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Abstract

We present a dedicated algorithm for the nonnegative factorization

of a correlation matrix from an application in financial engineering. We

look for a low-rank approximation. The origin of the problem is discussed

in some detail. Next to the description of the algorithm, we prove, by

means of a counter example, that an exact nonnegative decomposition of

a general positive semidefinite matrix is not always available.

1 Introduction

Nonnegative Matrix Factorization (NMF) algorithms aim to find for a matrix V

two matrix factors such that V ≈ WH, where W and H are both nonnegative
matrices, i.e., all elements of W and H are equal to or greater than zero. The
non-negativity constraint arises often naturally in applications in physics and
engineering.
The notion of Nonnegative Matrix Factorization originates from [9], where sim-
ple multiplicative update rules were introduced to solve the approximation prob-
lem. Since then, different aspects of NMF, such as its analysis or the extension
of the algorithms to various applications have been extensively investigated. For
a recent review see [4].
In this article we work with the Nonnegative Matrix Factorization of a correla-
tion matrix, originating from a financial problem. The correlation matrix of n
random variables Φi, i = 1, . . . , n is a n × n matrix whose (i, j)-th entry reads

corr(Φi, Φj) =
E(ΦiΦj) − E(Φi)E(Φj)√

[E(Φ2
i ) − E2(Φi)][E(Φ2

j ) − E2(Φj)]
,

∗This author wants to thank Group Risk Management, Rabobank, the Netherlands for
financial support,

†Corresponding author, c.w.oosterlee@cwi.nl.
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where E(·) denotes the expectation operator. A correlation matrix, C, is a
symmetric positive-semidefinite matrix which has a unit main diagonal. We
wish to find a decomposition C ≈ AAT such that A is nonnegative. Moreover,
AAT should be a low-rank approximation of C.
Viewed from a different perspective our problem of interest is essentially finding
the nearest low-rank correlation matrix, but with an additional non-negativity
constraint. The nearest low-rank correlation matrix question has drawn broad
attention in the financial community. A variety of methods have been pro-
posed. To name a few, the geometric programming approach [3], the Lagrange
multiplier method [16, 14], and majorization [11] have been introduced for this
purpose. However, none of these approaches accommodate an additional non-
negativity constraint.
This paper is organized as follows. In Section 2, we discuss the application from
financial engineering in which the nonnegative matrix factorization problem
arises. In Section 3 we present a counter example for the strict equality C =
AAT . In Section 4 we propose an efficient dedicated algorithm for obtaining
a nonnegative matrix, A, which aims at minimizing the Frobenius norm of the
matrix C−AAT , subject to Aij ≥ 0 and (AAT )ii = 1. Numerical experiments
are presented in Section 5.

2 Application Background

2.1 A factor model for credit portfolio losses

Consider a credit portfolio consisting of n obligors with exposure wi, i =
1, . . . , n. Assume that obligor i defaults if its standardized log asset value Xi

is less than some default threshold ηi after a fixed time horizon. The event
of default can be modeled as a Bernoulli random variable Di = 1{Xi<ηi} with
known default probability pi = P (Xi < ηi). It follows that the loss Li due to
obligor i is simply wiDi and the portfolio loss is given by

L =

n∑

i=1

Li =

n∑

i=1

wiDi. (1)

The default indicators Di and Dj are rarely independent and thus the mod-
eling of the default dependence among obligors is essentially the key issue in
portfolio credit loss modeling. Direct modeling of the pairwise correlations is
impractical since a bank’s credit portfolio can easily contain tens of thousands
of obligors. Common practice to reduce the computational complexity is to
utilize a so-called latent factor model of asset correlations. Popular industrial
tools for managing credit portfolios such as KMV’s Portfolio Manager [8] and
JP Morgan/RiskMetrics Group’s CreditMetrics [5] are models of this type. For
a summary of the models see [2]. We write for obligor i,

Xi = γ1
i Ψ1 + · · · + γM

i ΨM + ǫi = γiΨ + ǫi. (2)

Here

2



• γj
i ≥ 0 for all i, j. The non-negativity of γj

i guarantees that larger values
of the factors Ψi, ceteris paribus, lead to a smaller number of defaults.

• Ψ1, . . . , ΨM represent sector (industry, geographic region) indices that are
correlated with a known correlation matrix C. Since C is a correlation
matrix, it has the properties of positive semi-definiteness and a unit main
diagonal. The matrix C is further assumed to have only nonnegative
entries, which is often justified by empirical evidence.

• ǫi denotes an idiosyncratic factor that only affects an obligor itself.

• Ψ and ǫi are assumed to be independent for all i.

