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1 Introduction

Consider the problem of valuing a European call under di¤erent assumptions of the underlying
asset�s model. Various techniques have been devised to provide an answer to this problem.
For example, one can resort to Monte-Carlo techniques to simulate sample paths of the asset.
Averaging a su¢ ciently large number of realized payo¤s then yields the price required, see for
example Glasserman (2003). One can also attempt to derive a pricing partial di¤erential equation
which can be readily solved using numerical methods. A champion of this approach is Wilmott
(1998). Yet another method is based on Fourier analysis, which is the subject of this thesis.
Two Fourier techniques exist in literature. Both of them rely on the availability of the so-

called characteristic function of the logarithm of the stock price. Indeed, for a wide class of stock
models characteristic functions have been obtained in closed form even if the risk-neutral densities
(or probability mass functions) themselves are not available explicitly. The beauty behind this
approach is that the Fourier methods are rather modular in the sense that option prices under
several stock models are obtained simply by substituting the respective characteristic function in
some prede�ned integral. Equally important, the fast Fourier transform (FFT) can be utilized
for the computational e¤orts required.
Due to the tremendous speed of the FFT, an important application emerges which is the

calibration of stock models: We assume that a certain parametric stock model governs the
dynamics of the underlying asset and we try to minimize the di¤erences between European option
prices from this stock model and those implied by the market, yielding a set of parameters for the
stock model. Presumably, the calibrated stock model might then be used to price more exotic
options.
The outline of this thesis is as follows. In Chapter 2 we brie�y review the FFT, without

which Fourier techniques would be far less attractive. Readers familiar with (discrete) Fourier
analysis might directly jump to Chapter 3 in which the Fourier transform methods for option
pricing are discussed extensively. The numerical implementation and its accompanying errors
will be discussed as well. Chapter 4 presents the e¤ectiveness of Fourier techniques for the
Black-Scholes model. Since we have an analytic expression for the option price in this model,
we can easily determine the accuracy of the Fourier techniques. Plenty of numerical results will
be provided. Although it is incontestable that the Black-Scholes model forms the foundation
of modern �nance, certain underlying assumptions are questionable however. As an example,
the volatility is supposed to be a known constant (or some known deterministic function of
time), which is contradicting empirical evidence. The Heston stochastic volatility model corrects
this �aw. No closed form expression is available for the option price in this model. Hence the
determination of the accuracy of the Fourier techniques will be more cumbersome in this case, but
much will be possible. The Heston stochastic volatility model and its numerical results are the
topic of Chapter 5. Chapter 6 considers the application we hinted at above: calibration of stock
models. Speci�cally, we used real market data to calibrate the Heston stochastic volatility model.
Di¤erent objective functions and algorithms will be examined. Conclusions and recommendations
can be found in Chapter 7.
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2 The fast Fourier transform (FFT)

2.1 Introduction

This chapter provides a brief, but complete, discussion on Fourier transforms needed for the rest
of the thesis. Speci�cally, much of our attention will be directed to the discrete Fourier transform
(DFT) and its evaluation via the fast Fourier transform (FFT). Readers with a su¢ ciently strong
background in this matter might directly jump to the next chapter.
The outline of this chapter is as follows. First we will present the (continuous) Fourier

transform and some of its fundamental properties. Characteristic functions as encountered in
probability theory are introduced hereafter. A fundamental relation with Fourier transforms
will be established. Second, the discrete counterpart of Fourier transform - the discrete Fourier
transform (DFT) - will be examined. Finally, the fast Fourier transform (FFT) is presented as
an e¢ cient way to evaluate DFTs.

2.2 Fourier Transforms

The provision of exact conditions for the existence of Fourier transforms seems to be a rather
tedious job. Here we will be satis�ed with the following su¢ cient conditions: If f : R! R is in
L1, i.e.,

1Z
�1

jf(t)j dt <1;

and if f is continuous, then the Fourier transform of f is de�ned by

bf(!) = 1Z
�1

ei!tf(t)dt;

where ! 2 R. The original function f can be recovered from its Fourier transform by inversion
provided that bf satis�es the above mentioned conditions for f :

f(t) =
1

2�

1Z
�1

e�i!t bf(!)d!:
Certain properties of f (t) will have consequences for the speci�cs of bf(!). Table 2.1 summarizes
some of them. Here () denotes complex conjugation.

f (t) is real ) bf(�!) = h bf(!)i
f (t) is imaginary ) bf(�!) = �h bf (!)i
f (t) is even ) bf(!) is even
f (t) is odd ) bf(!) is odd
f (t) is real and even ) bf(!) is real and even
f (t) is real and odd ) bf(!) is imaginary and odd
f (t) is imaginary and even ) bf(!) is imaginary and even
f (t) is imaginary and odd ) bf(!) real and odd

Table 2.1: Some relations between f(t) and its Fourier transform
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One of the most valuable properties of Fourier transforms is that convolution in the time
domain (or t-domain) reduces to multiplication in the frequency domain (or !-domain): Let g (t)
and h (t) be two functions whose Fourier transforms are given by bg (!) and bh (!), respectively.
The convolution of g (t) and h (t), denoted as (g � h) (t), is then given by

(g � h) (t) =
1Z
�1

g (�)h (t� �) d� :

(Note that the order of convolution is immaterial, i.e. g �h = h � g.) By a change of variable one
can easily show that the Fourier transform of (g � h) (t) is given by bg (!)bh (!).
Closely related to Fourier transforms are characteristic functions that one frequently encoun-

ters in probability theory. To give the de�nition, let X be a random variable de�ned on some
probability space (
;F ; P ) with cumulative distribution function F . The characteristic function
(ch.f.) of X is then given by

� (t) = EeitX =
1Z
�1

eitxdF (x) ;

where t 2 R. When X has a density, then � = bf or in words: the ch.f. of a continuous random
variable X equals the Fourier transform of the density of X.
This is all what we want to say about (continuous) Fourier transforms. More on this fasci-

nating topic can be found in Goldberg (1961). We will proceed to its discrete counterpart, the
discrete Fourier transform.

2.3 Discrete Fourier Transforms (DFT)

Consider the vectors F; f 2 CN :

F =

0BBBB@
F1
F2
:

FN�1
FN

1CCCCA ; f =

0BBBB@
f1
f2
:

fN�1
fN

1CCCCA .

Let !N = e�
2�i
N , the DFT-matrix W 2 CN�N is then de�ned as

W =

0BBBB@
1 1 1 :: 1

1 !N !2N :: !N�1N

1 !2N !4N :: !
2(N�1)
N

: : : :

1 !
(N�1)
N !

2(N�1)
N :: !

(N�1)(N�1)
N

1CCCCA ;

that is,
Wnk = !

(n�1)(k�1)
N :

The discrete Fourier transform (DFT) F of f is then given by the matrix multiplication:

F =Wf; (2.1)

10



or equivalently,

Fk =
NX
n=1

fn!
(n�1)(k�1)
N

for k = 1; :::; N . One can easily verify that the inverse of the DFT-matrix is given by

W�1 =
1

N

0BBBBB@
1 1 1 :: 1

1 !�1N !�2N :: !
�(N�1)
N

1 !�2N !�4N :: !
�2(N�1)
N

: : : :

1 !
�(N�1)
N !

�2(N�1)
N :: !

�(N�1)(N�1)
N

1CCCCCA =
1

N
W �: (2.2)

Hence we see that the columns ofW form an orthogonal basis of CN . The operation of recovering
f from F is called the inverse discrete Fourier transform (IDFT). Note that the DFT-matrix is
a so-called Vandermonde matrix. Furthermore, it is Hermitian (Wnk = W �

kn) and symmetric
(W =WT ).
In literature, some variations on the above DFT-de�nition exist. As an example, the indices

might be chosen to range from �N=2 + 1 to N=2. Di¤erences might also be observed with
regard to the scaling factor N in (2.2). Moreover, sometimes one refers to (2.1) as the inverse
Fourier transform. Apart from these di¤erences, all de�nitions satisfy certain properties that
make the whole idea of discrete Fourier analysis useful. In fact, many - if not all - properties of
the (continuous) Fourier transform carry over to the DFT. As we won�t use any of them, we will
not go into the speci�cs hereof. Briggs & Henson (1995) considered DFT-properties in detail.
The DFT arises naturally in many situations. Its emergence in this thesis is via the approx-

imation of a Fourier integral. This will be illustrated extensively in the next chapter. Since it is
just an approximation, errors will in general be introduced. This will also be scrutinized in the
chapter to follow. Other situations in which the DFT emerges is the approximation of Fourier
coe¢ cients in the context of Fourier series. Moreover, trigonometric interpolation gives rise to
the DFT as well. Detailed descriptions of these latter two applications can be found in Briggs
& Henson (1995).

2.4 Fast Fourier Transform (FFT)

Recall our de�nition of the DFT:
F =Wf; (2.3)

where

F =

0BBBB@
F1
F2
:

FN�1
FN

1CCCCA ; f =

0BBBB@
f1
f2
:

fN�1
fN

1CCCCA
and

W =

0BBBB@
1 1 1 :: 1

1 !N !2N :: !N�1N

1 !2N !4N :: !
2(N�1)
N

: : : :

1 !
(N�1)
N !

2(N�1)
N :: !

(N�1)(N�1)
N

1CCCCA :
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This is a matrix multiplication, which requires about N2 (complex) multiplications and N2

(complex) additions. Hence the number of arithmetic operations is of order N2, i.e. O
�
N2
�
.

This way of thinking was prevalent for a very long time. To be precise, it was 1965 when
Cooley & Tukey (1965) showed that it was in fact possible to have the DFT evaluated with
O (N log2N) arithmetic operations. Figure 2.1 illustrates the huge di¤erences between O

�
N2
�

and O (N log2N). This O (N log2N) algorithm is called the fast Fourier transform (FFT). (As
a matter of fact, e¢ cient methods for evaluating the DFT have already been devised as long ago
as in 1805 by Gauss. However, the world was dormant until 1965.)

Figure 2.1: Huge di¤erences between O
�
N2
�
and O (N log2N).

There is no single FFT algorithm, a whole plethora of tailor-made FFT algorithms exists. The
main characteristic feature that is shared by all of them is that we have an O (N logN) algorithm.
An extensive discussion of a large variety of FFT-algorithms can be found in Van Loan (1992).
Next we present two main FFT-algorithms. The �rst is known as a decimation-in-time algorithm,
which originates from Cooley and Tukey. The second algorithm comes by the name decimation-
in-frequency, an invention by Gentleman and Sande. As said, many more algorithms exist. The
bottom-line is that in case one has (2.3) or some other form of the DFT, one can rapidly evaluate
it.

2.4.1 Decimation-in-time Algorithms

In our view, this algorithm is best illustrated when we switch to the sum representation of the
DFT:

Fk =
NX
n=1

fn!
(n�1)(k�1)
N ; (2.4)

for k = 1; :::; N . First, let us assume that N is some power of 2:

N = 2L;
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where L 2 N. (Below we shall demonstrate that this is always possible by a technique called
zero-padding.) Now, de�ne xn = f2n�1 and yn = f2n for n = 1; :::; N=2, i.e. fxng and fyng are
the odd and even subsequences of ffng, respectively. Then we can write (2.4) as

Fk =

N=2X
n=1

�
xn!

(2n�2)(k�1)
N + yn!

(2n�1)(k�1)
N

�
; (2.5)

for k = 1; :::; N . The very trick behind this FFT algorithm lies in the simple but crucial equality

!
(2n�2)(k�1)
N = !

(n�1)(k�1)
N=2 :

With this observation, (2.5) reduces to

Fk =

N=2X
n=1

xn!
(n�1)(k�1)
N=2 + !k�1N

N=2X
n=1

yn!
(n�1)(k�1)
N=2 = Xk + !

k�1
N Yk

which is - apart from the factor !k�1N - the sum of two DFTs, each of length N=2. Hence we can
write

Fk = Xk + !
k�1
N Yk

Fk+N=2 = Xk+N=2 + !
k�1+N=2
N Yk+N=2;

where k = 1; :::; N=2. By noting that Xk+N=2 = Xk, Yk+N=2 = Yk and !
N=2
N = �1; the above

reduces to

Fk = Xk + !
k�1
N Yk (2.6)

Fk+N=2 = Xk � !k�1N Yk;;

which are so-called butter�y relations. They simply tell us how the DFT of a sequence can be
recovered from the DFTs of its odd and even subsequences. Of course, we need not to stop here.
The same procedure can be repeated using the sequences fxng and fyng, until we have sequences
of length 1. The DFT of such a sequence is �easily�computed: it is the sequence itself. The
butter�y relations then give a recipe to obtain the DFT of the original sequence. Hence there
are two main phases in this algorithm:

� a reordering phase, in which the sequence is split into odd and even subsequences. This
phase comes to an end when we have N sequences of length 1.

� a combine phase, in which the butter�y relations are utilized to recover the DFT of the
original sequence. This phase comes to an end when we obtain one sequence of length N .

To obtain the number of arithmetic operations needed, note that the combine-stage consists
of L = log2N steps, each of which gives rise to the evaluation of N butter�y relations, or
equivalently, N=2 pairs. From (2.6) we see that each pair requires one multiplication and two
additions, giving a total of N2 log2N multiplications and N log2N additions. Thus this algorithm
is O (N log2N).
In the just presented algorithm, we assumed that N was a power of 2. In practice, the

sequence fed into the DFT might be of odd length. One might think that in this case the
above algorithm is not applicable. This thought is only partially correct. Next we illustrate a
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technique called zero-padding which makes sequences of odd length suitable (by adding zeros to
the sequence) for the decimation-in-time algorithm just illustrated. To this end, let ffmg denote
a sequence de�ned for m = 1; :::;M . Suppose we need a sequence of even length, say length N ,
where N > M . If we allow the new sequence to be an integer multiple of the original sequence,
i.e. N=M > 1 and integer, a feasible strategy is then to pad ffmg with zeros until we obtain the
desired length N sequence: Let fgng denote the padded sequence, then

gn =

�
fn for n = 1; :::;M
0 for n =M + 1; :::; N

:

The DFT of this padded sequence is given by Gk:

Gk =
NX
n=1

gn!
(n�1)(k�1)
N =

MX
m=1

fm!
(m�1)(k�1)
N (2.7)

for k = 1; :::; N . However, since
!N = !

M=N
M ;

equation (2.7) reduces to

Gk =
MX
m=1

fm!
(m�1)(k�1)M=N
M =

MX
m=1

fm!
(m�1)([(k�1)M=N+1]�1)
M = F(k�1)M=N+1;

or equivalently,
Fk = G(k�1)N=M+1

for k = 1; :::;M . As nothing comes for free, zero-padding has a cost as well. This cost lies in the
determination of DFTs of sequences of at least double length compared to the original sequence.
The reader might now surmise that sequences of length 2L, where L 2 N, are crucial to the

successes of the FFT. This is de�nitely false, as we will illustrate next. In fact, when N = 2L (the
so-called radix-2 case) we have the above Cooley-Tukey algorithm. However, nothing prevents
us from using the splitting idea to sequences of length N = rL, where r 2 N. This is the general
radix-r case. Each case just gives rise to other butter�y relations. For example, let r = 3. In
order to determine

Fk =
NX
n=1

fn!
(n�1)(k�1)
N (2.8)

for k = 1; :::; N , we split ffng into three subsequences xn = f3n�2, yn = f3n�1 and zn = f3n
where n = 1; :::; N=3. Thus we can write (2.8) as

Fk =

N=3X
n=1

�
xn!

(3n�3)(k�1)
N + yn!

(3n�2)(k�1)
N + zn!

(3n�1)(k�1)
N

�
for k = 1; :::; N . Using the same trick as before, we have

Fk =

N=3X
n=1

xn!
(n�1)(k�1)
N=3 + !

(k�1)
N

N=3X
n=1

yn!
(n�1)(k�1)
N=3 + !

2(k�1)
N

N=3X
n=1

zn!
(n�1)(k�1)
N=3 ;

which is the sum of three DFTs, each of length N=3. Hence we have

Fk = Xk + !
(k�1)
N Yk + !

2(k�1)
N Zk

Fk+N=3 = Xk+N=3 + !
(k+N=3�1)
N Yk+N=3 + !

2(k+N=3�1)
N Zk+N=3

Fk+2=3N = Xk+2=3N + !
(k+2=3N�1)
N Yk+2=3N + !

