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Management Summary

In this thesis we found and extended a methodology to find an optimal, dynamic portfolio
strategy for a long-term investor who can choose between multiple assets. Such a strategy
is new in the sense that it combines the dynamic approach which is a hot topic in academic
literature with the larger number of assets with rather abritrary return dynamics that is used
in practice.

The methodology, developed by Brandt et al. (2005) is a fast, simulation-based dynamic ap-
proach towards portfolio choice. Originally it was only applied to a simple setting with two assets
and one predicting state variable, with the idea that an extension to a more realistic setting
would be possible. In this thesis we actually applied this algorithm to a more realistic investor’s
environment with a long investment horizon, six assets, five state variables, scenario-based asset
returns and constraints on the portfolio weights.

In this situation the algorithm is still fast, taking less than an hour for 10,000 simulations. And
more importantly, we found that the obtained dynamic strategy outperforms a static strategy
in the most used performance measures of financial management: that is portfolio mean return
and variance, probability of underperforming a risk-free strategy, Value-at-Risk and expected
shortfall. Moreover, we have clearly visualized the outperformance by drawing the dynamic
efficient frontier, which is a well-known concept from static portfolio optimization.

Also by using the efficient frontier, we gained a new insight about the modeling of an individual’s
attitude towards risk. Empirical evidence on individual’s attitude towards risk and return and,
one step further, on how to calibrate the parameter of risk aversion, is mixed. In this thesis we
show that both commonly used assumptions lead to the same efficient frontier. This justifies
the convenient choice to assume constant relative risk aversion.1

Also in the more realistic, multivariate complex setting the dynamic strategies outperform static
strategies. Nevertheless, the performance of the methodology does detoriate as the investor’s
horizon or risk aversion increases. This decreasing effectiveness was already mentioned by the
original authors, but in a simple setting we were able to succesfully eliminate these issues by
improving the methodology with a technique called robust regression, which reduces the effect of
outlying datapoints. Unfortunately this technique does not work sufficiently in the multivariate
complex setting.

Even though the method remains suboptimal for high risk aversion and a long investment
horizon, the dynamic strategy does outperform a static strategy convincingly for all parameter
values. It is open to discussion whether the suboptimality is an issue inherent in application
of the methodology to a complex setting, or if improvements are to be found. In our opinion
there will always be a trade-off between the complexity (and thus volatility) of the investor’s
environment at one hand and the optimality of the dynamic strategy at the other hand. How
this trade-off should be balanced is a management decision.

To Ortec Finance we recommend implementation. But, since this thesis made use of their old
scenario generator, first the performance under the new, more complex scenario generator has
to be investigated. Additionally, they have to develop an application to more complex investors,
for example with volatile liabilities or with wealth corrected for inflation effects.

1This means that an investor always attaches an equal value to an equal relative increase of wealth.
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Chapter 1

Introduction

Every investor must decide the trade-off one is willing to make between eating well
and sleeping well - Burton G. Malkiel, [24].

If a person decides to invest his wealth, he has to choose which combination of assets meets his
personal preferences best. This opens up a wide set of possible strategies. Clearly, he would
prefer a high return on his money, but higher expected returns usually also increase the risk
involved. Then, to speak in terms of Malkiel, the question is which portfolio will generate enough
return to eat well without keeping the investor from sleeping at night because of the high risk.

The decision on the asset allocation1 depends on the type of investor. An individual with a short-
term horizon might buy a lottery ticket and will therefore behave differently than an investor
with a long-term horizon, who decides to invest in real estate. Moreover, every individual has
his own attitude towards the trade-off between risk and return, which is best illustrated by the
following example.

Suppose a game where an individual is given the choice between immediately receiving 400 euro
or gambling with 50 percent probability of winning 1000 euro, and 50 percent probability of
receiving nothing. Taking the gamble has an expected pay-out of 500 euro, but the standard
deviation of the pay-out is also 500, which is much higher than the standard devation of zero
corresponding to receiving 400 euro for sure.

The actual choice will depend on an individual’s attitude to risk and will therefore differ from
person to person, but the decision in this example is easily made, because the number of possible
outcomes is limited. But in the context of investors, the choice of an ideal portfolio is much
more complicated, since in reality infinitely many portfolios of assets can be constructed, all
with different combinations of risk and return.

Already during the literature phase of this project the gap between the academic approach
and the practical application of portfolio choice became clear. At one hand, industry still uses a
static and rather old-fashioned framework to come up with an optimal asset allocation among the
many available assets in the market, while paying a lot of attention to the modeling, prediction
and/or simulation of assets returns. The trade-off between risk and return is modeled in various

1Portfolio choice and asset allocation are equivalent terms.
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Introduction

ways and results are easily quantified and visualized. Unfortunately the static approach does
not capture the problem well for a long-term investor, since during the investment period market
conditions as well as personal preferences will change almost surely.

At the other hand, academic literature mainly places the portfolio choice in a setting which is
above all mathematically convenient. The number of assets is mostly limited to only two, of
which one has a deterministic return and of which the second has nicely distributed returns.
The investor’s attitude towards risk is almost always modeled as being independent of wealth,
because this has nice analytical properties. Nevertheless, the latest literature does focus on a
dynamical portfolio to adjust for changing beliefs.

In this thesis we consider a long-term investor and try to find an optimal dynamical portfolio
strategy, that combines the best of both worlds: the dynamic character of the portfolio choice
as used in literature with the advantages of the static approach, namely the flexibility to the
number of assets having rather arbitrary return dynamics and the clear visualization of results.

More specifically, we actually apply the methodology published by Brandt, Goyal, Santa-Clara
and Stroud in 2005 to an investor in a realistic setting, with multiple assets with non-standard
return dynamics, constraints on his portfolio weights and with different types of risk averseness.
Results are quantified and visualized wherever possible.

Overview of this thesis

In a paper that was published in 1952, Harry Markowitz developed a framework for static
portfolio optimization which is considered as the starting point of Modern Portfolio Theory. In
chapter 2 we explain the general set-up and describe this framework. We explain the concept of
the efficient frontier and we discuss various portfolios, both in formulas as visually.

To make a ranking between all possible portfolios we use utility functions, which capture the
investor’s risk averseness and thus enable ranking of portfolios. Various types of utility functions
are addressed in chapter 3.

As mentioned before, static portfolios do not take into account changing conditions and there-
fore only have limited value for a long-term investor. This brings us to dynamic portfolio choice,
which is the subject of this thesis. In chapter 4 we start with the dynamic portfolio problem
in continuous time and describe two solutions by Merton and Wachter. Because closed-form
solutions are not known and might not even exist for realistic problems with less strict assump-
tions, it is common to discretize the problem using the Optimality Principle of Richard Bellman.
At the end of the chapter we choose to continue with the simulation-based method developed
by of Brandt, Goyal Santa-Clara and Stroud (hereafter referred to as BGSS), being the most
promising to deal fast with multiple variables and various utilities.

In chapter 5 we extensively discuss the methodology of BGSS and explain amongst others how
constraints on the portfolio weights, robust regression and different assumptions on the investor’s
utility function can be accommodated.

To understand the methodology and the impact of various extensions we used a very simple
economic model with only one risky asset. Results are displayed in chapter 6. The chapter is
concluded with a comparison between static and dynamic strategies. Next, in chapter 7 the

2
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method is applied to a setting with multiple assets. The returns are simulated by economic
scenario generator of Ortec Finance.

Chapter 8 contains the main conclusions of this thesis, recommendations for future research
and additional notes for Ortec Finance. Finally, appendix A contains additional extensions of
the methodology and results for a different set of scenarios. Appendix B shows the most used
MATLAB-codes.
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Chapter 2

Static Portfolio Choice

In this chapter we discuss the choice of a static portfolio following the paper of Markowitz ([25]),
who is considered to be the founder of Modern Portfolio Theory. In 1952 he published the first
paper on portfolio problems. He rightly stated that investors should not focus solely on expected
return. Instead, for each investor there exists a trade-off between expected portfolio return and
risk.

Before we describe the optimal portfolios of Markowitz, we describe the general mathematical
and economical set-up in the first section. In section 2.2 we introduce the efficient frontier, which
is a concept that consists of portfolios with optimal combinations of mean return and standard
devation. Two important portfolios on the efficient frontier are the minimum-variance and the
mean-variance portfolio, which are calculated in sections 2.3 and 2.4 respectively. Finally, in
section 2.5, we add a risk-free asset to the model and show its impact on the efficient frontier
and the optimal portfolio.

2.1 Mathematical and economical set-up

We assume the investor takes part in an economy where the standard assumptions of a perfect
market hold. The most important assumptions are (Merton, [28])

• At any time, each asset can be sold and purchased in any amount at the market price.

• The bid-ask spread is zero, which means that the purchase price of each asset is the same
as the selling price.

• The investor cannot influence asset prices: he is a price-taker.

• There are no transaction costs or taxes involved.

Now suppose there exist n risky assets in the market. At time 0 the investor chooses his
portfolio. After one period at time 1, the value of the portfolio is evaluated. The investor thus
has investment horizon 1. Moreover, he does not rebalance between time 0 and 1.

We denote the price of asset i at time 0 as Si,0. Analogously the price of asset i at the end of
one period is given by Si,1. The rate of return (or just ’return’) on the asset during this period

5



Static Portfolio Choice

is the relative change in price during one period and defined as

Ri =
Si,1 − Si,0

Si,0

The return Ri is modeled as a random variable with mean µi and variance σ2i on a probability
space (Ω,F ,P). The σ-algebra of events resolved at the end of the period is called F and P
is the probability measure on F . Every ω ∈ Ω corresponds to a particular scenario of market
evolution at the end of the period. Scenario ω will occur with probability p and under this
scenario the actual return on the ith asset is Ri(ω).

The investor divides his wealth over the n available assets by choosing the column vector of
portfolio weights x ∈ Rn. A portfolio weight is the asset value divided by the value of the
complete portfolio. The weight of asset i in the portfolio is given by xi. The weights have to
sum to one,

∑n
i=1 xi = 1. From now on we will write this as e′x = 1, where e ∈ Rn is the unit

vector. The apostrophe is used for the transpose of a vector a matrix. Aditionally, one could
impose a restriction on shorting assets, which implies x ≥ 0, but this is not necessary.

Once the weight vector x has been chosen, we can easily calculate the expectation µp and
variance σ2p of the portfolio return:

µp =

n∑
i=1

xiµi = µ′x (2.1)

σ2p =

n∑
i=1

n∑
j=1

xixjσij = x′Σx (2.2)

where µ is the mean vector of means of R and Σ ∈ Rn×n is the covariance matrix, which
contains the covariances between Ri and Rj , denoted by σij . Because Σ is a covariance matrix,
it is positive semidefinite and symmetric. Moreover, we assume Σ is invertible.1

In his set-up, Markowitz uses only the variance of portfolio return σ2p as a measure for risk.
Higher distributional moments, such as skewness and kurtosis, are not taken into account.
Engels ([17]) showed that these moments can be neglected as long as the asset returns follow an
elliptical distribution.

By varying the portfolio weight vector x, infinitely many portfolios can be constructed, but only
so-called efficient portfolios will matter to the investor. An efficient portfolio is a portfolio which
has minimum risk for a given expected return or which has maximum expected return for a
given risk. All these portfolios together form the efficient frontier, which is the subject of the
next section.

2.2 The efficient frontier

By changing the weight vector x the investor can achieve different combinations of expected
return and risk. One could first try to find the portfolio where risk is minimized, given some

1Recall that a positive semidefinite matrix Σ has the property that y′Σy ≥ 0 for all y ∈ Rn. The inverse Σ−1

is positive semidefinite as well.
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expected return µ̄:

min
x

x′Σx (2.3)

s.t. e′x = 1

µ′x = µ̄

The two constraints make sure that the vector of portfolio weights sums up to one and that the
portfolio return equals µ̄. They can be rewritten as A′x = d, where A := (µ e) and d′ := (µ̄ 1).

Problem (2.3) is solved easily with the Lagrange method. Let θ ∈ R2. Then the Lagrangian of
the problem is:

Λ(x, θ) = x′Σx− θ′A′x+ θ′d (2.4)

We have to set the derivatives of (2.4) equal to zero:{
Λx = 2Σx+Aθ = 0
Λθ = A′x− d = 0

(2.5)

Rewriting the first equation of (2.5) gives:

x = −1

2
Σ−1Aθ (2.6)

Left multiplying both sides of (2.6) with A′ gives

d = A′x = −1

2
A′Σ−1Aθ (2.7)

Define H := A′Σ−1A. Clearly H is symmetric and positive definite. It is easy to see that

H :=

(
a b
b c

)
=

(
µ′Σ−1µ µ′Σ−1e
µ′Σ−1e e′Σ−1e

)
Using the definition of H, we can rewrite (2.6) and (2.7) as:

θ = −2H−1d

x = Σ−1AH−1d

Now the variance σef and the portfolio weights xef of the efficient portfolios follow immediately:

σ2ef = x′Σx = (Σ−1AH−1d)′ΣΣ−1AH−1d

= d′(H−1)′A′Σ−1AH−1d = d′H−1d

xef = Σ−1AH−1d

If we note that

H−1 =
1

ac− b2

(
c −b
−b a

)
7



Static Portfolio Choice

and that the expected portfolio return µef was equal to µ̄, we find the equation for the efficient
frontier, which is:

σ2ef =
1

ac− b2
(cµ2ef − 2bµef + a) (2.8)

In (µef , σ
2
ef)-space equation (2.8) defines a parabola. The direction of the parabola is defined by

the coefficient c
ac−b2 . Because Σ−1 is positive semidefinite, it follows that both a = µ′Σ−1µ ≥ 0

and c = e′Σ−1e ≥ 0. But also

(bµ− ae)′Σ−1(bµ− ae) = a2c− ab2 + b2a− ab2 = a(ac− b2) ≥ 0

Because a ≥ 0 it immediately follows that ac− b2 ≥ 0 as well. We get that c
ac−b2 ≥ 0 and thus

equation (2.8) defines an upward parabola.

However, it is common to evaluate the efficient frontier in (σef , µef)-space. Engels ([17]) showed
that in this space (2.8) defines the right side of a hyperbola with center (0, bc) and asympotes

µef =
b

c
±

√
ac− b2

c
σef

The efficient frontier with center asymptotes is shown in figure 2.1.2

M
ea

n

Standard deviation

Figure 2.1: Efficient frontier (solid line) with asymptotes and center

2The efficient frontier can also be calculated with other risk measures than variance. The use of risk measures
that only take into account the downside risk, such as semi-variance, the Gini-coefficient or the Value-at-Risk has
become increasingly popular. The portfolios on the efficient frontier obtained by such measures can, but are not
necessarily different from the portfolios obtained with variance as a risk measure.
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2.3 Minimum-variance portfolio

If the investor does not care about expected return and solely wants to minimize his risk, we
have to minimize σef (or equivalently σ

2
ef) with respect to µef . We differentiate (2.8):

dσ2ef
dµef

=
2cµef − 2b

ac− b2
= 0

2cµef = 2b

µmin =
b

c
(2.9)

We see that the efficient portfolio with overall minimum variance has expected return µmin := b
c .

Substituting (2.9) in formula (2.8) of the efficient frontier gives σ2min = 1
c . The corresponding

weights can be derived by using d′ = ( bc 1), which gives xmin = 1
cΣ

−1e. In figure 2.2 we can see
that the minimum variance portfolio is the point on the efficient frontier where the tangency
line is vertical.

M
ea

n

Standard deviation

Minimum−variance 
              portfolio

Figure 2.2: Efficient frontier with the minimum-variance portfolio

2.4 Mean-variance optimization

As the name already says, the minimum-variance portfolio only focuses on minimizing the risk
involved. However, risk might be acceptable for the investor if this corresponds to higher ex-
pected returns. As first stated by Markowitz, every investor has his own opinion about the
trade-off between risk and return, which is captured by parameter γ, the parameter of relative
risk aversion. Its value is dependent on the risk averseness of the investor. The greater γ, the
more important the variance becomes in the objective function and thus the more risk averse
an investor is. We assume that every investor is risk averse, so γ has to be positive. A negative
value of γ would imply that an investor prefers a higher risk for the same expected return. The

9



Static Portfolio Choice

optimal portfolio for an investor with risk aversion γ is the solution of:

max µ′x− γ

2
x′Σx (2.10)

s.t. e′x = 1

Equation (2.10) is known as the mean-variance problem. We can find the solution of (2.10) with
the Lagrange method. Let θ ∈ R. The Lagrangian is given by:

Λ(x, θ) = µ′x− γ

2
x′Σx− θe′x+ θ (2.11)

Taking the derivatives of (2.11) with respect to x and θ gives:{
Λx = µ− γΣx− θe = 0
Λθ = −e′x+ 1 = 0

(2.12)

Rewriting the first equation of (2.12) gives x = 1
γΣ

−1(µ− θe). Substituting this into the second
equation, we find:

1 = e′
1

γ
Σ−1(µ− θe) =

1

γ
(e′Σ−1µ− θe′Σ−1e) =

1

γ
(b− θc)

θ =
b− γ

c

The optimal solution of the mean-variance problem is:

xmv =
1

γ
Σ−1(µ− b− γ

c
e)

=
1

γ
Σ−1(µ− b

c
e) + Σ−1 e

c

Now we can derive the portfolio’s expected return and variance (Engels, [17]):

µmv = µ′xmv =
1

γ
µ′Σ−1(µ+

γ − b

c
e)

=
a

γ
+
b

c
− b2

γc

σ2mv = x′mvΣxmv

=
1

γ2
(µ+

γ − b

c
e)′Σ−1ΣΣ−1(µ+

γ − b

c
e)

=
ac− b2 + γ2

cγ2

The solution is visualized in figure 2.3. Each orange line represents the combinations of mean
and standard deviation between which an investor with a fixed risk aversion is indifferent.3

Graphically we see that the mean-variance portfolio is at the point of tangency between a so-
called utility curve and the efficient frontier.

3Or as we will define in the next chapter, each orange line represents portfolios with the same utility.
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          portfolio

Figure 2.3: Efficient frontier, utility curves and the optimal mean-variance portfolio

2.5 Including a risk-free asset

Usually portfolio theory assumes the existence of a risk-free asset next to the n risky assets.
Even though a truly risk-free asset exists only in theory, short-dated government bonds or cash
are used in practice. For a short horizon, the interest on cash on the bank account is known and
fixed and in normal economic conditions it is not likely that a bank will default. Analogously,
it is not likely that a government will default. The return on a bond is constant and the short
maturity of the bonds protects the investor from small changes in interest rate. Note that the
assumption of a risk-free asset is acceptable on short-term problems, but for investors with a
long horizon the return is not known.

The risk-free asset has a low, but certain return Rf and involves no risk: σf = 0.4 Furthermore,
the risk-free asset is uncorrelated with the risk assets. We denote the weight of the risk-free
asset in the portfolio with xf . It is common to assume that one can lend (xf > 0) and borrow
(xf < 0) at the risk-free rate.

Just as before we want to derive the efficient frontier by minimizing the variance, given some
expected return µ̄:

min
(x,xf)

x′Σx

s.t. µ′x+ xfR
f = µ̄

e′x+ xf = 1

Again using a Lagrangian, Engels ([17]) showed that the efficient frontier is defined by all pairs
(µef , σef) that satisfy:

µef = (
√
c(Rf)2 − 2bRf + a)σef +Rf (2.13)

The old efficient frontier (2.8) was a curve, but now we have obtained a linear equation. In
other words: the efficient frontier changes to a straight line when a risk-free asset is added. The

4For consistency with later chapters we write Rf with a superscript rather than a subscript.
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new efficient frontier (2.13) is called Capital Market Line. The Capital Market Line starts at
the risk-free rate and is tangent to the old efficient frontier. The point of tangency is called the
market portfolio, which contains all risky assets proportional to their availability in the market.
The market portfolio has expectation µm and variance σ2m. It is shown in figure 2.4.

M
ea

n

Standard deviation

Market portfolio

Capital Market Line

Risk−free
rate

Figure 2.4: Efficient frontier with Capital Market Line and market portfolio

An investor now has to make a choice which proportion of his wealth he wants to invest in the
market portfolio, xm, and how much he wants to borrow or lend at the risk-free rate, xf . His
coefficient of relative risk aversion is γ. Then the mean-variance problem with a risk-free asset
is:

max
(xm,xf)

xfR
f + xmµm − γ

2
x2mσ

2
m

s.t. xm + xf = 1

which is solved by (Engels, [17]):

xm =
µm −Rf

γσ2m
and xf = 1− µm −Rf

γσ2m
(2.14)

The mean return and variance of the corresponding portfolio are:

µmv∗ =
(Rf)2 − 2µmR

f + µ2m
γσ2m

+Rf =
1

γ
(
µm −Rf

σm
)2 +Rf =:

s2

γ
+Rf

σ2mv∗ =
1

γ2
(
µm −Rf

σm
)2 =

s2

γ2

The quantity s is known as the Sharpe ratio. It measures the ratio of expected excess return
and the risk taken in terms of standard deviation. (Sharpe, [33])

Assuming the existence of a risk-free asset, we see that every investor who cares only about
the mean and variance should invest a part of his wealth in a market portfolio of risky assets,
while investing the remainder at the risk-free interest rate. The market portfolio contains the
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unique best mix of risky assets and no investor should alter the relative proportions of risky
assets within this portfolio.5 The only choice of the investor is how much he wants to invest in
this market portfolio and in the risk-free asset. 6

2.6 Summary of chapter 2

In this chapter we explained how we can construct the efficient frontier for an investor who
can choose between a certain number of risky assets and who uses variance of returns as a
measure for risk. The efficient frontier is a curve that contains all the portfolios with an optimal
combination of mean and variance of the portfolio return. To calculate this curve, we only need
to estimate the first two moments of the joint asset return distribution.