It follows that, conditional on Ψ, Di and Dj are independent and L (Ψ) =∑
wiDi (Ψ) becomes a weighted sum of independent Bernoulli random vari-

ables.
Under such a latent factor model (2), the tail probability of the portfolio loss
can be formulated as

P (L > x) =

∫
P (L > x |Ψ) dP (Ψ), (3)

where P (·) denotes the distribution function. The calculation of the above prob-
ability is essential for the determination of the portfolio Value at Risk (VaR),
which is defined to be the ζ-quantile of the loss distribution of L for some
confidence level, ζ, very close to 1, i.e.,

VaRζ = inf{x : P (L ≤ x) ≥ ζ}.

The VaR amounts to the capital a bank needs to reserve to stay solvent for
probability ζ. Note that the non-negativity of correlation matrix C is a conser-
vative argument in the perspective of risk management as it precludes negative
linear relationship between the common factors. As all the factors tend to move
in the same direction, extremely adverse scenarios leading to huge losses are
more likely.
The integrand P (L > x |Ψ) can be approximated with ease. Various approxi-
mations exist and prove to work very well, for example, the recursive method
due to [1], the normal approximation method as in [10] or the saddlepoint ap-
proximation presented in [7]. Consequently the calculation of the tail probability
becomes a high-dimensional numerical integration problem (3), which turns out
to be non-trivial.

2.2 Call for a NMF

The number of industrial and country indices in (2) can be quite large. KMV’s
correlation model, for example, according to [15], identifies “more than 40 coun-
tries and 61 industries”, whereas CreditMetrics covers “152 country-industry
indices, 28 country indices, 19 worldwide industry indices, and 6 regional in-
dices”. It is evident that the integral to be solved in (3) can be truly a high
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dimensional problem. Monte Carlo (MC) simulation and quasi-Monte Carlo
(QMC) methods, which do not suffer from the curse of dimensionality, are the
prevailing methods used to solve these multi-dimensional integration problems
in finance. However, the event {L > x} in (3) becomes a rare event for high
loss levels x, that are often the most interesting ones in practice. In this regard
both MC and QMC methods can be rather inefficient. Furthermore, the indices
Ψi and Ψj are correlated, which also leads to more complexity for the numer-
ical integration. A version of factor model with orthogonal indices is therefore
preferred, which means that we are led to a second level factor model as follows,

Ψi = a1
i Y1 + · · · + am

i Ym + δi = aiY + δi, (4)

where Yi and Yj are independent and m ≤ M (preferably m ≪ M). Such a
decomposition is usually achieved by a principal components analysis (PCA).
Note that from (4) we have

corr(Ψi, Ψi) = ai(ai)
T . (5)

Since corr(Ψi, Ψi) must be one, we have the hard constraint that ai(ai)
T = 1.

This cannot be expected by employing a straightforward PCA. As a result a
different matrix decomposition, which takes care of (5), needs to be developed.
In addition, non-negativity of the factor loadings aj

i is highly desirable. This
ensures that the two-level factor model, combining (2) and (4),

X = ΓΨ = ΓAY

also has only nonnegative coefficients.
The non-negativity requirement is beneficial since it facilitates the computation
of the tail probability of portfolio loss (3). This can be demonstrated by the
following proposition and example.

Proposition 1. The function

f(y1, y2, ..., ym) = P (L > x|Y1 = y1, Y2 = y2, ...., Ym = ym),

is non-increasing in all its variables yk.

Proof. see [6].

Take, as an example, a homogeneous portfolio in a Gaussian one-factor model,
meaning m = 1, consisting of 1000 obligors with wi = 1, pi = 0.0033 and
a1

i =
√

0.2, i = 1, . . . , 1000. We truncate the domain of the common factor Y
to the interval [−5, 5] so that the probability of Y falling out of this interval is
merely 5.7 × 10−7. The integrand P (L > 100|Y ) is presented in Figure 1. It is
indeed a non-increasing function of Y . Furthermore, it decreases rapidly from
its upper bound, 1, to its lower bound, 0, for Y in a narrow band (between the
two dashed lines in Figure 1), much smaller than the whole domain of Y .
Generally the integral can be computed by a quadrature rule. However since in
our problem the integrand is monotone and bounded in [0, 1], significantly fewer
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Figure 1: The integrand P (L > 100|Y ) as a function of the common factor Y for
a portfolio consisting of 1000 obligors with wi = 1, pi = 0.0033 and a1

i =
√

0.2,
i = 1, . . . , 1000.