2(k+2=3N�1)
N Zk+2=3N
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for k = 1; :::; N=3, which after further simpli�cations yields the following butter�y relations

Fk = Xk + !
(k�1)
N Yk + !

2(k�1)
N Zk

Fk+N=3 = Xk + !
N=3
N !

(k�1)
N Yk + !

2=3N
N !

2(k�1)
N Zk (2.9)

Fk+2=3N = Xk + !
2=3N
N !

(k�1)
N Yk + !

N=3
N !

2(k�1)
N Zk

for k = 1; :::; N=3. Let�s count the number of arithmetic operations in this case. The combine
stage now consists of L = log3N steps, each of which gives rise to the evaluation of N butter�y
relations. From (2.9) we see that each triple butter�y relations requires six multiplications and
six additions, giving a total of 2N log3N multiplications and 2N log3N additions. Hence we
have an O (N log3N) algorithm. One can easily see that the radix-2 case is the fastest among
all decimation-in-time algorithms.

2.4.2 Decimation-in-frequency Algorithms

We have seen that decimation-in-time algorithms were characterized by an initial reordering
stage, which was followed by a combine stage. This section presents algorithms for which these
two phases are reversed: combining is performed �rst, reordering follows hereafter.
For the time being, let

N = 2L;

where L 2 N. In order to compute

Fk =
NX
n=1

fn!
(n�1)(k�1)
N

for k = 1; :::; N , we split the sequence ffng into its �rst and second half:

Fk =

N=2X
n=1

�
fn!

(n�1)(k�1)
N + fn+N=2!

(n+N=2�1)(k�1)
N

�

=

N=2X
n=1

�
fn + (�1)k�1 fn+N=2

�
!
(n�1)(k�1)
N ;

where we used the fact that
!
(k�1)N=2
N = (�1)k�1 :

Hence the odd coe¢ cients of the DFT become

F2k�1 =

N=2X
n=1

�
fn + fn+N=2

�
!
(n�1)(2k�2)
N

=

N=2X
n=1

�
fn + fn+N=2

�
!
(n�1)(k�1)
N=2 ;
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where we again used the crucial property !2N = !N=2. For the even coe¢ cients of Fk we have

F2k =

N=2X
n=1

�
fn � fn+N=2

�
!
(n�1)(2k�1)
N

=

N=2X
n=1

�
fn � fn+N=2

�
!
(n�1)2(k�1)
N !n�1N

=

N=2X
n=1

��
fn � fn+N=2

�
!n�1N

�
!
(n�1)(k�1)
N=2 :

Now, de�ne the butter�y relations:

xn = fn + fn+N=2

yn =
�
fn � fn+N=2

�
!
(n�1)
N ;

where n = 1; :::; N=2, then we have

F2k�1 = Xk

F2k = Yk;

for k = 1; :::; N=2. Thus we once again have reduced the problem of determining the DFT of
a sequence of length N to the evaluation of two DFTs, each of length N=2. This procedure
is repeated until we have sequences of length 1, the DFTs of which are just the sequences
themselves. In this algorithm by Gentleman & Sande (1966), the resulting DFT coe¢ cients will
be scrambled. A reordering stage brings them back to their natural order. Because of this last
reordering stage in the Fourier or frequency domain, this type of algorithms is categorized as
decimation-in-frequency. A simple count of the number of arithmetic operations involved brings
us to an O (N log2N) algorithm. Like with decimation-in-time algorithms, it is not necessary
for N to be a power of 2. Modi�cations for the radix-r case are readily made. Zero-padding can
be applied as well.

16



3 Option Valuation via Fourier Transforms

3.1 Introduction

Consider the problem of valuing a European call under di¤erent assumptions of the underlying
asset�s model. Various techniques have been devised to provide an answer to this problem.
For example, one can resort to Monte-Carlo techniques to simulate sample paths of the asset.
Averaging a su¢ ciently large number of realized payo¤s then yields the price required, see for
example Glasserman (2003). One can also attempt to derive a pricing partial di¤erential equation
which can be readily solved using numerical methods. A champion of this approach is Wilmott
(1998). Yet another method is based on Fourier analysis, which is the subject of the current
chapter.
Two methods based on Fourier analysis exist in literature. Both of them rely on the availabil-

ity of the characteristic function of the logarithm of the stock price. Indeed, for a wide class of
stock models characteristic functions have been obtained in closed form even if the risk-neutral
densities (or probability mass functions) themselves are not available explicitly. Characteristic
functions have been derived in for example Madan, Carr & Chang (1998), Heston (1993) and
Zhu (2000).
The �rst of these Fourier methods is actually the application of the Gil-Palaez inversion

formula to �nance. This idea originates from Heston (1993). However, singularities in the
integrand prevent it to be an accurate method. The second, more recent technique, was �rst
proposed by Carr & Madan (1999). It ensures that the Fourier transform of the call price exist
by the inclusion of a damping factor. Moreover, Fourier inversion can be accomplished by the
fast Fourier transform (FFT) in this case. The tremendous speed of the FFT allows option prices
for a huge number of strikes to be evaluated very rapidly.
The outline of this chapter is as follows. First we discuss the Gil-Palaez inversion formula

and its application to option pricing. Then Carr-Madan�s method will be examined in detail. In
order for these methods to be applicable in practice, discretization is required. After presenting
the discretization scheme, we discuss the errors involved. Speci�cally, we will present methods
for quantifying them. Our error analysis is based on the adaptive Simpson�s rule which will also
be reviewed.

3.2 Gil-Palaez Inversion

The �rst Fourier pricing method we discuss is heavily based on the Gil-Palaez inversion formula,
see Gil-Palaez (1951). Heston (1993) was the �rst to utilize Gil-Palaez inversion in option pricing
theory. Numerous other authors have discussed this method as well. Bakshi & Madan (2000)
presents a slightly di¤erent perspective compared to Heston. It is this latter approach that we
will outline here. We begin with the Gil-Palaez inversion formula which is stated in Proposition 1.

Proposition 1 Gil-Palaez Inversion Formula. Let F (x) be the cumulative distribution function
of some random variable X. Furthermore, let

� (t) =

1Z
�1

eitxdF (x)

be the associated characteristic function. Then we have

1

2
[F (x) + F (x�)] = 1

2
+ lim
�#0;T "1

TZ
�

eitx� (�t)� e�itx� (t)
2�it

dt:
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Proof. First note that by de�nition

eitx� (�t)� e�itx� (t) = eitx
1Z
�1

e�itydF (y)� e�itx
1Z
�1

eitydF (y)

=

1Z
�1

h
eit(x�y) � eit(y�x)

i
dF (y) : (3.1)

Now, divide the integrand in (3.1) by 2�it, we then have

eit(x�y) � eit(y�x)
2�it

=
sin (t (x� y))

�t
;

which easily follows from Euler�s formula. Moreover, from calculus we know that

1Z
0

sin (�x)

x
dx =

�

2
sgn (�) ;

hence we have
1Z
0

sin (t (x� y))
�t

dt =
1

�

1Z
0

sin (t (x� y))
t

dt =
1

2
sgn (x� y) :

For the moment, assume that Fubini�s theorem and the dominated convergence theorem hold,
then we get

lim
�#0;T "1

TZ
�

eitx� (�t)� e�itx� (t)
2�it

dt = lim
�#0;T "1

TZ
�

24 1Z
�1

sin (t (x� y))
�t

dF (y)

35 dt
=

1Z
�1

241Z
0

sin (t (x� y))
�t

dt

35 dF (y)
=

1Z
�1

�
1

2
sgn (x� y)

�
dF (y)

=
1

2

0B@ Z
(�1;x)

dF (y)�
Z

(x;1)

dF (y)

1CA
=

1

2
[F (x�)� (1� F (x))]

=
1

2
[F (x) + F (x�)]� 1

2
:
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Indeed, we can interchange the order of integration since������
TZ
�

24 1Z
�1

sin (t (x� y))
�t

dF (y)

35 dt
������ =

������
TZ
�

eitx� (�t)� e�itx� (t)
2�it

dt

������
�

TZ
�

����eitx� (�t)� e�itx� (t)2�it

���� dt
�

TZ
�

1

2�t
[j� (�t)j+ j� (t)j] dt

=

TZ
�

1

2�t

h���� (t)���+ j� (t)ji dt
=

TZ
�

1

�t
j� (t)j dt

�
TZ
�

1

�t
dt <1;

here we used �(�t) = �(t). Moreover, interchanging limit and integral is allowed by dominated
convergence since we have������

TZ
�

sin (t (x� y))
�t

dt

������ �
TZ
�

1

�t
dt =

1

�
[log [T ]� log [�]] ;

and
1

�
[log [T ]� log [�]]

1Z
�1

dF (y) =
1

�
[log [T ]� log [�]] :

In order to express the option price of a European call in terms of inverse Fourier transforms,
we need one additional result. This is given in the next lemma.

Lemma 2 We have the equality:

eitx�(�t)� e�itx�(t)
2�it

= � 1
�
Re

�
�(t)

e�itx

it

�
:

Proof. Let g(t) = Re f�(t)g and h(t) = Im f�(t)g. From the equality �(�t) = �(t) we then
have

�(�t) = g(t)� ih(t):
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Therefore

eitx�(�t)� e�itx�(t)
2�it

=
eitx (g(t)� ih(t))� e�itx (g(t) + ih(t))

2�it

=
g(t)

�
eitx � e�itx

�
� ih(t)

�
eitx + e�itx

�
2�it

=
2ig(t) sin(tx)� i2h(t) cos(tx)

2�it

=
g(t) sin(tx)� h(t) cos(tx)

�t

On the other hand,

�(t)
e�itx

it
= (g(t) + ih(t))

e�itx

it

= (h(t)� ig(t)) e
�itx

t

=
1

t
(h(t)� ig(t)) (cos(tx)� i sin(tx))

=
1

t
(h(t) cos(tx)� g(t) sin(tx)� i (g(t) cos(tx) + h(t) sin(tx))) ;

Thus

Re

�
�(t)

e�itx

it

�
=
[h(t) cos(tx)� g(t) sin(tx)]

t
;

or equivalently,

� 1
�
Re

�
�(t)

e�itx

it

�
= � [h(t) cos(tx)� g(t) sin(tx)]

�t
;

completing the proof.
The Gil-Palaez inversion formula can now be written as

1

2
[F (x) + F (x�)] = 1

2
� 1

�

1Z
0

Re

�
�(t)

e�itx

it

�
dt:

From now on, we will assume that F (x) is continuous for the sake of notational convenience.
Therefore, Gil-Palaez further simpli�es to

F (x) =
1

2
� 1

�

1Z
0

Re

�
�(t)

e�itx

it

�
dt: (3.2)

Now, let CT (K) denote the price of a European call with strike K and time to expiry T .
Before stating how CT (K) can be expressed in terms of characteristic functions, recall that the
arbitrage-free price of a vanilla call is given by the discounted expected payo¤, provided that the
expectation is taken with respect to a risk-neutral measure. Moreover, under the risk-neutral
measure the discounted stock price becomes a martingale. More on this can be found in Björk
(1998).

Proposition 3 Assume we live in an arbitrage-free world. Then

CT (K) = S0�1 �Ke�rT�2;
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where

�1 =
1

2
+
1

�

1Z
0

Re

�
�T (u� i)
�T (�i)

e�iu logK

iu

�
du (3.3)

�2 =
1

2
+
1

�

1Z
0

Re

�
�T (u)

e�iu logK

iu

�
du; (3.4)

and in which
�T (u) = Eeiu log ST ; (3.5)

where ST denotes the stock price at time T . Here all expectations are taken with respect to a
risk-neutral measure Q.

Proof. By risk neutral valuation we have

CT (K) = e�rTE [max fST �K; 0g]
= e�rTE [ST �K;ST > K]

= e�rTE [ST ;ST > K]�Ke�rTQ fST > Kg ;

where r denotes the risk-free rate. De�ne

S = logST ;

then �T (u) as de�ned in (3.5) is the characteristic function of S. By (3.2) we have that

Q fST > Kg = Q fS > logKg = 1

2
+
1

�

1Z
0

Re

�
�T (u)

e�iu logK

iu

�
du:

Now, de�ne a new probability measure P:

dP � ST
EST

dQ;

then

E [ST ;ST > K] =

Z
fST>Kg

ST dQ = EST
Z
fST>Kg

ST
EST

dQ = ESTP fST > Kg :

The characteristic function of S under P isZ



eiuSdP =
Z



eiuS
ST
EST

dQ =
E
�
eiuS+S

�
EST

=
E
�
ei(u�i)S

�
EST

=
�T (u� i)
�T (�i)

;

where the last equality follows by noting that EST = �T (�i). By (3.2) we get

P fST > Kg = 1

2
+
1

�

1Z
0

Re

�
�T (u� i)
�T (�i)

e�iu logK

iu

�
du;
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therefore

e�rTE [ST ;ST > K] = e�rTEST

241
2
+
1

�

1Z
0

Re

�
�T (u� i)
�T (�i)

e�iu logK

iu

�
du

35 :
Using the fact that under a risk-neutral measure the discounted stock price becomes a martingale�
hence e�rTEST = S0

�
yields the desired result.

Note the singularities at u = 0 in the integrands of (3.3) and (3.4). Thus care has to be
exercised in the numerical evaluation of these integrals. Numerical results will be presented in
Section 4.2.

3.3 Carr-Madan Inversion

The Fourier inversion technique illustrated in this section was �rst proposed by Carr & Madan
(1999). It ensures that the Fourier transform of European option prices exist by the inclusion of
an exponential damping factor. Moreover, singularities will be removed by this damping factor.
Let ST denote the price at maturity of the underlying asset of a European call with strike K.

Furthermore, de�ne S � log(ST ) whose associated risk neutral density is given by qT (s). Then
the Fourier transform of qT (s), or equivalently the characteristic function of S, can be written as

�T (u) =

1Z
�1

eiusqT (s)ds:

Now let k � log (K), risk-neutral valuation then yields

CT (K) = e�rTE [max fST �K; 0g]
= e�rTE

�
max

�
eS � ek; 0

	�
= e�rT

1Z
�1

max
�
es � ek; 0

	
qT (s)ds

= e�rT
1Z
k

�
es � ek

�
qT (s)ds;

in which the expectation is taken with respect to some risk-neutral measure. Since

lim
K!0

CT (K) = lim
k!�1

CT (e
k) = S0;

we see that CT (ek) is not in L1, as CT (ek) does not tend to zero for k ! �1. Now, consider
the modi�ed call price

cT (k) � e�kCT (e
k)

where � > 0. Below we will show that under a certain assumption we have cT (k) 2 L1, the space
of integrable functions. For now, assume that the Fourier transform of cT (k) is well-de�ned:

 T (v) � bcT (v) = 1Z
�1

eivkcT (k)dk: (3.6)
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Inverting gives

cT (k) =
1

2�

1Z
�1

e�ivk T (v)dv;

or

CT (K) =
e�� logK

2�

1Z
�1

e�iv logK T (v)dv =
e�� logK

�
Re

8<:
1Z
0

e�iv logK T (v)dv

9=; ; (3.7)

where the last equality follows from the observation that

1Z
�1

e�iv logK T (v)dv =

1Z
0

e�iv logK T (v)dv +

0Z
�1

e�iv logK T (v)dv;

and where the second term on the right-hand side can be rewritten as

0Z
�1

e�iv logK T (v)dv =

1Z
0

eiu logK T (�u)du

=

1Z
0

e�iu logK T (u)du

=

1Z
0

e�iv logK T (v)dv;

yielding the claim. Note that we have a nice closed-form for the Fourier transform of cT (k):

 T (v) =

1Z
�1

eivkcT (k)dk

=

1Z
�1

eivke�kCT (e
k)dk

=

1Z
�1

eivke�k

0@e�rT 1Z
k

�
es � ek

�
qT (s)ds

1A dk

= e�rT
1Z
�1

qT (s)

0@ sZ
�1

e(iv+�)k
�
es � ek

�
dk

1A ds

= e�rT
1Z
�1

qT (s)

0@es sZ
�1

e(iv+�)kdk �
sZ
�1

e(iv+�+1)kdk

1A ds

= e�rT
1Z
�1

qT (s)

 
es
�

1

iv + �
e(iv+�)k

�s
�1

�
�

1

iv + �+ 1
e(iv+�+1)k

�s
�1

!
ds: (3.8)
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Since for � > 0

lim
k!�1

���e(iv+�)k��� = lim
k!�1

���e(iv+�+1)k��� = lim
k!�1

e(�+1)k = 0;

(3.8) reduces to

 T (v) = e�rT
1Z
�1

qT (s)

�
e(iv+�+1)s

iv + �
� e(iv+�+1)s

iv + �+ 1

�
ds (3.9)

=
e�rT�T (v � (�+ 1)i)

�2 + �� v2 + i (2�+ 1) v ; (3.10)

where the last equality follows from straightforward calculus.
Above we have indicated that cT (k) 2 L1. In fact, one simple assumption is enough to ensure

this.

