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Abstract

According to the theory proposed by Acerbi & Scandolo (2008), the value of a portfolio is defined in

terms of public market data and idiosyncratic portfolio constraints imposed by an investor holding the

portfolio. Depending on the constraints, one and the same portfolio could have different values for different

investors. As it turns out, within the Acerbi-Scandolo theory, portfolio valuation can be framed as a convex

optimization problem. We provide useful MSDC models and show that portfolio valuation can be solved

with remarkable accuracy and efficiency.

Keywords: liquidity risk, portfolio valuation, ladder MSDC, liquidation sequence, exponential MSDC,

approximation.

2



1 Introduction

According to the theory developed by Acerbi & Scandolo (2008) the value of a portfolio is determined by

market data and a set of portfolio constraints. The market data is assumed to be publicly available and is

the same for all investors. The market data of interest consists of price quotes corresponding to different

trading volumes. These quotes for an asset are represented in terms of a mathematical function referred to as

a Marginal Supply-Demand Curve (MSDC). See Section 2.1.

The portfolio constraints may vary across different players. These idiosyncratic constraints—collectively

referred to as aliquidity policy—refer to restrictions that any portfolio held by the investor should be prepared

to satisfy. Examples of such portfolio constraints are

• minimum cash amounts to meet shorter term liquidity needs;

• risk limits such as VaR or credit limits;

• capital limits.

To illustrate the use of the first type of constraint, while holding identical portfolios, an investor interested in

relatively long term stable returns may have less strict cash requirements compared to a fund aiming for high

short term redemptions. In contrast with the former, the investment fund might want to be able to liquidate

all or part of its positions very quickly in order to meet short term liquidity demands. This would naturally

translate into a tighter cash constraint. As will be expected, tighter cash constraints would generally yield a

lower portfolio value, which is indeed what the Acerbi-Scandolo theory predicts. See Section 2.3.

To value her portfolio, the investor will mark all the positions she could possibly unwind to satisfy the con-

straints to the best price she is able to quote from the market. The cash amount she could maximally get from

unwinding her positions accordingly will mark as the value of that portfolio. As it turns out, within Acerbi

and Scandolo’s theory, the valuation of a portfolio of assets can be framed as a convex optimization problem.

The associated constraint set is represented by a liquiditypolicy. Although this was already pointed out by

Acerbi and Scandolo themselves, the practical implications of this point have as yet not been investigated.

Such is the aim of the present paper.

We present the fundamental concepts of Acerbi-Scandolo theory in Section 2. Thereafter, the portfolio valua-

tion function will be studied more extensively, assuming different forms of the market data function (i.e., the

MSDC). We first consider a very general setting where the MSDCis shaped as a non-increasing step function

(referred to as aladder MSDC) in Section 3. This corresponds to normal market situationsfor relatively
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actively traded products. We will present an algorithm for portfolio valuation assuming ladder MSDCs and a

cash portfolio constraint. In Section 4, we will look at MSDCs which are shaped as decreasing exponential

functions and see how the exponential functions can be used as approximations of ladder MSDCs.

All numerical results are collected in Section 5. We will findthat in a wide range of cases, the approximation

of ladder MSDCs by exponential MSDCs appears to be accurate,suggesting that not all market price informa-

tion represented in ladder MSDCs is necessary for accurate portfolio valuation. We present our conclusions

in Section 6.

2 The Portfolio Theory

In this section we present the main concepts and relevant results from Acerbi-Scandolo portfolio theory. For

further details and discussion we refer to (Acerbi & Scandolo 2008).

2.1 Asset

An asset is an object traded in a market. Examples of types of assets are securities, derivatives or commodities.

We make the assumption that an asset can be traded in terms of units of some standardized amount.

An asset is generally not quoted by a single price, but by a series of bid and ask prices. Each bid and each ask

price is associated with a maximum trading volume. What we buy beyond the maximum trading volume is

quoted for a lower price, which is also linked with a maximum trading volume, etc. On the other hand, what

we sell beyond the maximum trading volume is quoted for a higher price, which is also linked to a maximum

trading volume, etc. Finally, we stipulate that bid prices are always lower than ask prices. This is basically a

no-arbitrage assumption.

In Acerbi and Scandolo’s theory, all available market priceinformation is represented in terms of a mathemat-

ical function referred to as aMarginal Supply-Demand Curve (MSDC). Let a real-valued variables denote

the trading volume. Whenevers> 0 we think of this as a sale ofsunits of an asset; whenevers< 0, we think

of this as a purchase of|s| units of the asset. We have exclude a value fors= 0, as we will not be able to

quote a price for trading nothing. An MSDC records the last price hit in a trade of volumes.

This leads to the following definition.

Definition 2.1. An assetis an object traded in a market and which is characterized by aMarginal Supply-

Demand Curve (MSDC). This is defined as a mapm : R\ {0}→R satisfying the following two conditions:
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1. m(s) is non-increasing, i.e.,m(s1)≥ m(s2) if s1 < s2;

2. m(s) is càdlàg (i.e., right-continuous with left limits) fors< 0 and làdcàg (i.e., left-continuous with

right limits) for s> 0.

Condition 1 represents the no-arbitrage assumption mentioned above. Condition 2 ensures that MSDCs have

elegant mathematical properties. In contrast with Condition 1, we will not heavily use this condition and we

only mention it for the sake of completeness of exposition. Instead, what we need most of the time is that an

MSDC is (Riemann) integrable on its domain.