evaluations are necessary with an adaptive integration algorithm for the same
accuracy. For multi-factor models the integration can efficiently be calculated
by globally adaptive integration schemes using either a deterministic polynomial
interpolation rule or a random (Monte Carlo type) rule. For more details see
[6].
Let us restate the problem of interest in the present paper in matrix form. For a
given correlation matrix CM×M with Cij ≥ 0 and given m ≤ M , find a matrix
AM×m that minimizes the Frobenius norm of the matrix

C− AAT ,

subject to Aij ≥ 0 and (AAT )ii = 1.
Our problem falls in the class of nonnegative matrix factorization (V ≈ WH)
and further requires that W T = H. This is called a symmetric nonnegative
factorization problem in [13], which discussed another application to portfolio
credit risk and in particular, in the framework of CreditRisk+, another popular
industrial model. The problem considered in their article is very similar to ours
but the diagonal elements of C are not constrained to be 1.

3 Counterexample to C = AAT

In this section we provide a counterexample to the following conjecture

Conjecture 1. For any matrix C which is nonnegative and positive semidefi-
nite, a nonnegative matrix A exists such that C = AAT
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Theorem 2. A counter example for the equality C = AAT , with C nonnegative
and positive semidefinite, and A nonnegative, is provided by the following matrix
C:

C =




2 3
2

1
2 0 1

2
3
2

3
2 2 3

2
1
2 0 1

2
1
2

3
2 2 3

2
1
2 0

0 1
2

3
2 2 3

2
1
2

1
2 0 1

2
3
2 2 3

2
3
2

1
2 0 1

2
3
2 2




(6)

This nonnegative matrix can be scaled so that it has a unit main diagonal. The
matrix is generated as C = ZZT with the following matrix ZT :

ZT =




1 1 1 1 1 1

0 1
2

√
3 1

2

√
3 0 − 1

2

√
3 − 1

2

√
3

1 1
2 − 1

2 −1 − 1
2

1
2


 (7)

which represents the edges of a regular six-faced pyramid of height 1. Since
C = ZZT , C is positive semidefinite and therefore satisfies the conditions of
the conjecture. A nonnegative matrix, A, with the property that AAT = C

does, however, not exist. Note that the condition (AAT )ii = cii is automatically
satisfied in the case of the equality.

Proof. Let’s suppose that the matrix A exists, consisting of rows a0,a1, · · · ,a5

of a fixed, but arbitrary length. In this section the index k should be set modulo
6 when appropriate. It follows from (6) that the inner product (ak,ak+3) = 0,
implying that all vectors must have a set of elements equal to zero, since all
vectors, a, must be nonnegative. Let us define Sk := {i|ak

i 6= 0}. Apparently
Sk ∩ Sk+3 = ∅, as otherwise (ak,ak+3) 6= 0.
We have to satisfy

1. (ak,ak) = 2,

2. (ak,ak+1) = 3
2 ,

3. (ak,ak−2) = 1
2 ,

for k = 0, 1, · · · , 5, but since a part of those vectors is equal to zero we can
formulate this differently:

∑

i∈Sk

(ak
i )2 = 2, (8)

∑

i∈Sk∩Sk+1

ak
i ak+1

i =
3

2
, (9)

∑

i∈Sk∩Sk−2

ak−2
i ak

i =
1

2
, (10)
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We note, that the sets Sk∩Sk+1 and Sk∩Sk−2 are disjoint, since Sk+1∩Sk−2 = ∅.
From (10) we find

1

2
=

∑

i∈Sk∩Sk−2

ak−2
i ak

i ≤ 1

2

∑

i∈Sk∩Sk−2

(ak−2
i )2 + (ak

i )2, (11)

with the equality sign only if ak
i = ak−2

i , i ∈ Sk ∩ Sk−2. Summing over k, we
obtain

5∑

k=0


1

2

∑

i∈Sk∩Sk−2

(ak
i )2 +

1

2

∑

i∈Sk∩Sk+2

(ak
i )2


 ≥ 3. (12)

From (9) we find in the same way

3

2
=

∑

i∈Sk∩Sk+1

ak
i ak+1

i ≤ 1

2

∑

i∈Sk∩Sk+1

(ak
i )2 + (ak+1

i )2, (13)

with the equality sign only if ak
i = ak+1

i , i ∈ Sk ∩ Sk+1. Summing again over k,
we obtain

5∑

k=0


1

2

∑

i∈Sk∩Sk+1

(ak
i )2 +

1

2

∑

i∈Sk∩Sk−1

(ak
i )2


 ≥ 9. (14)

