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Abstract

We present an algebraic version of an iterative multigrid method
for obstacle problems, called projected algebraic multigrid (PAMG)
here. We show that classical algebraic multigrid algorithms can easily
be extended to deal with this kind of problem. This paves the way for
efficient multigrid solution of obstacle problems with partial differential
equations arising, for example, in financial engineering.

1 Introduction

In this paper we show that the algebraic multigrid (AMG) method, as it is
commonly used to solve partial differential equations on unstructured grids
in a robust and efficient way, can relatively easily be extended to dealing with
obstacle problems. These problems are often encountered in engineering
practice, ranging from classical engineering applications like elasto-plastic
torsion applications to relatively recent applications occurring, for example,
in computational finance.

One of the motivations to develop the AMG method for obstacle prob-
lems here is to transfer efficient iterative solution methods of black-box type
to application fields like financial engineering. Multigrid has been used in
that field, but mainly by academic researchers from universities.
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AMG was popularised by the overview article of Ruge and Stiiben from
1987 [25], with the basic principles of AMG for so-called M-matrices. More-
over, the software related to the AMG solver described in that article was ini-
tially provided as open source software. AMG solvers from the eighties were
particularly efficient for matrix problems originating from two-dimensional
discrete partial differential equations. At that time, with limited computer
resources, this was sufficient. In the early nineties of the previous century,
however, computer capacity had increased and partial differential equation
software for three-dimensional applications had been developed and a need
to solve three-dimensional problems efficiently by black-box methods arose.
The AMG solver from the eighties had to be upgraded in terms of reduc-
ing its coarse grid operator complexity for three-dimensional problems. A
revival of AMG started at that time, for example, by [20, 26], as well as
in [6]. The resulting AMG solvers with reduced operator complexities due
to so-called aggressive coarsening [26], or by other means [8] were paral-
lelized as well for enhanced efficiency, for example in [21] and [10], amongst
several others. The development of AMG has been described in textbooks
such as [4] or [27].

Independent of this development, geometric multigrid, which is explicitly
based on grids and structures, has been applied to obstacle problems with
partial differential equations (PDEs), also in the eighties of last century.
Obstacle problems can be formulated as linear complementarity problems
(LCPs), which have a long tradition regarding their efficient numerical solu-
tion, see, for example, [7], [9]. The LCP formulation is beneficial for iterative
solution, since the unknown boundary (as obstacle problems are governed
by unknown free boundaries) does not appear explicitly and can be obtained
in a post-processing step.

In the pioneering paper [3] from 1983, regarding the use of multigrid
to this type of problem, Brandt and Cryer introduced the projected full
approximation scheme (PFAS) multigrid method for LCPs. Unlike in the
basic geometric multigrid correction scheme, which is based on transferring
corrections to the numerical solution from coarse to fine grids, each level of
PFAS approximates the complete solution of the fine LCP. It is thus based on
the non-linear full approximation scheme (FAS) developed by Brandt in [2].
In 1987, Hoppe developed a solver for obstacle problems which employs a
multigrid method to solve reduced linear algebraic systems in [13]. A later
multigrid approach for obstacle problems was called the monotone multigrid
method, developed by Kornhuber in [19].

Reisinger and Wittum proposed in [24] a projected multigrid method for
LCPs. It resembles the standard multigrid method more closely than PFAS.



The coarse grid right-hand side is the restriction of the defect (residual). In
that strain of literature we here present the so-called projected algebraic
multigrid (PAMG) method. We will base our algorithm on this latter idea,
and use the original Ruge-Stiiben AMG framework.

A wide range of financial engineering applications in which obstacle prob-
lems occur in the form of LCPs is presented in [18],[14]. The basic obstacle
problem considered in computational finance is the calculation of the value
of an American-style option in a stochastic volatility setting. It leads to
the solution of a two-dimensional (plus time) convection-diffusion type PDE
with a free boundary. In [28], it has been shown that for the American-style
options the theory of linear complementarity applies, so that it is possible
to rewrite the problem as an LCP. Numerical discretization schemes of finite
element type, amongst others, are presented in [1].

