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Abstract

According to the theory proposed by Acerbi & Scandolo (20@Bg value of a portfolio is defined in
terms of public market data and idiosyncratic portfolio straints imposed by an investor holding the
portfolio. Depending on the constraints, one and the samtéofpio could have different values for different
investors. As it turns out, within the Acerbi-Scandolo thegportfolio valuation can be framed as a convex
optimization problem. We provide useful MSDC models andnstimat portfolio valuation can be solved
with remarkable accuracy and efficiency.

Keywords: liquidity risk, portfolio valuation, ladder MSDC, liquidi@n sequence, exponential MSDC,

approximation.



1 Introduction

According to the theory developed by Acerbi & Scandolo (20@ value of a portfolio is determined by

market data and a set of portfolio constraints. The market daassumed to be publicly available and is
the same for all investors. The market data of interest stssif price quotes corresponding to different
trading volumes. These quotes for an asset are represertgrdis of a mathematical function referred to as

a Marginal Supply-Demand Curve (MSDC). See Section 2.1.

The portfolio constraints may vary across different playeThese idiosyncratic constraints—collectively
referred to as Aquidity policy—refer to restrictions that any portfolio held by the inashould be prepared

to satisfy. Examples of such portfolio constraints are

e minimum cash amounts to meet shorter term liquidity needs;
e risk limits such as VaR or credit limits;

e capital limits.

To illustrate the use of the first type of constraint, whilddiog identical portfolios, an investor interested in
relatively long term stable returns may have less stridh caquirements compared to a fund aiming for high
short term redemptions. In contrast with the former, thestment fund might want to be able to liquidate
all or part of its positions very quickly in order to meet shi@rm liquidity demands. This would naturally

translate into a tighter cash constraint. As will be expectighter cash constraints would generally yield a

lower portfolio value, which is indeed what the Acerbi-Sdalo theory predicts. See Section 2.3.

To value her portfolio, the investor will mark all the positis she could possibly unwind to satisfy the con-
straints to the best price she is able to quote from the marketcash amount she could maximally get from
unwinding her positions accordingly will mark as the valdehat portfolio. As it turns out, within Acerbi
and Scandolo’s theory, the valuation of a portfolio of assan be framed as a convex optimization problem.
The associated constraint set is represented by a liquiditgy. Although this was already pointed out by
Acerbi and Scandolo themselves, the practical implicatiointhis point have as yet not been investigated.

Such is the aim of the present paper.

We present the fundamental concepts of Acerbi-Scandotmytie Section 2. Thereafter, the portfolio valua-
tion function will be studied more extensively, assuminiedent forms of the market data function (i.e., the
MSDC). We first consider a very general setting where the M&Xbaped as a non-increasing step function

(referred to as dadder MSDQ in Section 3. This corresponds to normal market situatfonselatively



actively traded products. We will present an algorithm fortfolio valuation assuming ladder MSDCs and a
cash portfolio constraint. In Section 4, we will look at MSB@hich are shaped as decreasing exponential

functions and see how the exponential functions can be sag@oximations of ladder MSDCs.

All numerical results are collected in Section 5. We will fithé@t in a wide range of cases, the approximation
of ladder MSDCs by exponential MSDCs appears to be accwaggesting that not all market price informa-
tion represented in ladder MSDCs is necessary for accuaatiofio valuation. We present our conclusions

in Section 6.

2 The Portfolio Theory

In this section we present the main concepts and relevamtsdsom Acerbi-Scandolo portfolio theory. For

further details and discussion we refer to (Acerbi & Scan@l08).

2.1 Asset

An asset is an object traded in a market. Examples of typessetgaare securities, derivatives or commodities.

We make the assumption that an asset can be traded in termigodlisome standardized amount.

An asset is generally not quoted by a single price, but byiasef bid and ask prices. Each bid and each ask
price is associated with a maximum trading volume. What wel®yond the maximum trading volume is
quoted for a lower price, which is also linked with a maximuading volume, etc. On the other hand, what
we sell beyond the maximum trading volume is quoted for aduiginice, which is also linked to a maximum
trading volume, etc. Finally, we stipulate that bid prices always lower than ask prices. This is basically a

no-arbitrage assumption.

In Acerbi and Scandolo’s theory, all available market pindermation is represented in terms of a mathemat-
ical function referred to as Blarginal Supply-Demand Curve (MSDQ)et a real-valued variablgdenote
the trading volume. Whenever> 0 we think of this as a sale sfunits of an asset; whenevex 0, we think

of this as a purchase ¢d| units of the asset. We have exclude a valuesfer0, as we will not be able to

quote a price for trading nothing. An MSDC records the lagtephit in a trade of volume.

This leads to the following definition.

Definition 2.1. An assetis an object traded in a market and which is characterized Maminal Supply-

Demand Curve (MSDC). This is defined as a mapR \ {0} — R satisfying the following two conditions:



1. m(s) is non-increasing, i.em(s;) > mM(sp) if 51 < ;

2. m(s) is cadlag (i.e., right-continuous with left limits) fer< 0 and ladcag (i.e., left-continuous with

right limits) fors > 0.

Condition 1 represents the no-arbitrage assumption meediabove. Condition 2 ensures that MSDCs have
elegant mathematical properties. In contrast with Coadlifi, we will not heavily use this condition and we
only mention it for the sake of completeness of expositiostdad, what we need most of the time is that an
MSDC is (Riemann) integrable on its domain.