Lemma 4 Let � > 0. The Fourier transform of cT (k) exists (i.e. cT (k) 2 L1) if ES�+1T <1.

Proof. First note that ES�+1T <1 implies

 T (0) <1; (3.11)

since

j T (0)j =
e�rT j�T (�(�+ 1)i)j

�2 + �
=
e�rTES�+1T

�2 + �
;

where the last equality follows from

j�T (�(�+ 1)i)j =
���Ee[�(�+1)i]i log ST ��� = ���Ee(�+1) log ST ��� = ES�+1T :

However, we also have the equality

 T (0) =

1Z
�1

cT (k)dk;

which follows easily from (3.6). Combining this with (3.11) completes the proof.
As a �nal remark, note that we have only considered the pricing of vanilla calls. Of course,

one can obtain prices of vanilla puts by using the put-call parity. However, one can also easily
obtain the price PT (K) of a vanilla put by Carr-Madan inversion by choosing a negative value
for �, see Lee (2004).

3.4 Discretization

A characteristic that is shared by the two Fourier methods is the inversion of some Fourier
transform. In general, this will not be tractable analytically. A numerical approach is necessary.
In doing so we will try to give a formulation that is susceptible to the fast Fourier transform
(FFT). Here we will adopt

Fk =
NX
n=1

fn!
(n�1)(k�1)
N ; k = 1; :::; N (3.12)
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where !N = e�
2�i
N to be the de�nition of the discrete Fourier transform (DFT). MATLAB

provides an e¢ cient FFT-algorithm for this de�nition.
Recall that Gil-Palaez inversion gives rise to two probabilities that are expressed in terms of

(inverse) Fourier transforms:

�1 =
1

2
+
1

�
Re

8<:
1Z
0

�
�T (v � i)
�T (�i)

e�ivk

iv

�
dv

9=; (3.13)

�2 =
1

2
+
1

�
Re

8<:
1Z
0

�
�T (v)

e�ivk

iv

�
dv

9=; : (3.14)

On the other hand, Carr-Madan inversion yields

CT (k) =
e��k

�
Re

8<:
1Z
0

e�ivk T (v)dv

9=; : (3.15)

(Note that strictly speaking, we have to write CT (K) instead of CT (k). However, we will stick
to this for notational convenience, which has also been done in Carr & Madan (1999).) In order
to be able to deal with these two methods at once, we will only focus on the integrals of these
expressions at �rst, i.e. we are interested in computing the inde�nite integral

1Z
0

e�ivk T (v)dv; (3.16)

where  T (v) equals

�T (v � i)
iv�T (�i)

;
�T (v)

iv
or

e�rT�T (v � (�+ 1)i)
�2 + �� v2 + i (2�+ 1) v ;

depending on whether we have (3.13), (3.14) or (3.15), respectively.
Now, de�ne g(v) � e�ivk T (v), the trapezoidal rule then yields

AZ
0

g(v)dv � �v

2

"
g(v1) + 2

N�1X
n=2

g(vn) + g(vN )

#
(3.17)

= �v

"
NX
n=1

g(vn)�
1

2
[g(v1) + g(vN )]

#
; (3.18)

where A = N�v. (Note that we have truncated the interval of integration. The resulting
truncation error will be discussed in the next section.) Now, let

vn = (n� 1)�v (3.19)

where n = 1; :::; N . Furthermore, we let

ku = �b+�k (u� 1) ; (3.20)
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where u = 1; :::; N , to be the grid in the k-domain. The constant b 2 R can be tuned such that
the grid is laid around at-the-money strikes, since we are mainly interested in option prices with
these particular strikes. Substituting (3.19) and (3.20) in (3.17) (recall that g(v) � e�ivk T (v))
yields

AZ
0

g(v)dv � �v

"
NX
n=1

e�i[(n�1)�v][�b+�k(u�1)] T (vn)�
1

2
[g(v1) + g(vN )]

#

= �v

"
NX
n=1

e�i�v�k(n�1)(u�1)ei(n�1)b�v T (vn)�
1

2
[g(v1) + g(vN )]

#
by setting

�v�k =
2�

N
;

we have - apart from the correcting term - the form of (3.12). Hence FFT can be utilized to
evaluate the above sum, provided that g(v1) = g(0) exists. This is certainly not the case when
one resorts to Gil-Palaez inversion: at v = 0 we have singularities in the integrands! Of course,
one can use other de�nitions of the DFT that avoid function evaluations in the origin. However,
we will not attempt to do so. The reason is twofold. First, if we �nd a suitable de�nition, we
have the additional task of implementing an associated FFT-algorithm (or �nd some software
that has implemented this particular form of the DFT). We prefer to use the readily available
algorithm as presented in MATLAB. Second, due to the singularities Gil-Palaez inversion will be
far less accurate than Carr-Madan inversion as will be illustrated in Chapter 4. Consequently,
we just give the �nal result for Carr-Madan inversion:

CT (ku) �
e��ku

�
Re

(
�v

"
NX
n=1

!
(n�1)(k�1)
N

�
eivnb T (vn)

�
� 1
2
[g(v1) + g(vN )]

#)
;

where we have imposed the condition

�v�k =
2�

N
:

Note that the trapezoidal rule has been wrongly represented in Carr & Madan (1999). Instead
of the trapezoidal rule, we can also apply the more accurate Simpson�s rule. Along the same
lines as above, one can easily show that in this case we have

CT (ku) �
e��ku

�
Re

(
�v

3

"
NX
n=1

!
(n�1)(k�1)
N eivnb T (vn) (3 + (�1)

n � �n�1)� gS

#)
;

where
gS = g (vN�1) + 4g (vN ) :

Furthermore, �j�1 denotes the Kronecker delta function that equals one whenever j = 1.

3.5 Errors

3.5.1 Introduction

Numerical techniques give rise to errors, so does the numerical scheme illustrated in the previous
section. Apart from round-o¤ errors, the total error can be subdivided into the following three
categories:
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1. Truncation error;

2. Discretization error;

3. Interpolation error.

In this section we will discuss these errors one by one. Our error analysis will be heavily based
on the adaptive Simpson�s rule, which will �rst be reviewed. Based on this adaptive quadrature
rule we will then make statements about all three types of errors.
The reason to resort to numerical techniques in error analysis is generality. To see this, note

that the above Fourier methods are rather modular in the sense that option prices under several
stock models are obtained simply by substituting the corresponding characteristic function �T (!)
in the respective integrands. If we were able to determine (sharp) error bounds analytically, each
stock model would presumably give rise to other (cumbersome) expressions. Note that we have
used �were able�, since the characteristic functions involved - while available in closed-form - are
typically very awkward to handle analytically. This all contrasts with the numerical approach
we present, which is far less sensitive to the particular ch.f. at hand.

3.5.2 The Adaptive Simpson�s rule

Statements about discretization and truncation errors will be made using the adaptive Simpson�s
rule. We �rst review this advanced quadrature rule. In the subsequent sections we then show
how it can be applied to determine error bounds.
Recall that the (non-composite) Simpson�s rule reads

bZ
a

f(x)dx = S (a; b)� h5

90
f (4) (&) ; (3.21)

for some & 2 (a; b) and in which

S (a; b) =
h

3
[f (a) + 4f (a+ h) + f (b)] :

Moreover, we have h = (b� a) =2. If we divide the interval [a; b] into two equal subintervals, the
composite Simpson�s rule then yields

bZ
a

f(x)dx = S

�
a;
a+ b

2

�
+ S

�
a+ b

2
; b

�
�
�
h

2

�4
(b� a)
180

f (4) (& 0) (3.22)

for some & 0 2 (a; b) and where

S

�
a;
a+ b

2

�
=
h

6

�
f (a) + 4f

�
a+

h

2

�
+ f (a+ h)

�

S

�
a+ b

2
; b

�
=
h

6

�
f (a+ h) + 4f

�
a+

3h

2

�
+ f (b)

�
:

For the sake of brevity we will henceforth simply refer to the composite Simpson�s rule as Simp-
son�s rule. Now equate (3.21) with (3.22) to obtain

S (a; b)� h5

90
f (4) (&) = S

�
a;
a+ b

2

�
+ S

�
a+ b

2
; b

�
� 1

16

�
h5

90

�
f (4) (& 0) : (3.23)
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If we assume f (4) (&) � f (4) (& 0) (the more this holds, the better the result), then we have

h5

90
f (4) (&) � 16

15

�
S (a; b)� S

�
a;
a+ b

2

�
� S

�
a+ b

2
; b

��
:

Substituting this result into (3.22) gives������
bZ
a

f(x)dx� S
�
a;
a+ b

2

�
� S

�
a+ b

2
; b

������� � 1

15

����S (a; b)� S �a; a+ b2
�
� S

�
a+ b

2
; b

����� ;
hence if ����S (a; b)� S �a; a+ b2

�
� S

�
a+ b

2
; b

����� < 15"; (3.24)

then ������
bZ
a

f(x)dx� S
�
a;
a+ b

2

�
� S

�
a+ b

2
; b

������� < ":

Whenever (3.24) does not hold for a su¢ ciently small value of ", the adaptive Simpson�s rule
prescribes to apply Simpson�s rule to each of the subintervals

�
a; a+b2

�
and

�
a+b
2 ; b

�
. Then we

determine whether Simpson�s rule gives us an accuracy of "=2 over each of these subintervals.
If so, we have found an "-accurate approximation to the integral at hand; if not, we further
subdivide the intervals to repeat the procedure. If the accuracy criterion is only met in one
of the subintervals, then the interval where it fails to hold, is further subdivided. For these
subintervals we then require an accuracy of "=4. Each time an interval is halved, we will have an
error that is 16 times smaller which can be seen from (3.23), whereas we only require an increased
accuracy factor of 2. Although examples can be constructed in which a prede�ned accuracy can
never be met, most practical cases do show convergence. An e¢ cient implementation of this
algorithm can for example be found in MATLAB.

3.5.3 Truncation Error

The �rst type of error that exists in both Gil-Palaez and Carr-Madan inversion is the trunca-
tion error. Basically both inversion methods can be reduced to the numerical determination of
quantities of the form

1Z
0

e�ivk T (v)dv; (3.25)

where  T (v) depends on the inversion method used. In Section 3.4 we have truncated the interval
of integration, i.e. we approximated the integral

AZ
0

e�ivk T (v)dv:

The error obtained in this way is called the truncation error. As we anticipated in Section 3.4,
Carr-Madan inversion is the more accurate approach. Hence we will not make any e¤orts to
determine the truncation error for Gil-Palaez inversion. We only present a way to do this for
Carr-Madan inversion. First note that

j T (v)j =
e�rT j�T (v � (�+ 1)i)jq

(�2 + �� v2)2 + (2�+ 1)2 v2
;
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where
j�T (v � (�+ 1)i)j =

��EeivsT S�+1T

�� � ES�+1T ;

therefore
j T (v)j �

c

1 + v2

where c = e�rTES�+1T . Recall that the foregoing expectation can be obtained via a simple
function evaluation since

�T (�(�+ 1)i) = ES�+1T :

Hence we have the (rather loose) bound for the truncation error ET :

jET j =
e��k

�

������
1Z
A

e�ivk T (v)dv

������ � e��k

�

1Z
A

j T (v)j dv �
e��k

�

c

A
;

which can be made smaller than " > 0 by choosing

A >
e��k

�

c

"
: (3.26)

This upper limit of integration is far too rough. For all cases observed a much smaller interval of
integration is needed to have the "-accurate result. To see this, we adopt the following procedure
which has been inspired by the peaked nature of the integrand in (3.25). Figure 3.1 depicts a
typical integrand met in Carr-Madan inversion.

Figure 3.1: A typical peaked integrand one meets in Carr-Madan inversion.

The value CM represents the bound given in (3.26), whereas N�v is the actual upper limit
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of integration. Hence in this case we have for the truncation error

ET =

CMZ
N�v

e�ivk T (v)dv +

1Z
CM

e�ivk T (v)dv

<

CMZ
N�v

e�ivk T (v)dv + ": (3.27)

For the Black-Scholes model (see Chapter 4) and the Heston model (see Chapter 5) there is
a rapid decay of the integrand. For typical settings of the numerical integration procedure we
would have

CMZ
N�v

e�ivk T (v)dv << ";

which for example can be veri�ed using the adaptive Simpson�s rule. Therefore, for the Black-
Scholes and Heston models equation (3.27) would reduce to

ET < ":

3.5.4 Discretization Error

In our attempt to evaluate the integral

AZ
0

g (v) dv;

where g (v) = e�ivk T (v) we resorted to quadrature. More precisely, we used the composite
Simpson�s rule:

AZ
0

g (v) dx =
h

3
[g (v1) + 4g (v2) + 2g (v3) + 4g (v4) + :::+ 2g (vN�2) + 4g (vN�1) + g (vN )] + EN

where

EN =
A

180
(�v)

4
g(4) (�) ; � 2 [0; A] :

A derivation of this result can for example be found in Burden & Faires (1998). The term

EN =
A

180
(�v)

4
g(4) (�)

is called the discretization error. A �rst year calculus student might immediately suggest to solve
the problem

max
0�v�A

���g(4) (v)���
for an error bound on EN . This is not a viable strategy however. Suppose that we have a closed-
form expression for g(4) (v), then we would have to subject this expression to an optimization
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procedure for many values of k (recall that g (v) = e�ivk T (v)). This optimization process might
be very cumbersome.
Other results for the discretization error exist. See for example Davis & Rabinowitz (1984)

for an excellent discussion hereof. However, all these bounds involve the bounding of some
higher order derivative, which is merely a consequence of the so-called Lagrange underlying the
quadrature rules we have seen. (More on Lagrange can be found in Burden & Faires (1998).)
Consequently, we will resort to the adaptive Simpson�s rule for the determination of discretization
errors.
As indicated in Section 3.5.2, the adaptive Simpson�s rule is able to give "-accurate values for

most integrals seen in practice. Thus we simply use this advanced quadrature rule to evaluate
the integral

AZ
0

e�ivk T (v)dv

with a guaranteed accuracy of " > 0. The di¤erence between this value and the one obtained
from the Simpson�s rule is then the desired discretization error.

3.5.5 Error

Recall from Section 3.4 that the grid in the k-space is given by

ku = �b+�k (u� 1) ;

where u = 1; :::; N . Furthermore, the associated grid in the K-domain is exponential:

Ku = e�b+�k(u�1); (3.28)

where u = 1; :::; N . Due to this exponential grid, one can easily see that in general one cannot
obtain option prices for a set of pre-speci�ed strikes within a single computation. To resolve
this awkward issue some form of is required. Here we choose cubic spline interpolation to be the
interpolation technique used. The main reason to adopt this interpolation technique is that it
is a highly accurate method; this will preserve the high accuracy of the results obtained from
Simpson�s integration. Many software packages (MATLAB inclusive) have implemented this
interpolation technique e¢ ciently. A drawback is that it is relatively slow compared to the FFT.
Detailed discussions on cubic spline interpolation can be found in Burden & Faires (1998) and
Press, Tuekolsky, Vetterling & Flannery (1992).
The procedure to determine the interpolation error is as follows. Based on option prices

on the exponential grid (3.28), we apply cubic spline interpolation to determine option prices
on intermediate strikes. Now the adaptive Simpson�s rule comes into play: we simply compare
the interpolated price with the value returned by the adaptive Simpson�s rule to determine the
interpolation error involved. Here we just anticipate that for typical grid-settings, cubic spline
interpolation does a very good job. Numerical evidence can for example be found in Section
4.3.3, where we present numerical results for the Black-Scholes model.
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4 The Black-Scholes Model

This chapter presents a case study in which we examine the e¢ cacies of the Fourier inversion
methods mentioned in the foregoing chapter in the world of Black and Scholes. The availability
of an analytic expression for the option price in this widely known model was the prime moti-
vation to do so. First we present the ch.f. in the Black-Scholes model, which will be derived at
a relatively high pace. Readers who are not familiar with this lognormal model should consult
Black & Scholes (1973), Björk (1998) or Wilmott (1998). We assume that there are no dividends
throughout. Next, numerical results will be presented for both Gil-Palaez and Carr-Madan inver-
sion. The results on Gil-Palaez inversion will be rather brief as it turns out to be a numerically
non-attractive approach. On the other hand, a much more detailed analysis will be presented
for the highly accurate Carr-Madan technique. Enlightening comments conclude this chapter.

