Pricing Multi-Dimensional Options by Grid Stretching and High Order Finite Differences

Kees Oosterlee

Numerical Analysis Group, Delft University of Technology

Joint work with Coen Leentvaar

Southern Ontario Numerical Analysis Day, 29.04.2005
Research Concept

Numerical Treatment of Equations for Option Pricing

- Accurate discretization with only a few grid points
- **Example I:** Black-Scholes equation
 - Grid stretching
 - High order discretization
 - European option
- **Example II:** Basket options
 - Increasing problem dimensions ⇒ sparse grids
 - A coordinate transformation
 - Grid stretching and discretization as in the 1D case
 - European basket options
Application: Option pricing

Basic options

- **European Call option**: at maturity time T, the holder may **purchase** an asset for the exercise price K. The writer must sell the asset, if the holder decides to buy it.

- **European Put option**: The right to **sell** an asset on a certain date at a prescribed amount.

- **Exotic options**: options depending on other functions of the stock price (average stock price, minimum, maximum, a **basket of stocks**)
Options on a Single Asset

Point of Departure

- The asset price follows the lognormal random walk, \(dS_t = \mu S_t dt + \sigma S_t dW_t \), with \(W_t \) a Wiener process, \(\mu \) is drift, \(\sigma \) volatility.
- Interest rate \(r \), dividend yield \(\delta \) and \(\sigma \) are known,
- Transaction costs for hedging are not included,
- There are no arbitrage possibilities.

\[\Rightarrow \text{Black-Scholes partial differential equation: (for a European option)} \]
\[\frac{\partial u}{\partial t} + \frac{1}{2} \sigma^2 s^2 \frac{\partial^2 u}{\partial s^2} + (r - \delta) s \frac{\partial u}{\partial s} - ru = 0 \]

- Nobel prize in 1997 for Merton and Scholes (Black died in 1995).
Final/Boundary conditions

Single Asset

- European **Call** option: Right to buy assets at maturity $t = T$ for exercise price K.
- Call option: Final condition: $u(s, T) = \max(s - K, 0) = (s - K)^+$

![Graph](image)

- Boundary conditions for $s \approx 0$: $u(s, t) = 0$.
- Boundary conditions at $s \to \infty$: $u(s, t) = se^{-\delta(T-t)} - Ke^{-r(T-t)}$ or: $u_{ss} = 0$.
- The standard European option can be solved exactly (serves as a reference).
Important Quantities

Hedge Parameters

• **Delta**: the rate of change of the option value with respect to s. Portfolio with $u \pm \Delta s$ is instantaneously risk neutral.

$$\Delta = \frac{\partial u}{\partial s}$$

• **Gamma**: indicates the change in Delta

$$\Gamma = \frac{\partial^2 u}{\partial s^2}$$

• If Gamma is high, the portfolio results for a very short time in a risk-less scenario.

• There are several other important hedging parameters.
Increasing dimensions

Multi-Asset Options

• The problem dimension increases if the price of an option depends on more than one asset s_i (the so-called multi-asset options).

• Each underlying asset is assumed to follow a geometric (lognormal) diffusion process. It is assumed that the correlation of each asset to all other assets is constant.

• Each additional asset is represented by an extra dimension in the problem:

$$Lu : = \frac{\partial u}{\partial t} + \frac{1}{2} \sum_{i,j=1}^{d} \left[\sigma_i \sigma_j \rho_{i,j} s_i s_j \frac{\partial^2 u}{\partial s_i \partial s_j} \right] + \sum_{i=1}^{d} \left[(r - \delta_i) s_i \frac{\partial u}{\partial s_i} \right] - ru = 0 .$$

• The required information to value a basket option is the volatility of each asset σ_i and the correlation between each pair of assets $\rho_{i,j}$.

Introduction: Several option-types

- Final conditions determine the type of the option
 - **Basket Call**, option on a basket of assets:
 \[u(s, T) = \max \left\{ \sum_{i=1}^{d} n_i s_i - K, 0 \right\} \]
 - Call option on the maximum of several assets
 \[u(s, T) = \max \left\{ \max\{s_1, s_2, \ldots, s_d\} - K, 0 \right\} \]
 - Exchange option on two assets
 \[u(s, T) = \max\{s_1 - s_2, 0\} \]
Basket options

- A **basket option** is an option whose payoff depends on the value of a portfolio (or basket) of assets. Basket options are growing in popularity as a means of hedging the risk of a portfolio and are highly interesting for banks nowadays.