(a) A list of prices for a stock

shares price (in euro)

Asks

1500 2.8710
1000 2.8700
2800 2.8690
2070 2.8680
2070 2.8660

Bids

1170 2.8600
2070 2.8590
900 2.8580
500 2.8570
3521 2.8560

(b) The MSDC of the stock

s∈ m(s)

Asks

[-9440, -7940) 2.8710
[-7940, -6940) 2.8700
[-6940, -4140) 2.8690
[-4140, -2070) 2.8680

[-2070,0) 2.8660

Bids

(0, 1170] 2.8600
(1170, 3240] 2.8590
(3240, 4140] 2.8580
(4140,4640] 2.8570
(4640,8161] 2.8560

Table 1: A list of prices and the MSDC for a stock

Table 1(a) shows a real-time chart of the order book for a certain stock at some given time. The chart

summarizes the lowest five ask and the highest five bid prices together with their maximum trading volumes.

Table 1(b) represents this price information in terms of an MSDC. Note that this MSDC is a piecewise

constant function. We will refer to piecewise constant MSDCs asladder MSDCs. They are discussed in

Section 3.

We call the limitm+ := limh↓0m(h) the best bidandm− := limh↑0m(h) the best ask. Thebid-ask spread,

denoted byδm, is the difference between the best ask and the best bid, i.e., δm := m−−m+.

An important example of an asset is thecashasset.

Definition 2.2. Cashis the asset representing the currency paid or received whentrading any asset. It is

characterized by a constant MSDC,m0(s) = 1 (i.e., one unit) for everys∈ R\ {0}.

Cash is referred to as aperfectly liquidasset based on the following definition.

Definition 2.3. An asset is calledperfectly liquid if the associated MSDC is constant.

We call asecurityany asset whose MSDC is a positive function (e.g., a stock, a bond, a commodity) and

a swapany asset whose MSDC can take both positive and negative values (e.g., an interest rate swap, a
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CDS, a repo transaction). A negative MSDC can be converted into a security by defining a new MSDC as

m∗(s) :=−m(−s).

We presuppose one currency as the cash asset. For example, ifwe choose the euro as the cash asset, relative

to the euro, the US dollar will be considered as an illiquid asset. Dependent on trading volumes, the US dollar

can then be bought or sold at different bid or ask prices and hence its associated MSDC is not constant. If we

choose the US dollar as our cash asset, then the opposite holds true.

2.2 Portfolio

A portfolio is characterized by listing the holding volumesof different assets in the portfolio. Each portfolio

always holds a cash component.

Definition 2.4. Given areN+1 assets labeled 0,1, . . . ,N. We let asset 0 denote the cash asset. Aportfolio

is a vector of real numbers,p = (p0, p1, . . . , pN) ∈ R
N+1, wherepi represents the holding volume of asseti.

In particular,p0 denotes the amount of cash in the portfolio.

When we specifically want to highlight the portfolio cash we tend to write a portfolio asp = (p0,
−→p ). We

henceforth presuppose a set of portfolios referred to as theportfolio spaceP. We will assume thatP

is a vector space so that it becomes meaningful to add portfolios together and to multiply portfolios by

scalar numbers. Letp = (p0,
−→p ) ∈ P and suppose we have an additional amounta of cash. We write

p+a= (p0+a,−→p ). Note that this overloads the notation for addition. The context will usually make clear

what is meant.

We sometimes refer to a holding volumepi as theposition in asseti. pi > 0, pi < 0 or pi = 0 implies that

we have along, shortor zero positionin asseti respectively. Whenever we bring our long or short position in

asseti to the zero position we will say that weliquidateour position in asseti.

An important stepping stone towards Acerbi and Scandolo’s general definition of portfolio value is formed

by theliquidation Mark-to-Market valueand theuppermost Mark-to-Market valueof a portfolio.

Definition 2.5. The liquidation Mark-to-Market value L(p) of a portfoliop is defined as:

L(p) :=
N

∑
i=0

∫ pi

0
mi(x)dx= p0+

N

∑
i=1

∫ pi

0
mi(x)dx. (1)
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The liquidation MtM value is the total cash an investor receives from the liquidation of all her positions. The

liquidation MtM value of a portfoliop can be viewed as the value ofp for an investor who should be able to

liquidate all her positions in exchange for cash.

The opposite case is to keep the portfolio as it is and to mark all illiquid (i.e., non-cash) assets to the best

bid price or to the best ask price, depending on whether a longor short position was taken. This leads to the

following definition.

Definition 2.6. Theuppermost Mark-to-Market(MtM) value U(p) of p is given by

U(p) :=
N

∑
i=0

(m+
i ·max(pi ,0)+m−

i ·min(pi ,0)) = p0+
N

∑
i=1

(m+
i ·max(pi ,0)+m−

i ·min(pi ,0)). (2)

wherem+
i andm−

i are the best bid and the best ask for asseti, respectively.

The uppermost MtM value can be viewed as the value of a portfolio for an investor who has no cash demands.

In this sense, the portfolio is unconstrained.

Note that, as MSDCs are non-increasing,U(p)≥ L(p). The difference betweenU(p) andL(p) is termed the

uppermost liquidation costand is defined asC(p) :=U(p)−L(p).

2.3 Liquidity policy

The definitions of the liquidation MtM valueL(p) and the uppermost MtM valueU(p) suggest that the value

of a portfoliop is subject to constraints, which represent certain cash constraints an investor should be able

to meet by wholly or partly liquidating positions she has taken. There could be other types of constraints

besides. For example, an investor might want to impose market risk VaR limits on her positions, or credit

limits, or capital constraints. All the constraints that aninvestor imposes can be represented as a subset of

the underlying portfolio spaceP. These constraints are collectively referred to as a liquidity policy. For

completeness we quote the definition from (Acerbi & Scandolo2008).

Definition 2.7. A liquidity policy L is a closed and convex subset ofP satisfying the following conditions:

1. if p = (p0,~p) ∈ L anda≥ 0, thenp+a= (p0+a,~p) ∈ L ;

2. if p ∈ L , then(p0,~0) ∈ L .