4.1 The characteristic function

The dynamics of the stock price S (t) in a risk-neutral Black-Scholes world follows geometric
Brownian motion:

dS (t) = rS (t) dt+ �S (t) dW (t) ;

where r; � and W (t) denote the interest rate, the volatility of the stock price and Brownian
motion, respectively. We remark that the interest rate and volatility are allowed to be functions
of time. Utilizing Itô�s formula we can solve for ST explicitly:

ST = e([r�
1
2�

2]T+log S0+�W (T ));

from which we can see that ST is lognormally distributed. Hence for the characteristic function
�T (u) of logST we have

�T (u) = ei(log S0+(r��
2=2)T)u��2Tu2=2:

4.2 Results on Gil-Palaez Inversion

Recall from Section 3.2 that the option price CT (K) of a vanilla call with time to expiry T and
strike K can be expressed as

CT (K) = S0�1 �Ke�rT�2;

where

�1 =
1

2
+
1

�

1Z
0

Re

�
�T (v � i)
�T (�i)

e�iv logK

iv

�
dv (4.1)

�2 =
1

2
+
1

�

1Z
0

Re

�
�T (v)

e�iv logK

iv

�
dv; (4.2)

and in which
�T (v) = Eeiv log ST :

In a Black-Scholes world we have

�T (v) = ei(log S0+(r��
2=2)T)v��2Tv2=2:
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From Section 3.4 we also know that the integrals in (4.1) and (4.2) are not amenable to the
FFT as available in MATLAB as the integrals have singularities in the origin. Whether the FFT
is applied or not, basically, we just numerically integrate certain integrals with the aid of the
Simpson�s rule. The only di¤erence lies in the speed at which a set of integrals is evaluated;
the FFT does not have any in�uence on the accuracy at all. Having said this, let us apply the
Simpson�s rule to get the option price for K = 100, the other parameters being

S = 100; T = 1; � = 0:15; r = 0:05:

See Figure 4.1 for plots of the resulting integrands. The smallest depicted value is v = 0:12.
Note that while the integrands are not de�ned in the origin, they do not explode. In fact, the
imaginary parts of �T (v�i)�T (�i)

e�iv logK

iv and �T (v)
e�iv logK

iv grow much more rapidly near the origin.

Figure 4.1: Typical integrands involved in Gil-Palaez Inversion.

Due to the fact that the integrands are not de�ned in the origin, it is di¢ cult to detail the
errors. Here we just show some results for certain grid settings and anticipate that based on
these settings, Carr-Madan inversion would yield much better results (see the next section). We
lay the following grid for the numerical integration by Simpson�s rule:

vj = j�v; j = 1; :::; N � 1 (4.3)

where
�v =

2�

N�k

for some �k 2 R. Table 4.1 reports results for �k = 0:01 on the order of magnitude of the
absolute relative error jCGP � CBS j =S, denoted by O (jCGP � CBS j =S), where CGP and CBS
represent option prices as obtained from Gil-Palaez inversion and the Black-Scholes formula,
respectively. Table 4.2 shows results for �k = 0:025. The primary reason for the relatively large
errors is because the grid (4.3) basically discards the �rst parts of the integrands (the singularities
necessitate us to do so). Obviously, results become more and more accurate as �v ! 0. The
rate of convergence is far too slow for Gil-Palaez inversion to be useful in practice however.
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N �v O (jCGP � CBS j =S)
210 0.6136 10�3

211 0.3068 10�3

212 0.1534 10�3

213 0.0767 10�4

214 0.0383 10�4

Table 4.1: Numerical results on Gil-Palaez Inversion for �k = 0:01

N �v O (jCGP � CBS j =S)
210 0:2454 10�3

211 0:1227 10�4

212 0:0614 10�4

213 0:0307 10�4

214 0:0153 10�4

Table 4.2: Numerical results on Gil-Palaez Inversion for �k = 0:025

This is all we want to say about Gil-Palaez inversion. Let us now examine numerical results
from the more accurate Carr-Madan inversion.

4.3 Results on Carr-Madan Inversion

As anticipated, Carr-Madan inversion is far more accurate than inversion by Gil-Palaez. Equally
important, it is formulated in such a way that it is suitable for the application of the FFT (for
example as available in MATLAB). Therefore, we will present more details for the practical
implementation of this technique. First we will examine the integrands involved in a rather
qualitative way. Then we present a discussion on some ways to choose �, the very parameter
that made the integrands singularity-free. We conclude with numerical results.

4.3.1 The Black-Scholes Integrand

Recall that Carr-Madan inversion states that for the option price we have

CT (k) =
e��k

�

1Z
0

Re
�
e�ivk T (v)

	
dv (4.4)

where

 T (v) =
e�rT�T (v � (�+ 1)i)

�2 + �� v2 + i (2�+ 1) v
and where �T (�) denotes the characteristic function of the logST . For the Black-Scholes model
the integrand in equation (4.4) reduces to

exp
�
��2Tv2

2 + �2�2T
2 + �s+ �Tr + �2T�

2 + s
�

�4 + 2�3 + 2�2v2 + �2 + 2�v2 + v4 + v2
g (�; k; r; s; �; T; v) ; (4.5)

where
g (�; k; r; s; �; T; v) =

�
�2 + �� v2

�
cos ([k � c] v)� v (2�+ 1) sin ([k � c] v) (4.6)
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and in which

c = �2T�+ s+ Tr +
�2T

2
: (4.7)

Several interesting observations can be inferred from these expressions. To begin with, the
Black-Scholes integrand decreases rapidly with v. Furthermore, we see from (4.6) and (4.7)
that by increasing any of the parameters �; T; �; s and r, we get a more �uctuating integrand.
Moreover, the magnitudes of these �uctuations get larger which can be seen from the exponential
term in (4.5). Pictures can considerably support us in understanding these observations. The
most striking observations are visualized next. Unless stated otherwise, the following plots are
generated based on the parameters:

S = 100;K = 100; T = 1; � = 0:4; r = 0:05; � = 3:5:

In fact, for practical ranges of the above parameters, only (the interplay of) T , S=K and � have
noticeable in�uences on the integrand. Figure 4.2 shows Black-Scholes integrands for T = 1
(upper) and T = 10 (lower). As anticipated, we get more �uctuations and larger functional
values.

Figure 4.2: The in�uence of T on the Black-Scholes integrand. Upper: T = 1, lower: T = 10.

The strike k (or K if you will) appears solely in the sine and cosine terms in (4.6). Since

K ! 0, k ! �1;

we see that both the cosine and sine terms will �uctuate rapidly as K tends to zero. This
will cause the integrand to be extremely oscillatory, while the absolute values do not grow in
magnitude. Nonetheless, this is su¢ cient to pose a huge problem from a quadrature point of
view. The same is true when K ! 1. This latter case is of less practical interest however. In
fact, it is the so-called moneyness S=K that determines the oscillatory nature of the integrand.
Figure 4.3 summarizes.
The last parameter to be considered is �. Recall that � is not a parameter of the Black-

Scholes model; it is a degree of freedom that is available in Carr-Madan inversion. Momentarily,
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Figure 4.3: The in�uence of K on the Black-Scholes integrand. Upper: K = 1, middle: K = 100,
lower: K = 1000.

the only thing that matters is that we have a choice for �. Because of this, we have a means
of manipulating the integrand to our convenience. Speci�cally, from the above expressions for
the Black-Scholes integrand one can easily see that � enables us to control the intensity of the
�uctuations and the magnitude of the functional values. Figure 4.4 shows that small values of �
reduce the largest attainable function value considerably. Moreover, oscillations are reduced as
well. Ways to choose � are the topic of the next section.

4.3.2 On the choice of �

At this point it is inevitable to comment on the choice of �. From the previous section it should be
clear that � > 0 should ideally be a function of �; T; s; r and k. Whenever certain combinations
of these parameters give rise to cumbersome integrands, � can then (theoretically) be utilized to
make them more tractable. Presumably, a small value of � is favorable since this reduces both
the oscillations and the magnitudes hereof. However, choosing � too small can turn the integrand
into a sort of impulse function, which is not tractable at all from a numerical integration point
of view. This follows from the fact that in the origin v = 0, the Black-Scholes integrand equals

exp
�
�2�2T
2 + �s+ �Tr + �2T�

2 + s
�

� (�+ 1)
; (4.8)

therefore we see that

lim
�!0

exp
�
�2�2T
2 + �s+ �Tr + �2T�

2 + s
�

� (�+ 1)
=1:
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Figure 4.4: The in�uence of � on the Black-Scholes integrand. Upper: � = 0:75, middle: � = 3:5,
lower: � = 8.

Note that (4.8) also tends to in�nity for � ! 1. On the other hand, for v > 0 and by letting
�! 0, the integrand becomes:

exp
�
��2Tv2

2 + s
�

v4 + v2
�
�v2 cos ([k � c] v)� v sin ([k � c] v)

�
;

which decreases very fast as a function of v because of the exponential term. Hence we see that
the Black-Scholes integrand indeed resembles more and more the impulse function. See Figure
4.5 for a pictorial representation of the situation.
Carr & Madan (1999) suggest to use the condition

ES�+1T <1 (4.9)

to determine an upper bound for �. One fourth of the maximum value of � such that (4.9) holds
is allegedly a good choice. However, all moments are �nite in a Black-Scholes setting. Hence this
strategy is of no use here.
Another heuristic is given by Schoutens, Simons & Tistaert (2004). They proposed the value

� = 0:75 for a whole range of stock models. Although Black-Scholes is not included in these
models, we nevertheless examine the e¤ectiveness of this value.
Now we present a more rational strategy to choose �. Before stating it, note that the Black-

Scholes integrand attains its maximum at v = 0, which is proved in the following lemma.

Lemma 1 Let v � 0: The Black-Scholes integrand

Re

�
e�ivk

e�rT�T (v � (�+ 1)i)
�2 + �� v2 + i (2�+ 1) v

�
;

where
�T (v) = ei(log S0+(r��

2=2)T)v��2Tv2=2
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Figure 4.5: The Black-Scholes integrand resembles more and more the impulse function as �! 0.
For the integrand depicted we have S = 100, K = 100, T = 1, � = 0:4, r = 0:05:

attains its maximum at v = 0:

Proof. From (4.8) we see that the statement is equivalent with

Re
�
e�ivk T (v)

	
�
exp

�
�2�2T
2 + �s+ �Tr + �2T�

2 + s
�

� (�+ 1)

for v � 0. This follows since��Re�e�ivk T (v)	�� � ��e�ivk T (v)�� = j T (v)j ;
where

j T (v)j =
e�rT j�T (v � (�+ 1)i)j

j�2 + �� v2 + i (2�+ 1) vj :

Moreover,

j�T (v � (�+ 1)i)j =
���ei(s+(r��2=2)T)(v�(�+1)i))��2T (v�(�+1)i))2=2���

= exp

�
�2�2T

2
+ �s+ �Tr +

�2T�

2
+ s+ rT � �2Tv

2

�
;
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which yields

j T (v)j =
exp

�
�2�2T
2 + �s+ �Tr + �2T�

2 + s� �2Tv
2

�
j�2 + �� v2 + i (2�+ 1) vj

=
exp

�
�2�2T
2 + �s+ �Tr + �2T�

2 + s� �2Tv
2

�
j(v � (�+ 1) i) (v � �i)j

�
exp

�
�2�2T
2 + �s+ �Tr + �2T�

2 + s
�

j(v � (�+ 1) i) (v � �i)j

�
exp

�
�2�2T
2 + �s+ �Tr + �2T�

2 + s
�

� (�+ 1)

completing the proof.
In order to determine a good value for �; we propose to (numerically) minimize the maximum

of the integrand, i.e. to solve the following optimization problem:

min
�>0

exp
�
�2�2T
2 + �s+ �Tr + �2T�

2 + s
�

� (�+ 1)
;

which intuitively would yield a nice integrand in the sense that both large variations in function
values as well as oscillations are reduced. Note that in this strategy we have discarded the
dependence of � on k. To give a �avor of the function to be minimized we present a plot of
it, see Figure 4.6 where r = 0:05; T = 1; � = 0:15 and S = 100. One possible way to solve the
optimization problem is "setting the derivative equal to zero". One can easily show that in this
case the problem reduces to �nding zeros of a (cumbersome) third order polynomial. In fact,
this is the strategy we (successfully) followed. Let us now turn to numerical results.

4.3.3 Numerical Results

In Section 3.4 we have imposed the relation

�v�k =
2�

N
(4.10)

between the grids in the v-domain and the k-domain in order to be able to utilize the FFT to
evaluate the Fourier integrals involved. Equation (4.10) is oftentimes referred to as a reciprocity
relation. The reason is obvious: for a �xed value of N , reducing �v would result in an increase of
�k and vice versa. Practically, we have the following situation. Accurate integration requires a
�ne grid in the v-domain; by (4.10) this would result in a relatively coarse grid in the k-domain,
which is undesired since in general - as indicated in Section 3.5.5 - interpolation is required.
Increasing N remedies this problem.
Unless stated otherwise, in this section we have used the following grid spacings to obtain

the results presented:

�k = 0:025; �v =
2�

N�k
; (4.11)

where N = 211 = 2048. Following the procedure as described in Section 3.5.3, one can easily
verify that the truncation error is negligible for the above grid settings. Hence the total error
only consists of the discretization error in case we don�t apply interpolation.
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Figure 4.6: A typical function one has to face when the maximum of the Black-Scholes integrand
is to be minimized.

In order to determine the best choice for � (0.75 or the minmax-value), we have performed
the following experiment. We randomly selected �; T; S and r from the typical ranges [0:15; 0:5],
[1; 20], [0; 100] and [0; 0:15], respectively. The maximum absolute relative error jCCM � CBS j =S
is then determined over the range 1

2S � K � 2S. (CCM is the price obtained by Carr-Madan
inversion.) Figure 4.7 shows 100 realizations of this experiment when � = 0:75. The minmax-
strategy yields Figure 4.8.
A quick glance is enough to observe the substantial di¤erences in accuracy. The explanation

for this rather remarkable result is that the � resulting from the minmax-strategy is su¢ ciently
small to give a much more rapidly decreasing integrand, which Simpson�s rule cannot handle
that well for the speci�ed grid settings. A typical case is illustrated in Figure 4.9, where we have
plotted two integrands as a function of v. Here the minmax-value for � was equal to 0.29.
From Section 4.3.1 we know that we might expect reduced accuracy when S=K is small (or

large) or when T is large, since in these cases we have a rather oscillatory integrand. Let us make
this precise here. It turns out that only certain combinations of S=K, T and � cause problems.
For example, the settings T = 20 and � = 0:4 result in relative errors of at most 1 for small
strikes. See Figure 4.10 in which we have plotted the absolute relative error versus the strike.
Here S = 100 and r = 0:15. Doubling N to 212 reduces the error signi�cantly. For the above
settings the error will then be of order 10�12.
Less problematic but still interesting is that for extremely low values for the maturities

(smaller than 10�5) we seem not be able to get higher accuracies than 10�4, even if N is rather
large (214). This might be explained by the fact that small values for T give rise to rather peaked
integrands. See Figure 4.11 for an example.
In the above, no interpolation has been applied. Using the grid spacings (4.11), cubic spline

interpolation turns out to be highly accurate. In fact, interpolated values are typically one order
of magnitude less accurate. In order to present some numerical evidence, let S = 100; T = 1; � =
0:4; r = 0:15; � = 0:75. The upper part of Figure 4.12 then shows the analytical Black-Scholes
price (solid line) and the cubic spline interpolation values as obtained from interpolation based
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Figure 4.7: Maximum relative error for 100 realizations when � = 0:75:

Figure 4.8: Maximum relative error for 100 realizations when � is chosen according to the
minmax-strategy.
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Figure 4.9: We see a much more rapidly decreasing integrand when we set � to be equal to the
minmax-value (0.29). The other parameters for this plot are: r = 0:05, S = 100, T = 2, � = 0:4,
K = 100.

