnK = 0. We
compute the solution u(z, T ) of equation (4.6) by solving (4.23) on the stretched grid,
and later apply the shift (4.5) to recover the solution, i.e., w(x, T ) = u(x − αT, T ).
An interpolation is needed at this stage as the grid points xi − αT will not necessarily
coincide with the points on the x-grid. Cubic splines are used to interpolate to this new
grid.

We take the solution computed with FFT on a uniform grid with 96,000 spatial points
and 9,600 time steps as our benchmark and denote it as wREF . The errors and the
empirical rates of convergence in the infinity norm (‖wN − wREF ‖∞, denoted as l∞-
error later on), are presented in Table 4.1. A stretched grid is able to significantly
improve the option price estimates. The reduction in errors grows rapidly as the grid
size increases. With moderate stretching (m = 2), we confirm BDF2’s second order
convergence in time. With a more severe stretching (m = 3) a higher order convergence
is observed. The combination of grid stretching (m = 3), explicit BDF2 and Simpson’s
rule is taken to evaluate an American option.

Grid m=1 m=2 m=3
N L l∞-error rate l∞-error rate l∞-error rate
20 10 1.7× 10−2 - 6.1× 10−3 - 7.6× 10−3 -
40 20 5.7× 10−2 3.0 1.7× 10−3 3.6 1.8× 10−3 4.3
80 40 1.9× 10−3 3.0 4.9× 10−4 3.5 2.1× 10−4 8.3
160 80 5.7× 10−4 3.3 1.0× 10−4 4.9 1.7× 10−5 12

Table 4.1: l∞-error for the European put option with different stretching parameter m.
Rate is the rate of changes in error.

In the Black-Scholes model the Greeks are important to determine a hedging portfo-
lio, while in the presence of jumps their importance is not so clear since in general
a perfect hedge does not exist. Our computation of Greeks is solely to illustrate the
scope of the stretching method. The Delta(∆) in Figure 4.2 is computed by numerically
differentiating the solution w.

We note the Delta(∆) for European option can also be obtained by differentiating equa-
tion (4.1) with respect to x. Let w̄ := wx, we arrive at the same equation in terms of
w̄,

w̄t + (q − r − ω)w̄x + rw̄ =
∫

R
(w̄(x + y, t)− w̄(x, t))k(y)dy,
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Figure 4.2: European put option price and option Delta on a FGS grid.

but with initial condition w̄(x, 0) = − exp(x)1{x<ln K}.

4.4 The American Put Option

We evaluate an American put option on a fixed stretched grid with m = 3 and κ = lnK.
The parameters are the same as in (4.26) except that we adopt a longer maturity: T = 3.
This is to better illustrate the behavior of the optimal exercise boundary.

In Table 4.2 we display the pointwise convergence rates of the at-the-money option
price with strike K = 1. With the chosen parameters we encounter the case where
the “smooth pasting” condition is not valid (see e.g. Alili and Kyprianou [1], Almen-
dral [2], Almendral and Oosterlee [3]). We illustrate this phenomenon in Figure 4.3.
This accounts for loss in accuracy with respect to the European counterpart. As we
may observe, the rate of convergence is still high, but the algorithm is more demanding
on the time restriction. Therefore, we choose N = L instead of N = 2L for the Eu-
ropean case. wREF is computed by FFT method on a 96000 × 32000 grid. We see in
Table 4.2 with 160× 160 points, we already get result accurate to 5th decimal point.

N L w absolute error rate
20 20 0.10203 6.8× 10−3 -
40 40 0.095558 2.8× 10−4 24.3
80 80 0.095308 3.3× 10−5 8.5
160 160 0.095279 3.8× 10−6 8.7

REF 0.0952751 - -

Table 4.2: Pricing error and convergence for at-the-money American option by FGS,
m = 3. Absolute error is defined by |wN − wREF |. Rate is the rate of changes in error.
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Figure 4.3: American put option price and option Delta. The non-smooth fit situation
is clearly observed in the Delta.

