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Abstract

Futures contracts depend on, when considering deterministic interest rates, the spot price St and the
convenience yield δt. The former is assumed to follow a Geometric Brownian Motion (GBM) and the
latter is usually calibrated via market data every two days, using the futures contracts. The market
shows however that the convenience yield behaves stochastically and has a mean-reverting property.
In the literature the convenience yield therefore is believed to follow an Ornstein-Uhlenbeck process
driving by Brownian motion. Both processes are calculated by the Kalman filter. However, the disad-
vantage of this process is that the convenience yield can become negative which can result in cost of
carry arbitrage possibilities. Therefore we introduce the Cox-Ingersoll-Ross process for the dynamics
of the convenience yield. We find strong evidence for the adequacy of this model. Furthermore the ex-
tended Kalman filter is explained and tested for the Ornstein-Uhlenbeck process, as well as for pricing
put options on these futures contracts.





Summary

In this report we examine the effect of including stochastic dynamics for the two state variables in futures
contracts on the commodity, light crude oil. First of all we consider throughout the report deterministic
interest rates. This makes calibration and the mathematics considerably easier. Furthermore, the effect
of the interest rate turns out to be negligible. We assume a Geometric Brownian Motion (GBM) for the
spot price process and an Ornstein-Uhlenbeck (OU) process for the convenience yield as empirical ev-
idence exists for a mean-reverting pattern. Since both these processes are not observable in the market
we use a Kalman filter to link these latent state variables with the observable variables, which in this
case are the future prices. The Kalman filter turns out to be a very powerful, stable and accurate iter-
ative procedure. The set consisting of the parameters of these stochastic processes is chosen such that
the log-likelihood function is maximized and the innovations, which are the errors between the actual
future prices and the filtered futures prices, are minimized. For ease of applying the Kalman filter to
our model, it is important to have an affine form for the closed form solution of the future prices. In that
way, the future prices are linear in the log of the state variable St since the requirement for the Kalman
filter is linearity of these prices.

The formula for a put price on a futures contract is derived and since this is a nonlinear formula the
Kalman filter will not give an optimal result. Consequently, we introduce the extend Kalman filter
which deals with nonlinear problems and again, this is a very powerful and accurate method.

At the end of this report we consider a matured contract with different strikes. For a smal data set,
it turns out that the parameters (in particular the mean-reverting term of the convenience yield pro-
cess) will increase to unrealistic values. These values will distort the initial process and it can be that
another process for the convenience yield is needed. We tested a Cox-Ingersoll-Ross (CIR) process, but
because of the nonnegativity contraint of the convenience yield in this process, the CIR is inadequate.
This proves that the period of observations has strong impact on which model to choose.
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Chapter 1

Introduction

1.1 Commodity markets, forwards, futures and convenience yield

In the history of commodity trading, buyers and sellers meet at marketplaces and trading of commodi-
ties led into immediate delivery. London was the ’main’ capital for trading metal as Chicago was for
cereals and agricultural products. Since more and more transaction were made, the need of building up
central trading points was increasing. In 1842 the New York Cotton Exchange and in 1848 the Chicago
Board Of Trade were set up as well as the New York Mercantile Exchange. At these boards, over 600
million contracts are traded every year. Examples of commodities are copper, wheat, cotton, pork belly
and light crude oil.
There are two different contracts on commodities, forward and futures contracts. Forward (as well as
future) contracts allow parties to buy or sell an asset at a prespecified price on a specific time. Forward
contracts are private agreements and because of that, there is always a chance that a party may default
on its side of the agreement. futures contracts on the other hand have clearing houses that guarentee
the transactions. For forward contracts, settlement of the contract occurs at the end of the contract, but
settlement for futures contracts can occur on different dates. Furthermore, futures contracts are so called
mark-to-market, i.e. daily changes are settled day by day until the end of the period. There is also a dif-
ference in who trades in them. Futures contracts are used by speculators and are usually closed out prior
to maturity and delivery usually never happens and forward contracts are used by hedgers. Delivery of
the asset will usually take place.
The advantage of holding the physical commodity is that, for example, if there will be a crisis in the
world and the demand for that particular commodity is rising, it can be sold with high profit. The
convenience yield is the benefit that the owner of the physical commodity makes in this situation and
does not accrue to the holder of a futures contract written on it. It is similar to dividend, which is paid
to the owner of a stock but not to the holder of a contract written on the stock. Sometimes, due to ir-
regular market movements such as an inverted market (this is when the short-term contract prices are
higher than the long-term contracts), the holding of an underlying good or security may become more
profitable than owning the contract or derivative instrument, due to its relative scarcity versus high de-
mand. An example would be purchasing physical barrels of oil rather than futures contracts. Suppose
there would be a sudden shock-situation wherein the demand for oil increases, the difference between
the first purchase price of the oil versus the price after the shock would be the convenience yield.
Another property of futures contract is backwardation and contango. The former means if a far future
delivery price is lower than a nearer future delivery price. The latter is the other way around. This
implies that futures contracts have a term-structure. One can also have options on future contracts. For
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example consider aK-strike European call option on a futures contract, that is, the right to buy a futures
contract with maturity T1 for a price K at maturity T2 of the option. The difference between the two is
e.g. the payoff function (it could be negative for futures contracts but strictly positive for options).

1.2 Summary and outline of the thesis

Traders calibrate the convenience yield (CY), δt using the futures contract prices. The market shows that
the CY behaves stochastically and has a mean-reverting property, see e.g. [5]. The CY may therefore be
modelled by e.g. an Ornstein-Uhlenbeck (OU) process driven by a Brownian motion. The disadvantage
of this process is that it allows for negative CY which can result in cost of carry arbitrage possibilities.
Hence to prevent this from happening we also consider a model in which the CY follows a Cox-Ingersoll-
Ross (CIR) process. For both processes, the spot price is assumed to follow a GBM.
For commodities, the spot prices and the CY can not be observed directly in the market. To calibrate the
spot and CY model parameters for the stochastic processes OU and CIR, the non-observability of these
state variables is a challenging difficulty. Since the future prices of commodities are widely observed
and traded on the market we use a method that links these actual observations with the latent state
variables: The Kalman filter (KF) technique. The main idea of the (KF) is to use observable (future)
variables to reconstitute the value of the non-obsvervable spot prices and CY. For this purpose, we need
a closed form solution for the futures prices. This solution can be easily found by explicitly using the
affine structure of the CY model.
The aim of this thesis is to implement the KF for both OU and CIR and compare the results with the
market data, i.e. we will price futures contracts on light crude oil and observe whether the price matches
the price given in the market. Furthermore we use the results of the Kalman filtering of futures contracts
to price a put option on these contracts. The outline of this report is as follows: Chapters 2 and 3 give
analytic results, such as first and second other moments of the OU and CIR processes together with the
closed form solution of the future prices. Chapter 4 applies the KF and extended Kalman filter (which is
an extension of the KF for quasi-linear systems) to the OU process and discusses the numerical results. In
Chapter 5 the KF is set up for the CIR process. In Chapter 6 we derive a closed form formula for the price
of a put option on a futures contracts and compare it to the market data. We conclude with a discussion
and further research in Chapter 7. In Appendix A, a detailed description of the KF is found together
with an introductory example. In Appendix B we extend the OU model with a stochastic interest rate
and in Appendix C the lengthy proofs of Appendix B are given.



Chapter 2

Stochastic convenience yield model
following an Ornstein-Uhlenbeck
process

In this chapter, analytic results are presented for the stochastic CY when it follows a time-homogeneous
Ornstein-Uhlenbeck process driven by Brownian motion. The assumption is that the spot price St is
described by a GBM, i.e.

dSt = µStdt+ σSStdWt, (2.1)

where µ is the drift term, σS the volatility term, and Wt a standard P-Brownian motion. The form of the
convenience yield δt is a result of the studies of Gibson and Schwartz (see [5]) where they find empirical
evidence that the convenience yield may have a mean-reverting property, i.e.

dδt = k(α− δt)dt+ σδdZt. (2.2)

In (2.2), α is the long range mean to which δt tends to revert, k the speed of reversion, σδ the constant
volatility and Zt a standard P−Brownian motion. Here dWtdZt = ρdt. The solution of (2.1) is given by

St = S0 exp
{

(µ− 1
2
σ2

S)t+ σS

∫ t

0

dWs

}
, (2.3)

and the solution of (2.2) is

δt = θ(0, t)δ0 + (1− θ(0, t))α+ σδe
−kt

∫ t

0

eksdZs, (2.4)

with θ(t, T ) = e−k(T−t).

2.1 Mean and variance of the Ornstein-Uhlenbeck process

Multiplying (2.4) by ekt gives

δte
kt = δ0 + kα

∫ t

0

eksds+ σδ

∫ t

0

eksdZs.

Rearranging and taking expectation yields

E[δt] = δ0e
−kt + α(1− e−kt) = δ0θ(0, t) + α(1− θ(0, t)).

For the variance we calculate the covariance matrix by applying the Itô isometry, which is defined as
follows, [32],
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Lemma 2.1. (The It̂o isometry)
If Λ(t, w) is bounded, then

E

(∫ T

s

Λ(t, w)dBt(w)

)2
 = E

[∫ T

s

Λ(t, w)2dt

]
.

In particular, for Λ(t, w) = Λ(t) we have

E

(∫ T

s

Λ(t)dBt

)2
 =

∫ T

s

Λ(t)2dt.

Using Lemma 2.1 we have,

Cov(δs, δt) = E[(δs − E[δs])(δt − E[δt])]

= E
[
σδ

∫ s

0

e−k(u−s)dZuσδ

∫ t

0

e−k(v−t)dZv

]
= σ2

δe
−k(s+t)E

[∫ s

0

ekudZu

∫ t

0

ekvdZv

]
=

σ2
δ

2k
e−k(s+t)(e2k(min(s,t)) − 1).

For s = t this gives Var[δt] = σ2
δ

2k

(
1− θ(0, t)2

)
. We conclude that δt ∼N

(
θ(0, t)δ0 + (1− θ(0, t))α, σ2

δ

2k (1− θ(0, t)2)
)

.

2.2 From real world to risk neutral world

The unobservable state variable St is not a tradable asset since it generates ”cash flows” by means of the
convenience yield δt. A standard strategy would be to reinvest the convenience yield in St, i.e. we define
the price process for asset Yt := e

∫ t
0 δuduSt made from instantaneously reinvesting the convenience yield

δt. The asset Yt is tradable if and only if St is a tradable asset. As noticed earlier, this is for the commodity
crude oil not the case. Due to this inconvenience Yt is not tradable itself. However, we assume that St is
a tradable asset because this will not effect the calibrations throughout this report and thus we continue
with this standard approach. Next step is to choose a suitable numeraire Bt for which the relative price
process Yt

Bt
is a Q-martingale. The requirement for Bt is that it has to be a tradable asset as well. Since

we do not incorporate stochastic interest rates, we may choose the cash bond as numeraire, i.e.

dBt = rBtdt, or Bt = e
∫ t
0 rdu. (2.5)

The stochastic process for Yt

Bt
is then found by applying Itô’s lemma and using (2.1)

d

(
Yt

Bt

)
= d

(
e
∫ t
0 (δu−r)duSt

)

= (µ+ δt − r)
(
Yt

Bt

)
dt+ σS

(
Yt

Bt

)
dWt. (2.6)

This price process is a martingal under the Q-measure (risk neutral measure). However, Wt is a P-
Brownian motion and therefore it has to be transformed into a Q-Brownian motion. Girsanov’s theorem
states that there exists a λt such that

W̃t = Wt +
∫ t

0

λudu, (2.7)
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where W̃t denotes a Q-Brownian motion. Substitution of (2.7) in (2.6) yields

d

(
Yt

Bt

)
= (µ+ δt − r − σSλt)

(
Yt

Bt

)
dt+ σS

(
Yt

Bt

)
dW̃t. (2.8)

This process under the Q-measure is a martingale. Therefore µ+ δt− r−σSλt = 0 and hence the market
price of risk λt is given by

λt =
µ+ δt − r

σS
. (2.9)

This result combined with (2.7) gives for (2.1)

dSt

St
= (r − δt)dt+ σSdW̃t. (2.10)

One wants to have a similar result for Zt, which is again a P-Brownian motion. However, δt is not
tradable and a construction as outlined above is not possible. We can, of course, still apply Girsanov’s
theorem, but the market price of risk, λ (now taken as a constant), appears as an extra parameter in the
convenience yield process, i.e.

dδt = k

(
α− δt −

σδλ

k

)
dt+ σδdZ̃t. (2.11)

2.3 The value of a future delivery

Define YT = Y (T, ST , δT ) to be the contingent claim at time T . The discounted expected value of YT at
time t is given by, (see Appendix B for details),

Vt[YT ] := BtEQ
[
YT

BT
|Ft

]
= e−r(T−t)EQ[YT |Ft], (2.12)

where Bt is given by (2.5) and Ft is the filtration. We consider the case YT := ST and we compute
Vt[ST ]. The current value of a claim on a future delivery of the commodity on the future date t is

Vt[ST ] = St exp
{[
−α+

1
k

(σδλ− σδσSρ) +
1
2

(
1
k

)2

σ2
δ

]
(T − t)

− 1
k

[
δt − α+

1
k

(σδλ− σδσSρ) +
(

1
k

)2

σ2
δ

]
(1− θ(t, T ))

+
1
2

(
1
k

)2
σ2

δ

2k
(
1− θ(t, T )2

)}
. (2.13)

Proof. From (2.3) we have

ST = Ste
∫ T

t
(r−δs)ds− 1

2 σ2
S(T−t)+

∫ T
t

σsdW̃u . (2.14)

Now define ∫ T

t

δSds = XT −Xt, Xt =
∫ t

0

δsds. (2.15)

Integrating equation (2.11) with respect to t yields

δT − δt =
∫ T

t

k(α− δu −
σδλ

k
)dt+ σδ

∫ T

t

dZ̃u

= k(α− σδλ

k
)(T − t)− k

∫ T

t

δudu+ σδ

∫ T

t

dZ̃u

= k(α− σδλ

k
)(T − t)− k(XT −Xt) + σδ

∫ T

t

dZ̃u. (2.16)
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Substituting

δT = θ(t, T )δt + (1− θ(t, T ))(α− σδλ

k
) + σδe

−kT

∫ T

t

ekudZ̃u, (2.17)

which follows from (2.4), into (2.16) and rearranging terms gives

XT −Xt =
1
k

(1− θ(t, T ))δt +
1
k

(1− θ(t, T ))(
σδλ

k
− α) + (α− σδλ

k
)(T − t)− σδ

k
e−kT

∫ T

t

ekudZ̃u +
σδ

k

∫ T

t

dZ̃u.

(2.18)

Equation (2.15) together with the result given in (2.18) will give for (2.14)

ST = St exp
{
r(T − t)− 1

k
(1− θ(t, T ))(δt − α+

σδλ

k
)− (α− σδλ

k
)(T − t) +

σδ

k
e−kT

∫ T

t

ekudZ̃u

− σδ

k

∫ T

t

dZ̃u −
1
2
σ2

S(T − t) + σS

∫ T

t

dW̃u

}
≡ St exp {r(T − t) + z} (2.19)

From basic stochastic calculus it follows

µ̃ = E[z]

= −(
1
2
σ2

S + α− 1
k
σδλ)(T − t) +

1
k

(α− δt −
1
k
σδλ)(1− θ(t, T )). (2.20)

Using Lemma 2.1 we can calculate the following expectations

E
[
σ2

S

(∫ T

t

dW̃s

∫ T

t

dW̃s

)]
= σ2

S

∫ T

t

dt = σ2
S(T − t), (2.21)

E
[(

1
k
σδ

∫ T

t

dZ̃s

)2]
=

σ2
δ

k2

∫ T

t

dt =
σ2

δ

k2
(T − t), (2.22)

E
[(

1
k
e−kT

∫ T

t

eksdZ̃s

)2]
=

[
σ2

δ

k2
e−2kT

∫ T

t

e2ksds

]
=

σ2
δ

k2
e−2kT

[
1
2k
e2kT − 1

2k
e2kt

]
=

σ2
δ

k2

1
2k

[1− θ(t, T )2], (2.23)

E
[(

σS

∫ T

t

dW̃s

)(
1
k
σδ

∫ T

t

dZ̃s

)]
= σS

σδ

k
ρ(T − t), (2.24)

E
[(

σS

∫ T

t

dW̃s

)(
1
k
σδe

−kT

∫ T

t

eksdZ̃s

)]
= e−kT σSσδ

k
ρ

∫ T

t

eksds

= e−kT σSσδρ

k

1
k

[ekT − ekt]

=
σSσδρ

k2
(1− θ(t, T )), (2.25)

E
[(

1
k
σδ

∫ T

t

dZ̃s

)(
1
k
σδe

−kT

∫ T

t

eksdZ̃s

)]
=

1
k2
σ2

δe
−kT ρ

∫ T

t

eksds

=
1
k2

(σ2
δe
−kT )ρ

1
k

(ekT − ekt)

=
σ2

δρ

k3
(1− θ(t, T )). (2.26)
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Finally we get

σ̃2 = Var(z)

= E[(z2)]− (E[z])2

= (σ2
S − 2

1
k
σδσSρ+

1
k2
σ2

δ )(T − t)

+ 2(
1
k2
σδσSρ−

1
k3
σ2

δ )(1− θ(t, T ))

+
1
k2

σ2
δ

2k
(1− θ(t, T )2). (2.27)

From the standard formula of the expected value of a lognormal random variable we get

Vt[ST ] = St exp
{
µ̃+

1
2
σ̃2

}
. (2.28)

From the absence of risk-free arbitrage opportunities it follows

Vt[ST − F ] = 0. (2.29)

The value F for which (2.29) holds, is called the future price and is

F = F (S, δ, τ) := erτVt[ST ], (2.30)

with τ = T − t denoting the time to maturity.
In order to find the PDE, which F (S, δ, τ) satisfies we use the Feynman- Kac theorem, [1].

Theorem 2.1. (Feynman-Kac)
Suppose the underlying processes y1(t), y2(t), .., yn(t) follow the stochastic differential equation

dyi = µi(y1, y2, ..yn, t)dt+ σi(y1, y2, .., yn, t)dWi.

Then the function

g(y1, y2, .., yn, t) = Ey1,y2,..,yn,t[f(y1(T ), .., yn(T ))]

is given by the solution of the partial differential equation

∂g

∂t
+

n∑
i=1

µi
∂g

∂yi
+

1
2

n∑
i,j=1

ρijσiσj
∂2g

∂yi∂yj
= 0,

subject to

g(y1, y2, .., yn, T ) = f(y1, y2, .., yn),

where ρij = Cov(dWi, dWj)/dt.

F (S, δ, τ) satisfies the PDE
1
2
σ2

SS
2FSS + ρσSσδSFSδ +

1
2
σ2

δFδδ + (r − δ)SFS + (k(α− δ)− λσδ)Fδ − Fτ = 0,

F (S, δ, 0) = S0.

(2.31)
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A similar result exists for V (S, δ, t) := Vt[YT ]. The V (S, δ, t) satisfies the PDE
1
2
σ2

SS
2VSS + ρσSσδSVSδ +

1
2
σ2

δVδδ + (r − δ)SVS + (k(α− δ)− λσδ)Vδ + Vt − rV = 0,

V (S, δ, T ) = YT (S, δ).
(2.32)

Assume that the solution of (2.32) can be written in the form F (S, δ, τ) = S exp {A(τ) +B(τ)δ} ,

A(0) = 0, B(0) = 0.
(2.33)

Calculating the derivatives and inserting these into (2.31) gives

−F {A′(τ) +B′(τ)δ}+ (r − δ)F + (k(α− δ)− λσS)FB(τ) + ρσSσδFB(τ) +
1
2
σ2

δB
2(τ) = 0, (2.34)

or equivalently

−A′(τ)−B′(τ)δ + (r − δ) + ρσSσδB(τ) + (k(α− δ)− λσδ)B(τ) +
1
2
σ2

δB
2(τ) = 0. (2.35)

In other words, we have to solve the two differential equations −B
′(τ)− 1− kB′(τ) = 0,

−A′(τ) + r + ρσSσδB(τ) + (kα− λσδ)B(τ) + 1
2σ

2
δB

2(τ) = 0.
(2.36)

Solving (2.36) yields

B(τ) =
1
k

(e−kτ − 1) =
1
k

(θ(τ)− 1); θ(τ) = e−kτ , (2.37)

and thus, for (2.36)2,

A′(τ) = r +
ρσSσδ

k
(θ(τ)− 1) + (α− λσδ

k
)(θ(τ)− 1) +

σ2
δ

2k2
(θ(τ)− 1)2. (2.38)

Integrating (2.38) in time, and using the fact that A(0) = 0, gives

A(τ) =
[(
r − α̃+

σ2
δ

2k2
− σSσδρ

k

)
τ

]
+
[
σ2

δ

4
1− e−2kτ

k3

]
+
[(
α̃k + σδσSρ−

σ2
δ

k

)(
1− e−kτ

k2

)]
,

with

α̃ = α− λ

k
.