For the purpose of the present paper, the exact mathematicaldefinition of a liquidity policy and the type

of constraints constituting it are not very important. The only properties that we do care about is that any
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liquidity policy is aclosed and convexsubset of the underlying portfolio space. As said in the introduction,

portfolio valuation can be framed as a convex optimization problem. In view of this, to demand that a liquidity

policy is closed and convex ensures that each portfoliohasa value and that this value isunique(see Section

2.4 for further discussion).

Example 2.1(Liquidating-nothingpolicy). The uppermost MtM value operatorU corresponds to theliquidating-

nothing policy

L
U := P. (3)

The liquidating-nothing policy effectively imposes no constraint on a portfolio. It can be viewed as a require-

ment imposed by an investor who has no cash demands her portfolio should be prepared to satisfy.

Example 2.2(Liquidating-all policy). The liquidation MtM value operatorL corresponds to theliquidating-

all policy

L
L := {p = (p0,~p) ∈ P|~p=~0}. (4)

In a sense, the liquidating all policy imposes a very strict constraint on a portfolio. It can be viewed as a

portfolio requirement from an investor who should be prepared to liquidate all her positions in return for

cash.

Example 2.3 (α-liquidation policy). Let α = (α1, . . . ,αN), with αi ∈ [0,1]; i = 1, . . . ,N. The following

liquidity policy, theα-liquidation policy, specifies to liquidate part of a given portfoliop = (p0,~p):

L
α := {q = (q0,~q) ∈ P|q0 ≥ p0+L(α ·~p)}. (5)

In this definition,· denotes the termwise product:α ·~p = (α1p1, . . . ,αN pN). This policy indicates that an

investor needs to be able to liquidateαi parts of positionpi in return for cash.

Example 2.4(Cash liquidity policy). A liquidity policy setting a minimum cash requirement,c, is acash

liquidity policy:

L (c) := {p ∈ P|p0 ≥ c≥ 0}. (6)

An investor endorsing a cash liquidity policy should be prepared to liquidate her positions to such an extent

that minimum cash levelc is obtained. We will extensively use cash liquidity policies in Sections 3 and 4.

We refer to (Acerbi 2008) for additional examples of liquidity policies.

Note that a portfolio is not supposed to satisfy a liquidity policy all the time. The meaning of the policy is

that the portfolio will bepreparedto satisfy that policy instantaneously if needed, which will be clarified in
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the next section.

2.4 Portfolio value

In this section, we present Acerbi and Scandolo’s definitionof the portfolio value function. We first need the

following definition.

Definition 2.8. Let p,q ∈ P be portfolios. We say thatq is attainable from p if q = p− r +L(r) for some

r ∈ P. The set of all portfolios attainable fromp is written asAtt(p).

It means that a portfolioq is attainable fromp if, starting fromp, liquidatingr in return for an amountL(r )

of cash, yieldsq.

The following definition is key:

Definition 2.9. The Mark-to-Market (MtM) value (or thevalue, for short) of a portfoliop subject to a

liquidity policy L is the value of the functionVL : P → R∪{−∞} defined by

VL (p) := sup{U(q)|q ∈ Att(p)∩L }. (7)

If Att(p)∩L = ∅, meaning that no portfolio attainable fromp satisfiesL , then we stipulate the portfolio

value to be−∞.

Proposition 2.1 (Acerbi & Scandolo (2008)). The portfolio value function VL from Definition 2.9 can be

alternatively defined as

VL (p) = sup{U(p− r)+L(r)|r ∈ P,p− r+L(r) ∈ L }. (8)

To prove this is not very difficult; see (Acerbi & Scandolo 2008). The proposition above allows us to frame

the determination of the value of a portfolio as an optimization problem with explicit constraints, namely:





maximize U(p− r)+L(r);

subject to: p− r +L(r) ∈ L ;

r ∈ P.

(9)
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(We ignore the caseVL (p) = −∞.) This optimization problem is convex asL is a convex set. SinceL is

also closed, this problem has a unique optimal value (which could be−∞).

Proposition 2.2. The previous maximization problem (9) has the same optimal solution as the following

minimizationproblem





minimize C(r);

subject to: p− r+L(r) ∈ L ;

r ∈ P.

(10)

Proof. Note thatU(p− r) = U(p)−U(r) by the definition of uppermost MtM value. It follows that the

objective function of problem (9) can be rewritten as

U(p)−U(r)+L(r).

Since, givenp, we can always determineU(p), maximizing this function under the given constraints will

yield the same optimal solutionr ∗ as maximizing the following function under the same constraints:

−U(r)+L(r).

Obviously, minimizing

U(r)−L(r)

again yields the same optimal solutionr∗. Noting thatC(r) =U(r)−L(r) proves the result.

Informally, this result implies that to determine the valueof a portfolio is to determine a portfolior ∗ such that

liquidatingr ∗ in exchange for cash minimizes the uppermost liquidation costsC(r ∗). This result will prove

useful at a later stage.

3 Portfolio Valuation Using Ladder MSDCs

In the present section we will provide an algorithm providing an exact global solution for problem (9) under

the assumption that the MSDC for the illiquid assets are piecewise constant, as we will name themladder

MSDCs.
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Within the Acerbi-Scandolo theory, ladder MSDCs will play akey role to model the liquidity of the assets.

Equipped with the fast and accurate algorithm discussed in this section, one could solve the convex opti-

mization problem incurred in portfolio valuation more efficiently than using some conventional optimization

techniques.

3.1 The optimization problem

Ladder MSDCs can represent a market wherein we can quote a price for each volume we wish to trade, i.e., a

market of “unlimited depth”. In a real-world market context, we will typically only be able to trade volumes

within certain bounds. We could say that an MSDC represents amarket of limited depth if its domain is a

closed interval of reals. The upper and the lower bound of this domain represent the market depth: the upper

bound represents the maximum volume we will be able to sell against prices we can quote from the market

and the lower bound represents the maximum we will be able to buy against prices we will be able to quote

from the market. In what follows, we assume MSDCs representing markets of limited depth.