From (12) and (14) we obtain, because Sk ∩ (Sk+2 ∪ Sk−1) ⊂ Sk and similarly
Sk ∩ (Sk+1 ∪ Sk−2) ⊂ Sk,

5∑

k=0

∑

i∈Sk

(ak
i )2 ≥ 12. (15)

In combination with (8) this implies, that inequality (15) is in fact an equality.
By the observations made with inequalities (11) and (13) we conclude that, in
order for this to be possible, we should have

∑

i∈Sk∩Sk−2

(ak
i )2 =

∑

i∈Sk∩Sk−2

(ak−2
i )2 =

1

2
, (16)

∑

i∈Sk∩Sk+1

(ak
i )2 =

∑

i∈Sk∩Sk+1

(ak+1
i )2 =

3

2
, (17)

for all k.
Next, we observe that for all ak the set of indices of nonzero elements, Sk can
be split into two disjoint subsets: Sk ∩ Sk−2 and Sk ∩ Sk+1. These subsets are
disjoint because Sk−2 ∩ Sk+1 = ∅ but they also completely cover Sk because∑

i∈Sk
(ak

i )2 = 2,
∑

i∈Sk∩Sk+1
(ak

i )2 = 3
2 and

∑
i∈Sk∩Sk−2

(ak
i )2 = 1

2 . In the same
way, Sk can be partitioned in two other disjoint sets, Sk ∩ Sk−1 and Sk ∩ Sk+2.
So, in fact, each Sk consists of four disjoint subsets:

1. Σk = Sk ∩ Sk−1 ∩ Sk+1,
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2. Σk−1 = Sk ∩ Sk−2 ∩ Sk−1,

3. Σk+1 = Sk ∩ Sk+1 ∩ Sk+2,

4. Tk = Sk ∩ Sk−2 ∩ Sk+2.

In view of the equalities (9), (10), (16) and (17) the vector ak should be identical
to ak+1 on Sk ∩ Sk+1 and hence also on Σk since that is a smaller index set.
By the same reasoning we find that ak is equal to ak−1 on Σk. Applying the
same reasoning to all six ak-vectors we find six disjoint Σ-sets Σ0, Σ1, Σ2, Σ3, Σ4

and Σ5. On Σk the vectors ak−1,ak and ak+1 are identical and the other three
vanish, as (ak,ak+3) = 0 and ak

i > 0, i ∈ Sk, by the definition of Sk. Applying
an analogous reasoning to Tk we find that ak, ak+2 and ak−2 are identical on
Tk and that the other three vectors vanish on Tk. Evidently, T0, T2 and T4

coincide, as do T1, T3 and T5. So, there are exactly two different T -sets, say
T0 and T1. Furthermore, index set Sk is completely covered by Σk−1, Σk, Σk+1

and the appropriate T . On an index set Σj , all ak are either zero or equal to a
vector vj which only depends on Σj , and not on k. Equally, on an index set Tj

all ak are either zero or equal to a vector wj which only depends on j, and not
on k. This implies that inner products of the form (ak,am), restricted to Σj are
either 0 or ‖vj‖2, and those restricted to Tj are either 0 or ‖wj‖2. Therefore,
we may represent each vector, ak, by an eight component vector, ξk, defined in
the following way:

ξk
k := ‖vk‖ = µk, ξk

k−1 := ‖vk−1‖ = µk−1, ξk
k+1 := ‖vk+1‖ = µk+1,

(indices taken modulo 6). If k is even then ξk
6 = ‖w0‖. Otherwise, ξk

7 = ‖w1‖.
The other four components of ξk are zero, and

(ak,ak−1) = ξk
k−1ξ

k−1
k−1 + ξk

kξk−1
k = µ2

k−1 + µk
2 =

3

2
, k = 0, . . . , 5, (18)

hence µ2
k = 3

4 + ν(−1)k, ν ∈ [− 3
4 , 3

4 ]. But since we should satisfy

2 = (ak,ak) ≥ µ2
k−1 + µ2

k + µ2
k+1 =

9

4
+ ν(−1)k, (19)

we have a contradiction for positive ν, if k is even and for negative ν, if k is
odd.

