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Abstract. We present robust parallel multigrid-based solvers for 3D scalar partial differential
equations. The robustness is obtained by combining multiple semicoarsening strategies, matrix-
dependent transfer operators, and a Krylov subspace acceleration. The basis for the 3D precondi-
tioner is a 2D method with multiple semicoarsened grids based on the MG-S method from [C. W.
Oosterlee, Appl. Numer. Math., 19(1995), pp. 115–128] and [T. Washio and C. W. Oosterlee, GMD
Arbeitspapier 949, GMD, St. Augustin, Germany, 1995]. The 2D method is generalized to three
dimensions with a line smoother in the third dimension. The method based on semicoarsening has
been parallelized with the grid partitioning technique [J. Linden, B. Steckel, and K. Stüben, Par-
allel Comput., 7(1988), pp. 461–475], [O. A. McBryan et al., Impact Comput. Sci. Engrg., 3(1991),
pp. 1–75] and is evaluated as a solver and as a preconditioner on a MIMD machine. The robustness
of the 3D method is shown for finite volume and finite difference discretizations of 3D anisotropic
diffusion equations and convection-dominated convection-diffusion problems.
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1. Introduction. The goal of this paper is to find robust and parallel efficient
solution methods for three-dimensional (3D) linear partial differential equations. Our
starting point is a structured block diagonal matrix resulting from finite volume or
finite difference discretizations of singularly perturbed problems. For the 3D prob-
lems we want to present an alternative to the use of alternating plane smoothers.
Alternating plane smoothers are known to be robust smoothers in standard multigrid
algorithms but they are expensive, because in every plane a sparse system of linear
equations has to be solved. An alternative for avoiding this is to consider nonstan-
dard multigrid methods. These methods involve a combination of local (point or line)
smoothers and a robust coarse grid correction based on semicoarsened grids. Com-
bining two-dimensional (2D) multiple semicoarsening and line smoothing with respect
to the third dimension, a robust O(N) solver is obtained. The resulting 3D solver is
robust for a large class of problems.

It was found in analyzing the spectra in [17] that for all test problems, many of the
eigenvalues of a multigrid iteration matrix are clustered around the origin. In some
cases there are some isolated large eigenvalues which limit the multigrid convergence,
but are captured nicely by a Krylov acceleration technique. A similar observation was
made in [9] and [22]. Furthermore, the use of a (nonstandard) multigrid preconditioner
for a Krylov method, with a fixed smoother and fixed transfer operators, leads to a
well-parallelizable method.

One could develop for each of the problems treated here a specific optimized
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multigrid solver. This is not our intention with this paper. We would also like to
mention that algebraic multigrid (AMG) [19] is an interesting solver for some problems
treated here. However, the approach presented is expected to be easy to generalize to
systems of equations and nonlinear problems. AMG may be restricted in this respect,
and also with respect to parallelism and locality.

The basis for the 3D solver is a 2D nonstandard multigrid method MG-S [15],
[25], based on multiple semicoarsening. In 2D methods based on semicoarsening
a point smoother is sufficient for achieving robustness. In [15] we explained the
relation between our multiple semicoarsening approach and the use of a semicoarsened
multigrid method as a smoother in a multigrid method with a standard grid sequence.
MG-S is based on the standard multigrid grid sequence, and transfer operators with
semicoarsened grids are only connected with at most one of these grids. Processing
the semicoarsened grids can then be seen as the smoothing iteration in the standard
grid sequence.

The 3D solution method based on the 2D flexible MG-S grid sequence with a
line smoother in the third direction is explained in section 2. The 3D prolongation
operators are based on de Zeeuw’s [27] and Dendy’s [2] 2D prolongation weights and
Galerkin coarse grid discretization [26]. A V-cycle is used in the semicoarsening
smoother. A V- and an F-cycle are implemented for the standard grid sequence. We
evaluate whether the use of an F-cycle instead of a V-cycle accelerates the convergence
with MG-S and if this acceleration outweighs the more frequent processing of the
coarser grids.

In section 2.4 we present a more efficient flexible MG-S method. It is possible
to construct a faster MG-S method, in which the fine and coarse grid matrices are
analyzed and the semicoarsening in the smoother is stopped when anisotropies have
disappeared.

Multiple coarse grids are also considered in the frequency domain decomposition
method [7], [4] and in the multiple semicoarsened grids (MSG) method from [12],
[13], [14], and [28]. Early multigrid work in which semicoarsening plays an important
role is [18], where the multigrid reduction (MGR) method is introduced, [24], where
robust 3D multigrid methods for Poisson-type equations are considered, and [23],
where semicoarsening is investigated on a multiple instruction, multiple data (MIMD)
machine.

The parallelization of the 3D method is based on grid partitioning and on the
parallelization of a line relaxation method, as explained in [25]. The parallelization is
done with the message-passing interface (MPI). It has been ensured that the single-
block convergence is identical to the multiblock convergence. The new 3D flexible
MG-S method introduced is compared as a solver and a preconditioner in section 3.
Representative 3D anisotropic diffusion- and convection-dominated test problems are
implemented and solved on the NEC Cenju-3 MIMD machine [8]. A well-known 3D
test problem is the anisotropic diffusion equation [3], [24], [5], where the anisotropy
is along one or two coordinate directions. The convection-dominated problems solved
are convection-diffusion equations with spherical and cylindrical solutions.

2. The 3D solution method. The right preconditioned system to solve is:

AK−1(Kφ) = f.(1)

A is a matrix constructed from a 3D 27-point stencil in general. K−1 never has to
be solved explicitly; instead, one iteration of a multilevel preconditioner, which will
be explained in the following subsections, is performed. The Krylov subspace method
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used for solving (1) is GMRES(m) [20]. The multilevel preconditioner will also be
used as a solver based on a matrix splitting as follows:

Kφ(l+1) + (A−K)φ(l) = f.(2)

This is a usual repeated application of the multilevel solver. We call this Richardson
iteration.

2.1. Basic idea of the 3D solution method. A first robust semicoarsening
multigrid method with an F-cycle of complexity O(N), with N the number of un-
knowns, was published in [12], where the MSG method was introduced. In [13] and
[14], however, it was shown that it is not at all trivial to find satisfactory coarse grid
corrections for MSG. A new variant, 2D MG-S, was discussed in [15] and [25]. The
behavior of this method is clearer than that of MSG, because standard multigrid
serves as a basis for this nonstandard multigrid method. The smoother investigated
in the standard multigrid sequence is a semicoarsened multigrid method in the x- and
y-directions. It is possible to present 2D MG-S as a standard multigrid method with
an alternating semicoarsened multigrid smoother. A 2D standard multigrid for four
levels is shown in Figure 1(a); the sequence of grids processed in MG-S is presented
in Figure 1(b).