In addition, we compare the FGS method to the FFT method in terms of accuracy and
speed. The results are reported in Figure 4.4, plotted on a log-log scale. Computation
time is measured on a desktop with Pentium(R) 4 CPU 2.4GHz and 512MB of RAM.
Implementations of both methods are in MATLAB. N = 3L for FFT and N = 2L
for FGS are chosen with care in order to tune the methods to produce best possible
results. The FGS is at least as competitive as the FFT method and it prevails when
requirement in accuracy is high. It is certainly not surprising: the equidistant grid FFT
based method is known to be only first order accurate and demands a large number of
points to achieve high accuracy.

A straightforward fixed grid stretching however does not determine the free boundary
accurately on coarse grids, given the sparsity of the mesh points around the free bound-
ary. The time dependent grid stretching(TDGS) as introduced in §3.4 is readily at
disposal to resolve this problem. We show in Table 4.3 the improvement in accuracy
of free boundary in terms of both RMS and l∞-error with TDGS based on FGS with
the same grid size. Both errors are roughly reduced by a factor of 4 consistently. In
Figure 4.5, we compare the free boundaries obtained by FGS and TDGS on a 320× 160
grid to the benchmark. The free boundaries from TDGS and the benchmark are not
easily distinguishable while the improvement from FGS to TDGS is conspicuous. We
also observe that the free boundary does not start at the strike K. This pattern differs
from the situation under Black-Scholes model and is also exhibited in Matache, Nitsche
and Schwab [39].

We further point out that the preprocessing step need not necessarily to be FGS. FFT on
a coarse grid is an ideal alternative for preprocessing since it is fast (but not accurate),
e.g., the FFT approach on a 1000 × 160 grid costs roughly only one-tenth of the time
of FGS on a 160 × 160 grid(roughly 1.5:15 in seconds). Figure 4.6 illustrates the free
boundary obtained by TDGS based on a FFT preprocessing: TDGS on a 320×160 grid
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Parameters are K = 1, r = 0.1, q = 0, C = 1, G = 5,M = 5, T = 3.

and FFT on a 1000× 160 grid.

4.5 Conclusions and Perspectives

We have in this chapter computed European and American vanilla option prices assum-
ing the underlying process is of VG type. It has been shown that working with a refined
grid around the kink x = lnK of the payoff function helps to increase the accuracy of
the numerical integration, and in particular a higher precision of the option price can be
reached with only a few points on the grid. The optimal exercise boundary for American
style options is well captured by a time-dependent grid stretching. The method is easy
to implement and is at least as competitive as the FFT method. It can be extended to

Grid RMS l∞-error
N L FGS TDGS FGS TDGS
80 80 1.5× 10−2 6.3× 10−3 3.2× 10−2 1.5× 10−2

160 160 9.1× 10−3 2.0× 10−3 2.1× 10−2 5.3× 10−3

320 160 5.6× 10−3 1.2× 10−3 1.1× 10−2 2.9× 10−3

320 320 5.2× 10−3 8.5× 10−4 1.1× 10−2 2.8× 10−3

Table 4.3: Reduction in RMS and l∞-error in the free boundary by TDGS based on
FGS with the same grid size, m = 3.
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other types of infinite activity, finite variation Lévy processes.

A possible improvement in the future is to expedite the computation of convolution on
a nonuniform grid by using methods like Multilevel integration.
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Appendix A

Early Exercise Boundary of
American Puts with Discrete
Dividends

Consider an American put under the Black-Scholes framework with strike K and ma-
turity T . Suppose a dividend is to be paid at time td and t−d , t+d represent the times
just before and after the dividend date, respectively. Note this td and t below are both
calendar time.

It is well known that in [0, t−d ) and [t+d , T ) the value V (t, S) of the option is the solution
of the Black-Scholes equation. Therefore from the time t+d to T , the optimal exercise
boundary behaves the same as that of a non-dividend paying American put.