(a) Alist of prices for a stock (b) The MSDC of the stock

shares | price (in euro) se m(s)
1500 2.8710 [-9440, -7940) | 2.8710
1000 2.8700 [-7940, -6940) | 2.8700
Asks 2800 2.8690 Asks | [-6940, -4140) | 2.8690
2070 2.8680 [-4140, -2070) | 2.8680
2070 2.8660 [-2070,0) 2.8660
1170 2.8600 (0, 1170] 2.8600
2070 2.8590 (1170, 3240] | 2.8590
Bids 900 2.8580 Bids (3240, 4140] | 2.8580
500 2.8570 (4140,4640] 2.8570
3521 2.8560 (4640,8161] 2.8560

Table 1: A list of prices and the MSDC for a stock

Table 1(a) shows a real-time chart of the order book for aagedtock at some given time. The chart
summarizes the lowest five ask and the highest five bid prigestiier with their maximum trading volumes.
Table 1(b) represents this price information in terms of aBIMC. Note that this MSDC is a piecewise
constant function. We will refer to piecewise constant MSD&Sladder MSDCs They are discussed in

Section 3.

We call the limitm* := limp om(h) the best bidandm™ := limpom(h) the best ask Thebid-ask spread

denoted bydm, is the difference between the best ask and the best bid)ire=m~ —m*.

An important example of an asset is ttesshasset.

Definition 2.2. Cashis the asset representing the currency paid or received whdimg any asset. It is

characterized by a constant MSDify(s) = 1 (i.e., one unit) for everg e R\ {0}.

Cash is referred to asperfectly liquidasset based on the following definition.

Definition 2.3. An asset is calle@erfectly liquid if the associated MSDC is constant.

We call asecurityany asset whose MSDC is a positive function (e.g., a stoclgnal ba commodity) and

a swapany asset whose MSDC can take both positive and negatives/étug., an interest rate swap, a



CDS, arepo transaction). A negative MSDC can be convertedairsecurity by defining a new MSDC as

We presuppose one currency as the cash asset. For examyse;hibose the euro as the cash asset, relative
to the euro, the US dollar will be considered as an illiquiskdsDependent on trading volumes, the US dollar
can then be bought or sold at different bid or ask prices andéits associated MSDC is not constant. If we

choose the US dollar as our cash asset, then the oppositethadd

2.2 Portfolio

A portfolio is characterized by listing the holding volunefdifferent assets in the portfolio. Each portfolio

always holds a cash component.

Definition 2.4. Given areN + 1 assets labeled 0,...,N. We let asset O denote the cash assepoAfolio
is a vector of real numberp,= (po, p1.. .., pn) € RN, wherep; represents the holding volume of asset

In particular,pp denotes the amount of cash in the portfolio.

When we specifically want to highlight the portfolio cash wed to write a portfolio ap = (po, ﬁ). We
henceforth presuppose a set of portfolios referred to apdndolio spaces?. We will assume that”
is a vector space so that it becomes meaningful to add pogftbgether and to multiply portfolios by
scalar numbers. Legh = (po,ﬁ) € & and suppose we have an additional amauif cash. We write
p+a=(po+ a,ﬁ). Note that this overloads the notation for addition. Thetertwill usually make clear

what is meant.

We sometimes refer to a holding volurpeas thepositionin asseti. p; > 0, pi < 0 or p; = 0 implies that
we have dong, shortor zero positiorin asset respectively. Whenever we bring our long or short position i

assef to the zero position we will say that wiguidateour position in asset

An important stepping stone towards Acerbi and Scandolersegal definition of portfolio value is formed

by theliquidation Mark-to-Market valuand theuppermost Mark-to-Market valugf a portfolio.

Definition 2.5. Theliquidation Mark-to-Market value L(p) of a portfoliop is defined as:

N p N p
L<p>::go/0 m(x)dx:pwi;/o m (x)dx. (@)



The liquidation MtM value is the total cash an investor reesifrom the liquidation of all her positions. The
liquidation MtM value of a portfoligp can be viewed as the value pfor an investor who should be able to

liquidate all her positions in exchange for cash.

The opposite case is to keep the portfolio as it is and to mihikiguid (i.e., non-cash) assets to the best
bid price or to the best ask price, depending on whether adosort position was taken. This leads to the

following definition.

Definition 2.6. Theuppermost Mark-to-Market(MtM) value U (p) of p is given by

N

N
U(p) = _;(m* -max(pi,0) + - min(p;,0)) = po + _Zimx+ -max(p;,0) +ny-min(p;,0)). (2

wherem’ andm~ are the best bid and the best ask for agsetspectively.

The uppermost MtM value can be viewed as the value of a partfot an investor who has no cash demands.

In this sense, the portfolio is unconstrained.

Note that, as MSDCs are non-increasidgp) > L(p). The difference betwedu (p) andL(p) is termed the

uppermost liquidation costnd is defined a§(p) :=U (p) — L(p).

2.3 Liquidity policy

The definitions of the liquidation MtM valule(p) and the uppermost MtM valug(p) suggest that the value

of a portfoliop is subject to constraints, which represent certain cashktants an investor should be able

to meet by wholly or partly liquidating positions she hasetak There could be other types of constraints
besides. For example, an investor might want to impose rhadteVaR limits on her positions, or credit
limits, or capital constraints. All the constraints thatiawestor imposes can be represented as a subset of
the underlying portfolio space”. These constraints are collectively referred to as a liguijoblicy. For

completeness we quote the definition from (Acerbi & Scan@6i08).

Definition 2.7. A liquidity policy .Z is a closed and convex subset#fsatisfying the following conditions:
1. if p=(po,P) € £ anda> 0, thenp+a= (po+a,p) € .Z;

2. ifp e 2, then(po,0) € .Z.

For the purpose of the present paper, the exact mathemdaiaition of a liquidity policy and the type

of constraints constituting it are not very important. Thdygoroperties that we do care about is that any



liquidity policy is aclosed and convesubset of the underlying portfolio space. As said in theoitiction,
portfolio valuation can be framed as a convex optimizatiabfem. In view of this, to demand that a liquidity
policy is closed and convex ensures that each portfaiga value and that this value imique(see Section

2.4 for further discussion).