A first application of multigrid to obstacle problems in computational
finance is found in [5], with the concept of line-wise smoothers to deal with
stretched non-equidistant computational grids. Semi-coarsening in multigrid
as well as multigrid as a preconditioner for Krylov methods, tailored to
the LCPs in computational finance, can be found in [22]. With the AMG
solver developed here, stretched grids are efficiently handled, as algebraic
coarsening based on matrix elements typically results in some form of semi-
coarsening.

A detailed study of the performance of multigrid for linear complemen-
tarity problems arising from the stochastic volatility Heston model [11] can
be found in the work by Toivanen and co-workers [15], [16], [17].

The outline of the paper is the following. The model linear complemen-
tarity problem is presented in Section 2. The PAMG method and details
of its components are described in Section 3. Numerical experiments with
elasto-plastic torsion problems and American option pricing under a stochas-
tic volatility model demonstrating the efficiency of the proposed method are
presented in Section 4. The conclusions are given at the end of the paper.

2 Linear Complementarity Problem

We consider a linear complementarity problem (LCP)

Ax > b,
X2 g,
(Ax —b)T(x—g) =0



with the inequalities holding component-wise. We denote this problem by
LCP(A,x,b,g). Thus, for each i either [Ax]; = b; or x; = g; holds. The set
of i-values for which the later equation holds is called the active set, which
is given by {i : x; = g;}. The complementary set {i : x; > g;} is called
the inactive set.

We assume the matrix A to be an M-matrix or nearly so. For an M-
matrix A the following properties hold:

e positive diagonal entries: A > 0,
e non-positive off-diagonal entries: A;; <0, i # j,
e diagonally dominant: }_, ., |Aj;| < Ay

Often low-order finite difference or element discretizations of partial differen-
tial operators like the convection-diffusion-reaction operator, —A+v-V +¢,
lead to M-matrices.

The classical iterative solution method for LCPs is the projected succes-
sive overrelaxation (PSOR) method proposed by Cryer in [7]. One iteration
of this method for LCP(A x,b,g) is given by:

Algorithm PSOR(A,x,b,g)
Doi=1,dim A

r, = bZ — Zj Ainj

X; = X; + WI‘Z‘/A“'

x; = max {x;, g}
End Do

In the case w = 1, the PSOR method reduces to the projected Gauss-Seidel
(PGS) method.

A helpful observation here is that PSOR is based on the iterative solution
process, by means of SOR, of the matrix equation Ax = b, where matrix
A originates from a discretization of a PDE. The iterative solution of this
matrix equation can be performed fully algebraically, for example, by AMG.
This will form the basis of the PAMG algorithm proposed here.

3 Projected Algebraic Multigrid

We present a PAMG method which follows the idea of the projected multi-
grid method proposed by Reisinger and Wittum in [24]. The geometric



components of this method are replaced by the algebraic counterparts de-

scribed by Ruge and Stiiben in [25].

To show the similarity and differences of AMG methods for LCPs and
systems of linear equations, we describe the algorithms for one V-cycle of
PAMG and AMG side-by-side in the following:

Algorithm PAMG(A x,b,g)

If coarsest level Then

Algorithm AMG(A x,b)
If coarsest level Then

solve LCP(A,x,b,g) x=A"1b

Else Else
PS(A x,b,g) S(A,x,b)
x¢=0 x“=0
r° = R(b — Ax) r‘° =R(b — Ax)
g°=R(g—x)
PAMG(A®€x°r¢ g) AMG(A°x°r)
x =x + Px°¢ x = x + Px°
PS(Ax,b,g) S(A,x,b)

End If End If

In the above algorithms, PS and S are smoothers for the LCPs and the
systems of linear equations, respectively. The matrices P and R are the
standard algebraic prolongation and restriction operators. The restriction
operators for the solution of the LCP and its constraint are denoted by R
and ﬁ, respectively. The prolongation for the LCPs is denoted by P. The
coarse grid matrix is A°. We describe the choice of these operators in the
following sections.