- They are attractive because an option on a basket is **cheaper** than buying options on the individual assets. Furthermore, their payoff profile replicates the changes in a portfolio’s value more closely than any combination of options on the underlying assets.
1D Grid Stretching

General

- Consider a general parabolic PDE with non-constant coefficients
 \[
 \frac{\partial u}{\partial t} = \alpha(s) \frac{\partial^2 u}{\partial s^2} + \beta(s) \frac{\partial u}{\partial s} + \gamma(s) u(s, t)
 \]

- Coordinate transformation \(x = \xi(s) \) (one-to-one), inverse \(s = \eta(x) = \xi^{-1}(x) \) and \(\hat{u}(x, t) := u(s, t) \).

- Chain rule, the first and second derivative:
 \[
 \frac{\partial u}{\partial s} = \frac{1}{\eta'(x)} \frac{\partial \hat{u}}{\partial x}, \\
 \frac{\partial^2 u}{\partial s^2} = \frac{1}{(\eta'(x))^2} \frac{\partial^2 \hat{u}}{\partial x^2} - \frac{\eta''(x)}{(\eta'(x))^3} \frac{\partial \hat{u}}{\partial x}.
 \]

Application changes the factors \(\alpha, \beta \) and \(\gamma \) into:

\[
\hat{\alpha}(x) = \frac{\alpha(\eta(x))}{(\eta'(x))^2}, \quad \hat{\beta}(x) = \frac{\beta(\eta(x))}{\eta'(x)} - \alpha(\eta(x)) \frac{\eta''(x)}{(\eta'(x))^3}, \quad \hat{\gamma}(x) = \gamma(\eta(x)).
\]
A coordinate transformation that clusters points in the region of interest, around \(s = K \), the nondifferentiability in the final condition.

Spatial transformation used for Black-Scholes [Clarke-Parrott, Tavella-Randall]:

\[
x = \xi(s) = \sinh^{-1} (\zeta(s - K)) + \sinh^{-1} (\zeta K).
\]

An equidistant grid discretization \((n_x \text{ and } n_t \text{ cells})\) after the analytic transformation
Discretization

Fourth Order Discretization

- Finite differences, based on Taylor’s expansion
- $O(h^2 + k^2)$ is easily achieved by central differencing and Crank-Nicolson discretization
- **Our aim**: High accuracy with only a few grid points

\Rightarrow 4th order “long stencil” discretizations in space and in time “$O(h^4 + k^4)$”

- The 4th order implicit Backward Differentiation Formula, BDF4, time integration is used.
Discretization

- Fourth order in space (long stencils):
 \[
 \frac{\partial \hat{u}_i}{\partial t} = \frac{1}{12h^2} \hat{\alpha}_i (\hat{u}_{i+2} + 16\hat{u}_{i+1} - 30\hat{u}_i + 16\hat{u}_{i-1} - \hat{u}_{i-2}) + \\
 + \frac{1}{12h} \hat{\beta}_i (-\hat{u}_{i+2} + 8\hat{u}_{i+1} - 8\hat{u}_{i-1} + \hat{u}_{i-2}) + \hat{\gamma}_i \hat{u}_i + O(h^4), \quad 2 \leq i \leq N - 2.
 \]
 (1)

- Fourth order in time: BDF4 scheme (preceded by CN, BDF3). BDF4 reads
 \[
 \left(\frac{25}{12} I - kL \right) \hat{u}^{j+1} = 4\hat{u}^j - 3\hat{u}^{j-1} + \frac{4}{3} \hat{u}^{j-2} - \frac{1}{4} \hat{u}^{j-3},
 \]
 (2)

- No stability complications observed

- Well-suited for linear complementarity problems (for American options)
Accuracy

European option pricing experiment, dividend yield

- Error in u_h and hedge parameters Δ_h, Γ_h (comparison with analytic solution u_{ex}).
- $K = 15$, $\sigma = 0.3$, $r = 0.05$, $\delta = 0.03$, $T = 0.5$.