Reconsider problem (9). Using a cash liquidity policyL (c) this becomes





maximize U(p− r)+L(r);

subject to: p0− r0+L(r)≥ c;

r ∈ P.

(11)

The inequality constraint can be replaced by the equality constraintp0− r0+L(r ) = c without affecting the

optimal value of the original problem. Furthermore, we may assume that the cash componentr0 equals 0 as

it does not play a role in the optimization problem. To find theoptimal solution we hence might as well solve





maximize U(p− r)+L(r);

subject to: L(r) = c− p0;

r ∈ P.

(12)

Note that without loss of generality we may assume thatp0 = 0; otherwise use the cash liquidity policy

L (c− p0).
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3.2 A calculation scheme for portfolio valuation with ladder MSDCs

In case of portfolio valuation based on ladder MSDCs we can solve the associated optimization problem (12)

numerically, for example, by an interior point algorithm (see (Boyd & Vandenberghe 2004)). However, this

might give us only local optima as we often start from an arbitrarily chosen initial solution. In addition, the

algorithm could be computationally inefficient in the sensethat an interior point algorithm approximates any

(local) solution and that several iterations might be required to bring this approximation within reasonable

bounds. Hence, the aim of this section is to provide an algorithm for problem (12) yielding an exact global

optimal solutionr ∗. Unless otherwise noted, throughout the remainder of this section we assume (i) that an

investor holds a portfoliop consisting oflong positions only and (ii) that she uses a cash liquidity policy

L (c) for somec> 0.

Given that all assets are assumed to be characterized by ladder MSDCs, we can conveniently break up each

and every position into a finite number of volumes. To each of these volume there corresponds a definite

market quote as represented by the MSDC. The idea of the algorithm is to consider all of these portfolio bits

together and to liquidate them in a systematic and orderly manner, starting with the portions which will be

liquidated with the smallest cost relative to the best bid, and subsequently to the ones that can be liquidated

with second smallest cost, and so on, until the cash constraint is met.

If the minimum cash requirement that the portfolio should beprepared to satisfy exceeds the liquidation MtM

value of the entire portfolio, then we will never be able to meet the cash constraint; by definition, we set the

portfolio value to be−∞.

Alternatively, suppose we sell off a fraction of each position against the best bid price and that the total cash

we subsequently receive in return exceeds the cash constraint. Then the value of the portfolio equals the

uppermost MtM value and there exists infinitely many optimalsolutions.

We will now make this formal, starting with the following definition.

Definition 3.1. Given is an asseti, characterized by MSDCmi . The liquidity deviation of a volumes of

asseti is defined as:

Si(s) :=
m+

i −mi(s)

m+
i

. (13)

The liquidity deviation is the relative difference betweenthe best bid price and the last market quotemi(s) hit

for a volumes. In this sense, it measures the liquidity of asseti atsi units traded relative to the best bid. Given

any asset, the liquidity deviation is a non-decreasing function, as the MSDC corresponding to that asset is

non-increasing. For a security, the values of the liquiditydeviation are in[0,1], as the lower bound of the
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corresponding MSDC is 0. For a swap, the values are in[0,+∞). Since the MSDC of an asset is assumed to

be piecewise constant, each value of liquidity deviation corresponds to a maximum bid size.

Using the previously defined liquidity deviation, positions are liquidated in a definite order, as follows. Given

a portfolio r = (r0, r1, . . . , rN), assume that we want to liquidate all ther i , i > 0. Each non-cash positionr i

can be written as a sum

r i =
Ji

∑
j=1

r i j , i = 1, . . . ,N.

wherer i j is called aliquidation size.

To define the liquidation sizer i j , consider the bid part of a ladder MSDCmi , which is constructed by a finite

number of bid prices with maximum bid sizes. For eachr i in asseti, we can identify a finite numberJi of bid

pricesmi j with liquidation sizesr i j , j = 1, . . . ,Ji . For the firstJi−1 liquidation sizesr i j ( j = 1, . . . ,Ji −1), they

are equal to the firstJi −1 maximum bid sizes recognized from the market; for theJi-th liquidation sizer i j , it

is less than or equal to theJi-th maximum bid size. Moreover, each liquidation sizer i j corresponds to each bid

pricemi j , particularly withr i1, the first liquidation size of each asset, corresponding to the best bidm+
i = mi1.

Afterwards, the liquidity deviation for each liquidation size can be written asSi j =
m+

i −mi j

m+
i

=
mi1−mi j

mi1
.

Now we put the liquidity deviationsSi j in ascending order indexed byk, and we generically refer to any term

of this sequence asSk(r) (the addition ofr as an extra parameter will prove convenient later on). Note that

the length of the liquidation sequence equalsK = J1+ · · ·+ JN.

In addition, we observe that there exists a natural one-one correspondence between the sequence(Sk(r))k, the

sequence of liquidation size(r i j )(i, j) and the sequence of bid prices(mi j )(i, j). Hence, while preserving these

one-one correspondences, we relabel the sequences(r i j )(i, j) and(mi j )(i, j) as(rk)k and(mk)k, respectively. So

we call the sorted indexk the liquidation sequence, which is a permutation of the index(i, j). We also note

that the firstN terms of the sequence(mk)k are the best bidsm+
i , i = 1, . . . ,N.