(b)(a)

MG

4,4

3,3

2,2

1,1

MG-S

4,4

3,3

2,2

1,1

3,4

2,4

1,4

4,3

4,2

4,1
2,3

1,3

1,2

3,2

3,1

2,1

Fig. 1. Sequences of 2D grids, (a) for standard multigrid, (b) for the MG-S method.

A 2D MG-S cycle is performed as follows: first semicoarsening in the x-direction
takes place with smoothing on all x-semicoarsened grids. After this, the semicoarsen-
ing in the y-direction is performed with smoothing on all grids. Then, a grid coarsened
simultaneously in the x- and y-directions is processed. On this coarser grid level the
same procedure takes place, and so on.

A robust 3D solution method is presented in this section, based on the 2D MG-S
preconditioner with a line smoother in the third direction. This generalization seems
to be a good compromise between storage and computational work. Storage would
be less in methods based on the standard multigrid sequence in three dimensions.
However, alternating plane smoothers would be required for robustness [24], [5], which
are more expensive. In [5] one V-cycle of a 2D multigrid method was used as a plane
smoother for solving 3D anisotropic diffusion equations with strong couplings in two
directions simultaneously, in order to keep the plane smoother cheap. It cannot,
however, be expected that one iteration of a plane smoother is generally sufficient
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for more difficult convection-dominated equations. In [16] a plane smoother based
on incomplete LU (ILU) preconditioned generalized minimum residual (GMRES) [21]
leads to a robust multigrid method for 3D incompressible Navier–Stokes equations on
stretched grids. It was found that for high Reynolds flows on fine grids the number
of GMRES plane iterations increased in several planes. This phenomenon can lead to
unbalanced workload on MIMD machines.

A full 3D MG-S or MSG method, where enough grids are processed so that
even a point smoother gives a robust method, would need much more storage and
computation.

2.2. Fourier smoothing analysis for the 3D MG-S. Our 3D variant is based
on the following consideration for the Fourier smoothing analysis of a line smoother
and the robustness of the 2D MG-S with a point smoother. First, we see that the
convergence factor of a line smoother for a Fourier component depends essentially only
on the frequencies along two directions perpendicular to the line. As in [1], suppose
we are interested in solving the diffusion equation

Lφ(x, y, z) = a
∂2φ(x, y, z)

∂x2
+ b

∂2φ(x, y, z)

∂y2
+ c

∂2φ(x, y, z)

∂z2
= f(x, y, z),(3)

with positive coefficients a, b, and c. This equation can be discretized on a grid
G(hx, hy, hz) = {(ihx, jhy, khz) | i, j, k ∈ N} by the standard seven-point discretiza-
tion. Suppose, for example, we apply the damped z-line Jacobi relaxation with the
damping parameter ω(0 < ω ≤ 1) to the discretized equation; then we obtain an
iterative process

(Lz + D)φ̃(l+1) + (Lx + Ly)φ
(l) = f,(4)

φ(l+1) = ωφ̃(l+1) + (1 − ω)φ(l),(5)

where

(Lxφ)i,j,k := a
φi+1,j,k + φi−1,j,k

hx
2 ,

(Lyφ)i,j,k := b
φi,j+1,k + φi,j−1,k

hy
2 ,

(Lzφ)i,j,k := c
φi,j,k+1 + φi,j,k−1

hz
2 ,

(Dφ)i,j,k := −2

(

a

hx
2 +

b

hy
2 +

c

hz
2

)

φi,j,k,

(φi,j,k = φ(ihx, jhy, khz)).

Assume φ is the solution of the discretized equation and e(l) = φ(l) −φ is the error at
the lth iteration; then from (4) and (5) we obtain

1

ω
(Lz + D)e(l+1) =

(

1 − ω

ω
(Lz + D) − (Lx + Ly)

)

e(l).(6)

If we put

e(l) = A
(l)
θ ei(θxx/hx+θyy/hy+θzz/hz) (θ = (θx, θy, θz)),(7)
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and substitute these error functions in (6), then we obtain

2

ω
A

(l+1)
θ

(

−
a

hx
2 −

b

hy
2 − (1 − cos θz)

c

hz
2

)

(8)

= 2A
(l)
θ

(

1 − ω

ω

(

−
a

hx
2 −

b

hy
2 − (1 − cos θz)

c

hz
2

)

− cos θx
a

hx
2 − cos θy

b

hy
2

)

.

Hence the convergence factor [1] of the θ component is

µ(θ) =

∣

∣

∣

∣

∣

A
(l+1)
θ

A
(l)
θ

∣

∣

∣

∣

∣

=

(9)
|((1 − ω) + ω cos θx)a/hx

2 + ((1 − ω) + ω cos θy)b/hy
2 + (1 − ω)(1 − cos θz)c/hz

2|

a/hx
2 + b/hy

2 + (1 − cos θz)c/hz
2 .

From the fact that
∣

∣

∣

∣

∣

B + Ḃ

A + Ȧ

∣

∣

∣

∣

∣

≤ max

(

∣

∣

∣

∣

B

A

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

Ḃ

Ȧ

∣

∣

∣

∣

∣

)

for A, Ȧ > 0 and ∀B, Ḃ,(10)

we obtain the following inequality for the convergence factor in (9):

µ(θ) ≤ max (1 − ω, µ2(θx, θy)) ,(11)

where

µ2(θx, θy) =

∣

∣

∣

∣

((1 − ω) + ω cos θx)a/hx
2 + ((1 − ω) + ω cos θy)b/hy

2

a/hx
2 + b/hy

2

∣

∣

∣

∣

.(12)

Here µ2(θx, θy) in (12) is the convergence factor of the 2D damped point Jacobi
relaxation for the operator a∂2/∂x2+b∂2/∂y2 on the grid G(hx, hy) = {(ix, jy) | i, j ∈
N}.

From this consideration, we see that if there is a 2D robust multigrid cycle with
the damped point Jacobi relaxation for any positive coefficients a and b, we can realize
a robust 3D solver by employing the damped z-line Jacobi relaxation combined with
this 2D cycle for the x-y planes without coarsening the grids in the z-direction. Similar
observations can be made for other 3D z-line relaxations.

For the 2D robust multigrid cycle with a point smoother, we employ the 2D MG-S
cycle. The robustness of the 2D MG-S is explained as follows.