Several points on this curve deserved special attention. First we derived analytically how the
portfolio with overall minimum variance should be composed. Next, we explained how the
optimal portfolio can be found for an investor who has a trade-off between expected mean
return and variance. This trade-off can be modeled by a risk aversion parameter γ.

Finally we added a risk-free asset to the model. This changed the efficient frontier from a
hyperbola to a straight line. We observed that, depending on his risk averison, each investor
only has to choose between the risk-free asset and the market portfolio, which contains constant
proportions of all the risky assets.

5This is under the assumption that all investors work with the same estimate of the mean µ and covariance Σ
of returns. In economics this is be called homogeneous expectations.

6This is the mutual fund theorem of James Tobin ([37]). The mutual fund theorem implies that every portfolio
problem can be generalized towards a problem with only two assets: a risk-free asset and a risky asset, which is
the market portfolio, or equivalently, a mutual fund.
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Chapter 3

Utility functions

Asset allocation is about decision making under uncertainty. In some way the investor has to
come up with a ranking between different asset allocations. For these kind of choice problems,
utility functions have been developed, which is the subject of this chapter. In chapter 2 we
already implicitly used utility function (2.10) to find the optimal mean-variance portfolio, when
we described the investor’s attitude towards the trade-off between risk and return by µ′x− γ

2x
′Σx.

The foregoing formula is a function of mean portfolio return and variance. However, utility
functions are not necessarily explicitly dependent on return and risk. It is more common to
define utility as a function of realized wealth W or consumption C, where the curvature of
the utility function takes into account the investor’s risk aversion.1 As mentioned before, risk
aversion is the degree in which one prefers a lower, more certain payoff over a possibly higher
but less certain payoff.

An investor will aim at maximizing his expected utility of wealth, instead of maximizing his
expected wealth. Now let us define the concept of utility functions formally.

Definition A function u : S → R is called a utility function if it is strictly concave, strictly
increasing and continuous on S.

If u either defines the utility of wealth W or consumption C, we have that S = [0,∞) since
we assume that negative wealth or consumption does not exist. Concavity is assumed in order
to capture the trade-off between risk and return (Shreve, [35]): if u is not concave, this would
imply that an investor is risk-loving and prefers a higher risk for the same return, which is not
realistic. Recall that a function f : R → R is concave if:

f(ϱx+ (1− ϱ)y) ≥ ϱf(x) + (1− ϱ)f(y) ∀x, y ∈ R, ϱ ∈ (0, 1)

The curvature of the utility function determines the intensity of the investor’s risk aversion. To
measure this, we take the second derivative and scale it by the first derivative of u. Therefore
we suppose that the utility function u is twice continuously differentiable on S. The coefficient

1Next to this, a utility function can be dependent on time, for example by a discount factor or by a certain
deadline, after which the utility is decreased.
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of absolute risk aversion is defined as:

ARA(W ) := −u
′′(W )

u′(W )
(3.1)

and the coefficient of relative risk aversion is defined as:

RRA(W ) := −W u′′(W )

u′(W )
(3.2)

By the concavity of u both ARA and RRA will be positive.

Hyperbolic absolute risk aversion (HARA) is the most general class of utility functions that is
used in practice. It is a rich family, in the sense that by suitable adjustment of the parameters
one can create a utility function with absolute or relative risk aversion increasing, decreasing or
constant. A function u exhibits HARA if its absolute risk aversion is of the form:

ARA(W ) = (
W

γ
+
η

ξ
)−1 (3.3)

subject to restrictions γ ̸= 0, ξ > 0, ( ξWγ + η) > 0 and η = 1 if γ = ∞ (Merton, [27]). We add
that W ∈ [0,∞).

The general solution to differential equation (3.3), open to additive and multiplicative constant
terms, can be expressed as:

u(W ) =
γ

1− γ
(
ξW

γ
+ η)1−γ (3.4)

Campbell and Viceira ([12]) learn us that three subclasses of HARA utility exist which produce
results consistent with mean-variance analysis. The two most used subclasses are the utility
functions for which either the absolute risk aversion (3.1) or the relative risk aversion (3.2) is
constant. The third type is quadratic utility, for which absolute risk aversion is increasing in
wealth.

If RRA is constant and thus η = 0, we speak of constant relative risk aversion (CRRA).2 For
γ = 1, the solution to the differential equation (3.3) is log utility, (3.5):

u(W ) = log(W ) for γ = 1 (3.5)

This also follows from (3.4) as γ tends to 1. For γ ̸= 1, we get the power utility function (3.6):

u(W ) = W 1−γ

1−γ for γ ̸= 1 (3.6)

In this thesis we assume that every individual is risk-averse, which implies γ > 0.

Secondly, if ARA is constant, we speak of constant absolute risk aversion (CARA). We note
that ARA becomes a constant as γ tends to infinity. From the restrictions we have that η = 1

2Note that CRRA implies decreasing absolute risk aversion.
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for γ = ∞. Then the solution to (3.3) is straightforward and is called the exponential utility
function:3

u(W ) = 1− e−ξW (3.7)

where we assume that ξ > 0.

Finally, if η ̸= 0 and γ = −1, we have quadratic utility:

u(W ) = −1

2
ξ2W 2 + ηξW − 1

2
η2

Again the solution is open to the addition and multiplication of constants. Usually the quadratic
utility is written as

u(W ) =W − ζ

2
W 2 (3.8)

where ζ > 0 is the parameter of increasing risk aversion.

Figure 3.1 below shows the exponential utility function for ξ = 2, the power utility function for
γ = 2 and the quadratic utility function for ζ = 0.5. The curvature is obviously different. We
see that as long as wealth is low, a small increase of wealth is rewarded by a higher increase in
utility than as wealth is high. This effect is most present for the power utility function and less
present for the quadratic utility function.

0 0.5 1 1.5
0

0.5

1

U
til

ity

CARA, ξ=2

0 0.5 1 1.5
−40

−30

−20

−10

0
CRRA, γ=2

0 0.5 1 1.5
0

0.5

1
Quadratic, ζ=0.5

Figure 3.1: Exponential utility with ξ = 2, power utility with γ = 2 and quadratic utility with
ζ = 0.5.

The difference between the three types of utility is best explained by an example. Suppose we
have two investors, A and B. Investor A has a wealth of 10 euros while B owns 1 millon euros.
Under CARA, an absolute increase by, for example, 1 euro will result in the same increase in
utility for both investors. Under CRRA a relative increase of wealth by, for example, 10% will
lead to the same increase in utility for both A and B. Finally, for quadratic utility, an increase
of wealth of both 10% or 10 euros will lead to a lower increase in utility for the wealthier investor
B than for A.

3One can also evaluate the limit of (3.4), using the calculus identity limn→∞(1 + x
n
)−n = ex. We get that

lim
γ→∞

γ

1− γ
(
ξW

γ
+ 1)1−γ = lim

γ→∞

γ

1− γ
(
ξW

γ
+ 1)(

ξW

γ
+ 1)−γ = −1 · 1 · e−ξw

This solution is open to addition of constants. It is common to add 1 which gives (3.7).
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In the environment of investors, CRRA seems the most realistic assumption. Except Scrooge
McDuck, who appears to become more greedy as he becomes richer and thus is the ’living’
example of an investor with quadratic utility, introspection suggests that a millonaire will be
relatively unconcerned with a risk that might worry a poor person and will pay less to avoid such
a risk. Next to this, power and log utility have attractive analytical properties, which we will
see later in this thesis. Therefore most authors assume an investor with constant relative risk
aversion. In any case, it is commonly thought that absolute risk aversion should not increase in
wealth, which makes quadratic utility not a very plausible assumption.

Despite these intuitive reasonings, empirical results on the type of risk aversion and realistic
values of parameters are mixed. For example, Schooley and Worden, ([32]), report that an
individual’s relative risk aversion is empirically constant or decreasing in wealth, depending
on the samples and measure of wealth. Friend and Blume, ([19]), found with a high level of
significance that in the context of static portfolios households typically have constant relative
risk aversion with parameter γ being at least 1, and more likely to exceed 2. Institutional
investors probably have a higher γ than households. Bali, ([2]), used multiple time series to
conclude with high statistical significance that γ is between 1 and 5. Finally Chou et al., ([13]),
found that the coefficient of relative risk aversion might be increasing in wealth which would
suggest the use of quadratic utility.

Because empirical results are contradictory, we will investigate the influence of different types of
utility functions on the optimal portfolio strategy and the efficient frontier in which this results.
As shown by Yu et al., ([39]), optimal portfolio weights differ if different utility functions are
used, but they do not show which utility function is optimal. We hope to answer this question.
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Chapter 4

From static to dynamic portfolios

In chapter 2 we have seen the framework developed by Markowitz and the extension with a
risk-free asset. It is an intuitive and useful framework which is very easy to implement. There-
fore classical single-period portfolio choice continues to dominate most academic and practical
applications and extensions of portfolio theory. Nevertheless, an obvious shortcoming of mean-
variance analysis is the assumption that mean and covariance of asset returns remain constant
until the end of the investment horizon. It is not capable of adapting to possible changes in
the financial markets.1 A dynamic asset allocation would enable adaption to these changing
conditions and is therefore much more realistic than the static Markowitz-type models, but its
implementation involves many complications. This is well described by the following quote:

Classical mean-variance brilliantly declares victory and goes home just before the
hard part begins - John. H. Cochrane ([14]).

In section 4.1 we describe two set-ups, under which the dynamic portfolio choice problem can be
solved analytically in continuous time. In section 4.2 thereafter discretization of the continuous
problem is discussed.

4.1 Dynamic portfolio theory in continuous time

4.1.1 An explicit continuous time solution by Merton

The first contribution to dynamic portfolio choice was by Merton (1969, 1971). Based on the
observations that means and variances do not stay constant over time but change in response
to economic conditions, investment strategies should be designed to protect against these fluc-
tuations and if possible take advantage of these fluctuations. He considered the portfolio choice
problem in continuous time with intertemporal consumption. He concluded that the optimal
portfolio should combine a standard, mean-variance component with a intertemporal hedging
component to provide insurance against shocks in return moments. (Detemple, [16])

1For this reason static, single-period portfolio choice is often referred to as myopic portfolio choice, from the
Greek word µωυπς, meaning short-sighted.
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Now let us describe the approach of Merton. Suppose there is one risk-free asset with return Rf

and n risky assets, with prices following geometric Brownian motions and thus are log-normally
distributed. Then Merton ([27]) proves a mutual fund theorem very similar to Tobin ([37]):

Theorem 4.1.1. Given n assets whose changes in prices are log-normally distributed, there
exists a unique pair of mutual funds constructed from linear combinations of these assets such
that, independent of the form of the utility function, wealth distribution or time horizon, indi-
viduals will be indifferent between choosing from a linear combination of these two funds or a
linear combination of the original n assets.

In other words, we can work with just two assets without loss of generality. One asset is risk-free
with return Rf . The second asset is risky and is in fact a composite of the n risky assets. Merton
showed that its price follows a Geometric Brownian Motion:

dSt = µStdt+ σStdBt (4.1)

where Bt is a single Wiener process.2 An investor with horizon T has to decide at time t on the
optimal portfolio weights xt and the optimal amount to consume at each period. At time t, his
wealth is denoted by Wt. The dynamics of his wealth are the proportions invested in each asset
multiplied with the return on the risky asset plus the proportion invested in the riskfree asset
multiplied with the return Rf , minus the amount Ct consumed at time t:

dWt = Wtxt
dSt
St

+Wt(1− xt)R
fdt− Ctdt

= ((xt(µ−Rf) +Rf)Wt − Ct)dt+ xtσWtdBt

The investor has two utility functions: one function u which captures his attitude towards
consumption throughout the investment period and another function ũ for his attitude towards
final wealth.3 Both consumption and wealth are discounted by a factor ρ.4 The objective of the
investor can be written as:

Jt(Wt) = sup
{xs,Cs:s∈(t,T )}

E[
∫ T

t
e−ρsu(Cs)ds+ e−ρT ũ(WT )|Ft] (4.2)

subject to boundary condition JT (WT ) = e−ρT ũ(WT ). At each time, xs is also one of the
parameters to optimize, because wealth and thus consumption are directly related to the portfolio
weights chosen.

Mertons ([26]) shows that for all t0 < t < T (4.2) can be written as:

Jt0(Wt0) = sup
{xt,Ct}

E[
∫ t

t0

e−ρsu(Cs)ds+ Jt(Wt)|F0] (4.3)

2A Wiener process is a stochastic process with three characteristics: (i) B0 = 0, (ii) Bt is almost surely
continuous and (iii) Bt has independent increments with distribution Bt − Bs ∼ N(0, t − s) for 0 ≤ s ≤ t.
(Shreve, [34])

3For example, an investor might attach a different value to his consumption pattern during his life than to his
heritage, which can be seen as his final wealth.

4Having 1 euro today is worth more than being promised to get 1 euro one year from today: today’s euro can
be invested against interest rate r, being worth 1 + r one year from today. Thus, today’s value of a 1 euro one
year from now is 1

1+r
. This is at the basis of discounting. As the frequency at which interest is paid out tends to

infinity, it can be shown that an amount A invested for n years for rate R grows to AeRn. (Hull, [21])
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This rewriting is based on the Principle of Optimality of Richard Bellman. The discrete version
of this principle is discussed in section 4.2. For the proof of the continuous version we refer to
the book of Stokey, Lucas & Prescott ([36]) or Pham ([30]).

To derive an explicit expression for portfolio weights and consumption rules, Merton assumed
the bequest function ũ(WT ) to be equal to 0. Furthermore we assume that u is a member of the
HARA class of utility functions (3.4) as described in the previous chapter. Merton shows that
the explicit solution of (4.3) is given by:

Jt(W ) = γξγ−1e−ρt
[γ(1− e

−(
ρ−(1−γ)v

γ
)(T−t)

)

ρ− δv

]γ[Wt

γ
+

η

ξRf
(1− e−R

f(T−t))
]1−γ

where v = Rf + (µ−Rf)2

2γσ2 . Then the optimal consumption rule and portfolio weights are repre-
sented by:

C∗
t =

[ρ− (1− γ)v][Wt +
γη
ξRf (1− eR

f(t−T ))]

γ(1− exp[ρ−(1−γ)v
γ (t− T )])

− γη

ξ
(4.4)

x∗tWt =
µ−Rf

γσ2
Wt +

η(µ−Rf)

ξRfσ2
(1− eR

f(t−T )) (4.5)

Explicit expressions for the portfolio weights and consumption have been found. If we let η = 0
in (3.4), then the HARA utility reduces to constant relative risk aversion. Then the portfolio
weights (4.5) are independent of Ct and Wt and constant in time:

x∗ =
µ−Rf

γσ2
(4.6)

Note that these weights are exactly equal to the weight attached to the market portfolio in
chapter 2, (2.14). This shows us that the risk aversion γ used in the mean-variance optimalization
is exactly the same as the coefficient of relative risk aversion used here.

If we assume CARA utility, thus γ = ∞ and η = 1, then the optimal weights are

x∗tWt =
(µ−Rf)

ξσ2
1− eR

f(t−T )

Rf

This solution is different from the myopic case. The money value of the risky part of the portfolio,
x∗Wt is held constant, only corrected for a kind of discount factor.

We have seen that for the dynamic portfolio choice problem in continuous time a closed-form
solution exists if the investor has HARA utility and returns on the risky asset are IID. Moreover,
in the special case of constant relative risk aversion, the long-term investor will act the same as
in the static formulation of chapter 1.

An investor with CRRA utility and IID returns is not the only type of investor who will act
myopically. Samuelson ([31]) showed that an investor with log utility will behave myopically as
well, even if asset returns are not IID. Unfortunately these assumptions on asset returns rarely
hold in reality and portfolio weights will be different from the myopic case. This is shown exactly
in the set-up of Wachter (2002).
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4.1.2 Another explicit solution by Wachter

Wachter combines the myopic portfolio strategy with a hedging component. In the model,
the investor again has power utility with risk aversion γ. He wants to maximize expected
utility of terminal wealth. There is one risky asset, which follows Brownian motion (4.1) with
a time-varying mean µt, and a risk-free asset with constant return Rf . The market price of risk

θt =
µt−Rf

σ follows a mean-reverting Ornstein-Uhlenbeck process:

dθt = k(θ̄ − θt)dt− σθdBt

where k, θ̄ and σθ are positive constants and θ0 is given. So Wachter assumes a perfect negative
correlation between the market price of risk θt and the return on the risky stock.

Provided that σ−2
θ k2+ρ(1−2σ−1

θ k) ≥ 0 holds, where ρ = 1− 1
γ , we can derive the exact portfolio

weights. Define the constants:

G := σ−1
θ k −

√
σ−2
θ k2 + ρ(1− 2σ−1

θ k)

α := 2(k − σθG)

Let τ = T − t and define the variables:

B(τ) :=
2(1− e−

1
2
ατ )2

α(α− (ρ−G)σθ(1− e−aτ ))
kθ̄

C(τ) :=
1− e−ατ

α− (ρ−G)σθ(1− e−aτ )

The optimal demand for the risky asset is x∗t = x∗1t + x∗2t, where

x∗1t =
1

γσ
θt =

µt −Rf

γσ2

x∗2t = −ρσθ
γσ

[B(τ) + C(τ)θt]

The first component is just the mean-variance demand (with a time-varying mean µt) which
also follows from the myopic problem and Merton’s solution. The second component is the
intertemporal hedging demand. (Wachter, [38], Oberuc, [29])

4.2 Dynamic portfolio theory in discrete time

Unfortunately closed-form solutions to the continous dynamic problem only exist under very
strict assumptions of the return dynamics. Once the number of assets is increased or once the
return dynamics become more complicated, currently there are no closed-form analytic solutions
to the continuous models, which is why the dynamic portfolio choice problem is often discretized
to be solved numerically.

Next to this, an investor with a long-term horizon will presumably not trade continuously. It is
more likely that he only rebalances his portfolio at certain discrete timepoints, which is another
reason why discretization is a natural step.
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4.2.1 Discretization of the dynamic portfolio choice problem

As in the myopic case, we still work with a complete probability space (Ω,F ,P). F is the σ-
algebra of events resolved at time T and P is the probability measure on F . Let {Ft}t∈[0,T ] be
a filtration on this probability space, where FT = F .

At time t, the investor aims at maximizing the expected utility of his wealth5 at some terminal
date T by trading periodically at times t, t+1, . . . , T −1 in n risky assets and one risk-free asset.
His wealth at each time is directly related to his wealth one timestep earlier. The investor’s
problem is given by

Jt(Wt, Zt) = max
{xs}T−1

s=t

E[u(WT )|Wt, Zt] (4.7)

s.t. Ws+1 =Ws · (x′sRe
s+1 +Rf) ∀s ≥ t

where xs is a vector of portfolio weights on the risky assets chosen at time s and kept until s+1.
Rf is the gross return on the risk-free asset6 and Re

s+1 is the vector of excess returns of the risky
assets over the risk-free rate. As before, Wt is the investor’s wealth at time t. Since the value
of Wt is influenced by the decisions on the portfolio, it is an endogenous variable. Finally Zt
is the collection of state variables at time t. State variables are exogenous variables and in this
setting mainly economic factors such as interest rate, inflation rate or value of a stock index.7

Both Zt and Wt are Ft-measurable.

Jt(Wt, Zt) is called the value function. It is short for the conditional expectation at time t of the
utility of terminal wealth WT , generated by the current wealth Wt, exogenous state variables
Zt and the subsequent optimal portfolio weights {xs}T−1

s=t . The value function is the discretized
version of (4.3) in Merton’s portfolio problem.

Clearly, future decisions on the portfolio will depend on the decisions made earlier: one can
imagine that an investor with a high realized portfolio return might behave differently from an
investor with a very low realized past portfolio return. At each time between time t and T , an
optimal decision has to be made, having in mind that future optimal decisions will relate to this
decision.

This idea is described by Richard Bellman. In our problem definition a policy is every set
{xt}T−1

t=1 that satisfies the constraints on the portfolio weights.8 An optimal policy is a policy that
maximizes the expected value of u(WT ). Bellman ([5]) formulated the Principle of Optimality:

An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision.

5Unlike the continuous models, we assume there is no intertemporal consumption. Only the utility of terminal
wealth is of importance.

6This means that for a risk-free interest rate of 6%, Rf=1.06 rather than 0.06.
7Technically Zt also contains the investor’s wealth Wt. However, because the investor’s wealth is endogenous

to the portfolio choice, it is written separately from the exogenous information Zt
8So far we did not mention constraints on xt, apart from the portfolio weights summing up to one. Natural

additional constraints are that all individual weights should in [0, 1], which implies that borrowing and going short
is forbidden.
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The analytic translation of this statement is discussed in Bellman’s book ([4]), but in his article
’Dynamic Programming and Stochastic Control Processes’ ([5]) he states that we can rewrite
the investor’s problem (4.7) as a recursive problem:

Jt(Wt, Zt) = max
xt

Et[Jt+1(Wt+1, Zt+1)] (4.8)

s.t. Ws+1 =Ws · (x′sRe
s+1 +Rf) ∀s ≥ t (4.9)

where for notational convenience the conditional expectation is written with a subscript:

Et[X] = E[X|Wt, Zt]

The first step of the proof of (4.8) is easy and follows directly from the law of iterated expecta-
tions.