(a) Asset 1

Maximum Bid Size Bid Price
200 11.65
200 11.55
200 11.45

(b) Asset 2

Maximum Bid Size Bid Price
200 19.58
600 19.5
200 19.2

Table 2: Bid price information of assets 1 and 2

To illustrate the above concepts, consider an example as follows. Given two illiquid assets, the bid part of

which can be read from the market are shown in Table 2. Assume that we hold a portfolio which contains

600 units in asset 1 and 900 in asset 2. Then the liquidation sizes for the two assets are shown in Table 3 and

the sorted liquidity deviations as well as the liquidation sequence are presented in Table 4.
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(a) Asset 1

Liquidation Size Bid Price
r11 200 m11 11.65
r12 200 m12 11.55
r13 200 m13 11.45

(b) Asset 2

Liquidation Size Liquidation Size
r21 200 m21 19.58
r22 600 m22 19.5
r23 100 m23 19.2

Table 3: Liquidation size of our portfolior = (0,600,900)

Liquidation Sequence Asset Liquidation Size Bid Price Liquidity Deviation
(1, 1) 1 200 11.65 0
(2, 1) 2 200 19.58 0
(2, 2) 2 600 19.5 0.004085802
(1, 2) 1 200 11.55 0.008583691
(1, 3) 1 200 11.45 0.017167382
(2, 3) 2 100 19.2 0.019407559

Table 4: Liquidity deviation and liquidation sequence

To meet the cash constraint embodied in the cash liquidity policy we start liquidating the portfolio from

S1(r), thenS2(r), and so on, until we have met the cash requirement. The liquidation sequence effectively

directs the search process throughout the constraint set towards the global solution, and exactly so. This is

summarized in the following theorem, which we will prove subsequently. Note that the theorem assumes any

liquidity policy, not specifically a cash liquidity policy.

Proposition 3.1. Given is a portfoliop such that each asset is characterized by a ladder MSDC. Assume any

liquidity policyL . Then optimization problem (9) has the same optimal solution as the following (using the

same notations as above):





minimize ∑K
k=1Sk(r);

subject to: p− r+L(r) ∈ L ;

r ∈ P.

(14)

Loosely put, the optimal solution is the one yielding the minimum total sum of liquidity deviation.

Proof. Let a portfoliop = (p0, p1, . . . , pN) be given and suppose we liquidate a portfolior = (r0, r1, . . . , rN)

to meet a liquidity policyL . Asseti has a corresponding MSDCmi , i = 0,1, . . . ,N. From Proposition 2.2,

the optimal solution of (9) minimizes the uppermost liquidation cost. Using that all assets are characterized

by ladder MSDCs, the objective functionC(r) can be rewritten as follows:

C(r) = U(r)−L(r)

=
N

∑
i=1

Ji

∑
j=1

(
m+

i r i j −mi j r i j
)
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Herep0 andr0 are set to be 0 as above for simplicity.

Note that for each asseti, m+
i ≥ mi j for all j. It follows that the minimum of the sum of the absolute

differences between them+
i r i j andmi j r i j is the same as the minimum of the sum of the relative differences.

Hence, to find the optimal solution we might as well minimize

N

∑
i=1

Ji

∑
j=1

m+
i r i j −mi j r i j

m+
i r i j

=
N

∑
i=1

Ji

∑
j=1

m+
i −mi j

m+
i

=
K

∑
k=1

Sk(r).

On the last line,K = J1+ · · ·+ JN.

Based on this result, we now state the algorithm for portfolio valuation assuming only ladder MSDCs and

a cash liquidity policyL (c). For the sake of clarity we recall that the optimal solutionr ∗ of problem (12)

should satisfyL(r ∗) = c− p0. Also, we assume thatp0 = 0 andr0 = 0. (Otherwise, we can set the cash

requirementc= c− p0.) We continue using the same notations as above. The pseudocode is summarized in

Algorithm 3.1.

The optimal solutionr ∗ can be found by recording the liquidation parts of corresponding assets in the above

calculation procedure of Algorithm 3.1.

The piecewise constant MSDCs in the convex optimization problem generally increase the difficulty of the

search for the global optimal solution with standard software. With the aforementioned calculation scheme

listed in Algorithm 3.1, instead, we can solve the optimization problem efficiently via a liquidation sequence.

4 Portfolio valuation using continuous MSDCs

There is typically no analytic solution to the convex optimization problem (12). However, it can be shown

that if we model the MSDC as a continuous function simple analytic solutions result from the Lagrange

multiplier method. In Section 4.1 we will first look at continuous MSDCs without imposing any specific

form for them. We will then look at MSDCs shaped as exponential functions in Section 4.2. We then propose

to use exponential MSDCs to approximate ladder MSDCs in order to improve the efficiency of portfolio

valuation in Section 4.3. We will assume the cash liquidity policy in this section.
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Algorithm 3.1 Algorithm for portfolio valuation assuming ladder MSDCs and a cash liquidity policyL (c)
Calculate:
U(p) = ∑N

i=1m+
i · pi;

L(p) = ∑N
i=1 ∑Ji

j=1mi j · pi j ;

V1(p) = ∑N
i=1m+

i · pi1;

Si j =
mi1−mi j

mi1
;

Sort theSi j as an ascending sequence with index variablek. // With k running from1 to J1+ · · ·+ JN

if c> L(p) then
return VL (c)(p) =−∞; // There is no optimal solution satisfying the cash constraint.

else
if c≤V1(p) then // Liquidating the pi1 to the respective best bids meets the cash constraint.

return VL (c)(p) =U(p); // There are infinitely many optimal solutions.
else

U(r) =V1(p);
c= c−V1(p);
k= N+1; // Start loop from the first part with non-zero liquidity deviation until c is zero.
while c> 0 do

if c
mk

> pk then

U(r) =U(r)+m+
k · pk;

c= c−mk · pk;
k= k+1;

else
U(r) =U(r)+m+

k · c
mk

;
c= 0;

end if
end while
return VL (c)(p) =U(p)−U(r)+ c //Here we have L(r) = c.

end if
end if

4.1 The general case

We first assumeN illiquid assets labeled 1, . . . ,N. The corresponding MSDCsmi are supposed to be contin-

uous onR (i.e., mi(0) is supposed to exist at first, but we will exclude the pointmi(0) later in this section);

furthermore, themi are assumed to be strictly decreasing. Adopting the cash liquidity policy, valuing a portfo-

lio consisting of positions in these assets comes down to solving the optimization problem (12). The solution

to this optimization problem can be analytically derived, as is shown by the following proposition.