For multigrid it is well known that high frequency error components are reduced
by a smoothing method, while low frequency components are reduced on coarse grids.
In Fourier smoothing analysis the error between the numerical and the exact solu-
tions, eh = φh − φ, on the grid G(hx, hy), is expressed as Fourier components in two
dimensions as follows:

eh = ei(θxx/hx+θyy/hy) = ei(θ̂xx+θ̂yy),(13)

with θ = (θx, θy) = (θ̂xhx, θ̂yhy) and h = (hx, hy). Here θ̂ corresponds to the repre-
sentation of the Fourier components independent of the grid size. The representation
by θ̂ is useful for looking at the convergence factors on various grids.

All Fourier components can be mapped on the visible components on G(hx, hy) in
|θ| := max(|θx|, |θy|) ≤ π. For standard multigrid coarsening G(hx, hy) → G(2hx, 2hy)
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high frequency error components correspond to the parts of the visible Fourier domain
π/2 ≤ |θ| ≤ π, while the low frequency components are located in the region |θ| <
π/2; see Figure 2(a). Since this high frequency domain is not visible on the coarse
grid G(2hx, 2hy), we should reduce all error components corresponding to the high
frequency domain by the smoothing method on the fine grid G(hx, hy). This is possible
with a simple point smoother if the diffusion problem is not anisotropic. For example,
the convergence factor of the damped point Jacobi relaxation µ2(θx, θy) in (12) is
bounded by

µ2(θx, θy) ≤
a/hx

2 + max(1 − ω, |1 − 2ω|)b/hy
2

a/hx
2 + b/hy

2 ∀θx, π/2 ≤ |θy| ≤ π,(14)

µ2(θx, θy) ≤
max(1 − ω, |1 − 2ω|)a/hx

2 + b/hy
2

a/hx
2 + b/hy

2 , π/2 ≤ |θx| ≤ π ∀θy.(15)

In particular, the convergence factor is bounded on the high frequency region as
follows:

µ2(θx, θy) ≤
A + max(1 − ω, |1 − 2ω|)

A + 1
, π/2 ≤ |θ| ≤ π,(16)

where

A = max

((

a

hx
2

)

/

(

b

hy
2

)

,

(

b

hy
2

)

/

(

a

hx
2

))

.(17)

π
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Fig. 2. Error components in Fourier space: (a) standard multigrid high and low frequency
regions, (b) the high frequency regions for both directions.

Here we intend to construct an efficient smoothing method with point smoothers
on semicoarsened grids which reduces the high frequency error components on G(hx, hy)
for any combination of the positive coefficients a and b. First we see that µ2(θx, θy) is
bounded away from 1 if both θx and θy are in the high frequency region. This region
is depicted in Figure 2(b). From the inequality (10), we obtain

µ2(θx, θy) ≤ max(1 − ω, |1 − 2ω|), π/2 ≤ |θx| ≤ π, and π/2 ≤ |θy| ≤ π.(18)
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For convenience in the following explanation, we define four regions R1(hx, hy), . . . ,

R4(hx, hy) in the Fourier space with respect to the grid-independent parameter θ̂ for
the grid G(hx, hy) as follows:

R1(hx, hy) := {(θ̂x, θ̂y) | π/2 ≤ max(|θ̂x|hx, |θ̂y|hy) ≤ π},

R2(hx, hy) := {(θ̂x, θ̂y) | π/2 ≤ |θ̂x|hx ≤ π, π/2 ≤ |θ̂y|hy ≤ π},

R3(hx, hy) := {(θ̂x, θ̂y) | π/2 ≤ |θ̂y|hy ≤ π},

R4(hx, hy) := {(θ̂x, θ̂y) | π/2 ≤ |θ̂x|hx ≤ π}.
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π
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π
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−π −π
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^

^

R  (4hx,hy)

hy
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R  (hx,hy)

R  (2hx,hy)

−π/2

−π

−π

Fig. 3. Grid-independent representation of error components of Fourier space.

By using these regions, the idea to reduce high frequency error components on
G(hx, hy) is explained as follows. From the above definition, R1(hx, hy) corresponds
to the high frequency region of the grid G(hx, hy). R2(hx, hy) is a region where the
inequality (18) is valid. R1(hx, hy) is covered by R3(hx, hy) and R4(hx, hy). The error
components corresponding to R3(hx, hy) can be efficiently reduced by combining the
point relaxations on the grids G(hx, hy), G(2hx, hy), G(4hx, hy), . . ., since R3(hx, hy)
is covered by R2(hx, hy), R2(2hx, hy), R2(4hx, hy), . . . (see Figure 3), and the error
components corresponding to R2(2

lhx, hy) are efficiently reduced by the point relax-
ation on G(2lhx, hy) from (18). This is done by a semicoarsened V-cycle along the
x-direction in the 2D MG-S. For the same reason, a semicoarsened V-cycle along the
y-direction is employed in order to reduce the error components corresponding to
R4(hx, hy). Namely, in the 2D MG-S the alternating semicoarsened V-cycle is used
as a smoother on the standard grid sequence.

From the inequalities (14) and (15), we see that we do not have to employ all semi-
coarsened grids. For example, it would be enough to continue the x-semicoarsening
until a/(2lhx)

2 is in the same order of magnitude as b/hy
2 (or smaller). This observa-

tion motivates us to construct a flexible semicoarsening according to the strength of
the anisotropy. The criteria to stop the semicoarsenings are proposed in section 2.4.

It should be mentioned here that the 3D method is not invariant with respect to
rotation of the axes. However, numerical experiments show that the sensitivity of the
convergence for the rotation of the axes is small in most cases, as can be observed in
the results for the anisotropic diffusion equation in section 3.
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2.3. Components of the 3D solution method. The different grids in a full
3D MG-S method are now described. Only two superindices are needed, since the
number of grid points in the z-direction is fixed.

First, the grids coarsened in the x- and y-directions simultaneously, Gmx,my ,
Gmx−1,my−1, . . . , G1,my−mx+1 (or Gmx−my+1,1), are constructed according to:

Gmx,my = G,(19)

Gmx−l,my−l = {(i, j, k)|(2i− 1, 2j − 1, k) ∈ Gmx−l+1,my−l+1},

1 ≤ l ≤ min(mx,my) − 1.(20)

Then, on each grid level, semicoarsening takes place sequentially in two directions:

Gmx−l−lx,my−l := {(i, j, k) | (2i− 1, j, k) ∈ Gmx−l−lx+1,my−l};1 ≤ lx ≤ mx − l − 1,

Gmx−l,my−l−ly := {(i, j, k) | (i, 2j − 1, k) ∈ Gmx−l,my−l−ly+1}; 1 ≤ ly ≤ my − l − 1.

Figure 4 shows a picture of three levels of the full 3D MG-S method with the connec-
tions between the grids.

(2,1)

(2,3)

(1,2)

(1,3)

(3,2)

(3,1)

(2,2)

(1,1)

 y
z

x

(3,3)

Fig. 4. The full 3D MG-S method with grid indices (lx, ly) with various semicoarsenings in the
x- and y-directions with a line smoother in the z-direction.