Jt(Wt, Zt) = max
{xs}T−1

s=t

Et[u(WT )]

= max
xt

max
{xs}T−1

s=t+1

Et[Et+1[u(WT )]]

The second step is to prove that the interchange of expectation and maximum is allowed:

max
xt

max
{xs}T−1

s=t+1

Et[Et+1[u(WT )]] = max
xt

Et[ max
{xs}T−1

s=t+1

Et+1[u(WT )]]

Despite the intuitive correctness of this step, the proof of this step is rigorous and too technical
to show here.

We see that there exists a recursive relation between the value function at time t and the
conditional expectation of the value function at time t + 1. Equation (4.8) is known as the
Bellman equation and is at the basis of the discretized portfolio choice problem. The relation
between current wealth and wealth one step before, (4.9), is called the budget constraint.

4.2.2 Numerical approaches

Since computing power and numerical methods have advanced to the point at which realistic
multiperiod portfolio choice problems can be solved numerically, numerical approaches towards
dynamic portfolio optimization have become a popular topic. In the last thirteen years many
papers have been published with different numerical approaches, amongst others by Brennan,
Schwartz and Lagnado (1997, [9]), Campbell and Viceira (1999, [12]) and Barberis (2000, [3]).
Unfortunately almost all approaches suffer from inflexibility regarding more complex (and thus
more realistic) dynamics of asset returns, the inability to handle more than a few assets or state
variables or the absence of constraints on the portfolio weights.

A very elegant numerical approach which is worth mentioning is by Detemple, Garcia and
Rindisbacher (2003, [15]). They applied a special kind of stochastic calculus, so-called Malliavin
derivatives, to solve the dynamic portfolio choice problem. Nevertheless, also their approach
suffers from strict assumptions on the modelling of the market.
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In 2005 Brandt, Goyal, Santa-Clara and Stroud published a simulation-based method, which
uses a Taylor expansion of the value function and regression over all simulated sample paths
after an idea of Longstaff and Schwartz. The method of BGSS is promising, both in terms of
speed as flexibility to asset return and state variable dynamics. Therefore we choose to develop
this method further. In their article they only apply the method to a two asset problem. We
first will test the model in a simple environment and then apply the model on the multiple asset
case. As remarked already by Detemple, ([16]) and Garlappi and Skoulakis, ([20]), addition of
constraints on the portfolio weights might be necessary to bound the error of the method.
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Chapter 5

Methodology

We start this chapter by describing the methodology as published by Brandt, Goyal, Santa-Clara
and Stroud in 2005. It involves an expansion of the value function, section 5.1 and a backward
recursion process, section 5.3. We give details for an investor with constant relative risk aversion.
The conditional expectations are evaluated using across-path regression, which is explained in
section 5.4. To adjust the regression for outliers, we discuss various robust regression techniques.

In section 5.5 we discuss the optimal portfolio strategy for higher order Taylor expansions. How
to impose constraints is the subject of section 5.6. Finally we show more details on the method
and its implementation for an investor with constant absolute risk aversion and quadratic utility
in section 5.7.

5.1 Expanding the value function

From the previous chapter, recall the Bellman equation (4.8) with its budget constraint (4.9):

Jt(Wt, Zt) = max
xt

Et[Jt+1(Wt+1, Zt+1)]

s.t. Ws+1 =Ws · (x′sRe
s+1 +Rf) ∀s ≥ t

The BGSS method starts with substitution of the budget constraint (4.9) in Jt+1(Wt+1, Zt+1):

Jt+1(Wt+1, Zt+1) = Jt+1(Wt(x
′
tR

e
t+1 +Rf), Zt+1) (5.1)

Next, we employ a second-order Taylor-expansion of (5.1) around WtR
f , which will lead to an

explicit solution for the portfolio weight xt:
1

Jt+1(Wt(x
′
tR

e
t+1 +Rf), Zt+1) ≈ Jt+1(WtR

f , Zt+1)

+∂1Jt+1(WtR
f , Zt+1)(Wtx

′
tR

e
t+1)

+
1

2
∂21Jt+1(WtR

f , Zt+1)(Wtx
′
tR

e
t+1)

2 (5.2)

1In section 5.5 we employ higher-order Taylor-expansions to take the skewness and kurtosis of the return
distributions into account.
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where ∂1Jt+1 denotes the partial derivative with respect to the first variable of the value function.
The Taylor expansion (5.2) is substituted in (4.8) and we obtain approximation J̃t(Wt, Zt) for
Jt(Wt, Zt):

J̃t(Wt, Zt) = max
xt

Et[Jt+1(WtR
f , Zt+1) + ∂1Jt+1(WtR

f , Zt+1)(Wtx
′
tR

e
t+1)

+
1

2
∂21Jt+1(WtR

f , Zt+1)(Wtx
′
tR

e
t+1)

2] (5.3)

At each time t we can find xt that maximizes the right-hand side of (5.3) by taking the gradient
towards xt and setting it equal to zero:

0⃗ = ∇{Et[Jt+1(WtR
f , Zt+1) + ∂1Jt+1(WtR

f , Zt+1)(Wtx
′
tR

e
t+1)

+
1

2
∂21Jt+1(WtR

f , Zt+1)(Wtx
′
tR

e
t+1)

2]} (5.4)

Let us assume that the use of the dominated convergence theorem is allowed. Then interchange
of expectation and derivative is allowed and we can rewrite (5.4) as:

0⃗ = WtEt[∂1Jt+1(WtR
f , Zt+1)R

e
t+1]

+W 2
t Et[∂21Jt+1(WtR

f , Zt+1)(x
′
tR

e
t+1)R

e
t+1] (5.5)

By the commutativity of the inner product and the associativity of matrix operations we have
that (x′tR

e
t+1)R

e
t+1 = (Re

t+1R
e′
t+1)xt. Rewriting (5.5) leads to an explicit expression for xt, which

depends on two conditional expectations. Because this will also be an approximation, we denote
the portfolio weight by x̃t:

2

x̃t = −{WtEt[∂21Jt+1(WtR
f , Zt+1)(R

e
t+1R

e′
t+1)]}−1

×Et[∂1Jt+1(WtR
f , Zt+1)(R

e
t+1)] (5.6)

Let us define

At+1 := ∂1Jt+1(WtR
f , Zt+1)R

e
t+1 (5.7)

Bt+1 := ∂21Jt+1(WtR
f , Zt+1)R

e
t+1R

e′
t+1 (5.8)

so that we can write (5.6) as:3

x̃t = −{WtEt[Bt+1]}−1 × Et[At+1] (5.9)

2The rewriting relies on the assumption that matrix Et[∂
2
1Jt+1(WtR

f , Zt+1)(R
e
t+1R

e′
t+1)] is non-singular and

thus invertible. Analytically this is not necessarily true. For example, for n = 1, neglecting ∂2
1Jt+1(WtR

f , Zt+1),
the matrix is singular if Et[(R

e
1,t+1)

2] = 0. For n = 2, the inverse does not exist if Cov(Re
1,t+1, R

e
2,t+1|Ft) = 0.

But as we will see in section 5.4, the conditional expectations are approximated for each element of the matrix
separately, based on simulations and regression analysis. As the number of simulations grows, the probability
that the approximated matrix has a determinant equal to zero becomes extremely small.

3The two expectations in (5.9) can be seen as the second moment matrix of returns scaled by the second
derivative of the value function and the risk premia of the assets scaled by the first derivative of the value function
(Brandt et al., [7]).
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Now let us take a closer look at the derivative ∂1 of Jt+1(Wt+1, Zt+1) that is used in (5.7) and
(5.8). Recall that by its original definition (4.7), we had:

Jt+1(Wt+1, Zt+1) = max
{xs}T−1

s=t+1

Et+1[u(WT )] (5.10)

Using the budget constraints, we can write terminal wealth in terms of current wealth:

WT =Wt

T−1∏
s=t

(x′sR
e
s+1 +Rf) (5.11)

Now suppose that for s = t + 1, . . . , T − 1 the optimal portfolio weights have already been
determined. They are denoted by the set {x̂s}T−1

s=t+1. Then we can write terminal wealth WT in
terms of Wt+1 and the optimal future weights:

WT =Wt+1

T−1∏
s=t+1

(x̂′sR
e
s+1 +Rf) (5.12)

For notational convenience, we define the portfolio return from t+1 until T under the estimated
optimal strategy by:

ψt+1 =

T−1∏
s=t+1

(x̂′sR
e
s+1 +Rf) (5.13)

so that we can write (5.12) asWT =Wt+1ψt+1. We subsitute this in (5.10). Because the optimal
future portfolio weights are assumed to be known already, the maximizer in (5.10) disappears.
We get:

Jt+1(Wt+1, Zt+1) = Et+1[u(Wt+1ψt+1)] (5.14)

Now let us take the partial derivative of (5.14) towards the first variable, which is Wt+1 in the
above:

∂1Jt+1(Wt+1, Zt+1) = Et+1[∂u(Wt+1ψt+1)ψt+1] (5.15)

The extra term in the expectation follows from the chain rule. Because u is a function of one
variable, we write ∂ instead of ∂1.

Analogously, for the second derivative of Jt+1 we get

∂21Jt+1(Wt+1, Zt+1) = Et+1[∂
2u(Wt+1ψt+1)ψ

2
t+1] (5.16)

5.2 Simulating sample paths

In the second step Monte Carlo simulation is used to generate M independent sample paths of
the vector {Ys}Ts=1 = {(Re

s, Zs)}Ts=1:

Yt+1 = f(Yt, Yt−1, . . . ; ϵt+1)
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where ϵt+1 is a random innovation.

Each sample path m describes one realized evolution of the asset returns and state variables
from time 1 to T . The Yt’s can be simulated in several ways, but in econometrics it is common
to use vector autoregressive modelling. This is discussed in section 6.1.

5.3 Backward recursion by approximating terminal wealth

For each date t and sample pathm we solve recursively backwards to obtain the optimal portfolio
weights. Assume that for s = t + 1, . . . , T − 1 the optimal portfolio weights have already been
computed. They are denoted by x̂s.

In the Taylor expansion we used WtR
f , the current wealth growing at the risk-free rate as

an expansion point. We follow this and approximate terminal wealth by the current wealth
growing at the risk-free rate for one period and subsequently growing at the return generated
by the portfolio weights x̂s:

4

ŴT =WtR
f
T−1∏
s=t+1

(x̂′sR
e
s+1 +Rf) =WtR

fψt+1 (5.17)

Using approximation (5.17) for terminal wealth, we can write Jt+1(WtR
f , Zt+1) = Et+1[u(ŴT )].

Again, because the optimal future portfolio weights have been determined, the maximizer has
disappeared.

Now let us evaluate the expression for Et[At+1], which was:

Et[At+1] = Et[∂1Jt+1(WtR
f , Zt+1)R

e
t+1]

We subsitute ∂1Jt+1(WtR
f , Zt+1) by (5.15) with Wt+1 replaced by WtR

f :

Et[At+1] = Et[Et+1[∂u(WtR
fψt+1)ψt+1]R

e
t+1] (5.18)

This is explicitly different than the original article, which mistakenly uses Rfψt+1 as a chain
factor in (5.18). Applying the law of iterated expectations to (5.18) gives:5

Et[At+1] = Et[∂u(WtR
fψt+1)ψt+1R

e
t+1] (5.19)

Analogously we get for Et[Bt+1]:

Et[Bt+1] = Et[∂2u(WtR
fψt+1)ψ

2
t+1R

e
t+1R

e′
t+1] (5.20)

The further evaluation of (5.19) and (5.20) will depend on the choice of utility function u. In
section 5.7 we consider an investor with exponential or quadratic utility, but first we follow the

4The ’true’ terminal wealth is WT = ŴT +Wtx
′
tR

′e
t+1ψt+1.

5Theoretically the application of the law of iterated expectations is justified. But in practice all conditional
expecations are approximated and therefore the law of iterated expectations might not be applicable. This is
further discussed in section 5.4.2.
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majority of literature and assume an investor with constant relative risk aversion. Then his
utility function is either power utility u(W ) = W 1−γ/(1 − γ) for γ ̸= 1 or log utility u(W ) =
log(W ) for γ = 1. For both types we have that ∂u(W ) = W−γ and ∂2u(W ) = −γW−γ−1. We
use this in (5.19) and (5.20):

Et[At+1] = (WtR
f)−γEt[ψ1−γ

t+1 R
e
t+1] (5.21)

Et[Bt+1] = −γ(WtR
f)−γ−1Et[ψ1−γ

t+1 R
e
t+1R

e′
t+1] (5.22)

We substitute (5.21) and (5.22) in (5.9). Assuming Wt ̸= 0, simplification gives:

x̃t =
Rf

γ
{Et[ψ1−γ

t+1 R
e
t+1R

e′
t+1]}−1Et[ψ1−γ

t+1 R
e
t+1] (5.23)

For the log utility function (5.23) further simplifies to:

x̃t = Rf{Et[Re
t+1R

e′
t+1]}−1 × Et[Re

t+1] (5.24)

We can conclude from (5.23) and (5.24) that under constant relative risk aversion the investment
behaviour is indeed independent of current or initial wealth. Moreover, if γ = 1, the portfolio
weight is also independent of the future portfolio return ψt+1.

The above procedure is for a general step in the backward recursion. Worth mentioning is the
first step of the recursion, in which we find the portfolio weight x̃T−1. At time T −1 the product
in (5.17) is empty and so ψT = 1. It follows that

ET−1[AT ] = (WT−1R
f)−γET−1[R

e
T ]

ET−1[BT ] = −γ(WT−1R
f)−γ−1ET−1[R

e
TR

e′
T ]

which leads to

x̃T−1 =
Rf

γ
{ET−1[R

e
TR

e′
T ]}−1 × ET−1[R

e
T ] (5.25)

Expressions (5.23) and (5.24) differ from the formula found by Brandt et al. In their calculations
they lose the factor Rf , which is not correct. The linear relationship we found between xt and
Rf is counterintuitive: if the risk-free rate is higher (and the excess returns remain equal), the
allocation to the risky asset will be higher. However, this follows directly from the assumption
of constant relative risk aversion. If the risk-free rate is higher and excess returns remain equal,
the relative volatility of the risky asset decreases.6 For an investor with constant relative risk
aversion this implies a higher allocation to the risky asset.

5.4 Compute expectations through regressions

The next step is to approximate the two conditional expectations in (5.23). For this we use
across-path regression, an idea formulated by Longstaff and Schwartz ([23]). First we explain

6The relative volatility is the volatility of the asset return compared to the mean return.
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the methodology, then we provide details on the regression methods in subsection 5.4.1. In
subsection 5.4.2 some additional notes on this part of the methodology are made.

Recall:

x̃t =
Rf

γ
{Et[ψ1−γ

t+1 R
e
t+1R

e′
t+1]}−1Et[ψ1−γ

t+1 R
e
t+1]

=
Rf

γ
{Et[Bt+1]}−1Et[At+1]

We still assume that portfolio weights from time t+1 up to T − 1 already have been calculated.
Based on the M sample paths of the asset returns, we have M realizations amt+1 ∈ Rn for the
vector At+1 and M realizations bmt+1 ∈ Rn×n corresponding to matrix Bt+1, m = 1, . . . ,M .

For each generic element yt+1 of At+1 and Bt+1 we employ an across-path regression. At each
time t we use all M paths to fit a linear model between the information at time t, captured by
the state variables, and the observations of yt+1. Let Xt denote the matrix with M realizations
of the state variables at time t at all simulation path.7 For simplicity, we assume there is only
one state variable Zt and we use a quadratic polynomial as a basis:8

Xt =


1 Z1,t Z2

1,t

1 Z2,t Z2
2,t

...
1 ZM,t Z2

M,t


We assume that for each sample path m there exists a linear relationship between the elements
of the corresponding mth row of Xt and the realization ym,t+1:

ym,t+1 = Xm,tβ + ϵm (5.26)

for some β ∈ R3. The ϵm’s are assumed to be an i.i.d. sequence. With regression we seek an
approximation β̂ of β. The fitted model is:

ym,t+1 = Xm,tβ̂ + em

where em are the residuals.

In our framework, we perform n regressions for Et[at+1] and n
2 regressions for Et[bt+1], following

the procedure above. Using one of the regression methods of subsection 5.4.1, we can approxi-
mate the value of these conditional expectations for each realization of the state variables. Then
for each path m the approximate optimal portfolio weight at time t is given by:

x̂m,t =
Rf

γ
(b̂m,t+1|t)

−1âm,t+1|t

7Note that, by only including current values of the state variables, we assume a Markovian problem. The
influence of past values of the state variables is assumed to be insignificant.

8With more state variables Xt grows larger and cross-sections of the state variables have to be involved.
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5.4.1 Regression methods

Different methods exist to fit the regression model (5.26). In this section we consider four
methods. Three methods are a part of the same class of M -estimators, the fourth is the so-
called least-trimmed squares estimator.

M-estimators

The best known linear estimator is the least-square estimation, which is a specific example of a
so-called M -estimator. Generally, an M -estimator minimizes the objective function:

M∑
m=1

ρ(em) =

M∑
m=1

ρ(ym,t+1 −Xm,tβ̂)

where the function ρ determines the contribution of each residual to the objective function. A
reasonable ρ should have the following properties (Fox, [18]):

• ρ(e) ≥ 0

• ρ(0) = 0

• ρ(e) = ρ(−e)
• ρ(em) ≥ ρ(ej) for |em| > |ej |.

Let θ = ρ′ be the derivative of ρ. Differentiating the objective function with respect to the coef-
ficients β̂ and setting the partial derivatives to zero, produces a system of estimating equations
for the coefficients of β. In our example the system consists of three equations:

M∑
m=1

θ(ym,t+1 −Xm,tβ̂)Xm,t = 0 (5.27)

Define the weight function w(e) = θ(e)/e and let wm = w(em). Then the system of estimating
equations (5.27) can be rewritten as

M∑
m=1

wm(ym,t+1 −Xm,tβ̂)Xm,t = 0

Solving these equations is a weighted least-squares problem, minimizing
∑M

m=1w
2
me

2
m. An iter-

ative solution is required:

1. Select an initial estimate β̂(0), such as the least-squares estimate.

2. At each iteration j calculate residuals e
(j−1)
m and associated weights w

(j−1)
m = w(e

(j−1)
m )

from the previous iteration.

3. Solve for the new weighted-least-squares estimate:

β̂(j) = [X ′
tW

(j−1)Xt]
−1X ′

tW
(j−1)yt+1

where W (j−1) = diag(w
(j−1)
m ) is the current weight matrix.
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Step 2 and 3 are repeated until the estimated coefficients converge. One can specify a maximum
number of iterations or repeat until two subsequent solutions are closer to each other than a
certain tolerance level. Supposed the assumption of the underlying linear model is correct, the
iterative procedure will converge for real-valued problems. (Bissantz et al, [6]).

We consider three examples of M -estimators: the ordinary least-squares estimator, the Huber
estimator and the bisquare estimator.

Least-squares estimator

Under ordinary least-squares estimation we have ρls(e) = e2. Then we get that so wls(e) = 2.
It immediately follows that the least-squares solution has an optimal solution that is obtained
without iteration:

β̂ = (X ′
tXt)

−1X ′
tyt+1

Least-squares assigns equal weight to each observation. This can lead to undesirable behaviour
if the distribution of the residuals is heavy-tailed.

Huber estimator

We can correct for these heavy tails by considering the Huber and the bisquare estimator. For
the Huber estimator all observations have equal weight as long as |e| < k. Weights decline when
|e| > k, eventually tending to zero as |e| tends to infinity. The value k is called the tuning
constant.

The corresponding objective and weight function are:

ρh(e) =

{
1
2e

2 for |e| ≤ k
k|e| − 1

2k
2 for |e| > k

wh(e) =

{
1 for |e| ≤ k
k
|e| for |e| > k

The tuning constant is chosen to give reasonably high efficiency for normal distributions, while
still offering protection against outliers. As suggested by Fox, we take k = 1.345σ. The standard
deviation of the errors is approximated by the median absolute deviation, which is a robust
measure of spread:

σ̂ = medianm(|em −medianj(ej)|)

The tuning constant k and the estimate of σ are recalculated at each step of the iteration
procedure (Fox, [18]).

Bisquare estimator

The weights assigned by the Tukey bisquare method decline directly as e departs from zero.
Moreover, it assigns a weight of zero to all |e| > k. Again following Fox’s suggestions, we take
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k = 4.685σ. The objective and weight function of the bisquare estimator is

ρbs(e) =

{
k2

6 (1− [1− ( ek )
2]3) for |e| ≤ k

k2

6 for |e| > k

wbs(e) =

{
[1− ( ek )

2]2 for |e| ≤ k
0 for |e| > k

In figure 5.1 the weight functions of the three M -estimators are shown.
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Figure 5.1: The weight functions for the least-squares, Huber and bisquare estimator, with tuning
constants k = 1.345 for the Huber estimator and k = 4.685 for the bisquare

Least-trimmed squares regression

Even M -estimators can be vulnerable to outlying observations. To limit the influence of these
observations, one can apply the least-trimmed squares (LTS) regression. The LTS method tries
to minimize the sum over the squared residuals over a subset of all M datapoints:

LTS(β) = argminβ

cM∑
m=1

e2(m) (5.28)

where e2(1), e
2
(2), . . . are the order squared residuals and c is the coverage parameter. This param-

eter can take any value between 0.50 and 1, but typically it is a little more than 0.50.