4 An algorithm for nonnegative factorization

Now we return to the problem of finding the best nonnegative factor with respect
to the Frobenius norm. So, with E = C− AAT , we need to minimize

‖E‖2
frob =

∑

k,l

E2
k,l with diag(E) = O.
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So, we aim to produce an approximated nonnegative factorization of C. At-
tempts with standard constrained optimization programs, such as Rosen’s gra-
dient projection method [12] did not converge at all, most likely because of the
non-convexity of the problem. Therefore, we approach the problem here by a
relaxation technique.
Suppose we have an approximation for A, satisfying the constraints, then we
aim at improving the rows of A, one by one. Let cj denote the j-th column of
C, then we solve:

Minimize ‖Ax − cj‖2, with x ≥ 0, ‖x‖ = 1. (20)

Vector x is meant to be an improved version of aj . Replacement of the row aj

by x, should result in an improved approximation.
Also for this subproblem, the application of standard constrained optimization
methods did not show any success (although we did not experiment too exten-
sively), as we expect a fundamental reason behind the failure of these techniques.
The requirement x ≥ 0 typically gives rise to a linear programming problem,
whereas the constraint ‖x‖ = 1 asks for an analytic approach, such as a pro-
cedure with Lagrange multipliers. These two techniques appear to be not on
speaking terms, so we split the treatment of the two constraints, by setting up
a novel approach, based on relatively basic numerical tools.

4.1 The non-negativity conditions

Let the object function, Θ, and its gradient, g, be defined by:

Θ(x) = ‖Ax − cj‖2, g =
∂Θ

∂x
= 2AT (Ax − cj). (21)

The non-negativity condition usually leads to an approximate solution for which
the elements xk can be divided in a so-called feasible set, F , and its complement,
the non-feasible set. The solution satisfies

xk > 0, gk = 0, k ∈ F ,

xk = 0, gk ≥ 0, k /∈ F .

If x and g satisfy these complementary relations, we obviously have reached a
local minimum. By a convexity argument, it is easily proved that this minimum
is in fact an absolute minimum.
In Matlab the routine lsqnonneg 1 has been developed especially for the non-
negative least-squares problem (i.e. (20) without the unit norm constraint).
This routine failed rather often, uttering protesting remarks about tolerances
that were too severe, or not severe enough.
In cases where the official Matlab routine worked well, it was rather slow com-
pared to the use of the procedure within an iterative process, in which the nnls

routine is a heavily used elementary step.

1Actually we used a routine named ‘nnls’, which is present in an older Matlab version.
This routine is mathematically equivalent with lsqnonneg .
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In the Matlab routine lsqnonneg the feasible set is determined in a trial-and-
error procedure similar to the classical Simplex method. This requires the least
squares solution of (restricted variants of) the system Ax = c. For reasons
of numerical stability, these systems are solved using the pseudo-inverse of the
restricted matrix. Because our problems have moderate size (N ≈ 50), this
rather expensive way of operating does not seem necessary. Therefore we re-
placed the pseudo-inverse approach in lsqnonneg by a basic direct solution,
using Matlab’s formal solution method x=A\c.
Also we searched for a shorter path to the solution, by choosing a significantly
more efficient strategy for updating the feasible set. The most successful variant,
called pmnnlsq (poor man’s nonnegative least squares), works as follows:

Suppose we have a temporary feasible set T .

1. We solve the system restricted to T , and we set xk = 0 outside this set.

2. We remove the indices k ∈ T for which xk is negative, and we add indices
l /∈ T to set T if gl < 0, because the corresponding xl might grow positively
with a decreasing object function.

3. Repeat steps 1 and 2 on the updated T , until no further updates can be
made.

When this process terminates, it has found the nonnegative least squares solu-
tion of Ax = c. Unfortunately, pmnnlsq is not always finite, but often it is,
and then it is substantially faster than lsqnonneg .
In a future version of our routine, we will make use of pmnnlsq , and replace
it by lsqnonneg for the few cases that pmnnlsq appears to hang.

4.2 Unit norm condition

Let e1, e2, . . . , ep be the Cartesian unit vectors in IR
p, and let A be a real non-

negative M × p matrix. Suppose we have found a solution x to the nonnegative
least squares problem of minimizing ‖Ax− b‖2 under condition x ≥ 0. To this
solution corresponds a feasible subset F and a corresponding ‘feasible subspace’
E = span(∪k∈F{ek}).
Let Ã be the matrix consisting of the columns of A with indices in F , and let x̃

be the feasible, i.e. the nonzero, part of x, then x̃ is the ordinary least squares
solution to Ãx̃ = b.
The intersection of the unit sphere in IR

p with the subspace E is the unit sphere
in E . If we succeed in finding a solution x̂ ∈ E , subject to the condition ‖x̂‖ = 1,
the extension of x̂ to IR

p (by choosing xk = 0 for the non-feasible components)
will approximate a solution of problem (20) well. Only a few issues may hamper
the convergence of this algorithm:

1) A feasible variation could exist in which Θ decreases.
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2) The solution x̃ in E may have one or more negative components. This may
happen if the hyper-ellipsoids Θ(x̃) = const = C have very different axes, and
very skew orientations.
A robust remedy for these issues requires some more attention in a future vari-
ant. For now we neglect these.