Figure 4.10: Large values for T and � yield large relative errors.
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Figure 4.11: A rather peaked integrand as a result of a small value for T:

on the grid spacings (4.11) (circles). The lower part depicts the associated absolute relative error,
which is one order of magnitude lower than the non-interpolated-values (cf. Figure 4.7). Similar
results can be observed for other parameter combinations.

4.4 Concluding remarks

There is only one conclusion possible: Carr-Madan inversion outperforms Gil-Palaez inversion
dramatically. This can be ascribed to the singularities in the integrands involved in Gil-Palaez
inversion. Carr-Madan inversion on the other hand, is singularity-free. In order to achieve this,
a parameter � has been introduced (of course, the major reason to introduce � was to make the
Fourier transform of the modi�ed option price convergent). Choosing � = 0:75 typically gives
highly accurate results (relative error of order 10�9). It is also computationally less intensive
than the minmax-value. Therefore, we recommend to take this value for the Black-Scholes model.
The aforementioned relative error has been obtained using the grid spacings:

�k = 0:025; �v =
2�

N�k
; (4.12)

where N = 211 = 2048. For these grid settings, the truncation error is negligible. The inter-
polation error is small as well (typically 10�8). To illustrate the e¤ectiveness of these settings,
suppose that we set N = 210 instead, the discretization and interpolation errors will then increase
signi�cantly (more than thousand times has been observed.) Certain combinations of parameters
(we mention especially the combination of a small K (10�4), large T (>20) and high volatility
� (>0.4)) yields less tractable integrands, either because of the oscillatory nature or the very
peaked integrand. Increasing N remedies a lot in this case.
Finally, in this chapter we have often seen the designation �peaked integrand�. Obviously,

the Simpson�s rule (and its associated uniform grid) is not particularly designed to handle these
type of functions. However, a uniform grid is required for the application of the FFT! Hence
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Figure 4.12: Cubic spline interpolation errors. Upper: Here the true Black-Scholes price (solid
line) is depicted together with interpolated values. Lower: The resulting errors in the interpolated
prices.

there is a trade-o¤: Whenever we want to apply the FFT (say Simpson�s rule) to integrate
peaked integrals we have to choose an overly �ne grid in order to obtain a certain accuracy (the
FFT remains fast though). On the other hand, when we don�t apply the FFT, a much coarser
grid can be chosen (as illustrated below). Numerical integration is then relatively fast, but is
it faster than the FFT? The amazing answer is yes, at least, if we take into account that in
practice we are interested in relatively few strikes, say 10, per time to maturity T . The direct
integration of these 10 integrals is then faster than the FFT plus an additional application of
cubic spline interpolation. In fact, it is the latter interpolation step that slows down the whole
process. To illustrate this discussion, consider the problem of determining the call prices for
vanilla�s with the ten strikes K = 50; 60; 70; :::; 130; 140. The other parameters are given by
r = 0:05; T = 1; � = 0:2; S = 100: Recall that the we have the integrand

CT (k) =
e��k

�

1Z
0

Re
�
e�ivk T (v)

	
dv (4.13)

where

 T (v) =
e�rT�T (v � (�+ 1)i)

�2 + �� v2 + i (2�+ 1) v :

Note that  T (v) does not depend on k, which is also bene�cial for (repeated) direct integration
since  T (v) can be precomputed. Now perform the change of variable

v = sinh (y) ; y 2 R.
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Equation (4.13) can then be rewritten as

CT (k) =
e��k

�

1Z
0

Re
n
e�ik sinh(y) T (sinh (y))

o
cosh (y) dy: (4.14)

Figure 4.13 shows the resulting integrand for the above choices of the parameters (K = 100). It
also depicts the associated unstretched integrand.

Figure 4.13: By a change of variable we get a less peaked integrand. Here K = 100.

Now we apply ten times (we have ten di¤erent strikes) Simpson�s rule to evaluate (4.14), with
N = 50 and �v = 0:09 (the truncation error is then negligible). Results are shown in Figure
4.14. Using the recommended grid settings in (4.12), the application of Carr-Madan inversion
(cubic spline interpolation inclusive) yields similar results (the results di¤er at most one order
of magnitude). However, when we compare the time the FFT and cubic spline interpolation
need together, versus that needed by the ten direct integrations, we must conclude that the
direct integrations are about four times as fast. In fact, the FFT itself is faster than the direct
integrations; it is the interpolation step - which is always needed in practice - that makes Carr-
Madan inversion relatively slow. Of course, one can use other types of interpolation that run
faster. For example, if we use linear interpolation the two approaches would require about the
same time. However, relative errors would reduce to 10�5 (which might still be acceptable for
some practitioners). Naturally, for the direct integrations, one can expect the same type of
problems (e.g. as a result of a small S=K ratio) as in Carr-Madan inversion.
Finally, the reader is challenged to �nd better change-of-variable-transformations that would

further speed up the direct integrations.
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Figure 4.14: The absolute relative error after a change of variable.

5 The Heston Stochastic Volatility Model

5.1 Why Stochastic Volatility

It is incontestable that the Black-Scholes model forms the foundation of modern �nance. Certain
underlying assumptions are questionable however. To name a few: in the Black-Scholes world
delta hedging is supposed to be a continuous process. Furthermore, no transaction costs are
associated with this rebalancing of the portfolio. Also, parameters like the volatility are supposed
to be known constants (or known deterministic functions of time). For a detailed discussion of
these defects and ways to overcome them, see Wilmott (1998).
In this chapter we will present the Heston stochastic volatility stock model (or Heston model

for short) that allows volatility to be random. The idea to model volatility as a random variable
comes from practical data that indicate the highly variable and unpredictable nature of volatility.
Moreover, return distributions under stochastic volatility models typically have fatter tails than
their lognormal counterpart, hereby being more realistic. But the most cited argument to allow
volatility to be random involves implied volatilities: Let Cmarket denotes the market price of a
vanilla call with strike K and time to maturity T . Then we can ask ourselves what volatility �
should be substituted into the Black-Scholes formula in order to recover the market price, i.e.
we want to solve for � in the equation

CBS (r; t; S;K; T; �) = Cmarket; (5.1)

where CBS (r; t; S;K; T; �) denotes the Black-Scholes price of a vanilla call. The � obtained in
this way is called the implied volatility. One easily sees that if

max
n
S �Ke�r(T�t); 0

o
� Cmarket � S;

which simply means that we have an arbitrage-free (Black-Scholes) price, then (5.1) can be solved
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for a unique value of the implied volatility since the vega @CBS=@� is strictly increasing for t < T :

@CBS
@�

=
Se�d

2
1=2
p
T � tp

2�
> 0;

where

d1 =
log
�
S
K

�
+
�
r + 1

2�
2
�
(T � t)

�
p
T � t

:

Now consider options on the same underlying, the same time to expiry T , but with various
strikes K. Imagine what we would get if we plot implied volatilities versus strikes under the
Black-Scholes model. Indeed, we would get a constant implied volatility, independent of the
strike. This is however (never) observed in the real world. Typically, we would get curves as
shown in Figure 5.1. Oftentimes this curve is called a smile. And stochastic volatility models do
give rise to these smiles!

Figure 5.1: A smile based on market data of ING options from Jan 12, 2005.

Stochastic volatility models also introduce new (awkward) issues. For example, �nancial
markets in a stochastic volatility environment are incomplete, which - loosely speaking - means
that derivative securities cannot be perfectly replicated with just a stock and a bond (contrary
to the Black-Scholes world). This is of particular interest to hedgers. Another characteristic
of incomplete markets is that there is no unique risk-neutral measure (again as opposed to the
Black-Scholes world). However, it is outside the scope of this thesis to discuss these and other
interesting issues. For a discussion on incompleteness in the Heston model, see Heath & Schweizer
(2000).
Finally, there seems to be no generally accepted stochastic volatility model. The Heston

stochastic volatility model that we discuss is among the more popular models. In Fouque,
Papanicolaou & Ronnie Sircar (2001) one can �nd popular stochastic volatility models.
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5.2 The Heston Model and its Pricing PDE

In this section we present the Heston model. Speci�cally, we will derive the pricing partial
di¤erential equation (PDE), which forms the basis of the derivation of the characteristic function
in the next section. The Heston model was �rst introduced in Heston (1993). Here we follow
Gatheral (2003a).
In the Heston model we have two stochastic di¤erential equations, one for the underlying

asset price S (t) and one for the variance v (t) of logS (t):

dS (t) = � (t)S (t) dt+
p
v (t)S (t) dW1

dv (t) = �� (v (t)� v) dt+ �
p
v (t)dW2:

Here � � 0, v � 0 and � > 0 are called the speed of mean reversion, the mean level of variance
and the volatility of the volatility, respectively. Furthermore, the Brownian motions W1 and
W2 are assumed to be correlated with correlation coe¢ cient �. The SDE for the variance can
be recognized as a mean-reverting square root process, a process originally proposed by Cox,
Ingersoll & Ross (1985) to model the spot interest rate. One can easily see why it is called
mean-reverting: if v (t) exceeds its mean v, the term �� (v (t)� v) dt drives the variance back
to the mean. The same holds when v (t) is below its mean. Based on the so-called classical
Feller boundary classi�cation criteria (see for example Karlin & Taylor (1981)) one can show
that under certain assumptions v(t) as de�ned by the above SDE cannot attain negative values.
Now we derive a pricing PDE for the Heston model. To do so, recall from Itô�s lemma that

for every function V (S1; S2; t) - twice di¤erentiable with respect to S1 and S2, and once with
respect to t - we have

dV =
@V

@t
dt+

@V

@S1
dS1 +

@V

@S2
dS2 +

1

2
b21
@2V

@S21
dt+ �b1b2

@2V

@S1@S2
dt+

1

2
b22
@2V

@S22
dt;

in which

dS1 = a1 (S1; S2; t) dt+ b1 (S1; S2; t) dW1

dS2 = a2 (S1; S2; t) dt+ b2 (S1; S2; t) dW2;

where W1 and W2 are correlated with correlation coe¢ cient �. To proceed, consider a self-
�nancing portfolio with value � consisting of an option with value V (S; v; t), �� units of the
underlying asset and, in order to hedge the risk associated with the random volatility, ��1 units
of another option with value V1 (S; v; t). Hence

� = V ��S ��1V1:

Moreover, using Itô�s lemma and collecting terms yields

d� =

�
@V

@t
+
1

2
vS2

@2V

@S2
+ ��Sv

@2V

@S@v
+
1

2
v�2

@2V

@v2

�
dt

��1
�
@V1
@t

+
1

2
vS2

@2V1
@S2

+ ��Sv
@2V1
@S@v

+
1

2
v�2

@2V1
@v2

�
dt

+

�
@V

@S
��1

@V1
@S

��
�
dS +

�
@V

@v
��1

@V1
@v

�
dv:

Note that if we let
@V

@S
��1

@V1
@S

�� = 0 (5.2)

@V

@v
��1

@V1
@v

= 0
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we get a risk-free portfolio. In order to eliminate arbitrage opportunities, the return of this
risk-free portfolio must equal the (deterministic) risk-free rate of return r:

d� =

�
@V

@t
+
1

2
vS2

@2V

@S2
+ ��Sv

@2V

@S@v
+
1

2
v�2

@2V

@v2

�
dt

��1
�
@V1
@t

+
1

2
vS2

@2V1
@S2

+ ��Sv
@2V1
@S@v

+
1

2
v�2

@2V1
@v2

�
dt (5.3)

= r�dt = r (V ��S ��1V1) dt:

Using (5.2) we can rewrite (5.3) to become:

@V
@t +

1
2vS

2 @2V
@S2 + ��Sv

@2V
@S@v +

1
2v�

2 @2V
@v2 + rS

@V
@S � rV

@V
@v

=
@V1
@t +

1
2vS

2 @2V1
@S2 + ��Sv

@2V1
@S@v +

1
2v�

2 @2V1
@v2 + rS

@V1
@S � rV1

@V1
@v

:

This equation leads to the conclusion that both left and right-hand sides are equal to some
function g that does not make reference to any dependent variable, i.e. g only depends on the
independent variables S, v and t. Setting g = � (v � v) � �v yields a special case of a so-called
a¢ ne di¤usion process. For this class of processes, the pricing PDE is tractable analytically. In
this case we hence have

@V

@t
+
1

2
vS2

@2V

@S2
+ ��Sv

@2V

@S@v
+
1

2
v�2

@2V

@v2
+ rS

@V

@S
� rV = (� (v � v)� �v) @V

@v
;

de�ning �
0
= �� �, �

0
v
0
= �v gives

@V

@t
+
1

2
vS2

@2V

@S2
+ ��Sv

@2V

@S@v
+
1

2
v�2

@2V

@v2
+ rS

@V

@S
� rV = �

0
�
v � v

0
� @V
@v

: (5.4)

Subsequently, we will drop the primes on �
0
and v

0
(the so-called risk-adjusted parameters) for

notational convenience. As a �nal remark, see Heath & Schweizer (2000) for a di¤erent choice
of the function g.

5.3 The Characteristic Function

Heston (1993) was the �rst to derive the ch.f. in the Heston model. This was done in a Gil-Palaez
inversion framework. Here we present the derivation in a Carr-Madan setting. To start with, we
simplify the pricing PDE in (5.4) by de�ning the forward option price Vu (x(t); v (t) ; t)

Vu (x(t); v (t) ; t) � er(T�t)V (S(t); v (t) ; t) ;

in which

x (t) = log

�
er(T�t)S (t)

K

�
:
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Since

@V

@t
= e�r(T�t)

�
@Vu
@x

@x

@t
+
@Vu
@t

�
+ re�r(T�t)Vu

= e�r(T�t)
�
�r @Vu

@x
+
@Vu
@t

+ rVu

�
@V

@S
= e�r(T�t)

@Vu
@x

@x

@S
= e�r(T�t)

1

S

@Vu
@x

@2V

@S2
= e�r(T�t)

"
@2Vu
@x2

�
@x

@S

�2
+
@Vu
@x

@2x

@S2

#

= e�r(T�t)
1

S2

�
@2Vu
@x2

� @Vu
@x

�
@2V

@S@v
= e�r(T�t)

1

S

@2Vu
@x@v

@V

@v
= e�r(T�t)

@Vu
@v

@2V

@v2
= e�r(T�t)

@2Vu
@v2

;

equation (5.4) yields (after dividing by the discount factor):

@Vu
@t

+
1

2
v

�
@2Vu
@x2

� @Vu
@x

�
+ ��v

@2Vu
@x@v

+
1

2
v�2

@2Vu
@v2

= � (v � v) @Vu
@v

:

Finally, de�ne � = T � t; then we get the so-called forward equation

�@Vu
@�

+
1

2
v

�
@2Vu
@x2

� @Vu
@x

�
+ ��v

@2Vu
@x@v

+
1

2
v�2

@2Vu
@v2

= � (v � v) @Vu
@v

: (5.5)

Next we present three lemmas that culminate in the characteristic function of the Heston
model. Before presenting the lemmas, we need to refer to advanced results from Du¢ e, Pan &
Singleton (2000). They indicated that for a¢ ne di¤usion processes the characteristic function of
x (T ) (hence not of logST ) is of the form

f (x; v; � ; !) = exp (A (!; �) +B (!; �) v + C (!; �)x) : (5.6)

Here we have de�ned v � v (t) and x � x (t). Moreover, the characteristic function must satisfy
the initial condition

f (x; v; 0; !) = exp (i!x (T )) ;

which in turn implies thatA (!; 0) = B (!; 0) = 0 and C (!; 0) = i! for all !. Since f (x; v; � ; !) �
EQ
�
ei!x(T )

�
, where Q is some risk-neutral measure, we can see f (x; v; � ; !) as an (imaginary)

claim which must therefore satisfy (5.5). Substituting (5.6) in (5.5) and using the initial condition
for C (!; �) one can easily show that (5.6) simpli�es to

f (x; v; � ; !) = exp (A (!; �) +B (!; �) v + i!x) : (5.7)

The solutions to A (!; �) and B (!; �) are provided by the next two lemmas. Note that we did
not use @

@� for the sake of notational convenience.
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Lemma 1 The functions A (!; �) and B (!; �) in (5.7) satisfy the following system of ordinary
di¤erential equations (ODEs):

dA

d�
= aB; A (!; 0) = 0 (5.8)

dB

d�
= �� �B + 
B2; B (!; 0) = 0 (5.9)

for ! 2 R.