3.1 PAMG components

In this section we give details about the different components the PAMG
solver is based on.

Coarse grid selection

At a given multigrid level, we need to select a set of coarse grid points which
define the next coarser level. These points are denoted by C-points. The
rest of grid points, the fine grid points, are denoted by F-points. Thus, the
intersection of C-points and F-points is empty and their union gives all grid
points at the current level.

In the selection of C-points, we use the coarsening proposed by Ruge and
Stitben in [25]. This is based on the graph defined by the non-zero entries



of the matrix A. A graph connection from ¢ to j is called strong when
Aij < arlrgn Ay and AZ']' < 0.
7

Otherwise the connection is called weak. For the parameter «, we use the
fairly standard value o = 0.25. The coarse grid points (C-points) are chosen
so that the following two conditions hold:

e C-points are only weakly connected to other C-points, and

e cach fine point (F-point) with any strong connections has at least one
strong connection to a C-point.

We use the following algorithm to choose the C-points. During the al-
gorithm the points are divided into three sets: undecided points (U-points),
a subset of C-points, and a subset of F-points. We denote the number of
strong connections to the ith U-point from the other U-points by n;.

Mark all points as U-points
Calculate n;s
Do while max; n; > 0
Find smallest k£ such that ny = max;n;
Mark k to be C-point
Mark all U-points having a strong connection to k£ to be F-points
Update n;s
End Do
Mark all remaining U-points to be F-points

Prolongations

The interpolated value of a fine grid point k& is given by the formula
Z WikXi,
1€Cl

where C}, is the set of coarse grid points strongly connected to the fine grid
point k, w;; are the interpolation weights, and x; is the value at the ith
coarse grid point. Following a proposal by Ruge and Stiiben in [25], we
choose the weights to be

A ji|
Al + ) =141,
> s



where D; is the set of coarse grid points weakly connected to ¢. As long
as the diagonal entries of A are positive, the interpolation weights w; are
non-negative. We denote the matrix defining the above interpolation from
C-points to all points by P. We use this standard interpolation to form the
coarse grid matrix.

The interpolation matrix for the correction from the coarse grid is de-
noted by P. This can be the standard interpolation matrix P. Alternatively,
Brandt and Cryer suggested in [3] the following one-sided prolongation

_ {Wﬂiﬁ Xi > g

Px‘|; = 1
[X] 0 if X; = 8- ()

With this prolongation the coarse grid correction cannot change an active
grid point to be inactive. This has to be done by the smoother. We will
mainly use the standard prolongation in PAMG, that is, P = P.

Restrictions

The standard restriction matrix R is given by the transpose of the prolon-
gation matrix P, that is,

R =P
For the defect (residual), we use however the one-sided restriction operator
proposed by Hoppe and Kornhuber in [12]. It is defined by

— o [RI‘A]Z‘ if X; = 8
[Rr]l o { [er]i if X; > &,

where R is the standard restriction and

I E i S

With the one-sided restriction the active set residual does not contribute to
the coarse inactive set residual. Notice that we only need to have explicit
information about the vector g, next to the matrix elements A;; to define
this restriction operator algebraically.

Reisinger and Wittum also use in [24] this one-sided restriction R. in their
projected multigrid method. They further state for the restriction operators
the minimum requirements

R(Ax —b) >0,
ﬁ(x —-g) >0,
[R(Ax —b)]" R(x — g) =0,



which guarantee the solution x to be also a fixed point of projected multigrid
iterations. In general, using the standard restriction R as R does not satisfy
these conditions. In practice, one can observe that geometric and algebraic
multigrid methods often fail to converge with the standard restriction, so
that we adopt the one-sided restriction operator for R.

In order to satisfy the constraint x > g at each coarse grid point, the
restriction R for the constraint has to be the injection operator. This restric-
tion operator copies the C-point values to the coarse grid and does not add
any contribution from F-point values. We also choose for R the injection
operator.