4.2.1 Analysis of the unit-norm problem.

We now concentrate on the problem of minimizing ‖Ax−b‖ under the condition
‖x‖ = 1. In this analysis the nonnegativity does not play a role, since everything
happens in a feasible subspace E that is already obtained. For convenience, we
drop the tilde signs etc.
In a more familiar setting, in which the second constraint reads ‖x‖ ≤ 1, the
domain is clearly convex. In our case, however, we have to satisfy ‖x‖ = 1 and
this domain is not convex. Many local minima and even saddlepoint-solutions
could be found.
Let x̂ be the solution of the unconstrained least squares problem. Define for
convenience B = AT A. The object function, Θ, can then be defined by:

Θ(x) = ‖Ax − b‖2 = xT Bx − 2xT AT b + ‖b‖2

= (x − x̂)T B(x − x̂) + Θ(x̂). (22)

The usual least squares solution is determined by the normal equations Bx =
AT b, which is equivalent to putting the gradient of Θ to zero:

g =
∂Θ

∂x
= 2(Bx − AT b) = 0

The hyper-surface Θ(x) = C is an ellipsoid in a p-dimensional space, centered
around x̂. If C is very small, this surface is either completely in the interior of
the unit sphere, or completely outside. If we let C grow, then eventually the
surface will have contact to the sphere ‖x‖ = 1, and this contact will be a one
point contact 2. Since both surfaces are smooth, the normal directions have to
be the same in the inside situation, or opposite in the outside case. Therefore
the gradient of Θ should be proportional to x: So, we need to have

g = 2(Bx − AT b) = 2αx, (23)

for some scalar α. Solution of (23) for a given α formally yields

x(α) = (B− αI)−1c,

with c = AT b. Then the requirement ‖x‖ = 1 reads

xT x = cT (B− αI)−2c = 1, (24)

2Although this may not completely be true, we drop this for the moment, because it is a
highly exceptional situation.
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which is a nonlinear equation in α. This equation can be solved by several
techniques, provided a good initial estimate is available.
Probably several solutions can be found, some of which will obviously not make
sense, but certainly a choice should be made. First we obtain insight in the
proper choice of solution from a geometric point of view.

4.2.2 Geometric consideration

Let’s suppose that x is the point of first contact between Θ(x) = C and ‖x‖ = 1,
then we must have Θ(x̃) ≥ Θ(x), for all x̃ with ‖x̃‖ = 1. Now, let x̃ = τx + σt

be a vector with ‖x̃‖ = 1, with

τ = cos(ϕ), σ = sin(ϕ), tT x = 0, ‖t‖ = 1. (25)

Then, we should have

Θ(x + (τ − 1)x + σt) − Θ(x)

= gT ((τ − 1)x + σt) +
(
(τ − 1)2xT Bx + 2(τ − 1)σtT Bx + σ2tT Bt

)
≥ 0,

for all t ⊥ x, with |τ | and |σ| sufficiently small.
Now for small σ, we have τ − 1 = − 1

2σ2 + O(σ4) from (25), and using gT t =
2αxT t = 0, we get

−1

2
σ2gT x + σ2tT Bt + O(σ3) ≥ 0.

Dividing by σ2, letting σ → 0, and using gT x = 2α‖x‖2 = 2α, we finally obtain

−α + tT Bt ≥ 0

for all t ⊥ x, with ‖t‖ = 1. This is equivalent to α ≤ R(B, y), for each y ⊥ x,
where R denotes the Rayleigh quotient function corresponding to B.
Let λ1, λ2, . . . , λp be the eigenvalues of B , then according to a theorem by
Rayleigh, a θ ∈ (0, 1) exists such that:

min
t⊥x

tT Bt

tT t
= λ1 + θ(λ2 − λ1).

Hence α < λ1 + θ(λ2 − λ1) for some θ ∈ (0, 1). It follows that for our first
contact, α < λ2 in any case. Next, it will be shown that the optimal value for
α is the smallest solution of equation (24), and satisfies α < λ1.

4.2.3 Algebraic consideration

Let x(α) be the solution of (23), for a given α. We should find α such that
‖x(α)‖2 = 1. From all values of α for which ‖x(α)‖2 = 1, we should select the
value for which Θ(x(α)) is minimal. Define x(α), F (α) and N(α) by

Bx(α) = αx(α) + c, (26)

N(α) = x(α)T x(α), (27)

F (α) = x(α)T Bx(α) − 2x(α)T c + bT b. (28)

12



then we must determine
min

N(α)=1
F (α).