Proof. As indicated above, f (x; v; � ; !) satis�es (5.5). Substituting (5.7) into (5.5) yields

�f
�
@A

@�
+
@B

@�
v

�
+
1

2
vf
�
�!2 � i!

�
+ ��vBfi! +

1

2
�2vB2f � � (v � v)Bf = 0;

or

�@A
@�

+ �vB + v

�
�@B
@�

� 1
2

�
!2 + i!

�
+ (��i! � �)B + 1

2
�2B2

�
= 0: (5.10)

Now de�ne

a = �v

� = �1
2

�
!2 + i!

�
� = �� ��i!


 =
1

2
�2;

then (5.10) simpli�es to

�@A
@�

+ aB + v

�
�@B
@�

+ �� �B + 
B2
�
= 0;

which is a �rst order polynomial in v. In order for the equation to hold, both coe¢ cients must
vanish, i.e.

@A

@�
= aB;

and
@B

@�
= �� �B + 
B2:

Hence we have the following system of ODEs

dA

d�
= aB; A (!; 0) = 0

dB

d�
= �� �B + 
B2; B (!; 0) = 0;

completing the proof.

Lemma 2 The solution to the system of ODEs as speci�ed by (5.8) and (5.9) is given by

A (!; �) =
�v

�2

�
� (�� ��i! �D)� 2 log

�
1�Ge�D�
1�G

��
(5.11)

B (!; �) =
1

�2

�
1� e�D�
1�Ge�D�

�
(�� ��i! �D) ; (5.12)
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where

D =

q
(�� ��i!)2 + (!2 + i!) �2

G =
�� ��i! �D
�� ��i! +D:

Proof. First we solve for B:

dB

d�
= �� �B + 
B2 = 
 (B � r+) (B � r�) ;

with

r� =
� �D
2


;

where
D =

q�
�2 � 4�


�
:

Separating variables gives
1


 (B � r+) (B � r�)
dB = d� ;

which is equivalent to �
1= (r+ � r�)

 (B � r+)

� 1= (r+ � r�)

 (B � r�)

�
dB = d� :

Integrating on both sides gives

log (B � r+)

 (r+ � r�)

� log (B � r�)

 (r+ � r�)

= � + cB : (5.13)

Since

 (r+ � r�) = D

and B (!; 0) = 0, we have
log (�r+)

D
� log (�r�)

D
= cB ;

hence
e�cBD =

r�
r+

� G:

Solving for B in (5.13) yields

B (!; �) =

�
1� e�D�
1�Ge�D�

�
r�

=
1

�2

�
1� e�D�
1�Ge�D�

�
(�� ��i! �D)

Now we are able to solve for A (!; �) :

A (!; �) = a

Z
Bd� = a

�
r�� �

1



log
�
1�Ge�D�

��
+ cA:

From the initial condition A (!; 0) = 0; the constant of integration cA follows:

cA =
a



log (1�G) ;
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which leads to

A (!; �) = a

�
�r� �

1



log

�
1�Ge�D�
1�G

��
= �v

�
�
� �D
2


� 1



log

�
1�Ge�D�
1�G

��
= �v

�
�
� �D
�2

� 2

�2
log

�
1�Ge�D�
1�G

��
=
�v

�2

�
� (�� ��i! �D)� 2 log

�
1�Ge�D�
1�G

��
;

completing the proof.
Finally, we arrive at the desired result.

Lemma 3 In the Heston model, the characteristic function �T (!) of logST is given by

�T (!) = exp (i! [log [S0] + rT ])

� exp
�
v0
�2

�
1� e�DT
1�Ge�DT

�
(�� ��i! �D)

�
� exp

�
�v

�2

�
T (�� ��i! �D)� 2 log

�
1�Ge�DT
1�G

���
;

where D and G are as de�ned in the previous lemma.

Proof. Substituting (5.11) and (5.12) in (5.7) and de�ning S (t) = S yields

EQ
h
ei!x(T )

i
= exp (i!x)

� exp
�
v

�2

�
1� e�D�
1�Ge�D�

�
(�� ��i! �D)

�
� exp

�
�v

�2

�
� (�� ��i! �D)� 2 log

�
1�Ge�D�
1�G

���
;

in which

exp (i!x) = exp

�
i!

�
log

�
S exp (r�)

K

���
= exp (i! log [S]) exp (i!r�) exp

�
i! log

�
1

K

��
:

Note that we are interested in EQ
�
ei! log[S(T )]

�
. Substituting t = T in the previous equation and

taking expectations gives

EQ
h
ei!x(T )

i
= EQ

�
exp (i! logST ) exp

�
i! log

�
1

K

���
= exp

�
i! log

�
1

K

��
EQ [exp (i! logST )] ;
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hence

EQ
�
ei! log ST

�
= exp

�
�i! log

�
1

K

��
EQ
h
ei!x(T )

i
= exp (i! [logS + r� ])

� exp
�
v

�2

�
1� e�D�
1�Ge�D�

�
(�� ��i! �D)

�
� exp

�
�v

�2

�
� (�� ��i! �D)� 2 log

�
1�Ge�D�
1�G

���
;

yielding the stated.

5.4 When is ES�+1T <1 ?

In the previous section we have derived that in a Heston world the option price of a vanilla call
at t = 0 is given by

CT (k) =
e��k

�
Re

8<:
1Z
0

e�ivk
e�rT�T (v � (�+ 1)i)

�2 + �� v2 + i (2�+ 1) v dv

9=; ;

in which the characteristic function is given by

�T (!) = exp (i! [log [S0] + rT ])

� exp
�
v0
�2

�
1� e�DT
1�Ge�DT

�
(�� ��i! �D)

�
� exp

�
�v

�2

�
T (�� ��i! �D)� 2 log

�
1�Ge�DT
1�G

���
;

and where

D =

q
(�� ��i!)2 + (!2 + i!) �2 (5.14)

G =
�� ��i! �D
�� ��i! +D:

Here we have de�ned v (0) = v0 and S (0) = S0. From Section 3.3 we know that we must have
ES�+1T < 1 in order to be able to use Carr-Madan inversion at all. This section shows what
values of � are allowed. To do so, we have to enter the fascinating realm of complex analysis.
In fact, basic knowledge of common analytic functions is enough. Readers de�cient in complex
analysis can for example consult Ahlfors (1979), Knopp (1945) or Knopp (1947).
To begin with, recall that

�T (�(�+ 1)i) = ES�+1T ;

where �T (�) is the ch.f. of logST . By inspection, we see that the Heston ch.f. is de�ned (and
hence �nite) in �(� + 1)i provided that this point is not on the branch cut of the complex
logarithm. (Let z = rei� 2 C, then the complex logarithm log(z) is de�ned as

log (z) = log jzj+ i (� + 2k�) = log jzj+ i arg (z) ;

where k 2 Z. First we have to make sure that log (z) de�nes a function, i.e. it must not be
multivalued. This can be accomplished by imposing the condition �� � arg (z) < �. However,
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the complex logarithm obtained in this way is not analytic since it is not continuous. One can
easily verify that by imposing the more restrictive condition �� < arg (z) < �, or equivalently z =2
(�1; 0] (this interval is a so-called branch cut), an analytic function is obtained. Alternatively,
�� + 2k� < arg (z) < � + 2k� for some k 2 Z can be chosen as well. We will stick with
standard practice however. The single-valued complex logarithm is sometimes denoted as Log(z) :
Cn (�1; 0]! C with Log(z) = log jzj+ iArg(z) and �� < Arg(z) < �. We will not pursue this
notation here. Just keep in mind that in the subsequent, log(z) denotes the above referred to
analytic function. With this de�nition, one can easily verify that identities such as log (z1) �
log (z2) = log

�
z1
z2

�
continue to hold for z1; z2 2 C.)

So let us examine the term log
�
1�Ge�DT

1�G

�
= log

�
1�Ge�DT

�
� log (1�G). Substituting

�(� + 1)i in log
�
1�Ge�DT

�
and requiring that this point is not on the branch cut (�1; 0]

yields the condition:
1�G (�(�+ 1)i) e�D(�(�+1)i)T > 0;

or equivalently,
G (�(�+ 1)i) e�D(�(�+1)i)T < 1; (5.15)

where we used the fact that 1�Ge�DT is real on the imaginary axis. Naturally T > 0, and by
inspection we have G (�(�+ 1)i) � 1, implying that the condition (5.15) is satis�ed if

D (�(�+ 1)i) > 0:

Now, de�ne b � �(�+ 1). From (5.14) we hence get the condition

�2
�
�2 � 1

�
b2 + � (2��� �) b+ �2 > 0;

the left-hand-side being a concave quadratic function in b. This inequality is satis�ed whenever

1

2

�2��+ � �
p
�2 � 4��� + 4�2

(�2 � 1) � < b <
1

2

�2��+ � +
p
�2 � 4��� + 4�2

(�2 � 1) � ;

or equivalently,

�1
2

�2��+ � +
p
�2 � 4��� + 4�2

(�2 � 1) � � 1 < � < �1
2

�2��+ � �
p
�2 � 4��� + 4�2

(�2 � 1) � � 1 (5.16)

For the log(1�G) term we get exactly the same range for � since in this case we must impose

G (�(�+ 1)i) < 1:

This is true if
D (�(�+ 1)i) > 0;

which is exactly the condition that appeared when we were handling the log
�
1�Ge�DT

�
term!

The last term to be considered is the square-root since it is de�ned in terms of the complex
logarithm:

D =

q
(�� ��i!)2 + (!2 + i!) �2

= e
1
2 log((����i!)

2+(!2+i!)�2);

Along the same lines as above, one can easily show that we again arrive at condition (5.16).
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5.5 The Heston Integrand

In this section we will present a pictorial survey of the Heston integrand

Re

�
e�ivk

e�rT�T (v � (�+ 1)i)
�2 + �� v2 + i (2�+ 1) v

�
;

where �T is the Heston ch.f. More speci�cally, we will give a hint what parameter values might
give rise to di¢ culties when it comes to numerical integration. Unless stated otherwise, the
parameters used to generate the pictures in this section are v0 = 0:152; T = 2; S = 100; r =
0:05; � = 0:75;K = 100; � = 0:3; � = 1; v = 0:22; � = �0:3. Broadly speaking, the Heston
integrand behaves much like the Black-Scholes integrand does, in the sense that it is the same
parameters that cause di¢ culties to numerical integration.
Low times to maturity result in a �uctuating Heston integrand. The same is true when T is

relatively large. Several integrands have been plotted in Figure 5.2. Along the horizontal axes
we have set out v. This holds for all �gures in this section.

Figure 5.2: Both small and large values for T result in �uctuations.

Options for which the quotient S=K is much larger than one also result in cumbersome
integrands. The moneyness being much smaller than one poses far less di¢ culties. This is
illustrated in Figure 5.3.
As expected, choosing � too small makes the integrand resemble an impulse function. Set-

ting � relatively large, magni�es the function value in v = 0. Figure 5.4 summarizes these
observations.
Finally, we remark that Heston-speci�c parameters do not in�uence the behavior of the

integrand in a remarkable way.
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Figure 5.3: Far in-the-money and out-the-money options have oscillatory integrands.

Figure 5.4: The in�uence � has on the nature of the integrand.
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5.6 Numerical results

5.6.1 On the choice of �

Discouraged by the e¤ectiveness of the minmax-strategy for choosing � in the Black-Scholes
framework, we won�t consider it here (as noted in the previous section, there is similar behavior
between the Heston and Black-Scholes integrands). Here we again consider the �magic�value
� = 0:75. Furthermore, we scrutinize the suggestion made by Carr & Madan (1999). Recall that
they suggest to use the condition

ES�+1T <1 (5.17)

to determine a suitable value for �. One fourth of the maximum value of � such that (5.17) holds
is allegedly a good choice. We will henceforth denote this value by �CM . In fact, this suggestion
has most probably not been made with the Heston model in mind, however, let us examine its
e¤ectiveness nonetheless. From Section 5.4 we know that

�1
2

�2��+ � +
p
�2 � 4��� + 4�2

(�2 � 1) � � 1 < � < �1
2

�2��+ � �
p
�2 � 4��� + 4�2

(�2 � 1) � � 1: (5.18)

Obviously, one fourth of the right-most term in (5.18) is a suitable candidate to be �CM . However,
one example is enough to demonstrate that �CM does not necessarily yield accurate results in
the Heston framework. To see this, let r = 0:1; T = 3; v0 = 0:03; S = 100; � = 1; v = 0:04; � =
0:4; � = �0:6: Carr-Madan inversion with

�k = 0:025; �v =
2�

N�k
;

where N = 211 = 2048 then yields absolute relative errors jCCM � CH j =S of order 10�2; here
CH denotes the Heston price. Note that for the aforementioned parameters, ES�+1T is indeed
�nite (it is equal to 194.4). Moreover, we have �CM = 0:07. On the other hand, selecting � to be
0.75 gives relative errors of order 10�9. The situation is depicted in Figure 5.5. In the upper part
we have plotted the strike on the horizontal axis against the relative error for � = �CM = 0:07
on the vertical axis. The lower �gure shows results for � = 0:75. Similar di¤erences in accuracy
can be observed for other parameter settings.

5.6.2 More Results

This section presents numerical results for the Heston model. The grids we have used are given
by

�k = 0:025; �v =
2�

N�k
;

where N = 211 = 2048. Moreover, we haven chosen � = 0:75. For these settings, the truncation
error is typically negligible (In fact, Lee (2004) presents analytical error bounds for the Heston
model. However, it is based on a di¤erent formulation of the DFT). First, we have performed
the following experiment. We randomly selected parameters from the ranges

v0 2
�
0:152; 0:62

�
; T 2 [0:08; 20]; S = [0; 100]; r 2 [0; 0:15] ;

� 2 [0; 100]; v 2
�
0:152; 0:62

�
; � 2 [0:15; 0:6] ; � 2 [�1; 1] :

The maximum relative error jCCM � CH j =S is then determined over the range 1
2S � K � 2S.

Figure 5.6 shows 50 realizations of this experiment.
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Figure 5.5: Upper: relative errors for � = �CM = 0:07. Lower: � = 0:75.

Figure 5.6: Maximum relative errors for 100 realizations.
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As mentioned in Section 5.5, far in-the-money-options are di¢ cult to price via Carr-Madan
inversion. In fact, for the above grid settings we typically get relative errors of order 1 for small
strikes (10�2). When we double the number of points to N = 212 relative errors reduce to 10�5.
In case we have a small value for T (10�3), relative errors will be relatively large as well (10�5

for N = 211). Again, increasing N is of help. Things are even worse when we both have a small
value for T (10�3) and K(10�3) : relative errors of order 10�2 for N = 211. However, these cases
are more of theoretical than of practical interest.
Like in the Black-Scholes model, changes of variable can also be applied to the Heston in-

tegrand. For practical purposes, direct integrations will then pop up as a true competitor to
Carr-Madan inversion (recall that it is the interpolation step that slows down the process). Fi-
nally, we remark that cubic spline interpolation again reduces the relative error with one order
of magnitude.
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6 Calibration of the Heston Model

6.1 Introduction

An important application of Carr-Madan inversion lies in the calibration of stock models, since
option prices can be calculated rapidly. One possible approach is based on market prices for
European options. Then we assume that a certain parametric stock model governs the dynamics
of the underlying asset and we try to minimize - for example - the di¤erences between option
prices from this stock model and those implied by the market, yielding a set of parameters for
the stock model. Obviously, the calibrated stock model can then be used to price more exotic
options as has been done in Schoutens et al. (2004).
In general, we can state the calibration problem as

min
�
f (CCM (�) ; Cmarket) ;

where CCM denotes an n-dimensional vector of option prices generated by Carr-Madan inversion.
Typically, it contains prices for various strikes and times to expiry. Surely, it depends on a set of
parameters �, the parameters of the underlying stock model. Its market counterpart is given by
the n-dimensional market-prices-vector Cmarket , i.e. the i-th entry in the vector Cmarket gives
the market price for the option with strike and time to maturity as used in the calculation of the
i-th entry in the vector CCM (�). Finally, f : Rn ! R denotes the objective function which is to
be minimized with the aid of some optimization algorithm.
In this chapter the Heston stochastic volatility model is calibrated to market data. As noted

in Section 5.1, stochastic volatility models are not perfect. As a consequence, instead of work-
ing very hard to obtain perfect �ts to market data - if possible at all - we will put limits on
the computational resources we want to spend on the calibration of this model. This will be
a 60 seconds time limit. Based on market data of ING options we then calibrate the Heston
model. Speci�cally, we will consider the e¢ cacy of both random and deterministic algorithms.
The deterministic algorithms used come from MATLAB. Also, we will examine several types
of objective functions, that will in some sense be uni�ed by translating them to a global mea-
sure involving volatilities. Our main focus will be on numerical results throughout. Therefore,
theoretical issues concerning the algorithms will not be discussed. The random algorithms are
extensively discussed in Spall (2003); information on the deterministic algorithms can be found
in Bazarraa, Sherali & Shetty (1993) and MATLAB�s help section.
The outline of this chapter is as follows. First we examine what types of smile the Heston

model is able to produce. Second, we brie�y consider the algorithms and objective functions
used in the calibration process. References will be given where appropriate. Third, a systematic
calibration of the Heston model is presented, in which we compare the various algorithms and
objective functions where possible. Concluding remarks end this section.