Transfer and coarse grid operators. The transfer operators between the different
grids are combinations of earlier-defined prolongation and restriction mappings [25],
[17]. Along the standard multigrid sequence of 2D MG-S in [25], the prolongation
operators were based on the weights from [2], as were the prolongation weights between
the semicoarsened grids. In [17], however, it was found that the performance of
standard multigrid with the upwind prolongation weights from [27] resulted in better
convergence for convection-dominated convection-diffusion problems. These weights
(explained in detail in [27], [26], and [17]) are also used here along the (x,y)-coarsened
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Fig. 5. The 27-point stencil with numbering.

grid sequence. (We define “(x,y)-coarsened” here as coarsening in the x- and y-
directions simultaneously.) Along the semicoarsened grids the transfer operators from
[25], based on [2], are most natural and resulted in the best convergence.

The 3D weights are now explained. Assuming we have the following 27-point
stencil matrix on a grid Glx,ly :

(Aφ)i,j,k

=
∑

iz=−1,0,1

(a(iz)1i,j,kφi−1,j−1,k+iz + a(iz)2i,j,kφi,j−1,k+iz + a(iz)3i,j,kφi+1,j−1,k+iz

(21)
+ a(iz)4i,j,kφi−1,j,k+iz + a(iz)5i,j,kφi,j,k+iz + a(iz)6i,j,kφi+1,j,k+iz

+ a(iz)7i,j,kφi−1,j+1,k+iz + a(iz)8i,j,kφi,j+1,k+iz + a(iz)9i,j,kφi+1,j+1,k+iz).

Figure 5 shows the 27-point stencil with numbering.

We define a lumped 9-point stencil matrix Ã in an (x,y)-plane as:

(Ãφ)i,j,k = ã1
i,j,kφi−1,j−1,k + ã2

i,j,kφi,j−1,k + ã3
i,j,kφi+1,j−1,k

+ ã4
i,j,kφi−1,j,k + ã5

i,j,kφi,j,k + ã6
i,j,kφi+1,j,k

+ ã7
i,j,kφi−1,j+1,k + ã8

i,j,kφi,j+1,k + ã9
i,j,kφi+1,j+1,k

(22)

with

ãpi,j,k = a(−1)pi,j,k + a(0)pi,j,k + a(1)pi,j,k, p = 1, 2, . . . , 9.(23)

With the lumped matrix Ã, we define the weights w1, . . . , w4 of the following prolon-
gations.
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Fig. 6. (a) Two coarse grid cells and eight fine grid cells for semicoarsening in the x- and
y-directions. (b) Four coarse grid cells and eight fine grid cells for x-semicoarsening. (The fine grid
indices are in brackets; the coarse grid indices are not.)

P lx,ly : u ∈ QGlx−1,ly−1

7→ v ∈ QGlx,ly

:

v2i−1,2j−1,k = ui,j,k,(24)

v2i,2j−1,k = w12i,2j−1,kui,j,k + w22i,2j−1,kui+1,j,k,(25)

v2i−1,2j,k = w12i−1,2j,kui,j,k + w32i−1,2j,kui,j+1,k,(26)

v2i,2j,k = w12i,2j,kui,j,k + w22i,2j,kui+1,j,k
(27)

+ w32i,2j,kui,j+1,k + w42i,2j,kui+1,j+1,k.

P
lx,ly
x : u ∈ QGlx−1,ly

7→ v ∈ QGlx,ly

:

v2i−1,j,k = ui,j,k,(28)

v2i,j,k = w12i,j,kui,j,k + w22i,j,kui+1,j,k.(29)

P
lx,ly
y : u ∈ QGlx,ly−1

7→ v ∈ QGlx,ly

:

vi,2j−1,k = ui,j,k,(30)

vi,2j,k = w1i,2j,kui,j,k + w3i,2j,kui,j+1,k.(31)

Figure 6 shows coarse and fine grid cells for (x,y)- and x-coarsening.
In order to construct the prolongation operator Pmx−l,my−l, the matrix Ã is

split into a symmetric and an antisymmetric part to obtain appropriate prolongation
weights for the diffusion-dominated (symmetric) part and the convection-dominated
(antisymmetric) part, as in [27]:

S =
1

2
(Ã + ÃT ), T = Ã− S =

1

2
(Ã− ÃT ).(32)

The diagonal elements of matrices S and T are numbered similarly as the elements of
Ã in (22). We now define west, east, north, and south matrix-dependent quantities
from the symmetric part:
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dw = max(|s1
2i,2j−1,k + s4

2i,2j−1,k + s7
2i,2j−1,k|, |s

1
2i,2j−1,k|, |s

7
2i,2j−1,k|),

de = max(|s3
2i,2j−1,k + s6

2i,2j−1,k + s9
2i,2j−1,k|, |s

3
2i,2j−1,k|, |s

9
2i,2j−1,k|),

dn = max(|s7
2i−1,2j,k + s8

2i−1,2j,k + s9
2i−1,2j,k|, |s

7
2i−1,2j,k|, |s

9
2i−1,2j,k|),

ds = max(|s1
2i−1,2j,k + s2

2i−1,2j,k + s3
2i−1,2j,k|, |s

1
2i−1,2j,k|, |s

3
2i−1,2j,k|),

σ1 =
1

2
min

(

1,

∣

∣

∣

∣

∣

1 −

∑9
p=1 s

p
2i,2j−1,k

a5
2i,2j−1,k

∣

∣

∣

∣

∣

)

,

σ2 =
1

2
min

(

1,

∣

∣

∣

∣

∣

1 −

∑9
p=1 s

p
2i−1,2j,k

a5
2i−1,2j

∣

∣

∣

∣

∣

)

.

Also, two quantities c1 and c2 for the antisymmetric part in the x- and y-directions
are defined:

c1 = t32i,2j−1,k + t62i,2j−1,k + t92i,2j−1,k − (t12i,2j−1,k + t42i,2j−1,k + t72i,2j−1,k),

c2 = t72i−1,2j,k + t82i−1,2j,k + t92i−1,2j,k − (t12i−1,2j,k + t22i−1,2j,k + t32i−1,2j,k).

With these quantities the matrix-dependent weights on the east, west, north, and
south sides are constructed as follows:

ww = σ1

[

1 +
dw − de
dw + de

+
c1

dw + de + dn + ds

]

,

we = 2σ1 − ww,

wn = σ2

[

1 +
ds − dn
ds + dn

+
c2

dw + de + dn + ds

]

,

ws = 2σ2 − wn.