Coarse grid matrix

We use the Galerkin coarsening, that is, the coarse grid matrix A€ is chosen
to be
A° = RAP = PTAP.

We use the standard prolongation and restriction operators, P and R, in
the definition of the Galerkin coarse grid matrices. The modified restriction
operators, R and f{, are solely used for the restriction of the residuals and
the constraints for the LCP, respectively.

Smoother for LCPs

Our smoother for LCPs is based on the PGS method which is a point-wise
smoothing method. In the case of grid anisotropies, or any other anisotropies
in the engineering problems, the AMG coarsening strategy should automat-
ically, based on the rules regarding the strong connections, detect strong
coupling and some form of semi-coarsening should automatically take place
within AMG. This is one of the strong points we aim for here, as this will
give rise to efficient algebraic coarsening strategies on non-uniform stretched
grids that are often encountered in (financial) engineering applications.

4 Numerical experiments

In this section we give a couple of motivating examples to show the quality
of PAMG for problems on regular finite difference and finite element grids.
The third example is from computational finance and deals with a stretched
grid. The performance of PAMG on these examples gives some insight in
our choice of the PAMG components.



4.1 Elasto-plastic torsion problem

For an elastic rod with a crosscut £ under a twist, a stress function u satisfies
the LCP:

—Au > -2C in Q

u > —d(x,00) in Q 2)
(Au—2C)(u+d(x,092)) =0 inQ

u =20 on Jf,

where d(x,012) is the distance from the boundary 0 at x. In the region
where —Au = —2C is satisfied, the rod is elastic while in the region where
—u = d(x,09) the rod behaves plastically. In the following, we consider this
problem with the coefficient C' = 10. For the iterations, we use the stopping
criterion

#]|oc < 1075[bl].

where %) is the reduced residual defined by:

[Ax —b]; if x;>g;
0 if X; = 8-

We report the convergence rates for the iterations defined by

L
exp | —log i+—+— | .
P\ O
Two tests have been performed for this equation, in a square with finite
differences and in an ellipse with finite elements.

Square

Following [22], we have chosen the first example the crosscut € to be the
square [0,1]2. For the discretization of the Laplace operator, we use the
standard five-point finite difference stencil. The stress function u and the
plastic region are shown in Figure 1. We study the convergence of the
iteration with multigrid V- and F-cycles. Furthermore, we compare the
use of one and two pre-smoothing and post-smoothing sweeps. Mainly, we
performed the smoothing by the PGS relaxation method, but we also studied
the convergence with an overrelaxation parameter in one test. In the latter
case, the smoother is the PSOR method.

Convergence results for the standard prolongation and for the one-sided
prolongation in (1), as suggested by Brandt and Cryer, are reported in



Figure 1: The solution w in the square (left) and the corresponding plastic
region, that is, the active set (red, right).

Tables 1 and 2, respectively. With the V(1,1)-cycle the PAMG method
failed to converge in a few hundreds of iterations on the finest grid 513 x 513
with the standard prolongation. The number of iterations grows with the
V-cycle whereas with the F-cycle PAMG scales well, with both choices for
the prolongation operator. We therefore choose the standard prolongation
in the experiments to follow.

Table 3 gives the results for the V- and F-cycles with PSOR used as
smoother. The overrelaxation parameter w is chosen in an optimal way
from the set {1,1.1,1.2,...,2} . Overrelaxation is especially beneficial for
the V-cycle results, as expected. V-cycles may have an unsatisfactory low-
frequency error treatment for LCPs and PSOR may help because overrelax-
ation can reduce low-frequency error components. The maximum number
of iterations reduces only by one for both F(1,1)- and F(2,2)-cycles.

Based on these convergence results, we prefer to stay with F-cycles and
PGS (w = 1) in the experiments to follow. The improved performance
of F-cycles compared to V-cycles can be understood because the injection
operator R forms a basic ingredient of PAMG. The coarse grid correction
should therefore be made more robust, for example by using F-cycles.