As we will see, the LTS method has high computations costs. Instead of calculating each
regression once (for OLS) or a few times until convergence (Huber and bisquare), the regression
has to be calculated for many subsets of the data. Especially whenM is large this will be costly.
We use the algorithm supplied by Christophe Croux from the Koninklijke Universiteit Leuven,
which calculates the regression for a maximum of 500 subsets. (Croux et al., [1])
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5.4.2 Additional notes on the regression

Formal justification

Assuming that the linear model (5.26) holds, means that we assume that the value of each
conditional expectation can be represented as a linear combination of simple powers of the state
variable Zt.

More generally, we assume that the conditional expectations can be represented as a linear com-
bination of a countable set of Ft-measurable basis functions. This assumption can be formally
justified if the conditional expectation is an element of the L2-space of square-integrable func-
tions relative to some measure. Since L2 is a Hilbert space9, it has a countable orthonormal
basis and thus we can represent the conditional expectation as a linear function of the elements
of the basis. More specifically, let Lj(Zt) be the jth basis function, so that we can represent
each conditional expectation as:

Et[·] =
∞∑
j=0

ajLj(Zt)

where the aj ’s are constants.

In our algorithm we regress on an ordinary polynomial of order two. This mean we have chosen
simple powers of the state variable Zt as a basis function for the regression: Lj(Zt) = Zjt .
This choice is not random. Longstaff and Schwartz ([23]) show that the results of the regression
method are practically unaffected by the choice of basis functions and reported virtually identical
results for the use of ordinary polynomials, Hermite polynomials, Laguerre polynomials and
trigonometric series as basis functions. Furthermore, only a few basis functions are needed for
a close approximation, which explains why we choose a polynomial of order two.

Value function iteration versus portfolio weight iteration

If we are able to estimate the conditional expectations exactly, applying the law of iterated
expectations in (5.18) is permitted, which leads to the solution (5.6) for xt. In practice we
approximate the conditional expectations through regression across simulation paths. The poly-
nomial expansion of the state variables is just an approximation of the true function relation
between the state variables and the conditional moments. If this approximation is inaccurate,
the law of iterated expectations is not applicable in (5.18) and the conditional expectation of
At+1 should be evaluated as:

Et[At+1] = (WtR
f)−γÊt[Re

t+1Êt+1[ψ
1−γ
t+1 ]] (5.29)

In other words, first Et+1[ψ
1−γ ] is approximated by regression on Zt+1, afterwards the conditional

expectation at t is approximated. This procedure is known as value function iteration.

As shown by Brandt and Van Binsbergen ([8]) portfolio weight iteration and value function
iteration are almost equivalent for low values of the investment horizon T and risk aversion γ.

9A Hilbert space H is a real or complex inner product space that is also a complete metric space with respect
to the distance function induced by the inner product.
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For high values of T and γ portfolio weight iteration is advantageous, especially when constraints
are imposed on the portfolio weights. Because we want to calculate the asset allocation for a
long-term investor with optional constraints on the portfolio weights, we choose to work with
portfolio weight iteration.

5.5 Increasing the order of the Taylor expansion

So far we used a second-order Taylor expansion of the value function, (5.9). To adapt for the
effect of a non-zero third and fourth moment of excess return, we use a fourth-order Taylor
expansion of the value function:

J̃t(Wt, Zt) = max
xt

Et[Jt+1(WtR
f , Zt+1)

+∂1Jt+1(WtR
f , Zt+1)(Wtx

′
tR

e
t+1)

+
1

2
∂21Jt+1(WtR

f , Zt+1)(Wtx
′
tR

e
t+1)

2

+
1

6
∂31Jt+1(WtR

f , Zt+1)(Wtx
′
tR

e
t+1)

3

+
1

24
∂41Jt+1(WtR

f , Zt+1)(Wtx
′
tR

e
t+1)

4]

To obtain the maximum, we take the gradient of the foregoing equation with respect to xt and
set equal to zero:

0⃗ = WtE[∂1Jt+1(WtR
f , Zt+1)R

e
t+1]

+W 2
t Et[∂21Jt+1(WtR

f , Zt+1)(x
′
tR

e
t+1)R

e
t+1]

+
1

2
W 3
t Et[∂31Jt+1(WtR

f , Zt+1)(x
′
tR

e
t+1)

2Re
t+1]

+
1

6
W 4
t Et[∂41Jt+1(WtR

f , Zt+1)(x
′
tR

e
t+1)

3Re
t+1]

Because of the high orders of x, we can only solve the above equation implicitly. We write xt in
terms of the other orders:

x̃t = −{W 2
t Et[∂21Jt+1(WtR

f , Zt+1)R
e
t+1R

e′
t+1]}−1

×{WtE[∂1Jt+1(WtR
f , Zt+1)R

e
t+1]

+
1

2
W 3
t Et[∂31Jt+1(WtR

f , Zt+1)(x
′
tR

e
t+1)

2Re
t+1]

+
1

6
W 4
t Et[∂41Jt+1(WtR

f , Zt+1)(x
′
tR

e
t+1)

3Re
t+1]}

We can write this as:

x̃t = −{WtEt[Bt+1]}−1 × {Et[At+1] +
W 2
t

2
Et[Ct+1(xt)] +

W 3
t

6
Et[Dt+1(xt)]} (5.30)
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with At+1 and Bt+1 as in (5.7) and (5.8), and:

Ct+1(xt) := ∂31Jt+1(WtR
f , Zt+1)(x

′
tR

e
t+1)

2Re
t+1

Dt+1(xt) := ∂41Jt+1(WtR
f , Zt+1)(x

′
tR

e
t+1)

3Re
t+1

Again we continue assuming an investor with constant relative risk aversion. With approxima-
tion of terminal wealth (5.17) we can write:

Et[Ct+1(xt)] = −γ(−γ − 1)(WtR
f)−γ−2Et[ψ1−γ

t+1 (x
′
tR

e
t+1)

2Re
t+1]

Et[Dt+1(xt)] = −γ(−γ − 1)(−γ − 2)(WtR
f)−γ−3Et[ψ1−γ

t+1 (x
′
tR

e
t+1)

3Re
t+1]

Substituting these expressions in (5.30) gives:

x̃t = −(−γ(WtR
f)−γ−1)−1{WtEt[ψ1−γ

t+1 R
e
t+1R

e′
t+1]}−1

×{(WtR
f)−γEt[ψ1−γ

t+1 R
e
t+1]

−W
2
t

2
γ(−γ − 1)(WtR

f)−γ−2Et[ψ1−γ
t+1 (x

′
tR

e
t+1)

2Re
t+1]

−W
3
t

6
γ(−γ − 1)(−γ − 2)(WtR

f)−γ−3Et[ψ1−γ
t+1 (x

′
tR

e
t+1)

3Re
t+1]}

Simplification gives:

x̃t =
Rf

γ
{Et[ψ1−γ

t+1 R
e
t+1R

e′
t+1]}−1Et[ψ1−γ

t+1 R
e
t+1]

−{Et[ψ1−γ
t+1 R

e
t+1R

e′
t+1]}−1 × {−1

2

(γ + 1)

Rf
Et[ψ1−γ

t+1 (x
′
tR

e
t+1)

2Re
t+1]

+
1

6

(γ + 1)(γ + 2)

(Rf)2
Et[ψ1−γ

t+1 (x
′
tR

e
t+1)

3Re
t+1]}

=
Rf

γ
{Et[bt+1]}−1Et[at+1]− {Et[bt+1]}−1

×{−1

2

(γ + 1)

Rf
Et[ct+1(xt)] +

1

6

(γ + 1)(γ + 2)

(Rf)2
Et[dt+1(xt)]}

(5.31)

Calculating the conditional expectations of ct+1(xt) and dt+1(xt) works as in section 5.4.

Expression (5.31) is an implicit expression, where the first part at the righthand side equals
the solution obtained for xt by second-order expansion, (5.23), which we will write as xt,0. We
approximate the solution of (5.31) by iteration. The iteration process follows

x̃t,i+1 = x̃t,0 − {Et[bt+1]}−1 × { −1
2
(γ+1)
Rf Et[ct+1(x̃t,i)]

+1
6
(γ+1)(γ+2)

(Rf)2
Et[dt+1(x̃t,i)]} (5.32)
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We can either choose to end the iteration process after a fixed number of iterations, or continue
the iteration process until the difference between two subsequent values is less than a specified
tolerance.

Deriving expressions for xt using higher-order Taylor expansions is straightforward. The (k+1)-
order Taylor expansion leads to (k > 2):

x̃t = −{WtEt[Bt+1]}−1 × {Et[At+1] +

k∑
j=2

W j
t (R

f)j−1

j!
(−1)j

(γ + j)!

(γ − 1)!
Et[ψ1−γ

t+1 (x
′
tR

e
t+1)

jRe
t+1]}

5.5.1 Convergence of the iteration procedure

In the previous section we used iteration scheme (5.32) to approximate the optimal portfolio
weight under fourth-order Taylor- expansion. We want to show that this iteration scheme
converges for an investor with CRRA utility. For illustrative purposes we show this for the
most simple case. Assume that the number of simulations M is 1, such that the estimate of the
conditional expectation is equal to the simulated value: Et[yt+1] = yt+1, and assume the number
of assets is n = 1. We rewrite (5.31) as:

xt =
Rf

γ

ψ1−γ
t+1 R

e
t+1

ψ1−γ
t+1 (R

e
t+1)

2
−

(−1
2
(γ+1)
Rf ψ1−γ

t+1 (R
e
t+1)

3x2t +
1
6
(γ+1)(γ+2)

(Rf)2
ψ1−γ
t+1 (R

e
t+1)

4x3t )

ψ1−γ
t+1 (R

e
t+1)

2

=
Rf

γRe
t+1

+
(γ + 1)

2Rf
Re
t+1x

2
t −

(γ + 1)(γ + 2)

6(Rf)2
(Re

t+1)
2x3t =: T (xt)

The solution x∗t of this equation is a so-called fixed point, which we approximated by the iteration
procedure xt,i+1 = T (xt,i). Without loss of generality we transform xt = T (xt) by multiplying

by Re

Rf and substituting z :=
Re

t+1

Rf xt. This gives:

z =
1

γ
+
γ + 1

2
z2 − (γ + 1)(γ + 2)

6
z3 =: T̃ (z)

The iterative procedure used to find the solution of the equation above is zn+1 = T̃ (zn). For
this we use Banach’s fixed point theorem:

Theorem 5.5.1. Let (X , d) be a non-empty complete metric space. If there exists a nonnegative
real number q < 1 such that d(T̃ (v), T̃ (w)) ≤ q · d(v, w) for all v, w ∈ X , then:

1. ∃!z ∈ X : z = z̃,

2. d(T̃ny, z) → 0 as n→ ∞ ∀y ∈ X .

In our simple example the dimension is one, so that the norm is just the absolute value. The
condition of Banach’s theorem is that:

∃q ∈ (0, 1) s.t.
|T̃ (v)− T̃ (w)|

|v − w|
≤ q ∀v, w ∈ X (5.33)
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which holds if |T̃ ′(z)| ≤ q for all z ∈ X , because T̃ is continuous and differentiable. Thus (5.33)
is equivalent to:

|T̃ ′(z)| = |(γ + 1)z − (γ + 1)(γ + 2)

2
z2| ≤ q, q ∈ (0, 1) (5.34)

For q = 1 (5.34) holds for z1 < z < z2 with:

z1 =
(γ + 1)−

√
(γ + 1)2 + 2(γ + 1)(γ + 2)

(γ + 1)(γ + 2)

z2 =
(γ + 1) +

√
(γ + 1)2 + 2(γ + 1)(γ + 2)

(γ + 1)(γ + 2)

By defining X := [z1 + δ, z2 − δ], with δ > 0 some arbitrary small number, for all v, w ∈ X we
have d(T̃ (v), T̃ (w)) < d(v, w).

In our procedure the starting point for the iteration is xt,0 =
Rf

γRe
t+1

. After transformation this

is equivalent to z0 =
1
γ . For γ ≥ 2 we have:

z0 =
1

γ
≤ 2

γ + 2
=

2(γ + 1)

(γ + 1)(γ + 2)
≤ z2

Also z0 > z1. Since z0 ∈ X , the iterative procedure will converge.

Actually, as long as the polynomial of state variables on which we regress has more terms than
the number of simulations M , the procedure above holds, because then Et[yt+1] = yt+1. Of
course we usually take a number M which is much larger. However, in various applications we
have seen convincing convergence and therefore we might assume that the iteration procedure
also works when the conditional expectation is approximated by regression.

5.6 Imposing constraints on portfolio weights

In practice, almost every investor will face constraints on the portfolio weights. If we do not
allow borrowing or going short, this means that 0 ≤ xt ≤ 1. If constraints are imposed, the
region of portfolio weights is bounded and thus the error is bounded as well.

With only one risky asset imposing constraints is easy. At each step in the recursion process
the constrained portfolio weights are:

xconstrt = max(0,min(xunconstrt , 1))

For the case of multiple risky assets, constraining xt is not that straightforward: the optimum
of the constrained problem does not necesarilly follow explicitly from (5.6). Instead we have to
use an optimization algorithm for each timestep t and sample path m, which greatly increases
computation time. Within this thesis we used the medium-scaled fmincon routine in MATLAB

with default settings. Under a second-order Taylor expansion we get:

max
xt

x′tEt[At+1]−
1

2

γ

Rf
x′tEt[Bt+1]xt, s.t. : 0 ≤ xt ≤ 1
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Higher-order Taylor expansions cannot be calculated directly with the fmincon routine, because
the xt is inside a conditional expectation. Therefore we first apply the second-order constrained
algorithm to find a first solution and apply the iteration procedure (5.32) afterwards. If the
iterated solution violates any constraints, we choose to work with the solution obtained by a
second-order constrained optimization.

5.7 Alternative utility functions

Until now we assumed an investor with constant relative risk aversion. In this section we derive
the equation of the optimal portfolio weights for an investor with constant absolute risk aversion,
and for an investor with a quadratic utility function.

5.7.1 Exponential utility

As shown in chapter 3, the utility of an investor with constant absolute risk aversion can be
represented by the exponential utility function, which has derivatives ∂ku(W ) = −(−ξ)ke−ξW .
Then (5.19) and (5.20) become:

Et[At+1] = ξEt[e−ξ(WtRfψt+1)ψt+1R
e
t+1] (5.35)

Et[Bt+1] = −ξ2Et[e−ξ(WtRfψt+1)ψ2
t+1R

e
t+1R

e′
t+1] (5.36)

Substitution of (5.35) and (5.36) in (5.9) gives:

x̃t =
1

ξWt
{Et[e−ξWtRfψt+1ψ2

t+1R
e
t+1R

e′
t+1]}−1 × Et[e−ξWtRfψt+1ψt+1R

e
t+1] (5.37)

At the first step of the recursion process, where t = T − 1, we have that ψT = 1, so that (5.37)
reduces to:

x̃T−1 =
1

ξWT−1
{ET−1[R

e
t+1R

e′
t+1]}−1 × Et[Re

t+1] (5.38)

For a Taylor expansion of order four we get the additional terms:

Et[Ct+1(xt)] = ξ3Et[e−ξWtRfψt+1ψ3
t+1(x

′
tR

e
t+1)

2Re
t+1]

Et[Dt+1(xt)] = −ξ4Et[e−ξWtRfψt+1ψ4
t+1(x

′
tR

e
t+1)

3Re
t+1]

We substitute this in (5.30) and obtain:

x̃t =
1

ξWt
{Et[e−ξWtRfψt+1ψ2

t+1R
e
t+1R

e′
t+1]}−1

×{Et[e−ξWtRfψt+1ψt+1R
e
t+1] +

ξWt

2
Et[e−ξWtRfψt+1ψ3

t+1(x
′
tR

e
t+1)

2Re
t+1]

−ξ
2W 2

t

6
Et[e−ξWtRfψt+1ψ4

t+1(x
′
tR

e
t+1)

3Re
t+1]}
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We see that at each time t the portfolio weights still depend on the endogenous variable Wt,
which is not known yet at time t. This complicates the process and asks for a different approach
than for an investor with CRRA. This is discussed in section 5.7.3.

5.7.2 Quadratic utility

The third and final type of utility which we consider is the quadratic utility function (3.8), with
derivatives ∂u(W ) = 1− ζW and ∂u(W ) = −ζ.10 Then (5.19) and (5.20) become:

Et[At+1] = Et[(1− ζWtR
fψt+1)ψt+1R

e
t+1] (5.39)

Et[Bt+1] = −ζEt[ψ2
t+1R

e
t+1R

e′
t+1] (5.40)

Substitution of (5.39) and (5.40) in (5.9) gives the equation for portfolio weights:

x̃t =
1

ζWt
{[ψ2

t+1R
e
t+1R

e′
t+1]}−1 × Et[(1− ζWtR

fψt+1)ψt+1R
e
t+1] (5.41)

The first step of the recursion process is:

x̃T−1 =
1

ζWT−1
{[Re

TR
e′
T ]}−1 × ET−1[(1− ζWT−1R

f)Re
t+1] (5.42)

Again we notice that portfolio weights explicitly depend on wealth.

5.7.3 Constructing a grid for Wt

If we assume exponential or quadratic utility, portfolio weights xt dependend of the endogenous
variable wealth, which is unknown at time t. To be able to calculate the portfolio weights, we
follow the next procedure:

• At each time t we construct a grid of size K for the endogenous variable Wt.The k
th

gridpoint is denoted as Wt,k. This grid is constructed as follows:

W1 · (Rf · (1− d))t−1,W1 · (Rf · (1− d+∆))t−1, . . . ,W1 · (Rf · (1 + h))t−1

where parameters h and d define the upper and lower limit of the grid and ∆ is the stepsize.

• Using backward recursion, suppose that for t+ 1 we have already calculated the sequence
of optimal portfolio weights {x̂s,k}T−1

s=t+1 and thus we know the values of ψt+1,k for all
gridpoints Wt+1,k. Note that we have M sequences of optimal portfolio weights and M
realizations of ψt+1,k at each gridpoint of Wt+1.

• The next step is to calculate the optimal portfolio weights at time t, which has to be done
for each gridpoint Wt,k separately. Let Wt,k be fixed. To be able to calculate the current
optimal weights, we need the optimal future weights.

10Because all the third and higher derivatives of the quadratic utility function are zero, there is no need for a
fourth-order Taylor expansion.
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• We approximate Wt+1 by Wt,kR
f . The point Wt,kR

f is not necessarily exactly on the
grid of Wt+1. To obtain the sequence of future optimal portfolio weights we use linear
interpolation. First we find a grid point g such that Wt+1,g ≤ Wt,k ≤ Wt+1,g+1. Then for
gridpoint Wt,k the sequence of optimal future portfolio weights is approximated by:

{x̂s}T−1
s=t+1 ≈

Wt,kR
f−Wt+1,g

Wt+1,g+1−Wt+1,g+1
{x̂s,g+1}T−1

s=t+1

+
Wt+1,g+1−Wt,kR

f

Wt+1,g+1−Wt+1,g+1
{x̂s,g}T−1

s=t+1

Now we are able to calculate the M values of ψt+1 that correspond to Wt,k.

• This gives us sufficient information to estimate the optimal portfolio weights at time t for
gridpoint Wt,k.
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Chapter 6

Implementation in a simple setting

For a first insight into the behaviour of our methodology, we use a simple data generating
model with only one risky asset next to the risk-free asset. The use of a simple model gives the
opportunity to test the method with various extensions. The set-up of this model is discussed
in section 6.1. To compare different strategies performance measures are introduced in section
6.2. In section 6.3 we calculate actual optimal asset allocations and in the sections thereafter
we investigate the effect of various extensions and the sensitivity towards parameters under the
assumption of constant relative risk aversion. For the three discussed types of utility we do a
sensitivity analysis in section 6.8. Finally the dynamic strategies are compared with the static
strategy of chapter 2 in section 6.9.

6.1 A simple VAR-model

In econometrics, the most common way to model the economy is as a vector autoregressive
model, better known as a VAR-model. A VAR(p)-model describes the evolution of a vector
yt ∈ Rk over the same sample period t = 1, . . . , T as a linear function of its past evolution.
Formally:

Definition The sequence {yt}t=1,...,T follows a VAR(p)-process if its dynamics can be written
as:

yt = c+A1yt−1 +A2yt−2 + . . .+Akyt−p + ϵt (6.1)

with c ∈ Rk (the intercept), Ai ∈ Rk×k and ϵt ∈ Rk is a vector of error terms satisfying:

• E(ϵt) = 0

• E(ϵtϵ′t) = Σ

• E(ϵtϵ′t−k) = 0 ∀k ̸= 0

This means all error terms have mean zero, its contemporaneous covariance matrix Σ is constant
in time and there is no correlation of error terms across time. (Brockwell and Davis, [10])
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We assume a riskfree asset and only one risky asset or stock. We use a VAR(1)-model to model
the log dividend yield dt

1 and the log excess return of a stock index, which is the logarithm of
the stock index return divided by the risk-free rate: ret = log Rt

Rf .