The weights w1 and w2 are now computed as:
• for (2i, 2j − 1, k) ∈ QGmx−l,my−l

,
w12i,2j−1,k = min(2σ1,max(0, ww)), w22i,2j−1,k = min(2σ1,max(0, we));

• for (2i− 1, 2j, k) ∈ QGmx−l,my−l

,
w12i−1,2j,k = min(2σ2,max(0, ws)), w32i−1,2j,k = min(2σ2,max(0, wn));

• for (2i, 2j, k) ∈ QGmx−l,my−l

,
w12i,2j,k = (ã1

2i,2j,k + ã2
2i,2j,k · w12i,2j−1,k + ã4

2i,2j,k · w12i−1,2j,k)/(ã
5
2i,2j,k),

w22i,2j,k = (ã3
2i,2j,k + ã2

2i,2j,k · w22i,2j−1,k + ã6
2i,2j,k · w12i+1,2j,k)/(ã

5
2i,2j,k),

w32i,2j,k = (ã7
2i,2j,k + ã4

2i,2j,k · w32i−1,2j,k + ã8
2i,2j,k · w12i,2j+1,k)/(ã

5
2i,2j,k),

w42i,2j,k = (ã9
2i,2j,k + ã6

2i,2j,k · w32i+1,2j,k + ã8
2i,2j,k · w22i,2j+1,k)/(ã

5
2i,2j,k).

For the grid prolongation operator from P
mx−l−lx,my−l
x the weights are given as:

• for (2i, j, k) ∈ QGmx−l−lx,my−l

,
w12i,j,k = (−ã1

i,j,k − ã4
i,j,k − ã7

i,j,k)/(ã
2
i,j,k + ã5

i,j,k + ã8
i,j,k),

w22i,j,k = (−ã3
i,j,k − ã6

i,j,k − ã9
i,j,k)/(ã

2
i,j,k + ã5

i,j,k + ã8
i,j,k).

For the grid prolongation operator from P
mx−l,my−l−ly
y the weights are defined as:

• for (i, 2j, k) ∈ QGmx−l,my−l−ly

,
w1i,2j,k = (−ã1

i,j,k − ã2
i,j,k − ã3

i,j,k)/(ã
4
i,j,k + ã5

i,j,k + ã6
i,j,k),

w3i,2j,k = (−ã7
i,j,k − ã8

i,j,k − ã9
i,j,k)/(ã

4
i,j,k + ã5

i,j,k + ã6
i,j,k).

For some difficult problems, negative values are observed in w1, w2, w3 even if the
matrix on the finest grid Gmx,my is an M-matrix. The negative weights make a
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coarse grid matrix less diagonally dominant. This sometimes results in divergence
of the relaxation on the coarser grid. In order to avoid this, we adopt a lumping
procedure to keep nonnegative weights w1, w2, w3. In our experiments, we observe
that this procedure improves the convergence and prevents the divergence of MG-S
as a solver. If, for example, w1i,2j,k or w3i,2j,k is negative, we lump all positive off-
diagonal elements ãpi,2j,k with the main diagonal element ã5

i,2j,k and recompute the
weights from the lumped matrix.

With the prolongation Pmx−l,my−l defined along the (x,y)-coarsened grids, the
restriction
Rmx−l,my−l : v ∈ QGmx−l,my−l

7→ u ∈ QGmx−l−1,my−l−1

is defined as:

Rmx−l,my−l = (Pmx−l,my−l)
T
, 0 ≤ l ≤ min(mx,my) − 2.(33)

With P
mx−l−lx,my−l
x as the prolongation along x-semicoarsened grids, the restriction

mapping

R
mx−l−lx,my−l
x : QGmx−l−lx,my−l

7→ QGmx−l−lx−1,my−l

is defined as the transpose of

P
mx−l−lx,my−l
x :

Rmx−l−lx,my−l
x = (Pmx−l−lx,my−l

x )
T
.(34)

The transfer operators along y-semicoarsened grids are constructed similarly. The
coarse grid matrices Amx−l,my−l on (x,y)-coarsened grids Gmx−l,my−l are defined
with the Galerkin coarse grid approximation [6], [26], [27], [25]:

Amx,my = A,(35)

Amx−l−1,my−l−1 = Rmx−l,my−lAmx−l,my−lPmx−l,my−l,
(36)

0 ≤ l ≤ min(mx,my) − 2.

Along the semicoarsened grids the matrices are defined as:

Amx−l−lx−1,my−l := Rmx−l−lx,my−l
x Amx−l−lx,my−lPmx−l−lx,my−l

x ,
(37)

0 ≤ lx ≤ mx − l − 2,

Amx−l,my−l−ly−1 := Rmx−l,my−l−ly
y Amx−l,my−l−lyPmx−l,my−l−ly

y ,
(38)

0 ≤ ly ≤ my − l − 2.

2.4. Flexible MG-S cycle. It is not necessary to process all grids for all prob-
lems, as one can imagine from the inequalities (14) and (15). For several model
problems it is not necessary to process the semicoarsened grids at all, as excellent
convergence would be obtained. In the flexible MG-S method semicoarsening (from
Glx,ly to Glx−1,ly or from Glx,ly to Glx,ly−1) is stopped as soon as no strong couplings
along the semicoarsened direction are detected in the matrix Ã. In the case of semi-
coarsening along the x-direction, a criterion for detection is constructed as follows.
The symmetric part of the matrix, S = 1

2 (Ã + ÃT ), is used to detect strong coupling
of unknowns from anisotropic diffusion. The criterion is based on the parameter difxi,j ,
defined as

difxi,j = max
k

{

−s4
i,j,k − s6

i,j,k

ã5
i,j,k

}

.(39)

In order to detect strong coupling of unknowns from convection dominance we define

cnv
x(−)
i,j and cnv

x(+)
i,j from the matrix Ã:
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cnv
x(−)
i,j = max

k

{

−ã4
i,j,k

ã5
i,j,k

}

,(40)

cnv
x(+)
i,j = max

k

{

−ã6
i,j,k

ã5
i,j,k

}

.(41)

Semicoarsening in the x-direction continues if for some (i, j) one of the following
conditions is fulfilled:

difxi,j > δ1 and difxi+1,j > δ1,(42)

cnv
x(−)
i,j > δ2 and cnv

x(−)
i+1,j > δ2,(43)

cnv
x(+)
i,j > δ2 and cnv

x(+)
i+1,j > δ2.(44)

A proper choice for the parameters δi is very important for robustness and efficiency.
The choice can even depend on the smoother used. Satisfactory values for δi are
chosen as: δ1 = δ2 = 0.6.

The criteria for the y-directions can be derived in a similar way. With these
criteria it is possible that semicoarsening does not take place at all, so that the
standard grid sequence is processed, or that only semicoarsening along one direction
is applied.