Example 2.1(Liquidating-nothing policy) The uppermost MtM value operatdrcorresponds to tHequidating-
nothing policy
N=2. 3)

The liguidating-nothing policy effectively imposes no straint on a portfolio. It can be viewed as a require-

ment imposed by an investor who has no cash demands herlmostiould be prepared to satisfy.

Example 2.2(Liquidating-all policy) The liquidation MtM value operatdr corresponds to thigquidating-
all policy
%= {p=(po,P) € Z|p=0}. 4)

In a sense, the liquidating all policy imposes a very stranistraint on a portfolio. It can be viewed as a
portfolio requirement from an investor who should be pregao liquidate all her positions in return for

cash.

Example 2.3 (a-liquidation policy) Let o = (a1,...,an), with a; € [0,1]; i = 1,...,N. The following

liquidity policy, thea-liquidation policy, specifies to liquidate part of a given portfopo= (po, p):

L% :={q=(0p,d) € Z|qo > po+L(a-P)}. ©®)

In this definition,- denotes the termwise produat:- = (a1p1,...,onpn). This policy indicates that an

investor needs to be able to liquidateparts of positiorp; in return for cash.

Example 2.4(Cash liquidity policy) A liquidity policy setting a minimum cash requirement,is acash
liquidity policy:
Z(c):={pe P|pp>c>0}. (6)

An investor endorsing a cash liquidity policy should be @regl to liquidate her positions to such an extent
that minimum cash levet is obtained. We will extensively use cash liquidity polEia Sections 3 and 4.

We refer to (Acerbi 2008) for additional examples of ligiydpolicies.

Note that a portfolio is not supposed to satisfy a liquidibligy all the time. The meaning of the policy is

that the portfolio will bepreparedto satisfy that policy instantaneously if needed, whicH b clarified in



the next section.

2.4 Portfolio value

In this section, we present Acerbi and Scandolo’s definibibtine portfolio value function. We first need the
following definition.

Definition 2.8. Letp,q € & be portfolios. We say that is attainable fromp if g =p —r +L(r) for some

r € Z. The set of all portfolios attainable fromis written asAtt(p).

It means that a portfoliq is attainable fronp if, starting fromp, liquidatingr in return for an amournit(r)

of cash, yieldg.

The following definition is key:

Definition 2.9. The Mark-to-Market (MtM) value (or thevalue, for short) of a portfoliop subject to a

liquidity policy . is the value of the functiod : &2 — RU {—o} defined by

VZ(p) :=sup{U(q)|q € Att(p) N.ZL}. (7
If Att(p) N = &, meaning that no portfolio attainable fromsatisfies?, then we stipulate the portfolio
value to be—co.

Proposition 2.1 (Acerbi & Scandolo (2008)) The portfolio value function ¥ from Definition 2.9 can be

alternatively defined as

VZ(p) =suplU(p—r)+L(r)|re Z,p—r+L(r)e.ZL}. (8)

To prove this is not very difficult; see (Acerbi & Scandolo 3)0The proposition above allows us to frame

the determination of the value of a portfolio as an optim@aproblem with explicit constraints, namely:

maximize U(p—r)+L(r);
subjectto: p—r+L(r)e.Z; 9)
re.



(We ignore the casé~ (p) = —.) This optimization problem is convex & is a convex set. Sinc& is

also closed, this problem has a unique optimal value (whichdcbe— o).

Proposition 2.2. The previous maximization problem (9) has the same optiolatisn as the following

minimizationproblem

minimize Gr);
subjectto: p—r+L(r) € .Z; (10)
re.

Proof. Note thatU(p —r) =U(p) —U(r) by the definition of uppermost MtM value. It follows that the

objective function of problem (9) can be rewritten as

U(p)—U(r)+L(r).

Since, giverp, we can always determiré(p), maximizing this function under the given constraints will

yield the same optimal solutiarf as maximizing the following function under the same coristsa

—U(r)+L(r).
Obviously, minimizing
U(r)—L(r)
again yields the same optimal solutioh Noting thatC(r) = U (r) — L(r) proves the result. O

Informally, this result implies that to determine the vabi@ portfolio is to determine a portfolio’ such that
liguidatingr* in exchange for cash minimizes the uppermost liquidatiasis®(r*). This result will prove

useful at a later stage.

3 Portfolio Valuation Using Ladder MSDCs

In the present section we will provide an algorithm provglan exact global solution for problem (9) under
the assumption that the MSDC for the illiquid assets areguigse constant, as we will name théadder

MSDCs

10



Within the Acerbi-Scandolo theory, ladder MSDCs will plakey role to model the liquidity of the assets.
Equipped with the fast and accurate algorithm discussetlignsection, one could solve the convex opti-
mization problem incurred in portfolio valuation more eifictly than using some conventional optimization

techniques.

3.1 The optimization problem

Ladder MSDCs can represent a market wherein we can quoteeafprieach volume we wish to trade, i.e., a
market of “unlimited depth”. In a real-world market contewie will typically only be able to trade volumes
within certain bounds. We could say that an MSDC represemarket of limited depth if its domain is a
closed interval of reals. The upper and the lower bound gfdbimain represent the market depth: the upper
bound represents the maximum volume we will be able to selinsg prices we can quote from the market
and the lower bound represents the maximum we will be ableyaalgainst prices we will be able to quote

from the market. In what follows, we assume MSDCs represgmtiarkets of limited depth.

Reconsider problem (9). Using a cash liquidity polig§(c) this becomes

maximize U(p—r)—+L(r);
subjectto: po—ro+L(r) >c; (11)
re.