2.4 Conclusion

In this chapter we derived analytic results when assuming an OU process for the convenience yield.
By means of the mean and variance of St and δt we are able to price the current value of a claim on a
future delivery of the commodity on the future date t. Also, the market price of risk is explained via
the Girsanov’s theorem. An important remark, as we will notice later on, is the assumption of an affine
form for the closed form solution of the future prices. By assuming this form, we can easily solve the
PDE given in (2.32).



Chapter 3

Stochastic convenience yield model
following a Cox-Ingersoll-Ross process

In this chapter we assume that the convenience yield follows a time-homogeneous Cox-Ingersoll-Ross
(CIR) process and the spot price a GBM in which the volatility is proportional to the square root of the
instantaneous convenience yield level, i.e.

dSt

St
= µdt+ σS

√
δtdWt,

dδt = k(α− δt)dt+ σδ

√
δtdZt.

(3.1)

In (3.1), St is the price of the underlying, δt is the CY, µ is the drift term, σS is the volatility term of dSt

St
,

Wt a standard P-Brownian motion, α is the long range mean to which δt tends to revert, k the speed of
adjustment, σδ the volatility term of dδt, and Zt a standard P-Brownian motion. Here dWtdZt = ρdt.
The reason why we assume that the CY follows a CIR process is the nonnegativity. The CIR process
excludes negative CY. A negative CY would make the forward prices go up at more than the interest
rate and provide some kind of cost of carry arbitrage through buying the spot commodity and selling a
forward.

3.1 Mean and variance of the CIR process

The solution of SDE (3.1)2 is given by

δt = δ0 + k

∫ t

0

(α− δu)du+ σδ

∫ t

0

√
δudZu.

Multiplying by ekt, taking expectations on both sides and differentiating with respect to time yields

d

dt
E[δt] = k(α− E[δt]) ⇒ d

dt
ektE[δt] = ekt[kE[δt] +

d

dt
E[δt]] = ektkα.

This leads to

ektE[δt]− δ0 = kα

∫ t

0

ekudu = α(ekt − 1) ⇒ E[δt] = α+ e−kt(δ0 − α) = e−ktδ0 + (1− e−kt)α. (3.2)

Remark. We see that if δ0 = α then E[δt] = α, ∀t. If δ0 6= α, then δt exhibits mean reversion, i.e.

limt→∞E[δt] = α.
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For the variance we calculate first dδ2t via Itô’s lemma. Define f(x) = x2. We have

dδ2t = df(δt)

= f ′(δt)dδt +
1
2
f ′′(δt)dδtdδt

= 2δt[k(α− δt)dt+ σδ

√
δtdZt] + [k(α− δt)dt+ σδ

√
δtdZt]2

= 2αkδtdt− 2kδ2t dt+ 2σδδ
3/2
t dZt + σ2

δδtdt

= (2kα+ σ2
δ )δtdt− 2kδ2t dt+ 2σδδ

3/2
t dZt.

This leads to

δ2t = δ20 + (2kα+ σ2
δ )
∫ t

0

δudu− 2k
∫ t

0

δ2udu+ 2σδ

∫ t

0

δ3/2
u dZu.

Taking the expectation on both sides and differentiating with respect to t yields

d

dt
E[δ2t ] = (2kα+ σ2

δ )E[δt]− 2kE[δ2t ].

From this we get

d

dt
e2ktE[δ2t ] = e2kt[2kE[δ2t ] +

d

dt
E[δ2t ]]

= e2kt(2kα+ σ2
δ )E[δt]. (3.3)

Using (3.2) in (3.3) and integrating the equation gives

E[δ2t ] =
ασ2

δ

2k
+ α2 + (δ0 − α)(

σ2
δ

k
+ 2α)e−kt + (δ0 − α)2

σ2
δ

k
e−2kt +

σ2
δ

k
(
α

2
δ0)e−2kt.

We finally obtain

Var[δt] = E[δ2t ]− (E[δt])2

= α
σ2

δ

2k
(1− e−kt)2 + δ0

σ2
δ

k
(e−kt − e−2kt). (3.4)

3.2 The logprice and inserting the market price of risk

Using similar arguments as explained in Section 2.2, we obtain the price processes under the Q measure
dSt

St
= (r − δt)dt+ σS

√
δtdW̃t,

dδt = (k(α− δt)− λδt)dt+ σδ

√
δtdZ̃t,

(3.5)

Remark: Note that λδt
is a function of σδ and δt, however, throughout this report, λδt

is considered
constant and we shall denote it by λ.

The logprice process for (3.5)1 is given by

dxt =
(
r −

(
1 +

1
2
σ2

S

)
δt

)
dt+ σS

√
δtdW̃t, (3.6)

with xt = logSt.
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3.3 Partial differential equation for the value of future delivery

Following the approach discussed in Section 2.5, we have the following PDE for the future priceF (S, δ, τ)
1
2
σ2

SδS
2FSS + ρσSσδδSFSδ +

1
2
σ2

δδFδδ + (r − δ)SFS + (k(α− δ)− λ)Fδ − Fτ = 0,

F (S, δ, 0) = S0.

(3.7)

We assume again (see e.g. [2]) that this PDE admits the affine form solution F (S, δ, τ) = SeA(τ)−B(τ)δ,

A(0) = 0, B(0) = 0.
(3.8)

To find B(τ) and A(τ) we substitute (3.8) into (3.7) to obtain the two equations

1
2
σ2

δB
2 + (k − ρσSσδ)B − 1 +B′(τ) = 0,

r + (λ− kα)B −A′(τ) = 0.

For simplicity first write a1 = 1
2σ

2
δ and a2 = k−ρσSσδ which leads to B′(τ) = Bτ = −a1B

2−a2B+1 =:
f(B). Now we want to factorize the function f .

f(B)
−a1

= B2 +
a2

a1
B − 1

a1
= (B + ε)(B − γ).

From this we get that (ε−γ) = a2
a1

and εγ = 1
a1

. From these two relations it follows that we have to solve

a1γ
2 + a2γ − 1 = 0.

This gives

γ1,2 = − a2

2a1
±
√
a2
2 + 4a1

2a1

=
−k2 ± k1

2a1
, (3.9)

where for simplicity k1 and k2 are given by

k1 =
√
k2
2 + 2σ2

δ ,

k2 = (k − ρσSσδ).

To solve the ODE for B(τ) we write

1
−a2

1B
2 − a2B + 1

B′(τ) = 1. (3.10)

Using the factorization we can rewrite this in

B(τ) =
(c̃εe−

γ+ε
a1

τ + γ)

1− c̃e−
γ+ε
a1

τ
,

and with initial condition B(0) = 0 we get that c̃ = −γ
ε . Substituting c̃ and calculating for γ1 (which

refers to the plus sign) gives

B(τ) =
γ(1− e−

γ+ε
a1

τ )

1 + γ
ε e
− γ+ε

a1
τ

=
2(1− e−k1τ )

k1 + k2 + (k1 − k2)e−k1τ
. (3.11)
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The same result is found when substituting γ2 (which refers to the minus sign). Accordingly,

A(τ) = rτ + (λ− kα)
∫ T

t

Bqdq, (3.12)

where ∫ T

t

Bqdq =
2

k1(k1 + k2)
ln
[
(k1 + k2)ek1τ + k1 − k2

2k1

]
(3.13)

+
2

k1(k1 − k2)
ln
[
k1 + k2 + (k1 − k2)e−k1τ

2k1

]
. (3.14)

3.4 Conclusion

In this chapter derived analytic results when assuming a CIR process for the convenience yield. The
reason for this, is the nonnegativity constraint one needs to impose for the convenience yield to prevent
some sort of ’cost of carry’ arbitrage possibilities. Again, by assuming an affine form of the closed form
solution of the future prices we can easily solve the PDE given in (3.7).



Chapter 4

The Kalman filter for the
Ornstein-Uhlenbeck process

In 1960 R.E. Kalman introduced the Kalman filter (KF), [34]. This algorithm makes optimal use of im-
precise data on a (quasi-) linear system with Gaussian errors (white noise) to continuously update the
best estimate of the system current state. The power of KF is; to compute these updates it is only nec-
essary to consider the estimates from the previous time step and the new measurement and not all the
previous data. The main idea is that we want to estimate the current state and its uncertainty, but we
can not directly observe these states. Instead we observe noisy measurements. Since the Kalman filter
deals with uncertain (in our case unobservable) variables, it seems to be the best iterative procedure for
calibrating future prices.

To calibrate the state-space model, the state variables (which in this case are the spot prices and the
convenience yield) are placed in a state vector. The measurement equation, consisting of this vector and
uncorrelated disturbances to account for possible errors in the data, links actual observations (in this
case the future prices on several different maturities) with latent variables. These latent variables are
assumed to be first-order Markovian processes and are related to systems (2.1) and (2.2). The Kalman
filter will give an optimal prediction for the unobserved data by only considering the previously esti-
mated value. For a detailed description and an introductory example, see Appendix A.

4.1 Setup of the Kalman filter applied to the OU process

Consider again

F (S, δ, τ) = SeA(τ)−B(τ)δ, (4.1)

where

A(τ) =
[(
r − α̃+

σ2
δ

2k2
− σSσδρ

k

)
τ

]
+
[
σ2

δ

4
1− e−2kτ

k3

]
+
[(
α̃k + σδσSρ−

σ2
δ

k

)(
1− e−kτ

k2

)]
,

and

B(τ) =
1− e−kτ

k
, α̃ = α− λ

k
.

In state variable terms, (4.1) can be rewritten in

lnFt(τ) = xt +A(τ)−B(τ)δt. (4.2)
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The measurement equation then reads

Yti = dti + Ztiαti + εti , i = 1, .., N, (4.3)

where N denotes the number of observations and

• αti
= [xti

δti
]′,

• Yti
= [lnFti

(τj)], for j = 1, ..., n is a n× 1 vector for n maturities. τj are the maturity dates. Fti
(τj)

are observed from market data,

• dti = [A(τj)] for i = j, .., n is a n× 1 vector,

• Zti = [1,−B(τj)], for j = 1, ..., n is a n× 2 matrix.

• εti
is a n× 1 vector of uncorrelated disturbances and is assumed to be normal with zero mean and

variance matrix Hti
. Hti

is a n × n diagonal matrix with hj on its diagonal.

The εt in (4.3) term is included to account for possible errors in the measurement. These errors especially
occur when the state variables are unobservable. To get a feeling for the size of the error suppose that the
OU model generates the prices and yields perfectly, and that the state variables can be observed from
the market directly. The included error term in the measurement equation can be seen as the uncertainty
in bid-ask spreads, errors in the data etc. The error is assumed to be small in comparison to the variation
of the yield. The matrix Hti

is assumed to be diagonal, for convenience, in order to reduce the number
of parameters to be estimated.

In combination with the relationship xt = lnSt we have from (2.1) and (2.2) dxt = (µ− δt −
1
2
σ2

S)dt+ σSdWt,

dδt = k(α− δt)dt+ σδdZt,

(4.4)

i.e. we calibrate the model under the P (real world) measure.
From (4.4) the transition equation follows immediately,xti

δti

 =

(µ− 1
2σ

2
S)∆t

kα∆t

+

1 −∆t

0 1− k∆t

xti−1

δti−1

+

1 0

0 1

ξ1ti

ξ2ti

 , (4.5)

which for simplicity will be written as

αti = cti + Qti
αti−1 + Rξti . (4.6)

Here ξti
takes into account the Brownian motions dWt and dZt. Hence ξti

is assumed normal with mean
zero and has a covariance-variance matrix given by

Vti
=

 σ2
S∆t ρσδσS∆t

ρσδσS∆t σ2
δ∆t

 . (4.7)

Note that Vti
does not depend on the state variables {xt, δt}. The matrices H, Z, Q, c, d given above are

parametrized by the unknown parameter set ϕ :=
{
k, µ, α, λ, σS , σδ, ρ, {hj}nj=1

}
. We dropped the time

subscript for each matrix because they are time-independent.



4.2 Numerical results for the Ornstein-Uhlenbeck process 15

4.1.1 Iterative procedure

The iterative procedure consists of two main parts. Part one is the Kalman filter which is used to update
the system matrices. Part two is estimating the parameter set ϕ. The algorithm of the Kalman filter is
given in pseudo code following [30]. Define ati

= E[αti
] and Pti

= E[(ati
−αti

)(ati
−αti

)′].

while ( number of iterations has not been reached , optimal ϕ has not been found ) do
(Kalman filter)
for i = 1 : N do

(Prediction)
ãti

= Q ∗ ati−1 + c;1

P̃ti
= Q ∗ Pti−1 ∗Q′ + R ∗V ∗ R′;

ỹti
= Z ∗ ãti

+ d;
(Innovations)
vti

= yti
− ỹti

;
(Updating)
Gti

= Z ∗ P̃ti
∗ Z′ + H;

ati
= ãti

+ P̃ti
∗ Z′ ∗G−1

ti
∗ vti

;
Pti

= P̃ti
− P̃ti

∗ Z′ ∗G−1
ti
∗ Z ∗ P̃ti

;
if detGti 6 0 then
detGtit = 10−10;

end if
(Log-likelihood function per iteration)
logl(i) = −(n/2) ∗ ln(2 ∗ π)− 0.5 ∗ ln(detGti)− 0.5 ∗ v′ti

∗G−1
ti
∗ vti ;

end for
LogL =

∑
i logl(i);

(Adjustment for ϕ via a Matlab optimization routine 2)
end while

Via an optimalisation routine, the vector ϕ is chosen such that the total sum of the log-likelihood func-
tion is maximized and the innovations minimized. After this is done, the matrices in the measurement
and transition equation are updated and the Kalman filter algorithm will then be repeated. This iterative
procedure is repeated until the optimized ϕ is found. With this optimized set of parameters the matrices
will be updated once more and are used for the last time to generate the paths of the non-observable
variables via the Kalman filter. The total sum of the log-likelihood function is calculated as follows

lnL(Y;ϕ) = −1
2
nln2π − 1

2

∑
t

ln|Gti
| − 1

2

∑
t

v′ti
G−1

ti
vti
, (4.8)

where Yti
is the information vector at time ti and it is assumed that Yti

conditional on Yti−1 has a normal
distribution with mean E[Yti

|Yti−1 ] and covariance matrix Gti
.

4.2 Numerical results for the Ornstein-Uhlenbeck process

We use weekly observations (on every friday to account for possible weekend effects) of light crude oil
data from 01-02-2002 until 25-01-2008 (313 observations). At each observation, seven monthly futures

1* denotes the multiplication symbol.
2The Matlab optimization routine is fmincon.
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contracts Ft(τ1),...,Ft(τ7) are observed, where τ1 denotes contract 1 and so on. Each diagonal element of
the error matrix H corresponds to each maturity, i.e. h1 corresponds to Ft(τ1), h2 corresponds to Ft(τ2)
and so on. The used market data is such that the time to maturities τj are constant for each forward
contract j and for each observation data, i.e. for each observation date of contract j there exists a future
price with maturity τj . Furthermore we assume deterministic interest rates, i.e. for each observation, 7
contracts are observed, meaning 7 different interest rates. r1 is the interest rate committed to Ft(τ1) etc.

4.2.1 Setting up the calibration

In order to start the iterative process, some difficulties have to be tackled first. Namely, the initial choice
of the parameter set ϕ and the non-observable variables at time zero, i.e. x0 and δ0.

We start with ϕ =
{

0.3, 0.2, 0.06, 0.01, 0.4, 0.4, 0.8,
{
Var[lnFt(τj)]2

}7

j=1

}
. The first seven parameters are

chosen arbitrary. However, for the diagonal elements {hj}nj=1 of the error variance matrix H we choose
the squares of the measurement variance. Therefore we expect the error to be small in comparison to
the variance of the measurements. For the non-observable parameters (cf. [8]), the nearest future price
is retained as the spot price S0 and

δmarket
ti

(τ1, τ2) =
r1τ1 − r2τ2
τ1 − τ2

− ln(Fti
(τ1))− ln(Fti

(τ2))
τ1 − τ2

. (4.9)

and we use δ0 = δmarket
0 (τ1, τ2).

Implementation issues: There are a few important implementation details worth mentioning. The
log-likelihood function estimates the optimal parameter set. For that, it has control of a parameter set
bound. We use the following bounds

[ µ σS α k σδ ρ λ h1 h2 h3 h4 h5 h6 h7];

lowerbound=[ -10 0.001 -10 0.001 0.001 -1 -10 -1 -1 -1 -1 -1 -1 -1];

upperbound=[ 10 10 10 10 10 1 10 1 1 1 1 1 1 1];

Omitting these bounds, the iterative procedure may break down. In case of matrix H, which consists of
the variances of the error terms, can become negative. But being negative, this can cause problems in
the KF. In the KF algorithm Gt can become singular and so impossible to inverse. So we square each
element of H before calculating Gt and hence they effectively enter Gt as the variance. This is why
{hj}nj=1 in Table 4.1 and in Table 4.2 are in absolute value.

4.2.2 Results

The parameter set is estimated for different initial sets and given in Table 4.1. To test the robustness of
the calibration, we first choose randomly an initial parameter set. This gaves us the optimized set and
subsequently we used this optimized set as our initial set. Within a few interation steps the parameters
converges to the same values.
Remark: In the following sections we use the third column of Table 4.1 to be the initial parameter set.
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Parameters Ini parset Opti parset Ini parset Opti parset Ini parset Opti parset
k 0.3 1.4221 (0.0372) 0.3 1.4221 (0.0380) 2 1.4221 (0.0382)
µ 0.2 0.3733 (0.1471) 0.2 0.3733 (0.1376) 0.2 0.3733 (0.1382)
α 0.06 0.0699 (0.1128) 0.2 0.0699 (0.1025) 0.06 0.0699 (0.1082)
λ 0.01 -0.0183(0.1602) 0.1 -0.0183(0.1459) 0.01 -0.0183(0.1543)
σS 0.4 0.3630 (0.0137) 0.4 0.3630 (0.0139) 0.5 0.3630 (0.0153)
σδ 0.4 0.4028 (0.0165) 0.4 0.4028 (0.0172) 0.4 0.4028 (0.0181)
ρ 0.8 0.8378 (0.0162) 0.5 0.8378 (0.0164) 0.5 0.8378 (0.0177)
|h1| 0.0246 0.0188 (0.0008) 0.0246 0.0188 (0.0007) 0.01 0.0188 (0.0007)
|h2| 0.0268 0.0072 (0.0003) 0.0268 0.0072 (0.0003) 0.01 0.0072 (0.0003)
|h3| 0.0291 0.0022 (0.0001) 0.0291 0.0022 (0.0001) 0.01 0.0022 (0.0001)
|h4| 0.0313 0.0000 (0.0001) 0.0313 0.0000 (0.0001) 0.01 0.0000 (0.0001)
|h5| 0.0336 0.0006 (0.0000) 0.0336 0.0006 (0.0000) 0.01 0.0006 (0.0000)
|h6| 0.0357 0.0000 (0.0001) 0.0357 0.0000 (0.0001) 0.01 0.0000 (0.0001)
|h7| 0.0377 0.0014 (0.0001) 0.0377 0.0014 (0.0001) 0.01 0.0014 (0.0001)
Log-Likelihood 8744.6479 8744.6479 8744.6479

Table 4.1: Optimized parameter set (Opti parset) for different initial parameter sets (Ini parset). Standard
errors in parentheses.

With the optimized parameter set given in Table 4.1 we plot, in Figure 4.1, the calibrated future prices
versus the one-month maturity of the log of the future prices, i.e. ln(Fti(τ1)). The calibrated future prices
seems to fit the market future prices succesfully. The same results holds for all seven futures contracts.
Nowadays traders determine the market convenience yield via the future prices like in (4.9). In Figure
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Figure 4.1: Comparison between the calibrated
future prices and market future prices for con-
tract τ1.
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Figure 4.2: Comparison between filtered δti

and market convenience yield, δmarket
ti

(τ1, τ2).