MG-S algorithm. A 3D MG-S F-cycle algorithm with an alternating semicoars-
ened V-cycle as a smoother will be given here. Along with the number of pre- and
postsmoothing steps along the (x,y)-coarsened grids, which are denoted by (ν1, ν2),
the number of pre- and postsmoothing steps in the V-cycle semicoarsening smoother,
denoted by (µ1, µ2), can also be varied. Our F(ν1, ν2)

(µ1,µ2) algorithm can be de-
scribed as follows:

F(ν1, ν2)
(µ1,µ2)(Alx,ly , f lx,ly , φlx,ly , ν1, ν2) {

if (lx = 1 or ly = 1) {
for it = 1, . . . , ν1 + ν2

φlx,ly := Vx(A
lx,ly , f lx,ly , φlx,ly , µ1, µ2);

φlx,ly := Vy(A
lx,ly , f lx,ly , φlx,ly , µ1, µ2);

end ;
return ;

} ;
for it = 1, . . . , ν1

φlx,ly := Vx(A
lx,ly , f lx,ly , φlx,ly , µ1, µ2);

φlx,ly := Vy(A
lx,ly , f lx,ly , φlx,ly , µ1, µ2);

end ;
rlx,ly := f lx,ly −Alx,lyφlx,ly ;
f lx−1,ly−1 := Rlx,lyrlx,ly ;
φlx−1,ly−1 := 0;
F(ν1, ν2)

(µ1,µ2)(Alx−1,ly−1, f lx−1,ly−1, φlx−1,ly−1, ν1, ν2);
φlx,ly := φlx,ly + P lx,lyφlx−1,ly−1;
for it = 1, . . . , ν2

φlx,ly := Vx(A
lx,ly , f lx,ly , φlx,ly , µ1, µ2);

φlx,ly := Vy(A
lx,ly , f lx,ly , φlx,ly , µ1, µ2);

end ;
(if this is the finest grid) return ;
rlx,ly = f lx,ly −Alx,lyφlx,ly ;
f lx−1,ly−1 := Rlx,lyrlx,ly ;



3D FLEXIBLE MULTIPLE SEMICOARSENING 1659

φlx−1,ly−1 := 0;
V(ν1, ν2)

(µ1,µ2)(Alx−1,ly−1, f lx−1,ly−1, φlx−1,ly−1, ν1, ν2);
φlx,ly := φlx,ly + P lx,lyφlx−1,ly−1;
for it = 1, ..., ν2

φlx,ly := Vx(A
lx,ly , f lx,ly , φlx,ly , µ1, µ2);

φlx,ly := Vy(A
lx,ly , f lx,ly , φlx,ly , µ1, µ2);

end ;
}

Here V(ν1, ν2)
(µ1,µ2) represents the MG-S V-cycle with an alternating semicoarsened

V-cycle as a smoother. This is defined similarly to the F-cycle above. Note that in our
F-cycle postsmoothing is done more often than presmoothing, since on intermediate
grids after a prolongation, postsmoothing is performed, but if coarsening would be
applied next, presmoothing does not take place on this grid. Vx and Vy are the
semicoarsened grid V-cycles along the x- and y-directions. For instance, Vx can be
described as follows.

Vx(A
lx,ly , f lx,ly , φlx,ly , µ1, µ2) {

if (lx = x(ly)) {
φlx,ly := Sz(A

lx,ly , f lx,ly , φlx,ly , µ1 + µ2);
return ;

} ;
φlx,ly := Sz(A

lx,ly , f lx,ly , φlx,ly , µ1);
rlx,ly := f lx,ly −Alx,lyφlx,ly ;

f lx−1,ly := R
lx,ly
x rlx,ly ;

φlx−1,ly := 0;
Vx(A

lx−1,ly , f lx−1,ly , φlx−1,ly , µ1, µ2);

φlx,ly = φlx,ly + P
lx,ly
x φlx−1,ly ;

φlx,ly := Sz(A
lx,ly , f lx,ly , φlx,ly , µ2);

}

Here the processed semicoarsened grids are Glx,ly , Glx−1,ly , . . . , Gx(ly),ly . x(ly) is de-
termined by the detection procedure according to the anisotropy of the matrix. Sz

represents the z-line smoother. In the algorithm described above one smoothing step
in MG-S involves 2(µ1 + µ2) relaxations on the standard grids.

Storage and computational complexity. In [12] it was shown that 2D MSG is still
an O(N)-method, if a V- or an F-cycle is used. Since our variants process the same
grids as in MSG, the same remark is also valid for the 2D MG-S. The total number
of grid points to be stored for 2D standard multigrid is 4

3N ; for MG-S, it is 4N . This
can clearly be seen in Figure 7, where the additional grids are shown.

Next, we evaluate the computational complexity of the full MG-S cycle based on
the relaxations on all grids. Here full MG-S means x(ly) = y(lx) = 1. Assuming a
smoother on Gmx−l,my−l with ( 1

4 )lN grid points in two dimensions requires ξ( 1
4 )lN

operations, the computational complexities CV of the 2D V-cycle and CF of our 2D
F-cycle for standard multigrid and for MG-S are estimated as:

CV =

(

1 +
1

4
+

1

16
+

1

64
+ . . .

)

(ν1 + ν2)ξN =
4

3
(ν1 + ν2)ξN,(45)

CF =

(

1 +
1

4
+

2

16
+

3

64
+ . . .

)

ν1ξN +

(

1 +
2

4
+

3

16
+

4

64
+ . . .

)

ν2ξN

=

(

13

9
ν1 +

16

9
ν2

)

ξN.(46)
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grids in MG-S

n/4

n/2

n

n/8

n/8n/4n/2n

grids in standard multigrid

Fig. 7. Storage and additional grids for standard multigrid and for 2D MG-S.

The fact that less pre-work is done in our F-cycle is explained above. The dif-
ference between MG-S and standard multigrid is found in the operation count for
the smoother. If we assume that one smoothing step inside a semicoarsened V-cycle
requires η operations per grid point, we find for the alternating semicoarsened V-cycle
smoother:

ξ(V) = 2η(µ1 + µ2)

(

1 +
1

2
+

1

4
+ . . .

)

= 4η(µ1 + µ2).(47)

The computational complexity of the 2D alternating line smoother is estimated as:

ξ(AL) = 2η.(48)

Hence, the 2D MG-S is approximately 2(µ1 + µ2) times as expensive as 2D standard
multigrid with the alternating line smoother.

Since extra grids are not processed in the 3D MG-S method there is no additional
storage, except for the third dimension. The number of points to be stored is then
also 4N . Furthermore, (45), (46), and (47) also hold for the estimations of the 3D
MG-S method. This also implies that the MG-S F-cycle is still O(N).