The inequality constraint can be replaced by the equalibstraintpy — ro+ L(r) = ¢ without affecting the
optimal value of the original problem. Furthermore, we maguane that the cash componepequals 0 as

it does not play a role in the optimization problem. To find tipéimal solution we hence might as well solve

maximize U(p—r)+L(r);
subject to: L(r)=c— po; (12)
re.

Note that without loss of generality we may assume that O; otherwise use the cash liquidity policy

Z(c— po).

11



3.2 A calculation scheme for portfolio valuation with ladde MSDCs

In case of portfolio valuation based on ladder MSDCs we caredbe associated optimization problem (12)
numerically, for example, by an interior point algorithneés(Boyd & Vandenberghe 2004)). However, this
might give us only local optima as we often start from an aality chosen initial solution. In addition, the
algorithm could be computationally inefficient in the setfss# an interior point algorithm approximates any
(local) solution and that several iterations might be resglito bring this approximation within reasonable
bounds. Hence, the aim of this section is to provide an algorior problem (12) yielding an exact global
optimal solutionr*. Unless otherwise noted, throughout the remainder of #aien we assume (i) that an
investor holds a portfoligp consisting oflong positions only and (ii) that she uses a cash liquidity policy

Z(c) for somec > 0.

Given that all assets are assumed to be characterized bgrIBBDCs, we can conveniently break up each
and every position into a finite number of volumes. To eachhebé volume there corresponds a definite
market quote as represented by the MSDC. The idea of theithligois to consider all of these portfolio bits
together and to liquidate them in a systematic and orderlymag starting with the portions which will be
liquidated with the smallest cost relative to the best bid] aubsequently to the ones that can be liquidated

with second smallest cost, and so on, until the cash consisanet.

If the minimum cash requirement that the portfolio shoulghbepared to satisfy exceeds the liquidation MtM
value of the entire portfolio, then we will never be able toatiie cash constraint; by definition, we set the

portfolio value to be—co.

Alternatively, suppose we sell off a fraction of each positagainst the best bid price and that the total cash
we subsequently receive in return exceeds the cash conistiEien the value of the portfolio equals the

uppermost MtM value and there exists infinitely many optis@utions.
We will now make this formal, starting with the following deition.

Definition 3.1. Given is an asset characterized by MSD@y. Theliquidity deviation of a volumes of
asset is defined as:
_ M —m(s)
S(9) = ————. (13)
m

The liquidity deviation is the relative difference betweha best bid price and the last market quogés) hit
for a volumes. In this sense, it measures the liquidity of agssts units traded relative to the best bid. Given
any asset, the liquidity deviation is a non-decreasingtioncas the MSDC corresponding to that asset is

non-increasing. For a security, the values of the liquidiéyiation are in0, 1], as the lower bound of the

12



corresponding MSDC is 0. For a swap, the values af@,ir ). Since the MSDC of an asset is assumed to

be piecewise constant, each value of liquidity deviatiomegponds to a maximum bid size.

Using the previously defined liquidity deviation, positioare liquidated in a definite order, as follows. Given
a portfolior = (ro,r1,...,rn), assume that we want to liquidate all thei > 0. Each non-cash positian

can be written as a sum
Ji
r = Z Fij, i=1,...,N.
=1
wherer;; is called diquidation size

To define the liquidation size;, consider the bid part of a ladder MSD, which is constructed by a finite
number of bid prices with maximum bid sizes. For egdh asset, we can identify a finite numbey of bid
pricesmyj with liquidation sizesij, j = 1,...,J;. For the first) — 1 liquidation sizes;j (j =1,...,J — 1), they
are equal to the firsy — 1 maximum bid sizes recognized from the market; forJhth liquidation sizerj;, it
is less than or equal to tlieth maximum bid size. Moreover, each liquidation sigeorresponds to each bid
pricem;j, particularly withri;, the first liquidation size of each asset, correspondinggdest bidn™ = m;;.

s m:
Afterwards, the liquidity deviation for each liquidatioize can be written a§; = T — M_Tj

m’ M1
Now we put the liquidity deviationS;j in ascending order indexed lyand we generically refer to any term
of this sequence &(r) (the addition ofr as an extra parameter will prove convenient later on). Nudeé t

the length of the liquidation sequence equils J; + - - - + JN.

In addition, we observe that there exists a natural one-orregpondence between the sequéige ) )k, the
sequence of liquidation siZg; ) ; j) and the sequence of bid pricgs;j ) j). Hence, while preserving these
one-one correspondences, we relabel the sequenggs;) and(mjj); j) as(ry)x and(m)x, respectively. So
we call the sorted indek theliquidation sequencewhich is a permutation of the indek; j). We also note

that the firstN terms of the sequende) are the best bidsy", i =1,...,N.

(a) Asset 1 (b) Asset 2
Maximum Bid Size | Bid Price Maximum Bid Size | Bid Price
200 11.65 200 19.58
200 11.55 600 19.5
200 11.45 200 19.2

Table 2: Bid price information of assets 1 and 2

To illustrate the above concepts, consider an example vl Given two illiquid assets, the bid part of
which can be read from the market are shown in Table 2. Asshatente hold a portfolio which contains
600 units in asset 1 and 900 in asset 2. Then the liquidatias $or the two assets are shown in Table 3 and

the sorted liquidity deviations as well as the liquidatieqsence are presented in Table 4.