Ellipse

As a second example, we consider the elasto-plastic torsion problem in an
ellipse

1
Q:{XGR2 : Zaz%+x%<1}.
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Table 1: The number of iterations and the convergence rate with the stan-
dard prolongation for the elasto-plastic torsion problem in the square.

V(1,1) V(2,2) F(1,1) F(2,2)
grid iter rate | iter rate | iter rate | iter rate
1290 x 129 | 164 093 | 15 0.46 7 0.19 6 0.10
257 x 257 | 76 0.86| 20 0.55| 15 045 9 0.26
513 x 513 1.00 | 29 0.67 | 11 0.32 7 0.16

Table 2: The number of iterations and the convergence rate with the one-
sided prolongation by Brandt and Cryer for the elasto-plastic torsion prob-
lem in the square.
V(1,1) V(2,2) F(1,1) F(2,2)

grid iter rate | iter rate | iter rate | iter rate
129 x 129 | 35 0.72 | 13 0.40 7 0.17 5 0.08

257 x 257 | 37 073 | 17 051 ] 11 0.35 8 0.22
513 x 513 | 146 0.92 | 24 0.61 8 0.24 6 0.13

Table 3: The number of iterations and the convergence rate with the one-
sided prolongation by Brandt and Cryer and overrelaxation for the elasto-
plastic torsion problem in the square.

V(1,1) V(2,2) F(1,1) F(2,2)
w=1.2 w=13 w=12 w=13
grid iter rate | iter rate | iter rate | iter rate

129 x 129 | 18 0.52 9 0.26| 10 0.29 7 0.14
257 x 267 | 25 0.62| 12 037 ] 10 0.30 7 0.18
013 x 513 | 42 0.76 | 14 043 | 10 0.28 6 0.14

11



Figure 2: The solution u in the ellipse on the mesh with 3277 nodes (left)
and the corresponding plastic region, that is, the active set (red, right).

Table 4: The number of iterations and the convergence rate with the stan-
dard prolongation for the elasto-plastic torsion problem in the ellipse.

PGS V(1,1) V(2,2) F(1,1) F(2,2)
mesh iter | iter rate | iter rate | iter rate | iter rate
861 430 | 15 0.46 9 0.24 8 0.21 6 0.14
3277 | 1751 16 0.48 9 025 10 0.30 6 0.14
12803 | 6990 | 17 0.50 | 10 0.28 8 0.23 6 0.12
50576 | 28070 | 31 0.68 | 12 0.38 | 10 0.30 8 0.19
200979 32 0.70 | 14 0.41 10 0.31 7 0.19

For discretization, we use linear finite elements on quasi-uniform triangula-
tions. We show here that PAMG also performs well on triangular meshes.
These discretizations also lead to M-matrices. The stress function v and
the plastic region are shown in Figure 2. Figure 3 shows an example of
coarser grids constructed by the AMG coarsening. Convergence results for
the standard prolongation and PGS smoother are reported in Table 4. Also,
the number of iterations with the PGS method is given in that table.

4.2 Pricing American options

We consider pricing American put options under Heston’s stochastic volatil-
ity model [11]. The values of options are given by the point values of the
solution u of the time-dependent LCP

Lu>0 in Q
u>g in Q
(Lu)(u—g)=0 inQ,

12



Figure 3: The different levels constructed by the AMG coarsening on a mesh
with 231 nodes. The kth finest grid includes the levels from & to 6.

where = (0, z"*) x (0, 25**) x (0,7]. The parabolic partial differential
operator L is defined by

1 2 1 2
Lu=u;+ §x2x1uxlx1 + pyxroxiUz sy + 57 ToUgozsy

+ reiug, + a8 — x2)ug, — ru,

where x1 is the value of the underlying asset, xo is the variance, and 7 is the
time to expiry T'. The volatility of the variance process is v and the variance
will drift back to a mean value 8 > 0 at a rate « > 0. The correlation
between the value and variance processes is p. The risk-free interest rate
is . For a put option with a strike price K, the payoff function reads

g = max{K — x1,0}.
We price options under the parameter values
K=10, T=025, r=0.1, a=5, =016, v=0.9, and p=0.1

which have been used also in [5], [15], [16], [17], [22], and [29].
The boundary conditions are given by

max

w(0,29) = K, 0< xo < 5™,

max

Ug, (27, 22) =0, 0 <z < 2y,

max

Ugy (T1,2575) =0, 0<z <]

13



With the parameter values chosen, it is not necessary to pose a boundary
condition on the (0,z7"**) x {0} boundary as £ reduced to a first-order
operator with the characteristic curve pointing outward.