4.2 , the estimated convenience yield is plotted versus the market convenience yield. In Figure 4.2 we see
that the calibrated convenience yield does not follow the path of the market convenience yield. This can
have several reasons. First of all, we compared it to our calculated convenience yield (4.9) but there are
more factors included in the market future prices than the interest rates, spot prices and convenience
yield. In fact, the market convenience yield actually consists of numerous terms, e.g. storage costs,
security costs, transport costs etc. So the comparison is expected to be not succesfully as we do not
compare the pure convenience yield but, what is called, the total cost of carry.
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For each futures contract we plot the innovation (εt in equation (4.3)), i.e. vti
= yti

− ỹti
. We assumed

the measurement errors to be normal with mean zero and variance H. Considering the figures, this as-
sumption is acceptable because the mean of the innovations is almost zero for all seven futures contracts.
Note that there are some large error ’spikes’. This can be caused by data errors.
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Figure 4.3: Innovation corresponding to Ft(τ1).
Mean = -8.1734e-004, Variance = 0.0022.
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Figure 4.4: Innovation corresponding to Ft(τ2).
Mean = 8.6078e-004, Variance = 0.0019.
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Figure 4.5: Innovation corresponding to Ft(τ3).
Mean = 6.4612e-004, Variance = 0.0017.
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Figure 4.6: Innovation corresponding to Ft(τ4).
Mean = -1.0181e-004, Variance = 0.0015.
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Figure 4.7: Innovation corresponding to Ft(τ5).
Mean = -5.5711e-004, Variance = 0.0014.
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Figure 4.8: Innovation corresponding to Ft(τ6).
Mean = -3.4456e-004, Variance = 0.0013.
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Figure 4.9: Innovation corresponding to Ft(τ7). Mean = 6.1501e-004, Variance = 0.0012.

4.2.3 Results for a different number of contracts

In this section we test the method for different number of contracts. We see in Table 4.2 that the standard
error increases if only two contracts are used. This is expected because the Kalman filter now has to
estimate two unobservable values using only two data sets.
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Contracts Ft(τ1), ...,Ft(τ7) Ft(τ1),Ft(τ3),Ft(τ5),Ft(τ7) Ft(τ1),Ft(τ7)
k 1.4221 (0.0372) 1.4591 (0.0602) 1.7628 (0.4897)
µ 0.3733 (0.1471) 0.3654 (0.1354) 0.8134 (0.5488)
α 0.0699 (0.1128) 0.0653 (0.1004) 0.5169 (0.5381)
λ -0.0183(0.1602) -0.0331(0.1475) 1.8517 (2.2353)
σS 0.3630 (0.0137) 0.3610 (0.0139) 0.3501 (0.0153)
σδ 0.4028 (0.0165) 0.3995 (0.0183) 0.4108 (0.0705)
ρ 0.8378 (0.0162) 0.8418 (0.0174) 0.8172 (0.0234)
|h1| 0.0188 (0.0008) 0.0161 (0.0007) 0.0188 (0.0012)
|h2| 0.0072 (0.0003) 0.0000 (0.0003) 0.0081 (0.0031)
|h3| 0.0022 (0.0001) 0.0021 (0.0001)
|h4| 0.0000 (0.0001) 0.0010 (0.0012)
|h5| 0.0006 (0.0000)
|h6| 0.0000 (0.0001)
|h7| 0.0014 (0.0001)
Log-Likelihood 8744.6479 4001.8997 1440.5857

Table 4.2: Optimized parameter set (Opti parset) for different initial parameter sets (Ini parset). Standard
errors in parentheses.

4.2.4 Parameter explanation

If we look at Table 4.1, we see no unrealistic parameter values. The correlation between the two state
variables is 0.8378. To find graphical evidence for this positive number we made a scatterplot of the
increments of both the state-variables, i.e. ∆xti := xti − xti−1 versus ∆δti := δti − δti−1 .
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Figure 4.10: Scatterplot of (∆xti ,∆δti) for 313 observations.

Since the pattern of dots slopes from lower left to upper right, it suggests a positive correlation between
the variables being studied.

4.2.5 Kalman forecasting

We test a Kalman forecasting method on half of the observations. The first half, from observation i=1
until i=156 we perform the KF algorithm with the optimized parameter set given in the third column of
Table 4.1. From i=157 until i=313 we forecast the state variable δt and the future prices by the following
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recursive equations, keeping the optimized parameter set fixed,

ati = Qati + c,

Pti
= QPti

Q′ + RVti
R′,

yti
= Zati

+ D. (4.10)

Forecasting for the state variable δt is not a succes. This can be explained by the sudden drop at 160.
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Figure 4.11: Forecast over half a sample of the
log of the future prices (F1-F7).
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Figure 4.12: Forecast for CY over half a sample.

The Kalman forecasting can not absorb this sudden drop in the convenience yield. For that, it follows
the previous estimations. However, as noted earlier, the mean-reverting term is equal to 0.0699, which
is approximately equal to the forecasting. Also for the future prices, the sudden drop at 250 can not
be absorbed by this forecasting method. This is a real disadvantage of this method. A way to get
the method to absorb these drops, jumps can be inserted in the stochastic processes of both the state
variables. The smoothness of the Kalman forecasting is due to the fact that the parameters and so the
system matrices are not updated anymore. In other words, there is no more stochasticity in the prices.
The estimate is based on historical data only. The trend is based on this data and will fit in some optimal
sense.

4.3 The extended Kalman filter

The extended Kalman filter (EKF) is an extension of the standard KF. The basic iterative procedure is
the same but the main difference between the two is that the latter is limited to linear measurement and
transition equations. For the EKF this is not a requisite. Since the OU process is linear in the log of
the state variable St, see (4.2), applying the EKF to this process does not make much sense. However,
we explain in detail how the EKF works and we will apply it to the OU process in which the measure-
ment equation is nonlinear, i.e. we do not use the log transformation. Furthermore we investigate its
consistency to the standard KF (i.e. if it converges to the same parameters) and stability of the method.

4.3.1 General setup of the extended Kalman filter

In the EKF the transition and measurement equations consist of nonlinear functions that depend on the
state variables. The transition equation is given by

αti = Q(αti−1) + R(αti)ξti , (4.11)
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where αti
is the state vector at time ti, Q(αti−1) and R(αti−1) are nonlinear differentiable functions

depending on the state vector and measured at time ti−1 and ξti
is the transition error. Again, this error

is assumed to be normal with mean zero and covariance matrix Vti
. The measurement equation is given

by

Yti
= Z(αti

) + εti
, (4.12)

where Yti
is the informational vector (in this case, consisting of the future prices), Z(αti

) is a nonlinear
function depending on the state vector measured at time ti and εti

the measurement error. Again, this
error is assumed to be normal with mean zero and covariance matrix Hti

. Since we assumed that the
nonlinear functions, Q(αti−1) and R(αti−1), are differentiable, we can linearize them by computing their
Jacobian matrices,

Ẑ =
∂Z(αti

)
∂αti

, Q̂ =
∂Q(αti−1)
∂αti−1

, R̂ ≈ R. (4.13)

By using these Jacobians, the linearized state-space model is then given by αti
≈ Q̂αti−1 + R̂ξti

,

Yti
≈ Ẑαti

+ εti
.

(4.14)

In other words, the EKF implicitly introduces an extra approximation error in the filtering procedure.

4.3.2 Iterative procedure

The iterative procedure consists of two main parts. Part one is the extended Kalman filter which is
used to update the system matrices. Part two is estimating the parameter set ϕ. The algorithm of the
extended Kalman filter is given in pseudo code.

while ( number of iterations has not been reached , optimal ϕ has not been found ) do
(Kalman filter)
for i = 1 : N do

(Prediction)
ãti

= Q ∗ ati−1 + c;
P̃ti

= Q ∗ Pti−1 ∗Q′ + R ∗V ∗ R′;
ỹti

= Z ∗ ãti
+ d;

(Innovations)
vti

= yti
− ỹti

;
(Updating)
Gti

= Z ∗ P̃ti
∗ Z′ + H;

ati
= ãti

+ P̃ti
∗ Z′ ∗G−1

ti
∗ vti

;
Pti

= P̃ti
− P̃ti

∗ Z′ ∗G−1
ti
∗ Z ∗ P̃ti

;
if detGti

6 0 then
detGti

t = 10−10;
end if
(Log-likelihood function per iteration)
logl(i) = −(n/2) ∗ ln(2 ∗ π)− 0.5 ∗ ln(detGti

)− 0.5 ∗ v′ti
∗G−1

ti
∗ vti

;
(Update system matrices)

end for
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LogL =
∑

i logl(i);
(Adjustment for ϕ via a Matlab optimization routine )

end while

The same implementation issues as discussed (in Section 4.2.8) still holds. The EKF works the same
as the standard KF described in Section 4.1. However, since the system matrices depend on the state
variables, they have to be updated in every timestep i.

4.3.3 Setup of the extended Kalman filter applied to the OU process

The same data is used as for the calibration of the standard KF. The closed form solution of the future
prices is given by (4.1). The system matrices are not time-dependent so we drop the time subscript.
From (2.1) and (2.2) the transition equation in discrete time is given bySti

δti

 = Q(Sti−1 , δti−1) + R(Sti−1 , δti−1)ξti
, (4.15)

where

•

Sti

δti

 is the (2 × 1) state vector consisting of the spot price, St and the CY δt,

• Q(Sti−1 , δti−1) is a (2 × 1) vector: Q =

Sti−1(1 + µ∆t− δti−1∆t)

kα∆t+ δti−1(1− k∆t)

,

• R(Sti−1 , δti−1) is a (2 × 2) matrix: R =

Sti−1 0

0 1

,

• V is a (2 × 2) matrix: V =

 σ2
S∆t ρσSσδ∆t

ρσSσδ∆t σ2
δ∆t

.

The measurement equation is defined by

Yt = Z(Sti
, δti

) + εti
, (4.16)

where

• Yti = Fti(τj), see Section 4.1,

• Z(Sti , δti) is a (n × 1) matrix. For j = 1 : n, Z =
[
Sti
× exp(−A(τj)δti

+B(τj))
]
, where A(τj) and

B(τj) are given by (4.1),

• εti
is a n× 1 vector of uncorrelated disturbances, see Section 4.1.

The Jacobians of the matrices Q̂ and Ẑ are given by

Q̂ =

1 + µ∆t− δti∆t −Sti∆t

0 (1− k∆t)

 , Ẑ =
[
e(−A(τj)δti−1+B(τj)) −Sti−1A(τj)e(−A(τj)δti−1+B(τj))

]
.(4.17)
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4.3.4 Setting up the calibration

The extended Kalman filter is not an optimal filter. In addition, if the initial estimate of the state is
wrong or if the process is modeled incorrectly, the filter may quickly diverge, owing to its lineariza-
tion. The choice of the initial parameter set should therefore be done carefully. The initial choice of
the non-observable variables at time zero, i.e. x0 and δ0 remains the same. For the initial parame-
ter set we start with the optimized set which we have found for the standard Kalman filter, that is,

ϕ =
{

1.422, 0.3733, 0.0699,−0.0183, 0.3630, 0.4028, 0.8378, 1
1000 {Var[(lnFt(τj))]}7j=1

}
. Note that we ex-

pect the error to be small in comparison to the variance of the measurements, since we do not consider
the logarithm of the futures but the future prices itself, the variance of the measurements is large. There-
fore we divide the variances for each contract by 1000.

4.3.5 Results

As noted in Section 4.2.2 we start with an initial parameter set and to test the robustness we differ this
set. Results are given in Table 4.3.

Parameters Ini parset Opti parset Ini parset Opti parset Ini parset Opti parset
k 1.4221 1.6159 (0.0423) 1.6 1.6159 (0.0402) 1.3 1.6159 (0.0377)
µ 0.3733 0.4144 (0.0871) 0.2 0.4156 (0.1273) 0.4 0.4156 (0.1498)
α 0.0699 0.1076 (0.0099) 0.1 0.1087 (0.0964) 0.1 0.1087 (0.1121)
λ -0.0183 0.0589 (0.0198) -0.0183 0.0607 (0.1561) 0.1 0.0607 (0.11811)
σS 0.3630 0.4530 (0.0200) 0.4 0.4530 (0.0200) 0.4 0.4530 (0.0188)
σδ 0.4028 0.3641 (0.0137) 0.4 0.3641 (0.0148) 0.4 0.3641 (0.0148)
ρ 0.8378 0.8198 (0.0183) 0.8 0.8198 (0.0164) 0.3 0.8198 (0.0190)
|h1| 0.3647 0.6116 (0.0242) 0.0246 0.6116 (0.0227) 0.3 0.6116 (0.0234)
|h2| 0.3773 0.1671 (0.0063) 0.0268 0.1671 (0.0066) 0.3 0.1671 (0.0069)
|h3| 0.3886 0.0000 (0.0104) 0.0291 0.0000 (0.0106) 0.3 0.0000 (0.0104)
|h4| 0.3986 0.0347 (0.0013) 0.0313 0.0347 (0.0014) 0.3 0.0347 (0.0013)
|h5| 0.4078 0.0000 (0.0029) 0.0336 0.0000 (0.0028) 0.3 0.0000 (0.0027)
|h6| 0.4159 0.0707 (0.0025) 0.0357 0.0707 (0.0026) 0.3 0.0707 (0.0028)
|h7| 0.4229 0.1629 (0.0069) 0.0377 0.1629 (0.0061) 0.3 0.1629 (0.0061)
Log-Likelihood 365.6806 365.6806 365.6806

Table 4.3: Optimized parameter set (Opti parset) for different initial parameter sets (Ini parset). Standard
errors in parentheses.
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Using the optimized parameter set in Table 4.3 we plot, in Figure 4.13, the calibrated future prices versus
the one-month maturity of the future prices, i.e. Fti

(τ1). The same results hold for all seven futures
contracts. For each futures contract we plot the innovation. From Figures 4.15-4.21 we can see that
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Figure 4.13: Comparison between the cali-
brated future prices and market future prices
for contract τ1.
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Figure 4.14: Comparison between the cali-
brated δti

and the market convenience yield,
δmarket
ti

(τ1, τ2).

the mean of the innovations differs more from zero than the mean of the innovations shown in Figures
4.3-4.9. This is due to the fact that we used the extended Kalman filter. However, the results are still
acceptable.
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Figure 4.15: Innovation corresponding to
Ft(τ1). Mean = -0.3819, Variance = 5.2406.
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Figure 4.16: Innovation corresponding to
Ft(τ2). Mean = -0.1894, Variance = 4.5616.
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Figure 4.17: Innovation corresponding to
Ft(τ3). Mean = -0.1187, Variance = 4.1149.
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Figure 4.18: Innovation corresponding to
Ft(τ4). Mean = -0.1040, Variance = 3.7877.
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Figure 4.19: Innovation corresponding to
Ft(τ5). Mean = -0.1015, Variance = 3.5212.
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Figure 4.20: Innovation corresponding to
Ft(τ6). Mean = -0.0941, Variance = 3.3058.
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Figure 4.21: Innovation corresponding to Ft(τ7). Mean = -0.0771, Variance = 3.1398.

There are some slight differences in the optimized parameter set. This may be caused by the linearization
of the system matrices. The optimized parameters do not differ much from the parameters found for the
standard KF. However, as we can see in Table 4.3, the method is stable with respect to different initial
values of the parameters.
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4.3.6 Results for different number of contracts

As in Section 4.2.3 we see that the standard error increases as soon as two contracts are observed.
The standard errors for two contracts are not as high as those in Table 4.2. This can be explained by

Contracts Ft(τ1), ...,Ft(τ7) Ft(τ1),Ft(τ3),Ft(τ5),Ft(τ7) Ft(τ1),Ft(τ7)
k 1.6159 (0.0423) 1.5799 (0.0655) 1.4987 (0.5099)
µ 0.4144 (0.0871) 0.3979 (0.1461) 0.1322 (0.1468)
α 0.1076 (0.0099) 0.0949 (0.1022) -0.1621 (0.1034)
λ 0.0589 (0.0198) 0.0346 (0.1614) -0.9509 (0.2272)
σS 0.4530 (0.0200) 0.3965 (0.0214) 0.3409 (0.0597)
σδ 0.3641 (0.0137) 0.3559 (0.0143) 0.3327 (0.0152)
ρ 0.8198 (0.0183) 0.8359 (0.0176) 0.7908 (0.0259)
|h1| 0.6116 (0.0242) 0.0161 (0.0007) 0.3623 (0.0419)
|h2| 0.1671 (0.0063) 0.0000 (0.0003) 0.0000 (0.0620)
|h3| 0.0000 (0.0104) 0.0021 (0.0001)
|h4| 0.0347 (0.0013) 0.0010 (0.0012)
|h5| 0.0000 (0.0029)
|h6| 0.0707 (0.0025)
|h7| 0.1629 (0.0069)
Log-Likelihood 365.6805 -737.1525 1440.5857

Table 4.4: Optimized parameter set (Opti parset) for different initial parameter sets (Ini parset). Standard
errors in parentheses.

the initial parameter set. For the EKF this set is almost equal to the optimized set. The initial set for the
KF is chosen arbitrary and differs more from the optimized set. This may cause some bigger standard
errors for the parameters. Since the prediction errors are quite big, one may have doubts by considering
the diagonal elements of the error covariance matrix H to be bounded in an interval [-1,1]. In order to
let the optimalization routine search for the diagonal elements {hj}nj=1 from a bigger range we took the
bounds as follows:

[ µ σS α k σδ ρ λ h1 h2 h3 h4 h5 h6 h7];

lowerbound=[ -10 0.001 -10 0.001 0.001 -1 -10 -100 -100 -100 -100 -100 -100 -100];

upperbound=[ 10 10 10 10 10 1 10 100 100 100 100 100 100 100];

The result are presented in Table 4.5.

As we can see, increasing the lower and upper bounds for the diagonal elements of the covariance
matrix H does not have any influence on the optimized parameter set.
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Parameters Ini parset Opti parset
k 1.4221 1.6159 (0.0386)
µ 0.3733 0.4144 (0.1405)
α 0.0699 0.1076 (0.1088)
λ -0.0183 0.0589 (0.1746)
σS 0.3630 0.4530 (0.0198)
σδ 0.4028 0.3641 (0.0155)
ρ 0.8378 0.8198 (0.0184)
|h1| 36.4707 0.6116 (0.0200)
|h2| 37.7297 0.1671 (0.0060)
|h3| 38.8572 0.0000 (0.0100)
|h4| 39.8636 0.0347 (0.0014)
|h5| 40.7809 0.0000 (0.0027)
|h6| 41.5923 0.0707 (0.0026)
|h7| 42.2907 0.1629 (0.0061)
Log-Likelihood 365.6806

Table 4.5: Optimized parameter set (Opti parset) for different initial parameter sets (Ini parset). Standard
errors in parentheses.

4.3.7 Parameter explanation

The correlation between the two state variables is 0.8198. To find graphical evidence for this positive
correlation we made a scatterplot of the increments of both the state-variables, i.e. ∆Sti := Sti − Sti−1

versus ∆δti := δti − δti−1 .
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Figure 4.22: Scatterplot of (∆Sti
,∆δti

) for 313 observations.

Since the pattern of dots slopes from lower left to upper right, it suggests a positive correlation between
the variables being studied, which is exactly what we expected.
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4.3.8 Kalman forecasting

We test a Kalman forecasting method on half of the observations. On the first half, from observation i=1
until i=156 we perform the EKF algorithm with the optimized parameter set given in the third column
of Table 4.1. From i=157 until i=313 we forecast the state variable and δt and the future prices by the
following recursive equations

ati
= Tti

,

Pti
= Q̂Pti

Q̂
′
+ R̂Vti

R̂
′
,

yti
= Z. (4.18)

Note that after each recursion the system matrices Q̂, R̂ and Z are updated with the state variables.
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Figure 4.23: Forecast over half a sample of the
log of the future prices, Ft(τ1),...,Ft(τ7).
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Figure 4.24: Forecast for CY over half a sample.

As can be seen in Figures 4.23 and 4.24, the forecast from the EKF is equal to the forecasts depicted in
Figures 4.11 and 4.12.