The model is on a quarterly basis and calibrated on the value-weighted CRSP-index.2 The
coefficients are equal to those used by Brandt et al. ([7]). The model is given by:[

ret+1

dt+1

]
=

[
0.227
−0.155

]
+

[
0 0.060
0 0.958

] [
ret
dt

]
+

[
ϵ1,t+1

ϵ2,t+1

]
(6.2)

where the quarterly innovations are binormally distributed:[
ϵ1,t+1

ϵ2,t+1

]
∼ N(

[
0
0

]
,

[
0.0060 −0.0051
−0.0051 0.0049

]
) (6.3)

This implies an almost perfect negative correlation (ρ = −0.95) between ret+1 and dt+1. This is
explained by the fact that if few or no dividend payments are made, this value remain intrinsic
in the stock, which will cause a rise in stock prices.

To find a seed for the log dividend yield, we assume it is a stationary process of which the
expectation is the same at each step. Then d0 = −0.155/(1− 0.958) = −3.69.

We assume a constant risk-free rate at 6% per year. Since the VAR-system (6.2) is defined
quarterly, this translates to a risk-free rate of Rf = 1.060.25 = 1.0147. Under this set-up of the
VAR-model, the assumption on the risk-free rate does not influence the portfolio weights, only
the terminal wealth.

In the methodology we used the excess return Re
t , while the VAR-model simulates the log excess

return ret . To calculate the excess return from the log excess return, we apply the following
transformation:

Re
t = Rf(er

e
t − 1) (6.4)

Throughout the whole chapter we use Monte Carlo samples of size 10,000.

6.2 Performance measures

To see the advantages of a dynamic strategies, we compare the strategy with several static
strategies. Five descriptive statistics in terms of terminal wealth WT are used to compare
performance. We will display mean µ̂ and standard deviation σ̂ of the realizations of WT , as
well as the (empirical) probability of underperforming the risk-free strategy:

Pupf = P (WT < W1 · (Rf)T−1)

1The log dividend yield is the logarithm of a company’s annual dividend payments divided by the number of
stocks issued.

2CRSP stands for Centre for Research of Security Prices. Its database contains daily price quotations for
common stocks traded on New York and American stock exchanges and NASDAQ. The value-weighted market
index is a weighted average of all stock returns, with the weights given by the market value of the stock issue
(price times shares outstanding) at the end of the previous trading period.
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where W1 denotes the investor’s initial capital.

Furthermore we apply two risk measures which have become popular lately: the Value-at-Risk
(VaR) and the expected shortfall, also known as conditional Value-at-Risk (cVaR). Usually
Value-at-Risk is defined in terms of loss. A higher loss meaning a higher risk, the VaR is calcu-
lated from the upper quantile from the loss distribution. Because we work with wealth instead
of loss, the VaR and cVaR are calculated from the lower quantile of the wealth distribution.
Nevertheless, the concept of the two statistics remains the same.

In this thesis VaR and cVaR with confidence level α ∈ (0, 1) are defined as:

VaRα = sup(y ∈ R : P (WT ≥ y) = α)

cVaRα = E[WT |WT < VaRα]

In words, a VaRα of V says we are α percent certain that final wealth will not be lower than V .
In the case that final wealth will be lower than V , the cVaRα is the conditional expectation of
final wealth in those (1− α)% worst scenarios. (Hull, [22])

Since we work with simulations, all performance measures will be approximated. Throughout
this thesis we will use α = 0.975 unless stated otherwise.

6.3 A first look at the gains of a dynamic strategy

We generated 10,000 simulations from the VAR-model (6.2) and applied the unconstrained
algorithm based on a second-order Taylor-expansion for an investor with constant relative risk
aversion and an investment horizon of 20 quarters. The investor uses a dynamic strategy and
rebalances quarterly. For the regression we use ordinary least-squares.

Under our methodology the allocation to stocks is different for each simulation path. To visualize
the strategy, we calculated the mean allocation that followed from all these individual strategies,
as well as the trend and the standard deviation. In figure 6.1 the mean allocation to stocks is
shown against the investment horizon T − t for this investor. The dashed lines represent the
allocation to stocks one standard deviation under and above the mean allocation. Even though
we look at the mean of a large number of simulations, there are still intertemporal fluctuations,
which relate directly to the underlying data process. If we would plot the mean of Re

t+1, the
same fluctuations are observed.

Nevertheless, behind this fluctuations we can see a trend of increasing allocation to stock for
a longer investment horizon. This is comparable to the results we find in most literature: the
longer the investment horizon T − t still is, the larger the allocation to stock is.

In table 6.1 performance measures are shown for an initial wealth of W1 = 100. As mentioned,
the dynamic strategy is path-dependent. We also considered the use of a path-independent
dynamic strategy, which is either computed as the mean or as the underlying trend of all
individual dynamic strategies.

The gains of a dynamic strategy are clear. The mean of terminal wealth is high, only slightly
underperforming the strategy that invests fully in stocks, but all other performance measures
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Figure 6.1: Mean allocation to stocks (solid line) and its underlying trend, plus/minus one
standard deviation (dashed lines) under a second-order Taylor expansion, T = 20, γ = 5.

Strategy µ̂ σ̂ Pupf VaR0.975 cVaR0.975

100 % risk-free asset 131.8 0 0 131.8 131.8
100 % stock 150.4 36.0 0.33 91.6 84.7
Path-dependent dynamic 149.4 16.1 0.12 114.3 104.6
Dynamic trend 139.2 11.9 0.28 117.2 113.8
Dynamic mean 139.2 12.0 0.28 117.0 113.8

Table 6.1: Performance measures of different portfolio strategies under the basic VAR-model,
T = 20, γ = 5.

have much more favourable values. The probability of underperforming the risk-free strategy
is less than half the value of the 100% stock strategy. Furthermore we see that the idea to use
a general, path-independent dynamic strategy based on either mean or trend of all dynamic
strategies is not advisable.

These results are visualized in figure 6.2, where histograms of WT are displayed under two
portfolio strategies. The red vertical line is the terminal wealth obtained by investing fully in
the risk-free asset, which grows at 6% each year: the ’risk-free’ strategy.

6.4 Effect of constraining the portfolio weights

With constraints on {xt}{t=1,...,T}, the allocation to stocks is slightly higher on average for the
same sample paths of ret+1 and dt. However, in terms of the statistics of WT the differences are
not significant, as is shown in table 6.2. Results are almost equal after imposing constraints on
xt.

Furthermore, we find that the constraining of portfolio weights happens more often in the first
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Figure 6.2: Histograms of WT under different portfolio strategies, T = 20, γ = 5.

Strategy µ̂ σ̂ Pupf VaR0.975 cVaR0.975

Unconstrained 149.4 16.1 0.14 114.3 104.6
Constrained 147.6 15.1 0.14 114.4 104.3

Table 6.2: The differences between constrained and unconstrained portfolio weights, T = 20,
γ = 5.

steps in the recursion process. However, this might relate to the fact that once weights in earlier
steps have been constrained, it becomes less likely to generate extreme portfolio weights in the
following steps. We have to mention though, that for other data generating processes or values
of γ, results between the constrained and unconstrained process might differ significantly.

Because constraints on xt give a more realistic setting, it is advisable to use them.

6.5 Effect of a higher-order Taylor expansion

We extend the unconstrained algorithm with both a fourth, sixth and eighth-order Taylor ex-
pansion. The iteration process (5.32) uses a tolerance level of 10−3, with a maximum of 20
iteration steps. For numerical reasons we take a lower value of γ and T and we generate new
sample paths.

One can see in figure 6.3 that the mean allocation on stocks is changed slightly by a higher-order
expansion. On average portfolio weights become higher for a higher-order expansion. This effect
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is especially present for the change of a second-order to a fourth-order expansion.
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Figure 6.3: Mean allocation to stocks under a second, fourth and eighth-order Taylor expansion,
T = 12, γ = 2.

In table 6.3 the improvements by using a fourth, sixth and eighth-order Taylor-expansion are
quantified in terms ofWT -statistics. Comparing the higher order expansions to the second-order
expansion, little improvements are observed on mean and probability of underperforming the
risk-free strategy, while VaR0.975 and cVaR0.975 decline slightly. While the difference between
the second and fourth-order expansion is still significant, the influence of including more terms
is neglible.

Strategy µ̂ σ̂ Pupf VaR0.975 cVaR0.975

Dynamic second-order 132.6 24.5 0.25 78.4 65.5
Dynamic fourth-order 133.5 25.9 0.24 76.3 62.7
Dynamic sixth-order 133.6 26.2 0.24 76.0 62.1
Dynamic eighth-order 133.7 26.3 0.24 75.7 61.9

Table 6.3: Performance measures of portfolio strategies based on a different order of the Taylor-
expansion, T = 12, γ = 2.

Using the constraints on xt, the difference between a second and a fourth-order expansion is still
present, but under the fourth, sixth and eight-order expansion the portfolio weights are almost
equal. Differences between statistics of WT are insignificant. We can conclude that both with
or without constraints a fourth-order expansion will be sufficient.

6.6 Numerical issues for higher values of γ and T

The gains of a dynamic strategy are clear and under a second-order expansion, a horizon of 20
quarters, risk aversion γ = 5, ordinary least-squares regression and no constraints the portfolio
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weights have acceptable values. Unfortunately the method does not work properly for high
values of T or γ. An increase of the horizon to T = 30 quarters gives figure 6.4. The big
peaks in the standard deviation are caused by extreme portfolio weights of 9,500,000%, which
is obviously unrealistic. The location and magnitude of such extreme portfolio weights differ
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Figure 6.4: Mean allocation to stocks (solid line), plus/minus one standard deviation (dashed
lines) under a second-order Taylor expansion, T = 32, γ = 5.

between simulation runs, but their presence is persistent. In this section we deal with possible
causes and solutions.

6.6.1 Explanation of the cause

When the horizon T or risk version γ is increased, the value of ψ1−γ
t+1 , which functions as a scaling

factor in the conditional expectations, takes unfavorable values. Recall that:

ψ1−γ
t+1 = (

T−1∏
s=t+1

(x̂′sR
e
s+1 +Rf))1−γ

We give a numerical example to illustrate this. Suppose that for one sample path we have a
portfolio return of 1.02 on quarterly basis. For another sample path we succeed to obtain a
portfolio weight of 1.20 each quarter. The corresponding values of ψ1−γ

t+1 are 1.02(1−γ)(T−1−t)

and 1.20(1−γ)(T−1−t).

Now suppose that γ = 5 and that ten recursion steps have been evaluated, so T − 1 − t = 10.
For the two sample paths, ψ1−γ

t+1 takes values of respectively 1.02−40 = 4.5 · 10−1 and 1.20−40 =
6.8 ·10−4. Continuing in the recursion process, after thirty timesteps we get 1.02−120 = 9.2 ·10−2

and 1.20−120 = 3.1 · 10−10. In other words, as we get further in the recursion process, ψ1−γ
t+1

tends to zero. More important, the spread of all realizations of ψ1−γ
t+1 becomes very large not

even mentioning the effect of γ being one unit higher.
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In MATLAB we immediately find that these two effects lead to the extreme portfolio weights
as observed in figure 6.4. As γ tends to zero too fast, the matrix Et[ψ1−γ

t+1 R
e
t+1R

e′
t+1] becomes

singular. But, more persistent is the spread in ψ1−γ
t+1 , resulting in an inability of the ordinary

least-squares regression to properly estimate the conditional expectations.

This is underlined by the fact that the algorithm works perfectly for all magnitudes and com-
binations of parameters T and γ if the factor ψ1−γ

t+1 is absent in the conditional expectations.

Unfortunately eliminating the factor ψ1−γ
t+1 is only allowed if the intertemporal returns are in-

dependent, Cov(Re
t , R

e
t+1) = 0. For realistic models of the asset excess returns this is generally

not true.3

Before we discuss various adjustments of the methodology, aimed at reduction of these implemen-
tational issues, we need to make another remark. Even though the malperformance manifests
itself by numerical issues, the real cause may be more fundamental. At some point, the state
variables do not contain enough information for a proper prediction of the future optimal port-
folio return. For t = T − 1, the regression matrix XT−1 only has to predict the value of Re

T ,
while for a small value of t, Xt is a predictor for both Ret+1 and ψt+2, which contains Re

t+2 up
to Re

T and all future optimal portfolio weights x̂t+1 to x̂T−1. It should be clear that as we get
too far in the recursion process, it is unlikely that the value of the state variables at one single
moment will contain enough information to properly predict the whole evolution of future asset
returns, being Re

t+1 up to Re
T .

4

6.6.2 Adjustment of the scaling factor ψ1−γ
t+1

If the number of terms in ψt+1 increase, its spread will increase as well. Therefore we try to
limit the spread by limiting the number of terms in ψt+1 by k, so that after k recursion steps
the spread of ψ1−γ

t+1 will stay of the same order.

Under this adjustment the algorithm works well for higher values of γ and T , but the portfolio
weights differs significantly from the portfolio weights obtained by the algorithm that uses all
terms for ψt+1. This is visualized in figure 6.5. It does not need explanation that notable changes
in portfolio weights goes hand in hand with significant differences in final wealth.

In fact, the differences in portfolio weights are caused by a change of the approximation of WT .
Limiting the number of terms in ψt+1 by k means WT is approximated by:

ŴT =Wt(R
f)max(0,T−1−(t+k))

min(t+k,T−1)∏
s=t+1

(x̂′sR
e
s+1 +Rf) (6.5)

We see in formula (6.5) that the approximation of WT will be the same as originally in (5.17)
as long as the horizon is shorter than k + 1. Corresponding to this, we see in figure 6.5 that
for these horizons the portfolio weights coincide with the portfolio weights obtained by the full

3In the case that Cov(Re
t , R

e
t+1) = 0, we get that Et[ψ

1−γ
t+1 R

e
t+1] = Et[ψ

1−γ
t+1 ]Et[R

e
t+1]. Assuming that the

conditional of expectation of ψt+1 will not be zero, we get that (5.23) simplifies to x̃t =
Rf

γ
Et[R

e
t+1R

e′
t+1]

−1Et[R
e
t+1].

4Moreover, if we set the volatility of the underlying VAR-model (6.2) to zero, perfect prediction is possible and
the mentioned issues are not observed anymore. This emphasizes the trade-off between a more realistic, volatile
underlying model and a good performance of the dynamic portfolio choice.
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Figure 6.5: Mean allocation to stocks for different compositions of ψt+1, T = 20, γ = 5.

algorithm. Once the horizon gets larger than k + 1, the approximation of WT will be too low,
resulting in lower and suboptimal portfolio weights.

Actually, by diminishing the number of terms of ψt+1 to k, from timestep t = T − k − 1 to
t = 1 we change the problem to that of an investor with constant horizon k instead of increasing
horizon T − t. In figure 6.5 this is clear for the blue line, where ψt+1 contains zero terms and
thus ψt+1 ≡ 1. The underlying trend of this line is a constant weight of 0.32. The same holds
for all other lines: the red line (5 terms) fluctuates around a constant portfolio weight of 0.39
after 5 iteration steps. Thus changing the number of terms in ψt+1 also changes the problem
definition, which is not acceptable, as in results in suboptimal results.

Another idea is to scale ψ1−γ
t+1 to avoid too small values, either by dividing by its maximum

or minimum value or by using a logarithmic scale. However, by a small test in MATLAB we
immediately see that this does not work. Manually removing extremes is another possibility,
but this reduces the randomness of the sample.

6.6.3 Alternative regression methods

A better idea is the replace the ordinary least-squares regression by alternative regression meth-
ods, which we discussed in section 5.4. This was also suggested by Brandt et al. ([7]).

We use a fourth-order Taylor expansion of the value function and put constraints on the portfolio
weights for a more realistic setting. The same dataset is used that underlies figure 6.1, but γ is
increased to 20. For this value of γ the least-square regression that we used until now is affected
by outliers, as is visualized in figure 6.6. Therefore we try both the more robust Huber and
the bisquare estimator, both with a maximal number of 20 iterations and a tolerance level of
10−3. The least-trimmed squares estimator is applied with a second-order Taylor expansion and
coverage parameter c = 0.95.
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Figure 6.6: Mean allocation under different regression methods, M = 10000, T = 20, γ = 20

We see that the Huber estimator gives a more stable solution than the least-squares estimator,
but still has one peak caused by an outlier. The bisquare method, which puts zero weight on
outliers, has no peaks, as is the case for the LTS estimator. The weights for the LTS-method are
lower on average, which is caused by the use of a second-order instead of a fourth-order Taylor
expansion.

Method µ̂ σ̂ Pupf VaR0.975 cVaR0.975 Speed

Least-squares 141.3 21.0 0.35 105.4 99.1 0.9 sec
Huber 137.5 9.4 0.24 119.3 115.4 3.8 sec
Bisquare 137.6 5.0 0.10 126.5 122.8 5.8 sec
LTS 137.9 34.4 0.09 127.0 104.2 859.1 sec

Table 6.4: Performance measures for different regression methods, T = 20, γ = 20

From the results in table 6.4 we can conclude that the bisquare estimator performs best, since the
computation time is still acceptable, while the LTS regression comes with very high computation
costs. Compared to the least-squares regression there is a small loss in mean terminal wealth, but
this comes with a much lower standard deviation and probability of underperforming. Actually,
the high mean terminal wealth and standard deviation of the least-squares method is a result
of the malperformance.

6.7 Varying the rebalancing frequency

Until now we used quarterly rebalancing. Assuming there are no transaction costs, one could
question whether rebalancing more frequent is favourable or not. Let us apply the dynamic
strategy with different rebalancing periods: quarterly, half-yearly and yearly.

From figure 6.7 it is clear that the intertemporal fluctuations in portfolio weights become smaller.
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Figure 6.7: Mean allocation to the risky asset for different rebalancing frequencies, T = 21,
γ = 2.

Rebalancing frequency µ̂ σ̂ Pupf VaR0.975 cVaR0.975

Quarterly 178.4 45.0 0.15 84.5 67.1
Half-yearly 175.3 44.7 0.16 87.0 70.3
Yearly 170.8 42.9 0.17 88.5 74.9

Table 6.5: Performance measures of different rebalancing frequencies, T = 21, γ = 2.

But as we can see from table 6.5, rebalancing less often gives a loss in terms of mean terminal
wealth and increases the probability of underperforming. Therefore it is advisable to maintain
a high rebalancing frequency.

6.8 Sensitivity analysis of the parameter of risk aversion

6.8.1 Constant relative risk aversion

Having already discussed the numerical issues that can accompany an increase of γ, we would
like to investigate the sensitivity of the results towards parameter γ. Using the algorithm with
a Taylor expansion of order four, we visualize the sensitivity of results with respect to the value
of γ in figure 6.8.

Under the unconstrained algorithm, we see a perfect hyperbolic relation between γ and the mean
and standard deviation of WT , as well as between γ and x1, the mean allocation to the risky
asset at time 1. As the relative risk aversion γ grows larger, the allocation on the risky asset
approaches zero, which was already intuitively clear and which also followed from the formula
(5.6). Moreover, for γ = ∞, the mean of WT will equal the wealth generated by the risk-free
strategy and the standard deviation will become zero. If γ = 0, the investor will allocate an
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Figure 6.8: Mean and standard deviation of WT and mean of x1 for varying values of γ, T = 12,
unconstrained (solid lines) and constrained (dashed lines).

infinite amount to the risky asset and borrow an infinite amount of the risk-free asset, or vice
versa if the expectation of excess returns is negative.

Imposing the usual set of constraints does not have a significant impact if γ is larger than five.
For smaller values, implying an investor who is willing to take more risk, we see differences with
the unconstrained algorithm. For γ approaching zero the allocation to the risky asset will tend
to a 100 percent unless expectation of excess returns is negative. Therefore the limiting strategy
as γ tends to zero is close, but not exactly equal to the strategy that invests fully in stocks.

6.8.2 Constant absolute risk aversion

All results until now were under the assumption of an investor with CRRA. In this section we
change this assumption towards an investor with constant absolute risk aversion ξ and investigate
the sensitivity of results towards the parameters of a CARA-investor. The horizon we use is
T = 10, the algorithm is based on a fourth-order Taylor expansion. Initial wealth is chosen 1
and ξ = 2.

First we analyze the influence of the construction of the grid forWt. We fix ∆ = 0.01 and assume
d = h and let d vary from 0.03 to 0.30. If we evaluate the optimal strategies in terms of the
mean and standard deviation of WT , surprisingly, these statistics are independent of parameter
d. In the remainder of this section we choose d = h = 0.05 and ∆ = 0.005.

Next we evaluate the sensitivity of the mean and standard deviation of WT towards ξ. We let ξ
vary from 0.5 to 10 with a step size of 0.5 and show results in figure 6.9. Without constraints we
observe a hyperbolic relation between ξ and both mean and standard deviation ofWT . Moreover,
as ξ tends to infinity, it follows directly from formula (5.37) that the optimal strategy will be
equal to the risk-free strategy with and without constraints. Limiting behaviour for ξ tending
to zero equals that of γ tending to zero.