Similarly to [15] and [22], we truncate domain so that z]"** = 20 and
x5 = 1. We use the finite difference discretizations with non-uniform space
steps described in [15] and the Rannacher time-stepping [23]. The time steps
are uniform except the first four time steps taken, using the implicit Euler
method with the time step being half of that of the other steps.

Table 5 reports results for the PAMG method and also for the geo-
metric projected multigrid (PMG) method, described in [15]. The triplet
(m,n,1) represents the number of steps in the 1, z2, and 7 directions, re-
spectively. The reported error is the [s-norm of the error at the reference
points {8,9,10, 11,12} x {0.0625,0.25}. The ratio in the table is the ratio
of consecutive errors.

Here we use the PAMG method with the multigrid V-cycle. When mov-
ing downwards and upwards the smoother is one PGS iteration over all
points, followed by one PGS iteration over F-points only. The stopping
criterion for multigrid methods is

0.02
HI‘ H2 = mn” ||27 ( )

where b is the right-hand side vector and r is the reduced residual vector,
defined in (3). The number of iterations presented is the average number of
iterations per time step. The main reason for the increase in the number of
iterations when the grid is refined is stopping criterion (4) which becomes
more strict then. The runs have been performed on a PC with 3.8 GHz
Xeon processor, using Fortran implementations. Figure 4 shows coarser
grids constructed by the AMG coarsening.

5 Conclusions

We presented a PAMG method for solving iteratively linear complementar-
ity problems based on the AMG coarsening technique described by Ruge
and Stiiben in [25]. This is an easy-to-use robust and efficient black-box
solver which only requires the matrix and vectors defining the problem. An
underlying assumption is that the matrix is an M-matrix or nearly so.
Numerical experiments demonstrated the PAMG method to be robust
and efficient for partial differential operators discretized using structured
and unstructured grids/meshes. In experiments with the elasto-plastic tor-
sion problems the method with F-cycle appears to be scalable, that is, the

14



Table 5: The average number of iterations, the errors at the 10 reference
points, the ratios of consecutive errors, and the CPU times in seconds.

method | space time grid | iter. error ratio | CPU
PAMG 64 x 32 x 34 1.2 | 0.002361 0.06

128 x 64 x 66 1.6 | 0.000747 | 3.16 | 0.55
256 x 128 x 130 | 2.0 | 0.000428 | 1.74 | 5.65
512 x 256 x 258 | 2.0 | 0.000112 | 3.83 | 45.59
PMG 64 x 32 x 34 1.9 | 0.002443 0.06

128 x 64 x 66 2.0 | 0.000900 | 2.71 | 0.56
256 x 128 x 130 | 2.5 | 0.000426 | 2.11 | 5.78
512 x 256 x 258 | 3.0 | 0.000108 | 3.96 | 58.06

*level 1 °*level 2 ¢ level 3 * level 5

e o 0o 0 0 o o
®e 0o 0o 0 o o
® e o 0 0 0 o
o0 06 0 0 0 o
e 0 o 0 o o
® 0o 0 0o 0 o o
o0 0 o

Figure 4: The different levels constructed by the AMG coarsening on a 17 x9
grid. The kth finest grid includes the levels from k to 6.
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number of iterations seem to be bounded when discretizations became finer.
Experiments pricing American options under a stochastic volatility model
showed the PAMG method to be faster than a geometric multigrid tailored
for the problems. This demonstrates that PAMG is easy-to-use and efficient
for pricing American-style options under multi-factor financial models.
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