The following theorem provides us with a simple choice for the α-value for which
F is minimal.

Theorem 3. Let B be a symmetric positive definite matrix. Let x(α), F (α)
and N(α) be defined by (26), (27), (28), then, for each pair α and β with α 6= β
and N(α) = N(β), the following inequality holds:

F (α) − F (β)

α − β
> 0. (29)

Proof. The expression for xT Bx can be simplified by left multiplication of (26)
by x(α)T :

x(α)T Bx(α) = αx(α)T x(α) + x(α)T c = αN(α) + x(α)T c,

and therefore F (α) can be written as F (α) = αN(α)−x(α)T c+ bT b. Then, we
may write

F (α) − F (β) = αN(α) − βN(β) − [x(α) − x(β)]T c.

If N(α) = N(β) this is equivalent to

F (α) − F (β) = (α − β)

[
1

2
N(α) +

1

2
N(β)

]
− [x(α) − x(β)]T c.

An expression for [x(α)−x(β)]T c can be obtained by left multiplication of (26)
by x(β), yielding

x(β)T Bx(α) = αx(β)T x(α) + x(β)T c. (30)

Interchanging α and β in this equation leaves the inner product x(α)T x(β)
unchanged. Also the left-hand side does not change, since B is symmetric. By
subtracting the interchanged variant of (30) from (30) itself, we therefore get:

0 = (α − β)x(β)T x(α) + [x(β) − x(α)]T c,

from which it follows that

[x(α) − x(β)]T c = (α − β)x(α)T x(β).

So, the F -difference can be written as

F (α) − F (β) = (α − β)

[
1

2
N(α) +

1

2
N(β) − x(α)T x(β)T

]
.

Substituting ‖x(α)‖2 for N(α), etc, we finally arrive at

F (α) − F (β) =
1

2
(α − β)[‖x(α)‖2 + ‖x(β)‖2 − 2x(α)T x(β)]

=
1

2
(α − β)‖x(α) − x(β)‖2,

which implies (29).
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According to this theorem, we should search for the smallest solution of the
equation N(α) = 1.
Now consider the explicit formula (24) for ‖x(α)‖2,

N(α) = ‖x(α)‖2 = cT (B− αI)−2c.

Differentiating N(α) with respect to α gives N ′(α) = 2cT (B − αI)−3c. If
α < λ1, B− αI is a positive definite matrix, and so is (B − αI)−3. Therefore
N is monotonically increasing for α < λ1. Now,

N(α) → 0 as α → −∞,
N(α) → +∞ as α ↑ λ1.

Hence, there is precisely one value α < λ1 for which N(α) = 1, and this value
is the smallest solution of equation (24).
This makes it relatively easy to determine an initial guess for the iterative
solution procedure.

4.3 Algorithm

Here is a global description of the algorithm for the nonnegative matrix factor-
ization of C into A and AT subject to aia

T
i = 1:

• If A is an approximate nonnegative factor, with diag(AAT ) = I, then the
main step in the algorithm is the replacement of all rows of A by improved
versions.

• The replacement of a row, aj , by x requires the solution of the following
expression:

Minimize ‖Ax − cj‖2, subject to: x ≥ 0, ‖x‖ = 1.

The solution of this norm-restricted, nonnegative least squares problem
for row replacement is done in two steps:

1. Find a nonnegative least squares solution, xc, with pmnnlsq from
Section 4.1. If this process is not finite (and thus periodic), choose
the Matlab procedure lsqnonneg instead.

The indices of the nonzero entries of xc build the feasible set F .
Suppose that this set has p elements.

2. Let B̂ the p × p sub-matrix of B = AT A, obtained by removing the
rows and columns with indices that are not in F . Let ĉ be the F-
restriction of AT cj . Determine by means of Newton’s procedure the
minimal solution of the expression ‖(B̂−αI)−1ĉ‖2. If the restricted
solution is not feasible, as it gives rise to negative entries, remove the
incorrect indices from F , and repeat the procedure. If the solution
is not minimal if observed in the complete space, accept this sub-
optimal solution. Continue by returning to step 1 with the next row.
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The iteration process is stopped by an Aitken error estimate: Let rn =
‖En‖frob, and suppose rn → r, then the Aitken estimate of rn − r reads

rn − r ≈ (rn − rn−1)
2

rn − 2rn−1 + rn−2
, (31)

which is based on the hypothesis of linear convergence of the sequence
{rn}:

rn ≈ r + const ρn. (32)

This criterion appears to be useful, also in cases where the hypothesis (32)
is not valid.