Analogue reasoning holds for the relation between mean and standard deviation of WT and W1,
which is visualized in figure 6.10. Again we observe a hyperbolic relation under the unconstrained
algorithm. AsW1 tends to infinity, the optimal allocation to the risky asset will equal zero. This
also follows from (5.37), where we see that xt approaches zero as Wt grows. Because Wt and
W1 obviously have a direct relationship, there exists an inverse relation between W1 and xt as
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Figure 6.9: Mean and standard deviation of WT and mean of x1 for varying values of ξ, W1 = 1,
T = 10, unconstrained (solid lines) and constrained (dashed lines).

well. Of course, it is not desirable that an investor with ξ = 2 and initial wealth higher than 10
will follow the risk-free strategy. However, this is avoided by normalizing the initial wealth to
magnitude 1.
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Figure 6.10: Mean and standard deviation of WT and mean of x1 for varying values of W1,
ξ = 2, T = 10, unconstrained (solid lines) and constrained (dashed lines).

Sensitivity analysis of the optimal strategy for a investor with CARA utility did not give unex-
pected information but did learn us to normalize the initial wealth.

6.8.3 Quadratic utility

For an investor with quadratic utility the sensitivity of the results towards the parameter ξ is
shown in figure 6.11. Without loss of generality we took W1 = 1. We note that the dynamic
strategy tends to the risk-free strategy as ξ tends to 1. It is not visible in figure 6.11, but for
ξ < 0.1, MATLAB is not able to give reliable results.
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Figure 6.11: Mean and standard deviation ofWT and mean of x1 for varying values of ζ, W1 = 1,
T = 10, unconstrained (solid lines) and constrained (dashed lines).

6.9 Comparison with mean-variance portfolios

6.9.1 Comparison in terms of mean portfolio return and variance

We are particularly interested in the gains of the dynamic strategy compared to the static
mean-variance strategy. They are compared graphically by drawing the efficient frontier. The
construction of the efficient frontier for the static strategy was discussed in chapter 2. Because
there is a risk-free asset and we forbid borrowing and going short, the static efficient frontier
will be a straight line, with the risk-free strategy and the strategy investing fully in stock as
boundary points.

For an investor who behaves dynamically, we construct the efficient frontier using simulations
for an investor with log or power utility, exponential and quadratic utility. By varying γ, ξ
respectively ζ we obtain different attainable combinations of mean and standard deviation of
WT . As seen in section 6.8 on the limiting behaviour of γ, the starting point of the frontier of
the dynamic investor with constant relative risk aversion will be the risk-free strategy. The same
holds for the investor with constant absolute risk aversion or quadratic utility as ξ respectively
ζ tend to infinity.

We use a fourth-order expansion, with constraints and quarterly rebalancing. Without loss of
generality, initial wealth W1 is chosen equal to 1. Then terminal wealth WT and the cumulative
portfolio return Rp =WT /W1 are equal.

In figure 6.12 the dynamic efficient frontiers are compared with the mean-variance efficient fron-
tier. The gain of using any dynamic strategy compared to a static Markowitz strategy is obvious.
The same mean terminal wealth is obtained with a lower standard deviation. Furthermore, we
see that in terms of mean and variance, the efficient frontier of an investor with constant relative
risk aversion is almost exactly equal to the efficient frontier of an investor with constant absolute
risk aversion.5 An investor with quadratic utility has an efficient frontier which is slightly less
favourable.6

5Empirically we observed that for a very risk averse investor with γ > 5 or ξ > 10 we get exactly the same
optimal strategy if γ = 2.18ξ.

6Moreover, empirical findings show that this is completely caused by the first step of the recursion process.
While for a CRRA and a CARA-investor portfolio weights are equal in this step, compare (5.25) and (5.38), an
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Despite the efficient frontiers being equal, there are differences in terms of speed. For one set
of parameters evaluation of the CRRA-problem takes only a few seconds, versus over ninety
seconds for an investor with CARA or quadratic utility.
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Figure 6.12: Efficient frontier for static versus dynamic strategies, T = 12.

The equality of the efficient frontier of a CRRA and CARA-investor is somewhat surprising.
Empirically we find more remarkable results. While we noticed that the portfolio weights are
affected by the order of the Taylor expansion, the efficient frontier is not. A second-order
expansion leads to exactly the same frontier as a fourth-order expansion, the only difference
being that the same point at the frontier corresponds to a slightly different value of γ or ξ.

The same holds for the factor Rf , with which we multiplied the portfolio weight in constrast
with the original article by Brandt et al. Using the algorithm with or without this factor does
not influence the efficient frontier, but again, a different value of γ or ξ corresponds to another
point at this frontier.

6.9.2 Comparison in terms of mean portfolio return and Value-at-Risk

Variance is not the only risk measure we can apply. But based on our simulation we can
easily construct a mean-VaR efficient frontier as well, which is done in figure 6.13. The dynamic
strateges also realizes the same mean terminal wealth with a higher Value-at-Risk than the static
strategy. The CARA and CRRA mean-VaR frontier only differ slightly, while the mean-VaR
frontier of an investor with quadratic utility is again suboptimal.

Note that one can also use the mean-VaRα efficient frontier to solve the problem of an investor
who wants to reach a target wealth with a certain probability 1−α. This investor has to choose
the strategy on the mean-VaRα efficient frontier with mean terminal wealth equal to his target
wealth.

investor with quadratic utility has a different portfolio weight at time T − 1, see (5.42).
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Figure 6.13: Mean-VaR efficient frontier for α = 0.95, T = 12.

6.10 Summary of chapter 6

From the evaluation of the methodology in a simple setting we can conclude that applying a
dynamic strategy has clear gains over applying a static strategy. By a path-dependent rebalanc-
ing strategy we can greatly increase the mean portfolio return with a significant lower downside
risk in terms of variance, probability of underperforming the risk-free asset, Value-at-Risk and
expected shortfall. Analogue to the common findings in literature we find that as the investment
horizon becomes shorter, the allocation to risky asset becomes lower on average.

A fourth-order Taylor expansion is sufficient to approximate the optimal portfolio weights. Im-
posing constraints makes the problem more realistic without having a drastic impact on the
optimal strategy. A high rebalancing frequency further improves the strategy and it is therefore
advisable to rebalance as often as the underlying economic model permits.

For a long investment horizon and especially for high relative risk aversion γ the method faces
numerical issues, but in this simple setting we could still obtain a stable solution by application
of the bisquare robust regression method. However, we did remark that the presence of these
numerical issues might have a fundamental basis. Our methodology assumes that the current
value of the state variables can predict next period’s asset returns, scaled by a factor that
contains all future returns and the optimal portfolio weights. This asks a great amount of
predicting power once we are far in the recursion process.

Furthermore we came to the important insight that the assumption of either CARA or CRRA
leads to the same efficient frontier. An investor with quadratic utility behaves suboptimal. Since,
by the independence of endogenous variable wealth, the dynamic strategy is easier and faster to
evaluate for an investor with constant relative risk aversion, it is a natural choice to continue
with the common assumption of CRRA. The equality of efficient frontiers justifies this.

In the next chapter we will use these findings to calculate the portfolio for an investor with
multiple assets.
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Chapter 7

Results for multiple risky assets

Under the simple VAR-model the gains of using a dynamic, path-dependent portfolio strategy
are clear. In a real investor’s problem, the investor has multiple risky assets to consider and the
number of state variables is much larger. In this chapter we will apply the method of BGSS on a
setting with five risky assets and five exogenous state variables. The investor’s attitude towards
risk is modeled by constant relative risk aversion.

In section 7.1 we first explain how the scenarios are constructed with the generator of Ortec
Finance. Afterwards the set-up of the portfolio optimization is discussed. The resulting asset
allocation is discussed in section 7.2, as well as the distribution of wealth, performance measures.
Finally the efficient frontier is visualized.

7.1 Set-up of the model

7.1.1 Modeling the economy

The evolution of state variables and the asset returns are simulated by ALS (Assets & Liabilities
Scenario model), which is the generator Ortec Finance developed to simulate economic scenarios.
It is an extensive VAR(1)-model with more than 40 variables, based on data from 1970 to 2009.
All variables are generated on a yearly basis.

Figure 7.1 illustrates how the output of the scenario generator looks like for two variables, being
the GDP (Gross Domestical Product) of Europe and of the USA. Up to 2009 the blue line
presents the actual values of the GDP. The ’yellow cloud’, which diverges from 2010 and on,
represents all scenarios. The red line is the mean of all scenarios, which reaches a steady state
after ten years. The blue line from 2010 and further highlights the evolution of the two variables
under one specific scenario.

We consider five asset classes:

• Risk-free asset with a constant yearly return of 3%, denoted as cash.

• Bond with a duration of 10 years, traded anually to keep the maturity of the portfolio
constant.
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Figure 7.1: An example of the output of the Ortec Finance scenario generator

• US Hedge fund, completely hedged for currency risk.

• Indirect Real Estate (RE) Europe.

• Stocks of European MSCI-index.1

• Stocks of emerging markets (EMM).

All consider asset classes are considered to have enough liquidity to trade in each desirable
amount.

To avoid numerical issues and overfitting we did not include all variables, but we selected the
five most important drivers as state variables. Even though the main assets are mostly non-
American, the main drivers of the VAR-model are primarly American:

• 3 months US nominal interest rate.

1MSCI is short for Morgan Stanley Capital International. The index is a weighted stock market index,
comparable to the CRSP-index used in chapter 6.
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• 10 years US nominal interest rate.

• Stocks of North-American MSCI-index.

• 10 years break-even inflation US.

• Return on direct Real Estate Europe.

The risk-free cash return is subtracted from the risk asset’s returns to obtain the excess returns.
Basis statistics of the excess returns are in table 7.1.2 We see that in terms of standard deviation,
the bond and hedge fund are relative safe. The stocks EMM have the highest mean excess return
but are also highly volatile. We use this generator to sample 10,000 economic scenarios. The

Asset class Mean Re
t Standard deviation Re

t

Bond -0.01 - 0.01 0.03 - 0.04
Hedge Fund 0.03 0.10
Indirect RE 0.04 0.23
Stock EU 0.05 0.21
Stock EMM 0.09 0.34

Table 7.1: Description of asset classes

starting point of the simulation is 2010.3

7.1.2 Details on the portfolio optimization

In the dynamic portfolio optimization algorithm we assume rebalancing is employed once a
year, as often as the scenario model permits. Next to borrowing and short sale constraints, an
additional set of constraints is introduced to avoid large changes in the portfolio. From year to
year, the absolute change of each portfolio weight cannot be more than 20 percent. Because with
such constraints imposed, it is unlikely that there will still be convergence towards the fourth-
order Taylor solution, we use a second-order Taylor expansion. This also decreases computation
time. Moreover, we noticed in the foregoing chapter that the resulting efficient frontier was the
same for a second-order or a fourth-order Taylor expansion.

A polynomial of degree two is used as a basis for the regression. The regression matrix includes
cross-terms of the five state variables. Moreover we assume that the excess returns at t+1 have
a correlation with the excess return at time t. Then each row of regression matrix Xt contains
26 items. For the regression we use the bisquare method.

Running the algorithm as described in this section is quite fast considering the number of vari-
ables. With 10,000 simulations, 5 asset classes and 5 state variables, the constrained algorithm
using the fmincon-optimization routine takes about 25 for each value of γ if T = 10, or 55
minutes if T = 20. We ran the algorithm on a 1.83 GHz laptop with 1.99 GB RAM.

2Due to the 2008-2009 crisis, the bond mean excess return and its standard deviation take a few years to reach
a stationary solution

3We choose 2010 instead of 2009 in order to avoid the rather typical year 2009.
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7.2 Results

7.2.1 Mean asset allocation and performance measures

Figures 7.2 up to 7.7 show the mean asset allocation against the remaining horizon and the
distribution of terminal wealth for an investor with an investment horizon of respectively 10,
20 and 30 years. For each value of T we show results for four values of the parameter of risk
aversion: γ = 1, 3, 5 and 10.

Comparing the asset allocations in figures 7.2, 7.4 and 7.6, we notice that for a short (remaining)
horizon, which relates to the first steps of the recursion process, the method works quite well.
If the risk aversion is higher, this results in a higher allocation to safer assets like bonds (about
40% for γ = 10 versus approximately 8% for γ = 1), while the allocation to the most risky asset,
stocks EMM, is lower (less than 5% versus about 40%).

However, as the horizon increases, the method starts performing badly. Once the combination
of γ and horizon T − t reaches a certain threshold, the regression does not work properly. The
allocation to all risky assets tends to zero and the complete wealth is invested in cash, which
cannot be optimal. Undesirable behaviour for high risk aversion and a long investment horizon
was also observed in the previous chapter, but there it could solve this by implementing the
bisquare method. Here we see that the use of the bisquare method is not sufficient.

Investors with γ = 1 are an exception. Since their portfolio weights at each time do not depend
on the factor ψ1−γ

t+1 ,
4 the algorithm works for all horizons. This follows directly from the figures.

In fact, we found that the algorithm behaves well for each γ ∈ (0, 1]. This means that, if γ
is within this range, the found dynamic strategy is the best we can obtain under this set of
scenarios and, not unimportantly, under this choice of state variables. For γ > 1 the found
strategy becomes suboptimals as T increases.

In figures 7.3, 7.5 and 7.7 the distribution of terminal wealth for four values of risk aversion
γ is shown for T = 10, 20 and 30 respectively. The red line in each histogram corresponds to
the risk-free strategy. The outer right bar corresponds to the frequency of the right tail values
of terminal wealth. We notice that for a lower γ, the distribution of terminal wealth is more
heavy-tailed. Especially the righter tail becomes more profounded, an effect which is leveraged
by an increase of T .

4Recall formula (5.24).
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Figure 7.2: Mean asset allocation for T = 10, γ = {1, 3, 5, 10}.
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Figure 7.3: Histograms of WT for T = 10, γ = {1, 3, 5, 10}.
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Figure 7.4: Mean asset allocation for T = 20, γ = {1, 3, 5, 10}.
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Figure 7.5: Histograms of WT for T = 20, γ = {1, 3, 5, 10}.
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Figure 7.6: Mean asset allocation for T = 30, γ = {1, 3, 5, 10}.
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Figure 7.7: Histograms of WT for T = 30, γ = {1, 3, 5, 10}.
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Additional to these figures, tables 7.2, 7.3 and 7.4 show the values of the performance measures
for the different values of risk aversion and lengths of the investment horizon. The strategy with
γ = ∞ is the strategy that invests fully in the risk-free asset.

Risk aversion γ µ̂ σ̂ Pupf VaR0.975 cVaR0.975

1 266.3 128.6 0.085 91.2 74.7
3 239.5 71.8 0.030 127.8 111.3
5 219.8 48.5 0.011 140.8 129.3
10 183.5 24.2 0.005 141.8 135.1
∞ 130.5 0 0 130.5 130.5

Table 7.2: Performance measures for multiple assets, T = 10.

Risk aversion γ µ̂ σ̂ Pupf VaR0.975 cVaR0.975

1 820.2 609.5 0.021 186.7 141.6
3 643.5 276.6 0.002 266.3 224.4
5 464.4 149.1 0.001 253.2 226.4
10 260.4 44.3 0.004 192.8 183.2
∞ 175.4 0 0 175.4 175.4

Table 7.3: Performance measures for multiple assets, T = 20.

Risk aversion γ µ̂ σ̂ Pupf VaR0.975 cVaR0.975

1 2564.6 2618.0 0.005 393.8 289.1
3 1563.8 829.6 0.001 519.1 427.0
5 643.8 221.0 0.001 334.0 297.4
10 350.8 60.5 0.005 256.8 242.7
∞ 235.7 0 0 235.7 235.7

Table 7.4: Performance measures for multiple assets, T = 30.

The three tables again show us the high gains of dynamic strategies. The mean final wealth
under a dynamic strategy with γ = 1 is twice as high as the mean final wealth under the risk-free
strategy for an investor with T = 10. As T increases to 30 years, we observe a tenfold increase
in the mean final wealth if we switch from the risk-free strategy to a strategy with γ = 1.

The standard deviation of final wealth also grows very fast as T increases. But, the probability
of underperforming the risk-free strategy reaches a reasonable maximum 8.5% for γ = 1 and
T = 10, while being even less than 0.5% for all values of γ at T = 30. Moreover, as T increases,
both the Value-at-Risk and the conditional Value-at-Risk at α = 0.975 become even higher than
the mean final wealth of the risk-free strategy.
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7.2.2 Efficient frontier

In the foregoing section, we compared the dynamic strategies mainly with the risk-free strategy.
Here we will compare them to the optimal static strategies. By varying the risk aversion param-
eter γ, we construct the static and dynamic efficient frontier for T = 10, 20 and 30. We known
that both the static and dynamic efficient frontier start at the risk-free strategy, corresponding
to γ = ∞. The right end-point is reached by letting γ approach zero. Figures 7.8, 7.9 and 7.10
show the dynamic versus static efficient frontier for T = 10, 20 and 30.

We note that the static efficient frontier is not a straight line anymore. This is caused by the
increased number of risky assets and the imposed constraints. As said, the static frontier starts
at the risk-free strategy for γ = ∞. It ends for γ = 0 at the strategy that invests fully in the
asset with the highest mean return, which is stock EMM.

Of course we are more interested in the dynamic efficient frontier. As could be expected from
earlier results, the three figures show that the dynamic efficient frontier is more favourable than
the static efficient frontier for each value of T . While both the static and the dynamic frontier
start at the risk-free strategy, the dynamic efficient frontier has a higher slope. It is remarkable
that for all values of T , the dynamic and static efficient frontier become parallel to each other
as γ decreases.

This parallel part corresponds to low risk aversion, being γ lower than two. In the foregoing
section we noticed that for these values of γ there are no methodological or numerical issues.
So, unless the predictive power of the state variables changes, this part of the efficient frontier
is ’as best as it gets’.

As for the left part of the dynamic efficient frontier, which corresponds to values of γ higher
than two, there is still room for improvement. We already noticed that for higher values of γ,
combined with an increasing value of T , the found dynamic strategy becomes suboptimal. We
suspect that the frontier which follows from the real optimal dynamic strategy for all values of
γ is even steeper at the start. As remarked, it will end in the same parallel part at the right.

Despite the suboptimality for increasing values of γ and T , the dynamic efficient frontier out-
performs the static frontier convincingly.

69



Results for multiple risky assets

0 50 100 150 200

150

200

250

Standard deviation W
T

M
ea

n 
W

T

 

 
Dynamic
Static

Figure 7.8: Efficient frontier with multiple assets for static versus dynamic strategies, T = 10.
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Figure 7.9: Efficient frontier with multiple assets for static versus dynamic strategies, T = 20.
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Figure 7.10: Efficient frontier with multiple assets for static versus dynamic strategies, T = 30.
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Chapter 8

Conclusions, discussion and
recommendations

In the past few years, dynamic portfolio choice has become a popular subject of research. Unfor-
tunately closed-form, analytic solutions are only unavailable under strict assumptions of return
dynamics and numerical approaches are needed. By now many methods have been published,
but almost all suffer from inflexibility towards the number of assets or ask for a very specific
structure of the asset’s return dynamics.

An exception is the method published by Brandt, Goyal, Santa-Clara and Stroud. They devel-
oped a simulation-based method with as main features a Taylor-expansion, backward recursion
and regression analysis to predict returns. In their own words their method is fast, accurate and
very flexible towards the number of assets and the way in which return dynamics are modeled.
However, they only showed results for a situation with one risky asset, one state variable and
an investor with constant relative risk aversion.

In this master thesis the goal was to apply this methodology and investigate the dynamic port-
folio choice for a long-term investor in a realistic environment with multiple assets without strict
assumptions on the return dynamics, various state variables and optional portfolio constraints.
But, before we were able to apply the model in such a complex environment, we used a simple
setting with only one risky asset and one state variable to investigate behaviour and various
extensions of the methodology itself, as well as the impact of different ways of modeling the
investor’s attitude towards risk. This gave three new and important insights, which are given
in section 8.1. In section 8.2 the conclusions are given that followed from evaluation of the
dynamic portfolio choice with multiple assets. In sections 8.3 and 8.4 thereafter, there is a short
discussion and recommendations are made.
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8.1 Conclusions from a simple setting

First of all, we discovered an error in the original formulation of the algorithm. Correction of this
error leads to a higher asset allocation with a factor exactly equal to the risk-free rate, resulting
in higher terminal wealth. More specifically, under the assumption of constant relative risk
aversion and if excess returns are modeled independent of the risk-free rate, the error correction
led to a linear relationship between the portfolio weight and the risk-free rate.

At first glance a higher rate of return on the risk-free asset implying a higher allocation to
the risky asset might be counterintuitive. However, we can explain this relationship by the
assumption of constant relative risk aversion. If the risk-free rate is higher and if absolute excess
returns with respect to this rate remain equal, the relative volatility of the risky asset decreases.
Under constant relative risk aversion a decrease of the relative volatility implies an increase of
the portfolio weight.

Second, under constant relative risk aversion we discovered numerical issues for high risk aversion
or a long horizon. As we are further in the backward recursion process, the regression starts to
malfunction. Brandt et al. suggested to use robust regression methods. In this thesis we showed
that in a simple setting especially the bisquare estimator performs well. Its use succesfully
eliminates the observed numerical issues, although we did remark that the real cause of the
numerical issues might be more fundamental.