| Scheme | Grid | $||u - u_{ex}||_\infty$ | rate | $||\Delta - \Delta_{ex}||_\infty$ | rate | $||\Gamma - \Gamma_{ex}||_\infty$ | rate |
|-----------------|--------------|--------------------------|------|------------------------------------|------|------------------------------------|------|
| $O(h^2 + k^2)$ | 20×20 | 3.6×10^{-2} | 4.7 | 1.0×10^{-2} | 3.0 | 6.2×10^{-3} | 5.2 |
| | 40×40 | 8.6×10^{-3} | 4.2 | 2.8×10^{-3} | 3.6 | 1.6×10^{-3} | 4.0 |

| Scheme | Grid | $||u - u_{ex}||_\infty$ | rate | $||\Delta - \Delta_{ex}||_\infty$ | rate | $||\Gamma - \Gamma_{ex}||_\infty$ | rate |
|-----------------|--------------|--------------------------|------|------------------------------------|------|------------------------------------|------|
| $O(h^4 + k^4)$ | 20×20 | 1.1×10^{-3} | 10.1 | 3.1×10^{-3} | 7.6 | 1.3×10^{-3} | 4.8 |
| grid stretching | 40×40 | 9.4×10^{-5} | 11.2 | 2.9×10^{-4} | 10.8 | 9.7×10^{-5} | 13.6 |
European pricing experiment on stretched grid

\[u_h, \quad \Delta h, \quad \Gamma_h \]
Higher Dimensions: Sparse Grids

Combination Technique
Sparse Grids, Combination of solutions

Zenger, Griebel (1990/1991)

The combination equation for the sparse grid solutions in 2D reads:

$$u_{n}^{\text{comb}} = \sum_{|I|=n+1} u^{\text{sparse}} - \sum_{|I|=n} u^{\text{sparse}}$$

where $|I|$ corresponds to the number of grid points in each direction. If $n = 4$ then, all combinations of $|I| = 5$ are: $(16, 2), (8, 4), (4, 8), (2, 16)$.

The combination equation for the sparse grid solutions in in general dimensions reads:

$$u_{n}^{\text{comb}} = \sum_{k=0}^{d-1} (-1)^{k} \binom{d-1}{k} \sum_{|I|=n+d-1-k} u^{\text{sparse}}$$

Sparse Grid Techniques converge nicely if mixed second derivatives in the problem are bounded.
Higher Dimensions: Sparse Grids

Overall Grid

- Number of points processed $O(N(\log N)^{d-1})$ versus $O(N^d)$ (full grid)
- Accuracy of solutions $O(N^{-2}(\log N)^{d-1})$ versus $O(N^{-2})$ (full grid, $h = 1/N$)
Sparse Grid Test Case

5D Reference Equation

- Second order Accurate Discretization of

\[\sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2} + \sum_{i=1}^{d} \frac{\partial u}{\partial x_i} - 5u = 0, \text{ with solution: } u(x_1, \ldots, x_d) = e^{\sum_{i=1}^{d} (-1)^i + 1 x_i} \]

<table>
<thead>
<tr>
<th>Full Grid</th>
<th>(d)</th>
<th>(N_{\text{max}})</th>
<th>error (10^{-\text{error}})</th>
<th>Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>1.9491</td>
<td>1.9491 \times 10^{-3}</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>5.5487 \times 10^{-4}</td>
<td>5.5487 \times 10^{-4}</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>1.4387 \times 10^{-4}</td>
<td>1.4387 \times 10^{-4}</td>
<td>3.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sparse Grid</th>
<th>(d)</th>
<th>(N_{\text{max}})</th>
<th>error (10^{-\text{error}})</th>
<th>Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>16</td>
<td>7.3734 \times 10^{-4}</td>
<td>7.3734 \times 10^{-4}</td>
<td>2.1</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>3.2367 \times 10^{-4}</td>
<td>3.2367 \times 10^{-4}</td>
<td>2.3</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>1.3462 \times 10^{-4}</td>
<td>1.3462 \times 10^{-4}</td>
<td>2.4</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>5.3537 \times 10^{-5}</td>
<td>5.3537 \times 10^{-5}</td>
<td>2.5</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>2.0489 \times 10^{-5}</td>
<td>2.0489 \times 10^{-5}</td>
<td>2.6</td>
</tr>
</tbody>
</table>

- Asymptotic convergence factors sparse grid: 2D: 3.61, 3D: 3.13, 4D: 2.86, 5D: 2.61
Higher Dimensional B-S

Transformation, Stretching and Sparse Grids!