6.2 The way Heston smiles

Option prices are not quoted directly. Rather, market practice is to quote (Black-Scholes) implied
volatilities rather than option prices themselves. One can obtain the associated market prices by
simply substituting the quoted volatilities in the Black-Scholes formula. (Once again, we see how
entrenched the Black-Scholes model is in the �nancial world.) In this section we will examine
what smile curves can arise in a Heston environment. This knowledge will enable us to make
statements about the suitability of the Heston model for the market data at hand. Along this
journey we will also reveal the speci�c e¤ects each Heston parameter has on the smile curve.
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Throughout this section, we used

r = 0:15; T = 1; S = 22:1; � = 0:75;

unless stated otherwise.
We start with the in�uence the speed of mean reversion � has on the smile curve. As

illustrated in Figure 6.1, increasing the value for � �attens the curve. In the picture presented
we see that the curve is lifted. The opposite movement can also be achieved, by for example
letting T = 10.

Figure 6.1: The speed of mean reversion � rotates and shifts the smile curve.

Increasing the initial variance v0 of logST moves the curve upward. Unlike the speed of mean
reversion, there is no dependence on T whatsoever. This is illustrated in Figure 6.2.
The mean of the variance v has a similar e¤ect as v0: the curve is being lifted with increasing

v (Figure 6.3). However, now we have a dependence on T . The larger this value the �atter the
curves become as can be seen in Figure 6.4.
A clockwise rotation of the smile can be achieved by increasing the value of �. When T is

relatively small this e¤ect is most striking. Longer times to maturity will render this e¤ect less
visible. In this latter case the curve is �attened. These observations are pictorially summarized
in Figures 6.5 and 6.6.
Despite that the smile curve rotates, the resulting slope did not change sign however. The

last parameter to be considered, the correlation coe¢ cient, makes this transition possible. See
Figure 6.7. Once again a large value for T reduces this e¤ect, as illustrated in Figure 6.8.
The above �gures suggest that smiles in the Heston model are - roughly speaking - linear. In

fact, smile-like curves can be obtained as well. This can be accomplished by certain combinations
of parameters. Figure 6.9 presents a smile obtained by letting � to be small and � to be large.
This shape has also been called �hockeystick�for obvious reasons.
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Figure 6.2: Increasing v0 moves the curve upward.

Figure 6.3: Increasing v lifts the smile curve.

63



Figure 6.4: We have rather �at curves when T is relatively large.

Figure 6.5: A clockwise rotation can be achieved by increasing the volatility of volatility �.
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Figure 6.6: The clockwise rotation is being masked by a large value for T .

Figure 6.7: The correlation coe¢ cient makes a change of slope possible.
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Figure 6.8: A large value for T �attens the smile curves considerably.

Figure 6.9: A smiling Heston
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6.3 Algorithms and Objective Functions

6.3.1 Algorithms

The algorithms considered can be categorized as either being random or deterministic. Ran-
dom algorithms determine subsequent search directions according to a mechanism involving
randomness, while their deterministic counterparts do this in a non-random fashion. Among
the advantages of stochastic algorithms are robustness and ease of implementation. These nice
properties mainly derive from the fact that no information on the derivative is needed in order
to run the algorithms. In fact, derivatives need not even to exist. Simple function evaluations
are su¢ cient, no matter how cumbersome the objective function is. On the other hand, there is
the demanding problem to prove convergence of these algorithms. As indicated in Spall (2003),
(asymptotic) results on convergence can oftentimes only be proven for very restricted cases, if
they exist at all. Hence we will not make any incursions into this territory. Convergence is
simply assumed. Moreover, cumbersome constraints cannot straightforwardly be dealt with by
stochastic algorithms. Finally, they present the user an extra burden in the sense that these
algorithms have degrees of freedom the user has to specify himself. Henceforth we will refer
to this as subjectivity. We will consider two random algorithms: localized random search and
simulated annealing.
Localized random search is based on the idea that smaller objective function values might be

found in the neighborhood of the point with smallest function value found so far. Let �k denotes
the set of parameters at iteration k, pseudo-code for this algorithm then reads:

Localized Random Search Algorithm
step 0 Set k = 0. Choose an initial feasible �0. Evaluate the objective

value f (�0).
step 1 Create a random vector ��k. If �k +��k is not

feasible, generate a new ��k. If it is feasible, de�ne �new (k + 1) � �k +��k
and evaluate f (�new (k + 1)) :

step 2 If f (�new (k + 1)) < f (�k +��k), set �k+1 = �new (k + 1),
else set �k+1 = �k.

step 3 Stop if some stopping criteria is met, else set k = k + 1 and go to step 1.

Subjectivity is introduced in step 1 of the algorithm: Apart from the fact that we have
to choose a distribution for ��k - something that would correspond to for example choosing
steepest descent in a gradient based algorithm, we sometimes also have to specify ranges for the
distribution, as in our case. Indeed, we have let ��k to be uniformly distributed. But what
range should the i-th component of this vector have? Although numerical experiments are of
help when answering this question, subjectivity remains. We followed recommendations made in
Spall (2003). Our MATLAB-code is available upon request.
Even more subjective is simulated annealing. This algorithm is the mathematical analogue

of the cooling of substances while they (may) reach a (desirable) state of minimum energy.
Reaching this optimal state is dependent on a su¢ ciently slow cooling process. The following
Boltzmann-Gibbs probability distribution from statistical mechanics plays an important role in
it:

P fEnergy State = xg = cT exp

�
� x

cBT

�
: (6.1)

Here cT > 0 is a normalizing constant, cB > 0 denotes the Boltzmann constant and T is the
temperature of the system. Note that at higher temperatures the system is more likely to be
in higher energy states. The way this idea returns in the algorithm is that while running the
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algorithm (i.e. while T is decreasing), the objective function value might increase with a certain
probability (i.e. higher energy states might be reached), hereby having the potential of getting
out a local minimum. The random mechanism that determines whether a higher energy state is
chosen is given by the following. Let ecurrent and enew denote the current energy state and the
new energy state, respectively. If enew < ecurrent, then the system moves to enew. However, if
enew � ecurrent, then the system moves to enew with probability

exp

�
�enew � ecurrent

cBT

�
;

which is known as the Metropolis criterion. One can show that under certain assumptions we in
fact have a Markov chain and that the limiting distribution is given by (6.1). Having outlined
the underlying ideas we now give the pseudo-code:

Simulated Annealing Algorithm
step 0 Choose an initial temperature T and a feasible �current. Evaluate

value f (�current).
step 1 Relative to �current, determine randomly a new �new. Evaluate

f (�new).
step 2 If f (�new) < f (�current), then �current = �new. Go to step 3.

If f (�new) � f (�current), generate a number U on [0; 1] that is
uniformly distributed.

If U � exp
�
� f(�new)�f(�current)

cBT

�
, then �current = �new,

else �current remains.
step 3 Repeat steps 1 and 2 until the user-speci�ed number of iterations

for T is met.
step 4 Lower T and go to step 1, or when some stopping criterion is met.

Among the most subjective issues that arise we have: Choosing the initial temperature, the
determination of �new in step 1, the number of iterations per T and the way temperature decays.
Spall (2003) discusses and gives references to various methods as available in literature.
As for the deterministic algorithms, we will resort to MATLAB. For more information on the

functions fminsearch (in fact, this algorithm originates from stochastic search. See Spall (2003)),
fmincon and lsqnonlin, please consult MATLAB�s help section. A well-known problem with
these algorithms is the speci�cation of a good starting point from which the searching process
starts. Bad starting points might slow down the optimization process tremendously.

6.3.2 Objective Functions

To set the stage, note that in the Heston model the set of model parameters is given by � =
f�; �; �; v; v0g. Furthermore, let yi denote the i-th element of the vector y. Following Schoutens
et al. (2004), we consider the objective functions RMSE, MSE and AAE. In addition, we will
also examine the maximum relative absolute error (MARE):

1. Root Mean Square Error (RMSE):

RMSE =

vuut nX
i=1

�
CiCM (�)� Cimarket

�2
n
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2. Mean Square Error (MSE):

MSE =
1

n

nX
i=1

�
CiCM (�)� Cimarket

�2
3. Average Absolute Error (AAE):

AAE =
1

n

nX
i=1

��CiCM (�)� Cimarket�� (6.2)

4. Maximum Absolute Relative Error (MARE)

MARE = max
i

jCCM (�)� Cmarketj
Cmarket

In order to give one meaning to these various objective functions, we will translate all objective
function values obtained to a global measure VWAEV (Vega Weighted Absolute Error in the
Volatilities):

VWAEV =

 
1

V

nX
i=1

@Cimarket
@�imarket

���iCM � �imarket
��! � 100; (6.3)

where

V =
X
i

@Cimarket
@�imarket

:

Furthermore, �CM denotes the implied volatilities that correspond to CCM
�
�0
�
, �0 being the set

of calibrated parameters. The vector �market gives the implied volatilities as determined by the
market. Note that there is a �rst order relation between (6.2) and (6.3): To see this, do the
following Taylor expansion:

CBS (�CM ) = CBS (�market) +
@CBS
@�

(�CM � �market) + :::;

which gives

CBS (�CM )� CBS (�market) �
@CBS
@�

(�CM � �market) :

6.4 Calibrating the Heston World

6.4.1 Numerical Results

In the introduction of this chapter we have mentioned that we will put restrictions on the
computational e¤ort we want to spend. A reasonable restriction is 60 seconds on a Pentium 4,
2.80GHz PC with 1024 MB internal memory. The reported objective function values are all
median values corresponding to three repetitions of the same optimization algorithm. Each run
however will be initiated with another (randomly chosen) starting point. (Note that we do not
perform any so-called regularization, which would say guarantee uniqueness of the optimal point.
This would be far outside the scope of this thesis. The results obtained do provide a �avor of the
e¤ectiveness of the Heston model however. Regularization is for example discussed in Jackson,
Suli & Howison (1998).) Note that we do not calibrate the model per value of T , i.e. the
vector Cmarket will in general contain market prices for various values of T . The reason to do
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this is simple: Suppose we calibrate the model to vanilla calls with T = 1 month. What if we
subsequently want to price options having T = 2 months? The inclusion of various values for T
remedies this problem somewhat. In general, we can say that we calibrate �to what we need�.
We start with the random algorithms. Tables 6.1 through 6.3 compare localized random

search with simulated annealing when we calibrate the Heston model using 70 ING calls. The
spot price of the underlying stock was 22.1 Euros and strikes vary from 11.05 to 44.20, while
the times to maturity range from 1 month to 10 years. The market implied volatilities are
presented in Appendix A. The corresponding Heston parameters �; v0; v; �; � are also recorded
below. We see that in this case localized random search tends to be more accurate within the 60
seconds allotted. Note the substantial di¤erences when it comes to the resulting parameters. In
terms of the global measure VWAEV we get the results as shown in Table 6.4. We see that the
application of the localized random search algorithm to AAE yields the smallest VWAEV -value.
In Figure 6.10 we have plotted both the market volatilities (crosses) as well as the calibrated
(Black-Scholes) implied volatilities (circles) for this best combination. On row one we have T = 1
month and T = 3 months on the left and right side, respectively. On the second row we have
T = 6 months and T = 1 year (again left and right, respectively). Continuing in this fashion, we
have for the subsequent rows T = 2 years and T = 3 years, T = 4 years and T = 5 years, T = 7
years and T = 10 years.

Localized Random Search Simulated Annealing
RMSE 1.5801 1.5654
MSE 0.3338 0.7253
AAE 1.0865 1.6654
MARE 0.9944 1.0103

Table 6.1: Objective values for the random algorithms

�; v0; v; �; �
RMSE 0.1008,0.0447,0.1282,0.1921,-0.3671
MSE 0.3424,0.0807,0.1112,0.5262,-0.7299
AAE 4.8659,0.0280,0.0526,0.5775,-0.8358
MARE 1.9391,0.0298,0.0386,0.5378,-0.8144

Table 6.2: Parameters obtained through calibration via localized random search

�; v0; v; �; �
RMSE 0.7453,0.0472,0.1457,1.6240,-0.6357
MSE 4.1659,0.1146,0.0453,0.9325,-0.2870
AAE 2.4155,0.1432,0.0560,0.8567,-0.9887
MARE 7.7506,0.0034,0.0262,0.6590,-0.2755

Table 6.3: Parameters obtained through calibration via simulated annealing
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Figure 6.10: Market implied volatilities (crosses) and calibrated volatilies (circles) for the com-
bination localized random search and AAE.

Localized Random Search Simulated Annealing
RMSE 1.5105 1.5171
MSE 1.4869 2.4036
AAE 1.4223 1.9330
MARE 5.1984 6.8867

Table 6.4: VWAEV-values for the random algorithms

Now we turn to the deterministic algorithms. To be precise, we will consider the functions
fmincon (constrained optimization), fminsearch (unconstrained optimization) and lsqnonlin
(nonlinear least squares) as available in MATLAB. Note that the algorithms cannot be compared
with each other straightforwardly: fminsearch requires the objective function to be rewritten
since we have a constrained optimization problem. In addition, lsqnonlin can only be used
whenever the objective function is given by MSE. Hence the algorithms will only be compared in
very few cases. (We can of course compare them to the stochastic algorithms above.) Note that
these algorithms can terminate within 60 seconds as some stopping criterion can be met within
this time span. This can be partly avoided by choosing loose stopping criteria. We can however
not guarantee that this never happens as it depends on the choice of the initial point from which
the searching process starts. One should hence bear in mind that the results presented below
are obtained using approximately 60 seconds. On the other hand, there is the possibility that
the starting point is a bad one in the sense that the duration of the calibration process exceeds
the time limit greatly, as will be illustrated below.
Let us consider fmincon �rst. To illustrate the point just made, let

� = 7:6210; v0 = 0:1263; v = 0:0251; � = 0:5196; � = �0:1106

to be the initial point, then fmincon will have great di¢ culty in solving the optimization problem
no matter which of the objective functions is selected. In this case the optimization process has
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Figure 6.11: Market implied volatilities (crosses) and calibrated volatilies (circles) for the com-
bination fmincon and AAE.

not �nished yet after 12 minutes! On top of that, bad starting points might yield unrealistic
parameters which was particularly true for MARE, e.g. we have observed � to be equal to 640!
Below we will present a way to overcome this problem. Calibration results are shown in Tables
6.5 and 6.6. These results are all based on �good�starting points.

Objective Values �; v0; v; �; �
RMSE 0.8724 2.9588,0.0372,0.0689,1.2792,-0.6670
MSE 4.3625 0.0844,0.0504,0.0740,0.3212,-0.7481
AAE 0.7303 6.5140,0.0445,0.0668,2.7121,-0.6703
MARE 0.9999 0.9843,0.0063,0.0158,0.0178,-0.9583

Table 6.5: Calibration results for fmincon

VWAEV
RMSE 0.9069
MSE 5.6753
AAE 0.8844
MARE 11.0738

Table 6.6: VWAEV-values for fmincon

Again we see that using the objective function AAE gives the smallest (global) objective
value. The resulting volatilities are shown in Figure 6.11.
Next we consider lsqnonlin. By changing certain settings we can in fact get three di¤erent

algorithms: a trust region method, Levenberg-Marquardt and Gauss-Newton method. Again, see
the MATLAB manual for details. Representative objective values and the associated parameters
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Figure 6.12: Market implied volatilities (crosses) and calibrated volatilies (circles) for lsqnonlin
(trust region algorithm).

are presented in Tables 6.7 and 6.8.