We now investigate the period before the dividend payment. From the no-arbitrage
principle, the underlying asset will decline by the same amount as the dividend right
after the payment, i.e.,

St+d
= f(St−d

), (A.1)

where
f(S) = (1− ρ)S (A.2)

if the dividend is paid at a fixed rate ρ, or

f(S) = S −D (A.3)

if the dividend is paid at a fixed amount D. Moreover the option price must be contin-
uous across the instant of discrete dividend, i.e.,

V (t−d , St−d
) = V (t+d , St+d

). (A.4)

The holder of a deep in-the-money American put would tend to defer exercise until t+d
in order to benefit from the decline in the price of the underlying asset after dividend
payment. Hence we have

Sf (t−d ) = 0.

47
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Let us first consider the case of fixed dividend rate ρ. Assume we have a portfolio
consisting a stock S and a put option P . At some time prior to the dividend date
t = td − δt, if we exercise the option the interest income from t to td is Kerδt; if we
hold the option and exercise immediately after the dividend payment, say t+d , the gain
is K + ρSt−d

, which is stochastic up to time t. The free boundary Sf (t) is determined
by matching profit in the risk neutral world in the two strategies. With fixed dividend
rate ρ this leads to

K[erδt − 1] = ρEQ[St−d
|Ft] = ρerδtSf (t) = ρerδt[Sf (t)− Sf (t−d )]. (A.5)

Taking the limit δt → 0 we get

lim
t→t−d

s′f (t) = −rK/ρ. (A.6)

In the case of fixed dividend amount D, the gain of the above portfolio changes to K+D
if we exercise the option at t+d . Early exercise is not optimal if

Kerδt < K + D, (A.7)

which indicates that the early exercise boundary will disappear for a period of

δt = ln(1 + D/K)/r (A.8)

before the ex-dividend date td.
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European Butterfly spreads

A European butterfly option can be thought of as a portfolio consisting of a long position
in two calls with strikes K1 and K2 respectively and a short position in two calls with
the middle strike K3 = (K1 + K2)/2. All the options should have the same maturity
date. The payoff of such a portfolio is (S −K1)+ + (S −K2)+ − 2(S −K3)+. Note the
use of European puts at the same strike prices results in exactly the same payoff.

A European style butterfly is appropriate when the investor thinks large moves in the
price of the underlying asset are unlikely. It usually has a middle strike K3 around the
spot price s0 of the underlying asset and it pays off when the price of the underlying
asset stays close to s0.

The price of a European butterfly is simply the sum of the prices of the four options in
the portfolio. The typical payoff and price of a European butterfly are shown in Figure
B.1. We see it is a limited risk, limited return strategy.

European butterfly price

payoff

s

0

K
1

K
3

K
2

Figure B.1: Payoff and price of a European butterfly spread.
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Appendix C

Upper Bound for the option
Delta in log-prices

In §4.2.3 we made use of the following estimate for the Delta in log-prices
∣∣∣∣
∂w

∂x
(x, t)

∣∣∣∣ < Ke−rt. (C.1)

In fact, we used this bound on the shifted function u instead, but we derive it here for
the original function w. Recall that we are working with a put option under the VG
process.

The solution w of (4.1) has the following stochastic interpretation

w(x, t) = e−rtEQ[ψ(x + LT−t)], (C.2)

where {Lt}t≥0 is the Lévy process defined in terms of the VG process {Xt}t≥0, i.e.,
Lt := −αt+Xt. The expectation has been taken with respect to a risk-neutral measure.
Denoting by q(y) the probability density function of the variable LT−t, we may write

w(x, t) = e−rt

∫ ln K−x

−∞
(K − ex+y)q(y)dy (C.3)

= e−rt{K
∫ ln K−x

−∞
q(y)dy − ex

∫ ln K−x

−∞
eyq(y)dy}. (C.4)

Differentiation with respect to x on the last equality gives

∂w

∂x
= e−rt{−Kq(lnK − x) − [ex

∫ ln K−x

−∞
eyq(y)dy − exeln K−xq(lnK − x)]}. (C.5)

This expression simplifies into

∂w

∂x
= −e−rtex

∫ ln K−x

−∞
eyq(y)dy. (C.6)

The upper bound (C.1) now follows since ey is less than Ke−x on the interval (−∞, ln K−
x), and the integral of q(y) over this interval is less than one.
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