4.4 Conclusion

In this chapter we apply both the Kalman filter and the extended Kalman filter on the OU process for
the convenience yield and a GBM for the spot price. The reason why the Kalman filter is chosen to
be the iterative procedure is due to unobservability of the state variables St and δt. The Kalman filter
links these latent variables to the observed variables, in this case the furture prices. As noticed earlier,
the affine form of the closed form solution of the future prices gives us immediately the measurement
equation (4.3). Also the linearity of this closed form solution in the state variable St is an important
requirement in order to have an optimal result of the Kalman filter. The covariance-variance matrix
given in (4.7) does not depend on the state variables and because of that, we did not need to adjust the
Kalman filter algorithm.
Although the convenience yield and spot price are unobservable we need an initial choice of these
variables to start the iterative procedure. We assumed the S0 = F (0, T ) and the δ0 is calculated via
(4.9). By doing this, there is an error involved. However, we tested the Kalman filter by setting α0 =
[10, −10], a totally inadequate initial value for both the log of the spot price and the convenience yield.
The log-likelihood remained the same, as well as the parameters given in Table 4.1. The only difference
is that the value of the log-likelihood function jumped in the beginning. This can be explained by these
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incorrect initial values.
The results presented in Table 4.1 show the stability of the procedure (different initial values of the
parameter set converges to the same optimized parameter set with the same value of the log-likelihood
function). Alhough there are no unrealistic values of these parameters, one can not tell if they are
acceptable as they are parameters of unobservable processes. However, looking at Figure 4.1, we see
that the calibrated future prices fit the market future prices succesfully. In Figure 4.2 and 4.14, as noted
before, we see that the calibrated convenience yield is not following the path of the market convenience
yield. This can have several reasons. First of all, we compared it to our calculated convenience yield
(4.9) but there are more factors included in the market future prices than the interest rates, spot prices
and convenience yield. In fact, the market convenience yield actually consists of numerous terms, e.g.
storage costs, security costs, transport costs etc. So the comparison is expected to be not succesfully as
we do not compare the pure convenience yield but, what is called, the total cost of carry.
As from Section 4.4 we tested the extend Kalman filter for the OU process. Since the future prices are
linear in the state variable St, we can expect larger errors than in the previous sections. This is caused by
the linearization of the system matrices. The EKF implicitly introduces an extra approximation error in
the filtering procedure. However, as we can see from the results (Table 4.3 and Figure 4.13) the method is
stable and we are still able to fit the calibrated future prices to the market future prices very succesfully.



Chapter 5

The Kalman filter model for the
Cox-Ingersoll-Ross process

In this chapter the KF model for the CIR process is discussed. An essential requirement for the KF to give
an optimal result is the Gaussian assumption. Since the CIR process is non-Gaussian we expect quasi-
optimal results. Together with the nonnegativity constraint, applying the KF may give some problems
as we shall see.

5.1 Setup of the Kalman filter applied to the CIR process

In state variable terms, (3.8) can be written in

lnFt(τ) = xt +A(τ)−B(τ)δt, (5.1)

with xt = logSt and where A(τ) and B(τ) are given by (3.12) and (3.11). Again, the vector αti
contains

the state variables we want to estimate. From (3.1) and (3.6) the transition equation immediately follows[
xti

δti

]
=
[

µ∆t
kα∆t

]
+
[

1 −(1 + 1
2σ

2
S)∆t

0 1− k∆t

] [
xti−1

δti−1

]
+
[

1 0
0 1

] [
ξ1ti

ξ2ti

]
,

which for simplicity will be again written as

αti
= cti

+ Qti
αti−1 + Rξti

, i = 1, ..N. (5.2)

Again ξti
has expectation zero and its covariance matrix Vti

is given by

Vti
=
[

E[(xti − E[xti ])
2|xti−1 ] E[(xti − E[xti ])(δti − E[δti ])|xti−1 , δti−1 ]

E[(xti
− E[xti

])(δti
− E[δti

])|xti−1 , δti−1 ] E[(δti
− E[δti

])2|δti−1 ]

]

=
[

Var[xti |xti−1 ]
√

Var[xti |xti−1 ]
√

Var[δti |δti−1 ]√
Var[xti

|xti−1 ]
√

Var[δti
|δti−1 ] Var[δti

|δti−1 ]

]

=
[

σ2
S∆tδti−1 ρσS

√
∆t
√
δti−1

√
Var[δti

|δti−1 ]
ρσS

√
∆t
√
δti−1

√
Var[δti |δti−1 ] Var[δti |δti−1 ]

]
,

where

Var[δti
|δti−1 ] = α(

σ2
δ

2k
)(1− e−k∆t)2 + δti−1(

σ2
δ

k
)(e−k∆t − e−2k∆t). (5.3)
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The difference between Vti
for the OU process and the CIR process is that in the latter the Vti

depends
on the state variable δti−1 . This error matrix should be updated every timestep. In the following section
the pseudo code for the iterative procedure is given.

5.1.1 Iterative procedure

The iterative procedure consists of two parts. Part one is the Kalman filter which is used to update the
system matrices. Part two is estimating the parameter set ϕ. The algorithm of the Kalman filter is given
in pseudo code. The CIR model does not allow negative convenience yields. Therefore we also have to
extend the Kalman filter in order to exclude negative convenience yields. For this, we simply replace any
negative element of the estimate δti by zero. The reason why this is done is just a matter of convenience
and it is rather difficult to impose the positivity constraint in the estimation procedure. However, this
solution will turn out to have several consequences as we shall see.

while ( number of iterations has not been reached , optimal ϕ has not been found ) do
(Kalman filter)
for i = 1 : N do

(Prediction)
ãti

= Q ∗ ati−1 + c;
P̃ti

= Q ∗ Pti−1 ∗Q′ + R ∗V ∗ R′;
ỹti

= Z ∗ ãti
+ d;

(Innovations)
vti

= yti
− ỹti

;
(Updating)
Gti

= Z ∗ P̃ti
∗ Z′ + H;

ati
= ãti

+ P̃ti
∗ Z′ ∗G−1

ti
∗ vti

;
Pti

= P̃ti
− P̃ti

∗ Z′ ∗G−1
ti
∗ Z ∗ P̃ti

;
if detGti 6 0 then
detGtit = 10−10;

end if
(Log-likelihood function per iteration)
logl(i) = −(n/2) ∗ ln(2 ∗ π)− 0.5 ∗ ln(detGti

)− 0.5 ∗ v′ti
∗G−1

ti
∗ vti

;
LogL =

∑
i logl(i);

if ãti
(2)<0 then

ãti
(2)=0; (ãti

(2) corresponds to δti
)

end if
(update matrix Vti

)
end for
(Adjustment for ϕ via a Matlab optimization routine)

end while

The same procedure to optimize the parameter set ϕ holds and is explained in Section 4.1. The pseudo
code given above differs from the standard KF as discussed in Section 4.6 in two parts: A negativity
constraint for the convenience yield is added and the matrix Vti is updated in each step because it
depends on the state variable δti−1 .
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5.2 Numerical results for the Cox-Ingersoll-Ross process

5.2.1 Choosing the right start value for the convenience yield

We use the same data as in Chapter 4. The initial value of δmarket
0 = −0.1063. Such a start value, how-

ever, is not allowed in the CIR framework. Therefore we try three approaches to tackle the problem of
choosing the correct starting value for the convenience yield.

Case one. We set the starting value for δmarket
0 equal to zero. This implies that Vti

contains zero ele-
ments, i.e.

Vti =

0 0

0 0.7784e−6

 . (5.4)

These initial values are used in every iteration. We choose the initial parameter set equal to the optimized
parameter set given in Table 4.1. The diagonal elements {hj}nj=1 are initially set equal to the variance
of the data. The standard errors are extremely high. Since Vti depends strongly on the parameters k,
σδ and σS we can expect that the optimalization routine can not optimize the parameters because Vti

is almost zero for every σδ, σS and k. As a consequence the parameters σδ , λ and k are retained on the
upper bound 10. This is certainly not an optimal result.

Parameters Ini parset Opti parset
k 1.4221 10.0000 (48.4424)
µ 0.3733 0.8616 (3.9825)
α 0.0699 1.1192 (3.1169)
λ -0.0183 10.0000 (82.4541)
σS 0.3630 0.4219 (9.7882)
σδ 0.4028 10.0000 (7.8778)
ρ 0.8378 0.2196 (3.3102)
|h1| 0.0246 0.0609 (0.0217)
|h2| 0.0268 0.0382 (0.0108)
|h3| 0.0291 0.0231 (0.0013)
|h4| 0.0313 0.0109 (0.0031)
|h5| 0.0336 0.0000 (0.0015)
|h6| 0.0357 0.0096 (0.0016)
|h7| 0.0377 0.0181 (0.0031)
Log-Likelihood 5104.3040

Table 5.1: Optimized parameter set (Opti parset) for different initial parameter sets (Ini parset). Standard
errors in parentheses.
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Figure 5.1: Comparison between the calibrated
future prices and market future prices for con-
tract τ1.
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Figure 5.2: Comparison between the calibrated
δt and the market implied convenience yield.

We can see from Figure 5.1 that the estimated future prices are quite satisfactory. However, if we look at
Figure 5.2 we see that the calibrated convenience yield differs significantly from the market convenience
yield. This can be easily explained by the fact that the convenience yield volatility stays at σδ = 10 during
the filtering.

Case two. As an alternative approach, we can shift δmarket
0 by a constant. Table 5.2 shows the calibrated

parameters. For this calibration we set δmarket
0 = 0.3. As we can see, the three parameters are now opti-

mized.

Parameters Ini parset Opti parset
k 1.4221 1.6608 (0.0455)
µ 0.3733 0.3254 (0.1325)
α 0.0699 0.0730 (0.0841)
λ -0.0183 -0.0754(0.1405)
σS 0.3630 0.6574 (0.0255)
σδ 0.4028 0.7250 (0.0293)
ρ 0.8378 0.8352 (0.0166)
|h1| 0.0246 0.0609 (0.0217)
|h2| 0.0268 0.0382 (0.0108)
|h3| 0.0291 0.0231 (0.0013)
|h4| 0.0313 0.0109 (0.0031)
|h5| 0.0336 0.0000 (0.0015)
|h6| 0.0357 0.0096 (0.0016)
|h7| 0.0377 0.0181 (0.0031)
Log-Likelihood 8742.6128

Table 5.2: Optimized parameter set (Opti parset) for different initial parameter sets (Ini parset). Standard
errors in parentheses.
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Figure 5.3: Comparison between the calibrated
future prices and market future prices for con-
tract τ1.
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Figure 5.4: Comparison between the cali-
brated δti

and the market convenience yield,
δmarket
ti

(τ1, τ2).

From Figure 5.4 it is clear that the KF can not generate the convenience yield because of the nonnegativ-
ity constraint. This constraint implies that the CY equals zero for a long period of time. Note, however,
that the future prices (of contract τ1) are filtered very well. The fact that δti

= 0 for extensive periods
makes this appoach basically useless.

Case three. Finally, one can also shift the data in time such that δmarket
0 > 0. We shift the data 14 weeks

ahead (see Figure 5.2). Results are given in Table 5.3. We will test its robustness by changing the initial
parameter set. If we compare the optimized parameter set of Table 5.2 with that of Table 5.3 we do

Parameters Ini parset Opti parset Ini parset Opti parset Ini parset Opti parset
k 1.4221 1.6118 (0.0389) 2 1.6118 (0.0485) 1.4 1.6118 (0.0285)
µ 0.3733 0.2932 (0.1442) 0.5 0.2932 (0.1321) 0.2 0.2932 (0.1221)
α 0.0699 0.0590 (0.0973) 0.1 0.0590 (0.0843) 0.1 0.0590 (0.0880)
λ -0.15 -0.1029(0.1571) -0.1 -0.1029(0.1360) 0.2 -0.1029(0.1369)
σS 0.3630 0.5864 (0.0247) 0.3 0.5864 (0.0249) 0.5 0.5864 (0.0239)
σδ 0.4028 0.6598 (0.0274) 0.3 0.6598 (0.0249) 0.3 0.6598 (0.0262)
ρ 0.8378 0.8357 (0.1442) 0.4 0.8357 (0.0179) 0.6 0.8357 (0.0190)
|h1| 0.0246 0.0189 (0.0008) 0.0246 0.0189 (0.0008) 0.1 0.0189 (0.0008)
|h2| 0.0268 0.0073 (0.0003) 0.0268 0.0073 (0.0003) 0.1 0.0073 (0.0003)
|h3| 0.0291 0.0022 (0.0001) 0.0291 0.0022 (0.0001) 0.1 0.0022 (0.0001)
|h4| 0.0313 0.0000 (0.0001) 0.0313 0.0000 (0.0001) 0.1 0.0000 (0.0001)
|h5| 0.0336 0.0006 (0.0000) 0.0336 0.0006 (0.0000) 0.1 0.0006 (0.0000)
|h6| 0.0357 0.0000 (0.0001) 0.0357 0.0000 (0.0001) 0.1 0.0000 (0.0001)
|h7| 0.0377 0.0015 (0.0001) 0.0377 0.0015 (0.0001) 0.1 0.0015 (0.0001)
Log-Likelihood 8341.0028 8341.0028 8341.0028

Table 5.3: Optimized parameter set (Opti parset) for different initial parameter sets (Ini parset). Standard
errors in parentheses.

not see any significant differences in the parameters. This can also be seen when comparing Figures
5.3 and 5.4 with Figures 5.5 and 5.6 respectively (there is hardly any difference). Despite the fact that
the CY equals zero for a large period of time, the Kalman filter is stable. Different initial parameter
sets will converge to the same optimized parameter set (see Table 5.3). But again, the fact that δti

= 0
for extensive periods makes this approach useless. If we compare Figure 4.2 and 5.6, we see that both
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processes are not able to fit the market convenience yield very well. As noted earlier, we can conclude
that the market convenience yield is not a pure convenience yield, but can be interpreted as the total
cost of carry. For each futures contract we plot the innovation. Again, since the mean of the innovations
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Figure 5.5: Comparison between the calibrated
future prices and market future prices for con-
tract τ1.
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Figure 5.6: Comparison between the cali-
brated δti

and the market convenience yield,
δmarket
ti

(τ1, τ2).

is nearly zero, the assumption of zero-mean normal distributed error terms is acceptable.
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Figure 5.7: Innovation corresponding to Ft(τ1).
Mean = -8.2412e-004, Variance = 0.0003.
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Figure 5.8: Innovation corresponding to Ft(τ2).
Mean = 7.6238e-004, Variance = 0.0009.
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Figure 5.9: Innovation corresponding to Ft(τ3).
Mean = 6.1235e-004, Variance = 0.0007.
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Figure 5.10: Innovation corresponding to
Ft(τ4). Mean = -1.0181e-004, Variance = 0.0011.
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Figure 5.11: Innovation corresponding to
Ft(τ5). Mean = -5.5711e-004, Variance = 0.0020.

0 50 100 150 200 250 300
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

E
rr

or

Number of observations

Figure 5.12: Innovation corresponding to
Ft(τ6). Mean = -3.4434e-004, Variance = 0.0010.
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Figure 5.13: Innovation corresponding to Ft(τ7). Mean = 6.1123e-004, Variance = 0.0012.

5.2.2 Parameter explanation

If we look at Table 5.3, we see a correlation factor of 0.8357. This is the correlation between the ’true’
state variables (i.e. including the artificial nonnegativity constraint of the convenience yield). Since we
only test if the estimate of the convenience yield is zero and not the update (see pseudo code), we can
measure the correlation of the ’actual’ state variables (i.e. including negative values of the convenience
yield). In Figure 5.14 we see the scatterplot of the increments of the ’actual’ state variables and in Figure
5.15 we see the scatterplot between the increments of the ’true’ state variables presented in Figures 5.5
and 5.6. The dots with correlation zero can be explained by the fact that if the convenience yield is set to
zero the correlation between ∆δt and ∆xt is therefore zero. The ’actual’ correlation is 0.4995.

5.3 Conclusion

We expected, due to the non-Gaussianity of the CIR process, quasi-optimal results for the Kalman filter.
The covariance-variance matrix given in (5.2) depends on the state variable δt. Since δt can not be
negative, we simply adjust the Kalman filter by setting δti

zero if it is negative. However, if δ0 = 0, the
matrix Vti

will be almost zero as well and from Table 5.1 we can see that this will not give an optimal
result. Shifting δ0 such that it is positive gives an acceptable result. In Figure 5.3 we can see that the
calibrated future prices fit the market future prices succesfully, but the fact that δti

= 0 for extensive
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Figure 5.14: Scatterplot of the actual state vari-
ables (including negative convenience yield)
(∆xt,∆δt) for 299 observations.
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Figure 5.15: Scatterplot of the true state vari-
ables (∆xt,∆δt) for 299 observations.

periods makes this approach basically useless. The same can be said about case 3, where we shift the
data set such that δmarket

0 > 0. From Table 5.3 we see that the procedure is stable but the same arguments
hold for the convenience yield. In short, the choice of process for the convenience yield strongly depends
on the data period of the commodity. In the following chapter we price put options on future prices.
Because of the negative results of Chapter 5 we assume the convenience yield to follow an OU process
as given in Chapter 2 and 4.



Chapter 6

Pricing options on futures

In this chapter a closed form solution for a European call option on a futures contract with strike price
K and maturity T will be derived via the PDE given in equation (2.32). More generally, when con-
sidering stochastic interest rate, Appendix B gives a detailed description of the derivation of the same
form of the closed form solution via a change of measure etc. Furthermore, with the use of this closed
form solution and the calibrated future prices, put prices are calibrated to the market put prices via the
extended Kalman filter. It turns out that parametrization of the volatility of the spot processes, St and
δt is a challenging difficulty and we conclude that one needs a matured contract to do so. At the end
of this chapter, both initially assumed stochastic processes for the spot price and convenience yield are
retrieved by starting from the future prices process.

6.1 Deriving the closed form solution of a K-strike European call op-
tion on a futures contract

Consider again the PDE given in (2.32) and assume

V (S, δ, t) = V̄ (F, t), (6.1)

calculating all derivatives and inserting these in (2.32) gives

V̄t + {−A′(τ)−B′(τ)}FV̄F + {k(α− δ)− λσδ}B(τ)FV̄F + {r − δ}FV̄F + ρσSσδF
2B(τ)V̄FF

+ρσSσδB(τ)FV̄F +
1
2
σ2

SF
2V̄FF +

1
2
σ2

δB
2(τ)F 2V̄FF − rV̄ = 0. (6.2)

Together with the former differential equation presented in (2.36) it holds that

V̄t +

r −A′(τ) + kαB(τ)− λσSB(τ) + ρσSσδB(τ)︸ ︷︷ ︸
=0, cf.(2.36)2

FV̄F +
1
2
σ2

F (t, T )F 2V̄FF − rV̄ = 0, (6.3)

with

σ2
F (t, T ) = σ2

S + σ2
δB

2(t, T ) + 2ρσSσδB(t, T ). (6.4)

Equation (6.3) is recognized as the Black equation. Suppose now that the payoff is given by a call, i.e.
V̄ (F, T ) = max(F −K)+. Then the solution is given by

V̄ (F, t) = e−r(T−t)FN (d1)− e−r(T−t)KN (d2), (6.5)
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with

d1 =
ln(F/K) + 1

2 σ̂
2
F (T − t)

σ̂F

√
T − t

, d2 =
ln(F/K)− 1

2 σ̂
2
F (T − t)

σ̂F

√
T − t

and

σ̂2
F (t, T ) =

1
T − t

∫ T

t

σ2
F (t, u)du

=
1

T − t

{
2ρσSσδ

k2
(1− θ)− 2ρσSσδ

k
(T − t) + σ2

S(T − t) +
σ2

δ

2k3
(1− θ2)− 2σ2

δ

k3
(1− θ) +

σ2
δ

k2
(T − t)

}
.

(6.6)

Alternatively, we can derive the same formula as given in (6.5) by considering (2.12):

Vt[YT ] := e−r(T−t)E[YT |Ft]. (6.7)

The value of a European call option at time t is given by

Vt[(ST −K)+] = e−r(T−t)E[(ST −K)+] (6.8)

Combining (2.19) and (6.8) we obtain

Vt[(ST −K)+] = E[(Ste
z − e−r(T−t)K)+]. (6.9)

Since ez is normally distributed with mean µ̂ and variance σ̂, we can compute the expectation in (6.9)
explicitly.

Vt[(ST −K)+] = exp
{
µ̂+

1
2
σ̃

}
StN (d̂1)− exp {−r(T − t)}KN (d̂2), (6.10)

with

d̂1 =
ln(St/K) + r(T − t) + µ̂+ σ̃2

σ̃
, d̂2 =

ln(St/K) + r(T − t) + µ̂

σ̃
. (6.11)

The parameters µ̂ and σ̃2 are given by (2.20) and (2.27) respectively. Since

Vt[ST ] = St exp
{
µ̂+

1
2
σ̃2

}
, (6.12)

we can rewrite (6.10) in

Vt[(ST −K)+] = Vt[ST ]N (d1)− e−r(T−t)KN (d2), (6.13)

and

d1 =
ln(Vt[ST ]/K) + r(T − t) + 1

2 σ̃
2

σ̃
, d2 =

ln(Vt[ST ]/K) + r(T − t)− 1
2 σ̃

2

σ̃
.

Obviously σ̃2 is given by σ̂2
F (T − t). Using definition (2.30) and V (S, δ, t) = Vt[YT ] in (6.13) we arrive at

expression (6.5).