Proposition 4.1(Acerbi & Scandolo (2008)). Assuming continuous strictly decreasing MSDCs and the cash

liquidity policyL (c), the optimal solutionr∗ = (0,~r∗) to optimization problem (12) is unique and given by

r∗i =





m−1
i (mi (0)

1+λ ), if p0 < c,

0, if p0 ≥ c,
(15)

where m−1
i denotes the inverse of the MSDC function mi , and the Lagrange multiplierλ , representing the
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marginal liquidation cost, can be determined from the equation L(r∗) = c− p0.

Note that we can extend the above to the case where the MSDCs are not continuous at the point 0, i.e., the

case where there is a positive bid-ask spread. We only have tochange the definition of the value atmi(0) to

the limit m+
i in the case of long positions or tom−

i in the case of short positions.

Obviously, by using the Lagrange multiplier method, we can generalize the case to any liquidity policy giving

rise to equality constraints. When using a general liquidity policy which results in inequality constraints, we

can solve the optimization problem (9) by checking the Karush-Kuhn-Tucker (KKT) conditions. In addition,

the Lagrange dual method may be useful as well.

4.2 Exponential MSDCs

We continue the discussion by looking at a particular example of a continuous MSDC proposed by Acerbi

& Scandolo (2008), i.e., the exponential MSDC. As it turns out, the exponential MSDCs form an effective

model to characterize a security-type asset and to determine the portfolio value by convex optimization. We

will discuss this in Section 4.3.

Suppose that there areN illiquid assets 1,2, . . . ,N characterized by exponential MSDCs

mi(s) = Mie
−kis, (16)

with Mi ,ki > 0 for all i = 1, . . . ,N. We callMi themarket risk factorandki the liquidity risk factor for the

corresponding asseti (i = 1, . . . ,N). Note that the range of an exponential MSDC is bounded from below by

0. Hence exponential MSDCs serve to characterize security-type assets.

We find for the uppermost MtM value

U(p) = p0+
N

∑
i=1

mi(0)pi = p0+
N

∑
i=1

Mi pi , (17)

and for the liquidation MtM value

L(p) = p0+
N

∑
i=1

∫ pi

0
mi(x)dx= p0+

N

∑
i=1

Mi

ki
(1−e−ki pi ). (18)
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The value of a portfolio under the cash liquidity policyL (c) with p0 < c follows from Proposition 4.1:

r∗i =
log(1+λ )

ki
, i = 1, . . . ,N,

with λ =
c− p0

∑N
i=1

Mi
ki
− c+ p0

.
(19)

Hence,

VL (c)(p) =U(p− r∗)+L(r∗) =
N

∑
i=1

Mi(pi −
log(1+λ )

ki
)+ c. (20)

The use of exponential MSDCs for modeling gives rise to very efficient computations. For actively traded

stocks, the liquidity risk factor is estimated to vary from 10−9 to 10−7. This was confirmed by experiments

with real market data using the method of least squares (see Section 4.3).

For bid prices of a security-type asset, an approximation byan exponential MSDC appears sufficiently accu-

rate. For ask prices, however, exponential MSDCs may be lessappropriate, as it gives rise to a steep slope

for ask prices without an upper bound.

4.3 Approximating ladder MSDCs by exponential MSDCs

In Section 3, we have defined a fast calculation scheme for portfolio valuation with ladder MSDCs. In the real

world, however, we may face a situation that to collect the price information to form a ladder MSDC is too

costly, or that the information is incomplete or non-transparent, e.g., in an over-the-counter (OTC) market.

One could model ladder MSDCs as the modeling of order book dynamics which appear to have a common

basis with ladder MSDCs. For example, in (Bouchaud, Mézard& Potters 2002), the trading volume at each

bid (or ask) price in the stock order book follows a Gamma distribution. In (Cont, Stoikov & Talreja 2010),

a continuous Markov chain is used to model the evolution of the order book dynamics.

In our paper, we use the basic continuous MSDC models to approximate the ladder MSDC directly, as we

can then apply the Lagrange multiplier method and other convex optimization techniques to obtain analytic

solutions and thus improve the efficiency. For actively traded security-type assets, a portfolio valuation based

on exponential MSDCs, with their analytic solutions, is significantly faster than with ladder MSDCs. For

OTC traded assets, lacking price information, exponentialMSDCs with high liquidity risk factors can be a

first modeling attempt.

Generally, when using exponential MSDC models, we need to estimate or model the parametersMi andki .

The dynamics of the market risk factorsMi can be estimated by the best bid prices for long positions, or
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modeled by asset price models (e.g., geometric Brownian motion). If we assume thatki is independent ofMi ,

we can employ time series or stochastic processes to modelki . If ki is assumed to be correlated withMi , we

also need to model the correlation. Furthermore, for security-type assets traded in an OTC market, we may

use the mere price information of the asset to estimate market risk and liquidity risk factors in the MSDC

models. In particular, the liquidity risk factor may be set at a high level (e.g., 10−3) to represent the illiquidity

of the asset.

For the approximation of a ladder MSDC by an exponential MSDC, we assume that the portfolio consists of

long positions inN illiquid security-type assets. The best bid price of asseti, m+
i , is set here as the market risk

factor,Mi , in the exponential function. If we assume additionally that the liquidity risk factor of asseti, ki ,

is independent of market risk factorMi , then parameterki can be estimated from the ladder MSDC of asseti

by the method of least squares as follows. We transform the exponential function as− log(mi (s)
Mi

) = kis, and

estimateki by n discrete pairs(sn,− log(mi (sn)
Mi

)) providedMi has already been determined, minimizing the

merit function:
n

∑
j=1

(− log(
mi(sj )

Mi
)− kisj)

2.