3D smoother. The parallelizable relaxation procedure is the damped four-color
z-line Gauss–Seidel relaxation, with damping parameter ω = 0.8. Here grid points
are decomposed into four subsets :

C(1) = {(i, j, k) | i : odd, j : odd},

C(2) = {(i, j, k) | i : even, j : odd},

C(3) = {(i, j, k) | i : odd, j : even},

C(4) = {(i, j, k) | i : even, j : even}.

On each subset, a line solver is applied through all z-lines in parallel. The paralleliza-
tion of the line smoother is described in more detail in [25].

Grid partitioning [10], [11], the usual way of parallelizing standard multigrid, is
here used as the parallelization strategy for MG-S. The global grid is split into blocks,
each assigned to a different process. The same block splitting is employed on all grids.
Along the interior block boundaries the grid is stored with some overlap. Keeping the



3D FLEXIBLE MULTIPLE SEMICOARSENING 1661

values in overlap regions up-to-date on all multigrid levels requires communication
between the nodes. A consequence of grid partitioning is that the grids in Figure 1(b)
are processed sequentially.

3. 3D numerical results. Flexible MG-S used as a solver will be called a
Richardson iteration here, for reasons explained before. Here we present the con-
vergence results of the 3D flexible MG-S method as a preconditioner and as a solver.
The results obtained are the number of iterations (n) needed to reduce the initial
residual by eight orders of magnitude. Furthermore, the wall-clock time, Tw, in
seconds on 48 processors on the Cenju-3 machine is presented. Regarding the de-
tection of the strong couplings in section 2.4, we adopted 0.6 for δ1 and δ2 for all the
problems in this section. We give the coarsest semicoarsened grid on each level to
show which semicoarsened grids are processed in flexible MG-S. A full MG-S method
for seven levels of (x,y)-coarsening would then have semicoarsened grids denoted by
(lx, ly) = (1, 7), (1, 6), . . . , (1, 2), (2, 1), . . . , (6, 1), (7, 1). The four problems solved in
this subsection are thought to be “difficult” problems for multigrid solution methods
and are in our opinion representative for a large class of problems.

Problem I: 3D general anisotropic diffusion equation. The first 3D test problem
is a well-known test for robustness. The general anisotropic diffusion equation also
tested in [24] and [5] looks like:

−aφxx − bφyy − cφzz = f on Ω = (0, 1)3,

φ|x=0,y,z = φ|x,y=0,z = φ|x,y,z=0 = 0,(49)

φn|x=1,y,z = φn|x,y=1,z = φn|x,y,z=1 = 0.

With coefficients a, b, and c, strong coupling of unknowns in one or two directions can
be modeled. A robust solver must be able to solve (49) efficiently for all parameter
sets. Representative parameter sets defined in [24] and also solved here are:

case 1: a ≈ b ≈ c (a = b = c = 1),

case 2: a >> b ≈ c (a = 102, b = c = 1),
(50)

case 3: a ≈ b >> c (a = b = 102, c = 1),

case 4: a >> b >> c (a = 102, b = 1, c = 10−2).

In addition to the parameter sets in (50) another set is evaluated for each case. The
relevant parameters are then evaluated once in the (x,y)-direction along the MG-S
grids and once with one parameter in the z-direction, in order to show that robustness
is assured with respect to a rotation of axes. In [24] it has been shown that for cases
3 and 4 standard multigrid with an alternating line smoother is not a satisfactory
solver. In these cases a plane smoother is really necessary for convergence with stan-
dard multigrid. Table 1 presents the results for flexible MG-S as a solver and as a
preconditioner for GMRES on a 753 grid with seven grid levels. The V(0, 1)(0,1)-cycle
already showed robust convergence for this test problem. The coarsest semicoarsened
grids processed are also listed in this table.

Sometimes, the coarsening employed seems surprising; this is due to the lumping
for the prolongation weights that is done in order to get the coarse grid matrices with a
27-point stencil. With a more severe detection criterion, choosing δi smaller, for some
cases less solution iterations are needed, but then more grids are processed and the
wall-clock time is larger. It is found that the solver can handle the general anisotropic
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Table 1

Number of iterations (n) and Tw using the V(0, 1)(0,1)-cycle of flexible MG-S as a solver and as
a preconditioner for the general anisotropic diffusion equation on a 753 grid. Here no semicoarsening
means that no strong couplings are detected along the semicoarsened direction.

Case Parameters Solution method Cycle Coarsest grids

V(0, 1)(0,1)

1 a = b = c = 1 Richardson (16) 11.9 x: (6,7), (1,4), (1,2)
GMRES (9) 5.3 y: (7,6), (4,1), (2,1)

2 a = b = 1, Richardson (9) 6.1 x: (6,7)
c = 102 GMRES (6) 4.8 y: (7,6)

No x-semicoarsening
2 a = c = 1, Richardson (10) 8.2 y: (7,3), (6,2), (5,2)

b = 102 GMRES (7) 6.6 (4,1), (3,1), (2,1)

3 a = c = 102, Richardson (12) 10.5 x: (3,7),(1,6), (1,5)
b = 1 GMRES (8) 7.9 (1,4), (1,3), (1,2)

No y-semicoarsening

3 a = b = 102, Richardson (14) 9.5 x: (6,7)
c = 1 GMRES (8) 6.2 y: (7,6)

No x-semicoarsening
4 a = 1, b = 102 Richardson (10) 8.2 y: (7,3),(6,2), (5,2)

c = 10−2 GMRES (8) 7.4 (4,1), (3,1),(2,1)

4 a = 102, b = 10−2 Richardson (13) 11.5 x: (1,7),(1,6), (1,5)
c = 1 GMRES (9) 8.9 (1,4), (1,3),(1,2)

No y-semicoarsening

diffusion equation well for all parameter sets, as well as with the 3D flexible MG-
S method as a solver and as a preconditioner. Grid-independent convergence rates
(not shown) were found with very satisfactory wall-clock times. Also, the detection
mechanism works well for this problem.

Problem II: Poisson problem on a stretched grid. The second problem investigated
is the 3D Poisson equation on a grid with variable grid stretching. Our solvers are
well suited for the solution of this kind of problems. The Poisson problem solved is:

−φxx − φyy − φzz = 1 on Ω = (0, 1)3(51)

with the boundary conditions

φn|x=0,y,z = φn|x,y=0,z = φn|x,y,z=0 = 0,
(52)

φn|x=1,y,z = φn|x,y=1,z = 0, φ|x,y,z=1 = 0.