Finally and third, we put our attention to the way in which the investor’s attitude towards
the trade-off between risk and return is modeled. Because empirical results do not agree on
the most realistic way to model and calibrate the investor’s risk aversion, we calculated the
efficient frontier for an investor with constant absolute risk aversion (CARA), constant relative
risk aversion (CRRA) and quadratic utility. The comparison of different assumptions on utility
by means of the efficient frontier led to interesting results. It was not mentioned in any literature
and is therefore a valuable addition.

From the efficient frontiers we concluded that under all three types of utility a dynamic strat-
egy outperforms a static strategy. Assuming quadratic utility leads to a suboptimal dynamic
portfolio, while the assumption of CARA or CRRA leads to exactly the same efficient frontier
and mean-VaR frontier. This justifies the common choice to model utility as CRRA, which is
usually done because CRRA seems intuitively correct and has convenient analytical properties.
Furthermore, the form and location of the efficient frontier remains equal regardless the order of
the Taylor expansion or the correction of the error which was mentioned in the first conclusion.

In general, we can conclude that in a simple setting the dynamic strategy has clear gains over a
static strategy. Similar to known results from literature, the allocation to the risky asset is on
average lower as the investment horizon becomes shorter.
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8.2 Conclusions from a complex investment environment

With the knowledge obtained in a simple setting we evaluated the asset allocation for a CRRA-
investor who faces a more realistic environment, with a risk-free asset and five types of risky
assets with different mean return and volatility. Furthermore five state variables were included
that were supposed to contain enough predicting power and the portfolio weights were con-
strained. Returns of all variables were generated by the ALS, the scenario generator developed
by Ortec Finance.

Also in a multivariate investment environment dynamic strategies outperform the optimal static
strategies, which was both quantified in performance measures, like mean final wealth and the
Value-at-Risk, and shown visually by comparing efficient frontiers. As the investment horizon
becomes shorter, there is on average a higher allocation to assets with less volatility, which again
agrees with the findings in literature. Moreover, we observed that this effect is more present for
investors with a higher risk aversion.

Unfortunately, for a moderate risk aversion and a long investment horizon we still observe
numerical issues which are not sufficiently reduced anymore by robust regression. These issues
lead to strategies that invest fully in the risk-free asset for years, which is clearly suboptimal.
But, even with this suboptimal behaviour for some parameter values, the dynamic strategies
continue to outperform the static strategies.

8.3 Discussion

Having sufficiently reduced the numerical issues in a simple setting by applying robust regression,
the recurrence of the numerical issues in complex setting brings us back to our earlier remarks
about the method having a more fundamental problem for a long investment horizon. The
severity of this problem is further leveraged by the parameter of risk aversion. Because the
methodology is based at backward recursion, at each time the state variables do not only have to
predict asset returns after one timestep, but also the portfolio return generated by the sequence
of optimal future portfolio weights. During the first steps of the recursion process this does not
give any problems yet. However, as the time until the horizon increases, it is questionable if the
current values of the state variables contain enough information for a decent prediction.

To what extent prediction is possible and thus how severe the suboptimality of the strategy is,
will depend mostly on the underlying scenarios. If the scenarios do not contain any randomness,
perfect prediction is possible. But in that case, it is not likely that the scenarios represent the
economy very well. At the other hand, if the scenarios reflect the volatility of returns very well
and includes unexpected events, this reduces the predicting power, especially for a sequence of
future returns. This means that there is always a trade-off between the realism of the economic
model and the performance portfolio model under this economic model.
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8.4 Recommendations and future research

The methodology considered in this thesis was clearly capable of dealing with a realistic in-
vestor’s environment and delivered convincingly better results than the static strategies Ortec
Finance uses nowadays. Implementation is therefore recommended, although additional research
is needed.

For general future research we would advise to investigate whether other methods than robust
regression are capable of reducing the numerical issues which where still observed in a complex
investing environment. If this does not lead to improvements, a stopping criterium should be
developed, which defines acceptable combinations of risk aversion and investment horizon. The
stopping criterium will probably depend on the underlying scenarios.

Before Ortec Finance can implement this dynamic strategy and use it in their daily activities,
they face additional areas of future research. In this thesis we assumed an investor with only
an initial capital and without any financial liabilities, intertemporal consumption or additional
injections of investment capital. Moreover, we only specified utility of final wealth. Such a
’simple’ investor is not the general client of Ortec Finance. Therefore they should extend the
model such that it can be applied to an investor with liabilities, injections of investment capital
and other objectives than terminal wealth, such as funding ratio, surplus or inflation effects.

It is also important to quantify the client’s risk aversion. Because the exact estimation of an
individual’s risk aversion parameter is hard, we would recommend to use the visualization of
the efficient frontier as a mean to decide on the level of risk aversion. Based on this frontier,
the investor can decide which combination of mean and standard deviation of final wealth (or
which combination of mean final wealth and Value-at-Risk) suits him best, and thus define the
parameter of risk aversion that corresponds to this combination.

Next to that, Ortec Finance is on the point of introducing a new, improved economic scenario
generator. In this generator the economy is modeled in cycles and there is a higher correlation
between current values and future values of all variables. The presence of cycles and the existence
of long-term correlation might reduce the earlier mentioned numerical issues and improve the
predicting power. This should be investigated once the new generator is completely up and
running. If our intuitions about the economic scenarios are correct, the methodology of this
thesis would be a very suitable candidate for implementation.
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[6] Nicolai Bissantz, Lutz Dümbgen, Axel Munkand, and Bernd Stratmann, Convergence Anal-
ysis of Generalized Iteratively Reweighted Least Squares Algorithms on Convex Function
Spaces, 2008.

[7] Michael W. Brandt, Amit Goyal, Pedro Santa-Clara, and Jonathan R. Stroud, A Simula-
tion Approach to Dynamic Portfolio Choice with an Application to Learning About Return
Predictability, Review of Financial Studies 18 (2005), no. 3, 831–872.

[8] Michael W. Brandt and Jules H. van Binsbergen, Solving Dynamic Portfolio Choice Prob-
lems by Recursing on Optimized Portfolio Weights or on the Value Function?, Computa-
tional Economics (2007).

[9] Michael J. Brennan, Eduardo S. Schwartz, and Ronald Lagnado, Strategic Asset Allocation,
Journal of Economic Dynamics and Control 21 (1997), 1377–1403.

[10] Peter J. Brockwell and Richard A. Davis, Introduction to Time Series and Forecasting, 2nd
ed., Springer, 2002.

[11] Marcel Burger, Strategic Asset Liability Management with Transaction Costs, Master’s
thesis, University of Tilburg, 2007.

[12] John Y. Campbell and Luis M. Viceira, Consumption and Portfolio Decisions when Expected
Returns are Time Varying, Quarterly Journal of Economics 114 (1999), 433–495.

[13] Ray Chou, Robert F. Engle, and Alex Kane, Measuring Risk Aversion from Excess Returns
on a Stock Index, Journal of Econometrics 52 (1992), 201–224.

75



BIBLIOGRAPHY

[14] John H. Cochrane, A Mean-Variance Benchmark for Intertemporal Portfolio Theory, Ab-
stract (2008).
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Appendix A

Additional methodology and models

In the whole thesis the focus of the investor was always on final wealth. However, he can also
decide to optimize on a target wealth or so-called funding ratio, which is the subject of section
A.1. Next to that, we consider an investor who injects (or consumes) investment capital during
the investment period in section A.2. Finally in section ?? we limited the number of variables
in ALS, to see whether this improves predicting power.

A.1 Application to an investor with a target wealth

Suppose we have an investor with initial wealth W1. He wants to invest such that his terminal
wealth WT will equal Wtarget. Ideally his wealth grows each period by a constant factor:

Rtarget = (
Wtarget

W1
)

1
T−1

At each time t we can measure how far the investor is from realizing his objectives by quantifying
the ’funding ratio’ Ft. If the funding ratio is 1, the portfolio has a return which exactly matches
the target return. If Ft < 1, the return on his portfolio is less than targeted and if Ft > 1 the
investor made more return than planned. The funding ratio is calculated as:

Ft =
Wt

W1 ·Rt−1
target

, t ≥ 1 (A.1)

Instead of optimizing on utility of terminal wealth, we optimize on the utility of the funding
ratio, such that our value function is:

Jt(Ft, Zt) = max
{xs}T−1

s=t

Et[u(FT )] (A.2)

The corresponding sequence of constraints follows if we substitute the budget constraint (4.9)
for Wt+1 in (A.1):

Ft+1 =
Wt(x

′
tR

e
t+1 +Rf)

W1 ·Rt−1
target ·Rtarget

=
Ft

Rtarget
(x′tR

e
t+1 +Rf)

79



Additional methodology and models

Following the same steps as in chapter 5, a second-order Taylor expansion leads to the following
expression for xt, which is the equivalent of (5.6):

x̃t = −{ Ft
Rtarget

Et[∂21Jt+1(
FtR

f

Rtarget
, Zt+1)R

e
t+1R

e′
t+1]}−1

×Et[∂1Jt+1(
FtR

f

Rtarget
, Zt+1)R

e
t+1] (A.3)

which we write as:

x̃t = −{ Ft
Rtarget

Et[B̃t+1]}−1 × Et[Ãt+1] (A.4)

Supposed that the optimal portfolio weights at s = t + 1, . . . , T − 1 are already known, we
approximate the terminal funding ratio by:

F̂T =
FtR

f

Rtarget

ψt+1

R
T−(t+1)
target

Under constant relative risk aversion the two conditional expectations in (A.4) become:

Et[Ãt+1] =
( FtR

f

Rtarget

)−γ
Et[

( ψt+1

R
T−(t+1)
target

)1−γ
Re
t+1] (A.5)

Et[B̃t+1] = −γ
( FtR

f

Rtarget

)−γ−1
Et[

( ψt+1

R
T−(t+1)
target

)1−γ
Re
t+1R

e′
t+1] (A.6)

Let us substitute (A.5) and (A.6) in (A.4).

x̃t =
Rf

γ
{Et[

( ψt+1

R
T−(t+1)
target

)1−γ
Re
t+1R

e′
t+1]}−1Et[

( ψt+1

R
T−(t+1)
target

)1−γ
Re
t+1] (A.7)

We use expression (A.7) for the optimal portfolio weights, vary γ and construct the efficient
frontier for T = 10. It is shown in figure A.1, together with the static frontier and the frontier
obtained by optimizing on final wealth WT instead of FT .

We notice that the obtained dynamic efficient frontiers are equal. Theoretically this also follows.

Because R
T−(t+1)
target is deterministic, we can take it out of both expectations in (A.7), so that we

get:

x̃t =
Rf

γ
{Et[ψ1−γ

t+1 R
e
t+1R

e′
t+1]}−1Et[ψ1−γ

t+1 R
e
t+1] (A.8)

We notice that (A.8) is exactly equal to (5.23). In other words, optimizing on terminal funding
ratio instead of terminal wealth leads to the same portfolio weights.1 Moreover, the optimal

strategy will be independent of R
T−(t+1)
target .

1This was also found by Burger ([11]).
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Figure A.1: Efficient frontier with multiple assets for static versus dynamic strategies obtained
by optimizing on WT (red line) or FT (pink line), T = 10.

A.2 Adding intertemporal capital injections

A.2.1 Absolute injections

Until now we assumed an investor with initial capital W1, who did not inject (or consume) a
part of his investment capital between time 1 and T . Now let us assume that the investor injects
Is to his investment capital at each time s. Is is deterministic and independent of his wealth.2.

The problem is now as follows. The investor starts with initial wealth W1 = 0 and adds an
initial injection of I1. At time T he does not inject any money, IT = 0. The budget constraint
4.9 changes to:

Ws+1 = (Ws + Is)(x
′
sR

e
s+1 +Rf) (A.9)

With recursion we can show that the terminal wealth can be expressed in terms of current wealth
as follows:

WT = (Wt + It)

T−1∏
s=t

(x′sR
e
s+1 +Rf) +

T−1∑
s=t+1

Is

T−1∏
j=s

(x′jR
e
j+1 +Rf)

which simplifies to:

WT =Wtψt +

T−1∑
s=t

Isψs =Wtψt + χt

with ψt as in (5.13) and χt defined as:

χt =
T−1∑
s=t

Isψs (A.10)

2To adapt for consumption, It will equal the net effect of consumption and injection at time t
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The Bellman equation changes to:

Jt(Wt + It, Zt) = max
{xs}T−1

s=t

Et[u(WT )] (A.11)

= max
xt

Et[Jt+1(Wt+1 + It+1, Zt+1)] (A.12)

For notational convenience we do not show the second argument, Zt of the value function. A
second-order Taylor expansion of Jt+1(Wt+1 + It+1) around (Wt + It)R

f + It+1 gives:

J̃t+1(Wt+1 + It+1) = Jt+1((Wt + It)(x
′
tR

e
t+1 +Rf) + It+1)

+∂1Jt+1((Wt + It)R
f + It+1)(Wt + It)(x

′
tR

e
t+1)

+
1

2
∂21Jt+1((Wt + It)R

f + It+1)(Wt + It)
2(x′tR

e
t+1)

2 (A.13)

which leads to an explicit solution for the approximate optimal portfolio weight x̃t:

x̃t = −{(Wt + It)Et[∂21Jt+1((Wt + It)R
f + It+1)R

e
t+1R

e′
t+1]}−1

×Et[∂1Jt+1((Wt + It)R
f + It+1)R

e
t+1] (A.14)

The corresponding approximation of terminal wealth is:

ŴT = (Wt + It)R
fψt+1 + χt+1

= ((Wt + It)R
f + It+1)ψt+1 + χt+2

Supposing that optimal weights from time t+ 1 until T − 1 have already been determined and
assuming a CRRA-investor, the two conditional expectations in (A.14) give:

Et[∂1Jt+1((Wt + It)R
f + It+1)R

e
t+1]

= Et[∂u(ŴT )ψt+1R
e
t+1]

= Et[((Wt + It)R
fψt+1 + χt+1)

−γψt+1R
e
t+1]

and:

Et[∂21Jt+1((Wt + It)R
f + It+1)R

e
t+1R

e′
t+1]

= −γEt[((Wt + It)R
fψt+1 + χt+1)

−γ−1ψ2
t+1R

e
t+1R

e′
t+1]

By the independency of {Is}T−1
s=t and Wt, we cannot take (Wt + It) out of the conditional

expectations. In that case xt still depends on the endogenous and unknown variable Wt. This
can be solved by using a grid for Wt, as explained in section 5.7.3.

A.2.2 Proportional injections

However, we can significantly simplify the situation of the last section by assuming that the
investor always injects or consumes a fixed proportion of wealth. For injection this might not
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be very realistic, for consumption it is. Suppose at each time t the investor injects an additional
cWt, c ∈ R\{−1}. Then the budget constraint becomes

Wt+1 = (1 + c)Wt(x
′
tR

e
t+1 +Rf)

and terminal wealth is

WT = (1 + c)T−tWtψt

We get

Jt+1(Wt+1 + It+1) = Jt+1((1 + c)Wt+1) = Jt+1((1 + c)2Wt(x
′
tR

e
t+1 +Rf))

Under a second-order expansion this will lead to:

x̃t = −{(1 + c)2WtEt[∂21Jt+1((1 + c)2WtR
f)Re

t+1R
e′
t+1]}−1

×Et[∂1Jt+1((1 + c)2WtR
f)Re

t+1] (A.15)

Furthermore, under the assumption of constant relative risk aversion, we have that:

Et[∂1Jt+1((1 + c)2WtR
f)Re

t+1]

= Et[((1 + c)T−tWtR
fψt+1)

−γ(1 + c)T−t−2ψt+1R
e
t+1]

= (WtR
f)−γ(1 + c)(1−γ)(T−t)−2Et[ψ1−γ

t+1 R
e
t+1]

and

Et[∂21Jt+1((1 + c)2WtR
f)Re

t+1R
e′
t+1]

= Et[((1 + c)T−tWtR
fψt+1)

−γ−1((1 + c)T−t−2ψt+1)
2Re

t+1R
e′
t+1]

= (WtR
f)−1−γ(1 + c)(1−γ)(T−t)−4Et[ψ1−γ

t+1 R
e
t+1R

e′
t+1] (A.16)

Substituting (A.16) and (A.16) in (A.15) and simplifying gives the well-known expression:

x̃t =
Rf

γ
{Et[ψ1−γ

t+1 R
e
t+1R

e′
t+1]}−1Et[ψ1−γ

t+1 R
e
t+1]

which is the same as (5.23) and (A.8). The optimal strategy is not changed by proportional
injection or consumption of investment capital. However, it should be clear that the realizations
of WT do depend on the value of c. In fact, the problem definition of proportional injection is
exactly the same as that of the funding ratio, where (1 + c) equals 1

Rtarget
.
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A.3 A scenario model in ALS with a limited number of variables

In chapter 7 we used the Ortec Finance scenario generator with all variables included to simulate
sample paths, while we only included 5 assets and 5 state variables to calculate optimal portfolios.

In this appendix we show the results for scenarios which were only generated by the variables
that were also used as state variables in the portfolio optimization process. Our intuition was
that this would improve predicting power and thus give more optimal portfolios.

In table A.1 we show the performance measures for various values of γ. Even though strategies
that invest fully in one asset have higher mean returns than under the complete scenarios, we do
not observe notable improvements in terms of the dynamic strategies. This is even more clear
if we compare the efficient frontiers, which is done in figure A.2. The efficient frontier of the
scenarios that were only created with a limited set of variables is less favourable for the investor.

The results of this section underline the importance as well as the dependence of the portfolio
strategy on the underlying scenarios.

Risk aversion γ µ̂ σ̂ Pupf VaR0.975 cVaR0.975

1 786.6 592.8 0.046 134.8 95.7
3 665.0 360.2 0.008 229.2 186.3
5 480.2 193.0 0.004 230.4 201.5
10 262.4 57.0 0.008 187.4 176.9
∞ 175.4 0 0 175.4 175.4

Table A.1: Descriptive statistics for multiple returns, T = 20
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MATLAB-code

B.1 Model for single risky asset

Core model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SPECIFY INITAL PARAMETERS & READ DATA

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

M=1000; % Number of simulations

T=20; % Horizon

gamma = 5; % Risk aversion

r_f=(1.06)^0.25;% Risk-free rate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GENERATE DATA

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[R_e, Z] = VAR_CRSP(M,T,r_f);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%CALCULATE PORTFOLIO WEIGHTS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x1 = Portfolioweights_it_bs(R_e,Z,gamma,r_f,0,0);
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Scenario generation

function [R_e, dp] = VAR_CRSP(M,T,r_f);

epsilon = zeros(M,T,2);

r = zeros(M,T);

dp= zeros(M,T);

for m=1:M

epsilon(m,:,:) = mvnrnd([0;0], [0.006,-0.0051;-0.0051,0.0049],T);

end

for m=1:M

dp0=-0.155/(1-0.958);

r(m,1) = 0.227+0.060*dp0 + epsilon(m,1,1);

dp(m,1)=-0.155+0.958*dp0 + epsilon(m,1,2);

for i = 1:T-1

r(m,i+1) = 0.227+0.060*dp(m,i) + epsilon(m,i+1,1);

dp(m,i+1) = -0.155+0.958*dp(m,i) + epsilon(m,i+1,2);

end

end

% Create excess return out of log excess return

R_e = r_f*exp(r)-r_f;

disp(’Excess return created out of log excess return’)

Calculating portfolio weights for CRRA-investor

function Weights = Portfolioweights_it_bs(r, z, gamma, r_f, constr_ON, it_ON)

% Calculates portfolio weight for a model with one risky asset and one state

% variable

% r contains M scenarios of excess returns for the risky asset

% z contains M scenarios of state variable

% gamma is the parameter of relative risk aversion

% r_f is the risk-free rate

% constr_ON==1: portfolio weights are between 0 and 1

% it_ON == 1: 4th order Taylor expansion is used

N_max = 10;

% maximum number of iterations to obtain 4th order solution

k=1;

% tuning constant for bisquare method

[M,T] = size(r);

x = zeros(M,T-1);
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%%%%%%

t=T-1;

%%%%%%

X = [ones(M,1), z(:,t), z(:,t).^2];

abeta = bisquare(X, r(:,t+1),k);

ahat = X*abeta;

bbeta = bisquare(X, r(:,t+1).^2,k);

bhat = X*bbeta;

x(:,t) = r_f/gamma * ahat./bhat;

if it_ON==1

disp(’4th order Taylor iteration used’)

x_it = zeros(M,N_max);

i=1;

x_it(:,1) = x(:,t);

cbeta = bisquare(X, (x_it(:,i).*r(:,t+1)).^2.*r(:,t+1),k);

chat = X*cbeta;

dbeta = bisquare(X, (x_it(:,i).*r(:,t+1)).^3.*r(:,t+1),k);

dhat = X*dbeta;

x_it(:,i+1) = x(:,t)- (bhat).^(-1).*...

(0.5*(-gamma-1)/r_f*chat+1/6*(-gamma-1)/r_f^2*(-gamma-2)*dhat);

while ( max(abs(x_it(:,i+1)-x_it(:,i)))>0.01 && i<N_max)

i=i+1;

cbeta = bisquare(X, (x_it(:,i).*r(:,t+1)).^2.*r(:,t+1),k);

chat = X*cbeta;

dbeta = bisquare(X, (x_it(:,i).*r(:,t+1)).^3.*r(:,t+1),k);

dhat = X*dbeta;

x_it(:,i+1) = x(:,t)- (bhat).^(-1).*...