13



(a) Asset 1 (b) Asset 2

Liquidation Size Bid Price Liquidation Size | Liquidation Size
ra 200 M3 11.65 21 200 My 19.58
12 200 mp | 11.55 r22 600 My 19.5
ria 200 M3 11.45 23 100 Mp3 19.2

Table 3: Liquidation size of our portfolio= (0,600 900)

Liquidation Sequence| Asset | Liquidation Size | Bid Price | Liquidity Deviation
1,1 1 200 11.65 0
2,1 2 200 19.58 0
2,2) 2 600 19.5 0.004085802
1,2) 1 200 11.55 0.008583691
1,3) 1 200 11.45 0.017167382
(2,3) 2 100 19.2 0.019407559

Table 4: Liquidity deviation and liquidation sequence

To meet the cash constraint embodied in the cash liquiditicyave start liquidating the portfolio from
Si(r), thenSy(r), and so on, until we have met the cash requirement. The Edjoid sequence effectively
directs the search process throughout the constraint\watds the global solution, and exactly so. This is
summarized in the following theorem, which we will prove sauently. Note that the theorem assumes any

liquidity policy, not specifically a cash liquidity policy.

Proposition 3.1. Given is a portfoligp such that each asset is characterized by a ladder MSDC. Asanmn
liquidity policy .. Then optimization problem (9) has the same optimal salu®the following (using the

same notations as above):

minimize X ; S(r);
subjectto: p—r+L(r) €.Z; (14)
re#.

Loosely put, the optimal solution is the one yielding the imiam total sum of liquidity deviation.

Proof. Let a portfoliop = (po, p1,-- ., pn) be given and suppose we liquidate a portfolie (ro,r1,...,rn)
to meet a liquidity policy.Z. Asseti has a corresponding MSDI@G, i = 0,1,...,N. From Proposition 2.2,
the optimal solution of (9) minimizes the uppermost liquida cost. Using that all assets are characterized

by ladder MSDCs, the objective functi@ir) can be rewritten as follows:

C(r) U(r)—L(r)

N J

= l;JZ (mrij —mjrij)

=1

14



Herepp andrg are set to be 0 as above for simplicity.

Note that for each assét m+ > myj for all j. It follows that the minimum of the sum of the absolute
differences between the’rij andmjri; is the same as the minimum of the sum of the relative diffezenc

Hence, to find the optimal solution we might as well minimize

d %rrﬁri,-—m,-ri,- L %rrﬁ—mj
i;]:l errij i;j:l er
K
= Y s
K=1
OnthelastlineK =J; +---+ Jn. O

Based on this result, we now state the algorithm for podfeéluation assuming only ladder MSDCs and
a cash liquidity policy.#(c). For the sake of clarity we recall that the optimal solutiérof problem (12)
should satisfyL(r*) = c— pg. Also, we assume thgiy = 0 andrp = 0. (Otherwise, we can set the cash
requirement = c — pp.) We continue using the same notations as above. The psedelcsummarized in

Algorithm 3.1.

The optimal solutiom* can be found by recording the liquidation parts of corresliogassets in the above

calculation procedure of Algorithm 3.1.

The piecewise constant MSDCs in the convex optimizatiomlera generally increase the difficulty of the
search for the global optimal solution with standard sofewvaVith the aforementioned calculation scheme

listed in Algorithm 3.1, instead, we can solve the optimizaproblem efficiently via a liquidation sequence.

4 Portfolio valuation using continuous MSDCs

There is typically no analytic solution to the convex optiation problem (12). However, it can be shown
that if we model the MSDC as a continuous function simple @iwabkolutions result from the Lagrange
multiplier method. In Section 4.1 we will first look at contious MSDCs without imposing any specific
form for them. We will then look at MSDCs shaped as exponéhutiections in Section 4.2. We then propose
to use exponential MSDCs to approximate ladder MSDCs inramémprove the efficiency of portfolio

valuation in Section 4.3. We will assume the cash liquidiligy in this section.

15



Algorithm 3.1 Algorithm for portfolio valuation assuming ladder MSDCgamcash liquidity policyZ(c)
Calculate:
U(p) =3am" - p;
L(p) =3y 3Ty m; - pij;

Vi(p) =3 my - pin;
o My —myj
Sj=—"F"

L
Sort theSlj as an ascending sequence with index vari@ible//  With k running fromLto J; +--- 4+ Jn
if c> L(p) then
return VZ(© (p) = —co; /I There is no optimal solution satisfying the cash constraint
else
if c<Vi(p) then// Liquidating the p to the respective best bids meets the cash constraint.
return VZ©(p)=U(p); /I There are infinitely many optimal solutions.

else
U(r) =Va(p);
c=c—Vi(p);

k=N+1;// Startloop from the first part with non-zero liquidity devat until ¢ is zero.
while ¢ > 0do
if % > py then
U(r)=uU(r)+m - pq
C=C—Mmy- Py
k=k+1,
else
U(r) =U(r)+m - &
c=0;
end if
end while
return V<(©(p) =U(p) —U(r) +c//Here we have [r) = c.
end if
end if

4.1 The general case

We first assum@l illiquid assets labeled,1..,N. The corresponding MSDQw are supposed to be contin-
uous onR (i.e.,m(0) is supposed to exist at first, but we will exclude the pom(0) later in this section);
furthermore, then; are assumed to be strictly decreasing. Adopting the cagsiulity policy, valuing a portfo-
lio consisting of positions in these assets comes down targpthe optimization problem (12). The solution

to this optimization problem can be analytically derivesli@shown by the following proposition.

Proposition 4.1(Acerbi & Scandolo (2008))Assuming continuous strictly decreasing MSDCs and the cash

liquidity policy .Z(c), the optimal solutiom* = (0,7*) to optimization problem (12) is unique and given by

o R, i po<c,

= (15)

0, if po>c,

where rriT1 denotes the inverse of the MSDC function amd the Lagrange multiplieA, representing the
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marginal liquidation cost, can be determined from the e@uak(r*) = c — po.

Note that we can extend the above to the case where the MS@@®acontinuous at the point 0, i.e., the
case where there is a positive bid-ask spread. We only hastestioge the definition of the value raf(0) to

the limit m" in the case of long positions or to~ in the case of short positions.