φn is the derivative of φ in the normal direction, so we use Neumann boundary con-
ditions on five boundary faces. A special stretched grid is chosen—a tensor product
grid based on the Gauss–Lobatto–Legendre (GLL) points. GLL points provide an ac-
cumulation of grid points near the domain boundaries. In finite element literature the
use of GLL grids is found to give nice properties for interpolation and integration, for
example, for spectral elements. The interior grid points are computed as eigenvalues
of the following matrix:

Ln = [tridiag(γi−1, 0, γi)] with
(53)

γi =
1

2

√

n(n + 2)

(n + 1
2 )(n + 3

2 )
.

Here n is the number of grid points in one dimension.
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The grids investigated consist of 303, 603, and 753 grid points, and 6, 7, and
7 multigrid levels are used. Table 2 presents the results for the 3D flexible MG-
S method used as a solver and as a preconditioner. Results are presented for the
V(1, 1)(0,1)- and F(1, 1)(0,1)-cycles. It is interesting to see which grids are chosen by
the flexible MG-S preconditioner in the presence of variable stretched grid cells. Here,
the coarsest grids for the 753 problem were: (5,7), (5,6), (4,5), (3,4), (1,3), (1,2) for x-
semicoarsening and the symmetric counterparts for y-semicoarsening. The multigrid
F-cycle solvers show a very satisfactory level-independent performance. The use of
MG-S as a preconditioner is more robust with respect to the choice of cycle for this
problem.

Table 2

Number of iterations (n) and Tw using V(1, 1)(0,1) and F(1, 1)(0,1) cycles of 3D flexible MG-S
as a solver and as a preconditioner for the Poisson equation on several GLL grids.

Grid Solver Cycle

V(1, 1)(0,1) F(1, 1)(0,1)

Richardson (15) 4.6 (10) 5.4
303 GMRES(20) (9) 3.1 (8) 4.9

Richardson (19) 18.7 (10) 15.3
603 GMRES(20) (9) 9.9 (7) 12.2

Richardson (19) 34.7 (10) 30.1
753 GMRES(20) (10) 20.4 (8) 27.1

It can be concluded that for this kind of Poisson problem, the flexible MG-S
method with the F-cycle used as a solver already produces very satisfactory results;
the Krylov acceleration does not improve the convergence considerably, but (more
important) also does not increase wall-clock times.

Problem III: Convection-diffusion equation with spherical solution. The third
problem evaluated is a 3D convection-diffusion problem, where all directions appear
in the convection terms, with Dirichlet boundary conditions:

−ε∆φ + a(x, y, z)φx + b(x, y, z)φy + c(x, y, z)φz = 1 on Ω = (0, 1)3,
(54)

φ = f(x, y, z) on ∂Ω,

with

a(x, y, z) = −2 cos(πx) cos(πy) sin(πz),

b(x, y, z) = sin(πx) cos(πy) cos(πz),

c(x, y, z) = cos(πx) sin(πy) cos(πz), and

f(x, y, z) = sin(πx) + sin(13πx) + sin(πy) + sin(13πy) + sin(πz) + sin(13πz).

The convection terms are discretized with a standard first-order upwind discretization.
A convection-dominated test case is chosen with ε = 10−6. The solution obtained on a
173 grid is presented in Figure 8(a). Table 3 presents the results for 3D flexible MG-S
used as a solver and as a preconditioner. For this problem the full 3D MG-S grid
sequence was detected for processing. The iteration cycles compared are V(0, 1)(0,1)

and F(0, 1)(0,1).
In Table 3 it can be seen that the number of iterations of the flexible MG-S as

a solver increases with the number of grid points. However, this grid dependence is
considerably improved by the Krylov acceleration.
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(a) (b)

Fig. 8. Spherical and cylindrical solutions of convection-diffusion Problems III and IV, 173 grid.

Table 3

Number of iterations (n) and Tw using V(0, 1)(0,1) and F(0, 1)(0,1) cycles of 3D flexible MG-S
as a solver and as a preconditioner for the convection-diffusion equation (54) on several grids.

Grid Solver Cycle

V(0, 1)(0,1) F(0, 1)(0,1)

Richardson (26) 8.7 (26) 17.7
303 GMRES(20) (15) 5.4 (14) 10.1

Richardson (46) 39.2 (45) 74.1
603 GMRES(20) (22) 20.9 (20) 35.0

Richardson (67) 88.3 (41) 97.4
753 GMRES(20) (24) 35.0 (20) 50.7

Problem IV: Convection-diffusion equation with cylindrical solution. In the next
3D convection-diffusion problem two directions appear in the convection terms. In
equation (54) functions a, b, c, and f are now chosen as:
a(x, y, z) = sin(πx) cos(πy),
b(x, y, z) = − cos(πx) sin(πy),
c(x, y, z) = 10−5z,
f(x, y, z) = sin(πx) + sin(13πx) + sin(πy) + sin(13πy) + 10−5z.

The convection terms are discretized with a standard upwind discretization. A
convection-dominated test case is chosen with ε = 10−6. It was found that this choice
of c(x, y, z) represented the hardest test case for our solver; larger choices of c(x, y, z)
like c = z showed much faster convergence. The obtained solution on a 173 grid is
shown in Figure 8(b). Table 4 presents the convergence results for this problem. The
V(0, 1)(0,1)-cycle is used, and all the semicoarsened grids are processed.

The MG-S-based solvers also perform very satisfactorily for this problem. With
a rotation of axes convergence slows down somewhat for this problem, but the results
with GMRES are still satisfactory. It can be concluded that for convection-dominated
problems the GMRES acceleration considerably improves convergence and wall-clock
times.
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Table 4

Number of iterations (n) and Tw using V(0, 1)(0,1) cycles of 3D flexible MG-S as a solver and
as a preconditioner for the convection-diffusion equation with cylindrical solution.

Grid Solver Cycle

V(0, 1)(0,1)

Richardson (15) 4.3
303 GMRES(20) (12) 3.8

Richardson (22) 17.0
603 GMRES(20) (15) 12.7

Richardson (26) 32.1
753 GMRES(20) (15) 20.1

4. Conclusion. We present a robust 3D multigrid-based solver with a flexible
MG-S preconditioner for the Krylov subspace method GMRES. The method is spe-
cially suited for problems arising from block-structured applications and finite volume
or finite difference discretizations. The flexibility of processing only certain grids in
multiple semicoarsening methods without losing the robustness further reduces the
wall-clock times for this kind of method. In particular, the use of the flexible MG-S
method as a preconditioner was found to be robust with respect to the choice of the
iteration cycle, the number of smoothing steps, and the damping parameter. The
method presented is a very satisfactory alternative for achieving robustness for stan-
dard multigrid methods with alternating plane smoothers.
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