5 Numerical results

In this section we present some factorization results obtained with the algorithm
presented in the previous section. All experiments are performed in Matlab,
version 7.4, on an Intel(R) Core (TM) 2 6700 2.66 GHz processor.
The first example is taken from [16]. The correlation matrix C is given as
follows,




1.0000 0.8415 0.6246 0.6231 0.5330 0.4287 0.3274 0.4463 0.2439 0.3326 0.2625
0.8415 1.0000 0.7903 0.7844 0.7320 0.6346 0.4521 0.5812 0.3439 0.4533 0.3661
0.6246 0.7903 1.0000 0.9967 0.8108 0.7239 0.5429 0.6121 0.4426 0.5189 0.4251
0.6231 0.7844 0.9967 1.0000 0.8149 0.7286 0.5384 0.6169 0.4464 0.5233 0.4299
0.5330 0.7320 0.8108 0.8149 1.0000 0.9756 0.5676 0.6860 0.4969 0.5734 0.4771
0.4287 0.6346 0.7239 0.7286 0.9756 1.0000 0.5457 0.6583 0.4921 0.5510 0.4581
0.3274 0.4521 0.5429 0.5384 0.5676 0.5457 1.0000 0.5942 0.6078 0.6751 0.6017
0.4463 0.5812 0.6121 0.6169 0.6860 0.6583 0.5942 1.0000 0.4845 0.6452 0.5673
0.2439 0.3439 0.4426 0.4464 0.4969 0.4921 0.6078 0.4845 1.0000 0.6015 0.5200
0.3326 0.4533 0.5189 0.5233 0.5734 0.5510 0.6751 0.6452 0.6015 1.0000 0.9889
0.2625 0.3661 0.4251 0.4299 0.4771 0.4581 0.6017 0.5673 0.5200 0.9889 1.0000




The correlation matrix C is illustrated graphically on a two-dimensional grid
in Figure 2(a), where the colored surface is formed by the cij in matrix C.
Figure 2(b)-(d) correspond to the nonnegative low-rank approximations AAT ,
with rank m =2, 3 and 6, respectively. The results obtained are comparable to
those in [16], where the non-negativity constraint was not imposed.
The convergence in the Frobenius norm with increasing rank is presented in
Figure 3(a). With regard to the computation time, an approximation can be
found within a second for all m ≤ 11. Figure 3(b) illustrates the 6 largest
eigenvalues of C and its nonnegative low-rank approximation with rank m = 6.

In our second example C is a 50× 50 correlation matrix with its entries defined
to be

cij = LongCorr + (1 − LongCorr)eκ|ti−tj |,
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κ = d1 − d2 max(ti, tj),

where LongCorr = 0.3, d1 = −0.12, d2 = 0.005.
Figure 4(a) shows the convergence in the Frobenius norm with increasing rank.
Figure 4(b) compares the 5 largest eigenvalues of C to its nonnegative low-
rank approximations with rank m = 5, 10. As the size of the matrix is sig-
nificantly bigger than the one in previous example, this computation is more
costly. The CPU time for finding the nonnegative low-rank approximations for
m = 1, · · · , 30 is on average around 10 seconds. Moreover, Figure 5 indicates
that as the rank of A increases, the CPU time for finding the nonnegative
low-rank approximations also tends to increase.

6 Conclusion

We have presented a dedicated algorithm for the nonnegative factorization of a
correlation matrix, as it appears in an application from financial engineering.
The algorithm is based on a two-step procedure. First the non-negativity con-
straint is dealt with, by means of nonnegative least-squares routines, available
in Matlab. Secondly, the unit norm condition is taken into account. The algo-
rithm comes with a detailed explanation of all its steps. The methods works
well, as is confirmed by some numerical experiments.
Finally, we have also presented a counter example, showing that it is not always
possible to find an exact nonnegative matrix factorization, with factors of the
same rank as the original correlation matrix.
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Figure 2: (a) The correlation structure of C displayed on a 2D grid, (b)-(d) The
correlation structure of the nonnegative low-rank approximations to C. The
ranks of matrices shown in (b)-(d) are m =2, 3 and 6 respectively.
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Figure 3: (a) Convergence in the Frobenius norm with increasing rank m. (b)
The 6 largest eigenvalues of matrix C and its nonnegative low-rank approxima-
tions (m = 6).
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Figure 4: (a) Convergence in the Frobenius norm with increasing rank m. (b)
The 5 largest eigenvalues of matrix C and its nonnegative low-rank approxima-
tions (m = 5, 10).
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Figure 5: CPU time with increasing rank m.
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