Obviously, by using the Lagrange multiplier method, we canegalize the case to any liquidity policy giving
rise to equality constraints. When using a general liquigdlicy which results in inequality constraints, we
can solve the optimization problem (9) by checking the Karidshn-Tucker (KKT) conditions. In addition,

the Lagrange dual method may be useful as well.

4.2 Exponential MSDCs

We continue the discussion by looking at a particular exangpla continuous MSDC proposed by Acerbi
& Scandolo (2008), i.e., the exponential MSDC. As it turns, dlie exponential MSDCs form an effective
model to characterize a security-type asset and to deterthéportfolio value by convex optimization. We

will discuss this in Section 4.3.

Suppose that there akeilliquid assets 12, ..., N characterized by exponential MSDCs
m(s) = Mie s, (16)

with Mj, ki > 0 for alli = 1,...,N. We callM; the market risk factorandk; the liquidity risk factor for the
corresponding asseti = 1,...,N). Note that the range of an exponential MSDC is bounded frelovb by

0. Hence exponential MSDCs serve to characterize sedyptyassets.

We find for the uppermost MtM value

N N
Up) = po+_;m(0)pi = po+_;lvhpi, (17)

and for the liquidation MtM value

— < [P — N% _ o kipi
L(p) |00+_;O m (x)dx Do+;ki(1 ). (18)
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The value of a portfolio under the cash liquidity poli€§(c) with py < c follows from Proposition 4.1:

L logasr)
[ 9 et S
ki
_ (19)
with A= — PO
i=1% —C*tPo
Hence,
. N log(1+ A
VO (p) =U(p-r) +Lir) = 3 M~ P ) e (20)
i=

The use of exponential MSDCs for modeling gives rise to vdfigient computations. For actively traded
stocks, the liquidity risk factor is estimated to vary fro@ 2 to 10~7. This was confirmed by experiments

with real market data using the method of least squares @&®S§ 4.3).

For bid prices of a security-type asset, an approximatioarbgxponential MSDC appears sufficiently accu-
rate. For ask prices, however, exponential MSDCs may bealgssopriate, as it gives rise to a steep slope

for ask prices without an upper bound.

4.3 Approximating ladder MSDCs by exponential MSDCs

In Section 3, we have defined a fast calculation scheme fefghiorvaluation with ladder MSDCs. In the real
world, however, we may face a situation that to collect theguinformation to form a ladder MSDC is too

costly, or that the information is incomplete or non-traargmt, e.g., in an over-the-counter (OTC) market.

One could model ladder MSDCs as the modeling of order boolahycs which appear to have a common
basis with ladder MSDCs. For example, in (Bouchaud, MéRBaRrbtters 2002), the trading volume at each
bid (or ask) price in the stock order book follows a Gammarithistion. In (Cont, Stoikov & Talreja 2010),

a continuous Markov chain is used to model the evolution efdider book dynamics.

In our paper, we use the basic continuous MSDC models to ajppate the ladder MSDC directly, as we
can then apply the Lagrange multiplier method and other @ooyptimization techniques to obtain analytic
solutions and thus improve the efficiency. For actively ¢éihdecurity-type assets, a portfolio valuation based
on exponential MSDCs, with their analytic solutions, isngigantly faster than with ladder MSDCs. For
OTC traded assets, lacking price information, exponeM@BDCs with high liquidity risk factors can be a

first modeling attempt.

Generally, when using exponential MSDC models, we needtimate or model the parametdvl andk;.

The dynamics of the market risk factok4 can be estimated by the best bid prices for long positions, or
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modeled by asset price models (e.g., geometric Browniairompotif we assume thd¢ is independent df/;,

we can employ time series or stochastic processes to rkpdék; is assumed to be correlated with, we
also need to model the correlation. Furthermore, for sgetype assets traded in an OTC market, we may
use the mere price information of the asset to estimate rmesgkeand liquidity risk factors in the MSDC
models. In particular, the liquidity risk factor may be seaigh level (e.g., 10°) to represent the illiquidity

of the asset.

For the approximation of a ladder MSDC by an exponential MSE€assume that the portfolio consists of
long positions i illiquid security-type assets. The best bid price of agsef , is set here as the market risk
factor, Mj, in the exponential function. If we assume additionallytttine liquidity risk factor of asseit ki,

is independent of market risk factbf;, then parametds can be estimated from the ladder MSDC of agset

by the method of least squares as follows. We transform therential function as- Iog( ) kis, and

estimatek; by n discrete palrisn,—log( ( )) providedM; has already been determmed, minimizing the
merit function:

d ( )

Z —kis;)?.
The least squares estimate of paramigtéren reads

_ mi(s;)
k\. _ 72?=13rjl |Og( Mij ) (21)
> j=1SJ2

The validity of the model requires insight in modeling escand in parameter regimes for which the expo-

nential MSDC may become inaccurate.

The relative difference between the ladder MSDC and its@ppration may serve as an indication for the
error in the modeling. For different cases this differentéhie portfolio is of different shape. For certain

parameters, the relative difference increases monotibnica

A factor related to the validity of the exponential functisrihe occurrence of significant jumps in the ladder
MSDCs when liquidating an asset with different bid pricest &sset, we define gump indicator I;(s), to

measure the size of a jump and the related modeling error as

li(s) =S(s)-S(§)=—"5—"— (22)

S denotes the liquidity deviation, as defined in Section 3. jih& indicator is non-negative and less than 1.