- See also Reisinger (2003/2004)
- Coordinate transformation

\[
\frac{\partial u}{\partial t} = \sum_{i=1}^{d} \sum_{j=1}^{d} \alpha_{ij} \frac{\partial^2 u}{\partial s_i \partial s_j} + \sum_{i=1}^{d} \beta_i \frac{\partial u}{\partial s_i} - ru
\]

with

\[
\alpha_{ij} = \frac{1}{2} \rho_{ij} \sigma_i \sigma_j s_i s_j, \quad \beta_i = (r - \delta_i) s_i
\] \hspace{1cm} (3)

- Linear transformation:

\[
X = \Gamma S, \quad S = \Gamma^{-1} X = ZX
\] \hspace{1cm} (4)

\[
x_i = \sum_{m=1}^{d} \gamma_{im} s_m, \quad s_i = \sum_{m=1}^{d} z_{im} x_m, \quad \frac{\partial x_i}{\partial s_k} = \gamma_{ik}
\] \hspace{1cm} (5)
• Transformed equation:

\[
\frac{\partial u}{\partial t} = \sum_{i=1}^{d} \sum_{j=1}^{d} \hat{\alpha}_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{d} \hat{\beta}_i \frac{\partial u}{\partial x_i} - ru
\]

and

\[
\hat{\alpha}_{ij} = \sum_{k=1}^{d} \sum_{\ell=1}^{d} \alpha_{k\ell} \frac{\partial x_i}{\partial s_k} \frac{\partial x_j}{\partial s_\ell}, \quad \hat{\beta}_i = \sum_{k=1}^{d} \beta_k \frac{\partial x_i}{\partial s_k}
\]

(6)

• Final Result

\[
\frac{\partial u}{\partial t} = \frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} \sum_{k=1}^{d} \sum_{\ell=1}^{d} \sum_{m=1}^{d} \sum_{n=1}^{d} \rho_{k\ell} \sigma_k \sigma_\ell \gamma_{ik} \gamma_{j\ell} z_{km} z_{\ell n} x_m x_n \frac{\partial^2 u}{\partial x_i \partial x_j} + \\
+ \sum_{i=1}^{d} \sum_{k=1}^{d} \sum_{m=1}^{d} (r - \delta_k) \gamma_{ik} z_{km} x_m \frac{\partial u}{\partial x_i} - ru
\]

(7)
Actual Coordinate Transformation

• Transformation used (Tavella, Randall):

\[
2D : \begin{align*}
x_1 &= n_1s_1 + n_2s_2 \\
x_2 &= -n_1s_1 + n_2s_2
\end{align*}
\]

\[
3D : \begin{align*}
x_1 &= n_1s_1 + n_2s_2 + n_3s_3 \\
x_2 &= -n_1s_1 + n_2s_2 + n_3s_3 \\
x_3 &= -n_1s_1 - n_2s_2 + n_3s_3
\end{align*}
\]
Grid Stretching

- Stretching coordinate x_i with function $x_i = x_i(y_i)$, gives a solution $u = u(y_1, y_2, \ldots, y_d)$. The equation then reads

$$
\frac{\partial u}{\partial t} = \frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} \sum_{k=1}^{d} \sum_{\ell=1}^{d} \sum_{m=1}^{d} \sum_{n=1}^{d} \rho_{k\ell} \sigma_k \sigma_\ell \gamma_{ik} \gamma_{j\ell} \gamma z_{km} z_{ln} x_m x_n \frac{1}{J_i J_j \partial y_i \partial y_j} \partial^2 u + \\
- \frac{1}{2} \sum_{i=1}^{d} \sum_{k=1}^{d} \sum_{\ell=1}^{d} \sum_{m=1}^{d} \sum_{n=1}^{d} \rho_{k\ell} \sigma_k \sigma_\ell \gamma_{ik} \gamma_{i\ell} \gamma z_{km} z_{ln} x_m x_n \frac{H_i}{J_i^3} \partial y_i \partial^2 u + \\
+ \sum_{i=1}^{d} \sum_{k=1}^{d} \sum_{m=1}^{d} (r - \delta_k) z_{km} x_m \frac{\gamma_{ik}}{J_i} \partial u - ru
$$