For every observed future option price, we can solve formula (6.5) for σ̂F . This specific value for the
volatility multiplied by

√
T − t will from this point on be referred to as the real dynamic volatility and

it will be denoted by σRD(t, T ).
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6.2 Calibrating the model to market put prices

Since for the data used in Chapter 4,5 and 6 we do not have corresponding put prices, we use 3 futures
contracts on the same commodity (light crude oil) with different maturities. They are denoted by M8, Z8
and M9. Instead of weekly observations we now have daily observations. The number of observations
is 79. One important remark is that the maturity of the option is the same as the maturity of the futures
contract!

Contract Date at t=0 Date at t=T Last observation day Observed trading days Total trading days
M8 20/11/2007 20/05/2008 17/03/2008 79 125
Z8 20/11/2007 20/11/2008 17/03/2008 79 258
M9 20/11/2007 19/05/2009 17/03/2008 79 386

Table 6.1: Contract details.

Puts on contracts M9 and Z8 with three different strikes (70,75 and 80) will generate three different
put options prices. Contract M8 only has two put options with strikes 80 and 85. In this section we
investigate how well our optimized parameter set, which we derived from the Kalman filter, fits the put
option market prices. We insert the parameters in the put option formula and compare these prices to
the market prices. The Kalman filter will calibrate the parameters committed to these contracts. The
calibrated values of the future prices and the volatilities of the two stochastic processes (spot price and
the convenience yield) are then used in formula (6.5). From the put-call parity it follows

P = C +Ke−r(T−t) − F (0, T )e−r(T−t), (6.14)

with obvious notation. Note that P is the price of a put option with maturity time T and strike price K
written on a futures contract which expires at time T .

6.2.1 Setting up the calibration for the put option prices

To price the put options we use again the extended Kalman filter, which is explained in Section 4.3. More
specifically, we have

• Q(αti−1) = Fti
(τj) j = 1, .., n, i = 1, .., N ,

• R(αti−1) = 1,

• Z(αti
) = P ,

• Ẑ(αti
) = ∂P

∂Fti
(τj)

,

• T̂(αti
) = 1,

• R̂(αti) = 0,
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• H = h1.

The first contract expires after 182 calender days (125 trading days) on the first observation. τ is set to
182/360 at this day, since the system matrices are calculated annually. After day two, τ is set to 181/360
etc. Weekends are excluded. So for each observation we have a σ̂F .

6.2.2 Results following a naı̈ve approach

The KF is set up in such a way that it incorporates all market future prices in the calibration of all model
parameters in the set ϕ. In this approach, the parameter dependency on the strikes K and maturities
T is fully disregarded. In Figures 6.1-6.3 the calibrated future prices against the market future prices
are presented. In Table 6.1 the optimized parameter set is shown. The initial values of the parameters
are the optimized parameter set from Table 4.1. For the {hj}nj=1 we used the variance of the logarithm
of the future prices. We continue with the valuation of put options using the optimized parameter set
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Figure 6.1: Comparison between the calibrated
future prices and market future prices for con-
tract M8.
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Figure 6.2: Comparison between the calibrated
future prices and market future prices for con-
tract Z8.
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Figure 6.3: Comparison between the calibrated future prices and market future prices for contract M9.

presented in Table 6.2. The put prices are computed by substituting the calibrated future prices, together
with all other parameters in Table 6.2, in the put formula given by (6.14).
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Parameters Ini parset Opti parset
k 1.4221 0.8046 (0.1012)
µ 0.3733 0.5374 (0.4453)
α 0.0699 0.0851 (0.0169)
λ -0.0183 -0.0754(0.1405)
σS 0.3630 0.3493 (0.0305)
σδ 0.4028 0.1981 (0.0234)
ρ 0.8378 0.7171 (0.0593)
|h1| 0.0341 0.0000 (0.0005)
|h2| 0.0300 0.0000 (0.0005)
|h3| 0.0291 0.0027 (0.0002)
Log-Likelihood 902.7301

Table 6.2: Optimized parameter set (Opti parset). Standard errors in parentheses.
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Figure 6.4: Comparison between the calibrated
put prices and market put prices for contract
M8 with K=85.
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Figure 6.5: Comparison between the calibrated
put prices and market put prices for contract
M8 with K=80.
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Figure 6.6: Comparison between the calibrated
put prices and market put prices for contract
Z8 with K=85.
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Figure 6.7: Comparison between the calibrated
put prices and market put prices for contract
Z8 with K=80.

From these figures, it can be concluded that the calibrated put prices are not acceptable. As to be ex-
pected, the spot volatilities depend on both the strike prices and the time to maturity.
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Figure 6.8: Comparison between the calibrated
put prices and market put prices for contract
Z8 with K=75.
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Figure 6.9: Comparison between the calibrated
put prices and market put prices for contract
M9 with K=85.
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Figure 6.10: Comparison between the cali-
brated put prices and market put prices for
contract M9 with K=80.
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Figure 6.11: Comparison between the cali-
brated put prices and market put prices for
contract M9 with K=75.

6.3 Results which incorporate explicit strike dependency

In this experiment we use the market data of expired put options on future M8 for four different strikes.
See Table 6.3 for a quick overview of the details for contract M8. The procedure is as follows: For each

Contract K Date at t=0 Date at t=T Observed trading days Total trading days
M8 K= 85 20/11/2007 20/05/2008 125 125
M8 K=110 05/12/2007 20/05/2008 115 115
M8 K=115 10/03/2008 20/05/2008 51 51
M8 K=125 13/03/2007 20/05/2008 48 48

Table 6.3: Contract details.

strike we run the Kalman filter over the future prices. Parameters are given in Table 6.4 for four different
strikes. The initial parameter set is given by the one in Table 6.2.

In Figure 6.12 we see that the calibrated future prices are fitted succesfully to the market future prices.
This holds for all four different strike prices despite the very high values of some parameters. To cali-
brate the model to the market put prices as well, we keep the optimized parameter set constant for each
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Parameters K=85 K=110 K=115 K=125
k 0.2089 0.2144 0.0014 0.0630
µ 1.4354 1.3117 6.5556 3.9980
α 11.2299 8.0303 0.2753 109.2796
λ 3.1413 1.9467 7.5792 18.3986
σS 0.2613 0.2587 0.3013 0.1649
σδ 0.0303 0.0455 3.0048 1.6310
ρ 0.9999 0.9999 0.6635 -0.9999
|h1| 0.0341 0.0231 0.0013 0.0320

Table 6.4: Optimized parameter set for different strike prices for the contract M8.
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Figure 6.12: Comparison between the calibrated future prices and market future prices for contract M8
K=85.

strike price, and only σS and σδ are incorporated in the EKF. Results are given in Table 6.5 Figures 6.13-

Parameters K=85 K=110 K=115 K=125
σS 0.3737 0.3756 0.3090 0.2415
σδ 0.6701 0.4923 3.8011 1.7195
|h1| 0.0145 0.0159 0.0056 0.0265

Table 6.5: Optimized parameter set for different strike prices for the contract M8.

6.16 depict calibrated put prices for four strikes, where the σS and σδ in Table 6.4 are replaced by the
ones in Table 6.5. The σS and σδ in Table 6.5 are calibrated exclusively to the market put prices, but from
Figures 6.13-6.16 we can conclude that for these parameters the put prices still fit the market data ex-
ceptionally well. Figures 6.17-6.20 represent the volatility σ̃F (t, T ) compared to real dynamic volatility.
In Figure 6.17 we see that the real dynamic volatility differs from σ̃F (t, T ) in the end of the observation
period. However, this is due to the fact that the put prices, with strike 85, will become worthless. Trying
to get data-fitted volatility for that period is inadequate. Also the bumb around observation 100 can be
confirmed in the Figure 6.13, where the market put prices differ from the calibrated ones.
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Figure 6.13: Comparison between the cali-
brated put prices and market put prices for
contract M8 K=85.
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Figure 6.14: Comparison between the cali-
brated put prices and market put prices for
contract M8 K=110.
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Figure 6.15: Comparison between the cali-
brated put prices and market future put for
contract M8 K=115.
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Figure 6.16: Comparison between the cali-
brated put prices and market future put for
contract M8 K=125.
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Figure 6.17: Comparison between σ̃F (t, T ) and
σRD(t, T ) for contract M8 with K=85.

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of observations

V
ol

at
ili

ty

Calibrated vol
Real dynamic vol

Figure 6.18: Comparison between σ̃F (t, T ) and
σRD(t, T ) for contract M8 with K=110.
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Figure 6.19: Comparison between σ̃F (t, T ) and
σRD(t, T ) for contract M8 with K=115.
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Figure 6.20: Comparison between σ̃F (t, T ) and
σRD(t, T ) for contract M8 with K=125.
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Figure 6.21: Calibrated volatility contract M8 with different strike prices

6.4 Results which incorporates both strike and maturity dependency

In Section 6.3 we again assume incomplete data sets for all three contracts, see Table 6.1. If we look
at equation (6.5), the only parameter which is very sensitive is the σ̂2

F given in (6.6). This volatility
contains the components σS and σδ and a term which dictates the dependency on τ = t− T . The idea is
to parametrize σS = σ̄Sτ

β and σδ = σ̄δτ
γ to include more (time-dependent) structure into (6.6), keeping

all the other parameters constant, i.e. we only calibrate σ̄S , β, σ̄δ and γ via the EKF.
For contracts with a maturity less than a year (i.e. T < 1) the −2 ≤ β ≤ 0 and for contracts with a
maturity with one year or more, −10 ≤ β ≤ 0. This is done because otherwise σS will diverge in the
calibration process.
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Figure 6.22: Comparison between the cali-
brated put prices and market put prices for
contract M8 with K=85.
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Figure 6.23: Comparison between the cali-
brated put prices and market put prices for
contract M8 with K=80.
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Figure 6.24: Comparison between the cali-
brated put prices and market put prices for
contract Z8 with K=85.
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Figure 6.25: Comparison between the cali-
brated put prices and market put prices for
contract Z8 with K=80.
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Figure 6.26: Comparison between the cali-
brated put prices and market put prices for
contract Z8 with K=75.
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Figure 6.27: Comparison between the cali-
brated put prices and market put prices for
contract M9 with K=85.

Note that σ̄S and σ̄δ both are positive, guaranteeing positiveness for σS and σδ . However, this is ac-
complished by artificially setting zero-underbounds for σ̄S and σ̄δ . In Figures 6.30-6.37 σ̃F (t, T ) and
σRD(t, T ) are plotted for each contract and for each strike.
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Figure 6.28: Comparison between the cali-
brated put prices and market put prices for
contract M9 with K=80.
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Figure 6.29: Comparison between the cali-
brated put prices and market put prices for
contract M9 with K=75.

Contract names β σ̄S σ̄δ γ v̄ |h1|
M8 K=85 -0.8563 0.1130 0.7012 -0.8653 0.003 0.003
M8 K=80 -0.3622 0.2333 1.1734 -0.0367 0.002 0.002
Z8 K=85 -1.4589 0.2290 0.6718 -0.2131 0.005 0.003
Z8 K=80 0.8784 0.2941 0.5632 -2.0777 0.008 0.006
Z8 K=75 0.7970 0.3013 0.5824 -2.0423 0.008 0.007
M9 K=85 -1.1096 0.4073 2.2486 -6.7991 0.011 0.008
M9 K=80 -0.9248 0.3944 2.1129 -6.2171 0.013 0.005
M9 K=75 -0.7054 0.3795 1.9293 -5.5284 0.094 0.003

Table 6.6: Estimated parameters.
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Figure 6.30: Comparison between σ̃F (t, T ) and
σRD(t, T ) for contract M8 with K=85.
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Figure 6.31: Comparison between σ̃F (t, T ) and
σRD(t, T ) for contract M8 with K=80.
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Figure 6.32: Comparison between σ̃F (t, T ) and
σRD(t, T ) contract Z8 with K=85.
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Figure 6.33: Comparison between σ̃F (t, T ) and
σRD(t, T ) contract Z8 with K=80.

0 10 20 30 40 50 60 70 80
0.22

0.23

0.24

0.25

0.26

0.27

Number of observations

V
ol

at
ili

ty

Calibrated vol
Real dynamic vol

Figure 6.34: Comparison between σ̃F (t, T ) and
σRD(t, T ) for contract Z8 with K=75.
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Figure 6.35: Comparison between σ̃F (t, T ) and
σRD(t, T ) for contract M9 with K=85.
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Figure 6.36: Comparison between σ̃F (t, T ) and
σRD(t, T ) for contract M9 with K=80.
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Figure 6.37: Comparison between σ̃F (t, T ) and
σRD(t, T ) for contract M8 with K=75.

6.4.1 Time-local volatility parametrization for the spot process dynamics

In the previous section we introduced two parametrisations σS = σ̄Sτ
β and σδ = σ̄δτ

γ . These parametri-
sations bring more structure in σ̂F , resulting in better option estimations, but it does not bring in addi-
tional dynamics in the spot processes for St and δt since we assumed σS and σδ to be constant. Never-
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theless, if we can find a parametrization of the spot volatilities and inserting these into

σ2
F = σ2

S + σ2
δB

2(τ) + 2ρσSσδB(τ), (6.15)

such that one can still explicitly solve the integral given in the relation (6.6), then the problem is solved.
In general, for arbitrary parametrizations σS(t) and σδ(t), the explicit computation of integral (6.6) is
basically impossible.
Assume the following form for σ̂2

F , (see e.g. (6.6)):

σ̂2
F =

1
τ

∫ τ

0

D(τ)2 − C(τ)dτ, C(τ) ≤ 0, D(τ) ≥ 0, (6.16)

or, equivalently,

σ̃2
F =

∫ τ

0

D(τ)2 − C(τ)dτ, (6.17)

and set

σS = D(τ). (6.18)

Substitution of (6.18) into (6.15) yields

σ2
δB(τ)2 + 2ρD(τ)σδB(τ) = −C(τ), (6.19)

or equivalently

σδ =
−2ρD(τ)B(τ)±

√
4ρ2D(τ)2B(τ)2 − 4B(τ)2C(τ)

2B(τ)2
. (6.20)

Since ρ = 0.7171 we see that −2ρD(τ)B(τ) ≥ 0 because B(τ) ≤ 0. For the square root to be positive, it is
required to have

C(τ) ≤ ρ2D(τ)2. (6.21)

Looking at Figures 6.20-6.27 we assume

σ̃F = a2τ b + c2τγ + d2, γ ≤ 0, (6.22)

or, equivalently,

σ̃2
F = a4τ2b + c4τ2γ + d4 + 2a2c2τ b+γ + 2a2d2τ b + 2c2d2τγ . (6.23)

Now

∂σ̃2
F

∂τ
= 2ba4τ2b−1 + 2γc4τ2γ−1 + (b+ γ)2a2c2τ b+γ−1 + 2ba2d2τ b−1 + γ2c2d2τγ−1. (6.24)

Take

D2(τ) = 2ba4τ2b−1 + 2ba2d2τ b−1 +⊕(b+ γ)2a2c2τ b+γ−1

C(τ) = 2γc4τ2γ−1 + (1−⊕)(b+ γ)2a2c2τ b+γ−1 + γ2c2d2τγ−1, (6.25)

where

⊕ =

 1, if (b+ γ)2a2c2τ b+γ−1 ≥ 0

0, if (b+ γ)2a2c2τ b+γ−1 ≤ 0,
(6.26)
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In doing so, we force D(τ) to be positive and C(τ) to be negative and thus satisfying the contraint given
in (6.21). Substituting (6.25) into (6.16) we get

τ σ̂2
F =

∫ τ

0

D(τ)2 − C(τ)dτ

= a4τ2b + c4τ2γ + d4 + a2c2τ b+γ + a2d2τ b + 2c2d2τγ . (6.27)

returning to the original form (6.22). So the parametrisation of σS and σδ is given by

σS =
√

2ba4τ2b−1 + 2ba2d2τ b−1 +⊕(b+ γ)2a2c2τ b+γ−1

σδ =
−2ρσS

B(τ)
+

√
4ρ2σ2

SB(τ)2 − 4B(τ)2(2γc4τ2γ−1 + (1−⊕)(b+ γ)2a2c2τ b+γ−1 + γ2c2d2τγ−1)
2B(τ)2

,

(6.28)

where we take the plus sign which ensures positiveness of σδ . This parametrisation gives the same
results (i.e. figures) as in Sections 6.2 and 6.3. The parameters are given in Table 6.7.

Contact names a b c d γ h
M8 K=85 -0.7083 4.0083 -0.0002 0.3816 -7.6388 0.009
M8 K=80 -1.5430 6.2778 0.0000 0.3924 -12.1297 0.022
Z8 K=85 0.1053 31.6287 -0.0202 0.4672 -12.3967 0.012
Z8 K=80 0.1136 29.0214 -0.0279 0.4693 -10.8131 0.009
Z8 K=75 0.1076 31.2684 -0.0239 0.4775 -11.4608 0.007
M9 K=85 -0.4076 0.4654 -1.1737 0.2502 -17.1171 0.012
M9 K=80 -0.3081 1.0447 -0.9980 0.3500 -14.2833 0.002
M9 K=75 -0.2808 1.4806 -0.8593 0.3587 -11.8414 0.003

Table 6.7: Estimated parameters.

If we look at equation (6.28), σδ is strictly positive ∀ −1 ≤ ρ ≤ 1. In fact, we must have, [cf. (6.20)],

−2ρD(τ)B(τ) +
√

4ρ2D(τ)2B(τ)2 − 4B(τ)2C(τ) ≥ 0

−2ρD(τ)B(τ) ≥ −
√

4ρ2D(τ)2B(τ)2 − 4B(τ)2C(τ)

2ρD(τ)B(τ) ≤
√

4ρ2D(τ)2B(τ)2 − 4B(τ)2C(τ)

4ρ2D(τ)2B(τ)2 ≤ 4ρ2D(τ)2B(τ)2 − 4B(τ)2C(τ)

0 ≤ −4B(τ)2C(τ), (6.29)

which is always true thanks to the initial assumption C(τ) ≤ 0.
Since we set γ ≤ 0 as a constraint during the calibration, σ̃F blows up for τ ← 0. Hence, if τ ← 0
(and this will be the case if one tries to calibrate a matured option), the KF will try to neutralize the
c2τγ term. See also Table 6.7 for contract M8, which is close to maturity. The form of σ̂F is only known
for the first 79 observation days. Since we are considering put options on these futures, and since the
futures on oil are rising, one can imagine that the put prices are deeply out of the money and are worth
nothing (looking at the strikes of these options). In fact, σ̃F will be very small in that case (when close to
maturity). Finally, assuming a form for the volatility curve, as we did in Section 6.4.1 is not reliable due
to the fact that one does not know how the curve looks in the future. Compare e.g. Figure 6.17 and 6.30.
We can conclude that trying to fit the curve of σ̃F , we first need all the historical data.
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6.5 From future price process to the spot processes

In the previous chapters and sections we initially defined St and δt by some kind of stochastic dynamics
resulting in

V̄t +
1
2
σ2

F (t, T )F 2V̄FF − rV̄ = 0, (6.30)

where σ2
F (t, T ) in given in (6.4). However, in the commodity market, and in particular the commodity

light crude oil, the spot price and convenience yield process are not observable. In practice, it is therefore
preferable to work with the price processes of futures. Reisman uses ”as the inputs the parameters of the
process specifying the local second moments of future prices of all maturities and their current prices”
and showed ”that any arbitrary specification of these inputs implies an arbitrage free furtures markets,
derives the spot price and the convenience yield processes implied by such specification”, ([33]: p.2).
An particular example, which we discuss, is the spot price process and convenience yield process given
in Chapter 4. Looking at the driftless term structure of the future price, we have

dF (t, T )
F (t, T )

= (σ2
S + σ2

δB
2(t, T ) + ρσSσδB(t, T ))dWF

t

=
√

1− ρ2σSdW
1
t + (σδB(t, T ) + ρσδ)dW 2

t

= σ1(t, T )dW 1
t + σ2(t, T )dW 2

t , (6.31)

where W 1
t and W 2

t are assumed to be two independent Brownian motions. We define W 1
t =

WS
t√

1− ρ2
− ρW δ

t√
1− ρ2

,

W 2
t = W δ

t ,

(6.32)

where W 1
t is orthogonal to W 2

t . Since in the limit of T → t we have

σ1(t) =
√

1− ρ2σS and σ2(t) = ρσS . (6.33)

and

dSt

St
= (r − δt)dt+

√
1− ρ2σSdW

1
t + ρσSdW

2
t

= (r − δt)dt+
√

1− ρ2σS

{
dWS

t − ρdW δ
t√

1− ρ2

}
+ σSρdW

S
t

= (r − δt)dt+ σSdW
S
t . (6.34)

Note that, together with

δt = r − ∂

∂t
lnF (0, t) + k

∫ t

0

e−k(t−u)

{
−σδ

k2

[
e−2kt − 1

]
− ρσSσδ

k

}
du− σδ

∫ t

0

e−k(t−u)dW 2
u , (6.35)

(6.34) is our initial process for the spot price. (6.35) is found by applying Itô’s lemma to the logarithm of
the future price lnF (t, T ), substituting S(t) = F (t, t) and finally take an Itô differential of that equation.
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Applying Itô’s lemma on (6.35) yields

d(ektδt) =
[
ekt ∂

∂t
lnF (0, t)

]′
dt− kekt

{
−σδ

k2

[
e−2kt − 1

]
− ρσSσδ

k

}
dt+ σδe

ktdW 2
t

=
[
kekt ∂

∂t
lnF (0, t) + ekt ∂

2 lnF (0, t)
∂t2

]
dt− kekt

{
−σδ

k2

[
e−2kt − 1

]
− ρσSσδ

k

}
dt+ σδe

ktdW 2
t

= −kekt

{
− ∂

∂t
lnF (0, t)− 1

k

∂2 lnF (0, t)
∂t2

− ρσSσδ

k
− σ2

δ

2k2
(e−2kt − 1)

}
dt+ σδe

ktdW 2
t . (6.36)

Define α(t), the mean-reversion term of dδt which is now assumed to be time-dependent, by

α(t) =
1
k

∂2

∂t2
lnF (0, t) +

∂

∂t
lnF (0, t) +

σ2
δ

2k2
(e−2kt − 1) +

ρσSσδ

k
. (6.37)

(6.37) follows from rewriting our initial spot convenience yield process, i.e. consider again

dδt = k(α(t)− δt)dt+ σδdW
δ
t . (6.38)

We have

d(ektδt) = kektδtdt+ ektdδt

= kektδtdt+ ekt(k(α(t)− δt)dt+ σδdW
δ
t )

= kα(t)ektdt+ σδe
ktdW δ

t . (6.39)

By comparing (6.36) by (6.39) the result in (6.37) follows immediately.