With li(s) = 0, the ladder MSDC is continuous at pogand there is no jump in the MSDC at the trading

19



volumes. Whenli(s) > 0, the ladder MSDC is discontinuoussat

As the jump indicator is defined as a relative value, we canpaomthe impact of jumps occurring in different
ladder MSDCs. This jump indicator can also give insight,ame extent, in the shape of the relative error
(see, for example, Figures 3(b) and 5(b) in Section 5) in tnfqio values. After the calculation of each
asset’s liquidity deviation, the difference between twgaadnt liquidity deviations is computed for each
asset. This is represented by the jump indicator at the mafgine ladder of an MSDC. By sorting the non-
zero liquidity deviations in an ascending order (i.e., flgeibdation sequence, see Section 3) in combination
with the non-zero jump indicators, the impact of a modelingreon the portfolio valuation for different

liquidation requirements can be estimated.

For modeling purposes, we may set a tolerance level for jurdjzators. A jump indicator exceeding this

level is an indication for a significant modeling error.

5 Numerical Results

In this section we give examples for the various conceptaidised in this paper. In particular, we explain the

calculation scheme for efficient portfolio valuation by meaf an example.

5.1 Portfolio with four illiquid assets

The example here is based on the case of four illiquid seetyjite assets. We deal with a portfolio=
(0,3400 24003200 2800). The bid prices with liquidation sizes for the portfolio ategosen at a given time

as presented in Table 5.

(a) Asset 1 (b) Asset 2 (c) Asset 3 (d) Asset4
Liquidation Size | Bid Price Liquidation Size | Bid Price Liquidation Size | Bid Price Liquidation Size | Bid Price
200 11.65 200 19.58 400 29.3 200 43.1
200 11.55 600 19.5 200 29.16 400 42.65
200 11.45 200 19.2 400 29.15 200 41.9
200 11.1 200 19.15 400 28.9 400 41
200 11.05 200 19.1 200 28 200 40.86
200 11 200 18.6 600 27.8 200 40.4
200 10.3 200 18.5 200 27.15 200 39
500 9.3 200 16.85 200 27 400 37
500 6.5 200 16.1 400 26 400 36
1000 6.46 200 16.05 200 22 200 35.1

Table 5: Bids of assets 1-4

It is easy to calculate the uppermost MtM valuép) and the liquidation MtM valué (p) from the tables,
that is,U (p) = 3.01042x 10° and L(p) = 2.73720x 10°. Hence, the uppermost liquidation cost equals
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C(p) = 0.27322x 1C°. If the true portfolio value is equal to the liquidation Mt\lue, but if we would use

however the uppermost MtM value instead, it would overestanthe portfolio value by as much as 10%.

For different cash requirements, we use the sorted liquitbiations (see Table 6) to find the liquidation
sequence and then calculate the portfolio values (seed-iguFrom the last row of Table 6, we can see that
the liquidity deviation can be as large as.3% for the most illiquid part of the MSDC for asset 1, which

indicates a high level of liquidity risk.

From Figure 1, we infer that the portfolio value decreasesfaster rate as we have to liquidate positions of
an increasing number of illiquid assets to meet the cashinemgents, which will definitely cause significant

losses during liquidation.

Liquidation Sequence| Asset | Liquidation Size | Bid Price | BestBid | Liquidity Deviation

1,1) 1 200 11.65 11.65 0

2,1) 2 200 19.58 19.58 0

3,1) 3 400 29.3 29.3 0

(4,1) 4 200 43.1 43.1 0

2,2) 2 600 19.5 19.58 0.004085802
3,2) 3 200 29.16 29.3 0.004778157
(3,3) 3 400 29.15 29.3 0.005119454
1,2 1 200 11.55 11.65 0.008583691
4, 2) 4 400 42.65 43.1 0.010440835
(3, 4) 3 400 28.9 29.3 0.013651877
1,3) 1 200 11.45 11.65 0.017167382
2,3) 2 200 19.2 19.58 0.019407559
(2,4) 2 200 19.15 19.58 0.021961185
(2,5) 2 200 19.1 19.58 0.024514811
(4,3) 4 200 41.9 43.1 0.027842227
(3,5) 3 200 28 29.3 0.044368601
1,4) 1 200 11.1 11.65 0.0472103
(4, 4) 4 400 41 43.1 0.048723898
(2, 6) 2 200 18.6 19.58 0.050051073
(3,6) 3 600 27.8 29.3 0.051194539
1,5) 1 200 11.05 11.65 0.051502146
(4,5) 4 200 40.86 43.1 0.051972158
2,7) 2 200 185 19.58 0.055158325
(1, 6) 1 200 11 11.65 0.055793991
(4, 6) 4 200 40.4 43.1 0.062645012
3,7) 3 200 27.15 29.3 0.07337884
(3,8) 3 200 27 29.3 0.078498294
4,7) 4 200 39 43.1 0.09512761
(3,9) 3 400 26 29.3 0.112627986
a,7) 1 200 10.3 11.65 0.115879828
(2,8) 2 200 16.85 19.58 0.139427988
(4,8) 4 400 37 43.1 0.141531323
(4,9) 4 400 36 43.1 0.164733179
(2,9) 2 200 16.1 19.58 0.17773238
(2, 10) 2 200 16.05 19.58 0.180286006
(4, 10) 4 200 35.1 43.1 0.185614849
1,8) 1 500 9.3 11.65 0.201716738
(3, 10) 3 200 22 29.3 0.249146758
1,9) 1 500 6.5 11.65 0.442060086
(1, 10) 1 1000 6.46 11.65 0.445493562

Table 6: Liquidity deviation and liquidation sequence

The calculation scheme in Algorithm 3.1 provides an efficerarch direction to the optimal value guided
by the liquidation sequence. For this four-asset exampte thie cash liquidity policy, we compare our cal-
culation scheme with théminconfunction with an interior point algorithm in MATLAB. The ojphization

is repeated for B x 10° different cash requirements and the total computation t8recorded: The av-

1The computer used for all experiments has an Intel Core2 CRId, E8600 @3.33GHz with 3.49 GB of RAM and the code is
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Figure 1: Portfolio value with different cash requirements

eraged time for each cash liquidity policy equals 0.568is@ttond for our scheme, wherdasincontakes
202.7 milliseconds, which implies that the time differeisa factor of 300. More importantly, we reach an

accurate optimal value.