The least squares estimate of parameterki then reads

k̂i =
−∑n

j=1sj log(
mi(sj )

Mi
)

∑n
j=1s2

j

(21)

The validity of the model requires insight in modeling errors, and in parameter regimes for which the expo-

nential MSDC may become inaccurate.

The relative difference between the ladder MSDC and its approximation may serve as an indication for the

error in the modeling. For different cases this difference in the portfolio is of different shape. For certain

parameters, the relative difference increases monotonically.

A factor related to the validity of the exponential functionis the occurrence of significant jumps in the ladder

MSDCs when liquidating an asset with different bid prices. For asseti, we define ajump indicator, Ii(si), to

measure the size of a jump and the related modeling error as

Ii(si) := Si(s
+
i )−Si(s

−
i ) =

mi(s−i )−mi(s+i )

m+
i

(22)

Si denotes the liquidity deviation, as defined in Section 3. Thejump indicator is non-negative and less than 1.

With Ii(si) = 0, the ladder MSDC is continuous at pointsi and there is no jump in the MSDC at the trading
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volumesi . WhenIi(si)> 0, the ladder MSDC is discontinuous atsi .

As the jump indicator is defined as a relative value, we can compare the impact of jumps occurring in different

ladder MSDCs. This jump indicator can also give insight, to some extent, in the shape of the relative error

(see, for example, Figures 3(b) and 5(b) in Section 5) in the portfolio values. After the calculation of each

asset’s liquidity deviation, the difference between two adjacent liquidity deviations is computed for each

asset. This is represented by the jump indicator at the margin of one ladder of an MSDC. By sorting the non-

zero liquidity deviations in an ascending order (i.e., the liquidation sequence, see Section 3) in combination

with the non-zero jump indicators, the impact of a modeling error on the portfolio valuation for different

liquidation requirements can be estimated.

For modeling purposes, we may set a tolerance level for jump indicators. A jump indicator exceeding this

level is an indication for a significant modeling error.

5 Numerical Results

In this section we give examples for the various concepts discussed in this paper. In particular, we explain the

calculation scheme for efficient portfolio valuation by means of an example.

5.1 Portfolio with four illiquid assets

The example here is based on the case of four illiquid security-type assets. We deal with a portfoliop =

(0,3400,2400,3200,2800). The bid prices with liquidation sizes for the portfolio arechosen at a given time

as presented in Table 5.

(a) Asset 1

Liquidation Size Bid Price
200 11.65
200 11.55
200 11.45
200 11.1
200 11.05
200 11
200 10.3
500 9.3
500 6.5
1000 6.46

(b) Asset 2

Liquidation Size Bid Price
200 19.58
600 19.5
200 19.2
200 19.15
200 19.1
200 18.6
200 18.5
200 16.85
200 16.1
200 16.05

(c) Asset 3

Liquidation Size Bid Price
400 29.3
200 29.16
400 29.15
400 28.9
200 28
600 27.8
200 27.15
200 27
400 26
200 22

(d) Asset 4

Liquidation Size Bid Price
200 43.1
400 42.65
200 41.9
400 41
200 40.86
200 40.4
200 39
400 37
400 36
200 35.1

Table 5: Bids of assets 1-4

It is easy to calculate the uppermost MtM valueU(p) and the liquidation MtM valueL(p) from the tables,

that is,U(p) = 3.01042× 105 and L(p) = 2.73720× 105. Hence, the uppermost liquidation cost equals
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C(p) = 0.27322×105. If the true portfolio value is equal to the liquidation MtM value, but if we would use

however the uppermost MtM value instead, it would overestimate the portfolio value by as much as 10%.

For different cash requirements, we use the sorted liquidity deviations (see Table 6) to find the liquidation

sequence and then calculate the portfolio values (see Figure 1). From the last row of Table 6, we can see that

the liquidity deviation can be as large as 44.5% for the most illiquid part of the MSDC for asset 1, which

indicates a high level of liquidity risk.

From Figure 1, we infer that the portfolio value decreases ata faster rate as we have to liquidate positions of

an increasing number of illiquid assets to meet the cash requirements, which will definitely cause significant

losses during liquidation.

Liquidation Sequence Asset Liquidation Size Bid Price Best Bid Liquidity Deviation
(1, 1) 1 200 11.65 11.65 0
(2, 1) 2 200 19.58 19.58 0
(3, 1) 3 400 29.3 29.3 0
(4, 1) 4 200 43.1 43.1 0
(2, 2) 2 600 19.5 19.58 0.004085802
(3, 2) 3 200 29.16 29.3 0.004778157
(3, 3) 3 400 29.15 29.3 0.005119454
(1, 2) 1 200 11.55 11.65 0.008583691
(4, 2) 4 400 42.65 43.1 0.010440835
(3, 4) 3 400 28.9 29.3 0.013651877
(1, 3) 1 200 11.45 11.65 0.017167382
(2, 3) 2 200 19.2 19.58 0.019407559
(2, 4) 2 200 19.15 19.58 0.021961185
(2, 5) 2 200 19.1 19.58 0.024514811
(4, 3) 4 200 41.9 43.1 0.027842227
(3, 5) 3 200 28 29.3 0.044368601
(1, 4) 1 200 11.1 11.65 0.0472103
(4, 4) 4 400 41 43.1 0.048723898
(2, 6) 2 200 18.6 19.58 0.050051073
(3, 6) 3 600 27.8 29.3 0.051194539
(1, 5) 1 200 11.05 11.65 0.051502146
(4, 5) 4 200 40.86 43.1 0.051972158
(2, 7) 2 200 18.5 19.58 0.055158325
(1, 6) 1 200 11 11.65 0.055793991
(4, 6) 4 200 40.4 43.1 0.062645012
(3, 7) 3 200 27.15 29.3 0.07337884
(3, 8) 3 200 27 29.3 0.078498294
(4, 7) 4 200 39 43.1 0.09512761
(3, 9) 3 400 26 29.3 0.112627986
(1, 7) 1 200 10.3 11.65 0.115879828
(2, 8) 2 200 16.85 19.58 0.139427988
(4, 8) 4 400 37 43.1 0.141531323
(4, 9) 4 400 36 43.1 0.164733179
(2, 9) 2 200 16.1 19.58 0.17773238
(2, 10) 2 200 16.05 19.58 0.180286006
(4, 10) 4 200 35.1 43.1 0.185614849
(1, 8) 1 500 9.3 11.65 0.201716738
(3, 10) 3 200 22 29.3 0.249146758
(1, 9) 1 500 6.5 11.65 0.442060086
(1, 10) 1 1000 6.46 11.65 0.445493562