6.6 Conclusion

Pricing put options on futures contracts seems to work quite well. Matching the model’s implied volatil-
ity with the real dynamic volatility seems rather difficult if one does not have a matured contract. How-
ever, as we can conclude from Section 6.3, pricing of options on a matured contract using the optimized
parameter set ϕ and only differ ρ, σS and σδ , is succesful. In Table 6.4 we can see high values of α.
An explanation for this can be that our initially assumed stochastic processes for the state variables
are not sufficiently structured. Extending this stochastic system with e.g. stochastic convenience yield,
stochastic interest rates, seasonality factors, jump processes etc, can be an improvement. Furthermore,
starting from the future price process given in (6.31), we see that αt is time dependent and depends on
F (0, t) ∀ t. Since the future prices are not observable for an arbitrary point in time, one should find a
way to estimate them. This can be done by extrapolation, but, since we must calculate first and second
order derivatives of lnF (0, t), this can cause serious problems. Therefore, we took α constant.



Chapter 7

Discussion and further research

7.1 Discussion

In this Master’s Thesis we calibrate future prices and we calibrate put options on these future prices as
well. By means of the Kalman filter we are able to fit the future prices very succesfully to the market. The
choice of the KF is made because of the fact that the spot processes of the future prices are unobservable.
For the spot price we assumed throughout this thesis a GBM and for the convenience yield either an OU
process or a CIR process. We find inadequacy of the CIR process due to the nonnegativity constraint for
the convenience yield. Hence we continued with the OU process to calibrate the put options. Again,
using the extended Kalman filter we can fit the put option prices succesfully to the market. However,
due to the unrealistic values of some parameters in Table 6.4, the stochastic process assumed initially
for the spot price and the convenience are not satisfactory. In fact, adding extensions such as stochastic
volatility and interest rates appear to be necessary. Further research and remark points are given below

• Although the EKF is not optimal for the Ornstein-Uhlenbeck process, it is still acceptable and
therefore we use this technique to price put options on futures contracts.

• Another important issue to be considered is the strong evidence against the adequacy of the CIR
model for the future prices. This has several reasons. The first one is that the CIR process is not
Gaussian which is essential to obtain an optimal result from the KF. Secondly, the nonnegativity
constraint gives highly inaccurate results for the path of the convenience yield. And last, if the
calibration starts with data such that the convenience yield is negative, the iterative procedure is
useless, causing very large standard errors and not realistic parameters. However, if we shift the
data (see case two of Section 5.2) we find that the robustness of the method is satisfactory. Chang-
ing the initial parameter set will give the same optimized parameter set and the same value of the
log-likelihood function. Chapter 5 was inspired by [4]. They considered data of light crude oil
ranging for a period from 17th of March 1999 to the 24th of December 2003. In that period they
find approximately 20 observations for which the convenience yield is negative. If a replacement
of the negative convenience yield by zero is done for these few observations, it will not destroy the
total path. In our period however, as we can see in the Figure 5.2, the convenience yield is negative
for almost half of our observations. Replacement by zero will therefore cause great disturbances
in the path.

• The initial values of the parameters and the state variables are not known. The theory, however,
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states that, when considering the stochastic system Yt = d + Z[xt, δt]′ + ε,

αt = c + Qαt−1 + Rξ,
(7.1)

the state variable αt = [xt δt]′ in the KF algorithm should start with

α0 = E[c + Qαt−1 + Rξ] = (I−Q)−1c, (7.2)

(7.3)

that is, the conditional expectation of the starting variables. The matrix H consists of the the
variance of the state variables, so

Var[α0] = Q2Var[α0] + σ2
ξ, or equivalently, Var[α0] =

σ2
ξ

I−Q2 . (7.4)

Since the KF is a stable algorithm, the effect of initial conditions will vanish almost immedi-
ately in our test situation. We tested this for the OU process presented in Chapter 4 by setting
α0 = [10, −10], a totally inadequate initial value for both the log of the spot price and the conve-
nience yield. The log-likelihood remained the same, as well as the parameters given in Table 4.1.
The only difference is that the value of the log-likelihood function jumped in the beginning. This
can be explained by this incorrect initial value.

• The market price of risk is sometimes negative and sometimes positive. The precise explanation of
this behaviour is difficult and is still an important subject of study. The Black-Scholes equation is
an example of modelling the perfect world in which hedging a portfolio can be done continuously
and perfectly. So the portfolio is riskless and that is why the market price of risk does not appear
in the model. In our situation, considering non-observable quantities (spot price and convenience
yield) it is not possible to perfectly hedge the risk-free portfolio. So one trades assets that depend
on these quantities (in our case the futures contracts). It is therefore impossible to build a com-
pletely risk-free portfolio and therefore an investor will ask a premium for investing. In fact, the
market price of risk is the difference between the price a trader would buy the asset for and the
theoretical price.

• When pricing a put option on a futures contract, there are some important details to be considered.
First of all, when deriving the closed form solution of a future put option, one should be careful
whether or not introducing stochastic interest rates. In Appendix B we show the type of prob-
lems that may arise when doing this. Appendix B is not meant to be a fully detailed description
of stochastic theory but it shows some important problems. Although we assumed deterministic
(constant) interest rates we are able to price the future put option succesfully. Our model implied
volatility follows exactly the pattern of the real dynamic volatility from the Black-Scholes frame-
work. In fact, it seems as if the former is a perfect fit for the latter. The errors in our calibrated
put prices can be explained by the use of the EKF. When linearizing the system matrices, we in-
troduce an approximation in the estimation. Since the closed form solution of a future put option
is not linear, the EKF still seems to be the best iterative procedure. However, both the resulting
parametrizations given in Section 6.4 are not acceptable for actual trading.
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• In Table 6.4 we see unrealistic high values of some parameters, in particular the mean-reverting
term α. This points out that the stochastic processes of the spot price and the convenience yield
are not sufficient to price the futures contracts. In fact, it is possible to price the futures and put
options on these futures very accurately, but the parameters are chosen such that they do not obey
the initial assumptions of the stochastic processes. Model sensitivity analyses based on these pa-
rameters may then be misleading. It clearly proves that the model should be improved.

7.2 Further research

After reading the points of discussion one may wonder why we initially modeled unobserved variables
stochastic processes. According to Section 6.4 we can find the stochastic processes back by assuming
some kind of term structure (parametrization) of the volatility of the future prices. The fact that this
volatility is, in this case, known, makes it some kind of reverse engeneering. However, starting from the
future process, one does not know how to choose this volatility. In fact, the future price process may be
given by

dF (t, T )
F (t, T )

=
n∑

i=1

σidW
i
t ,

with i-independent Brownian motions. Another reason for initially assuming stochastic processes for
the state variables is because of the Greeks. In the PDE (2.31) traders would actually need the first and
second order derivatives with respect to S and δ to hedge their exposure caused by joining in on the
future market.
Although we can calibrate both future prices and put prices very accurately, the parameters presented in
Table 6.4 are unrealistic. To improve this, the following research directions could be recommended. First
of all we may just accept these parameters as they are parameters of unobserved processes. Secondly,
we can introduce stochastic volatility to create a three factor joint stochastic process. The problem with
including stochastic volatility is that the affine form solution of the closed form solution of the futures
is no longer applicable. Another way is including a stochastic interest rate, which has been explained
in Appendix B. A closed form solution for the K-strike European put option can still be derived but
since our results are succesful with constant interest rates of 4 percent. Including stochastic interest
rates would not make a significant difference. A further research topic could be including time and state
dependent volatility in the initial processes for St and δt, i.e. dSt = µStdt+ σS(t, St)StdW,

dδt = k(α− δt)dt+ σδ(t, δt)dZt.
(7.5)

But instead of making the volatilities state-dependent, one could also insert jumps into the processes.
The simplest mean-reversion jump-diffusion model [31] for spot prices is,

dSt = α(µ− ψKm − lnSt)Stdt+ σSStdW +KStdq, (7.6)

where K is the jump with log-normal distribution, i.e. ln(1 + K) ∼ N
(
ln(1 +Km)− γ2/2, γ2

)
with

Km mean jump size and γ the jump-volatility. ψ is the average number of jumps per year and dq is a
Poisson process.
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To improve modelling of the spot price model of future prices on commodities like light crude oil even
further, one can insert a seasonality factor, time-varying mean-reverting, etc. The problem with fore-
casting or calibrating oil is that oil is available globally. There are numerous factors that can affect the
price of oil. Seasonality, for example, can influence the demand for oil. During cold periods, more oil
is used which can make the price of oil rise and the other way around when it is warm. Oil prices also
depend on the economic environment. When the economy grows, oil demand in our daily lives will in-
crease, causing the prices of oil to rise. On the other hand, the probability of war in the top oil producing
countries is a serious factor. In short, the analysis of future oil price is complicated and one can make as
many adjustments to the model as one wishes.
It is a real challenge to end up with a realistic model for oil prices which, at the same time, can be dealt
with in a fast and efficient way. The models presented in this work are a first step in that direction.



Appendix A

Derivations of the Kalman filter
equations

A.1 Kalman Algorithm

In general the Kalman filter tries to estimate a state x ∈ <n where xt is given by the stochastic differential
equation

xt = Atxt−1 + wt−1, (A.1)

with a measurement z ∈ <n given by

zt = Htxt + vt, (A.2)

where

• At is a n× n matrix,

• Ht is a m× n matrix,

• wt and vt are the process and measurement noise (resp.) with mean zero and covariance matrices
Q and R (resp.).

The error term x̃t−1 = x̂t−1−xt−1 is assumed to have mean zero and covariance Pt−1. In other words, we
assume the estimator x̂t−1 to be unbiased. The goal of the KF is to find an unbiased minimum variance
estimator of the state at time t, of the form

x̂t = K ′
tx̂t−1 +Ktzt, (A.3)

where Kt is called the Kalman Gain. Note that this estimator is linear in xt and in zt. Now substract xt

from both the left and right side to get

x̂t − xt = K ′
tx̂t−1 +Ktzt − xt. (A.4)

Substituting (A.2) we get

x̂t − xt = K ′
tx̂t +Kt(Htxt + vt)− xt −K ′

txt−1 +K ′
txt−1, (A.5)
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where we substract and add the term K ′
txt−1. Substituting (A.1) and rearranging terms finally results in

x̂t − xt = K ′
t[x̂t−1 − xt−1] + [KtHtAt −At +K ′

t]xt−1 + (KtHt − I)wt +Ktvt−1. (A.6)

Since we assumed x̂t to be unbiased, i.e.

E[x̂t − xt] = E[K ′
t[x̂t−1 − xt−1] + [KtHtAt −At +K ′

t]xt−1 + (KtHt − I)wt +Ktvt−1]

= 0 + [KtHtAt −At +K ′
t]E[xt−1] + 0 + 0 = 0, (A.7)

where [KtHtAt − At + K ′
t] is just a number and so it can be taken out of the expectation. This implies

that [KtHtAt −At +K ′
t] = 0 or equivalently

K ′
t = (I −KtHt)At. (A.8)

Substituting this result into (A.3) gives

x̂t = (I −KtHt)Atx̂t−1 +Ktzt

= Atx̂t−1 +Kt(zt −HtAtx̂t−1). (A.9)

Now we want to find Kt such that the covariance of the estimation error is minimized. The covariance
matrix of the error, Pt is (for an unbiased error) a diagonal matrix with the variances on the diagonal,
i.e. we want to find Kt such that trace(Pt) is minimized. We have

Pt = E[(x̂t − xt)(x̂t − xt)′] = E[x̃tx̃
′
t]. (A.10)

The extrapolated estimate is defined as

x̂−t = Atx̂t−1, (A.11)

and the covariance of this error is noted as P−t . The extrapolated estimate error is then given by

x̃−t = x̂−t − xt = At[x̂t−1 − xt−1]− wt. (A.12)

We have

P−t = E[x̃t(x̃−t )′]

= E[(x̂t − xt)(x̂−t − xt)′]

= E[(x̂t − (Atxt−1 + wt))(At(x̂t−1 − xt−1)− wt−1)′]

= E[(x̂t −Atxt−1 − wt)((x̂t−1 − xt−1)′A′t − w′t−1)]

= E[(At(x̂t−1 − xt−1)− wt−1 +Kt(zt −HtAtx̂t))((x̂t − xt)′A′t − w′t−1)]

= AtE[(x̂t−1 − xt−1)(x̂t−1 − xt−1)′]A′t − 2AtE[(x̂t−1 − xt−1)w′t]

+ E[wt−1w
′
t−1] + E[Kt(zt −HtAtx̂t−1)(x̂t−1 − xt−1)′]− E[Kt(zt −HtAtx̂t−1)w′t−1]

= AtPtA
′
t +Qt. (A.13)

Note that E[wt] = E[(x̂t − xt−1)] = 0. In the same we way we can derive Pt, noting that from (A.9) and
(A.11) it follows that

x̂t = x̂−t −Kt(zt −Htx̂
−
t ), (A.14)
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holds. Using this result we can calculate the error term x̃t,

x̃t = x̂t − xt

= [I −KtHt]x̂−t +Ktzt − xt

= [I −KtHt]x̃−t −Ktvt, (A.15)

where we substituted (A.2) and (A.12) and rearranged terms. And so

Pt = E[x̃tx̃
′
t]

= E[(x̂t − xt)(x̂t − xt)′]

= E[([I −KtHt]x̃−t −Ktvt)([I −KtHt]x̃−t −Ktvt)′]

= E[([I −KtHt]x̃−t −Ktvt)((x̃−t )′[I −KtHt]′ − v′tK ′
t)]

= E[([I −KtHt]x̃−t (x̃−t )′[I −KtHt]′)]− E[([I −KtHt]x̃−t v
′
tK

′
t)]− E[(Ktvt(x̃−t )′[I −KtHt]′)] + E[Ktvtv

′
tK

′
t]

= [I −KtHt]P−t [I −KtHt]′ +KtRtK
′
t, (A.16)

where we made use of the fact that E[vt] = 0 and E[xtvt] = E[xt] + E[vt]. We finally have to find Kt such
that trace(Pt) is minimized, we have

Pt = [I −KtHt]P−t [I −KtHt]′ +KtRtK
′
t

= P−t −KtHtP
−
t − P−t H ′

tK
′
t +KtHtP

−
t H

′
tK

′
t +KtRtK

′
t. (A.17)

Accordingly1

trace(Pt) = trace(P−t )− 2trace(KtHtP
−
t ) + trace(KtHtP

−
t H

′
tK

′
t) + trace(KtRtK

′
t). (A.18)

By using the matrix identities

∂trace(ABA′)
∂A

= 2AB,where B is symmetric and
∂trace(AC)

∂A
= C ′, (A.19)

we can differentiate Pt with respect to Kt,

∂trace(P−t )
∂Kt

= −2P−t H
′
t + 2KtHtP

−
t H

′
t + 2Kt. (A.20)

This results in

Kt = P−t H
′
t(HtP

−
t H

′
t +R)−1, (A.21)

which is, as noted earlier, the Kalman Gain. Subsitute this into (B.49) we get

Pt = (I −KtHt)P−t . (A.22)

The KF algorithm is a predictor-corrector algorithm and uses the time updates for the prediction and
the measurement updates as the corrector.

1Note that (P−
t H′

tK
′
t)
′ = KtHtP

−
t and that trace(A) = trace(A′), so trace(P−

t H′
tK

′
t) = trace(KtHtP

−
t ).
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The KF algorithm is given by

Predictor (Time updates)

x̂−t = Atx̂t−1(A.11)

P−t = AtPt−1A
′
t +Qt(A.13)

Table A.1:6

?
Corrector (Measurement updates)

Kt = P−k H
′
t(HtP

−
t H

′
t +Rt)−1(A.21)

x̂t = x̂−t +Kt(zt −Htx̂
−
t )(A.14)

Pt = (I −KtHt)P−t (A.22)

Table A.2:

The system matrices consists of unknown parameters. If ϕ is the vector of unknown parameters and xt is
the vector of observed values, in order to find the appropriate parameters we maximize the loglikelihood
function. This function estimation is a well-known method for calculating the parameters such that the
mathematical model fits best to the data. It finds the most likely values of distribution parameters for a
set of data by maximizing the value of the log-likelihood function. Considering a multivariate Gaussian
distribution, the log-likelihood function is given by

lnL(Y ;ϕ) = −1
2
nln2π − 1

2

∑
t

ln|Ft| −
1
2

∑
t

v′tF
−1
t vt, (A.23)

where vt are the innovations (error between the observed and numeric value) and Ft is the covariance
matrix of the innovations at time t. In maximizing lnL and minimizing the innovations, an optimaliza-
tion routine finds the most likely parameters. In the following section we introduce a simple example.
Note that the log-likelihood function is not used here, because the system matrices are taken constant
and they thus not constists of unknown parameters.

A.2 Introductory example

Following [6],we use the KF to estimate a random constant. We assume all matrices in Table B.1 and B.2
to be constant. By setting A = 1, we obtain x̂−k = x̂k−1, i.e. we skip the updating step. By setting H = 1,
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we get zk = xk + vk, i.e. the measurements come directly from the state xk. We set Q = 1E − 05. Now
we have to choose an initial state to begin with. Since a random variable is normally distributed with
mean zero, we take x0 = 0 to be the initial state. Accordingly we must start with an initial state for Pk,
P0. It turns out that we can arbitrary choose P0 6= 0 and the filter will eventually converge. Take P0 = 1,
by taking P0 large enough, the choice of x0 does not influence the Kalman filter [7]. The crosses in the
following figures are generated by the matlab function

y=-0.37727+normrnd2(0,0.025ˆ2,samples,1);

A.2.1 Simulation results

By randomly choosing R = 0.0238 we get,
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Figure A.1: Simulation of a random constant, with R = 0.0238. The true value of x = −0.37727 is given
by the green line, the Kalman filter by the red line and the crosses are the noisy measurements.

Changing the choice of R is made clear by Figures A.2 and A.3. In Figure A.2 we take R = 1, this will
cause a much slower converging behaviour than in Figure A.1. This is because the filter responds slower
to the noisy measurements. However the filter will eventually converge to the true value of x. In Figure
A.3 we take R = 0.0001, as we can see the filter quickly responds to the measurements and tries to fit it.
With the choice of this R we can expect that it will take very long for the filter to converge to the green
line.
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Figure A.2: Simulation of a random constant, with R = 1. The true value of x = −0.37727 is given by
the green line, the Kalman filter by the red line and the crosses are the noisy measurements.
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Figure A.3: Simulation of a random constant, with R = 0.0001. The true value of x = −0.37727 is given
by the green line, the Kalman filter by the red line and the crosses are the noisy measurements.