- With J_i the first, H_i the second derivative of the stretching function: $J_i = dx_i/dy_i, H_i = d^2x_i/dy_i^2$.

- In practice: Stretching only in x_1
Discretization and Kronecker products

- Each derivative must be taken apart and summed up. To simplify this, we use Kronecker products, which combine the 1D discretization stencils to the \(d \)--dimensional case.

- The second derivative of the assets is in the 2D case:

\[
\begin{bmatrix}
\frac{\partial^2 u}{\partial^2 s_2}
\end{bmatrix}_2 = \begin{bmatrix}
\frac{\partial^2 u}{\partial^2 s_2}
\end{bmatrix}_1 \otimes I_1 \Rightarrow \begin{bmatrix}
1 \\
-2 \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{\partial^2 u}{\partial^2 s_1}
\end{bmatrix}_2 = I_2 \otimes \begin{bmatrix}
\frac{\partial^2 u}{\partial^2 s_1}
\end{bmatrix}_1 \Rightarrow \begin{bmatrix}
1 & -2 & 1
\end{bmatrix}
\]
Kronecker products

General

• Let A be a matrix of size $k \times \ell$ and B a matrix of size $m \times n$. Then the Kronecker product $A \otimes B$ is a matrix of size $k \times m \times \ell$ with

$$A \otimes B = \begin{pmatrix}
a_{11}B & a_{12}B & \ldots & a_{1\ell}B \\
a_{21}B & a_{22}B & \ldots & a_{2\ell}B \\
\vdots & \vdots & \ddots & \vdots \\
a_{k1}B & a_{k2}B & \ldots & a_{k\ell}B
\end{pmatrix}$$

• Assume that the matrices are of appropriate size to calculate the products.

• The multiple Kronecker product is given by

$$A_1 \otimes A_2 \otimes \ldots \otimes A_N = \bigotimes_{i=1}^{N} A_i$$

and the following expression:

$$B \otimes \bigotimes_{i=1}^{N} A_i = B \otimes (A_1 \otimes A_2 \otimes \ldots \otimes A_N)$$
Discretization and Kronecker products

- The second derivative of the i-th asset in d-dimensions can be written in the same way as the 2D case:

$$\left[\frac{\partial^2 u}{\partial^2 s_i} \right]_d = \bigotimes_{n=0}^{d-i-1} I_{d-n} \bigotimes_{n=1}^{i-1} I_{i-n}$$

- Also non-constant coefficients can easily be implemented and it also usable for the first derivative.
Kronecker products: Correlation

- To use Kronecker products with the correlation term, we rewrite this term as:

\[
\frac{\partial^2 u}{\partial s_1 \partial s_2} = \frac{\partial}{\partial s_2} \left(\frac{\partial u}{\partial s_1} \right)
\]

- It follows that:

\[
\left[\frac{\partial^2 u}{\partial s_1 \partial s_2} \right]_2 = \left[\frac{\partial u}{\partial s_2} \right]_1 \otimes \left[\frac{\partial u}{\partial s_1} \right]_1
\]
Kronecker products: Correlation

• In general, for d dimensions, the correlation matrix reads:

$$\left[\frac{\partial^2 u}{\partial s_i \partial s_j} \right]_d = \bigotimes_{n=0}^{i-1} \mathbf{I}_{d-n} \otimes \left[\frac{\partial u}{\partial s_j} \right]_1 \otimes \bigotimes_{n=i+1}^{j-1} \mathbf{I}_{d-n} \otimes \left[\frac{\partial u}{\partial s_i} \right]_1 \otimes \bigotimes_{n=j+1}^{d-1} \mathbf{I}_{d-n}$$

• This can also be used with non-constant coefficients and therefore it is usable for the high-D Black-Scholes equation.
Results: 2D

Two-asset European basket call option (from Tavella’s book).