Since the ascending sequence of liquidity deviations shbesdlliquidity of different parts of the corre-
sponding asset, liquidating the portfolio along the liqtidn sequence will cause minimum loss of values

compared to the other kinds of liquidation.

An interior point method, on the other hand, may reach dffiétocal optimal values from different start-
ing points. In addition, the non-smoothness of the laddeDKaS increases the difficulty of implementing

conventional convex optimization algorithrhs.

5.2 Using exponential MSDCs to approximate ladder MSDCs

For the four-asset example with the ladder MSDCs from Sed&ia, Figure 2 illustrates the ladder MSDCs
and the corresponding exponential approximating MSDCe.ldtter MSDCs are estimated by least squares.
The liquidity risk factors in the exponential MSDCs are fduask; = 1.9738x 1074, ko = 6.1091x 1072,

ks = 4.3015x 10~° andk, = 6.8139x 102, Hence, asset 1 is most illiquid and asset 3 is the most liquid

general.

In Figure 3(a), we compare the portfolio values obtainedsiggithe exponential MSDCs with the reference

portfolio values by the ladder MSDCs under different casfuimeements. The relative difference in the

written in MATLAB R2009b.
2For example, the optimality conditions in the interior gaagorithm will not apply at non-smooth points of the lad#8DC. See
(Boyd & Vandenberghe 2004) for more information.
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Figure 2: Exponential MSDCs versus ladder MSDCs for the bicks of assets 1-4

portfolio values is presented in Figure 3(b). The relatiiflecence found is at most.@4%, so that in this

example the exponential MSDCs are accurate approximations

5.3 Modeling error

To test the exponential MSDC model, we construct an artifeciteme case based on the four-asset example
which is used in Section 5.1. We just modify the last part @ ltid prices for all four assets to be46,
0.05, 01 and 01, respectively, with other data being unchanged. The némated exponential MSDCs are
shown in Figure 4. We calculate portfolio values under défe cash liquidity policies based on exponential
and ladder MSDCs (see Figure 5(a)), and find that the modelirng is significant when increasing the cash

requirement (see Figure 5(b)). It is clear that the expdakSDC model fails in this case.

Since the jump indicator is able to measure jump sizes andethéed modeling errors, we use it for the
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Figure 3: Modeling ladder MSDCs by exponential MSDCs

6f AN 1
N
N
4t AN —
-
2+ S - i
o . . . . \ \
0 500 1000 1500 2000 2500 3000 3500
S
(a) Asset 1
30 ) . : : :
ladder
AN - — —exp
N
25} . j
.
20t AN ]
o
..
15+ ~ o g
10t B
5L i
o . . . . .
0 500 1000 1500 2000 2500 3000 3500
S
(c) Asset 3

m(s)

45

40

35

30

25

m(s)

20

15

10

. .
1000 1500 2000

(b) Asset 2

. . .
1500 2000 2500

S

. .
500 1000

(d) Asset 4

Figure 4: Exponential MSDCs versus ladder MSDCs for bidgwi@xtreme example)

24

2500

3000



3.2r

2.8 N

portfolio value
NN
B (]

N
N

1.8

1.6
0

- — —exp

ladder (1

cash needed

(a) Comparison of portfolio values (extreme example)

2 4 6 8 10

12 14

relative difference

0.45

0.4

0.35f

0.3

0.25F

0.2

0.15f

0.1p

0.05F

0 2 4 6 8 10 12

cash needed

(b) Relative difference (extreme example)

Figure 5: Modeling of ladder MSDCs (extreme example)

extreme four-asset example here. When using exponenti&l®$3o model ladder MSDCs we find that

the liquidity risk factor for asset 3 is the smallest of therfassets. However, from the calculation of jump

indicators for assets 1 to 4, we find that the most signifiaamigs occur at the final part of the ladder MSDC

for asset 3. Hence, using the exponential MSDC to model thaelaMSDC for asset 3 will thus give rise to

a significant modeling error.
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Figure 6: Impact of jump indicators on modeling portfolidwes

The jump indicator may also be helpful for understandingsti@pes of the modeling errors, for example, in

the Figures 3(b) and 5(b). In Figure 6(a) a trend is visibléhimjump indicators. At the right-hand side of

the graph the jump indicator drops to a relatively small galwhich can partly explain why there is some

decrease of the modeling error in Figure 3(b). The incrgasitues in the jump indicator in Figure 6(b) are

related to increasing errors in Figure 5(b) for the portfetaluation in the extreme example.



6 Conclusions and Discussions

Within the theory proposed by Acerbi & Scandolo (2008) thkigdon of a portfolio can be framed as a
convex optimization problem. We have proposed a useful #icdemt algorithm using a specific form of
the market data function, i.e., all price information isnegented in terms of a ladder MSDC. We have also

considered approximations of ladder MSDCs by exponentiattions.

As an outlook, one may improve the modeling techniques efifieneans of improved methods to estimate
the liquidity risk and market risk factors in the exponekftiaction, or by sophisticated models replacing the

exponential functions.

Whereas in regulated markets such as stock exchangesmfocaation is relatively easily available, bid and
ask prices for assets traded in the over-the-counter (OTaCkeits may not be easily obtained at any given
time. Hence, it may be nontrivial to employ this portfolietry to these markets. Extracting all relevant

price information from OTC markets is however a challengeafbresearchers.
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