(0.5*(-gamma-1)/r_f*chat+1/6*(-gamma-1)/r_f^2*(-gamma-2)*dhat);

end

if i==N_max

disp(’Maximum number of iteration steps used’)

end

x(:,t)=x_it(:,i+1);

else

disp(’2nd order Taylor iteration used’)

end

if constr_ON==1

x(:,t)=max(0,min(x(:,t),1));

disp(’Constraints on x’)

end

for tt=2:T-1

t=T-tt;

X = [ones(M,1), z(:,t), z(:,t).^2];

Psi = prod(x(:,t+1:T-1).*r(:,t+2:T)+r_f,2).^(1-gamma);

abeta = bisquare(X, r(:,t+1).*Psi,k);

87



MATLAB-code

bbeta = bisquare(X, r(:,t+1).^2.*Psi,k);

ahat = X*abeta;

bhat = X*bbeta;

x(:,t) = r_f/gamma * ahat./bhat;

if it_ON ==1

x_it = zeros(M,N_max);

i=1;

x_it(:,1) = x(:,t);

cbeta = bisquare(X, (x_it(:,i).*r(:,t+1)).^2.*r(:,t+1).*Psi,k);

chat = X*cbeta;

dbeta = bisquare(X, (x_it(:,i).*r(:,t+1)).^3.*r(:,t+1).*Psi,k);

dhat = X*dbeta;

x_it(:,i+1) = x(:,t)- (bhat).^(-1).*...

(0.5*(-gamma-1)/r_f*chat+1/6*(-gamma-1)/r_f^2*(-gamma-2)*dhat);

while ( max(abs(x_it(:,i+1)-x_it(:,i)))>0.001 && i<N_max)

i=i+1;

cbeta = bisquare(X, (x_it(:,i).*r(:,t+1)).^2.*r(:,t+1).*Psi,k);

chat = X*cbeta;

dbeta = bisquare(X, (x_it(:,i).*r(:,t+1)).^3.*r(:,t+1).*Psi,k);

dhat = X*dbeta;

x_it(:,i+1) = x(:,t)- (bhat).^(-1).*...

(0.5*(-gamma-1)/r_f*chat+1/6*(-gamma-1)/r_f^2*(-gamma-2)*dhat);

end

if i==N_max

disp(’Maximum number of iteration steps used’)

end

x(:,t)=x_it(:,i+1);

if i==N_max

disp(’Maximum number of iteration steps used’)

end

end

if constr_ON==1

x(:,t)=max(0,min(x(:,t),1));

end

end

Weights = x;

Robust regression: bisquare estimator

function BS = bisquare(X, y, k)

%X is regression matrix

%y are values of dependent variables

N_max = 20;

% maximum number of iterations for bisquare optimization
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[M,N]=size(X);

beta = zeros(N,N_max);

beta(:,1)=lscov(X,y);

e = y-X*beta(:,1);

sigmahat = mad(e)/0.6745;

k=sigmahat*4.685;

j=1;

beta(:,j+1)= inv(X’*spdiags(W_BS(e,k),0,M,M)*X)*X’*spdiags(W_BS(e,k),0,M,M)*y;

while (max(abs(beta(:,j+1)-beta(:,j)))>0.001 && j<N_max)

e = y-X*beta(:,j+1);

sigmahat = mad(e)/0.6745;

k=sigmahat*4.685;

j=j+1;

beta(:,j+1)= inv(X’*spdiags(W_BS(e,k),0,M,M)*X)*X’*spdiags(W_BS(e,k),0,M,M)*y;

end

if j==N_max

disp(’Bisquare uses maximal number of iterations’)

end

BS = beta(:,j+1);

function w_bs = W_BS(e,k)

w_bs = (1-(e/k).^2).^2.*(abs(e)<= k)+0*(abs(e)>k);

CARA-investor

function [Weights,Pret] = Portfolioweights1_it_cara(r, z, xi, r_f, W_1, constr_ON,...

it_ON,d,u,delta);

N_max = 20;

tic

[M,T] = size(r);

vec = ((r_f*(1-d)):delta:(r_f*(1+u)));

% Define grid for wealth

Gridsize=length(vec);

W_grid=zeros(T-1, length(vec));

for t=1:T-1

W_grid(t,:)=(W_1*vec.^(t-1));

end
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x = zeros(M,T-1, Gridsize);

Psi = zeros(M,T-1,Gridsize);

%%%%%%

t=T-1;

%%%%%%

X = [ones(M,1), z(:,t), z(:,t).^2];

abeta = lscov(X, r(:,t+1));

ahat = X*abeta;

bbeta = lscov(X, r(:,t+1).^2);

bhat = X*bbeta;

for j = 1:Gridsize

x(:,t,j) = 1./(xi*W_grid(t,j)).*ahat./bhat;

end

if it_ON ==1

disp(’Taylor order four’)

x_it = zeros(M,N_max);

i=1;

x_it(:,1) = squeeze(x(:,t,j));

cbeta = lscov(X, (x_it(:,1).*r(:,t+1)).^2.*r(:,t+1));

chat = X*cbeta;

dbeta = lscov(X, (x_it(:,1).*r(:,t+1)).^3.*r(:,t+1));

dhat = X*dbeta;

x_it(:,i+1) = x(:,t,j)+ (bhat).^(-1).*...

(0.5*xi*W_grid(t,j)*chat-xi^2*W_grid(t,j)^2/6*dhat);

while ( max(abs(x_it(:,i+1)-x_it(:,i)))>0.001 && i<N_max)

i=i+1;

cbeta = lscov(X, (x_it(i,1).*r(:,t+1)).^2.*r(:,t+1));

chat = X*cbeta;

dbeta = lscov(X, (x_it(i,1).*r(:,t+1)).^3.*r(:,t+1));

dhat = X*dbeta;

x_it(:,i+1) = x(:,t,j)+ (bhat).^(-1).*...

(0.5*xi*W_grid(t,j)*chat-xi^2*W_grid(t,j)^2/6*dhat);

end

x(:,t,j)=x_it(:,i+1);

end

if constr_ON==1

x(:,t,:)=max(0,min(x(:,t,:),1));

end

for j=1:Gridsize

Psi(:,t,j) = (x(:,t,j).*r(:,t+1)+r_f);

end

for tt=2:T-1

t=T-tt;
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X = [ones(M,1), z(:,t), z(:,t).^2];

What = W_grid(t,:).*r_f;

Psihat = (interp1(W_grid(t+1,:)’,squeeze(Psi(:,t+1,:))’,What’))’;

for j=1:Gridsize

abeta = lscov(X, exp(-xi*W_grid(t,j)*Psihat(:,j)).*r(:,t+1).*Psihat(:,j));

bbeta = lscov(X, exp(-xi*W_grid(t,j)*Psihat(:,j)).*r(:,t+1).^2.*...

(Psihat(:,j).^2));

ahat = X*abeta;

bhat = X*bbeta;

x(:,t,j) = 1/(W_grid(t,j)*xi) * ahat./bhat;

if it_ON ==1

x_it = zeros(M,N_max);

i=1;

x_it(:,1) = squeeze(x(:,t,j));

cbeta = lscov(X, exp(-xi*W_grid(t,j)*Psihat(:,j)).*(x_it(:,1).*r(:,t+1)).^2.*r(:,t+1).*...

Psihat(:,j).^3);

chat = X*cbeta;

dbeta = lscov(X, exp(-xi*W_grid(t,j)*Psihat(:,j)).*(x_it(:,1).*r(:,t+1)).^3.*r(:,t+1).*...

Psihat(:,j).^4);

dhat = X*dbeta;

x_it(:,i+1) = x(:,t,j)+ (bhat).^(-1).*...

(0.5*xi*W_grid(t,j)*chat-xi^2*W_grid(t,j)^2/6*dhat);

while ( max(abs(x_it(:,i+1)-x_it(:,i)))>0.001 && i<N_max)

i=i+1;

cbeta = lscov(X, exp(-xi*W_grid(t,j)*Psihat(:,j)).*(x_it(i,1).*r(:,t+1)).^2.*...

r(:,t+1).*Psihat(:,j).^3);

chat = X*cbeta;

dbeta = lscov(X, exp(-xi*W_grid(t,j)*Psihat(:,j)).*(x_it(i,1).*r(:,t+1)).^3.*...

r(:,t+1).*Psihat(:,j).^4);

dhat = X*dbeta;

x_it(:,i+1) = x(:,t,j)+ (bhat).^(-1).*...

(0.5*xi*W_grid(t,j)*chat-xi^2*W_grid(t,j)^2/6*dhat);

end

x(:,t,j)=x_it(:,i+1);

end

end

if constr_ON==1

x(:,t,:)=max(0,min(x(:,t,:),1));

end

for j=1:Gridsize

Psi(:,t,j)=Psihat(:,j).*(x(:,t,j).*r(:,t+1)+r_f);

end

end

toc

% Indici: M, T, Gridsize

%[mean(mean(Psi(:,1,:),3)’) ; std(mean(Psi(:,1,:),3)’)]
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Weights = x;

Pret = Psi;

Quadratic utility

function [Weights,Pret] = Portfolioweights1_it_quad(r, z, b, r_f, W_1, constr_ON,d,u,delta);

% For an investor with quadratic utility

tic

[M,T] = size(r);

vec = ((r_f*(1-d)):delta:(r_f*(1+u)));

% Define grid for wealth

Gridsize=length(vec);

W_grid=zeros(T-1, length(vec));

for t=1:T-1

W_grid(t,:)=(W_1*vec.^(t-1));

end

x = zeros(M,T-1, Gridsize);

Psi = zeros(M,T-1,Gridsize);

%%%%%%

t=T-1;

%%%%%%

X = [ones(M,1), z(:,t), z(:,t).^2];

bbeta = lscov(X, r(:,t+1).^2);

bhat = X*bbeta;

for j = 1:Gridsize

abeta = lscov(X, (1-b*W_grid(t,j)*r_f)*r(:,t+1));

ahat = X*abeta;

x(:,t,j) = 1/b*1/W_grid(t,j)*ahat./bhat;

end

if constr_ON==1

x(:,t,:)=max(0,min(x(:,t,:),1));

end

for j=1:Gridsize

Psi(:,t,j) = (x(:,t,j).*r(:,t+1)+r_f);

end

for tt=2:T-1

t=T-tt;

X = [ones(M,1), z(:,t), z(:,t).^2];
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What = W_grid(t,:).*r_f;

Psihat = (interp1(W_grid(t+1,:)’,squeeze(Psi(:,t+1,:))’,What’))’;

for j=1:Gridsize

abeta = lscov(X, (1-b*W_grid(t,j)*r_f*Psihat(:,j)).*r(:,t+1).*Psihat(:,j));

bbeta = lscov(X, r(:,t+1).^2.*(Psihat(:,j).^2));

ahat = X*abeta;

bhat = X*bbeta;

x(:,t,j) = 1/b*1/W_grid(t,j) * ahat./bhat;

end

if constr_ON==1

x(:,t,:)=max(0,min(x(:,t,:),1));

end

for j=1:Gridsize

Psi(:,t,j)=Psihat(:,j).*(x(:,t,j).*r(:,t+1)+r_f);

end

end

toc

Weights = x;

Pret = Psi;

B.2 Model for multiple risky assets

function Weights = Portfolio_fmincon_multiple_it_state_vb_bs(r,z,gamma,r_f,constr_ON,...

it_ON, N_max)

% Calculates portfolio weights for multiple assets

% Constraining weights between 0 and 1 and only changing portfolio weights with 0.20

% at each time step

% Possibility to use a fourth-order Taylor expansion

% Bisquare robust regression

[M,T,N_assets] = size(r);

x = zeros(M,T-1,N_assets);

x_0 = zeros(N_assets,1);

options = optimset(’Display’,’off’,’TolFun’,1e-6,’LargeScale’,’off’);

if constr_ON==1

LB = zeros(N_assets,1);

UB = ones(N_assets,1);

else

LB = [];

UB = [];

end
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tic

%%%%%%

t=T-1;

%%%%%%

X = [ones(M,1), r(:,t,1), r(:,t,2), r(:,t,3), r(:,t,4), r(:,t,5),...

z(:,t,1), z(:,t,1).^2, z(:,t,2), z(:,t,2).^2, z(:,t,3),...

z(:,t,3).^2, z(:,t,4), z(:,t,4).^2, z(:,t,5), z(:,t,5).^2, ...

z(:,t,1).*z(:,t,2), z(:,t,1).*z(:,t,3),z(:,t,1).*z(:,t,4),...

z(:,t,1).*z(:,t,5), z(:,t,2).*z(:,t,3), z(:,t,2).*z(:,t,4),...

z(:,t,2).*z(:,t,5), z(:,t,3).*z(:,t,4), z(:,t,3).*z(:,t,5),...

z(:,t,4).*z(:,t,5)];

ahat = zeros(M,N_assets);

B = zeros(M,N_assets,N_assets);

Bhat = zeros(M,N_assets,N_assets);

chat = zeros(M,N_assets);

dhat = zeros(M,N_assets);

for i=1:N_assets

abeta = bisquare(X, r(:,t+1,i),1);

ahat(:,i) = X*abeta;

end

for m=1:M

B(m,:,:) = squeeze(r(m,t+1,:))*squeeze(r(m,t+1,:))’;

end

for i=1:N_assets

for j=1:N_assets

beta = bisquare(X, B(:,i,j),1);

Bhat(:,i,j)=X*beta;

end

end

% Optimize with second-order Taylor-expansion

for m=1:M

x(m,t,:) = fmincon(@(y) -(y’*ahat(m,:)’-0.5*gamma/r_f*y’*squeeze(Bhat(m,:,:))*y), ...

x_0, ones(1,N_assets), 1, [],[],LB,UB,[], options);

end

% Fourth-order Taylor expansion

if it_ON ==1

disp(’4th order Taylor iteration used - if optimal’)

x_it = zeros(M,N_assets,N_max+1);
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x_it(:,:,1)=squeeze(x(:,t,:));

xrprod=zeros(M,1);

for i=1:N_max

for m=1:M

xrprod(m,1) = squeeze(x(m,t,:))’*squeeze(r(m,t+1,:));

end

for j=1:N_assets

cbeta = bisquare(X, xrprod.^3.*squeeze(r(:,t+1,j)),1);

chat(:,j) = X*cbeta;

dbeta = bisquare(X, xrprod.^4.*squeeze(r(:,t+1,j)),1);

dhat(:,j) = X*dbeta;

end

for m = 1:M

x_it(m,:,i+1)=(x_it(m,:,1)’-squeeze(Bhat(m,:,:))^(-1)*...

(0.5*(-gamma-1)/r_f*chat(m,:)’+...

1/6*(-gamma-1)*(-gamma-2)/r_f^2*dhat(m,:)’))’;

end

end

for m=1:M

if sum(x_it(m,:,N_max+1)>=0)==N_assets && sum(x_it(m,:,i+1)<=1)==N_assets && sum(x_it(m,:,i+1))<=1

x(m,t,:)=x_it(m,:,i+1);

end

end

end

%%%%%%

t=T-2;

%%%%%%

X = [ones(M,1), r(:,t,1), r(:,t,2), r(:,t,3), r(:,t,4), r(:,t,5),...

z(:,t,1), z(:,t,1).^2, z(:,t,2), z(:,t,2).^2, z(:,t,3),...

z(:,t,3).^2, z(:,t,4), z(:,t,4).^2, z(:,t,5), z(:,t,5).^2, ...

z(:,t,1).*z(:,t,2), z(:,t,1).*z(:,t,3),z(:,t,1).*z(:,t,4),...

z(:,t,1).*z(:,t,5), z(:,t,2).*z(:,t,3), z(:,t,2).*z(:,t,4),...

z(:,t,2).*z(:,t,5), z(:,t,3).*z(:,t,4), z(:,t,3).*z(:,t,5),...

z(:,t,4).*z(:,t,5)];

Psi = zeros(M,1);

for m=1:M

Psi(m,1)= (squeeze(x(m,t+1,:))’*squeeze(r(m,t+2,:))+r_f).^(1-gamma);

end

for i=1:N_assets

abeta = bisquare(X, Psi.*r(:,t+1,i),1);

ahat(:,i) = X*abeta;

end

for m=1:M

B(m,:,:) = squeeze(r(m,t+1,:))*squeeze(r(m,t+1,:))’;

95



MATLAB-code

end

for i=1:N_assets

for j=1:N_assets

bbeta = bisquare(X, Psi.*B(:,i,j),1);

Bhat(:,i,j)= X*bbeta;

end

end

LB = max(0,x(:,t+1,:)-0.2);

UB = min(1,x(:,t+1,:)+0.2);

for m=1:M

x(m,t,:) = fmincon(@(y) -(y’*ahat(m,:)’-0.5*gamma/r_f*y’*squeeze(Bhat(m,:,:))*y), ...

x_0, ones(1,N_assets), 1, [],[],LB(m,:)’,UB(m,:)’,[], options);

end

if it_ON ==1

disp(’4th order Taylor iteration used’)

x_it = zeros(M,N_assets,N_max+1);

x_it(:,:,1)=squeeze(x(:,t,:));

xrprod=zeros(M,1);

for i=1:N_max

for m=1:M

xrprod(m,1) = squeeze(x(m,t,:))’*squeeze(r(m,t+1,:));

end

for j=1:N_assets

cbeta = bisquare(X, Psi.*xrprod.^3.*squeeze(r(:,t+1,j)),1);

chat(:,j) = X*cbeta;

dbeta = bisquare(X, Psi.*xrprod.^4.*squeeze(r(:,t+1,j)),1);

dhat(:,j) = X*dbeta;

end

for m = 1:M

x_it(m,:,i+1)=(x_it(m,:,1)’-squeeze(Bhat(m,:,:))^(-1)*...

(0.5*(-gamma-1)/r_f*chat(m,:)’+...

1/6*(-gamma-1)*(-gamma-2)/r_f^2*dhat(m,:)’))’;

end

end

for m=1:M

if sum(x_it(m,:,N_max+1)>=0)==N_assets && ...

sum(x_it(m,:,i+1)<=1)==N_assets && sum(x_it(m,:,i+1))<=1

x(m,t,:)=x_it(m,:,i+1);

end

end

end

%%%%%

for tt=3:T-1

t=T-tt;
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X = [ones(M,1), r(:,t,1), r(:,t,2), r(:,t,3), r(:,t,4), r(:,t,5),...

z(:,t,1), z(:,t,1).^2, z(:,t,2), z(:,t,2).^2, z(:,t,3),...

z(:,t,3).^2, z(:,t,4), z(:,t,4).^2, z(:,t,5), z(:,t,5).^2, ...

z(:,t,1).*z(:,t,2), z(:,t,1).*z(:,t,3),z(:,t,1).*z(:,t,4),...

z(:,t,1).*z(:,t,5), z(:,t,2).*z(:,t,3), z(:,t,2).*z(:,t,4),...

z(:,t,2).*z(:,t,5), z(:,t,3).*z(:,t,4), z(:,t,3).*z(:,t,5),...

z(:,t,4).*z(:,t,5)];

for m=1:M

Psi(m)= Psi(m).*((squeeze(x(m,t+1,:))’*squeeze(r(m,t+2,:))+r_f).^(1-gamma));

end

for i=1:N_assets

abeta = bisquare(X, Psi.*r(:,t+1,i),1);

ahat(:,i) = X*abeta;

end

for m=1:M

B(m,:,:) = squeeze(r(m,t+1,:))*squeeze(r(m,t+1,:))’;

end

for i=1:N_assets

for j=1:N_assets

bbeta = bisquare(X, Psi.*B(:,i,j),1);

Bhat(:,i,j)= X*bbeta;

end

end

LB = max(0,x(:,t+1,:)-0.2);

UB = min(1,x(:,t+1,:)+0.2);

for m=1:M

x(m,t,:) = fmincon(@(y) -(y’*ahat(m,:)’-0.5*gamma/r_f*y’*squeeze(Bhat(m,:,:))*y), ...

x_0, ones(1,N_assets), 1, [],[],LB(m,:)’,UB(m,:)’,[], options);

end

if it_ON ==1

disp(’4th order Taylor iteration used’)

x_it = zeros(M,N_assets,N_max+1);

x_it(:,:,1)=squeeze(x(:,t,:));

xrprod=zeros(M,1);

for i=1:N_max

for m=1:M

xrprod(m,1) = squeeze(x(m,t,:))’*squeeze(r(m,t+1,:));

end

for j=1:N_assets

cbeta = bisquare(X, Psi.*xrprod.^3.*squeeze(r(:,t+1,j)),1);

chat(:,j) = X*cbeta;

dbeta = bisquare(X, Psi.*xrprod.^4.*squeeze(r(:,t+1,j)),1);

dhat(:,j) = X*dbeta;
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end

for m = 1:M

x_it(m,:,i+1)=(x_it(m,:,1)’-squeeze(Bhat(m,:,:))^(-1)*...

(0.5*(-gamma-1)/r_f*chat(m,:)’+...

1/6*(-gamma-1)*(-gamma-2)/r_f^2*dhat(m,:)’))’;

end

end

for m=1:M

if sum(x_it(m,:,N_max+1)>=0)==N_assets && ...

sum(x_it(m,:,i+1)<=1)==N_assets && sum(x_it(m,:,i+1))<=1

x(m,t,:)=x_it(m,:,i+1);

end

end

end

end

toc

Weights = x;
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