- $K = 100$
- $r = 4.5\%$
- $\delta_1 = 5\%$, $\delta_2 = 7\%$
- $T = 1$
- $\sigma_1 = 0.25$, $\sigma_2 = 0.35$ and $\rho_{12} = -0.63$
- Payoff: $\max\{0.58S_1 + 0.42S_2 - K, 0\}$
Coordinate Transformation + Stretching + Sparse Grids

- Payoff: \(\max \left(n_1 s_1 + n_2 s_2 - K, 0 \right) \)
 (left: no transformation, no stretching, right: stretching and transformation).

![Payoff graph](image1)

![Payoff graph](image2)
Coordinate Transformation + Sparse Grids

- Solution u at $t = 0$:
 (left: no transformation, no stretching, right: stretching and transformation).

Talk at Numerical Analysis Day, 29.4.2005 01.02.2005 /nr. 31
Numerical Results

2D Black-Scholes

<table>
<thead>
<tr>
<th></th>
<th>Full Grid</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eq</td>
<td>Eq</td>
<td>Trafo-Stretch</td>
<td>Trafo-Stretch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>Fourth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16 \times 16) \times 16</td>
<td>4.599</td>
<td>4.447</td>
<td>4.406</td>
<td>4.383</td>
<td></td>
</tr>
<tr>
<td>(32 \times 32) \times 32</td>
<td>4.434</td>
<td>4.363</td>
<td>4.355</td>
<td>4.349</td>
<td></td>
</tr>
<tr>
<td>(64 \times 64) \times 64</td>
<td>4.376</td>
<td>4.34</td>
<td>4.355</td>
<td>4.353</td>
<td></td>
</tr>
<tr>
<td>Value (Tavella)</td>
<td>4.353</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sparse Grid</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eq</td>
<td>Eq</td>
<td>Trafo-Stretch</td>
<td>Trafo-Stretch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>Fourth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.128</td>
<td>4.563</td>
<td>4.655</td>
<td>4.403</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5.192</td>
<td>4.404</td>
<td>4.470</td>
<td>4.355</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>4.658</td>
<td>4.358</td>
<td>4.366</td>
<td>4.354</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>4.517</td>
<td>4.353</td>
<td>4.353</td>
<td>4.353</td>
<td></td>
</tr>
<tr>
<td>Value (Tavella)</td>
<td>4.353</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basket Option: 3D

Three-asset European basket call option (from Tavella’s book).

- $K = 100$
- $r = 4.5\%$
- $\delta_1 = 5\%$, $\delta_2 = 7\%$, $\delta_3 = 4\%$
- $T = 1$
- $\sigma_1 = 0.25$, $\sigma_2 = 0.35$, $\sigma_3 = 0.20$
- $\rho_{12} = -0.63$, $\rho_{13} = 0.25$, $\rho_{23} = 0.5$
- Payoff: $\max\{0.38S_1 + 0.22S_2 + 0.4S_3 - K, 0\}$
Numerical Results

Full grid computations: $30 \times 30 \times 30 \times 15$

<table>
<thead>
<tr>
<th></th>
<th>Eq Second</th>
<th>Eq Fourth</th>
<th>Stretch Second</th>
<th>Stretch Fourth</th>
<th>Tavella</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>5.21</td>
<td>5.46</td>
<td>5.47</td>
<td>5.43</td>
<td>5.47</td>
</tr>
</tbody>
</table>

Sparse grid with transformation, stretching and 4th order discretization:

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tavella</td>
<td>5.526</td>
<td>5.492</td>
<td>5.493</td>
<td>5.482</td>
<td>5.476</td>
<td>5.476</td>
</tr>
</tbody>
</table>
Conclusions

- **Options on Single Asset**: Accurate option values with grid stretching in space and 4th order discretization in space and time
- **The sparse grid method** (recombination technique) is an interesting choice if the problem dimension increases
- **Basket options**: Accurate option values with coordinate transformation, grid stretching, 4th order discretization in space and time and the sparse grid method.