A.2.2 How to choose R

Consider for simplicity Q = 0, so (A.2) can be written as zt = Htxt or It = zt −Htxt, where It is usually
referred to as the innovations. If we plot It in Figure A.4 we see that the crosses are distributed around
zero. This is expected because RIt is statistically equal to the variance of the error term of vt, R. We
assumed vt is N (0, R). But from the literature [7] it is also known that RIk

= HtP
−
t H

′
t + R. We first

chooseR randomly, to sayR = 0.10. If we plot both the statistically innovations and the theoretical ones
we should have that 68 percent of the crosses lies inside the theoretical boundary. In Figure A.4 we can
see that only 54 percent of the crosses lies inside the boundary.

It is therefore necessary to change the value of R, say R = 0.16. We see that 71 percent of the red crosses
lies between the blue lines. If we now plot the Kalman filter using this R we see that this is one of the
best choices for R.
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Figure A.4: Comparison between the theoretical innovations (blue lines) and the statistical innovations
(red crosses). The number of red crosses between the blue lines is 54 percent. R = 0.10.
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Figure A.5: Comparison between the theoretical innovations (blue lines) and the statistical innovations
(red crosses). The number of red crosses between the blue lines is 71 percent. R = 0.16.
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Figure A.6: Simulation of a random constant, with R = 0.16. The true value of x = −0.37727 is given by
the green line, the Kalman filter by the red line and the crosses are the noisy measurements.
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Appendix B

Pricing of options on commodity
futures

In this appendix, the closed form solution of a European option with strike price K and maturity time
t written on a futures contract with maturity time T is derived. Although we considered determinis-
tic interest rates throughout the previous chapters, we include a stochastic interest rate in this chapter.
The purpose of doing this is to show what kind of problems arise when dealing with stochastic interest
rates. The derivation of the formula follows the work by Schwartz [11]. However, we give a more de-
tailed derivation, where lengthy proofs are moved to the appendix C.
In the introduction the difference between forward and futures contracts have been made. Schwartz, in
[11], showed that, considering this distinction will lead to differences in the option prices. Since we are
only interested in the case where the interest rates are deterministic we give the fully derivation of the
call option on a futures contract and highlight the difference between the call option on a forward con-
tract. Definitions like change of numeraire, Radon-Nikodym derivative and the equivalent martingale
measure are briefly explained. However, these definitions are only used and are not proven because this
would deviate from the main goal of this thesis.

B.1 Back to basics

Consider a probability space (Ω,F ,P), where Ft is the filtration (i.e. all available information up to
time t). We consider three adapted (i.e. filtered) stochastic processes: the spot prices St, the convenience
yield, δt and the interest rate, rt and we assume that the probability space is chosen such that the first
and second moments of these processes are well defined. From (4.4) we see that the risk adjusted drift
of the commodity price process should be r − δt. Since, as noted earlier, the CY can not be hedged, the
risk-adjusted CY process will have a market price of risk associated with it. For the derivation of the
closed form solution, we assume for now that the interest rate is stochastic and follows, for simplicity a
mean-reverting pattern. We have the joint-stochastic process

dSt = (rt − δt)dt+ σS(t)dWt,

dδt = kε(α− δt)dt+ σε(t, t)dWt,

drt = kf (m− rt)dt+ σf (t, t)dWt.

(B.1)

In (B.1), α and m are the mean-reverting parameters of the CY and interest rate, respectively. After the
derivation of the closed form solution, we set r constant (σf (t, t) = 0).
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The future price, G(t, T ), for delivery at date T > t is given by

G(t, T ) = E[ST |Ft], (B.2)

that is, given that the spot price at time T is a random quantity ST viewed from date t, G(t, T ) is the
expectation taken under an equivalent martingale measure1, conditional on the information up to time
t (Ft). The non-arbitrage conditions assumed in this thesis imply the existence of a probability measure
Q, such that the price of any basic security at time t is equal to, what is called, the Q-expectation of
its discounted future payments. Futhermore, the discounted price of these securities is a Q-martingale
between two payments dates. The mathematical explanation is given in the following sections.

B.1.1 Basic principles of change of numeraire

In order to find the formula for the forward prices, we must first explain what a change of numeraire
technique is. Consider a tree

�
�

�
�

�
��

S0

S0u, fu

r
@

@
@

@
@

@R
S0d, fd

We start with S0, the price of the commodity at t = 0. In one step the price can go up, denoted as S0u

with u > 1 or can go down with d < 1 denoted as, S0d. After n steps we got our price at t = T , ST . If the
price goes up, the payoff is given by fu and visa versa as fd. Given a portfolio consisting of Π shares in
the long position and one derivative in the short position. If the price goes up, the value of the portfolio
is SuΠ − fu and if it goes down the price will be SdΠ − fd. This portfolio is riskless if and only if the
prices are equal, that is if,

Π =
fu − fd

S0u− S0d
. (B.3)

The present value of the portfolio is (S0uΠ − fu)e−rT , because since it is riskless, it must earn the risk-
free interest rate r (note that, in contrast to the beginning of this chapter, r is now assumed constant).
Since setting up the portfolio costs S0Π− f we have

(S0uΠ− fu)e−rT = S0Π− f, or equivalently, f = e−rT (pfu + (1− p)fd), (B.4)

where

p =
erT − d
u− d

. (B.5)

Under the quivalent martingale measure we see that, together with (B.5)

E[ST ] = pS0u+ (1− p)S0d = S0e
rT , or equivalently, S0 = e−rT E[ST ]. (B.6)

1The term, an equivalent martingale measure, is made clear in the following section.
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In general, it holds that, St = φuSu
t+dt + φdSd

t+dt, where for simplicity we write Su
t+dt for S0u and Sd

t+dt

for S0d. This also holds for a bond, Bt = φuBt+dt + φdBt+dt. For a portfolio vt consisting of x shares of
St and y bonds, we have

vt = x(φuSu
t+dt + φdSd

t+dt) + y(φuBt+dt + φdBt+dt)

= φuvu
t+dt + φdvd

t+dt. (B.7)

So we can interpret φu and φd as the prices in the up and down states of the tree, respectively. Let L be
a linear price functional and vt+dt the payoff, we have

vt = L(vt+dt) = φuvu
t+dt + φdvd

t+dt = 〈vt+dt, φ〉 , (B.8)

where φ = [φu φd]. For a stock and a bond, this holds as well, i.e. let

L : X → < or equivalently L : payoff→ price (B.9)

be the pricing functional. For a stock and bond we therefore have

L(ST ) = S0 and L(BT ) = B0. (B.10)

Using the Riesz representation formula, i.e.

Theorem B.1. Riesz representation formula [cf. [15]]
Let L(·) : L2(P)→ < be a continuous linear functional, then there exists a unique φ ∈ L2(P) such that

L(f) =
∫
fφdP

φ is known as the pricing Kernel or the stochastic discount factor.

Using this we have

L(ST ) =
∫ T

0

STφdP = S0, (B.11)

L(BT ) =
∫ T

0

BTφdP = B0. (B.12)

Since pricing options using a tree, it is common to start with ST and calculate back to S0. So for T tree
steps we have, in the continuous limit,

S0 =
T∑
0

STφ ≈
∫ T

0

STφdP. (B.13)

B.1.2 An equivalent martingale measure

To show what is meant the term ’equivalent martingale measure’ we note that

1 =
B0

B0
=
∫ T

0

BT

B0
φdP. (B.14)

So it seems that BT

B0
φdP acts like a probability density, since it integrates to one. We define

dQB =
BT

B0
φdP. (B.15)
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Q is referred to as the forward risk neutral measure. Also

S0

B0
=
∫ T

0

ST

B0
φdP =

∫ T

0

ST

BT

BT

B0
φdP =

∫ T

0

ST

BT
dQB , (B.16)

or equivalently,

S0

B0
= EQB

[
ST

BT
]. (B.17)

Now assume constant interest rate, r, and B0=1 we have

S0

1
=
∫ T

0

ST

erT
dQB = e−rT EQB

[ST ], (B.18)

which is the same as (B.6). This same trick holds for the stock price

1 =
S0

S0
=
∫ T

0

ST

S0
φdP⇒ dQS =

ST

S0
φdP, (B.19)

and so,

B0

S0
=
∫ T

0

BTS0φdP =
∫ T

0

BT

ST

ST

S0
φdP =

∫ T

0

BT

ST
dQS , (B.20)

which implies,

B0

S0
= EQS

[
BT

ST
]. (B.21)

In brief, normalizing the bond means that everything is measured in units of the bond and normalizing
in the stock means that everything is measured in units of the stock. This is called change of numeraire.
In general the pricing formulas for St and Pt are given by

St

Bt
= EQB

[
ST

BT
|Ft] and

Bt

St
= EQS

[
BT

ST
|Ft] respectively. (B.22)

It is known that: all assets normalized by the numeraire are martingales under the forward risk neutral
probabilities with respect to the numeraire, [12]. The forward risk neutral probability is also referred to
as the equivalent martingale measure. From this it follows that the martingales of the pricing formulas for
St and Pt are respectively

St

Bt
and

Bt

St
. (B.23)

Using the result in Subsection B.1.1,

S0

B0
=
∫ T

0

ST

BT
dQB = EQB

[
ST

BT
], (B.24)

accordingly

S0 = EQB

[exp

{
−
∫ T

0

rsds

}
ST ], (B.25)

which implies

St = EQB

[exp

{
−
∫ T

t

rsds

}
ST |Ft]. (B.26)
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B.2 Back to pricing an option

Consider a market value Mt, where

dMt = rtMtdt, with C0 = 1 ⇒ Mt = e
∫ t
0 rsds. (B.27)

We see that Mt is not riskless since r is evolving over time. The stochastic discount factor is given by

φ =
Mt

MT
= exp

{
−
∫ T

t

rsds

}
. (B.28)

The price of an option, Vt[ν], at time t under the equivalent martingale measure, can be generally written
as

Vt[ν] = EP[νexp

{
−
∫ T

t

rsds

}
|Ft], (B.29)

where ν is a random variable (in this case it is the payoff). Note: if ν and r are independent we have

Vt[ν] = EP[νexp

{
−
∫ T

t

rsds

}
|Ft]

= EP[exp

{
−
∫ T

t

rsds

}
|Ft]EQ[ν|Ft]

= P (t, T )EP[ν|Ft], (B.30)

which is a good results because P (t, T ) (zero coupon bond) can be observerd directly from the markt.
However the two random variables, ν and r are in general not independent, that is why the change of
numeraire is important, in order to calculate the expectation in (B.29).

B.2.1 Change of numeraire and the Radon-Nikodym derivative

From [13] it follows that the change of numeraire works as follows

• choose as numeraire P (t, T ), that is the zero coupon price,

• choose as probability measure the T -forward risk neutral probability measure, QT , defined by its
Radon-Nikodym derivative with respect to P

dQT

dP
=

exp
{
−
∫ T

t
rsds

}
P (t, T )

. (B.31)

To understand what is meant by the Radon-Nikodym derivative we give the theorem below and the
proof of (B.31).

Theorem B.2. Radon-Nikodym derivative [cf. [14]]
Let Q and P be two probability measures on a space (Ω,F ). Assume that for every A ∈ F satisfying P(A) = 0,
we also have Q(A) = 0. Then we say that P is absolutely continuous with respect to Q. Under this assumption,
there is a nonnegative random variable Z such that

Q(A) =
∫

A

ZdP, ∀A ∈ F , (B.32)

and Z is called the Radon-Nikodym derivative of P with respect to Q.
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Looking at (B.15) we see, that over a period [t, T ] it holds, using (B.28)

dQP

dP
=

P (T, T )
P (t, T )

Mt

MT

=
1

P (t, T )
exp

{
−
∫ T

t

rsds

}
. (B.33)

An important difference between the discount factor φ from the market accountMt and the zero-copuon
bond, P (t, T ), resides that P (t, T ) must be known at time t while φ depends on the evolution of rt. For
deterministic interest rates, φ=P (t, T ), but since our interest rate is expected to be stochastic we have

P (t, T ) = EP[exp

{
−
∫ T

t

rsds

}
|Ft], (B.34)

which is consonant with (B.30).

B.2.2 Relation between the future and forward price

Next we substitute (B.33) into (B.29) and we define ν = ST , i.e. the price of an asset at time T , making
Vt[ν] = Vt[ST ] being its purchase price today (St). This results in

Vt[ν] = EP[νexp

{
−
∫ T

t

rsds

}
|Ft]

= EP[νP (t, T )
dQT

dP
|Ft]

= P (t, T )EP[ν
dQT

dP
|Ft]

= P (t, T )EQT

[ν|Ft]

Vt[ST ] = P (t, T )EQT

[ST |Ft]

St = P (t, T )EQT

[ST |Ft]
St

P (t, T )
= EQT

[
ST

P (T, T )
|Ft], (B.35)

since P (T, T ) = 1. Next we note that St

P (t,T ) is the forward price of a non-dividend-paying stock that
does not pay convenience yield. Since we do have convenience yield, specifically stochastic convenience
yield we have2,

St = EP[ST exp

{
−
∫ T

t

δsds

}
exp

{
−
∫ T

t

rsds

}
|Ft]. (B.36)

Next we proof that the forward price of the commodity can be written, under the equivalent martingale
measure as

F (t, T ) =
St − cov

(
exp

{∫ T

t
δsds

}
, exp

{
−
∫ T

t
rsds

}
ST |Ft

)
P (t, T )E[exp

{∫ T

t
δsds

}
|Ft]

(B.37)

and that the future price of the commodity can be written as

G(t, T ) = F (t, T )− St

P (t, T )
cov

(
exp

{
−
∫ T

t

rsds

}
,
ST

St
|Ft

)
. (B.38)

2This results, i.e. bringing in the stochastic convenience yield into the expectation is not proven here. However, it can be found
in [12]
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Remark: From here on, we assume that everything is calculated under the equivalent martingale mea-
sure and we will therefore skip the measure subscript on the expectation.

Proof. We summarize the results from Appendix B. We have

P (t, T ) = E[exp

{
−
∫ T

t

rsds

}
|Ft] , (B.39)

St = E[ST exp

{
−
∫ T

t

δsds

}
exp

{
−
∫ T

t

rsds

}
|Ft] , (B.40)

G(t, T ) = E[ST |Ft] , (B.41)

F (t, T ) =
E[exp

{
−
∫ T

t
rsds

}
ST |Ft]

P (t, T )
. (B.42)

Rewriting the second equility gives

St = E[ST exp

{
−
∫ T

t

δsds

}
exp

{
−
∫ T

t

rsds

}
|Ft]

= E[exp

{∫ T

t

δsds

}
|Ft]E[exp

{
−
∫ T

t

rsds

}
ST |Ft]

+cov

(
exp

{∫ T

t

δsds

}
, exp

{
−
∫ T

t

rsds

}
ST |Ft

)

= E[exp

{∫ T

t

δsds

}
|Ft]P (t, T )F (t, T ) + cov

(
exp

{∫ T

t

δsds

}
, exp

{
−
∫ T

t

rsds

}
ST |Ft

)
.

(B.43)

Rewriting (B.42) results in

F (t, T ) =
E[exp

{
−
∫ T

t
rsds

}
ST |Ft]

P (t, T )

=
1

P (t, T )

(
cov

(
exp

{
−
∫ T

t

rsds

}
, ST |Ft

))
+ E[exp

{
−
∫ T

t

rsds

}
]E[ST |Ft]

=
1

P (t, T )

(
cov

(
exp

{
−
∫ T

t

rsds

}
, ST |Ft

))
+G(t, T ) (B.44)

Now the substitution of (B.44) into (B.42) results in

St = E[exp

{∫ T

t

δsds

}
|Ft]P (t, T )G(t, T ) + E[exp

{∫ T

t

δsds

}
|Ft] · cov

(
exp

{
−
∫ T

t

rsds

}
, ST |Ft

)

+cov

(
exp

{∫ T

t

δsds

}
, exp

{
−
∫ T

t

rsds

}
ST |Ft

)
. (B.45)
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(B.43) and(B.45) implies that (B.37) and (B.38) holds.
Remark: Note that for the derivation of this proof we use a standard results, namely, for two dependent
random variables, X and Y it holds that

E[XY ] = E[X]E[Y ] + cov(X,Y ). (B.46)

The dependency of the random variables e
∫ T

t
δsds and e−

∫ T
t

rsdsST (used in (B.43)) and between the
random variables ST and e−

∫ T
t

rsds (used in (B.44)) clearly holds.

B.3 Instantaneous forward interest rate and the Heath-Jarrow-Morton
framework

The Heath-Jarrow-Morton (HJM) framework is a general framework to model the evolution of interest
rates. The main idea of this framework is that the drift of the instantanuous interest rate depends on
the volatility, i.e. no drift estimation is needed. The HJM is applicable to long rate models because it
captures to whole dynamics of the interest rate curve.

Theorem B.3. HJM-framework, [cf. [27]]
The instantanuous forward interest rate prevailing at time t for the maturity T > t is denoted by f(t, T ) and is
defined by

f(t, T ) := lim
S→T

F (t;T, S) = −∂lnP (t, T )
∂T

, (B.47)

which gives the well-known result

P (t, T ) = e−
∫ T

t
f(t,s)ds. (B.48)

Intuitively we can say that the instantanuous forward interest rate f(t, T ) ≈ F (t;T, T + ∆T ), that is, its
maturity is very close to its expiry T (considering ∆T small). For pricing the forward prices we would
like the same approach for the forward prices of commodities (see (B.37)). So

F (t, T ) =
S(t)
P (t, T )

e−
∫ T

t
δ(t,s)ds = Ste

∫ T
t

(f(t,s)−δ(t,s))ds, (B.49)

where δ(t, s) is the continuously compounded forward convenience yield which, as noted in the intro-
duction, only accrues to the holder of the physical commodity and not to the holder of the contract on
the commodity. From (B.37) and (B.49) it follows that we have

e−
∫ T

t
δ(t,s)ds =

1− cov
(

exp
{∫ T

t
δsds

}
, exp

{
−
∫ T

t
rsds

}
ST |Ft

)
E[exp

{∫ T

t
δsds

}
|Ft]

(B.50)

To get a feeling of the economical interpretation of δ(t, s) consider buying one forward contract at date
t for future delivery of the commmodity at maturity T and selling one forward contract at date t for
future delivery of the commodity at date T + ∆. So in this period you own the physical commodity and
so δ(t, s) is the premium of the difference between the value of the commodity at date T to T + ∆ per
unit time per unit of the commodity. To see this mathematically, we have

F (t, T )− F (t, T + ∆) =
Ste

−
∫ T

t
δ(t,s)ds

P (t, T )
− Ste

−
∫ T+∆

t
δ(t,s)ds

P (t, T + ∆)

F (t, T )P (t, T )− F (t, T + ∆)P (t, T + ∆) = Ste
−

∫ T
t

δ(t,s)ds − Ste
−

∫ T
t

δ(t,s)dse−
∫ T+∆

T
δ(t,s)ds

= F (t, T )P (t, T )(1− e−
∫ T+∆

T
δ(t,s)ds), (B.51)
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dividing LHS by ∆ and taking limits (∆ ↓ 0) we have

lim
∆↓0

F (t, T )P (t, T )− F (t, T + ∆)P (t, T + ∆)
∆

= − ∂

∂T
(F (t, T )P (t, T ))

= − ∂

∂T
(Ste

−
∫ T

t
δ(t,s)ds)

= δ(t, T )ST e
−

∫ T
t

δ(t,s)ds

= P (t, T )F (t, T )δ(t, T ). (B.52)

In other words we have

lim
∆↓0

F (t, T )P (t, T )− F (t, T + ∆)P (t, T + ∆)
P (t, T )F (t, T )∆

= δ(t, T ), (B.53)

which corresponds to the economic interpretation.
Relation (B.48) is performed under no-arbitrage conditions. We therefore should have the relation

f(t, t) = rt. (B.54)

We can see this by (step 1)3 differentiating the LHS and RHS of (B.48) with respect to T , (step 2) dividing
by P (t, T ) and (step 3) taking the limit (T ↓ t).

Step 1

∂P (t, T )
∂T

=
∂

∂T
E[e−

∫ T
t

rsds|Ft] =
∂

∂T
e−

∫ T
t

f(t,s)ds

= E[
∂

∂T
e−

∫ T
t

rsds|Ft] = −f(t, T )P (t, T )

= rTP (t, T ) = f(t, T )P (t, T )

Step 2

rT = f(t, T )

Step 3

lim
T↓t

(rT ) = lim
T↓t

f(t, T )

rt = f(t, t). (B.55)

In order words, considering an infinitesimal interval (T ↓ t) we should have that the instantanuous
interest rate is equal to the forward interest rate at time t. If this was not true, arbitrage possibilities can
arise by lending money with one interest rate and putting money on the bank with the other one.