Table 6: Liquidity deviation and liquidation sequence

The calculation scheme in Algorithm 3.1 provides an efficient search direction to the optimal value guided

by the liquidation sequence. For this four-asset example with the cash liquidity policy, we compare our cal-

culation scheme with thefminconfunction with an interior point algorithm in MATLAB. The optimization

is repeated for 2.5× 105 different cash requirements and the total computation timeis recorded.1 The av-

1The computer used for all experiments has an Intel Core2 Duo CPU, E8600 @3.33GHz with 3.49 GB of RAM and the code is
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Figure 1: Portfolio value with different cash requirements

eraged time for each cash liquidity policy equals 0.568 millisecond for our scheme, whereasfmincontakes

202.7 milliseconds, which implies that the time differenceis a factor of 300. More importantly, we reach an

accurate optimal value.

Since the ascending sequence of liquidity deviations showsthe illiquidity of different parts of the corre-

sponding asset, liquidating the portfolio along the liquidation sequence will cause minimum loss of values

compared to the other kinds of liquidation.

An interior point method, on the other hand, may reach different local optimal values from different start-

ing points. In addition, the non-smoothness of the ladder MSDCs increases the difficulty of implementing

conventional convex optimization algorithms.2

5.2 Using exponential MSDCs to approximate ladder MSDCs

For the four-asset example with the ladder MSDCs from Section 5.1, Figure 2 illustrates the ladder MSDCs

and the corresponding exponential approximating MSDCs. The latter MSDCs are estimated by least squares.

The liquidity risk factors in the exponential MSDCs are found ask1 = 1.9738×10−4, k2 = 6.1091×10−5,

k3 = 4.3015×10−5 andk4 = 6.8139×10−5. Hence, asset 1 is most illiquid and asset 3 is the most liquidin

general.

In Figure 3(a), we compare the portfolio values obtained by using the exponential MSDCs with the reference

portfolio values by the ladder MSDCs under different cash requirements. The relative difference in the

written in MATLAB R2009b.
2For example, the optimality conditions in the interior point algorithm will not apply at non-smooth points of the ladderMSDC. See

(Boyd & Vandenberghe 2004) for more information.
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Figure 2: Exponential MSDCs versus ladder MSDCs for the bid prices of assets 1-4

portfolio values is presented in Figure 3(b). The relative difference found is at most 2.04%, so that in this

example the exponential MSDCs are accurate approximations.

5.3 Modeling error

To test the exponential MSDC model, we construct an artificial extreme case based on the four-asset example

which is used in Section 5.1. We just modify the last part of the bid prices for all four assets to be 0.46,

0.05, 0.1 and 0.1, respectively, with other data being unchanged. The new estimated exponential MSDCs are

shown in Figure 4. We calculate portfolio values under different cash liquidity policies based on exponential

and ladder MSDCs (see Figure 5(a)), and find that the modelingerror is significant when increasing the cash

requirement (see Figure 5(b)). It is clear that the exponential MSDC model fails in this case.

Since the jump indicator is able to measure jump sizes and therelated modeling errors, we use it for the
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Figure 3: Modeling ladder MSDCs by exponential MSDCs
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Figure 4: Exponential MSDCs versus ladder MSDCs for bid prices (extreme example)
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(a) Comparison of portfolio values (extreme example)
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Figure 5: Modeling of ladder MSDCs (extreme example)

extreme four-asset example here. When using exponential MSDCs to model ladder MSDCs we find that

the liquidity risk factor for asset 3 is the smallest of the four assets. However, from the calculation of jump

indicators for assets 1 to 4, we find that the most significant jumps occur at the final part of the ladder MSDC

for asset 3. Hence, using the exponential MSDC to model the ladder MSDC for asset 3 will thus give rise to

a significant modeling error.
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(b) Extreme example in this section

Figure 6: Impact of jump indicators on modeling portfolio values

The jump indicator may also be helpful for understanding theshapes of the modeling errors, for example, in

the Figures 3(b) and 5(b). In Figure 6(a) a trend is visible inthe jump indicators. At the right-hand side of

the graph the jump indicator drops to a relatively small value, which can partly explain why there is some

decrease of the modeling error in Figure 3(b). The increasing values in the jump indicator in Figure 6(b) are

related to increasing errors in Figure 5(b) for the portfolio valuation in the extreme example.
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6 Conclusions and Discussions

Within the theory proposed by Acerbi & Scandolo (2008) the valuation of a portfolio can be framed as a

convex optimization problem. We have proposed a useful and efficient algorithm using a specific form of

the market data function, i.e., all price information is represented in terms of a ladder MSDC. We have also

considered approximations of ladder MSDCs by exponential functions.

As an outlook, one may improve the modeling techniques either by means of improved methods to estimate

the liquidity risk and market risk factors in the exponential function, or by sophisticated models replacing the

exponential functions.

Whereas in regulated markets such as stock exchanges price information is relatively easily available, bid and

ask prices for assets traded in the over-the-counter (OTC) markets may not be easily obtained at any given

time. Hence, it may be nontrivial to employ this portfolio theory to these markets. Extracting all relevant

price information from OTC markets is however a challenge for all researchers.
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