Trust Region Levenberg-Marquardt Gauss-Newton
MSE 0.7552 0.7639 0.7686

Table 6.7: Objective values for lsqnonlin

�; v0; v; �; �
Trust Region 2.7064,0.0549,0.0702,1.4329,-0.6480

Levenberg-Marquardt 3.2996,0.0562,0.0698,1.7102,-0.6489
Gauss-Newton 3.6965,0.0578,0.0695,1.8979,-0.6456

Table 6.8: Parameters obtained through calibration via lsqnonlin

From these tables we can see that there are only minor di¤erences, both in terms of the
objective function values as well as the parameters. This is also true in terms of the global
performance measure:

Trust Region Levenberg-Marquardt Gauss-Newton
MSE 0.8708 0.8729 0.8742

Table 6.9: VWAEV-values for lsqnonlin

Figure 6.12 shows the resulting volatilities for the trust region method.
Finally we have fminsearch. In order to be able to use this unconstrained optimization

algorithm, we have to rede�ne the variables/parameters. One way to deal with nonnegative

73



variables is by taking the exponent of them. For example, � > 0 can be replaced the quantity

exp(c1�new) > 0;

where �new 2 R. The constant c1 is chosen such that unrealistic values for the parameters
are avoided. The correlation coe¢ cient �1 � � � 1 can also be handled with the aid of the
exponential function:

�1 � 2

1 + exp(c2�new)
� 1 � 1;

where �new 2 R. The constant c2 serves the same purpose as c1. Values for the constants and
calibration results are shown in Tables 6.10 and 6.11. Of course, no guarantee can be given that
the recorded values for the constants c1 and c2 always do their jobs. They were e¤ective in the
cases we have seen however.

Objective Values �; v0; v; �; � c1; c2
RMSE 0.8627 0.7497,0.0408,0.0734,0.3863,-0.7173 0.05,0.02
MSE 0.1660 3.0949,0.0398,0.0585,0.9038,-0.6603 0.05,0.01
AAE 0.7033 2.0186,0.0452,0.0687,0.8903,-0.6913 0.001,0.005
MARE 0.4741 1.8686,0.0294,0.0756,0.7515,-0.7698 0.001,0.005

Table 6.10: Calibration results for fminsearch

VWAEV
RMSE 1.4322
MSE 1.0856
AAE 0.8687
MARE 1.1390

Table 6.11: VWAEV-values for fminsearch

In Figure 6.13 we have plotted the volatilities obtained with respect to AAE.

6.4.2 Concluding Remarks

Based on the above results we can conclude that - in terms of the global performance measure
VWAEV - fminsearch together with AAE yields the smallest objective value. However, fmin-
search introduces the constants c1 and c2, that has to be tuned for each speci�c set of market
data. Due to this �o­ ine�step, one would certainly violate the 60 seconds time limit. The pair
fmincon-AAE, again purely based on the VWAEV -value, is just slightly worse than the above
�best�combination. However, there aren�t any auxiliary e¤orts in this case. Hence when consid-
ering both VWAEV -values and the overall time needed, we are tempting to nominate the pair
fmincon-AAE to be the best, in the sense just de�ned.
As pointed out, the determination of a good starting point from which the searching process

starts, might present problems for deterministic algorithms. Now we will present numerical
evidence that doing this via a random algorithm will work. In fact, we have experimented with
the strategy of choosing an initial point with the aid of the localized random search algorithm.
We used 100 iterations (about 20 seconds) of the algorithm to come up with an initial point.
Fmincon then uses this point to optimize AAE. Numerical evidence suggests that this is indeed
a wise strategy. Unrealistic parameters were not observed. In addition, in some cases even
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Figure 6.13: Market implied volatilities (crosses) and calibrated volatilies (circles) for the com-
bination fminsearch and AAE.

smaller objective values were returned within 60 seconds. Note that we have lifted the 60
seconds restriction. In this way one can gain an idea of how well the Heston model actually is
in describing reality. Table 6.12 shows 8 realizations.

Objective Values fmincon and localized random search 100 iterations
AAE VWAEV �; v0; v; �; � Overall Time (seconds)
0.7308 0.8980 4.9966,0.0338,0.0669,2.0460,-0.6763 93
0.6956 0.8583 1.1989,0.0452,0.0702,0.5808,-0.6845 58
0.5923 0.6564 0.1283,0.0555,0.1141,0.2311,-0.6888 138
0.7311 0.8957 5.4214,0.0345,0.0669,2.2382,-0.6704 92
0.5958 0.6569 0.1455,0.0559,0.1066,0.2384,-0.6807 136
0.7166 0.8849 2.3946,0.0430,0.0666,0.9980,-0.6688 144
0.5976 0.6633 0.1505,0.0553,0.1014,0.2228,-0.6961 65
0.6995 0.8671 1.1444,0.0468,0.0685,0.4893,-0.7296 129

Table 6.12: Calibration results for fmincon, the initial point being provided by 100 iterations
of the localized random search algorithm.

In fact, similar results can be observed when we only use 10 iterations (about 2 seconds) of
the random search algorithm. See Table 6.13 in which we again show 8 realizations.
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Figure 6.14: Market implied volatilities (crosses) and calibrated volatilies (circles) for the com-
bination fmincon and 10 iterations of the localized random search algorithm.

Objective Values fmincon and localized random search 10 iterations
AAE VWAEV �; v0; v; �; � Overall Time (seconds)
0.7352 0.8856 9.6839,0.0463,0.0666,4.0025,-0.6688 27
0.7299 0.8842 6.3326,0.0442,0.0668,2.6395,-0.6702 46
0.5923 0.6587 0.1298,0.0553,0.1139,0.2305,-0.6926 119
0.7325 0.8858 7.7903,0.0434,0.0668,3.2446,-0.6682 43
1.1450 1.2008 0.1851,0.0525,0.2331,0.9100,-0.4442 120
0.7329 0.8852 8.1639,0.0436,0.0668,3.4136,-0.6659 41
0.7124 0.8847 2.4648,0.0403,0.0673,1.0005,-0.7027 61
0.7345 0.8844 9.0890,0.0456,0.0667,3.8154,-0.6607 67

Table 6.13: Calibration results for fmincon, the initial point being provided by 10 iterations of
the localized random search algorithm.

For the third realization above , we have Figure 6.14. At �rst sight one might be surprised
about the fact that this is in fact the best �t we have seen thus far (in terms of the VWAEV -
value), because of the relatively large errors for small values of T . However, recall that VWAEV
is a vega-weighted measure, and options with short times to expiry have small vega�s. Hence
option prices are less sensitive to errors in the volatility. In Gatheral (2003b) it is indicated that
options with short times to expiry are best handled by stock processes with jumps.
Market smile curves surely also can aid us in choosing a good initial point for deterministic

algorithms, since we know what parameter values cause certain smiles in the Heston model.
However, we will not attempt to embark on this art, say. Instead, we recommend using the
localized random search algorithm.
Finally, we remark that the presented results are roughly in line with those presented in

Schoutens et al. (2004). In their paper several stock models have been calibrated to market data,
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the Heston model being one of them. They noted that the resulting �ts are very satisfactory.
Furthermore, the calibrated stock models were applied to the pricing of several exotic options.
Not surprisingly, each stock model results in di¤erent prices for the exotics. It would be an
interesting exercise to answer the following question: suppose we have two (di¤erent) calibrated
sets of parameters that both yield (approximately) the same objective values. Will these two
sets of parameters give (approximately) the same prices for the various exotics? If so, it will
presumably have major consequences for the use of calibrated (to simple vanilla options) stock
models to the pricing of more exotic options.
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7 Conclusions and Recommendations

In this thesis we have presented a major complement to existing literature on option pricing via
Fourier inversion: We have collected the two existing Fourier methods in a single thesis, and more
importantly, we have presented plenty numerical results to prove or disprove their e¤ectiveness.
To see that we really add a contribution, consider the following. Zhu (2000) discusses Gil-Palaez
inversion in detail for various asset dynamics. However, no mention is made about the numerical
di¢ culties in the approximations of the integrals. Carr & Madan (1999) have provided - as
far as it �ts in a research paper - numerical insights into the Fourier techniques. However, no
mention is made about interpolation that is inevitable in practice. Schoutens et al. (2004) did not
mention this crucial step either. To the best of our knowledge, they deserve credit for indicating
the application of Carr-Madan inversion to calibration. However, no mention is made about
potential problems around calibration. These omissions - and other practical issues around the
actual application of the Fourier methods - are all included in our exposition.

We have examined the practical applicability of the two existing Fourier inversion methods in a
Black-Scholes and a Heston world. Both Fourier techniques can be reduced to the approximation
of some Fourier integral. Singularities in the origin of the integrands in Gil-Palaez inversion
prevents the Simpson�s rule to be accurate. On top of that, FFT-algorithms in popular software
packages cannot be applied for the computational work involved.
Carr-Madan inversion on the other hand, is singularity-free. Furthermore, the FFT can be

applied for the rapid pricing of options. However, the application of the FFT comes at a cost
since it requires a uniform grid, i.e. only quadrature rules with uniform grids can be utilized
to approximate the arising integrals. This itself will in general not be a problem. It is the
combination of a uniform grid and a peaked integrand (which is typically involved in Carr-Madan
inversion) that complicates matter, as we cannot concentrate our grid points in the peaked part
of the integrand, which ideally should be the case. Consequently, the number of grid points N
(the grid spacing �v) will be unnecessary large (unnecessary small). Moreover, by the reciprocity
relation

�v�k =
2�

N

we typically would have a logK-domain that is far too large. The exponential grid in the K-
domain forces us to apply some form of interpolation in practice. The time this step consumes
is typically much longer than an application of the FFT requires. In fact, if we only want to
evaluate say ten strikes per time to maturity - which is usually the case in practice - direct
integrations (after a change of variable) will be about four times as fast as the FFT plus an
additional application of cubic spline interpolation, if similar accuracies are required. For linear
interpolation, the overall computational time needed will be approximately equal. However, the
relative error would reduce from 10�8 (cubic spline interpolation) to 10�5 (linear interpolation),
which might be still acceptable for some practitioners. Of course, in this case there will be no
need to resort to Carr-Madan inversion.
In Carr-Madan inversion, choosing � = 0:75 and using the grid spacings

�k = 0:025; �v =
2�

N�k
;

where N = 211 = 2048, typically gives relative (discretization) errors of order 10�9. Cubic spline
interpolation reduces the relative error to 10�8. Truncation errors will be negligible for the above
grid settings. Certain parameter combinations (we especially mention large values for S=K (106),
a large T (> 20) together with a high volatility � (> 0:4)) yields less accurate results. Increasing
N is of help.
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We have calibrated the Heston model to 70 ING vanilla calls. Moreover, we compared several
objective functions and algorithms (deterministic versus random). A combination of these two
types of algorithms gives the best results in terms of the VWAEV measure. More speci�cally, we
recommend using the localized random search algorithm for the determination of a starting point
(say using 10 iterations), from which the deterministic search process starts. This deterministic
search is preferably done by the constrained optimization algorithm fmincon as available in
MATLAB. As for the associated objective function, we recommend the average absolute error
function AAE. Finally, we remark that the Heston model manages to �t market data quite
reasonably (smallest observed VWAEV -value: 0.6587). Fits are worse for shorter times to
maturities (say � 1 year).

Throughout this thesis we have followed Carr & Madan (1999) by evaluating integrals using
the Simpson�s rule. As there are other more accurate uniform-grid-quadratures, improvements
might be found in this direction. Speci�cally, we would like to have quadratures that are able to
give accurate results with a relatively large grid spacing �v, since in this case (by the reciprocity
relation) �k can be chosen smaller for a �xed value of N . Linear interpolation might then be
su¢ ciently accurate, even for academics. Naturally, the quadrature rule must be formulated in
a way that is suitable for the FFT.
The (scienti�c) determination of a value for � presents another challenge. Here we just used

the �magic�value � = 0:75 suggested by Schoutens et al. (2004). One would like to have a value
that allows the grid spacing �v to be relatively large. Using exactly the same argument as above,
Carr-Madan inversion could then be faster and more accurate than direct integrations, especially
when one has more strikes per time to maturity.
Time constraints did not allow us to study more than two stock models. More advanced

models should be considered, especially those allowing jumps. From Schoutens et al. (2004) we
see that certain normal inverse Gaussian models with stochastic time are rather promising.
Finally, we want to mention other directions in which fast option pricing techniques have

been sought recently. In Chourdakis (n.d.) it is claimed that the so-called fractional fast Fourier
transform is about 45 times as fast as the FFT. In Den Iseger & Oldenkamp (2005) Laplace
inversion is discussed. A systematic comparison of all these methods is still lacking in literature
however. The fastest is still to be determined.
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A Market Quotes ING Calls

In Section 6.4 the Heston model was calibrated to market data. Speci�cally, we have used market
data of ING calls on January 12, 2005. The spot price of the stock was S = 22:1 Euros. The
exact data are presented in Table 1.1. For example, we see that when K=S � 100 = 50, the
(Black-Scholes) implied volatility for T = 1 month is equal to 48:87=100 = 0:4887. As another
example, if K=S � 100 = 150; the (Black-Scholes) implied volatility for T = 10 years is equal to
21:32=100 = 0:2132.

1m 3m 6m 1y 2y 3y 4y 5y 7y 10y
50 48.87 39.78 36.83 34.14 32.85 31.95 31.51 30.93 30.55 30.56
70 33.07 28.83 28.14 27.24 27.37 27.16 27.16 26.89 26.94 27.36
90 21.02 20.47 21.51 21.97 23.19 23.51 23.84 23.81 24.19 24.92
100 15.92 16.93 18.7 19.75 21.43 21.97 22.44 22.51 23.02 23.88
110 13.4 14.7 16.92 18.34 20.31 20.99 21.55 21.69 22.29 23.23
130 14.14 16.13 18.55 19.46 20.16 20.39 21.13 22.2
150 14.22 17.04 18.14 18.96 19.28 20.14 21.32
200 15.5 16.56 17.05 18.15 19.55

Table 1.1: Quoted (Black Scholes) implied volatilities

However, there are dividend payments in future that should be incorporated in the option
prices. This has been done via Sophis, an internal system of Rabobank International. The �nal
discounted option prices (in Euros) are shown in Tables 1.2 and 1.3. Table 1.4 presents the
discount factors used.

1m 3m 6m 1y 2y 3y
50 11.06923972 11.10940828 10.72855528 10.45709137 10.04487921 9.695932624
70 6.656971659 6.718057932 6.41044248 6.340608421 6.3574989 6.351424449
90 2.264428371 2.468670294 2.482554089 2.801762582 3.319239301 3.624364669
100 0.424329287 0.804840096 1.046555593 1.497126009 2.157660537 2.555245094
110 0.002301507 0.090755563 0.286162451 0.672421552 1.326149305 1.754705
130 0.002467601 0.065309982 0.398991481 0.735629447
150 0.00153215 0.081986458 0.254204108
200 0.006570802

Table 1.2: Discounted option prices (1)
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4y 5y 7y 10y
50 9.812222065 10.26374006 11.15382502 12.36626115
70 6.710099815 7.314340687 8.490465247 10.08096182
90 4.151482786 4.833144344 6.178708585 8.031324759
100 3.114936414 3.795788514 5.167525671 7.099039486
110 2.307890322 2.963013277 4.322764002 6.292796992
130 1.182835029 1.723423954 2.960036573 4.907938211
150 0.541411598 0.930673575 1.955741952 3.773711268
200 0.044367939 0.139962345 0.589592237 1.837421864

Table 1.3: Discounted option prices (2)

discount factor
1m 0.998258865
3m 0.994639238
6m 0.989107139
1y 0.977194804
2y 0.95048351
3y 0.921111771
4y 0.889709543
5y 0.857916315
7y 0.791077563
10y 0.692152808

Table 1.4: Discount factors
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