3In step 1 we assume all usual rules of interchange derivative operator and expectation.
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A similar task can be done for (B.50) and (B.60) (note that step 24 is not needed). For the former we have

Step 1

∂

∂T
e−

∫ T
t

δ(t,s)ds =
∂

∂T

1− cov
(

exp
{∫ T

t
δsds

}
, exp

{
−
∫ T

t
rsds

}
ST |Ft

)
E[exp

{∫ T

t
δsds

}
|Ft]


−δ(t, T )e−

∫ T
t

δ(t,s)ds =
E[e−

∫ T
t

δsds|Ft]
(
−cov

(
∂

∂T e
−

∫ T
t

δsds, ∂
∂T e

−
∫ T

t
rsds ST

St
|Ft

))
E[e

∫ T
t

δsds|Ft]2

−

(
1− cov

(
e−

∫ T
t

δsds, e−
∫ T

t
rsds ST

St
|Ft

))
E[ ∂

∂T e
∫ T

t
δsds|Ft]

E[e
∫ T

t
δsds|Ft]2

=
δT rT cov

(
e
∫ T

t
δsds, e−

∫ T
t

rsds ST

St
|Ft

)
− δT (1− cov

(
e−

∫ T
t

δsds, e−
∫ T

t
rsds ST

St
|Ft

)
)

E[e
∫ T

t
δsds|Ft]

Step 3

δ(t, t) = δt, (B.56)

where is step 3 we made use of the fact that cov(1, 1) = 0. For the latter we have the same procedure
which together results into

δ(t, t) = ε(t, t) = δt. (B.57)

And so we have, consonant with the no-arbitrage principle

F (t, t) = G(t, t) = St. (B.58)

A similar task, which resulted in (B.50) can be done for the future prices

G(t, T ) =
St

P (t, T )
e−

∫ T
t

ε(t,s)ds = Ste
∫ T

t
(f(t,s)−ε(t,s))ds, (B.59)

accordingly (from (B.38))

e
∫ T

t
ε(t,s)ds =

1− cov
(
exp

{∫ T

t
δsds

}
, exp

{
−
∫ T

t
rsds

}
ST

St
|Ft

)
E[exp

{∫ T

t
δsds

}
|Ft]

− cov

(
exp

{
−
∫ T

t

rsds

}
,
ST

St
|Ft

)
, (B.60)

where ε(t, s) is the future convenience yield.5

4In step 2 we assume all usual rules of interchange derivative operator with the covariance.
5The future convenience yield is just a definition. The economical interpretation is difficult to give. Since we are only interested

in deterministic interest rates, we do not even use this definition and so we do not devote too much attention to all the economical
interpretations of these definitions.
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B.4 Drift calculation for the forward interest rate, future convenience
yield and the spot price

For the three stochastic processes we have (cf. e.g. [28], [29] or [11])

f(t, s) = f(0, s) +
∫ t

0

µf (u, s)ds+
∫ t

0

σf (u, s) · dWu, (B.61)

ε(t, s) = ε(0, s) +
∫ t

0

µε(u, s)du+
∫ t

0

σε(u, s) · dWu, (B.62)

St = S0 +
∫ t

0

SuµS(u)du+
∫ t

0

SuσS(u) · dWu, (B.63)

where we used for all three processes the same k-dimensional Brownian motions, which explains the
possible correlations among the processes.6 This notation will be used further on in this chapter.
It follows that working under an equavalent martingale measure and assuming no arbitrage possibilities
that we can write an explicit form of the drift terms of the above processes. From Section 2.2 and (B.57)
it follows that

µS(t) = rt − δt = f(t, t)− ε(t, t) (B.64)

Furthermore

µf (t, s) = σf (t, s) ·
(∫ t

s

σf (t, v)dv
)
. (B.65)

Before we give a mathematical proof, we first give some facts about the forward interest rate. From
Theorem 8.3

f(t, T ) = −∂lnE[e−
∫ T

t
rsds]

∂T
. (B.66)

Since f(t, T ) depends on an expectation, it implies some kind of dynamics for the forward interest rate.
Heath, Jarrow and Morton [28] showed that this dynamics is given by

d(f(t, s)) = µf (t, s)dt+ σf (t, s) · dWt, (B.67)

where µf (t, s) can not be chosen arbitrarly but must equal a some kind of relationship with σf (t, s).
That is, there is no need to estimate the drift terms and one can only pay attention to how to calibrate
the volatility.

Proof. The proof can be found in Appendix C.1.

For µε(t, s) we have the relationship

µε(t, s) = σf (t, T ) ·

(∫ T

t

σf (t, s)ds

)
+ (σf (t, T )− σε(t, T )) ·

(
σS(t) +

∫ T

t

(σf (t, s)− σε(t, s))ds

)
(B.68)

Furthermore, from (C.6) it follows (see e.g. [28] or [11])

P (t, T ) = P (0, T ) +
∫ t

0

P (u, T )

f(u, u)−
∫ T

u

uf (u, s)ds+
1
2

∥∥∥∥∥
∫ T

u

σf (u, s)ds

∥∥∥∥∥
2
 du

−
∫ t

0

P (u, T )

(∫ T

u

σf (u, s)ds

)
· dWu. (B.69)

6Here (,·,) is the inner product, i.e.
∫ t
0

∑n
i=1 σi

f (u, s)dW i
u.
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Proof. The proof can be found in Appendix C.2.

Now we have derived explicit formulas for every drift term of the three stochastic processes given in
the beginning of Section B.2.2. We can now price a K-strike call option on a futures contract using the
formula

CG = E[e−
∫ t
0 f(s,s)ds(G(t, s)−K)+]. (B.70)

In the following section, a closed form solution of this expression is derived.

B.5 Closed form solution of a call option on a futures contract

This section is again based on the calculations in [11]. However a detailed derivation is reproduced and
given below. To stay in the same notation as in [11] define

σPt
(u) = −

∫ t

u

σf (u, s)ds, (B.71)

σGT
(u) = σS(u) +

∫ T

u

(σf (u, s)− σε(u, s))ds. (B.72)

We can write

e−
∫ t
0 f(s,s)ds = Ae−X , (B.73)

if we define7, with (B.61),

X =
∫ t

0

∫ t

0

σf (u, s) · dWuds = −
∫ t

0

σPt
(u) · dWu, (B.74)

and in A the non-stochastic terms are hidden. The exact form is not important. Similar, we can write

G(t, T ) = BeZ , (B.75)

where, with (C.11),

Z =
∫ t

0

(
σS(u) +

∫ T

u

(σf (u, s)− σε(u, s))ds

)
· dWu =

∫ t

0

σGT
(u) · dWu (B.76)

and in B the non-stochastic terms are hidden. Again the exact form of B does not come up. Since X and
Z are both desribed using the same Brownian motion and since σGT

and σPt are deterministic, we can
conclude that (X,Z) is jointly normally distributed with mean zero and variances and covariance given
by

σ2
X =

∫ t

0

‖σPt
(u)‖2 du, (B.77)

σ2
Z =

∫ t

0

‖σGT
(u)‖2 du, (B.78)

σXZ = −
∫ t

0

σPt
(u)σGT

(u)du. (B.79)

7Where the approbation of interchanging stochastic with integral operator is assumed.
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Via the tower rule8 and (B.70) we get

CG = AE[e−X(BeZ −K)+]

= AE[E[e−X |Z](BeZ −K)+]. (B.80)

The closed-from solution for the price of a European call option with maturity t and exercise price K
written on the commodity future prices with maturity T, and is given by

CG = P (0, t)

(
G(0, T )e−σxzN

(
log(G(0,T )

K )− σxz + 1
2σ

2
z

σz

)
−KN

(
log(G(0,T )

K )− σxz − 1
2σ

2
z

σz

))
.

(B.81)

Proof. The proof is given in Appendix C.3.

B.6 Relation between forward and future prices

This section will briefly highlight the relation between the forward and future prices, but we will not
derivate the formula. However, every detail of the derivation can be found in [11].

Lemma B.1. Relation between forward and future prices

F (t, T ) = G(t, T )H(t, T ), (B.82)

where

H(t, T ) = exp

{
−
∫ T

t

(∫ T

u

σf (u, s)ds

)
·

(
σS(u) +

∫ T

u

(σf (u, s)− σε(u, s))ds

)
du

}
. (B.83)

In (B.1), σf (t, t) = 0 if we consider deterministic interest rates resulting inH(t, T ) = 1 and thus F (t, T ) =
G(t, T ). In the next chapter, (B.81) will be used to calibrate the prices.

8Tower rule: let X be an integrable random variable (i.e. E[|X|] < ∞) and Y is any random variable living on the same
probability space, then E[X] = E[E[X|Y ]].
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Appendix C

Proofs

C.1 Proof of equation (B.65)

Define

$(t, s) := −
∫ s

0

f(t, u)du, (C.1)

and so via Itô’s lemma

d$(t, s) = f(t, t)dt−
∫ s

t

df(t, u)du

= rtdt−
∫ s

t

[µf (t, u)dt+ σf (t, u) · dWt]du. (C.2)

Assume that the Stochastic Fubini Theorem is fullfilled, i.e. we can interchange stochastic and the inte-
gral operator and define

µ∗f (t, s) =
∫ s

t

µf (t, u)du

σ∗f (t, s) =
∫ s

t

σf (t, u)du (C.3)

and get

d$(t, s) = rtdt− µ∗f (t, s)dt− σ∗f (t, s) · dWt. (C.4)

Furthermore

P (t, s) = e$(t,s). (C.5)

Applying Itô’s lemma we have

dP (t, s) = e$(t,s)d$(t, s) +
1
2
e$(t,s)(d$(t, s))2

= P (t, s)(rt − µ∗f (t, s) +
1
2
σ∗f (t, s) · σ∗f (t, s))dt− P (t, s)σ∗f (t, s) · dWt (C.6)

Implying no arbitrage conditions we must have dP (t, s) = rtdt and so

µ∗f (t, s) =
1
2
σ∗f (t, s) · σ∗f (t, s) =

1
2

∥∥∥∥∫ s

t

σf (t, u)du
∥∥∥∥2

. (C.7)

Differentiating LHS and RHS of (C.7) with respect to s gives

µf (t, s) = σf (t, s) ·
(∫ t

s

σf (t, u)du
)
, (C.8)

which is the desired result.
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C.2 Proof of equation (B.68)

From equation (C.6) we have in other words, P (t, T ) is defined by P (0, T ) + P times the interest rate drift
term + P times the interest rate volatility1. This also holds for Y (t, T ), defined by e−

∫ T
t

(f(t,s)−ε(t,s))ds,
using the dynamics of the forward interest rates and the future convenience yields, so

Y (t, T ) = Y (0, T ) +
∫ t

0

Y (u, T )
(
−f(u, u) + ε(u, u) +

∫ T

u

µf (u, s)ds−
∫ T

u

µε(u, s)ds

+
1
2

∥∥∥∥∥
∫ T

u

σf (u, s)ds

∥∥∥∥∥
2

+
1
2

∥∥∥∥∥
∫ T

u

σε(u, s)ds

∥∥∥∥∥
2

−

(∫ T

u

σf (u, s)ds

)
·

(∫ T

u

σε(u, s)ds

))
du

+
∫ t

0

Y (u, T )

(∫ T

u

σf (u, s)ds−
∫ T

u

σε(u, s)ds

)
· dWu. (C.9)

In defining Y (t, T ) in this way, the future price of the commodity can be written as

G(t, T ) = StY (t, T ). (C.10)

Using the two-dimensional Itô lemma, it yields2

G(t, T ) = S0Y (0, T ) +
∫ t

0

SuY (u, T )
(
−f(u, u) + ε(u, u) +

∫ T

u

µf (u, s)ds−
∫ T

u

µε(u, s)ds

+
1
2

∥∥∥∥∥
∫ T

u

σf (u, s)ds

∥∥∥∥∥
2

+
1
2

∥∥∥∥∥
∫ T

u

σε(u, s)ds

∥∥∥∥∥
2

−

(∫ T

u

σf (u, s)ds

)
·

(∫ T

u

σε(u, s)ds

))
du

+
∫ t

0

SuY (u, T )

(∫ T

u

σf (u, s)ds−
∫ T

u

σε(u, s)ds

)
· dWu

+
∫ t

0

Y (u, T )SuµS(u)du+
∫ t

0

Y (u, T )SuσS(u) · dWu

+
∫ t

0

Y (u, T )Su

(
σS(u) ·

(∫ T

u

(σf (u, s)− σε(u, s))ds

))
du︸ ︷︷ ︸

correction term due to It̂o’s lemma

= G(0, T ) +
∫ t

0

G(u, T )
(
−
∫ T

u

µε(u, s)ds+

∥∥∥∥∥
∫ T

u

σf (u, s)ds

∥∥∥∥∥
2

+
1
2

∥∥∥∥∥
∫ T

u

σε(u, s)ds

∥∥∥∥∥
2

−

(∫ T

u

σf (u, s)ds

)
·

(∫ T

u

σε(u, s)ds

)
+ σS(u) ·

(∫ T

u

(σf (u, s)− σε(u, s)ds)

))
du

+
∫ t

0

G(u, T )

(
σS(u) +

∫ T

u

(σf (u, s)σε(u, s))ds

)
· dWu. (C.11)

Since we are working under an equivalent martingale measure, the future price process is a martin-
gale, that is, the drift term should equal zero (E[G(·, T )] = G(0, T )). In fact, any zero-drift process is a

1Note that the same explanation holds for the dynamics for the forward interest rates, future convenience yield and the spot
prices, see e.g. (B.61).

2Note that in the second equality we substituted (C.10), (B.65) and (B.64).
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martingale process.

−
∫ T

u

µε(u, s)ds+

∥∥∥∥∥
∫ T

u

σf (u, s)ds

∥∥∥∥∥
2

+
1
2

∥∥∥∥∥
∫ T

u

σε(u, s)ds

∥∥∥∥∥
2

−

(∫ T

u

σf (u, s)ds

)
·

(∫ T

u

σε(u, s)ds

)
+ σS(u) ·

(∫ T

u

(σf (u, s)− σε(u, s)ds)

)
= 0 (C.12)

Differentiating with respect to T , substituting u = t and gathering terms it follows

µε(t, T ) = 2σf (t, T )
∫ T

t

σf (t, s)ds+ σε(t, T )
∫ T

t

σε(t, s)ds− σf (t, T )
∫ T

t

σε(t, s)ds

−σε(u, s)
∫ T

t

σf (u, s)ds+ σS(t) · (σf (t, T )− σε(t, T ))

= σf (t, T ) ·

(∫ T

t

σf (t, s)ds

)
+ (σf (t, T )− σε(t, T )) ·

(
σS(t) +

∫ T

t

(σf (t, s)− σε(t, s))ds

)
.

(C.13)

C.3 Proof of equation (B.81)

We want to calculate E[E[e−X |Z]] and in doing so we must know what the conditional distribution of X
given Z is, i.e. we proof

X|Z = z ∼ N

(
z
σxz

σ2
z

, σ2
x(1− σ2

xz

σ2
xσ

2
z

)
)
. (C.14)

Proof. Firstly, the joint density function of X and Z is defined by

f(x, z) =
1

2πσxσz

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[(
x− µx

σx

)2

+
(
z − µz

σz

)2

− 2ρ
(x− µx)(z − µz)

σxσz

]}
.(C.15)

Since (X,Z) are two zero-mean random variables having a bivariate normal distribution we must cal-
culate

E[X|Z = z] =
∫ ∞

−∞
xfX|Z(x|z)dx, (C.16)

i.e. we have to determine the conditional density of X|Z = z and in doing so we collect all factors that
do not depend on x, which be denoted as the constant Ci.

fX|Z(x|z) =
f(x, z)
fz(z)

= C1f(x, z)

= C2 exp
{
− 1

2(1− ρ2)

[
(
x

σ2
x

)2 − 2ρ
x(z)
σxσz

]}

= C3 exp
{
− 1

2σ2
x(1− ρ2)

[
x2 − 2x(ρ

σx

σz
(z))

]}

= C4 exp

{
− 1

2σ2
x(1− ρ2)

[
x− ρσx

σz
(z)
]2}

, (C.17)
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since (C.17) is proportional3 to a

N ∼
(
zρ
σx

σz
, σ2

x(1− ρ2)
)
, (C.18)

we have that, together with

ρ =
Cov(X,Z)
σxσz

=
σxz

σxσz
, (C.19)

the final result

X|Z = z ∼ N

(
σxz

σ2
z

z, σ2
x(1− σ2

xz

σ2
xσ

2
z

)
)
. (C.20)

From this we can calculate the conditional expectation as

E[e−X |Z = z] = e
−σxz

σ2
z

z+ 1
2 σ2

x(1− σ2
xz

σ2
xσ2

z
)
. (C.21)

Hence, equation (B.70) can be written as

CG = Ae
1
2 σ2

x(1− σ2
xz

σ2
xσ2

z
)E[e

−Z σxz
σ2

z (BeZ −K)+]. (C.22)

Note4

CG = Ae
1
2 σ2

x(1− σ2
xz

σ2
xσ2

z
)E[e

−Z σxz
σ2

z (BeZ −K)+]

= Ae
1
2 σ2

x(1− σ2
xz

σ2
xσ2

z
)E[IZ>log( K

B )e
−Z σxz

σ2
z (BeZ −K)]

= ABe
1
2 σ2

x(1− σ2
xz

σ2
xσ2

z
)E[IZ>log( K

B )e
Z(1−σxz

σ2
z

)
]

−AKe
1
2 σ2

x(1− σ2
xz

σ2
xσ2

z
)E[IZ>log( K

B )e
−Z σxz

σ2
z ], (C.23)

where IZ>log( K
B ) is the indicator function.

Now calculate the two expectations. For the former introduce b = (1− σxz

σ2
z

) for notational convenience.

3Again, µz and µx are zero.
4(BeZ −K)+ = max(0, (BeZ −K)) and so it only counts for Z > log(K

B
).
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We have

E[IZ>log( K
B )e

bZ ] =
∫ ∞

−∞

1√
2πσz

IZ>log( K
B ) exp

(
− z2

2σ2
z

)
dz︸ ︷︷ ︸

Integrate against the density of a random variable with N (0, σz)

=
∫ ∞

log(Z> K
B )

1√
2πσz

ebz exp
(
− z2

2σ2
z

)
dz

=
∫ ∞

log(Z> K
B )/σz

1√
2π
ebσzu− 1

2 u2
du︸ ︷︷ ︸

Substitute z = σzu

=
∫ ∞

log(Z> K
B )/σz−bσz

1√
2π
ebσz(v+bσz)− 1

2 (v2+2vbσz+b2σ2
z)dv︸ ︷︷ ︸

Substitute u = v + bσz

= e
1
2 b2σ2

z

∫ bσz−log( K
B )/σz

−∞

1√
2π
e−

1
2 v2

dv

= e
(σ2

z−σxz)2

σ2
z N

(
log( B

K ) + σ2
z − σxz

σz

)
(C.24)

and via the same way

E[IZ>log( k
b )e

−Z σxz
σ2

z ] = e
σ2

xz
2σ2

z N

(
log( B

K )− σxz

σz

)
. (C.25)

Since

Ae
1
2 σ2

x(1− σ2
xz

σ2
xσ2

z
)

= Ae
1
2 σ2

x = AE[e−X ]

= E[e−
∫ t
0 f(s,s)ds]

= P (0, t) (C.26)

and

ABe
1
2 σ2

x(1− σ2
xz

σ2
xσ2

z
)
e

(σ2
z−σxz)2

σ2
z = ABe

1
2 (σ2

x+σ2
z−2σxz)

= ABE[e−X+Z ]

= E[e−
∫ t
0 f(s,s)dsG(t, T )]

:= G(0, t, T ). (C.27)

We have

Be
1
2 σ2

z−σxz =
E[e−

∫ t
0 f(s,s)dsG(t, T )]
P (0, t)

. (C.28)

Consequently,

log(
B

K
) +

1
2
σ2

z − σxz = log
E[e−

∫ t
0 f(s,s)dsG(t, T )]
P (0, t)K

. (C.29)
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From (C.27) we have

G(0, t, T ) = Be
1
2 (σ2

x+σ2
z−2σxz) = AE[e−X ]BE[eZ ]e−σxz

= P (0, t)E[G(t, T )]e−σxz = P (0, t) G(0, T )︸ ︷︷ ︸
G(t,T )is a martingale

e−σxz . (C.30)

Inserting (C.28) and (C.30) into (C.23) results into the closed-from solution for the price of a European
call option with maturity t and exercise price K written on the commodity future prices with maturity
T, and is given by

CG = P (0, t)

(
G(0, T )e−σxzN

(
log(G(0,T )

K )− σxz + 1
2σ

2
z

σz

)
−KN

(
log(G(0,T )

K )− σxz − 1
2σ

2
z

σz

))
.

(C.31)
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